Science.gov

Sample records for assess extrasynaptic nmda

  1. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons.

    PubMed

    Fleming, Tiffany M; Scott, Victoria; Naskar, Krishna; Joe, Natalie; Brown, Colin H; Stern, Javier E

    2011-08-15

    Despite the long-established presence of glutamate NMDA receptors at extrasynaptic sites (eNMDARs), their functional roles remain poorly understood. Factors influencing the concentration and time course of glutamate in the extrasynaptic space, such as the topography of the neuronal–glial microenvironment, as well as glial glutamate transporters, are expected to affect eNMDAR-mediated signalling strength. In this study, we used in vitro and in vivo electrophysiological recordings to assess the properties, functional relevance and modulation of a persistent excitatory current mediated by activation of eNMDARs in hypothalamic supraoptic nucleus (SON) neurons. We found that ambient glutamate of a non-synaptic origin activates eNMDARs to mediate a persistent excitatory current (termed tonic I(NMDA)), which tonically stimulates neuronal activity. Pharmacological blockade of GLT1 astrocyte glutamate transporters, as well as the gliotoxin α-aminodadipic acid, enhanced tonic I(NMDA) and neuronal activity, supporting an astrocyte regulation of tonic I(NMDA) strength. Dehydration, a physiological challenge known to increase SON firing activity and to induce neuroglial remodelling, including reduced neuronal ensheathment by astrocyte processes, resulted in blunted GLT1 efficacy, enhanced tonic I(NMDA) strength, and increased neuronal activity. Taken together, our studies support the view that glial modulation of tonic I(NMDA) activation contributes to regulation of SON neuronal activity, contributing in turn to neuronal homeostatic responses during a physiological challenge. PMID:21690192

  2. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists.

    PubMed

    Papouin, Thomas; Ladépêche, Laurent; Ruel, Jérôme; Sacchi, Silvia; Labasque, Marilyne; Hanini, Marwa; Groc, Laurent; Pollegioni, Loredano; Mothet, Jean-Pierre; Oliet, Stéphane H R

    2012-08-01

    N-methyl-d-aspartate receptors (NMDARs) are located in neuronal cell membranes at synaptic and extrasynaptic locations, where they are believed to mediate distinct physiological and pathological processes. Activation of NMDARs requires glutamate and a coagonist whose nature and impact on NMDAR physiology remain elusive. We report that synaptic and extrasynaptic NMDARs are gated by different endogenous coagonists, d-serine and glycine, respectively. The regionalized availability of the coagonists matches the preferential affinity of synaptic NMDARs for d-serine and extrasynaptic NMDARs for glycine. Furthermore, glycine and d-serine inhibit NMDAR surface trafficking in a subunit-dependent manner, which is likely to influence NMDARs subcellular location. Taking advantage of this coagonist segregation, we demonstrate that long-term potentiation and NMDA-induced neurotoxicity rely on synaptic NMDARs only. Conversely, long-term depression requires both synaptic and extrasynaptic receptors. Our observations provide key insights into the operating mode of NMDARs, emphasizing functional distinctions between synaptic and extrasynaptic NMDARs in brain physiology. PMID:22863013

  3. Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal COX-2 function, lipid peroxidation, and neuroprotection

    PubMed Central

    Stark, David T.; Bazan, Nicolas G.

    2011-01-01

    Stimulation of synaptic NMDA receptors (NMDARs) induces neuroprotection, while extrasynaptic NMDARs promote excitotoxic cell death. Neuronal expression of cyclooxygenase-2 (COX-2) is enhanced by synaptic NMDARs, and although this enzyme mediates neuronal functions, COX-2 is also regarded as a key modulator of neuroinflammation and is thought to exacerbate excitotoxicity via overproduction of prostaglandins. This raises an apparent paradox: synaptic NMDARs are pro-survival yet are essential for robust neuronal COX-2 expression. We hypothesized that stimulation of extrasynaptic NMDARs converts COX-2 signaling from a physiological to a potentially pathological process. We combined HPLC-ESI-MS/MS-based mediator lipidomics and unbiased image analysis in mouse dissociated and organotypic cortical cultures to uncover that synaptic and extrasynaptic NMDARs differentially modulate neuronal COX-2 expression and activity. We show that synaptic NMDARs enhance neuronal COX-2 expression, while sustained synaptic stimulation limits COX-2 activity by suppressing cellular levels of the primary COX-2 substrate, arachidonic acid (AA). In contrast, extrasynaptic NMDARs suppress COX-2 expression while activating phospholipase A2 (PLA2), which enhances AA levels by hydrolysis of membrane phospholipids. Thus, sequential activation of synaptic then extrasynaptic NMDARs maximizes COX-2-dependent prostaglandin synthesis. We also show that excitotoxic events only drive induction of COX-2 expression through abnormal synaptic network excitability. Finally, we show that non-enzymatic lipid peroxidation of arachidonic and other polyunsaturated fatty acids is a function of network activity history. A new paradigm emerges from our results suggesting that pathological COX-2 signaling associated with models of stroke, epilepsy, and neurodegeneration requires specific spatio-temporal NMDAR stimulation. PMID:21957234

  4. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice.

    PubMed

    Lo, Fu-Sun; Blue, Mary E; Erzurumlu, Reha S

    2016-03-01

    Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541-545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624-1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT. PMID:26683074

  5. Astrocytic Ca(2+) waves mediate activation of extrasynaptic NMDA receptors in hippocampal neurons to aggravate brain damage during ischemia.

    PubMed

    Dong, Qi-Ping; He, Jing-Quan; Chai, Zhen

    2013-10-01

    Excitotoxicity plays a central role in the neuronal damage during ischemic stroke. Although growing evidence suggests that activation of extrasynaptic NMDA receptors initiates neuronal death, no direct evidence demonstrated their activation during ischemia. Using rat hippocampal slices, we detected oxygen-glucose deprivation (OGD) induced slow inward currents (SICs) mediated by extrasynaptic NMDA receptors in CA1 pyramidal neurons. Moreover, Ca(2+) chelator BAPTA dialysis into astrocytic network decreased the frequency of OGD induced SICs, indicating that the activation of extrasynaptic NMDA receptors depended on astrocytic Ca(2+) activity. To further demonstrate the importance of astrocytic Ca(2+) activity, we tested hippocampal slices from inositol triphosphate receptor type 2 (IP3R2) knock-out mice which abolished the astrocytic Ca(2+) activity. As expected, the frequency of OGD induced SICs was reduced. Using two-photon Ca(2+) imaging, we characterized the astrocytic Ca(2+) dynamics. By controlling Ca(2+) level in the individual astrocytes using targeted photolysis, we found that OGD facilitated the propagation of intercellular Ca(2+) waves, which were inhibited by gap junction blocker carbenoxolone (CBX). CBX also inhibited the Ca(2+) activity of the astrocytic network and decreased the SIC frequency during OGD. Functionally, the infarct volumes from brain ischemia were reduced in IP3R2 knock-out mice and in rat intracerebrally delivered with CBX. Our results demonstrate that enhanced Ca(2+) activity of the astrocytic network plays a key role on the activation of extrasynaptic NMDA receptors in hippocampal neurons, which enhances brain damage during ischemia. PMID:23702310

  6. Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells.

    PubMed

    Pai, Yoon Hyoung; Lim, Chae Seong; Park, Kyung-Ah; Cho, Hyun Sil; Lee, Gyu-Seung; Shin, Yong Sup; Kim, Hyun-Woo; Jeon, Byeong Hwa; Yoon, Seok Hwa; Park, Jin Bong

    2016-07-01

    In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current (INMDA) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic INMDA in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the α-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In low-Mg(2+) artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in Iho lding (IGLU) at a holding potential (Vholding) of -70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive IGLU was observed even in normal aCSF at Vholding of -40 mV or -20 mV. IGLU was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in Iholding (IAMPA) in SON MNCs. Pretreatment with AP5 attenuated IAMPA amplitudes to ~60% of the control levels in low-Mg(2+) aCSF, but not in normal aCSF at Vholding of -70 mV. IAMPA attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced IAMPA attenuation in SON MNCs. Finally, chronic dehydration did not affect IAMPA attenuation by AP5 in the neurons. These results suggest that tonic INMDA, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs. PMID:27382359

  7. Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells

    PubMed Central

    Pai, Yoon Hyoung; Lim, Chae Seong; Park, Kyung-Ah; Cho, Hyun Sil; Lee, Gyu-Seung; Shin, Yong Sup; Kim, Hyun-Woo; Jeon, Byeong Hwa

    2016-01-01

    In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current (INMDA) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic INMDA in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the α-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In low-Mg2+ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in Iholding (IGLU) at a holding potential (Vholding) of –70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive IGLU was observed even in normal aCSF at Vholding of –40 mV or –20 mV. IGLU was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in Iholding (IAMPA) in SON MNCs. Pretreatment with AP5 attenuated IAMPA amplitudes to ~60% of the control levels in low-Mg2+ aCSF, but not in normal aCSF at Vholding of –70 mV. IAMPA attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced IAMPA attenuation in SON MNCs. Finally, chronic dehydration did not affect IAMPA attenuation by AP5 in the neurons. These results suggest that tonic INMDA, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs. PMID:27382359

  8. NAAG fails to antagonize synaptic and extrasynaptic NMDA receptors in cerebellar granule neurons.

    PubMed

    Losi, G; Vicini, S; Neale, J

    2004-03-01

    The peptide transmitter N-acetylaspartylglutamate (NAAG) selectively activates the group II metabotropic glutamate receptors. Several reports also suggest that this peptide acts as a partial agonist at N-methyl-D-aspartate (NMDA) receptors but its putative antagonist effects have not been directly tested. To do this, we used whole cell recordings from cerebellar granule cells (CGC) in culture that allow the highest possible resolution of NMDA channel activation. When CGC were activated with equimolar concentrations of NMDA and NAAG, the peptide failed to alter the peak current elicited by NMDA. Very high concentrations of NAAG (100-200 microM) did not significantly reduce the current elicited by 10 microM NMDA or 0.1 microM glutamate, while 400 microM NAAG produced only a very small (less than 15%) reduction in these whole cell currents. Similarly, NAAG (400 microM) failed to significantly alter the average decay time constant or the peak amplitude of NMDA receptor-mediated miniature excitatory post-synaptic currents (mEPSCs). We conclude that high concentrations of the peptide do not exert physiologically relevant antagonist actions on synaptic NMDA receptor activation following vesicular release of glutamate. As an agonist, purified NAAG was found to be at least 10,000-fold less potent than glutamate in increasing "background" current via NMDA receptors on CGC. Inasmuch as it is difficult to confirm that NAAG preparations are completely free from contamination with glutamate at the 0.01% level, the peptide itself appears unlikely to have a direct agonist activity at the NMDA receptor subtypes found in CGC. Recent reports indicate that enhancing the activity of endogenous NAAG may be an important therapeutic approach to excitotoxicity and chronic pain perception. These effects are likely mediated by group II mGluRs, not NMDA receptors. PMID:14975672

  9. N-Methyl-d-aspartate (NMDA) Receptor NR2 Subunit Selectivity of a Series of Novel Piperazine-2,3-dicarboxylate Derivatives: Preferential Blockade of Extrasynaptic NMDA Receptors in the Rat Hippocampal CA3-CA1 Synapse

    PubMed Central

    Feng, Bihua; Tsintsadze, Timur S.; Morley, Richard M.; Irvine, Mark W.; Tsintsadze, Vera; Lozovaya, Natasha A.; Jane, David E.; Monaghan, Daniel T.

    2009-01-01

    N-Methyl-d-aspartate (NMDA) receptor antagonists that are highly selective for specific NMDA receptor 2 (NR2) subunits have several potential therapeutic applications; however, to date, only NR2B-selective antagonists have been described. Whereas most glutamate binding site antagonists display a common pattern of NR2 selectivity, NR2A > NR2B > NR2C > NR2D (high to low affinity), (2S*,3R*)-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA) has a low selectivity for NR2C- and NR2D-containing NMDA receptors. A series of PPDA derivatives were synthesized and then tested at recombinant NMDA receptors expressed in Xenopus laevis oocytes. In addition, the optical isomers of PPDA were resolved; the (−) isomer displayed a 50- to 80-fold greater potency than the (+) isomer. Replacement of the phenanthrene moiety of PPDA with naphthalene or anthracene did not improve selectivity. However, phenylazobenzoyl (UBP125) or phenylethynylbenzoyl (UBP128) substitution significantly improved selectivity for NR2B-, NR2C-, and NR2D-containing receptors over NR2A-containing NMDA receptors. Phenanthrene attachment at the 3 position [(2R*,3S*)-1-(phenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP141); (2R*,3S*)-1-(9-bromophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP145); (2R*,3S*)-1-(9-chlorophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP160); and (2R*,3S*)-1-(9-iodophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP161)] displayed improved NR2D selectivity. UBP141 and its 9-brominated homolog (UBP145) both display a 7- to 10- fold selectivity for NR2D-containing receptors over NR2B- or NR2A-containing receptors. Schild analysis indicates that these two compounds are competitive glutamate binding site antagonists. Consistent with a physiological role for NR2D-containing receptors in the hippocampus, UBP141 (5 μM) displayed greater selectivity than PPDA for inhibiting the slow-decaying component of the NMDA receptor

  10. Extrasynaptic Glutamate Receptor Activation as Cellular Bases for Dynamic Range Compression in Pyramidal Neurons

    PubMed Central

    Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.

    2012-01-01

    Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP

  11. Differential effects of N-acetyl-aspartyl-glutamate on synaptic and extrasynaptic NMDA receptors are subunit- and pH-dependent in the CA1 region of the mouse hippocampus.

    PubMed

    Khacho, Pamela; Wang, Boyang; Ahlskog, Nina; Hristova, Elitza; Bergeron, Richard

    2015-10-01

    Ischemic strokes cause excessive release of glutamate, leading to overactivation of N-methyl-d-aspartate receptors (NMDARs) and excitotoxicity-induced neuronal death. For this reason, inhibition of NMDARs has been a central focus in identifying mechanisms to avert this extensive neuronal damage. N-acetyl-aspartyl-glutamate (NAAG), the most abundant neuropeptide in the brain, is neuroprotective in ischemic conditions in vivo. Despite this evidence, the exact mechanism underlying its neuroprotection, and more specifically its effect on NMDARs, is currently unknown due to conflicting results in the literature. Here, we uncover a pH-dependent subunit-specific action of NAAG on NMDARs. Using whole-cell electrophysiological recordings on acute hippocampal slices from adult mice and on HEK293 cells, we found that NAAG increases synaptic GluN2A-containing NMDAR EPSCs, while effectively decreasing extrasynaptic GluN2B-containing NMDAR EPSCs in physiological pH. Intriguingly, the results of our study further show that in low pH, which is a physiological occurrence during ischemia, NAAG depresses GluN2A-containing NMDAR EPSCs and amplifies its inhibitory effect on GluN2B-containing NMDAR EPSCs, as well as upregulates the surface expression of the GluN2A subunit. Altogether, our data demonstrate that NAAG has differential effects on NMDAR function based on subunit composition and pH. These findings suggest that the role of NAAG as a neuroprotective agent during an ischemic stroke is likely mediated by its ability to reduce NMDAR excitation. The inhibitory effect of NAAG on NMDARs and its enhanced function in acidic conditions make NAAG a prime therapeutic agent for the treatment of ischemic events. PMID:26303888

  12. Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β.

    PubMed

    Wang, Zhi-Cong; Zhao, Jie; Li, Shao

    2013-12-01

    The toxicity of amyloid-beta (Aβ) is strongly associated with Alzheimer's disease (AD), which has a high incidence in the elderly worldwide. Recent evidence showed that alteration in the activity of N-methyl-D-aspartate receptors (NMDARs) plays a key role in Aβ-induced neurotoxicity. However, the activation of synaptic and extrasynaptic NMDARs has distinct consequences for plasticity, gene regulation, neuronal death, and Aβ production. This review focuses on the dysregulation of synaptic and extrasynaptic NMDARs induced by Aβ. On one hand, Aβ downregulates the synaptic NMDAR response by promoting NMDAR endocytosis, leading to either neurotoxicity or neuroprotection. On the other hand, Aβ enhances the activation of extrasynaptic NMDARs by decreasing neuronal glutamate uptake and inducing glutamate spillover, subsequently causing neurotoxicity. In addition, selective enhancement of synaptic activity by low doses of NMDA, or reduction of extrasynaptic activity by memantine, a non-competitive NMDAR antagonist, halts Aβ-induced neurotoxicity. Therefore, future neuroprotective drugs for AD should aim at both the enhancement of synaptic activity and the disruption of extrasynaptic NMDAR-dependent death signaling. PMID:24136243

  13. Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer's disease.

    PubMed

    Bordji, Karim; Becerril-Ortega, Javier; Buisson, Alain

    2011-01-01

    A direct relationship has been established between synaptic activity and amyloid-β secretion. Dysregulation of neuronal calcium homeostasis was shown to increase production of amyloid-β, contributing to the initiation of Alzheimer's disease. Among the different routes of Ca(2+) entry, N-methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are especially involved in this process because of their ability to gate high levels of Ca(2+) influx. These receptors have been extensively studied for their crucial roles in synaptic plasticity that underlies learning and memory but also in neurotoxicity occurring during acute brain injuries and neurodegenerative diseases. For one decade, several studies provided evidence that NMDA receptor activation could have distinct consequences on neuronal fate, depending on their location. Synaptic NMDA receptor activation is neuroprotective, whereas extrasynaptic NMDA receptors trigger neuronal death and/or neurodegenerative processes. Recent data suggest that chronic activation of extrasynaptic NMDA receptors leads to a sustained neuronal amyloid-β release and could be involved in the pathogenesis of Alzheimer's disease. Thus, as for other neurological diseases, therapeutic targeting of extrasynaptic NMDA receptors could be a promising strategy. Following this concept, memantine, unlike other NMDA receptor antagonists was shown, to preferentially target the extrasynaptic NMDA receptor signaling pathways, while relatively sparing normal synaptic activity. This molecular mechanism could therefore explain why memantine is, to date, the only clinically approved NMDA receptor antagonist for the treatment of dementia. PMID:21568789

  14. Regulating anxiety with extrasynaptic inhibition

    PubMed Central

    Botta, Paolo; Demmou, Lynda; Kasugai, Yu; Markovic, Milica; Xu, Chun; Fadok, Jonathan P.; Lu, Tingjia; Poe, Michael M.; Xu, Li; Cook, James M.; Rudolph, Uwe; Sah, Pankaj; Ferraguti, Francesco; Lüthi, Andreas

    2015-01-01

    Aversive experiences can lead to complex behavioral adaptations including increased levels of anxiety and fear generalization. The neuronal mechanisms underlying such maladaptive behavioral changes, however, are poorly understood. Here, using a combination of behavioral, physiological and optogenetic approaches in mouse, we identify a specific subpopulation of central amygdala neurons expressing protein kinase C δ (PKCδ) as key elements of the neuronal circuitry controlling anxiety. Moreover, we show that aversive experiences induce anxiety and fear generalization by regulating the activity of PKCδ+ neurons via extrasynaptic inhibition mediated by α5 subunit-containing GABAA receptors. Our findings reveal that the neuronal circuits that mediate fear and anxiety overlap at the level of defined subpopulations of central amygdala neurons and demonstrate that persistent changes in the excitability of a single cell type can orchestrate complex behavioral changes. PMID:26322928

  15. DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke

    PubMed Central

    Tu, Weihong; Xu, Xin; Peng, Lisheng; Zhong, Xiaofen; Zhang, Wenfeng; Soundarapandian, Mangala M.; Balel, Cherine; Wang, Manqi; Jia, Nali; Zhang, Wen; Lew, Frank; Chan, Sic Lung; Chen, Yanfang; Lu, Youming

    2010-01-01

    SUMMARY N-methyl-D-aspartate (NMDA) receptors constitute a major subtype of glutamate receptors at extra-synaptic sites that link multiple intracellular catabolic processes responsible for irreversible neuronal death. Here, we report that cerebral ischemia recruits death-associated protein kinase 1 (DAPK1) into the NMDA receptor NR2B protein complex in the cortex of adult mice. DAPK1 directly binds with the NMDA receptor NR2B C-terminal tail consisting of amino acid 1292–1304 (NR2BCT). A constitutively active DAPK1 phosphorylates NR2B subunit at Ser-1303 and in turn enhances the NR1/NR2B receptor channel conductance. Genetic deletion of DAPK1 or administration of NR2BCT that uncouples an activated DAPK1 from an NMDA receptor NR2B subunit in vivo in mice blocks injurious Ca2+ influx through NMDA receptor channels at extrasynaptic sites and protects neurons against cerebral ischemic insults. Thus, DAPK1 physically and functionally interacts with the NMDA receptor NR2B subunit at extra-synaptic sites and this interaction acts as a central mediator for stroke damage. PMID:20141836

  16. Noncompetitive, Voltage-Dependent NMDA Receptor Antagonism by Hydrophobic Anions

    PubMed Central

    Linsenbardt, Andrew J.; Chisari, Mariangela; Yu, Andrew; Shu, Hong-Jin; Zorumski, Charles F.

    2013-01-01

    NMDA receptor (NMDAR) antagonists are dissociative anesthetics, drugs of abuse, and are of therapeutic interest in neurodegeneration and neuropsychiatric disease. Many well-known NMDAR antagonists are positively charged, voltage-dependent channel blockers. We recently showed that the hydrophobic anion dipicrylamine (DPA) negatively regulates GABAA receptor function by a mechanism indistinguishable from that of sulfated neurosteroids. Because sulfated neurosteroids also modulate NMDARs, here we examined the effects of DPA on NMDAR function. In rat hippocampal neurons DPA inhibited currents gated by 300 µM NMDA with an IC50 of 2.3 µM. Neither onset nor offset of antagonism exhibited dependence on channel activation but exhibited a noncompetitive profile. DPA antagonism was independent of NMDAR subunit composition and was similar at extrasynaptic and total receptor populations. Surprisingly, similar to cationic channel blockers but unlike sulfated neurosteroids, DPA antagonism was voltage dependent. Onset and offset of DPA antagonism were nearly 10-fold faster than DPA-induced increases in membrane capacitance, suggesting that membrane interactions do not directly explain antagonism. Furthermore, voltage dependence did not derive from association of DPA with a site on NMDARs directly accessible to the outer membrane leaflet, assessed by DPA translocation experiments. Consistent with the expected lack of channel block, DPA antagonism did not interact with permeant ions. Therefore, we speculate that voltage dependence may arise from interactions of DPA with the inherent voltage dependence of channel gating. Overall, we conclude that DPA noncompetitively inhibits NMDA-induced current by a novel voltage-dependent mechanism and represents a new class of anionic NMDAR antagonists. PMID:23144238

  17. PGC-1α negatively regulates extrasynaptic NMDAR activity and excitotoxicity

    PubMed Central

    Puddifoot, Clare; Martel, Marc-Andre; Soriano, Francesc X.; Camacho, Alberto; Vidal-Puig, Antonio; Wyllie, David J. A.; Hardingham, Giles E.

    2012-01-01

    Under-expression of the transcriptional coactivator PGC-1α is causally linked to certain neurodegenerative disorders, including Huntington’s Disease (HD). HD pathoprogression is also associated with aberrant NMDAR activity, in particular an imbalance between synaptic vs. extrasynaptic (NMDAREX) activity. Here we show that PGC-1α controls NMDAREX activity in neurons and that its suppression contributes to mutant Huntingtin (mHtt)-induced increases in NMDAREX activity and vulnerability to excitotoxic insults. We found that knock-down of endogenous PGC-1α increased NMDAREX activity and vulnerability to excitotoxic insults in rat cortical neurons. In contrast exogenous expression of PGC-1α resulted in a neuroprotective reduction of NMDAREX currents without affecting synaptic NMDAR activity. Since HD models are associated with mHtt-mediated suppression of PGC-1α expression, as well as increased NMDAREX activity, we investigated whether these two events were linked. Expression of mHtt (148Q) resulted in a selective increase in NMDAREX activity, compared to wHtt (18Q), and increased vulnerability to NMDA excitotoxicity. Importantly, we observed that the effects of mHtt and PGC-1α knockdown on NMDAREX activity and vulnerability to excitotoxicity were non-additive and occluded each other, consistent with a common mechanism. Moreover, exogenous expression of PGC-1α reversed mtHtt-mediated increases in NMDAREX activity, and protected neurons against excitotoxic cell death. The link between mHtt, PGC-1α, and NMDAR activity was also confirmed in rat striatal neurons. Thus, targeting levels of PGC-1α expression may help reduce aberrant NMDAREX activity in disorders where PGC-1α is under-expressed. PMID:22593067

  18. Astrocytic Actions on Extrasynaptic Neuronal Currents

    PubMed Central

    Pál, Balázs

    2015-01-01

    In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system (CNS), but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the “tripartite synapse,” as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and -secretory processes, cortical oscillatory activity, memory, and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance. PMID:26696832

  19. An NMDA receptor-dependent mechanism underlies inhibitory synapse development

    PubMed Central

    Gu, Xinglong; Zhou, Liang; Lu, Wei

    2016-01-01

    Summary In the mammalian brain GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here we report that NMDA-type ionotropic glutamate receptors (NMDARs) in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, while GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain. PMID:26774487

  20. A NMDA receptor glycine site partial agonist, GLYX-13, that simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus

    PubMed Central

    Zhang, Xiao-lei; Sullivan, John A.; Moskal, Joseph R.; Stanton, Patric K.

    2008-01-01

    N-methyl-D-aspartate glutamate receptors (NMDAR) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low-frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high-frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist D-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD. PMID:18796308

  1. [Anti-NMDA-receptor encephalitis].

    PubMed

    Engen, Kristine; Agartz, Ingrid

    2016-06-01

    BACKGROUND In 2007 a clinical disease caused by autoantibodies directed against the N-methyl-D-aspartate (NMDA) receptor was described for the first time. Anti-NMDA-receptor encephalitis is a subacute, autoimmune neurological disorder with psychiatric manifestations. The disease is a form of limbic encephalitis and is often paraneoplastic. The condition is also treatable. In this review article we examine the development of the disease, clinical practice, diagnostics and treatment.MATERIAL AND METHOD The article is based on references retrieved from searches in PubMed, and a discretionary selection of articles from the authors' own literature archive.RESULTS The disease most frequently affects young women. It may initially be perceived as a psychiatric condition, as it usually presents in the form of delusions, hallucinations or mania. The diagnosis should be suspected in patients who later develop neurological symptoms such as various movement disorders, epileptic seizures and autonomic instability. Examination of serum or cerebrospinal fluid for NMDA receptor antibodies should be included in the assessment of patients with suspected encephalitis. MRI, EEG and assessment for tumours are important tools in diagnosing the condition and any underlying malignancy.INTERPRETATION If treatment is initiated early, the prognosis is good. Altogether 75 % of patients will fully recover or experience significant improvement. Apart from surgical resection of a possible tumour, the treatment consists of immunotherapy. Because of good possibilities for treatment, it is important that clinicians, particularly those in acute psychiatry, are aware of and alert to this condition. PMID:27325034

  2. NMDA Receptors Mediate Synaptic Competition in Culture

    PubMed Central

    She, Kevin; Craig, Ann Marie

    2011-01-01

    Background Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. Conclusions/Significance The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous

  3. Astrocytes and extracellular matrix in extrasynaptic volume transmission

    PubMed Central

    Vargová, Lýdia; Syková, Eva

    2014-01-01

    Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron–glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment. PMID:25225101

  4. Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system

    PubMed Central

    Trueta, Citlali; De-Miguel, Francisco F.

    2012-01-01

    We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites, and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, with emphasis on somatic exocytosis, and how it contributes to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of signaling molecules (namely transmitters or peptides) in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released, and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, gama-aminobutiric acid (GABA), adenosine-5-triphosphate (ATP), and a list of peptides including substance P, brain-derived neurotrophic factor (BDNF), and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different signaling molecules by various neuron types we show that it is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis has been measured directly in different neuron types. It starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport towards the plasma membrane couple excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities

  5. Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks

    PubMed Central

    Fuxe, Kjell; Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Diaz-Cabiale, Zaida; Rivera, Alicia; Ferraro, Luca; Tanganelli, Sergio; Tarakanov, Alexander O.; Garriga, Pere; Narváez, José Angel; Ciruela, Francisco; Guescini, Michele; Agnati, Luigi F.

    2012-01-01

    Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks

  6. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption. PMID:19660541

  7. Extrasynaptic and Postsynaptic Receptors in Glycinergic and GABAergic Neurotransmission: A Division of Labor?

    PubMed Central

    Muller, Emilie; Le-Corronc, Hervé; Legendre, Pascal

    2008-01-01

    Glycine and GABA mediate inhibitory neurotransmission in the spinal cord and central nervous system. The general concept of neurotransmission is now challenged by the contribution of both phasic activation of postsynaptic glycine and GABAA receptors (GlyRs and GABAARs, respectively) and tonic activity of these receptors located at extrasynaptic sites. GlyR and GABAAR kinetics depend on several parameters, including subunit composition, subsynaptic localization and activation mode. Postsynaptic and extrasynaptic receptors display different subunit compositions and are activated by fast presynaptic and slow paracrine release of neurotransmitters, respectively. GlyR and GABAAR functional properties also rely on their aggregation level, which is higher at postsynaptic densities than at extrasynaptic loci. Finally, these receptors can co-aggregate at mixed inhibitory postsynaptic densities where they cross-modulate their activity, providing another parameter of functional complexity. GlyR and GABAAR density at postsynaptic sites results from the balance between their internalization and insertion in the plasma membrane, but also on their lateral diffusion from and to the postsynaptic loci. The dynamic exchange of receptors between synaptic and extrasynaptic sites and their functional adaptation in terms of kinetics point out a new adaptive process of inhibitory neurotransmission. PMID:18946536

  8. Multiple effects of copper on NMDA receptor currents.

    PubMed

    Marchetti, Carla; Baranowska-Bosiacka, Irena; Gavazzo, Paola

    2014-01-13

    Copper (Cu) is an essential metal present in the human brain and released from synaptic vesicles following neuronal depolarization. Cu is known to reduce the NMDA receptor (NR) current with IC50≈20 µM. We have studied the effect of Cu on the NR current in cultured neonatal rat cerebellum granule cells (CGC) and in transiently transfected HEK293 cells (HEK), expressing either GluN1/GLUN2A or GluN1/GluN2B receptors. In CGCs, Cu causes a potentiation of the NR current at concentrations <30 µM (EC50=4.6 µM) and a block at higher concentrations (IC50=24 µM). In Fura2 loaded CGCs, Cu (≤30 µM) caused an increase of NMDA-driven calcium influx. This facilitating effect was prevented by pre-treatment with the reducing agent DTT. Cu also caused an increase of the NR current in GluN1/GluN2A receptors (EC50=2 µM) and a block at higher concentrations (IC50=26 µM). Both facilitation and inhibition were independent of voltage. The effect of Cu was quantitatively similar in GluN1/GluN2B receptors, which were potentiated by 10 µM and inhibited by 100 µM Cu. Potentiation was absent in mutants deleted of their entire amino terminal domain (ATD) of the protein, suggesting an involvement of this region in the interaction. These results indicate that Cu can facilitate the NR current at lower concentrations than those required for blocking it; this effect can have consequences on the activity of the metal at synaptic and extrasynaptic sites. PMID:24161827

  9. Scribble1/AP2 complex coordinates NMDA receptor endocytic recycling.

    PubMed

    Piguel, Nicolas H; Fievre, Sabine; Blanc, Jean-Michel; Carta, Mario; Moreau, Maïté M; Moutin, Enora; Pinheiro, Vera L; Medina, Chantal; Ezan, Jerome; Lasvaux, Léa; Loll, François; Durand, Christelle M; Chang, Kai; Petralia, Ronald S; Wenthold, Robert J; Stephenson, F Anne; Vuillard, Laurent; Darbon, Hervé; Perroy, Julie; Mulle, Christophe; Montcouquiol, Mireille; Racca, Claudia; Sans, Nathalie

    2014-10-23

    The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity. Herein, we show that the level of Scribble1 is regulated in an activity-dependent manner and that Scribble1 controls the number of NMDARs at the plasma membrane. Notably, Scribble1 prevents GluN2A subunits from undergoing lysosomal trafficking and degradation by increasing their recycling to the plasma membrane following NMDAR activation. Finally, we show that a specific YxxR motif on Scribble1 controls these mechanisms through a direct interaction with AP2. Altogether, our findings define a molecular mechanism to control the levels of synaptic NMDARs via Scribble1 complex signaling. PMID:25310985

  10. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  11. GluN3A promotes NMDA spiking by enhancing synaptic transmission in Huntington's disease models.

    PubMed

    Mahfooz, Kashif; Marco, Sonia; Martínez-Turrillas, Rebeca; Raja, Mathan K; Pérez-Otaño, Isabel; Wesseling, John F

    2016-09-01

    Age-inappropriate expression of juvenile NMDA receptors (NMDARs) containing GluN3A subunits has been linked to synapse loss and death of spiny projection neurons of the striatum (SPNs) in Huntington's disease (HD). Here we show that suppressing GluN3A expression prevents a multivariate synaptic transmission phenotype that precedes morphological signs at early prodromal stages. We start by confirming that afferent fiber stimulation elicits larger synaptic responses mediated by both AMPA receptors and NMDARs in SPNs in the YAC128 mouse model of HD. We then show that the enhancement mediated by both is fully prevented by suppressing GluN3A expression. Strong fiber-stimulation unexpectedly elicited robust NMDAR-mediated electrogenic events (termed "upstates" or "NMDA spikes"), and the effective threshold for induction was more than 2-fold lower in YAC128 SPNs because of the enhanced synaptic transmission. The threshold could be restored to control levels by suppressing GluN3A expression or by applying the weak NMDAR blocker memantine. However, the threshold was not affected by preventing glutamate spillover from synaptic clefts. Instead, long-lasting NMDAR responses interpreted previously as activation of extrasynaptic receptors by spilled-over glutamate were caused by NMDA spikes occurring in voltage clamp mode as escape potentials. Together, the results implicate GluN3A reactivation in a broad spectrum of early-stage synaptic transmission deficits in YAC128 mice; question the current concept that NMDAR mislocalization is the pathological trigger in HD; and introduce NMDA spikes as a new candidate mechanism for coupling NMDARs to neurodegeneration. PMID:27072890

  12. An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans.

    PubMed

    Shen, Yu; Wen, Quan; Liu, He; Zhong, Connie; Qin, Yuqi; Harris, Gareth; Kawano, Taizo; Wu, Min; Xu, Tianqi; Samuel, Aravinthan Dt; Zhang, Yun

    2016-01-01

    As a common neurotransmitter in the nervous system, γ-aminobutyric acid (GABA) modulates locomotory patterns in both vertebrates and invertebrates. However, the signaling mechanisms underlying the behavioral effects of GABAergic modulation are not completely understood. Here, we demonstrate that a GABAergic signal in C. elegans modulates the amplitude of undulatory head bending through extrasynaptic neurotransmission and conserved metabotropic receptors. We show that the GABAergic RME head motor neurons generate undulatory activity patterns that correlate with head bending and the activity of RME causally links with head bending amplitude. The undulatory activity of RME is regulated by a pair of cholinergic head motor neurons SMD, which facilitate head bending, and inhibits SMD to limit head bending. The extrasynaptic neurotransmission between SMD and RME provides a gain control system to set head bending amplitude to a value correlated with optimal efficiency of forward movement. PMID:27138642

  13. An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans

    PubMed Central

    Shen, Yu; Wen, Quan; Liu, He; Zhong, Connie; Qin, Yuqi; Harris, Gareth; Kawano, Taizo; Wu, Min; Xu, Tianqi; Samuel, Aravinthan DT; Zhang, Yun

    2016-01-01

    As a common neurotransmitter in the nervous system, γ-aminobutyric acid (GABA) modulates locomotory patterns in both vertebrates and invertebrates. However, the signaling mechanisms underlying the behavioral effects of GABAergic modulation are not completely understood. Here, we demonstrate that a GABAergic signal in C. elegans modulates the amplitude of undulatory head bending through extrasynaptic neurotransmission and conserved metabotropic receptors. We show that the GABAergic RME head motor neurons generate undulatory activity patterns that correlate with head bending and the activity of RME causally links with head bending amplitude. The undulatory activity of RME is regulated by a pair of cholinergic head motor neurons SMD, which facilitate head bending, and inhibits SMD to limit head bending. The extrasynaptic neurotransmission between SMD and RME provides a gain control system to set head bending amplitude to a value correlated with optimal efficiency of forward movement. DOI: http://dx.doi.org/10.7554/eLife.14197.001 PMID:27138642

  14. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABA(A) Receptors.

    PubMed

    Reddy, Sandesh D; Younus, Iyan; Clossen, Bryan L; Reddy, Doodipala Samba

    2015-06-01

    Midazolam is a benzodiazepine anticonvulsant with rapid onset and short duration of action. Midazolam is the current drug of choice for acute seizures and status epilepticus, including those caused by organophosphate nerve agents. The antiseizure activity of midazolam is thought to result from its allosteric potentiation of synaptic GABA(A) receptors in the brain. However, there are indications that benzodiazepines promote neurosteroid synthesis via the 18-kDa cholesterol transporter protein (TSPO). Therefore, we investigated the role of neurosteroids and their extrasynaptic GABA(A) receptor targets in the antiseizure activity of midazolam. Here, we used δ-subunit knockout (DKO) mice bearing a targeted deletion of the extrasynaptic receptors to investigate the contribution of the extrasynaptic receptors to the antiseizure activity of midazolam using the 6-Hz and hippocampus kindling seizure models. In both models, midazolam produced rapid and dose-dependent protection against seizures (ED50, 0.4 mg/kg). Moreover, the antiseizure potency of midazolam was undiminished in DKO mice compared with control mice. Pretreatment with PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide], a TSPO blocker, or finasteride, a 5α-reductase neurosteroid inhibitor, did not affect the antiseizure effect of midazolam. The antiseizure activity of midazolam was significantly reversed by pretreatment with flumazenil, a benzodiazepine antagonist. Plasma and brain levels of the neurosteroid allopregnanolone were not significantly greater in midazolam-treated animals. These studies therefore provide strong evidence that neurosteroids and extrasynaptic GABA(A) receptors are not involved in the antiseizure activity of midazolam, which mainly occurs through synaptic GABA(A) receptors via direct binding to benzodiazepine sites. This study reaffirms midazolam's use for controlling acute seizures and status epilepticus. PMID:25784648

  15. Neurosteroid Structure-Activity Relationships for Functional Activation of Extrasynaptic δGABA(A) Receptors.

    PubMed

    Carver, Chase Matthew; Reddy, Doodipala Samba

    2016-04-01

    Synaptic GABAA receptors are primary mediators of rapid inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurologic disorders. The δ-subunit GABAA receptors are expressed extrasynaptically in the dentate gyrus and contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. However, the neurosteroid structure-function relationship at δGABA(A) receptors within the native hippocampus neurons remains unclear. Here we report a structure-activity relationship for neurosteroid modulation of extrasynaptic GABAA receptor-mediated tonic inhibition in the murine dentate gyrus granule cells. We recorded neurosteroid allosteric potentiation of GABA as well as direct activation of tonic currents using a wide array of natural and synthetic neurosteroids. Our results shows that, for all neurosteroids, the C3α-OH group remains obligatory for extrasynaptic receptor functional activity, as C3β-OH epimers were inactive in activating tonic currents. Allopregnanolone and related pregnane analogs exhibited the highest potency and maximal efficacy in promoting tonic currents. Alterations at the C17 or C20 region of the neurosteroid molecule drastically altered the transduction kinetics of tonic current activation. The androstane analogs had the weakest modulatory response among the analogs tested. Neurosteroid potentiation of tonic currents was completely (approximately 95%) diminished in granule cells from δ-knockout mice, suggesting that δ-subunit receptors are essential for neurosteroid activity. The neurosteroid sensitivity of δGABA(A) receptors was confirmed at the systems level using a 6-Hz seizure test. A consensus neurosteroid pharmacophore model at extrasynaptic δGABA(A) receptors is proposed based on a structure-activity relationship for activation of tonic current and seizure protection. PMID:26857959

  16. Extrasynaptic α6 Subunit-Containing GABAA Receptors Modulate Excitability in Turtle Spinal Motoneurons

    PubMed Central

    Andres, Carmen; Aguilar, Justo; González-Ramírez, Ricardo; Elias-Viñas, David; Felix, Ricardo; Delgado-Lezama, Rodolfo

    2014-01-01

    Motoneurons are furnished with a vast repertoire of ionotropic and metabotropic receptors as well as ion channels responsible for maintaining the resting membrane potential and involved in the regulation of the mechanisms underlying its membrane excitability and firing properties. Among them, the GABAA receptors, which respond to GABA binding by allowing the flow of Cl− ions across the membrane, mediate two distinct forms of inhibition in the mature nervous system, phasic and tonic, upon activation of synaptic or extrasynaptic receptors, respectively. In a previous work we showed that furosemide facilitates the monosynaptic reflex without affecting the dorsal root potential. Our data also revealed a tonic inhibition mediated by GABAA receptors activated in motoneurons by ambient GABA. These data suggested that the high affinity GABAA extrasynaptic receptors may have an important role in motor control, though the molecular nature of these receptors was not determined. By combining electrophysiological, immunofluorescence and molecular biology techniques with pharmacological tools here we show that GABAA receptors containing the α6 subunit are expressed in adult turtle spinal motoneurons and can function as extrasynaptic receptors responsible for tonic inhibition. These results expand our understanding of the role of GABAA receptors in motoneuron tonic inhibition. PMID:25531288

  17. γ-Hydroxybutyric acid (GHB) is not an agonist of extrasynaptic GABAA receptors.

    PubMed

    Connelly, William M; Errington, Adam C; Crunelli, Vincenzo

    2013-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents. PMID:24244421

  18. γ-Hydroxybutyric Acid (GHB) Is Not an Agonist of Extrasynaptic GABAA Receptors

    PubMed Central

    Connelly, William M.; Errington, Adam C.; Crunelli, Vincenzo

    2013-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents. PMID:24244421

  19. Extrasynaptic α6 subunit-containing GABAA receptors modulate excitability in turtle spinal motoneurons.

    PubMed

    Andres, Carmen; Aguilar, Justo; González-Ramírez, Ricardo; Elias-Viñas, David; Felix, Ricardo; Delgado-Lezama, Rodolfo

    2014-01-01

    Motoneurons are furnished with a vast repertoire of ionotropic and metabotropic receptors as well as ion channels responsible for maintaining the resting membrane potential and involved in the regulation of the mechanisms underlying its membrane excitability and firing properties. Among them, the GABAA receptors, which respond to GABA binding by allowing the flow of Cl- ions across the membrane, mediate two distinct forms of inhibition in the mature nervous system, phasic and tonic, upon activation of synaptic or extrasynaptic receptors, respectively. In a previous work we showed that furosemide facilitates the monosynaptic reflex without affecting the dorsal root potential. Our data also revealed a tonic inhibition mediated by GABAA receptors activated in motoneurons by ambient GABA. These data suggested that the high affinity GABAA extrasynaptic receptors may have an important role in motor control, though the molecular nature of these receptors was not determined. By combining electrophysiological, immunofluorescence and molecular biology techniques with pharmacological tools here we show that GABAA receptors containing the α6 subunit are expressed in adult turtle spinal motoneurons and can function as extrasynaptic receptors responsible for tonic inhibition. These results expand our understanding of the role of GABAA receptors in motoneuron tonic inhibition. PMID:25531288

  20. Are extrasynaptic GABAA receptors important targets for sedative/hypnotic drugs?

    PubMed Central

    Houston, Catriona M; McGee, Thomas P; MacKenzie, Georgina; Troyano-Cuturi, Kevin; Rodriguez, Pablo Mateos; Kutsarova, Elena; Diamanti, Efthymia; Hosie, Alastair M; Franks, Nicholas P; Brickley, Stephen G

    2012-01-01

    High-affinity extrasynaptic GABAA receptors are persistently activated by the low ambient GABA levels that are known to be present in the extracellular space. The resulting tonic conductance generates a form of shunting inhibition that is capable of altering cellular and network behaviour. It has been suggested that this tonic inhibition will be enhanced by neurosteroids, anti-epileptics, and sedative/hypnotic drugs. However, we show that the ability of sedative/hypnotic drugs to enhance tonic inhibition in the mouse cerebellum will critically depend upon ambient GABA levels. For example, we show that the intravenous anaesthetic propofol only enhances tonic inhibition when ambient GABA levels are below 100 nM. More surprisingly, the actions of the sleep promoting drug THIP (4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridin-3-ol) are attenuated at ambient GABA levels of just 20 nM. In contrast, our data suggests that neurosteroid enhancement of tonic inhibition will be greater at high ambient GABA concentrations. We present a model that takes into account realistic estimates of ambient GABA levels and predicted extrasynaptic GABAA numbers when considering the ability of sedative/hypnotic drugs to enhance tonic inhibition. These issues will be important when considering drug strategies designed to target extrasynaptic GABAA receptors in the treatment of sleep disorders and other neurological conditions. PMID:22423109

  1. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  2. Chronic hyperammonemia induces tonic activation of NMDA receptors in cerebellum.

    PubMed

    ElMlili, Nisrin; Boix, Jordi; Ahabrach, Hanan; Rodrigo, Regina; Errami, Mohammed; Felipo, Vicente

    2010-02-01

    Reduced function of the glutamate--nitric oxide (NO)--cGMP pathway is responsible for some cognitive alterations in rats with hyperammonemia and hepatic encephalopathy. Hyperammonemia impairs the pathway in cerebellum by increasing neuronal nitric oxide synthase (nNOS) phosphorylation in Ser847 by calcium-calmodulin-dependent protein kinase II (CaMKII), reducing nNOS activity, and by reducing nNOS amount in synaptic membranes, which reduces its activation following NMDA receptors activation. The reason for increased CaMKII activity in hyperammonemia remains unknown. We hypothesized that it would be as a result of increased tonic activation of NMDA receptors. The aims of this work were to assess: (i) whether tonic NMDA activation receptors is increased in cerebellum in chronic hyperammonemia in vivo; and (ii) whether this tonic activation is responsible for increased CaMKII activity and reduced activity of nNOS and of the glutamate--NO--cGMP pathway. Blocking NMDA receptors with MK-801 increases cGMP and NO metabolites in cerebellum in vivo and in slices from hyperammonemic rats. This is because of reduced phosphorylation and activity of CaMKII, leading to normalization of nNOS phosphorylation and activity. MK-801 also increases nNOS in synaptic membranes and reduces it in cytosol. This indicates that hyperammonemia increases tonic activation of NMDA receptors leading to reduced activity of nNOS and of the glutamate--NO--cGMP pathway. PMID:20002515

  3. NMDA receptor contributions to visual contrast coding

    PubMed Central

    Manookin, Michael B.; Weick, Michael; Stafford, Benjamin K.; Demb, Jonathan B.

    2010-01-01

    Summary In the retina, it is not well understood how visual processing depends on AMPA- and NMDA-type glutamate receptors. Here, we investigated how these receptors contribute to contrast coding in identified guinea pig ganglion cell types, in vitro. NMDA-mediated responses were negligible in ON α cells but substantial in OFF α and δ cells. OFF δ cell NMDA receptors were composed of GluN2B subunits. Using a novel deconvolution method, we determined the individual contributions of AMPA, NMDA and inhibitory currents to light responses of each cell type. OFF α and δ cells used NMDA receptors for encoding either the full contrast range (α), including near-threshold responses, or only a high range (δ). However, contrast sensitivity depended substantially on NMDA receptors only in OFF α cells. NMDA receptors contribute to visual contrast coding in a cell-type specific manner. Certain cell types generate excitatory responses using primarily AMPA receptors or disinhibition. PMID:20670835

  4. Increased extrasynaptic GluN2B expression is involved in cognitive impairment after isoflurane anesthesia

    PubMed Central

    LI, LUNXU; LI, ZHENGQIAN; CAO, YIYUN; FAN, DONGSHENG; CHUI, DEHUA; GUO, XIANGYANG

    2016-01-01

    There is increasing concern regarding the postoperative cognitive dysfunction (POCD) in the aging population, and general anesthetics are believed to be involved. Isoflurane exposure induced increased N-methyl-D-aspartic acid receptor (NMDAR) GluN2B subunit expression following anesthesia, which was accompanied by alteration of the cognitive function. However, whether isoflurane affects this expression in different subcellular compartments, and is involved in the development of POCD remains to be elucidated. The aims of the study were to investigate the effects of isoflurane on the expression of the synaptic and extrasynaptic NMDAR subunits, GluN2A and GluN2B, as well as the associated alteration of cognitive function in aged rats. The GluN2B antagonist, Ro25–6981, was given to rats exposed to isoflurane to determine the role of GluN2B in the isoflurane-induced alteration of cognitive function. The results showed that spatial learning and memory tested in the Morris water maze (MWM) was impaired at least 7 days after isoflurane exposure, and was returned to control levels 30 days thereafter. Ro25-6981 treatment can alleviate this impairment. Extrasynaptic GluN2B protein expression, but not synaptic GluN2B or GluN2A, increased significantly after isoflurane exposure compared to non-isoflurane exposure, and returned to control levels approximately 30 days thereafter. The results of the present study indicated that isoflurane induced the prolonged upregulation of extrasynaptic GluN2B expression after anesthesia and is involved in reversible cognitive impairment. PMID:27347033

  5. Diabetic hyperglycemia reduces Ca2+ permeability of extrasynaptic AMPA receptors in AII amacrine cells.

    PubMed

    Castilho, Áurea; Madsen, Eirik; Ambrósio, António F; Veruki, Margaret L; Hartveit, Espen

    2015-09-01

    There is increasing evidence that diabetic retinopathy is a primary neuropathological disorder that precedes the microvascular pathology associated with later stages of the disease. Recently, we found evidence for altered functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in A17, but not AII, amacrine cells in the mammalian retina, and the observed changes were consistent with an upregulation of the GluA2 subunit, a key determinant of functional properties of AMPA receptors, including Ca(2+) permeability and current-voltage (I-V) rectification properties. Here, we have investigated functional changes of extrasynaptic AMPA receptors in AII amacrine cells evoked by diabetes. With patch-clamp recording of nucleated patches from retinal slices, we measured Ca(2+) permeability and I-V rectification in rats with ∼3 wk of streptozotocin-induced diabetes and age-matched, noninjected controls. Under bi-ionic conditions (extracellular Ca(2+) concentration = 30 mM, intracellular Cs(+) concentration = 171 mM), the reversal potential (Erev) of AMPA-evoked currents indicated a significant reduction of Ca(2+) permeability in diabetic animals [Erev = -17.7 mV, relative permeability of Ca(2+) compared with Cs(+) (PCa/PCs) = 1.39] compared with normal animals (Erev = -7.7 mV, PCa/PCs = 2.35). Insulin treatment prevented the reduction of Ca(2+) permeability. I-V rectification was examined by calculating a rectification index (RI) as the ratio of the AMPA-evoked conductance at +40 and -60 mV. The degree of inward rectification in patches from diabetic animals (RI = 0.48) was significantly reduced compared with that in normal animals (RI = 0.30). These results suggest that diabetes evokes a change in the functional properties of extrasynaptic AMPA receptors of AII amacrine cells. These changes could be representative for extrasynaptic AMPA receptors elsewhere in AII amacrine cells and suggest that synaptic and extrasynaptic AMPA

  6. Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat spinal dorsal horn

    PubMed Central

    Kopach, Olga; Kao, Sheng-Chin; Petralia, Ronald S.; Belan, Pavel; Tao, Yuan-Xiang; Voitenko, Nana

    2011-01-01

    Peripheral inflammation alters AMPA receptor (AMPAR) subunit trafficking and increases AMPAR Ca2+ permeability at synapses of spinal dorsal horn neurons. However, it is unclear whether AMPAR trafficking at extrasynaptic sites of these neurons also changes under persistent inflammatory pain conditions. Using patch-clamp recording combined with Ca2+ imaging and cobalt staining, we found that, under normal conditions, an extrasynaptic pool of AMPARs in rat substantia gelatinosa (SG) neurons of spinal dorsal horn predominantly consists of GluR2-containing Ca2+-impermeable receptors. Maintenance of complete Freund’s adjuvant (CFA)-induced inflammation was associated with a marked enhancement of AMPA-induced currents and [Ca2+]i transients in SG neurons, while, as we previously showed, the amplitude of synaptically evoked AMPAR-mediated currents was not changed 24 h after CFA. These findings indicate that extrasynaptic AMPARs are upregulated and their Ca2+ permeability increases dramatically. This increase occurred in SG neurons characterized by intrinsic tonic firing properties, but not in those exhibited strong adaptation. This increase was also accompanied by an inward rectification of AMPA-induced currents and enhancement of sensitivity to a highly selective Ca2+-permeable AMPAR blocker, IEM-1460. Electron microcopy and biochemical assays additionally showed an increase in the amount of GluR1 at extrasynaptic membranes in dorsal horn neurons 24 h post-CFA. Taken together, our findings suggest that CFA-induced inflammation increases functional expression and proportion of extrasynaptic GluR1-containing Ca2+-permeable AMPARs in tonically firing excitatory dorsal horn neurons. We suggest that the altered extrasynaptic AMPAR trafficking might participate in the maintenance of persistent inflammatory pain. PMID:21282008

  7. Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat spinal dorsal horn.

    PubMed

    Kopach, Olga; Kao, Sheng-Chin; Petralia, Ronald S; Belan, Pavel; Tao, Yuan-Xiang; Voitenko, Nana

    2011-04-01

    Peripheral inflammation alters AMPA receptor (AMPAR) subunit trafficking and increases AMPAR Ca(2+) permeability at synapses of spinal dorsal horn neurons. However, it is unclear whether AMPAR trafficking at extrasynaptic sites of these neurons also changes under persistent inflammatory pain conditions. Using patch-clamp recording combined with Ca(2+) imaging and cobalt staining, we found that, under normal conditions, an extrasynaptic pool of AMPARs in rat substantia gelatinosa (SG) neurons of spinal dorsal horn predominantly consists of GluR2-containing Ca(2+)-impermeable receptors. Maintenance of complete Freund's adjuvant (CFA)-induced inflammation was associated with a marked enhancement of AMPA-induced currents and [Ca(2+)](i) transients in SG neurons, while, as we previously showed, the amplitude of synaptically evoked AMPAR-mediated currents was not changed 24 h after CFA. These findings indicate that extrasynaptic AMPARs are upregulated and their Ca(2+) permeability increases dramatically. This increase occurred in SG neurons characterized by intrinsic tonic firing properties, but not in those exhibited strong adaptation. This increase was also accompanied by an inward rectification of AMPA-induced currents and enhancement of sensitivity to a highly selective Ca(2+)-permeable AMPAR blocker, IEM-1460. Electron microcopy and biochemical assays additionally showed an increase in the amount of GluR1 at extrasynaptic membranes in dorsal horn neurons 24h post-CFA. Taken together, our findings indicate that CFA-induced inflammation increases functional expression and proportion of extrasynaptic GluR1-containing Ca(2+)-permeable AMPARs in tonically firing excitatory dorsal horn neurons, suggesting that the altered extrasynaptic AMPAR trafficking might participate in the maintenance of persistent inflammatory pain. PMID:21282008

  8. Acute liver failure-induced death of rats is delayed or prevented by blocking NMDA receptors in brain.

    PubMed

    Cauli, Omar; Rodrigo, Regina; Boix, Jordi; Piedrafita, Blanca; Agusti, Ana; Felipo, Vicente

    2008-09-01

    Developing procedures to delay the mechanisms of acute liver failure-induced death would increase patients' survival by allowing time for liver regeneration or to receive a liver for transplantation. Hyperammonemia is a main contributor to brain herniation and mortality in acute liver failure (ALF). Acute ammonia intoxication in rats leads to N-methyl-D-aspartate (NMDA) receptor activation in brain. Blocking these receptors prevents ammonia-induced death. Ammonia-induced activation of NMDA receptors could contribute to ALF-induced death. If this were the case, blocking NMDA receptors could prevent or delay ALF-induced death. The aim of this work was to assess 1) whether ALF leads to NMDA receptors activation in brain in vivo and 2) whether blocking NMDA receptors prevents or delays ALF-induced death of rats. It is shown, by in vivo brain microdialysis, that galactosamine-induced ALF leads to NMDA receptors activation in brain. Blocking NMDA receptors by continuous administration of MK-801 or memantine through miniosmotic pumps affords significant protection against ALF-induced death, increasing the survival time approximately twofold. Also, when liver injury is not 100% lethal (1.5 g/kg galactosamine), blocking NMDA receptors increases the survival rate from 23 to 62%. This supports that blocking NMDA receptors could have therapeutic utility to improve survival of patients with ALF. PMID:18599589

  9. NMDA ANTAGONIST MK-801 SUPPRESSES BEHAVIORAL SEIZURES, AUGMENTS AFTERDISCHARGES, BUT DOES NOT BLOCK DEVELOPMENT OF PERFORANT PATH KINDLING

    EPA Science Inventory

    The role of the N-methyl-d-aspartate (NMDA) in the development and expression of kindled seizures was assessed using a crossover design. ats were stimulated once daily in the perforant path for 10 consecutive days following administration of saline or the NMDA antagonist MK-801 (...

  10. Fast detection of extrasynaptic GABA with a whole-cell sniffer

    PubMed Central

    Christensen, Rasmus K.; Petersen, Anders V.; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations. PMID:24860433

  11. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy

    PubMed Central

    Reddy, Doodipala Samba

    2016-01-01

    Catamenial epilepsy is a type of refractory epilepsy characterized by seizure clusters around perimenstrual or periovulatory period. The pathophysiology of catamenial epilepsy still remains unclear, yet there are few animal models to study this gender-specific disorder. The pathophysiology of perimenstrual catamenial epilepsy involves the withdrawal of the progesterone-derived GABAergic neurosteroids due to the decline in progesterone level at the time of menstruation. These manifestations can be faithfully reproduced in rodents by specific neuroendocrine manipulations. Since mice and rats, like humans, have ovarian cycles with circulating hormones, they appear to be suitable animal models for studies of perimenstrual seizures. Recently, we created specific experimental models to mimic perimenstrual seizures. Studies in rat and mouse models of catamenial epilepsy show enhanced susceptibility to seizures or increased seizure exacerbations following neurosteroid withdrawal. During such a seizure exacerbation period, there is a striking decrease in the anticonvulsant effect of commonly prescribed antiepileptics, such as benzodiazepines, but an increase in the anticonvulsant potency of exogenous neurosteroids. We discovered an extrasynaptic molecular mechanism of catamenial epilepsy. In essence, extrasynaptic δGABA-A receptors are upregulated during perimenstrual-like neuroendocrine milieu. Consequently, there is enhanced antiseizure efficacy of neurosteroids in catamenial models because δGABA-A receptors confer neurosteroid sensitivity and greater seizure protection. Molecular mechanisms such as these offer a strong rationale for the clinical development of a neurosteroid replacement therapy for catamenial epilepsy. PMID:27147973

  12. Neurosteroid interactions with synaptic and extrasynaptic GABAa receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability

    PubMed Central

    Chase Matthew, Carver; Doodipala Samba, Reddy

    2013-01-01

    Rationale Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal GABAa receptors are one of the prime molecular targets of neurosteroids. Objective This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABAa receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABAa receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABAa receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABAa receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. Conclusion The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABAa receptors provide many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions. PMID:24071826

  13. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  14. Access of inhibitory neurosteroids to the NMDA receptor

    PubMed Central

    Borovska, Jirina; Vyklicky, Vojtech; Stastna, Eva; Kapras, Vojtech; Slavikova, Barbora; Horak, Martin; Chodounska, Hana; Vyklicky Jr, Ladislav

    2012-01-01

    BACKGROUND AND PURPOSE NMDA receptors are glutamatergic ionotropic receptors involved in excitatory neurotransmission, synaptic plasticity and excitotoxic cell death. Many allosteric modulators can influence the activity of these receptors positively or negatively, with behavioural consequences. 20-Oxo-5β-pregnan-3α-yl sulphate (pregnanolone sulphate; PA-6) is an endogenous neurosteroid that inhibits NMDA receptors and is neuroprotective. We tested the hypothesis that the interaction of PA-6 with the plasma membrane is critical for its inhibitory effect at NMDA receptors. EXPERIMENTAL APPROACH Electrophysiological recordings and live microscopy were performed on heterologous HEK293 cells expressing GluN1/GluN2B receptors and cultured rat hippocampal neurons. KEY RESULTS Our experiments showed that the kinetics of the steroid inhibition were slow and not typical of drug-receptor interaction in an aqueous solution. In addition, the recovery from steroid inhibition was accelerated by β- and γ-cyclodextrin. Values of IC50 assessed for novel synthetic C3 analogues of PA-6 differed by more than 30-fold and were positively correlated with the lipophilicity of the PA-6 analogues. Finally, the onset of inhibition induced by C3 analogues of PA-6 ranged from use-dependent to use-independent. The onset and offset of cell staining by fluorescent analogues of PA-6 were slower than those of steroid-induced inhibition of current responses mediated by NMDA receptors. CONCLUSION AND IMPLICATIONS We conclude that steroid accumulation in the plasma membrane is the route by which it accesses a binding site on the NMDA receptor. Thus, our results provide a possible structural framework for pharmacologically targeting the transmembrane domains of the receptor. PMID:22188257

  15. Molecular determinants of NMDA receptor internalization.

    PubMed

    Roche, K W; Standley, S; McCallum, J; Dune Ly, C; Ehlers, M D; Wenthold, R J

    2001-08-01

    Although synaptic AMPA receptors have been shown to rapidly internalize, synaptic NMDA receptors are reported to be static. It is not certain whether NMDA receptor stability at synaptic sites is an inherent property of the receptor, or is due to stabilization by scaffolding proteins. In this study, we demonstrate that NMDA receptors are internalized in both heterologous cells and neurons, and we define an internalization motif, YEKL, on the distal C-terminus of NR2B. In addition, we show that the synaptic protein PSD-95 inhibits NR2B-mediated internalization, and that deletion of the PDZ-binding domain of NR2B increases internalization in neurons. This suggests an involvement for PSD-95 in NMDA receptor regulation and an explanation for NMDA receptor stability at synaptic sites. PMID:11477425

  16. NMDA receptors and memory encoding.

    PubMed

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  17. PSD-95 and Calcineurin Control the Sensitivity of NMDA Receptors to Calpain Cleavage in Cortical Neurons

    PubMed Central

    Yuen, Eunice Y.; Ren, Yi; Yan, Zhen

    2010-01-01

    The N-methyl-D-aspartate receptor (NMDAR) is a Ca2+-permeable glutamate receptor mediating many neuronal functions under normal and pathological conditions. Ca2+-influx via NMDARs activates diverse intracellular targets, including Ca2+-dependent protease calpain. Biochemical studies suggest that NR2A and NR2B subunits of NMDARs are substrates of calpain. Our physiological data showed that calpain, activated by prolonged NMDA treatment (100 µM, 5 min) of cultured cortical neurons, irreversibly decreased the whole-cell currents mediated by extrasynaptic NMDARs. Animals exposed to transient forebrain ischemia, a condition that activates calpain, exhibited the reduced NMDAR current density and the lower full-length NR2A/B level in a calpain-dependent manner. Disruption of the association between NMDARs and the scaffolding protein PSD-95 facilitated the calpain regulation of synaptic NMDAR responses and NR2 cleavage in cortical slices, while inhibition of calcineurin activity blocked the calpain effect on NMDAR currents and NR2 cleavage. Calpain-cleaved NR2B subunits were removed from the cell surface. Moreover, cell viability assays showed that calpain, by targeting NMDARs, provided a negative feedback to dampen neuronal excitability in excitotoxic conditions. These data suggest that calpain activation suppresses NMDAR function via proteolytic cleavage of NR2 subunits in vitro and in vivo, and the susceptibility of NMDARs to calpain cleavage is controlled by PSD-95 and calcineurin. PMID:18445709

  18. Developmental Changes in NMDA Receptor Subunit Composition at ON and OFF Bipolar Cell Synapses onto Direction-Selective Retinal Ganglion Cells

    PubMed Central

    Stafford, Benjamin K.; Park, Silvia J. H.; Wong, Kwoon Y.

    2014-01-01

    In the developing mouse retina, spontaneous and light-driven activity shapes bipolar→ganglion cell glutamatergic synapse formation, beginning around the time of eye-opening (P12–P14) and extending through the first postnatal month. During this time, glutamate release can spill outside the synaptic cleft and possibly stimulate extrasynaptic NMDA-type glutamate receptors (NMDARs) on ganglion cells. Furthermore, the role of NMDARs during development may differ between ON and OFF bipolar synapses as in mature retina, where ON synapses reportedly include extrasynaptic NMDARs with GluN2B subunits. To better understand the function of glutamatergic synapses during development, we made whole-cell recordings of NMDAR-mediated responses, in vitro, from two types of genetically identified direction-selective ganglion cells (dsGCs): TRHR (thyrotropin-releasing hormone receptor) and Drd4 (dopamine receptor 4). Both dsGC types responded to puffed NMDA between P7 and P28; and both types exhibited robust light-evoked NMDAR-mediated responses at P14 and P28 that were quantified by conductance analysis during nicotinic and GABAA receptor blockade. For a given cell type and at a given age, ON and OFF bipolar cell inputs evoked similar NMDAR-mediated responses, suggesting that ON-versus-OFF differences in mature retina do not apply to the cell types or ages studied here. At P14, puff- and light-evoked NMDAR-mediated responses in both dsGCs were partially blocked by the GluN2B antagonist ifenprodil, whereas at P28 only TRHR cells remained ifenprodil-sensitive. NMDARs contribute at both ON and OFF bipolar cell synapses during a period of robust activity-dependent synaptic development, with declining GluN2B involvement over time in specific ganglion cell types. PMID:24478373

  19. Physiology and pathology of NMDA receptors.

    PubMed

    Petrović, M; Horák, M; Sedlácek, M; Vyklický, L

    2005-01-01

    Ionotropic glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype are highly expressed in the central nervous system and are involved in excitatory synaptic transmission and synaptic plasticity. Prolonged activation of NMDA receptors can lead to excitotoxicity, which is implicated in the pathogenesis of neurodegeneration occurring in various acute and chronic disorders of the central nervous system. Recent advances in understanding the function, pharmacology, genetics and structure of NMDA receptors has promoted a search for new compounds that could be therapeutically used. These compounds act on agonist binding sites, either apart from them or directly within the ion channel pore. Members of the last group are called open channel blockers, and some of them, such as memantine and ketamine, are already clinically used. Kinetic modeling of NMDA receptor activity was employed to define the effects of various groups of modulators. Quantifying the action of these substances by kinetic parameters can help us to reveal the molecular mechanism of action at the receptor and to characterize the dependence of its action on the mode of NMDA receptor activation. Two modes are considered: phasic activation, induced by synaptically released glutamate, and tonic activation, which is expected to occur under pathological conditions when low, but sustained levels of glutamate activate NMDA receptors. The aim of our review is to summarize the recent data about the structural and functional properties of NMDA receptors and their role in long-term potentiation and excitotoxicity. PMID:16315761

  20. Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS

    PubMed Central

    Miwa, Hideki; Fukaya, Masahiro; Watabe, Ayako M; Watanabe, Masahiko; Manabe, Toshiya

    2008-01-01

    The NMDA-type glutamate receptor is a heteromeric complex composed of the NR1 and at least one of the NR2 subunits. Switching from the NR2B to the NR2A subunit is thought to underlie functional alteration of the NMDA receptor during synaptic maturation, and it is generally believed that it results in preferential localization of NR2A subunits on the synaptic site and that of NR2B subunits on the extracellular site in the mature brain. It has also been proposed that activation of the NR2A and NR2B subunits results in long-term potentiation (LTP) and long-term depression (LTD), respectively. Furthermore, recent reports suggest that synaptic and extrasynaptic receptors may have distinct roles in synaptic plasticity as well as in gene expression associated with neuronal death. Here, we have investigated whether NR2B subunit-containing receptors are present and functional at mature synapses in the lateral nucleus of the amygdala (LA) and the CA1 region of the hippocampus, comparing their properties between the two brain regions. We have found, in contrast to the above hypotheses, that the NR2B subunit significantly contributes to synaptic transmission as well as LTP induction. Furthermore, its contribution is greater in the LA than in the CA1 region, and biophysical properties of NMDA receptors and the NR2B/NR2A ratio are different between the two brain regions. These results indicate that NR2B subunit-containing NMDA receptors accumulate on the synaptic site and are responsible for the unique properties of synaptic function and plasticity in the amygdala. PMID:18372311

  1. Human neuroepithelial cells express NMDA receptors.

    PubMed

    Sharp, Christopher D; Fowler, M; Jackson, T H; Houghton, J; Warren, A; Nanda, A; Chandler, I; Cappell, B; Long, A; Minagar, A; Alexander, J S

    2003-11-13

    L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1) cerebral endothelial barrier and 2) cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells) have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR) expression via immunohistochemistry and murine neuroepithelial cell line (V1) were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease. PMID:14614784

  2. The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells.

    PubMed

    Herd, Murray B; Haythornthwaite, Alison R; Rosahl, Thomas W; Wafford, Keith A; Homanics, Gregg E; Lambert, Jeremy J; Belelli, Delia

    2008-02-15

    The subunit composition of GABA(A) receptors influences their biophysical and pharmacological properties, dictates neuronal location and the interaction with associated proteins, and markedly influences the impact of intracellular biochemistry. The focus has been on alpha and gamma subunits, with little attention given to beta subunits. Dentate gyrus granule cells (DGGCs) express all three beta subunit isoforms and exhibit both synaptic and extrasynaptic receptors that mediate 'phasic' and 'tonic' transmission, respectively. To investigate the subcellular distribution of the beta subunits we have utilized the patch-clamp technique to compare the properties of 'tonic' and miniature inhibitory postsynaptic currents (mIPSCs) recorded from DGGCs of hippocampal slices of P20-26 wild-type (WT), beta(2)(-/-), beta(2N265S) (etomidate-insensitive), alpha(1)(-/-) and delta(-/-) mice. Deletion of either the beta(2) or the delta subunit produced a significant reduction of the tonic current and attenuated the increase of this current induced by the delta subunit-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). By contrast, mIPSCs were not influenced by deletion of these genes. Enhancement of the tonic current by the beta(2/3) subunit-selective agent etomidate was significantly reduced for DGGCs derived from beta(2N265S) mice, whereas this manipulation had no effect on the prolongation of mIPSCs produced by this anaesthetic. Collectively, these observations, together with previous studies on alpha(4)(-/-) mice, identify a population of extrasynaptic alpha(4)beta(2)delta receptors, whereas synaptic GABA(A) receptors appear to primarily incorporate the beta(3) subunit. A component of the tonic current is diazepam sensitive and is mediated by extrasynaptic receptors incorporating alpha(5) and gamma(2) subunits. Deletion of the beta(2) subunit had no effect on the diazepam-induced current and therefore these extrasynaptic receptors do not contain this

  3. NMDA receptors in hyperammonemia and hepatic encephalopathy.

    PubMed

    Llansola, Marta; Rodrigo, Regina; Monfort, Pilar; Montoliu, Carmina; Kosenko, Elena; Cauli, Omar; Piedrafita, Blanca; El Mlili, Nisrin; Felipo, Vicente

    2007-12-01

    The NMDA type of glutamate receptors modulates learning and memory. Excessive activation of NMDA receptors leads to neuronal degeneration and death. Hyperammonemia and liver failure alter the function of NMDA receptors and of some associated signal transduction pathways. The alterations are different in acute and chronic hyperammonemia and liver failure. Acute intoxication with large doses of ammonia (and probably acute liver failure) leads to excessive NMDA receptors activation, which is responsible for ammonia-induced death. In contrast, chronic hyperammonemia induces adaptive responses resulting in impairment of signal transduction associated to NMDA receptors. The function of the glutamate-nitric oxide-cGMP pathway is impaired in brain in vivo in animal models of chronic liver failure or hyperammonemia and in homogenates from brains of patients died in hepatic encephalopathy. The impairment of this pathway leads to reduced cGMP and contributes to impaired cognitive function in hepatic encephalopathy. Learning ability is reduced in animal models of chronic liver failure and hyperammonemia and is restored by pharmacological manipulation of brain cGMP by administering phosphodiesterase inhibitors (zaprinast or sildenafil) or cGMP itself. NMDA receptors are therefore involved both in death induced by acute ammonia toxicity (and likely by acute liver failure) and in cognitive impairment in hepatic encephalopathy. PMID:17701332

  4. Ethanol acts directly on extrasynaptic subtypes of GABAA receptors to increase tonic inhibition

    PubMed Central

    Santhakumar, Vijayalakshmi; Wallner, Martin; Otis, Thomas S.

    2007-01-01

    Based on the similarity of ethanol intoxication to the behavioral effects of drugs known to target GABAA receptors (GABARs) it has been suspected for decades that ethanol facilitates the activity of GABA. Even so, it has been surprisingly difficult to identify molecular targets of ethanol. Research conducted over the past several years suggests that a subclass of GABARs (those containing δ subunits) responds in a relevant concentration range to ethanol. Although δ subunit-containing GABARs are not ubiquitously expressed at inhibitory synapses like their γ subunit-containing, synaptic counterparts, they are found in many neurons in extrasynaptic locations. Here they give rise to a tonic form of inhibition that can potently suppress neuronal excitability. Studies have shown that both recombinant and native δ subunit-containing GABARs: 1) are modulated by behaviorally-relevant (i.e. low millimolar) concentrations of ethanol, 2) directly bind ethanol over the same concentration range, 3) show altered function upon single amino substitutions linked to changes in behavioral responsiveness to ethanol, and 4) are a site of action of Ro15-4513, a competitive antagonist of ethanol binding and a drug which prevents many of the behavioral aspects of ethanol intoxication. Despite such comprehensive evidence, however, the field is not free from controversy. This review evaluates published data for and against a central role of δ subunit-containing GABARs in ethanol actions and suggests future directions that might help settle points of controversy. PMID:17591544

  5. Crystal structure of a heterotetrameric NMDA receptor ion channel

    PubMed Central

    Karakas, Erkan; Furukawa, Hiro

    2014-01-01

    N -methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here we show the crystal structure of the intact heterotetrameric GluN1/GluN2B NMDA receptor ion channel at 4 Å. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the two-fold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors. PMID:24876489

  6. Novel NMDA Receptor Modulators: An Update

    PubMed Central

    Santangelo, Rose M.; Acker, Timothy M.; Zimmerman, Sommer S.; Katzman, Brooke M.; Strong, Katie L.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Summary Introduction The NMDA receptor is a ligand-gated ion channel that plays a critical role in higher level brain processes and has been implicated in a range of neurological and psychiatric conditions. Although initial studies for the use of NMDA receptor antagonists in neuroprotection were unsuccessful, more recently, NMDA receptor antagonists have shown clinical promise in other indications such as Alzheimer’s disease, Parkinson’s disease, pain and depression. Based on the clinical observations and more recent insights into receptor pharmacology, new modulatory approaches are beginning to emerge, with potential therapeutic benefit. Areas Covered The article covers the known pharmacology and important features regarding NMDA receptors and their function. A discussion of pre-clinical and clinical relevance is included, as well. The subsequent patent literature review highlights the current state of the art targeting the receptor since the last review in 2010. Expert Opinion The complex nature of the NMDA receptor structure and function is becoming better understood. As knowledge about this receptor increases, it opens up new opportunities for targeting the receptor for many therapeutic indications. New strategies and advances in older technologies will need to be further developed before clinical success can be achieved. First-in-class potentiators and subunit-selective agents form the basis for most new strategies, complemented by efforts to limit off-target liability and fine-tune on-target properties. PMID:23009122

  7. New advances in NMDA receptor pharmacology

    PubMed Central

    Ogden, Kevin K.; Traynelis, Stephen F.

    2011-01-01

    N-Methyl-D-aspartate (NMDA) receptors are tetrameric ion channels containing two of four possible GluN2 subunits. These receptors have been implicated for decades in neurological diseases such as stroke, traumatic brain injury, dementia, and schizophrenia. The GluN2 subunits contribute substantially to functional diversity of NMDA receptors and are distinctly expressed in development and among brain regions. Thus, subunit-selective antagonists and modulators that differentially target the GluN2 subunit might provide an opportunity to pharmacologically modify the function of select groups of neurons for therapeutic gain. A flurry of clinical, functional, and chemical studies have together reinvigorated efforts to identify subunit-selective modulators of NMDA receptor function, resulting in a handful of new compounds that appear to act at novel sites. Here we review the properties of new emerging classes of subunit-selective NMDA receptor modulators, which we predict will mark the beginning of a productive period of progress for NMDA receptor pharmacology. PMID:21996280

  8. Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABA(A) receptors.

    PubMed

    Meera, Pratap; Wallner, Martin; Otis, Thomas S

    2011-10-01

    Extrasynaptic GABA(A) receptors (eGABARs) allow ambient GABA to tonically regulate neuronal excitability and are implicated as targets for ethanol and anesthetics. These receptors are thought to be heteropentameric proteins made up of two α subunits-either α4 or α6-two β2 or β3 subunits, and one δ subunit. The GABA analog 4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3(-ol) (THIP) has been proposed as a selective ligand for eGABARs. Behavioral and in vitro studies suggest that eGABARs have nanomolar affinity for THIP; however, all published studies on recombinant versions of eGABARs report micromolar affinities. Here, we examine THIP sensitivity of native eGABARs on cerebellar neurons and on reconstituted GABARs in heterologous systems. Concentration-response data for THIP, obtained from cerebellar granule cells and molecular layer interneurons in wild-type and δ subunit knockout slices, confirm that submicromolar THIP sensitivity requires δ subunits. In recombinant experiments, we find that δ subunit coexpression leads to receptors activated by nanomolar THIP concentrations (EC(50) of 30-50 nM for α4β3δ and α6β3δ), a sensitivity almost 1,000-fold higher than receptors formed by α4/6 and β3 subunits. In contrast, γ2 subunit expression significantly reduces THIP sensitivity. Even when δ subunit cDNA or cRNA was supplied in excess, high- and low-sensitivity THIP responses were often apparent, indicative of variable mixtures of low-affinity αβ and high-affinity αβδ receptors. We conclude that δ subunit incorporation into GABARs leads to a dramatic increase in THIP sensitivity, a defining feature that accounts for the unique behavioral and neurophysiological properties of THIP. PMID:21795619

  9. A Reinforcing Circuit Action of Extrasynaptic GABAA Receptor Modulators on Cerebellar Granule Cell Inhibition

    PubMed Central

    Santhakumar, Vijayalakshmi; Otis, Thomas S.

    2013-01-01

    GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants. PMID:23977374

  10. Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABAA receptors

    PubMed Central

    Meera, Pratap; Wallner, Martin

    2011-01-01

    Extrasynaptic GABAA receptors (eGABARs) allow ambient GABA to tonically regulate neuronal excitability and are implicated as targets for ethanol and anesthetics. These receptors are thought to be heteropentameric proteins made up of two α subunits—either α4 or α6—two β2 or β3 subunits, and one δ subunit. The GABA analog 4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3(-ol) (THIP) has been proposed as a selective ligand for eGABARs. Behavioral and in vitro studies suggest that eGABARs have nanomolar affinity for THIP; however, all published studies on recombinant versions of eGABARs report micromolar affinities. Here, we examine THIP sensitivity of native eGABARs on cerebellar neurons and on reconstituted GABARs in heterologous systems. Concentration-response data for THIP, obtained from cerebellar granule cells and molecular layer interneurons in wild-type and δ subunit knockout slices, confirm that submicromolar THIP sensitivity requires δ subunits. In recombinant experiments, we find that δ subunit coexpression leads to receptors activated by nanomolar THIP concentrations (EC50 of 30–50 nM for α4β3δ and α6β3δ), a sensitivity almost 1,000-fold higher than receptors formed by α4/6 and β3 subunits. In contrast, γ2 subunit expression significantly reduces THIP sensitivity. Even when δ subunit cDNA or cRNA was supplied in excess, high- and low-sensitivity THIP responses were often apparent, indicative of variable mixtures of low-affinity αβ and high-affinity αβδ receptors. We conclude that δ subunit incorporation into GABARs leads to a dramatic increase in THIP sensitivity, a defining feature that accounts for the unique behavioral and neurophysiological properties of THIP. PMID:21795619

  11. A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition.

    PubMed

    Santhakumar, Vijayalakshmi; Meera, Pratap; Karakossian, Movses H; Otis, Thomas S

    2013-01-01

    GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants. PMID:23977374

  12. Perimenstrual-like hormonal regulation of extrasynaptic δ-containing GABAA receptors mediating tonic inhibition and neurosteroid sensitivity.

    PubMed

    Carver, Chase Matthew; Wu, Xin; Gangisetty, Omkaram; Reddy, Doodipala Samba

    2014-10-22

    Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the molecular mechanisms underlying such enhanced neurosteroid sensitivity remain unclear. Neurosteroids are allosteric modulators of both synaptic (αβγ2-containing) and extrasynaptic (αβδ-containing) GABAA receptors, but they display greater sensitivity toward δ-subunit receptors in dentate gyrus granule cells (DGGCs). Here we report a novel plasticity of extrasynaptic δ-containing GABAA receptors in the dentate gyrus in a mouse perimenstrual-like model of NSW. In molecular and immunofluorescence studies, a significant increase occurred in δ subunits, but not α1, α2, β2, and γ2 subunits, in the dentate gyrus of NSW mice. Electrophysiological studies confirmed enhanced sensitivity to AP potentiation of GABA-gated currents in DGGCs, but not in CA1 pyramidal cells, in NSW animals. AP produced a greater potentiation of tonic currents in DGGCs of NSW animals, and such enhanced AP sensitivity was not evident in δ-subunit knock-out mice subjected to a similar withdrawal paradigm. In behavioral studies, mice undergoing NSW exhibited enhanced seizure susceptibility to hippocampus kindling. AP has enhanced anticonvulsant effects in fully kindled wild-type mice, but not δ-subunit knock-out mice, undergoing NSW-induced seizures, confirming δ-linked neurosteroid sensitivity. These results indicate that perimenstrual NSW is associated with striking upregulation of extrasynaptic, δ-containing GABAA receptors that mediate tonic inhibition and neurosteroid sensitivity in the dentate gyrus. These findings may represent a molecular rationale for neurosteroid therapy of catamenial

  13. Differential involvement of amygdala and cortical NMDA receptors activation upon encoding in odor fear memory.

    PubMed

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guillaume; Mouly, Anne-Marie

    2014-12-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptors in the BLA and olfactory cortex at discrete moments of an odor fear conditioning session. We showed that NMDA receptors in BLA are critically involved in odor fear acquisition during the first association but not during the next ones. In the cortex, NMDA receptor activation at encoding is not necessary for recent odor fear memory while its role in remote memory storage needs further investigation. PMID:25403452

  14. NMDA Receptor Activity in Neuropsychiatric Disorders

    PubMed Central

    Lakhan, Shaheen E.; Caro, Mario; Hadzimichalis, Norell

    2013-01-01

    N-Methyl-d-aspartate (NMDA) receptors play a variety of physiologic roles and their proper signaling is essential for cellular homeostasis. Any disruption in this pathway, leading to either enhanced or decreased activity, may result in the manifestation of neuropsychiatric pathologies such as schizophrenia, mood disorders, substance induced psychosis, Huntington’s disease, Alzheimer’s disease, and neuropsychiatric systemic lupus erythematosus. Here, we explore the notion that the overlap in activity of at least one biochemical pathway, the NMDA receptor pathway, may be the link to understanding the overlap in psychotic symptoms between diseases. This review intends to present a broad overview of those neuropsychiatric disorders for which alternations in NMDA receptor activity is prominent thus suggesting that continued direction of pharmaceutical intervention to this pathway may present a viable option for managing symptoms. PMID:23772215

  15. Tetramethylenedisulfotetramine Alters Ca2+ Dynamics in Cultured Hippocampal Neurons: Mitigation by NMDA Receptor Blockade and GABAA Receptor-Positive Modulation

    PubMed Central

    Pessah, Isaac N.

    2012-01-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant that is considered a chemical threat agent. We characterized TETS as an activator of spontaneous Ca2+ oscillations and electrical burst discharges in mouse hippocampal neuronal cultures at 13–17 days in vitro using FLIPR Fluo-4 fluorescence measurements and extracellular microelectrode array recording. Acute exposure to TETS (≥ 2µM) reversibly altered the pattern of spontaneous neuronal discharges, producing clustered burst firing and an overall increase in discharge frequency. TETS also dramatically affected Ca2+ dynamics causing an immediate but transient elevation of neuronal intracellular Ca2+ followed by decreased frequency of Ca2+ oscillations but greater peak amplitude. The effect on Ca2+ dynamics was similar to that elicited by picrotoxin and bicuculline, supporting the view that TETS acts by inhibiting type A gamma-aminobutyric acid (GABAA) receptor function. The effect of TETS on Ca2+ dynamics requires activation of N-methyl-d-aspartic acid (NMDA) receptors, because the changes induced by TETS were prevented by MK-801 block of NMDA receptors, but not nifedipine block of L-type Ca2+ channels. Pretreatment with the GABAA receptor-positive modulators diazepam and allopregnanolone partially mitigated TETS-induced changes in Ca2+ dynamics. Moreover, low, minimally effective concentrations of diazepam (0.1µM) and allopregnanolone (0.1µM), when administered together, were highly effective in suppressing TETS-induced alterations in Ca2+ dynamics, suggesting that the combination of positive modulators of synaptic and extrasynaptic GABAA receptors may have therapeutic potential. These rapid throughput in vitro assays may assist in the identification of single agents or combinations that have utility in the treatment of TETS intoxication. PMID:22889812

  16. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    ERIC Educational Resources Information Center

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  17. DOSE RESPONSE DEETERMINATION OF NMDA ANTAGONISTS AND GABA AGONIST ON SUSTAINED ATTENTION.

    EPA Science Inventory

    We have shown that acute inhalation of toluene impairs sustained attention as assessed with a visual signal detection task (SDT). In vitro studies indicate that the NMDA and GABA systems are primary targets of anesthetic agents and organic solvents such as toluene. Pharmacologica...

  18. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata.

    PubMed

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-08-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation. PMID:27421895

  19. Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell–granule cell loops

    PubMed Central

    Holtzman, Tahl; Sivam, Vanessa; Zhao, Tian; Frey, Oivier; van der Wal, Peter Dow; de Rooij, Nico F; Dalley, Jeffrey W; Edgley, Steve A

    2011-01-01

    Abstract Despite a wealth of in vitro and modelling studies it remains unclear how neuronal populations in the cerebellum interact in vivo. We address the issue of how the cerebellar input layer processes sensory information, with particular focus on the granule cells (input relays) and their counterpart inhibitory interneurones, Golgi cells. Based on the textbook view, granule cells excite Golgi cells via glutamate forming a negative feedback loop. However, Golgi cells express inhibitory mGluR2 receptors suggesting an inhibitory role for glutamate. We set out to test this glutamatergic paradox in Golgi cells. Here we show that granule cells and Golgi cells interact through extra-synaptic signalling mechanisms during sensory information processing, as well as synaptic mechanisms. We demonstrate that such interactions depend on granule cell-derived glutamate acting via inhibitory mGluR2 receptors leading causally to the suppression of Golgi cell activity for several hundreds of milliseconds. We further show that granule cell-derived inhibition of Golgi cell activity is regulated by GABA-dependent extra-synaptic Golgi cell inhibition of granule cells, identifying a regulatory loop in which glutamate and GABA may be critical regulators of Golgi cell–granule cell functional activity. Thus, granule cells may promote their own prolonged activity via paradoxical feed-forward inhibition of Golgi cells, thereby enabling information processing over long timescales. PMID:21669981

  20. NMDA Receptors: Power Switches for Oligodendrocytes.

    PubMed

    Krasnow, Anna M; Attwell, David

    2016-07-01

    The role of NMDA receptors in oligodendrocytes has been controversial. A new paper (Saab et al., 2016) suggests they play a key role in regulating glucose uptake in response to axonal glutamate release, thus controlling metabolic cooperation between oligodendrocytes and axons. PMID:27387644

  1. Modulation of the NMDA receptor by polyamines

    SciTech Connect

    Williams, K.; Romano, C.; Dichter, M.A.; Molinoff, P.B. )

    1991-01-01

    Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been found to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.

  2. Subunit Arrangement and Function in NMDA Receptors

    SciTech Connect

    Furukawa,H.; Singh, S.; Mancusso, R.; Gouaux, E.

    2005-01-01

    Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.

  3. PKCα is required for inflammation-induced trafficking of extrasynaptic AMPA receptors in tonically firing lamina II dorsal horn neurons during the maintenance of persistent inflammatory pain

    PubMed Central

    Kopach, Olga; Viatchenko-Karpinski, Viacheslav; Atianjoh, Fidelis E.; Belan, Pavel; Tao, Yuan-Xiang; Voitenko, Nana

    2012-01-01

    Persistent inflammation promotes internalization of synaptic GluR2-containing Ca2+-impermeable AMPA receptors (AMPARs) and insertion of GluR1-containing Ca2+-permeable AMPARs at extrasynaptic sites in dorsal horn neurons. Previously we have shown that internalization of synaptic GluR2-containing AMPARs requires an activation of spinal cord protein kinase C alpha (PKCα), but molecular mechanisms that underlie altered trafficking of extrasynaptic AMPARs are still unclear. By utilizing the antisence oligodeoxynucleotides that specifically knockdown PKCα, we have found that a decrease in dorsal horn PKCα expression prevents complete Freund’s adjuvant (CFA)-induced increase in a functional expression of extrasynaptic Ca2+-permeable AMPARs in substantia gelatinosa (SG) neurons of the rat spinal cord. This was manifested as an abolishment of augmented AMPA-induced currents and associated [Ca2+]i transients, and as a reverse of the current rectification 1 d post-CFA. These changes were observed specifically in SG neurons characterized by intrinsic tonic firing properties, but not in those exhibiting strong adaptation. Finally, dorsal horn PKCα knockdown produced anti-nociceptive effect on CFA-induced thermal and mechanical hypersensitivity during the maintenance period of inflammatory pain, indicating a role for PKCα in persistent inflammatory pain maintenance. Altogether, our results indicate that inflammation-induced trafficking of extrasynaptic Ca2+-permeable AMPARs in tonically firing SG neurons depends on PKCα, and suggest that this PKCα-dependent trafficking may contribute to the persistent inflammatory pain maintenance. PMID:23374940

  4. NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus.

    PubMed

    Feldman, D E; Knudsen, E I

    1994-10-01

    The pharmacology of auditory responses in the inferior colliculus (IC) of the barn owl was investigated by iontophoresis of excitatory amino acid receptor antagonists into two different functional subdivisions of the IC, the external nucleus (ICx) and the lateral shell of the central nucleus (lateral shell), both of which carry out important computations in the processing of auditory spatial information. Combined application of the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP5) and the non-NMDA receptor antagonist 6-cyano-5-nitroquinoxaline-2,3-dione (CNQX) significantly reduced auditory-evoked spikes at all sites in these two subdivisions, and completely eliminated responses at many locations. This suggests that excitatory amino acid receptors mediate the bulk, if not all, of auditory responses in the ICx and lateral shell. NMDA and non-NMDA receptors contributed differently to auditory responses in the two subdivisions. In the ICx, AP5 significantly reduced the number of auditory-evoked spikes at every site tested. On average, AP5 eliminated 55% of auditory-evoked spikes at multiunit sites and 64% at single-unit sites in this structure. In contrast, in the lateral shell, AP5 significantly reduced responses at less than half the sites tested, and, on average, AP5 eliminated only 19% of spikes at multiunit sites and 25% at single-unit sites. When the magnitude of response blockade produced by AP5 at individual multiunit sites was normalized to adjust for site-to-site differences in the efficacy of iontophoresed AP5 and CNQX, AP5 blockade was still significantly greater in the ICx than the lateral shell. CNQX application strongly reduced responses in both subdivisions. These data suggest that NMDA receptor currents make a major contribution to auditory responses in the ICx, while they make only a small contribution to auditory responses in the lateral shell. Non-NMDA receptor currents, on the other hand, contribute to auditory responses in both

  5. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    SciTech Connect

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  6. Estrous cycle regulation of extrasynaptic δ-containing GABA(A) receptor-mediated tonic inhibition and limbic epileptogenesis.

    PubMed

    Wu, Xin; Gangisetty, Omkaram; Carver, Chase Matthew; Reddy, Doodipala Samba

    2013-07-01

    The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABA(A) receptors mediate phasic inhibition in the hippocampus and extrasynaptic receptors mediate tonic inhibition in the dentate gyrus. Here we report a novel role of extrasynaptic δ-containing GABA(A) receptors as crucial mediators of the estrous cycle-related changes in neuronal excitability in mice, with hippocampus subfield specificity. In molecular and immunofluorescence studies, a significant increase occurred in δ-subunit, but not α4- and γ2-subunits, in the dentate gyrus during diestrus. However, δ-subunit upregulation was not evident in the CA1 region. The δ-subunit expression was undiminished by age and ovariectomy and in mice lacking progesterone receptors, but it was significantly reduced by finasteride, a neurosteroid synthesis inhibitor. Electrophysiologic studies confirmed greater potentiation of GABA currents by progesterone-derived neurosteroid allopregnanolone in dissociated dentate gyrus granule cells in diestrus than in CA1 pyramidal cells. The baseline conductance and allopregnanolone potentiation of tonic currents in dentate granule cells from hippocampal slices were higher than in CA1 pyramidal cells. In behavioral studies, susceptibility to hippocampus kindling epileptogenesis was lower in mice during diestrus. These results demonstrate the estrous cycle-related plasticity of neurosteroid-sensitive, δ-containing GABA(A) receptors that mediate tonic inhibition and seizure susceptibility. These findings may provide novel insight on molecular cascades of menstrual disorders like catamenial epilepsy, premenstrual syndrome, and migraine. PMID:23667248

  7. NMDA receptor binding in focal epilepsies

    PubMed Central

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-01-01

    Objective To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Methods Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Results Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group. Conclusions In patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. PMID:25991402

  8. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Tauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  9. A family of photoswitchable NMDA receptors.

    PubMed

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Tauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. PMID:26929991

  10. Signaling Cascades Regulating NMDA Receptor Sensitivity to Ethanol

    PubMed Central

    RON, DORIT

    2005-01-01

    One of the major targets for ethanol (alcohol) in the brain is the N-methyl-d-aspartate (NMDA) receptor, a glutamate-gated ion channel. Intriguingly, the effects of ethanol on the NMDA receptor are not homogeneous throughout the brain. This review focuses on recent studies revealing molecular mechanisms that mediate the actions of ethanol on the NMDA receptor in different brain regions via changes in NMDA receptor phosphorylation and compartmentalization. Specifically, the role of the scaffolding protein RACK1 and the regulatory protein DARPP-32 in mediating the distinct effects of ethanol is presented. PMID:15271260

  11. Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat.

    PubMed

    Cepeda, C; Itri, J N; Flores-Hernández, J; Hurst, R S; Calvert, C R; Levine, M S

    2001-11-01

    Infrared videomicroscopy and differential interference contrast optics were used to identify medium- and large-sized neurons in striatal slices from young rats. Whole-cell patch-clamp recordings were obtained to compare membrane currents evoked by application of N-methyl-d-aspartate (NMDA) and kainate. Inward currents and current densities induced by NMDA were significantly smaller in large- than in medium-sized striatal neurons. The negative slope conductance for NMDA currents was greater in medium- than in large-sized neurons and more depolarization was required to remove the Mg2+ blockade. In contrast, currents induced by kainate were significantly greater in large-sized neurons whilst current densities were approximately equal in both cell types. Spontaneous excitatory postsynaptic currents occurred frequently in medium-sized neurons but were relatively infrequent in large-sized neurons. Excitatory postsynaptic currents evoked by electrical stimulation were smaller in large- than in medium-sized neurons. A final set of experiments assessed a functional consequence of the differential sensitivity of medium- and large-sized neurons to NMDA. Cell swelling was used to examine changes in somatic area in both neuronal types after prolonged application of NMDA or kainate. NMDA produced a time-dependent increase in somatic area in medium-sized neurons whilst it produced only minimal changes in large interneurons. In contrast, application of kainate produced significant swelling in both medium- and large-sized cells. We hypothesize that reduced sensitivity to NMDA may be due to variations in receptor subunit composition and/or the relative density of receptors in the two cell types. These findings help define the conditions that put neurons at risk for excitotoxic damage in neurological disorders. PMID:11860453

  12. Differential control of glucoregulatory hormone response and glucose metabolism by NMDA and kainate.

    PubMed

    Yousef, K A; Tepper, P G; Molina, P E; Abumrad, N N; Lang, C H

    1994-01-14

    The aim of the present study was to elucidate the effect of kainate and N-methyl-D-aspartate (NMDA), two different excitatory amino acid (EAA) agonists, on glucoregulatory hormone production and whole body glucose metabolism. Rates of hepatic glucose production (HGP) and peripheral glucose utilization (GU) were assessed in overnight fasted, catheterized, conscious rats using [3-3H]glucose. At the highest dose of kainate examined (16 mg/kg), glucose levels increased 97% after 1 h; thereafter, glucose fell towards basal values but was still elevated 25% at the end of the 3 h experiment. This hyperglycemia resulted from a rapid increase in HGP that exceeded an increased rate of GU. Both HGP and GU were elevated 86% throughout the final 2 h of the experiment. NMDA induced changes in glucose flux that were qualitatively similar, yet of smaller magnitude and of shorter duration, than those produced by kainate. Kainate-induced increases in glucose metabolism were associated with an early transient hyperinsulinemia followed by a period of insulinopenia, and sustained increases in the plasma concentrations of glucagon, corticosterone, epinephrine and norepinephrine. In contrast, sustained increases in glucagon and catecholamines, as well as the late hypoinsulinemia were not detected in NMDA-treated rats. Adrenergic blockade attenuated the kainate- but not the NMDA-induced increase in glucose metabolism. These results indicate that EAA agonists that bind preferentially to different receptor subtypes produce qualitatively similar changes in glucose metabolism. Whereas the increased HGP in kainate-injected rats was associated with sustained elevations in glucagon, catecholamines and corticosterone, NMDA only transiently elevated circulating glucocorticoid levels, suggesting a different mechanism of action. These data, support the involvement of EAA in various aspects of glucoregulation. PMID:8156383

  13. NMDA Receptor Modulators in the Treatment of Drug Addiction

    PubMed Central

    Tomek, Seven E.; LaCrosse, Amber L.; Nemirovsky, Natali E.; Olive, M. Foster

    2013-01-01

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-d-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist d-Cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function. PMID:24275950

  14. Hyperammonemia alters the modulation by different neurosteroids of the glutamate-nitric oxide-cyclic GMP pathway through NMDA- GABAA - or sigma receptors in cerebellum in vivo.

    PubMed

    González-Usano, Alba; Cauli, Omar; Agustí, Ana; Felipo, Vicente

    2013-04-01

    Several neurosteroids modulate the glutamate-nitric oxide (NO)-cGMP pathway in cerebellum through modulation of NMDA- GABAA - or sigma receptors. Hyperammonemia alters the concentration of several neurosteroids and impairs the glutamate-NO-cGMP pathway, leading to impaired learning ability. This work aimed to assess whether chronic hyperammonemia alters the modulation by different neurosteroids of GABAA, NMDA, and/or sigma receptors and of the glutamate-NO-cGMP pathway in cerebellum. Neurosteroids were administered through microdialysis probes, and extracellular cGMP and citrulline were measured. Then NMDA was administered to assess the effects on the glutamate-NO-cGMP pathway activation. Hyperammonemia completely modifies the effects of pregnanolone and pregnenolone. Pregnanolone acts as a GABAA receptor agonist in controls, but as an NMDA receptor antagonist in hyperammonemic rats. Pregnenolone does not induce any effect in controls, but acts as a sigma receptor agonist in hyperammonemic rats. Hyperammonemia potentiates the actions of tetrahydrodeoxy-corticosterone (THDOC) as a GABAA receptor agonist, allopregnanolone as an NMDA receptor antagonist, and pregnenolone sulfate as an NMDA receptor activation enhancer. Neurosteroids that reduce the pathway (pregnanolone, THDOC, allopregnanolone, DHEAS) may contribute to cognitive impairment in hyperammonemia and hepatic encephalopathy. Pregnenolone would impair cognitive function in hyperammonemia. Neurosteroids that restore the pathway in hyperammonemia (pregnenolone sulfate) could restore cognitive function in hyperammonemia and encephalopathy. PMID:23227932

  15. Postnatal down-regulation of the GABAA receptor γ2 subunit in neocortical NG2 cells accompanies synaptic-to-extrasynaptic switch in the GABAergic transmission mode.

    PubMed

    Balia, Maddalena; Vélez-Fort, Mateo; Passlick, Stefan; Schäfer, Christoph; Audinat, Etienne; Steinhäuser, Christian; Seifert, Gerald; Angulo, María Cecilia

    2015-04-01

    NG2 cells, a main pool of glial progenitors, express γ-aminobutyric acid A (GABA(A)) receptors (GABA(A)Rs), the functional and molecular properties of which are largely unknown. We recently reported that transmission between GABAergic interneurons and NG2 cells drastically changes during development of the somatosensory cortex, switching from synaptic to extrasynaptic communication. Since synaptic and extrasynaptic GABA(A)Rs of neurons differ in their subunit composition, we hypothesize that GABA(A)Rs of NG2 cells undergo molecular changes during cortical development accompanying the switch of transmission modes. Single-cell RT-PCR and the effects of zolpidem and α5IA on evoked GABAergic currents reveal the predominance of functional α1- and α5-containing GABA(A)Rs at interneuron-NG2 cell synapses in the second postnatal week, while the α5 expression declines later in development when responses are exclusively extrasynaptic. Importantly, pharmacological and molecular analyses demonstrate that γ2, a subunit contributing to the clustering of GABA(A)Rs at postsynaptic sites in neurons, is down-regulated in NG2 cells in a cell type-specific manner in concomitance with the decline of synaptic activity and the switch of transmission mode. In keeping with the synaptic nature of γ2 in neurons, the down-regulation of this subunit is an important molecular hallmark of the change of transmission modes between interneurons and NG2 cells during development. PMID:24217990

  16. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  17. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    PubMed

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration. PMID:24338618

  18. Differential Effects of Pharmacologic and Genetic Modulation of NMDA Receptor Activity on HIV/gp120-Induced Neuronal Damage in an In Vivo Mouse Model

    PubMed Central

    Nakanishi, Nobuki; Kang, Yeon-Joo; Tu, Shichun; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.

    2015-01-01

    HIV-associated neurocognitive disorder (HAND) consists of motor and cognitive dysfunction in a relatively large percentage of patients with AIDS. Prior work has suggested that at least part of the neuronal and synaptic damage observed in HAND may occur due to excessive stimulation of NMDA-type glutamate receptors (NMDARs). Here, we compared pharmacological and genetic manipulation of NMDAR activity using an improved derivative of the NMDAR antagonist memantine, termed NitroMemantine, and the modulatory NMDAR subunit GluN3A in the HIV/gp120 transgenic (tg) mouse model of HAND. Interestingly, we found that while both NitroMemantine and GluN3A have been shown to inhibit NMDAR activity, NitroMemantine protected synapses in gp120 tg mice, but overexpression of GluN3A augmented the damage. Given recent findings in the field, one explanation for this apparently paradoxical result is the location of the NMDARs primarily affected, with NitroMemantine inhibiting predominantly extrasynaptic pathologically-activated NMDARs, but GluN3A disrupting normal NMDAR-mediated neuroprotective activity via inhibition of synaptic NMDARs. PMID:26374431

  19. Prevention of postoperative fatigue syndrome in rat model by ginsenoside Rb1 via down-regulation of inflammation along the NMDA receptor pathway in the hippocampus.

    PubMed

    Chen, Wei-Zhe; Liu, Shu; Chen, Fan-Feng; Zhou, Chong-Jun; Yu, Jian; Zhuang, Cheng-Le; Shen, Xian; Chen, Bi-Cheng; Yu, Zhen

    2015-01-01

    Postoperative fatigue syndrome (POFS) is a common complication which decelerates recovery after surgery. The present study investigated the anti-fatigue effect of ginsenoside Rb1 (GRb1) through the inflammatory cytokine-mediated N-methyl-D-aspartate (NMDA) receptor pathway. A POFS rat model was created by major small intestinal resection and assessed with an open field test. Real-time quantitative polymerase chain reaction, western blot analysis, high performance liquid chromatography and a transmission electron microscopic analysis were used to determine typical biochemical parameters in the hippocampus. Our results showed that POFS rats exhibited fatigue associated with an increased expression of inflammatory cytokines and NMDA receptor 1, higher (kynurenine)/(tryptophan) and (kynurenine)/(kynurenic acid) on postoperative days 1 and 3, and an increased expression of indoleamine 2,3-dioxygenase (IDO) on postoperative day 1. Degenerated neurons were found in the hippocampus of POFS rats. The NMDA receptor antagonist MK801 had a significant effect on central fatigue on postoperative day 1. GRb1 had no effect on IDO or tryptophan metabolism, but exhibited a significant effect on POFS by inhibiting the expression of inflammatory cytokines and NMDA receptor 1. These data suggested that inflammatory cytokines could activate tryptophan metabolism to cause POFS through the NMDA receptor pathway. GRb1 had an anti-fatigue effect on POFS by reducing inflammatory cytokines and NMDA receptors. PMID:25747983

  20. Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines

    PubMed Central

    Afroz, Sonia; Parato, Julie; Shen, Hui; Smith, Sheryl Sue

    2016-01-01

    Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal. DOI: http://dx.doi.org/10.7554/eLife.15106.001 PMID:27136678

  1. Treadmill exercise enhances NMDA receptor expression in schizophrenia mice

    PubMed Central

    Park, Joon-Ki; Lee, Sam-Jun; Kim, Tae-Won

    2014-01-01

    Schizophrenia is a serious psychiatric disorder with several symptoms including cognitive dysfunction. Although the causes of schizophrenia are still unclear, there is a strong suspicion that the abnormality in N-methyl-D-aspartate (NMDA) receptor may contribute to schizophrenia symptoms. In the present study, the effect of treadmill exercise on the NMDA receptor expression was evaluated using MK-801-induced schizophrenia mice. Immunohistochemistry for expressions of NMDA receptor tyrosine hydroxylase (TH) was conducted. Western blot for brain-derived neurotrophic factor (BDNF) was also performed. In the present results, the mice in the MK-801-treated group displayed reduced NMDA receptor expression. Enhanced TH expression and suppressed BDNF expression were also observed in the MK-801-treated mice. Treadmill exercise improved NMDA receptor expression in the MK-801-induced schizophrenia mice. Treadmill exercise also suppressed TH expression and enhanced BDNF expression in the MK-801-induced schizophrenia mice. The present study showed that down-regulation of NMDA receptor demonstrated schizophrenia-like parameters, meanwhile treadmill running improved schizophrenia-related parameters through enhancing NMDA receptor expression. PMID:24678500

  2. NMDA Receptor Function During Senescence: Implication on Cognitive Performance

    PubMed Central

    Kumar, Ashok

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function. PMID:26732087

  3. INFLUENCE OF NMDA AND NON-NMDA ANTAGONISTS ON ACUTE AND INFLAMMATORY PAIN IN THE TRIGEMINAL TERRITORY

    PubMed Central

    Piovesan, Elcio Juliato; Randunz, Vitor; Utiumi, Marco; Lange, Marcos Cristiano; Kowacs, Pedro André; Mulinari, Rogério Andrade; Oshinsky, Michael; Vital, Maria; Sereniki, Adriana; Fernandes, Artur Furlaneto; Silva, Lucas Leite e; Werneck, Lineu César

    2016-01-01

    NMDA and non-NMDA receptors are involved in spinal transmission of nociceptive information in physiological and pathological conditions. Our objective was to study the influence of NMDA and non-NMDA receptor antagonists on pain control in the trigeminal system using a formalin-induced orofacial pain model. Motor performance was also evaluated. Male Rattus norvegicus were pre-treated with topiramate (T) (n=8), memantine (M) (n=8), divalproex (D) (n=8) or isotonic saline solution (ISS) (n=10) intraperitoneally 30 minutes before the formalin test. Formalin 2.5% was injected into the right upper lip (V2 branch) and induced two phases: phase I (early or neurogenic) (0–3 min) and phase II (late or inflammatory) (12–30 min). For motor behavior performance we used the open-field test and measured latency to movement onset, locomotion and rearing frequencies, and immobility time. Pre-treatment of animals with M and D only attenuated nociceptive formalin behavior for phase II. T increased locomotion and rearing frequencies and reduced immobility time. Treatment with M increased immobility time and with D reduced locomotion frequency. Our results showed that the NMDA antagonist (M) is more potent than the non-NMDA antagonists (D and T) in the control of pain in the inflammatory phase. The non-NMDA topiramate improved motor performance more than did D and M, probably because T has more anxiolytic properties. PMID:19099122

  4. Magnetic resonance analysis of the effects of acute ammonia intoxication on rat brain. Role of NMDA receptors.

    PubMed

    Cauli, Omar; López-Larrubia, Pilar; Rodrigues, Tiago B; Cerdán, Sebastián; Felipo, Vicente

    2007-11-01

    Acute ammonia intoxication leads to rapid death, which is prevented by blocking N-methyl-d-aspartate (NMDA) receptors. The subsequent mechanisms leading to death remain unclear. Brain edema seems an important step. The aim of this work was to study the effects of acute ammonia intoxication on different cerebral parameters in vivo using magnetic resonance and to assess which effects are mediated by NMDA receptors activation. To assess edema induction, we injected rats with ammonium acetate and measured apparent diffusion coefficient (ADC) in 16 brain areas. We also analyzed the effects on T1, T2, and T2* maps and whether these effects are prevented by blocking NMDA receptors. The effects of acute ammonia intoxication are different in different brain areas. T1 relaxation time is reduced in eight areas. T2 relaxation time is reduced only in ventral thalamus and globus pallidus. ADC values increased in hippocampus, caudate-putamen, substantia nigra and cerebellar cortex, reflecting vasogenic edema. ADC decreased in hypothalamus, reflecting cytotoxic edema. Myo-inositol increased in cerebellum and substantia nigra, reflecting vasogenic edema. N-acetyl-aspartate decreased in cerebellum, reflecting neuronal damage. Changes in N-acetyl-aspartate, T1 and T2 are prevented by blocking NMDA receptors with MK-801 while changes in ADC or myo-inositol (induction of edema) are not. PMID:17727627

  5. Abnormal dephosphorylation effect on NMDA receptor regulation in ALS spinal cord.

    PubMed

    Wagey, R; Krieger, C; Shaw, C A

    1997-01-01

    Previous studies have demonstrated a significant reduction of N-methyl-D-aspartate (NMDA) receptor binding in spinal cord sections from patients who died with amyotrophic lateral sclerosis (ALS) compared to that in control patients. The reduction in NMDA receptor binding in ALS could be increased toward control values by treatment with phorbol ester, suggesting a role for receptor protein phosphorylation in this disorder. In the present study we have evaluated the time course of recovery of [3H]MK-801 binding following phorbol ester treatment to assess protein phosphatase activity in spinal cord sections from ALS and control subjects. Phorbol ester-stimulated changes in [3H]MK-801 binding returned to untreated values significantly faster in ALS tissue compared to control and could not be blocked by the coapplication of the protein phosphatase inhibitors sodium vanadate or sodium beta-D-glycerol phosphate. Okadaic acid coapplication blocked recovery in both ALS and control tissue at a concentration range at which phosphatase 2B (calcineurin) would likely be inhibited. The results suggest that abnormal levels or activity of protein phosphatases, including calcineurin, may be involved in the abnormal levels of NMDA receptors in ALS and may play some role in the pathogenesis of the disease. PMID:9440123

  6. Serotonin potentiates sympathetic responses evoked by spinal NMDA

    PubMed Central

    Madden, Christopher J; Morrison, Shaun F

    2006-01-01

    In urethane–chloralose anaesthetized, neuromuscularly blocked, ventilated rats, we examined the effects on sympathetic outflow to brown adipose tissue (BAT) of separate and simultaneous spinal microinjections of NMDA and serotonin. Microinjection of NMDA (12 pmol) into the right T4 spinal intermediolateral nucleus (IML) immediately increased ipsilateral brown adipose tissue (BAT) sympathetic nerve activity (SNA; peak: +546% of control), BAT thermogenesis (+0.8°C) and heart rate (+53 beats min−1), whereas microinjection of a lower dose of NMDA (1.2 pmol) did not change any of the recorded variables. Microinjection of 5-hydroxytryptamine (5-HT, 2 nmol) into the T4 IML increased BAT SNA (peak: +342% of control) at a long latency (mean onset: 23min). The long latency 5-HT-evoked increase in BAT SNA was prevented by microinjection of methysergide (600 pmol) into the T4 IML. The increases in BAT SNA evoked by T4 IML microinjections of NMDA (12 pmol) were significantly potentiated (two to three times larger than the response to NMDA alone) following T4 IML microinjections of 5-HT (100 pmol to 2 nmol, but not 20 pmol). Also, microinjection of 5-HT (200 pmol) converted the subthreshold dose of NMDA (1.2 pmol) into an effective dose for increasing BAT SNA and heart rate. The 5-HT-mediated potentiation of the increase in BAT SNA evoked by microinjection of NMDA into the T4 IML was reversed by microinjection of methysergide (600 pmol) into the T4 IML. These results demonstrate that BAT SNA and thermogenesis can be driven by activation of spinal excitatory amino acid or 5-HT receptors and that concomitant activation of spinal NMDA and 5-HT receptors can act synergistically to markedly increase BAT SNA and thermogenesis. PMID:16973701

  7. Tonic Inhibition of Accumbal Spiny Neurons by Extrasynaptic α4βδ GABAA Receptors Modulates the Actions of Psychostimulants

    PubMed Central

    Maguire, Edward P.; Macpherson, Tom; Swinny, Jerome D.; Dixon, Claire I.; Herd, Murray B.; Belelli, Delia; Stephens, David N.

    2014-01-01

    Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, β, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ−/− or α4−/− mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4−/− mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1−/−) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4−/− or α4D1−/− mice, blocked cocaine enhancement of CPP. In comparison, α4D2−/− mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4βδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors. PMID:24431441

  8. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  9. Anti-NMDA-receptor antibody encephalitis in infants

    PubMed Central

    Matoq, Amr A.; Rappoport, Adam S.; Yang, Yiting; O'Babatunde, Jessica; Bakerywala, Rubina; Sheth, Raj D.

    2015-01-01

    Purpose Anti-N-methyl-d-aspartate (NMDA) receptor antibody encephalitis is an autoimmune disorder manifesting subacutely with prominent aberrant movements and psychiatric symptoms. The clinical course is one of progressive clinical deterioration that can be halted and often reversed by early diagnosis and treatment. Patterns of presentation and etiology of anti-NMDA-receptor antibody encephalitis are dependent on age and can be challenging to recognize in very young children. Reports Sequential clinical case observations of anti-NMDA-receptor antibody encephalitis presenting in very young children were examined over a year at a single tertiary pediatric institution. Cerebrospinal fluid confirmed anti-NMDA-receptor antibodies in two cases (a 21-month-old boy and a 29-month-old girl) that demonstrated either bizarre behavioral patterns or status epilepticus both associated with progressive deterioration. Once recognized, the clinical course was arrested and reversed by aggressive treatment with plasma exchange, immunoglobulin, and high dose IV steroids. Conclusion Infants with anti-NMDA-receptor antibody encephalitis can present with frank seizures or seizure mimics. Regardless, prompt recognition and aggressive treatment of anti-NMDA-receptor antibody encephalitis, while challenging, can quickly arrest deterioration and hasten recovery, thereby, limiting neurological morbidity. PMID:26744696

  10. Regulation of ERK1/2 mitogen-activated protein kinase by NMDA-receptor-induced seizure activity in cortical slices.

    PubMed

    Yamagata, Yoko; Kaneko, Koichi; Kase, Daisuke; Ishihara, Hiromi; Nairn, Angus C; Obata, Kunihiko; Imoto, Keiji

    2013-04-24

    Extracellular signal-regulated kinase 1/2 (ERK1/2) that belongs to a subfamily of mitogen-activated protein kinases (MAPKs) plays diverse roles in the central nervous system. Activation of ERK1/2 has been observed in various types of neuronal excitation, including seizure activity in vivo and in vitro, as well as in NMDA-receptor (NMDA-R)-dependent long-term potentiation in the hippocampus. On the other hand, recent studies in cultured neurons have shown that NMDA-R stimulation could result in either ERK1/2 activation or non-activation, depending on the pharmacological manipulations. To assess NMDA-R-dependent regulation of ERK1/2 activity in vivo, here we examined the effect of NMDA-R-induced seizure activity on ERK1/2 activation by using rat cortical slice preparations. NMDA-R-dependent seizure activity introduced by Mg2+ -free condition did not cause ERK1/2 activation. On the other hand, when picrotoxin was added to concurrently suppress GABAA-receptor-mediated inhibition, profound ERK1/2 activation occurred, which was accompanied by strong phospho-ERK1/2-staining in the superficial and deep cortical layer neurons. In this case, prolonged membrane depolarization and enhanced burst action potential firings, both of which were much greater than those in Mg2+ -free condition alone, were observed. Differential ERK1/2 activation was supported by the concurrent selective increase in phosphorylation of a substrate protein, phospho-site 4/5 of synapsin I. These results indicate that NMDA-R activation through a release from Mg2+ -blockade, which accompanies enhancement of both excitatory and inhibitory synaptic transmission, was not enough, but concurrent suppression of GABAergic inhibition, which leads to a selective increase in excitatory synaptic transmission, was necessary for robust ERK1/2 activation to occur within the cortical network. PMID:23419897

  11. Regulation of ERK1/2 mitogen-activated protein kinase by NMDA-receptor-induced seizure activity in cortical slices

    PubMed Central

    Yamagata, Yoko; Kaneko, Koichi; Kase, Daisuke; Ishihara, Hiromi; Nairn, Angus C.; Obata, Kunihiko; Imoto, Keiji

    2013-01-01

    Extracellular signal-regulated kinase 1/2 (ERK1/2) that belongs to a subfamily of mitogen-activated protein kinases (MAPKs) plays diverse roles in the central nervous system. Activation of ERK1/2 has been observed in various types of neuronal excitation, including seizure activity in vivo and in vitro, as well as in NMDA-receptor (NMDA-R)-dependent long-term potentiation in the hippocampus. On the other hand, recent studies in cultured neurons have shown that NMDA-R stimulation could result in either ERK1/2 activation or non-activation, depending on the pharmacological manipulations. To assess NMDA-R-dependent regulation of ERK1/2 activity in vivo, here we examined the effect of NMDA-R-induced seizure activity on ERK1/2 activation by using rat cortical slice preparations. NMDA-R-dependent seizure activity introduced by Mg2+-free condition did not cause ERK1/2 activation. On the other hand, when picrotoxin was added to concurrently suppress GABAA-receptor-mediated inhibition, profound ERK1/2 activation occurred, which was accompanied by strong phospho-ERK1/2-staining in the superficial and deep cortical layer neurons. In this case, prolonged membrane depolarization and enhanced burst action potential firings, both of which were much greater than those in Mg2+-free condition alone, were observed. Differential ERK1/2 activation was supported by the concurrent selective increase in phosphorylation of a substrate protein, phospho-site 4/5 of synapsin I. These results indicate that NMDA-R activation through a release from Mg2+-blockade, which accompanies enhancement of both excitatory and inhibitory synaptic transmission, was not enough, but concurrent suppression of GABAergic inhibition, which leads to a selective increase in excitatory synaptic transmission, was necessary for robust ERK1/2 activation to occur within the cortical network. PMID:23419897

  12. In vitro neuronal network activity in NMDA receptor encephalitis

    PubMed Central

    2013-01-01

    Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR) and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF) from an anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patient on in vitro neuronal network activity (ivNNA). In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA) system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF) taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes. PMID:23379293

  13. Dendritic NMDA receptors activate axonal calcium channels

    PubMed Central

    Christie, Jason M.; Jahr, Craig E.

    2008-01-01

    Summary NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca2+ and monovalent cations, they could alter release directly by increasing presynaptic Ca2+ or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca2+ channels (VSCCs). Using two-photon microscopy to measure Ca2+ excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca2+ transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca2+ entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca2+-dependent forms of presynaptic plasticity and release. PMID:18957221

  14. Metabotropic glutamate receptor 5, but not 1, modulates NMDA receptor-mediated activation of neuronal nitric oxide synthase.

    PubMed

    Llansola, Marta; Felipo, Vicente

    2010-03-01

    In cerebellar neurons in culture, activation of group I metabotropic glutamate receptors (mGluRs) prevents glutamate and NMDA-induced neuronal death, indicating that it interferes with the excitotoxic mechanisms leading to death. However, it is not known which step of these mechanisms is affected by mGluRs. The aims of this work were to assess: (a) whether activation of group I mGluRs (mGluR1 or mGluR5) impairs NMDA-induced activation of the glutamate-nitric oxide-cGMP pathway; (b) which mGluR (1 or 5) is responsible for this impairment and (c) whether impairment of the pathway occurs at the level of activation of soluble guanylate cyclase by nitric oxide or of activation of neuronal nitric oxide synthase (nNOS) by NMDA. It is shown that activation of mGluR1 enhances the function of the glutamate-nitric oxide-cGMP pathway by increasing activation of soluble guanylate cyclase by nitric oxide. In contrast, mGluR5 activation inhibits the glutamate-nitric oxide-cGMP pathway by reducing NMDA-induced activation of nNOS. This is due to reduced NMDA-induced increase in cAMP, reduced activation of Akt by cAMP and of nNOS by Akt. The impairment of activation of the glutamate-NO-cGMP pathway by activation of mGluR5 would contribute to its neuroprotective effect against excitotoxicity in cerebellar neurons in culture. PMID:20043967

  15. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication.

    PubMed

    Deleuze, C; Alonso, G; Lefevre, I A; Duvoid-Guillou, A; Hussy, N

    2005-01-01

    Neurons of the rat supraoptic nucleus (SON) express glycine receptors (GlyRs), which are implicated in the osmoregulation of neuronal activity. The endogenous agonist of the receptors has been postulated to be taurine, shown to be released from astrocytes. We here provide additional pieces of evidence supporting the absence of functional glycinergic synapses in the SON. First, we show that blockade of GlyRs with strychnine has no effect on either the amplitude or frequency of miniature inhibitory postsynaptic currents recorded in SON neurons, whereas they were all suppressed by the GABA(A) antagonist gabazine. Then, double immunostaining of sections with presynaptic markers and either GlyR or GABA(A) receptor (GABA(A)R) antibodies indicates that, in contrast with GABA(A)Rs, most GlyR membrane clusters are not localized facing presynaptic terminals, indicative of their extrasynaptic localization. Moreover, we found a striking anatomical association between SON GlyR clusters and glial fibrillary acidic protein (GFAP)-positive astroglial processes, which contain high levels of taurine. This type of correlation is specific to GlyRs, since GABA(A)R clusters show no association with GFAP-positive structures. These results substantiate and strengthen the concept of extrasynaptic GlyRs mediating a paracrine communication between astrocytes and neurons in the SON. PMID:15893641

  16. Amyloid β peptide oligomers directly activate NMDA receptors.

    PubMed

    Texidó, Laura; Martín-Satué, Mireia; Alberdi, Elena; Solsona, Carles; Matute, Carlos

    2011-03-01

    Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimeŕs disease. PMID:21349580

  17. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes

    PubMed Central

    Burzomato, Valeria; Frugier, Guillaume; Pérez-Otaño, Isabel; Kittler, Josef T; Attwell, David

    2010-01-01

    NMDA receptors have been shown to contribute to glutamate-evoked currents in oligodendrocytes. Activation of these receptors damages myelin in ischaemia, in part because they are more weakly blocked by Mg2+ than are most neuronal NMDA receptors. This weak Mg2+ block was suggested to reflect an unusual subunit composition including the NR2C and NR3A subunits. Here we expressed NR1/NR2C and triplet NR1/NR2C/NR3A recombinant receptors in HEK cells and compared their currents with those of NMDA-evoked currents in rat cerebellar oligodendrocytes. NR1/NR2C/3A receptors were less blocked by 2 mm Mg2+ than were NR1/NR2C receptors (the remaining current was 30% and 18%, respectively, of that seen without added Mg2+) and showed less channel noise, suggesting a smaller single channel conductance. NMDA-evoked currents in oligodendrocytes showed a Mg2+ block (to 32%) similar to that observed for NR1/NR2C/NR3A and significantly different from that for NR1/NR2C receptors. Co-immunoprecipitation revealed interactions between NR1, NR2C and NR3A subunits in a purified myelin preparation from rat brain. These data are consistent with NMDA-evoked currents in oligodendrocytes reflecting the activation of receptors containing NR1, NR2C and NR3A subunits. PMID:20660562

  18. Interplay between non-NMDA and NMDA receptor activation during oscillatory wave propagation: Analyses of caffeine-induced oscillations in the visual cortex of rats.

    PubMed

    Yoshimura, Hiroshi; Sugai, Tokio; Kato, Nobuo; Tominaga, Takashi; Tominaga, Yoko; Hasegawa, Takahiro; Yao, Chenjuan; Akamatsu, Tetsuya

    2016-07-01

    Generation and propagation of oscillatory activities in cortical networks are important features of the brain. However, many issues related to oscillatory phenomena are unclear. We previously reported neocortical oscillation following caffeine treatment of rat brain slices. Input to the primary visual cortex (Oc1) generates N-methyl-d-aspartate (NMDA) receptor-dependent oscillations, and we proposed that the oscillatory signals originate in the secondary visual cortex (Oc2). Because non-NMDA and NMDA receptors cooperate in synaptic transmission, non-NMDA receptors may also play an important role in oscillatory activities. Here we investigated how non-NMDA receptor activities contribute to NMDA receptor-dependent oscillations by using optical recording methods. After induction of stable oscillations with caffeine application, blockade of NMDA receptors abolished the late stable oscillatory phase, but elicited 'hidden' non-NMDA receptor-dependent oscillation during the early depolarizing phase. An interesting finding is that the origin of the non-NMDA receptor-dependent oscillation moved from the Oc1, during the early phase, toward the origin of the NMDA receptor-dependent oscillation that is fixed in the Oc2. In addition, the frequency of the non-NMDA receptor-dependent oscillation was higher than that of the NMDA receptor-dependent oscillation. Thus, in one course of spatiotemporal oscillatory activities, the relative balance in receptor activities between non-NMDA and NMDA receptors gradually changes, and this may be due to the different kinetics of the two receptor types. These results suggest that interplay between the two receptor types in the areas of Oc1 and Oc2 may play an important role in oscillatory signal communication. PMID:27136667

  19. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  20. Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity.

    PubMed

    Farber, N B; Kim, S H; Dikranian, K; Jiang, X P; Heinkel, C

    2002-01-01

    NMDA glutamate receptor antagonists are used in clinical anesthesia, and are being developed as therapeutic agents for preventing neurodegeneration in stroke, epilepsy, and brain trauma. However, the ability of these agents to produce neurotoxicity in adult rats and psychosis in adult humans compromises their clinical usefulness. In addition, an NMDA receptor hypofunction (NRHypo) state might play a role in neurodegenerative and psychotic disorders, like Alzheimer's disease and schizophrenia. Thus, understanding the mechanism underlying NRHypo-induced neurotoxicity and psychosis could have significant clinically relevant benefits. NRHypo neurotoxicity can be prevented by several classes of agents (e.g. antimuscarinics, non-NMDA glutamate antagonists, and alpha(2) adrenergic agonists) suggesting that the mechanism of neurotoxicity is complex. In the present study a series of experiments was undertaken to more definitively define the receptors and complex neural circuitry underlying NRHypo neurotoxicity. Injection of either the muscarinic antagonist scopolamine or the non-NMDA antagonist NBQX directly into the cortex prevented NRHypo neurotoxicity. Clonidine, an alpha(2) adrenergic agonist, protected against the neurotoxicity when injected into the basal forebrain. The combined injection of muscarinic and non-NMDA Glu agonists reproduced the neurotoxic reaction. Based on these and other results, we conclude that the mechanism is indirect, and involves a complex network disturbance, whereby blockade of NMDA receptors on inhibitory neurons in multiple subcortical brain regions, disinhibits glutamatergic and cholinergic projections to the cerebral cortex. Simultaneous excitotoxic stimulation of muscarinic (m(3)) and glutamate (AMPA/kainate) receptors on cerebrocortical neurons appears to be the proximal mechanism by which the neurotoxic and psychotomimetic effects of NRHypo are mediated. PMID:11803444

  1. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  2. Influence of Pharmacological Manipulations of NMDA and Cholinergic Receptors on Working versus Reference Memory in a Dual Component Odor Span Task

    ERIC Educational Resources Information Center

    MacQueen, David A.; Dalrymple, Savannah R.; Drobes, David J.; Diamond, David M.

    2016-01-01

    Developed as a tool to assess working memory capacity in rodents, the odor span task (OST) has significant potential to advance drug discovery in animal models of psychiatric disorders. Prior investigations indicate OST performance is impaired by systemic administration of N-methyl-D-aspartate receptor (NMDA-r) antagonists and is sensitive to…

  3. Cisplatin induces neuronal activation and increases central AMPA and NMDA receptor subunit gene expression in mice.

    PubMed

    Holland, Ruby A; Leonard, John J; Kensey, Nicholas A; Hannikainen, Paavali A; De Jonghe, Bart C

    2014-09-01

    Although rats and mice do not vomit, these species are widely studied as models of energy balance and sickness behavior. Previous work has shown that rats exhibit similar neuroanatomical activation of brain and visceral afferent pathways following cisplatin chemotherapy compared to vomiting species. However, the neural response to cisplatin in mice is understudied. Here, food intake, body weight, and central c-Fos immunofluorescence were analyzed in the hindbrains of male C57BL/6 mice following IP saline or cisplatin (5mg/kg, and 20mg/kg doses). As glutamate receptor signaling is classically linked to inhibitory feeding pathways in the rodent, gene expression of selected α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptor subunits were assessed in the dorsal vagal complex (DVC), parabrachial nucleus (PBN), amygdala, and bed nucleus of the stria terminalis (BNST). Our results show dose-dependent reductions in food intake and body weight following cisplatin treatment, as well as increases in cisplatin-induced c-Fos in the PBN and throughout the DVC. Quantitative PCR analysis shows cisplatin-induced increases in NMDA receptor subunit expression, particularly NR2B, in the DVC, PBN, BNST, and amygdala. In addition, upregulation of AMPA receptor subunits (GluA1 and/or GluA2) were observed in all regions examined except the amygdala. Taken together, these results suggest similar neural pathways mediating cisplatin effects in mice compared to other well-studied species, which are likely mediated by central upregulation of AMPA and NMDA receptors. PMID:24582677

  4. Local NMDA Receptor Blockade Attenuates Chronic Tinnitus and Associated Brain Activity in an Animal Model

    PubMed Central

    Brozoski, Thomas J.; Wisner, Kurt W.; Odintsov, Boris; Bauer, Carol A.

    2013-01-01

    Chronic tinnitus has no broadly effective treatment. Identification of specific markers for tinnitus should facilitate the development of effective therapeutics. Recently it was shown that glutamatergic blockade in the cerebellar paraflocculus, using an antagonist cocktail was successful in reducing chronic tinnitus. The present experiment examined the effect of selective N-methyl d-aspartate (NMDA) receptor blockade on tinnitus and associated spontaneous brain activity in a rat model. The NMDA antagonist, D(−)-2-amino-5-phosphonopentanoic acid (D-AP5) (0.5 mM), was continuously infused for 2 weeks directly to the ipsilateral paraflocculus of rats with tinnitus induced months prior by unilateral noise exposure. Treated rats were compared to untreated normal controls without tinnitus, and to untreated positive controls with tinnitus. D-AP5 significantly decreased tinnitus within three days of beginning treatment, and continued to significantly reduce tinnitus throughout the course of treatment and for 23 days thereafter, at which time testing was halted. At the conclusion of psychophysical testing, neural activity was assessed using manganese enhanced magnetic resonance imaging (MEMRI). In agreement with previous research, untreated animals with chronic tinnitus showed significantly elevated bilateral activity in their paraflocculus and brainstem cochlear nuclei, but not in mid or forebrain structures. In contrast, D-AP5-treated-tinnitus animals showed significantly less bilateral parafloccular and dorsal cochlear nucleus activity, as well as significantly less contralateral ventral cochlear nucleus activity. It was concluded that NMDA-mediated glutamatergic transmission in the paraflocculus appears to be a necessary component of chronic noise-induced tinnitus in a rat model. Additionally, it was confirmed that in this model, elevated spontaneous activity in the cerebellar paraflocculus and auditory brainstem is associated with tinnitus. PMID:24282480

  5. Local NMDA receptor blockade attenuates chronic tinnitus and associated brain activity in an animal model.

    PubMed

    Brozoski, Thomas J; Wisner, Kurt W; Odintsov, Boris; Bauer, Carol A

    2013-01-01

    Chronic tinnitus has no broadly effective treatment. Identification of specific markers for tinnitus should facilitate the development of effective therapeutics. Recently it was shown that glutamatergic blockade in the cerebellar paraflocculus, using an antagonist cocktail was successful in reducing chronic tinnitus. The present experiment examined the effect of selective N-methyl d-aspartate (NMDA) receptor blockade on tinnitus and associated spontaneous brain activity in a rat model. The NMDA antagonist, D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) (0.5 mM), was continuously infused for 2 weeks directly to the ipsilateral paraflocculus of rats with tinnitus induced months prior by unilateral noise exposure. Treated rats were compared to untreated normal controls without tinnitus, and to untreated positive controls with tinnitus. D-AP5 significantly decreased tinnitus within three days of beginning treatment, and continued to significantly reduce tinnitus throughout the course of treatment and for 23 days thereafter, at which time testing was halted. At the conclusion of psychophysical testing, neural activity was assessed using manganese enhanced magnetic resonance imaging (MEMRI). In agreement with previous research, untreated animals with chronic tinnitus showed significantly elevated bilateral activity in their paraflocculus and brainstem cochlear nuclei, but not in mid or forebrain structures. In contrast, D-AP5-treated-tinnitus animals showed significantly less bilateral parafloccular and dorsal cochlear nucleus activity, as well as significantly less contralateral ventral cochlear nucleus activity. It was concluded that NMDA-mediated glutamatergic transmission in the paraflocculus appears to be a necessary component of chronic noise-induced tinnitus in a rat model. Additionally, it was confirmed that in this model, elevated spontaneous activity in the cerebellar paraflocculus and auditory brainstem is associated with tinnitus. PMID:24282480

  6. Timosaponin derivative YY-23 acts as a non-competitive NMDA receptor antagonist and exerts a rapid antidepressant-like effect in mice

    PubMed Central

    Zhang, Qi; Guo, Fei; Fu, Zhi-wen; Zhang, Bing; Huang, Cheng-gang; Li, Yang

    2016-01-01

    Aim: N-methyl-D-aspartic acid (NMDA) receptor modulators have shown promising results as potential antidepressant agents, whereas timosaponins extracted from the Chinese herb Rhizoma Anemarrhenae exhibit antidepressant activities. In the present study we examined whether YY-23, a modified metabolite of timosaponin B-III, could affect NMDA receptors in rat hippocampal neurons in vitro, and evaluated its antidepressant-like effects in stressed mice. Methods: NMDA-induced currents were recorded in acutely dissociated rat hippocampal CA1 neurons using a whole-cell recording technique. C57BL/6 mice were exposed to a 6-week chronic mild stress (CMS) or a 10-d chronic social defeat stress (CSDS). The stressed mice were treated with YY-23 (20 mg·kg−1·d−1) or a positive-control drug, fluoxetine (10 mg·kg−1·d−1) for 3 weeks. Behavioral assessments were carried out every week. Results: In acutely dissociated rat hippocampal CA1 neurons, YY-23 selectively and reversibly inhibited NMDA-induced currents with an EC50 value of 2.8 μmol/L. This inhibition of NMDA-induced currents by YY-23 was non-competitive, and had no features of voltage-dependency or use-dependency. Treatment of the stressed mice with YY-23 not only reversed CMS-induced deficiency of sucrose preference and immobility time, and CSDS-induced reduction of social interaction, but also had faster onset as compared to fluoxetine. Conclusion: YY-23 is a novel non-competitive antagonist of NMDA receptors with promising rapid antidepressant-like effects in mouse models of CMS and CSDS depression. PMID:26687936

  7. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    PubMed

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic. PMID:11554551

  8. NMDA receptor structures reveal subunit arrangement and pore architecture

    PubMed Central

    Lee, Chia-Hsueh; Lü, Wei; Michel, Jennifer Carlisle; Goehring, April; Du, Juan; Song, Xianqiang; Gouaux, Eric

    2014-01-01

    Summary N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present x-ray crystal structures of the GluN1/GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino terminal and ligand binding domains. The transmembrane domains harbor a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a ~2-fold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors. PMID:25008524

  9. The effect of the NMDA channel blocker memantine on salicylate-induced tinnitus in rats.

    PubMed

    Ralli, M; Troiani, D; Podda, M V; Paciello, F; Eramo, S L M; de Corso, E; Salvi, R; Paludetti, G; Fetoni, A R

    2014-06-01

    Short-term tinnitus develops shortly after the administration of a high dose of salicylate. Since salicylate selectively potentiates N-methyl- D-aspartate (NMDA) currents in spiral ganglion neurons, it may play a vital role in tinnitus by amplifying NMDA-mediated neurotransmission. The aim of this study was to determine whether systemic treatment with a NMDA channel blocker, memantine, could prevent salicylate-induced tinnitus in animals. Additional experiments were performed to evaluate the effect of memantine on the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to test for changes in hearing function. Thirty-six rats were divided into 3 groups and treated daily for four consecutive days. One group (n = 12) was injected with salicylate (300 mg/kg/d, IP), the second (n = 12) was treated with memantine (5 mg/kg/d, IP) and the third group (n = 12) was injected with salicylate and memantine. All rats were tested for tinnitus and hearing loss at 2, 24, 48 and 72 h after the first drug administration and 24 h post treatment; tinnituslike behaviour was assessed with gap prepulse inhibition of acoustic startle (GPIAS), and hearing function was measured with DPOAE, ABR and noise burst prepulse inhibition of acoustic startle (NBPIAS). Rats in the salicylate group showed impaired GPIAS indicative of transient tinnitus-like behaviour near 16 kHz that recovered 24 h after the last salicylate treatment. Memantine did not cause a significant change in GPIAS. Combined injection of salicylate and memantine significantly attenuated GPIAS tinnitus-like behaviour at 48 hours after the first injection. None of the treatments induced permanent threshold shifts in the ABR and DPOAE, which recovered completely within one day post treatment. Animals treated with salicylate plus memantine showed results comparable to animals treated with salicylate alone, confirming that there is no effect of memantine on DPOAE which reflects OHC function. The

  10. NMDA antagonist properties of the putative antiaddictive drug, ibogaine.

    PubMed

    Popik, P; Layer, R T; Fossom, L H; Benveniste, M; Geter-Douglass, B; Witkin, J M; Skolnick, P

    1995-11-01

    Both anecdotal reports in humans and preclinical studies indicate that ibogaine interrupts addiction to a variety of abused substances including alcohol, opiates, nicotine and stimulants. Based on the similarity of these therapeutic claims to recent preclinical studies demonstrating that N-methyl-D-aspartate (NMDA) antagonists attenuate addiction-related phenomena, we examined the NMDA antagonist properties of ibogaine. Pharmacologically relevant concentrations of ibogaine produce a voltage-dependent block of NMDA receptors in hippocampal cultures (Ki, 2.3 microM at -60 mV). Consistent with this observation, ibogaine competitively inhibits [3H]1-[1-(2-thienyl)-cyclohexyl]piperidine binding to rat forebrain homogenates (Ki, 1.5 microM) and blocks glutamate-induced cell death in neuronal cultures (IC50, 4.5 microM). Moreover, at doses previously reported to interfere with drug-seeking behaviors, ibogaine substitutes as a discriminative stimulus (ED50, 64.9 mg/kg) in mice trained to discriminate the prototypic voltage-dependent NMDA antagonist, dizocilpine (0.17 mg/kg), from saline. Consistent with previous reports, ibogaine reduced naloxone-precipitated jumping in morphine-dependent mice (ED50, 72 mg/kg). Although pretreatment with glycine did not affect naloxone-precipitated jumping in morphine-dependent mice, it abolished the ability of ibogaine to block naloxone-precipitated jumping. Taken together, these findings link the NMDA antagonist actions of ibogaine to a putative "antiaddictive" property of this alkaloid, its ability to reduce the expression of morphine dependence. PMID:7473163

  11. FROM MOLECULAR PHYLOGENY TOWARDS DIFFERENTIATING PHARMACOLOGY FOR NMDA RECEPTOR SUBTYPES

    PubMed Central

    Platt, Randall J.; Curtice, Kigen J.; Twede, Vernon D.; Watkins, Maren; Gruszczyński, Paweł; Bulaj, Grzegorz; Horvath, Martin P.; Olivera, Baldomero M.

    2014-01-01

    In order to decode the roles that N-methyl-D-aspartate (NMDA) receptors play in excitatory neurotransmission, synaptic plasticity, and neuropathologies, there is need for ligands that differ in their subtype selectivity. The conantokin family of Conus peptides is the only group of peptidic natural products known to target NMDA receptors. Using a search that was guided by phylogeny, we identified new conantokins from the marine snail Conus bocki that complement the current repertoire of NMDA receptor pharmacology. Channel currents measured in Xenopus oocytes demonstrate conantokins conBk-A, conBk-B, and conBk-C have highest potencies for NR2D containing receptors, in contrast to previously characterized conantokins that preferentially block NR2B containing NMDA receptors. Conantokins are rich in γ-carboxyglutamate, typically 17–34 residues, and adopt helical structure in a calcium-dependent manner. As judged by CD spectroscopy, conBk-C adopts significant helical structure in a calcium ion-dependent manner, while calcium, on its own, appears insufficient to stabilize helical conformations of conBk-A or conBk-B. Molecular dynamics simulations help explain the differences in calcium-stabilized structures. Two-dimensional NMR spectroscopy shows that the 9-residue conBk-B is relatively unstructured but forms a helix in the presence of TFE and calcium ions that is similar to other conantokin structures. These newly discovered conantokins hold promise that further exploration of small peptidic antagonists will lead to a set of pharmacological tools that can be used to characterize the role of NMDA receptors in nervous system function and disease. PMID:24508768

  12. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons.

    PubMed

    Bock, Tobias; Stuart, Greg J

    2016-03-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels onN-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  13. Cell-type Specific Development of NMDA Receptors in the Interneurons of Rat Prefrontal Cortex

    PubMed Central

    Wang, Huai-Xing; Gao, Wen-Jun

    2009-01-01

    In the prefrontal cortex, N-methyl-D-aspartic acid (NMDA) receptors are critical not only for normal prefrontal functions but also for the pathological processes of schizophrenia. Little is known, however, about the developmental properties of NMDA receptors in the functionally diverse subpopulations of interneurons. We investigated the developmental changes of NMDA receptors in rat prefrontal interneurons using patch clamp recording in cortical slices. We found that fast-spiking (FS) interneurons exhibited properties of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA currents distinct from those in regular spiking (RS) and low-threshold spiking (LTS) interneurons, particularly during the adolescent period. In juvenile animals, most (73%) of the FS cells demonstrated both AMPA and NMDA currents. The NMDA currents, however, gradually became undetectable during cortical development, with most (74%) of the FS cells exhibiting no NMDA current in adults. In contrast, AMPA and NMDA currents in RS and LTS interneurons were relatively stable, without significant changes from juveniles to adults. Moreover, even in FS cells with NMDA currents, the NMDA/AMPA ratio dramatically decreased during the adolescent period but returned to juvenile level in adults, compared to the relatively stable ratios in RS and LTS interneurons. These data suggest that FS interneurons in the PFC undergo dramatic changes in glutamatergic receptors during the adolescent period. These properties may make FS cells particularly sensitive and vulnerable to epigenetic stimulation, thus contributing to the onset of many psychiatric disorders, including schizophrenia. PMID:19242405

  14. Region-selective effects of neuroinflammation and antioxidant treatment on peripheral benzodiazepine receptors and NMDA receptors in the rat brain

    SciTech Connect

    Biegon, A.; Alvarado, M.; Budinger, T.F.; Grossman, R.; Hensley, K.; West, M.S.; Kotake, Y.; Ono, M.; Floyd, R.A.

    2001-12-10

    Following induction of acute neuroinflammation by intracisternal injection of endotoxin (lipopolysaccharide) in rats, quantitative autoradiography was used to assess the regional level of microglial activation and glutamate (NMDA) receptor binding. The possible protective action of the antioxidant phenyl-tert-butyl nitrone in this model was tested by administering the drug in the drinking water for 6 days starting 24 hours after endotoxin injection. Animals were killed 7 days post-injection and consecutive cryostat brain sections labeled with [3H]PK11195 as a marker of activated microglia and [125I]iodoMK801 as a marker of the open-channel, activated state of NMDA receptors. Lipopolysaccharide increased [3H]PK11195 binding in the brain, with the largest increases (2-3 fold) in temporal and entorhinal cortex, hippocampus, and substantia innominata. A significant (>50 percent) decrease in [125I]iodoMK801 binding was found in the same brain regions. Phenyl-tert-butyl nitrone treatment resulted in a partial inhibition ({approx}25 percent decrease) of the lipopolysaccharide-induced increase in [3H]PK11195 binding but completely reversed the lipopolysaccharide-induced decrease in [125I]iodoMK80 binding in the entorhinal cortex, hippocampus, and substantia innominata. Loss of NMDA receptor function in cortical and hippocampal regions may contribute to the cognitive deficits observed in diseases with a neuroinflammatory component, such as meningitis or Alzheimer's disease.

  15. Central NMDA enhances hepatic glucose output and non-insulin-mediated glucose uptake by a nonadrenergic mechanism.

    PubMed

    Molina, P E; Tepper, P G; Yousef, K A; Abumrad, N N; Lang, C H

    1994-01-14

    One of the hallmarks of the stress response is an increased rate of hepatic glucose production (HGP) which, in conjunction with the presence of insulin resistance, leads to hyperglycemia. Excitatory amino acids (EAA) within the brain mediate some of the cardiovascular responses to stress, but their role in the hormonal and metabolic alterations is poorly defined. The aim of the present study was to determine whether the intracerebroventricular (i.c.v.) injection of either N-methyl-D-aspartate (NMDA) or kainate would produce metabolic alterations comparable to those observed under stress conditions. An i.c.v. cannula and vascular catheters were placed in rats prior to the experiment. After an overnight fast, HGP and peripheral glucose utilization (GU) were assessed in conscious unrestrained rats using [3-3H]glucose. Arterial glucose levels were increased 34% by 15 min after the i.c.v. injection of NMDA (1 microgram) and remained elevated throughout the 3-h protocol. The hyperglycemia resulted from an early increase in HGP (84%) that exceeded a smaller elevation (66%) in GU. The increased glucose flux was associated with sustained insulinopenia (-30%), and elevated levels of corticosterone (40-100%) and epinephrine (75-216%). The hormonal and glucose metabolic responses were quantitatively similar, although of shorter duration, in rats injected with kainate (10 ng). Intravenous adrenergic blockade completely prevented the NMDA-induced hyperglycemia. Adrenergic blockade blunted the early rise in HGP, so that in this group the NMDA-induced increase in HGP was offset by a comparable elevation in GU.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8156391

  16. Discriminative stimulus effects of NMDA, AMPA and mGluR5 glutamate receptor ligands in methamphetamine-trained rats

    PubMed Central

    Wooters, Thomas E.; Dwoskin, Linda P.; Bardo, Michael T.

    2011-01-01

    Glutamate contributes to the reinforcing and stimulant effects of methamphetamine, yet its potential role in the interoceptive stimulus properties of methamphetamine is unknown. In the current study, adult male Sprague-Dawley rats were trained to discriminate methamphetamine (1.0 mg/kg, i.p.) from saline in a standard operant discrimination task. The effects of methamphetamine (0.1-1.0 mg/kg, i.p.), the N-methyl-D-aspartate (NMDA) receptor channel blockers MK-801 (0.03-0.3 mg/kg, i.p.) and ketamine (1.0-10.0 mg/kg, i.p.), the low-affinity NMDA antagonist memantine (1.0-10 mg/kg, i.p.), the polyamine site NMDA receptor antagonist ifenprodil (1-10 mg/kg), the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1-10 mg/kg, i.p.), and the metabotropic 5 (mGluR5) receptor antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP; 1-10 mg/kg) given alone were determined in substitution tests. The effects of MK-801 (0.03 and 0.1 mg/kg), ketamine (1.0 and 3.0 mg/kg), ifenprodil (5.6 mg/kg), CNQX (5.6 mg/kg) and MPEP (5.6 mg/kg) were also tested in combination with methamphetamine to assess for alterations in the methamphetamine cue. In substitution tests, none of the test drugs generalized to the methamphetamine cue. However, ketamine and ifenprodil produced significant leftward shifts in the methamphetamine dose-response curve; pretreatment with 3 mg/kg of ketamine, for example, decreased the ED50 value for methamphetamine by half. These results suggest that blockade of the NMDA receptor augments the interoceptive stimulus properties of methamphetamine. PMID:21836462

  17. Rat intra-hippocampal NMDA infusion induces cell-specific damage and changes in expression of NMDA and GABAA receptor subunits.

    PubMed

    Rambousek, Lukas; Kleteckova, Lenka; Kubesova, Anna; Jirak, Daniel; Vales, Karel; Fritschy, Jean-Marc

    2016-06-01

    Excessive stimulation of NMDA receptors with glutamate or other potent agonists such as NMDA leads to excitotoxicity and neural injury. In this study, we aimed to provide insight into an animal model of brain excitotoxic damage; single unilateral infusion of NMDA at mild dose into the hippocampal formation. NMDA infusion induced chronic, focal neurodegeneration in the proximity of the injection site. The lesion was accompanied by severe and progressive neuroinflammation and affected preferentially principal neurons while sparing GABAergic interneurons. Furthermore, the unilateral lesion did not cause significant impairment of spatial learning abilities. Finally, GluN1 and GluN2B subunits of NMDA receptor were significantly upregulated up to 3 days after the NMDA infusion, while GABAA α5 subunit was downregulated at 30 days after the lesion. Taken together, a single infusion of NMDA into the hippocampal formation represents an animal model of excitotoxicity-induced chronic neurodegeneration of principal neurons accompanied by severe neuroinflammation and subunit specific changes in NMDA and GABAA receptors. PMID:26930443

  18. Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness.

    PubMed

    Breese, George R; Knapp, Darin J; Moy, Sheryl S

    2002-06-01

    NMDA receptor antagonists worsen symptoms in schizophrenia and induce schizophrenic-like symptoms in normal individuals. In animals, NMDA antagonist-induced behavioral responses include increased activity, head weaving, deficits in paired pulse inhibition and social interaction, and increased forced swim immobility. Repeated exposure to NMDA antagonists in animals results in behavioral sensitization-a phenomenon accentuated in rats with dopaminergic neurons lesioned during development. In keeping with an involvement of serotonin and glutamate release in NMDA antagonist action, selected behaviors induced by NMDA antagonists are minimized by 5-HT(2A) receptor antagonists and mGLU2 receptor agonists. These observations provide promising new approaches for treating acute NMDA antagonist-induced psychosis. Further, acute atypical antipsychotic drugs also minimize NMDA antagonist actions to a greater degree than typical antipsychotics. However, because knowledge concerning acute versus chronic effectiveness of various antipsychotic drugs against NMDA antagonist neuropathology is limited, future studies to define more fully the basis of their differences in efficacy after chronic treatment could provide an understanding of their actions on neural mechanisms responsible for the core pathogenesis of schizophrenia. PMID:12204191

  19. Identification of potential Gly/NMDA receptor antagonists by cheminformatics approach: a combination of pharmacophore modelling, virtual screening and molecular docking studies.

    PubMed

    Ugale, V G; Bari, S B

    2016-01-01

    The Gly/NMDA receptor has become known as potential target for the management of neurodegenerative diseases. Discovery of Gly/NMDA antagonists has thus attracted much attention in recent years. In the present research, a cheminformatics approach has been used to determine structural requirements for Gly/NMDA antagonism and to identify potential antagonists. Here, 37 quinoxaline derivatives were selected to develop a significant pharmacophore model with good certainty. The selected model was validated by leave-one-out cross-validation, an external test set, decoy set and Y-randomization test. Applicability domain was verified by the standardization approach. The validated 3D-QSAR model was used to screen virtual hits from the ZINC database by pharmacophore mapping. Molecular docking was used for assessment of receptor-ligand binding modes and binding affinities. The GlideScore and molecular interactions with critical amino acids were considered as crucial features to identify final hits. Furthermore, hits were analysed for in silico pharmacokinetic parameters and Lipinski's rule of five, demonstrating their potential as drug-like candidates. The PubChem and SciFinder search tools were used to authenticate the novelty of leads retrieved. Finally, five different leads have been suggested as putative novel candidates for the exploration of potent Gly/NMDA receptor antagonists. PMID:26911562

  20. NMDA receptors and fear extinction: implications for cognitive behavioral therapy.

    PubMed

    Davis, Michael

    2011-01-01

    Based primarily on studies that employ Pavlovian fear conditioning, extinction of conditioned fear has been found to be mediated by N-methyi-D-aspartate (NMDA) receptors in the amygdala and medial prefrontal cortex. This led to the discovery that an NMDA partial agonist, D-cycloserine, could facilitate fear extinction when given systemically or locally into the amygdala. Because many forms of cognitive behavioral therapy depend on fear extinction, this led to the successful use of D-cycloserine as an adjunct to psychotherapy in patients with so-called simple phobias (fear of heights), social phobia, obsessive-compulsive behavior, and panic disorder. Data in support of these conclusions are reviewed, along with some of the possible limitations of D-cycloserine as an adjunct to psychotherapy. PMID:22275851

  1. Alcohol and NMDA receptor: current research and future direction

    PubMed Central

    Chandrasekar, Raman

    2013-01-01

    The brain is one of the major targets of alcohol actions. Most of the excitatory synaptic transmission in the central nervous system is mediated by N-methyl-D-aspartate (NMDA) receptors. However, one of the most devastating effects of alcohol leads to brain shrinkage, loss of nerve cells at specific regions through a mechanism involving excitotoxicity, oxidative stress. Earlier studies have indicated that chronic exposure to ethanol both in vivo and in vitro, increases NR1 and NR2B gene expression and their polypeptide levels. The effect of alcohol and molecular changes on the regulatory process, which modulates NMDAR functions including factors altering transcription, translation, post-translational modifications, and protein expression, as well as those influencing their interactions with different regulatory proteins (downstream effectors) are incessantly increasing at the cellular level. Further, I discuss the various genetically altered mice approaches that have been used to study NMDA receptor subunits and their functional implication. In a recent countable review, epigenetic dimension (i.e., histone modification-induced chromatin remodeling and DNA methylation, in the process of alcohol related neuroadaptation) is one of the key molecular mechanisms in alcohol mediated NMDAR alteration. Here, I provide a recount on what has already been achieved, current trends and how the future research/studies of the NMDA receptor might lead to even greater engagement with many possible new insights into the neurobiology and treatment of alcoholism. PMID:23754976

  2. Catatonic Syndrome in Anti-NMDA Receptor Encephalitis.

    PubMed

    Mythri, Starlin Vijay; Mathew, Vivek

    2016-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a newly recognised autoimmune condition. With its typical clinical pattern, consistent association with the presence of auto antibodies and rapid improvement with immunotherapy, this condition is giving insights into the boundaries between psychiatry and other neurosciences, and is opening avenues for future research. In a young lady who presented with catatonia, we considered anti-NMDA receptor encephalitis, after ruling out other aetiologies. After a positive antibody test we treated her with immunotherapy. She showed gradual improvement in her psychotic and catatonic symptoms. Knowledge regarding the nature and function of NMDA receptors and pathophysiology of this particular encephalitis is important for psychiatric practice. The great opportunity for research in this area due to its association with psychotic disorders is evident but an appeal to temper the enthusiasm by considering the historical lessons learnt from Karl Jaspers' critique of General Paresis of Insane, is in place. Catatonic syndrome has to be conceptualised broadly and should be recognised with a separate nosological position. PMID:27114630

  3. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    PubMed

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. PMID:26769920

  4. Catatonic Syndrome in Anti-NMDA Receptor Encephalitis

    PubMed Central

    Mythri, Starlin Vijay; Mathew, Vivek

    2016-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a newly recognised autoimmune condition. With its typical clinical pattern, consistent association with the presence of auto antibodies and rapid improvement with immunotherapy, this condition is giving insights into the boundaries between psychiatry and other neurosciences, and is opening avenues for future research. In a young lady who presented with catatonia, we considered anti-NMDA receptor encephalitis, after ruling out other aetiologies. After a positive antibody test we treated her with immunotherapy. She showed gradual improvement in her psychotic and catatonic symptoms. Knowledge regarding the nature and function of NMDA receptors and pathophysiology of this particular encephalitis is important for psychiatric practice. The great opportunity for research in this area due to its association with psychotic disorders is evident but an appeal to temper the enthusiasm by considering the historical lessons learnt from Karl Jaspers’ critique of General Paresis of Insane, is in place. Catatonic syndrome has to be conceptualised broadly and should be recognised with a separate nosological position. PMID:27114630

  5. NMDA spike/plateau potentials in dendrites of thalamocortical neurons.

    PubMed

    Augustinaite, Sigita; Kuhn, Bernd; Helm, Paul Johannes; Heggelund, Paul

    2014-08-13

    Dendritic NMDA spike/plateau potentials, first discovered in cortical pyramidal neurons, provide supralinear integration of synaptic inputs on thin and distal dendrites, thereby increasing the impact of these inputs on the soma. The more specific functional role of these potentials has been difficult to clarify, partly due to the complex circuitry of cortical neurons. Thalamocortical (TC) neurons in the dorsal lateral geniculate nucleus participate in simpler circuits. They receive their primary afferent input from retina and send their output to visual cortex. Cortex, in turn, regulates this output through massive feedback to distal dendrites of the TC neurons. The TC neurons can operate in two modes related to behavioral states: burst mode prevailing during sleep, when T-type calcium bursts largely disrupt the transfer of signals from retina to cortex, and tonic mode, which provides reliable transfer of retinal signals to cortex during wakefulness. We studied dendritic potentials in TC neurons with combined two-photon calcium imaging and whole-cell recording of responses to local dendritic glutamate iontophoresis in acute brain slices from mice. We found that NMDA spike/plateaus can be elicited locally at distal dendrites of TC neurons. We suggest that these dendritic potentials have important functions in the cortical regulation of thalamocortical transmission. NMDA spike/plateaus can induce shifts in the functional mode from burst to tonic by blockade of T-type calcium conductances. Moreover, in tonic mode, they can facilitate the transfer of retinal signals to cortex by depolarization of TC neurons. PMID:25122891

  6. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  7. NMDA Receptor Antagonist Ketamine Impairs Feature Integration in Visual Perception

    PubMed Central

    Meuwese, Julia D. I.; van Loon, Anouk M.; Scholte, H. Steven; Lirk, Philipp B.; Vulink, Nienke C. C.; Hollmann, Markus W.; Lamme, Victor A. F.

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans. PMID:24223927

  8. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia.

    PubMed

    Micu, I; Jiang, Q; Coderre, E; Ridsdale, A; Zhang, L; Woulfe, J; Yin, X; Trapp, B D; McRory, J E; Rehak, R; Zamponi, G W; Wang, W; Stys, P K

    2006-02-23

    Central nervous system myelin is a specialized structure produced by oligodendrocytes that ensheaths axons, allowing rapid and efficient saltatory conduction of action potentials. Many disorders promote damage to and eventual loss of the myelin sheath, which often results in significant neurological morbidity. However, little is known about the fundamental mechanisms that initiate myelin damage, with the assumption being that its fate follows that of the parent oligodendrocyte. Here we show that NMDA (N-methyl-d-aspartate) glutamate receptors mediate Ca2+ accumulation in central myelin in response to chemical ischaemia in vitro. Using two-photon microscopy, we imaged fluorescence of the Ca2+ indicator X-rhod-1 loaded into oligodendrocytes and the cytoplasmic compartment of the myelin sheath in adult rat optic nerves. The AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptor antagonist NBQX completely blocked the ischaemic Ca2+ increase in oligodendroglial cell bodies, but only modestly reduced the Ca2+ increase in myelin. In contrast, the Ca2+ increase in myelin was abolished by broad-spectrum NMDA receptor antagonists (MK-801, 7-chlorokynurenic acid, d-AP5), but not by more selective blockers of NR2A and NR2B subunit-containing receptors (NVP-AAM077 and ifenprodil). In vitro ischaemia causes ultrastructural damage to both axon cylinders and myelin. NMDA receptor antagonism greatly reduced the damage to myelin. NR1, NR2 and NR3 subunits were detected in myelin by immunohistochemistry and immunoprecipitation, indicating that all necessary subunits are present for the formation of functional NMDA receptors. Our data show that the mature myelin sheath can respond independently to injurious stimuli. Given that axons are known to release glutamate, our finding that the Ca2+ increase was mediated in large part by activation of myelinic NMDA receptors suggests a new mechanism of axo-myelinic signalling. Such a mechanism may represent a

  9. Effects of acute and repeated administration of N-methyl-D-aspartate (NMDA) into the ventral tegmental area: locomotor activating effects of NMDA and cocaine.

    PubMed

    Schenk, S; Partridge, B

    1997-09-26

    Repeated, intermittent administration of psychostimulants produces an enhancement of the subsequent behavioral effects of these drugs. This behavioral sensitization has been implicated in maintenance of and relapse to drug-taking. As a result, there has been great interest in elucidating the mechanisms underlying both the development and expression of sensitization. An accumulation of data from studies of stimulant-induced locomotor activity has implicated excitatory amino acids in the development of behavioral sensitization. In the present study, N-methyl-D-aspartate (NMDA) (0.6, 1.25 or 2.5 microg) infused bilaterally into the ventral tegmental area (VTA) produced dose-dependent locomotor activation. The locomotor activating effect of NMDA was increased following repeated NMDA administration (two exposures to intra-VTA NMDA), suggesting sensitization. However, repeated intra-VTA NMDA failed to sensitize rats to the locomotor activating effects of systemically administered cocaine (5.0, 10.0 or 20.0 mg/kg). These findings are consistent with the notion that repeated activation of NMDA receptors is sufficient for the development of behavioral sensitization to NMDA. Other neuroadaptations produced by repeated psychostimulant administration are required in order for the development of sensitization to the behavioral effects of those drugs. PMID:9374190

  10. Age-related changes in tonic activation of presynaptic versus extrasynaptic γ-amniobutyric acid type B receptors in rat medial prefrontal cortex.

    PubMed

    Carpenter, Haley E; Kelly, Kyle B; Bizon, Jennifer L; Frazier, Charles J

    2016-09-01

    The present study examined the effect of age on both glutamatergic and γ-aminobutyric acid mediated (GABAergic) signaling in the rodent medial prefrontal cortex (mPFC), with an emphasis on revealing novel changes contributing to increased inhibition in age. Whole-cell patch clamp recordings were obtained from layer 2/3 mPFC pyramidal neurons in acute cortical slices prepared from either young (4 months) or aged (20-24 months) male F344 rats. Results indicated that GABAB receptors on GABAergic, but not on glutamatergic, inputs to layer 2/3 pyramidal cells are tonically activated by ambient GABA in young animals and further demonstrated that this form of tonic inhibition is significantly attenuated in aged mPFC. Moreover, concurrent with loss of tonic presynaptic GABAB autoreceptor activation, layer 2/3 pyramidal cells in aged mPFC are subjected to increased tonic activation of extrasynaptic GABAA and GABAB receptors. These data demonstrate a shift in the site of GABAB receptor-mediated inhibitory tone in the aged mPFC that clearly promotes increased inhibition of pyramidal cells in aged animals, and that may plausibly contribute to impaired executive function. PMID:27459929

  11. Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: a study in healthy volunteers.

    PubMed

    Nutt, David; Wilson, Sue; Lingford-Hughes, Anne; Myers, Jim; Papadopoulos, Andreas; Muthukumaraswamy, Suresh

    2015-01-01

    A range of medications target different aspects of the GABA system; understanding their effects is important to inform further drug development. Effects on the waking EEG comparing these mechanisms have not been reported; in this study we compare the effects on resting MEG spectra of the benzodiazepine receptor agonist zolpidem, the delta sub-unit selective agonist gaboxadol (also known as THIP) and the GABA reuptake inhibitor tiagabine. These were two randomised, single-blind, placebo-controlled, crossover studies in healthy volunteers, one using zolpidem 10 mg, gaboxadol 15 mg and placebo, and the other tiagabine 15 mg and placebo. Whole head MEG recordings and individual MEG spectra were divided into frequency bands. Baseline spectra were subtracted from each post-intervention spectra and then differences between intervention and placebo compared. After zolpidem there were significant increases in beta frequencies and reduction in alpha frequency power; after gaboxadol and tiagabine there were significant increases in power at all frequencies up to beta. Enhancement of tonic inhibition via extrasynaptic receptors by gaboxadol gives rise to a very different MEG signature from the synaptic action of zolpidem. Tiagabine theoretically can affect both types of receptor; from these MEG results it is likely that the latter is the more prominent effect here. PMID:25195191

  12. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    PubMed Central

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  13. Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter.

    PubMed

    Bakiri, Yamina; Hamilton, Nicola B; Káradóttir, Ragnhildur; Attwell, David

    2008-01-15

    Damage to oligodendrocytes caused by glutamate release contributes to mental or physical handicap in periventricular leukomalacia, spinal cord injury, multiple sclerosis, and stroke, and has been attributed to activation of AMPA/kainate receptors. However, glutamate also activates unusual NMDA receptors in oligodendrocytes, which can generate an ion influx even at the resting potential in a physiological [Mg2+]. Here, we show that the clinically licensed NMDA receptor antagonist memantine blocks oligodendrocyte NMDA receptors at concentrations achieved therapeutically. Simulated ischaemia released glutamate which activated NMDA receptors, as well as AMPA/kainate receptors, on mature and precursor oligodendrocytes. Although blocking AMPA/kainate receptors alone during ischaemia had no effect, combining memantine with an AMPA/kainate receptor blocker, or applying the NMDA blocker MK-801 alone, improved recovery of the action potential in myelinated axons after the ischaemia. These data suggest NMDA receptor blockers as a potentially useful treatment for some white matter diseases and define conditions under which these blockers may be useful therapeutically. Our results highlight the importance of developing new antagonists selective for oligodendrocyte NMDA receptors based on their difference in subunit structure from most neuronal NMDA receptors. PMID:18046734

  14. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    PubMed

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction. PMID:27303637

  15. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity

    PubMed Central

    Gray, John A.; Zito, Karen; Hell, Johannes W.

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction. PMID:27303637

  16. Effects of NMDA receptor inhibition by phencyclidine on the neuronal differentiation of PC12 cells.

    PubMed

    Lee, Eunsook; Williams, Zakia; Goodman, Carl B; Oriaku, Ebenezer T; Harris, Cynthia; Thomas, Mathews; Soliman, Karam F A

    2006-07-01

    Phencyclidine (PCP) is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist and exposing the developing brain to PCP has been shown to cause deficits in neurobehavioral functions. In the present study we tested the effects of PCP, as an NMDA receptor inhibitor, on the neuronal differentiation and biogenic amines levels including norepinephrine (NE), epinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) in the rat pheochromocytoma (PC12) cells. After PC12 cells were differentiated with nerve growth factor (NGF) in the presence of PCP, NMDA binding kinetics, biogenic amines analysis and NMDA receptor protein expression assay were conducted. The results showed that NMDA receptor binding activities were significantly increased after differentiated with NGF in PC12 cells. B(max) values were increased in differentiated cells by four-folds, whereas K(d) values were not changed. All of biogenic amines were significantly increased in differentiated cells. On the other hand, PCP at 50 and 100 microM inhibited neuronal differentiation in a dose-dependent manner in NGF-stimulated PC12 cells without affecting cell viability. PCP treatment during differentiation significantly reduced NMDA binding activity and biogenic amine levels. Western blotting analysis revealed that NMDA receptor protein expression was significantly higher in NGF-differentiated cells and PCP treatment decreased the expression of NMDA receptor proteins. These results indicate that NMDA receptor functions and monoaminergic nervous systems are significantly stimulated during NGF-induced differentiation. PCP suppresses neuronal outgrowth and hampers neuronal functions possibly by inhibiting NMDA receptor functions and biogenic amine production, implying the suppressive effects of PCP exposure on neuronal developments. PMID:16580729

  17. Alcohol Related Changes in Regulation of NMDA Receptor Functions

    PubMed Central

    Nagy, József

    2008-01-01

    Long-term alcohol exposure may lead to development of alcohol dependence in consequence of altered neurotransmitter functions. Accumulating evidence suggests that the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol’s action. Several studies showed that ethanol potently inhibits NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory “up-regulation” of NMDAR mediated functions. Therefore, alterations in NMDAR function are supposed to contribute to the development of ethanol tolerance, dependence as well as to the acute and late signs of ethanol withdrawal. A number of publications report alterations in the expression and phosphorylation states of NMDAR subunits, in their interaction with scaffolding proteins or other receptors in consequence of chronic ethanol treatment. Our knowledge on the regulatory processes, which modulate NMDAR functions including factors altering transcription, protein expression and post-translational modifications of NMDAR subunits, as well as those influencing their interactions with different regulatory proteins or other downstream signaling elements are incessantly increasing. The aim of this review is to summarize the complex chain of events supposedly playing a role in the up-regulation of NMDAR functions in consequence of chronic ethanol exposure. PMID:19305787

  18. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors.

    PubMed

    Provencio, Jose Javier; Swank, Valerie; Lu, Haiyan; Brunet, Sylvain; Baltan, Selva; Khapre, Rohini V; Seerapu, Himabindu; Kokiko-Cochran, Olga N; Lamb, Bruce T; Ransohoff, Richard M

    2016-05-01

    Cognitive deficits after aneurysmal subarachnoid hemorrhage (SAH) are common and disabling. Patients who experience delayed deterioration associated with vasospasm are likely to have cognitive deficits, particularly problems with executive function, verbal and spatial memory. Here, we report neurophysiological and pathological mechanisms underlying behavioral deficits in a murine model of SAH. On tests of spatial memory, animals with SAH performed worse than sham animals in the first week and one month after SAH suggesting a prolonged injury. Between three and six days after experimental hemorrhage, mice demonstrated loss of late long-term potentiation (L-LTP) due to dysfunction of the NMDA receptor. Suppression of innate immune cell activation prevents delayed vasospasm after murine SAH. We therefore explored the role of neutrophil-mediated innate inflammation on memory deficits after SAH. Depletion of neutrophils three days after SAH mitigates tissue inflammation, reverses cerebral vasoconstriction in the middle cerebral artery, and rescues L-LTP dysfunction at day 6. Spatial memory deficits in both the short and long-term are improved and associated with a shift of NMDA receptor subunit composition toward a memory sparing phenotype. This work supports further investigating suppression of innate immunity after SAH as a target for preventative therapies in SAH. PMID:26872422

  19. The parvalbumin-positive interneurons in the mouse dentate gyrus express GABAA receptor subunits α1, β2, and δ along their extrasynaptic cell membrane.

    PubMed

    Milenkovic, I; Vasiljevic, M; Maurer, D; Höger, H; Klausberger, T; Sieghart, W

    2013-12-19

    Neuronal circuitries in the hippocampus are involved in navigation and memory and are controlled by major networks of GABAergic interneurons. Parvalbumin (PV)-expressing interneurons in the dentate gyrus (DG) are identified as fast-spiking cells, playing a crucial role in network oscillation and synchrony. The inhibitory modulation of these interneurons is thought to be mediated mainly through GABAA receptors, the major inhibitory neurotransmitter receptors in the brain. Here we show that all PV-positive interneurons in the granular/subgranular layer (GL/SGL) of the mouse DG express high levels of the GABAA receptor δ subunit. PV-containing interneurons in the hilus and the molecular layer, however, express the δ subunit to a lower extent. Only 8% of the somatostatin-containing interneurons express the δ subunit, whereas calbindin- or calretinin-containing interneurons in the DG seem not to express the GABAA receptor δ subunit at all. Hence, these cells receive a GABAergic control different from that of PV-containing interneurons in the GL/SGL. Experiments investigating a possible co-expression of GABAA receptor α1, α2, α3, α4, α5, β1, β2, β3, or γ2 subunits with PV and δ subunits indicated that α1 and β2 subunits are co-expressed with δ subunits along the extrasynaptic membranes of PV-interneurons. These results suggest a robust tonic GABAergic control of PV-containing interneurons in the GL/SGL of the DG via δ subunit-containing receptors. Our data are important for better understanding of the neuronal circuitries in the DG and the role of specific cell types under pathological conditions. PMID:24055402

  20. Roles of the NMDA Receptor and EAAC1 Transporter in the Modulation of Extracellular Glutamate by Low and High Affinity AMPA Receptors in the Cerebellum in Vivo: Differential Alteration in Chronic Hyperammonemia.

    PubMed

    Cabrera-Pastor, Andrea; Taoro, Lucas; Llansola, Marta; Felipo, Vicente

    2015-12-16

    The roles of high- and low-affinity AMPA receptors in modulating extracellular glutamate in the cerebellum remain unclear. Altered glutamatergic neurotransmission is involved in neurological alterations in hyperammonemia, which differently affects high- and low-affinity AMPA receptors. The aims were to assess by in vivo microdialysis (a) the effects of high- and low-affinity AMPA receptor activation on extracellular glutamate in the cerebellum; (b) whether chronic hyperammonemia alters extracellular glutamate modulation by high- and/or low-affinity AMPA receptors; and (c) the contribution of NMDA receptors and EAAC1 transporter to AMPA-induced changes in extracellular glutamate. In control rats, high affinity receptor activation does not affect extracellular glutamate but increases glutamate if NMDA receptors are blocked. Low affinity AMPA receptor activation increases transiently extracellular glutamate followed by reduction below basal levels and return to basal values. The reduction is associated with transient increased membrane expression of EAAC1 and is prevented by blocking NMDA receptors. Blocking NMDA receptors with MK-801 induces a transient increase in extracellular glutamate which is associated with reduced membrane expression of EAAC1 followed by increased membrane expression of the glutamate transporter GLT-1. Chronic hyperammonemia does not affect responses to activation of low affinity AMPA receptors. Activation of high affinity AMPA receptors increases extracellular glutamate in hyperammonemic rats by an NMDA receptor-dependent mechanism. In conclusion, these results show that there is a tightly controlled interplay between AMPA and NMDA receptors and an EAAC1 transporter in controlling extracellular glutamate. Hyperammonemia alters high- but not low-affinity AMPA receptors. PMID:26428532

  1. PSD-95 Uncouples Dopamine-Glutamate Interaction in the D1/PSD-95/NMDA Receptor Complex

    PubMed Central

    Zhang, Jingping; Xu, Tai-Xiang; Hallett, Penelope J.; Watanabe, Masahiko; Grant, Seth G. N.; Isacson, Ole; Yao, Wei-Dong

    2008-01-01

    Classical dopaminergic signaling paradigms and emerging studies on direct physical interactions between the D1 dopamine (DA) receptor and the N-Methyl-D-Aspartate (NMDA) glutamate receptor predict a reciprocally facilitating, positive feedback loop. This loop, if not controlled, may cause concomitant overactivation of both D1 and NMDA receptors, triggering neurotoxicity. Endogenous protective mechanisms must exist. Here we show that PSD-95, a prototypical structural and signaling scaffold in the postsynaptic density, inhibits D1-NMDA receptor association and uncouples NMDA receptor-dependent enhancement of D1 signaling. This uncoupling is achieved, at least in part, via a disinhibition mechanism by which PSD-95 abolishes NMDA receptor-dependent inhibition of D1 internalization. Knockdown of PSD-95 immobilizes D1 receptors on the cell surface and escalates NMDA receptor-dependent D1 cAMP signaling in neurons. Thus, in addition to its role in receptor stabilization and synaptic plasticity, PSD-95 acts as a brake on the D1-NMDA receptor complex and dampens the interaction between them. PMID:19261890

  2. Kinetic contributions to gating by interactions unique to N-methyl-D-aspartate (NMDA) receptors.

    PubMed

    Borschel, William F; Cummings, Kirstie A; Tindell, LeeAnn K; Popescu, Gabriela K

    2015-10-30

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  3. Current Evidence of Chinese Herbal Constituents with Effects on NMDA Receptor Blockade

    PubMed Central

    Liang, Willmann; Lam, Wai Ping; Tang, Hong Chai; Leung, Ping Chung; Yew, David T.

    2013-01-01

    NMDA receptor (NMDA-R) is an important molecular entity governing a wide range of functions in the central nervous system. For example, the NMDA-R is involved in memory and cognition, and impairment of both (as in Alzheimer’s Disease) is attributed to NMDA-mediated neurotoxicity. With greater understanding of the NMDA-R structure, antagonists with varying degrees of binding-site and subtype selectivity have been developed and put into clinical use. Discovery of target-specific Chinese herbs have also been made in parallel. This article provides an overview of the known active sites on the NMDA-R, followed by a discussion of the relevant herbs and their constituents. Experimental evidence supporting the inhibitory role of the herbal compounds on the NMDA-R is highlighted. For some of the compounds, potential research directions are also proposed to further elucidate the underlying mechanisms of the herbs. It is envisaged that future investigations based on the present data will allow more clinically relevant herbs to be identified. PMID:24276380

  4. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex

    PubMed Central

    Jackson, Mark E.; Homayoun, Houman; Moghaddam, Bita

    2004-01-01

    Cognitive deficits associated with frontal lobe dysfunction are a determinant of long-term disability in schizophrenia and are not effectively treated with available medications. Clinical studies show that many aspects of these deficits are transiently induced in healthy individuals treated with N-methyl-d-aspartate (NMDA) antagonists. These findings and recent genetic linkage studies strongly implicate NMDA receptor deficiency in schizophrenia and suggest that reversing this deficiency is pertinent to treating the cognitive symptoms of schizophrenia. Despite the wealth of behavioral data on the effects of NMDA antagonist treatment in humans and laboratory animals, there is a fundamental lack of understanding about the mechanisms by which a general state of NMDA deficiency influences the function of cortical neurons. Using ensemble recording in freely moving rats, we found that NMDA antagonist treatment, at doses that impaired working memory, potentiated the firing rate of most prefrontal cortex neurons. This potentiation, which correlated with expression of behavioral stereotypy, resulted from an increased number of irregularly discharged single spikes. Concurrent with the increase in spike activity, there was a significant reduction in organized bursting activity. These results identify two distinct mechanisms by which NMDA receptor deficiency may disrupt frontal lobe function: an increase in disorganized spike activity, which may enhance cortical noise and transmission of disinformation; and a decrease in burst activity, which reduces transmission efficacy of cortical neurons. These findings provide a physiological basis for the NMDA receptor deficiency model of schizophrenia and may clarify the nature of cortical dysfunction in this disease. PMID:15159546

  5. The Rac1 Inhibitor NSC23766 Suppresses CREB Signaling by Targeting NMDA Receptor Function

    PubMed Central

    Hou, Hailong; Chávez, Andrés E.; Wang, Chih-Chieh; Yang, Hongtian; Gu, Hua; Siddoway, Benjamin A.; Hall, Benjamin J.; Castillo, Pablo E.

    2014-01-01

    NMDA receptor signaling plays a complex role in CREB activation and CREB-mediated gene transcription, depending on the subcellular location of NMDA receptors, as well as how strongly they are activated. However, it is not known whether Rac1, the prototype of Rac GTPase, plays a role in neuronal CREB activation induced by NMDA receptor signaling. Here, we report that NSC23766, a widely used specific Rac1 inhibitor, inhibits basal CREB phosphorylation at S133 (pCREB) and antagonizes changes in pCREB levels induced by NMDA bath application in rat cortical neurons. Unexpectedly, we found that NSC23766 affects the levels of neuronal pCREB in a Rac1-independent manner. Instead, our results indicate that NSC23766 can directly regulate NMDA receptors as indicated by their strong effects on both exogenous and synaptically evoked NMDA receptor-mediated currents in mouse and rat neurons, respectively. Our findings strongly suggest that Rac1 does not affect pCREB signaling in cortical neurons and reveal that NSC23766 could be a novel NMDA receptor antagonist. PMID:25319697

  6. The involvement of NMDA receptors in acute and chronic effects of ethanol.

    PubMed

    Danysz, W; Dyr, W; Jankowska, E; Glazewski, S; Kostowski, W

    1992-06-01

    Recent evidence indicates involvement of excitatory amino acid receptors sensitive to N-methyl-d-aspartate (NMDA) in the action of ethanol (EtOH). Pronounced inhibition of NMDA receptor function is seen in vitro with concentrations of EtOH corresponding to those present during alcohol intoxication in humans. The present study was devoted to investigate the role of NMDA receptors in the action of EtOH in rats. Acute experiments showed antagonism by EtOH of convulsions induced by intracerebroventricular injection of NMDA. A similar effect was seen with a high dose of diazepam. Convulsions induced by an agonist of another excitatory amino acid receptor subtype, kainate, were also inhibited by EtOH. An uncompetitive antagonist of NMDA receptors, 5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine maleate (MK-801), potentiated EtOH-induced loss of righting, but attenuated the hypothermic action of EtOH. Moreover, MK-801 inhibited audiogenic convulsions in EtOH withdrawn rats. At the same time the effect of a proconvulsive dose of NMDA was not enhanced. Tolerance to the myorelaxant action of both EtOH and MK-801 upon repetitive administration was seen. Also some degree of cross-tolerance was observed. Moreover, MK-801 failed to modify EtOH preference in rats. The present results support involvement of NMDA receptors in expression of some acute and subchronic actions of EtOH and in expression of EtOH withdrawal. PMID:1385679

  7. NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice

    PubMed Central

    Zheng, Sika; Eacker, Stephen M.; Hong, Suk Jin; Gronostajski, Richard M.; Dawson, Ted M.; Dawson, Valina L.

    2010-01-01

    Identification of the signaling pathways that mediate neuronal survival signaling could lead to new therapeutic targets for neurologic disorders and stroke. Sublethal doses of NMDA can induce robust endogenous protective mechanisms in neurons. Through differential analysis of primary library expression and microarray analyses, here we have shown that nuclear factor I, subtype A (NFI-A), a member of the NFI/CAAT-box transcription factor family, is induced in mouse neurons by NMDA receptor activation in a NOS- and ERK-dependent manner. Knockdown of NFI-A induction using siRNA substantially reduced the neuroprotective effects of sublethal doses of NMDA. Further analysis indicated that NFI-A transcriptional activity was required for the neuroprotective effects of NMDA receptor activation. Additional evidence of the neuroprotective effects of NFI-A was provided by the observations that Nfia–/– neurons were highly sensitive to NMDA-induced excitotoxicity and were more susceptible to developmental cell death than wild-type neurons and that Nfia+/– mice were more sensitive to NMDA-induced intrastriatal lesions than were wild-type animals. These results identify NFI-A as what we believe to be a novel neuroprotective transcription factor with implications in neuroprotection and neuronal plasticity following NMDA receptor activation. PMID:20516644

  8. Functional Interaction Between Na/K-ATPase and NMDA Receptor in Cerebellar Neurons.

    PubMed

    Akkuratov, Evgeny E; Lopacheva, Olga M; Kruusmägi, Markus; Lopachev, Alexandr V; Shah, Zahoor A; Boldyrev, Alexander A; Liu, Lijun

    2015-12-01

    NMDA receptors play a crucial role in regulating synaptic plasticity and memory. Activation of NMDA receptors changes intracellular concentrations of Na(+) and K(+), which are subsequently restored by Na/K-ATPase. We used immunochemical and biochemical methods to elucidate the potential mechanisms of interaction between these two proteins. We observed that NMDA receptor and Na/K-ATPase interact with each other and this interaction was shown for both isoforms of α subunit (α1 and α3) of Na/K-ATPase expressed in neurons. Using Western blotting, we showed that long-term exposure of the primary culture of cerebellar neurons to nanomolar concentrations of ouabain (a cardiotonic steroid, a specific ligand of Na/K-ATPase) leads to a decrease in the levels of NMDA receptors which is likely mediated by the α3 subunit of Na/K-ATPase. We also observed a decrease in enzymatic activity of the α1 subunit of Na/K-ATPase caused by NMDA receptor activation. This effect is mediated by an increase in intracellular Ca(2+). Thus, Na/K-ATPase and NMDA receptor can interact functionally by forming a macromolecular complex which can be important for restoring ionic balance after neuronal excitation. Furthermore, this interaction suggests that NMDA receptor function can be regulated by endogenous cardiotonic steroids which recently have been found in cerebrospinal fluid or by pharmacological drugs affecting Na/K-ATPase function. PMID:25381029

  9. Neuroprotective Effect of Lutein on NMDA-Induced Retinal Ganglion Cell Injury in Rat Retina.

    PubMed

    Zhang, Chanjuan; Wang, Zhen; Zhao, Jiayi; Li, Qin; Huang, Cuiqin; Zhu, Lihong; Lu, Daxiang

    2016-05-01

    Lutein injection is a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate its protective effects in retinal ganglion cells (RGCs) against N-methyl-D-aspartate (NMDA)-induced retinal damage in vivo. Retinal damage was induced by intravitreal NMDA injection in rats. Each animal was given five daily intraperitoneal injections of Lutein or vehicle along with intravitreal NMDA injections. Electroretinograms were recorded. The number of viable RGCs was quantified using the retinal whole-mount method by immunofluorescence. Proteins were measured by Western blot assays. Lutein reduced the retinal damage and improved the response to light, as shown by an animal behavior assay (the black-and-white box method) in rats. Furthermore, Lutein treatment prevented the NMDA-induced reduction in phNR wave amplitude. Lutein increased RGC number after NMDA-induced retina damage. Most importantly, Bax, cytochrome c, p-p38 MAPK, and p-c-Jun were all upregulated in rats injected with NMDA, but these expression patterns were reversed by continuous Lutein uptake. Bcl-2, p-GSK-3β, and p-Akt in the Lutein-treated eyes were increased compared with the NMDA group. Lutein has neuroprotective effects against retinal damage, its protective effects may be partly mediated by its anti-excitability neurotoxicity, through MAPKs and PI3K/Akt signaling, suggesting a potential approach for suppressing retinal neural damage. PMID:26119305

  10. NMDA receptor properties in rat supraoptic magnocellular neurons: characterization and postnatal development.

    PubMed

    Hussy, N; Boissin-Agasse, L; Richard, P; Desarménien, M G

    1997-07-01

    Hypothalamo-neurohypophysial magnocellular neurons display specific electrical activities in relation to the mode of release of their hormonal content (vasopressin or oxytocin). These activities are under strong glutamatergic excitatory control. The implication of NMDA receptors in the control of vasopressinergic and oxytocinergic neurons is still a matter of debate. We here report the first detailed characterization of functional properties of NMDA receptors in voltage-clamped magnocellular neurons acutely dissociated from the supraoptic nucleus. All cells responded to NMDA with currents that reversed polarity around 0 mV and were inhibited by D-2-amino-5-phosphonovalerate (D-APV) and by 100 microM extracellular Mg2+ (at -80 mV). Sensitivity to the co-agonist glycine (EC50, 2 microM) was low compared with most other neuronal preparations. The receptors displayed low sensitivity to ifenprodil, were insensitive to glycine-independent potentiation by spermine, and had a unitary conductance of 50 pS. No evidence was found for two distinct cell populations, suggesting that oxytocinergic and vasopressinergic neurons express similar NMDA receptors. Characterization of NMDA receptors at different postnatal ages revealed a transient increase in density of NMDA currents during the second postnatal week. This was accompanied by a specific decrease in sensitivity to D-APV, with no change in NMDA sensitivity or any other properties studied. Supraoptic NMDA receptors thus present characteristics that strikingly resemble those of reconstituted receptors composed of NR1 and NR2A subunits. Understanding the functional significance of the development of NMDA receptors in the supraoptic nucleus will require further knowledge about the maturation of neuronal excitability, synaptic connections and neurohormone release mechanisms. PMID:9240401

  11. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals.

    PubMed

    Chen, Wenling; Walwyn, Wendy; Ennes, Helena S; Kim, Hyeyoung; McRoberts, James A; Marvizón, Juan Carlos G

    2014-05-01

    NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75(NTR) ), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75(NTR) inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr(1472) phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and a Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998

  12. Defining the role of NMDA receptors in anesthesia: are we there yet?

    PubMed

    Petrenko, Andrey B; Yamakura, Tomohiro; Sakimura, Kenji; Baba, Hiroshi

    2014-01-15

    N-methyl-d-aspartate (NMDA) receptors are important in mediating excitatory neurotransmission in the nervous system. They are preferentially inhibited by some general anesthetics and have, therefore, been implied in the mediation of their effects. This review summarizes the main research findings available related to NMDA receptors and their role in anesthesia. The contribution of NMDA receptors to the anesthetized state is discussed separately for each of its components: amnesia, analgesia, unconsciousness and immobility. Anesthetic-induced unconsciousness and immobility have received the most attention in the research community and are the main focus of this review. In the overall perspective, however, studies using pharmacological or electrophysiological approaches have failed to reach definitive conclusions regarding the contribution of NMDA receptors to these anesthetic endpoints. None of the studies have specifically addressed the role of NMDA receptors in the amnestic effect of general anesthetics, and the few available data are (at best) only indirect. NMDA receptor antagonism by general anesthetics may have a preventive anti-hyperalgesic effect. The only and most extensively used genetic tool to examine the role of NMDA receptors in anesthesia is global knockout of the GluN2A subunit of the NMDA receptor. These animals are resistant to many intravenous and inhalational anesthetics, but the interpretation of their phenotype is hindered by the secondary changes occurring in these animals after GluN2A knockout, which are themselves capable of altering anesthetic sensitivity. Generation of more sophisticated conditional knockout models targeting NMDA receptors is required to finally define their role in the mechanisms of anesthesia. PMID:24333550

  13. AMPA/NMDA cooperativity and integration during a single synaptic event.

    PubMed

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2016-10-01

    Coexistence of AMPA and NMDA receptors in glutamatergic synapses leads to a cooperative effect that can be very complex. This effect is dependent on many parameters including the relative and absolute number of the two types of receptors and biophysical parameters that can vary among synapses of the same cell. Herein we simulate the AMPA/NMDA cooperativity by using different number of the two types of receptors and considering the effect of the spine resistance on the EPSC production. Our results show that the relative number of NMDA with respect to AMPA produces a different degree of cooperation which depends also on the spine resistance. PMID:27299885

  14. Cell type-specific pharmacology of NMDA receptors using masked MK801

    PubMed Central

    Yang, Yunlei; Lee, Peter; Sternson, Scott M

    2015-01-01

    N-Methyl-D-aspartate receptors (NMDA-Rs) are ion channels that are important for synaptic plasticity, which is involved in learning and drug addiction. We show enzymatic targeting of an NMDA-R antagonist, MK801, to a molecularly defined neuronal population with the cell-type-selectivity of genetic methods and the temporal control of pharmacology. We find that NMDA-Rs on dopamine neurons are necessary for cocaine-induced synaptic potentiation, demonstrating that cell type-specific pharmacology can be used to dissect signaling pathways within complex brain circuits. DOI: http://dx.doi.org/10.7554/eLife.10206.001 PMID:26359633

  15. Cholesterol modulates open probability and desensitization of NMDA receptors

    PubMed Central

    Korinek, Miloslav; Vyklicky, Vojtech; Borovska, Jirina; Lichnerova, Katarina; Kaniakova, Martina; Krausova, Barbora; Krusek, Jan; Balik, Ales; Smejkalova, Tereza; Horak, Martin; Vyklicky, Ladislav

    2015-01-01

    NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid–NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-β-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-β-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs. Key points NMDA receptors (NMDARs) are tetrameric cation channels permeable to calcium; they mediate excitatory synaptic transmission in the CNS and their excessive activation can lead to

  16. Hippocampus NMDA receptors selectively mediate latent extinction of place learning.

    PubMed

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2016-09-01

    Extinction of maze learning may be achieved with or without the animal performing the previously acquired response. In typical "response extinction," animals are given the opportunity to make the previously acquired approach response toward the goal location of the maze without reinforcement. In "latent extinction," animals are not given the opportunity to make the previously acquired response and instead are confined to the previous goal location without reinforcement. Previous evidence indicates that the effectiveness of these protocols may depend on the type of memory being extinguished. Thus, one aim of the present study was to further examine the effectiveness of response and latent extinction protocols across dorsolateral striatum (DLS)-dependent response learning and hippocampus-dependent place learning tasks. In addition, previous neural inactivation experiments indicate a selective role for the hippocampus in latent extinction, but have not investigated the precise neurotransmitter mechanisms involved. Thus, the present study also examined whether latent extinction of place learning might depend on NMDA receptor activity in the hippocampus. In experiment 1, adult male Long-Evans rats were trained in a response learning task in a water plus-maze, in which animals were reinforced to make a consistent body-turn response to reach an invisible escape platform. Results indicated that response extinction, but not latent extinction, was effective at extinguishing memory in the response learning task. In experiment 2, rats were trained in a place learning task, in which animals were reinforced to approach a consistent spatial location containing the hidden escape platform. In experiment 2, animals also received intra-hippocampal infusions of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (AP5; 5.0 or 7.5 ug/0.5 µg) or saline vehicle immediately before response or latent extinction training. Results indicated that both extinction protocols were

  17. Heavy Resistance Training and Supplementation With the Alleged Testosterone Booster Nmda has No Effect on Body Composition, Muscle Performance, and Serum Hormones Associated With the Hypothalamo-Pituitary-Gonadal Axis in Resistance-Trained Males

    PubMed Central

    Willoughby, Darryn S.; Spillane, Mike; Schwarz, Neil

    2014-01-01

    The effects of 28 days of heavy resistance training while ingesting the alleged testosterone-boosting supplement, NMDA, were determined on body composition, muscle strength, serum cortisol, prolactin, and hormones associated with the hypothalamo-pituitary- gonadal (HPG) axis. Twenty resistance-trained males engaged in 28 days of resistance training 4 times/wk while orally ingesting daily either 1.78 g of placebo (PLAC) or NMDA. Data were analyzed with separate 2 x 2 ANOVA (p < 0.05). Criterion measures involved body composition, muscle strength, serum cortisol, prolactin, and gonadal hormone levels [free and total testosterone, luteininzing hormome (LH), gonadotrophin releasing hormone (GnRH), estradiol], and were assessed before (Day 0) and after (Day 29) resistance training and supplementation. No changes were noted for total body water and fat mass in response to resistance training (p > 0.05) or supplementation (p > 0.05). In regard to total body mass and fat-free mass, however, each was significantly increased in both groups in response to resistance training (p < 0.05), but were not affected by supplementation (p > 0.05). In both groups, lower-body muscle strength was significantly increased in response to resistance training (p < 0.05); however, supplementation had no effect (p > 0.05). All serum hormones (total and free testosterone, LH, GnRH, estradiol, cortisol, prolactin) were unaffected by resistance training (p > 0.05) or supplementation (p > 0.05). The gonadal hormones and cortisol and prolactin were unaffected by 28 days of NMDA supplementation and not associated with the observed increases in muscle strength and mass. At the dose provided, NMDA had no effect on HPG axis activity or ergogenic effects in skeletal muscle. Key Points In response to 28 days of heavy resistance training and NMDA supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups. The

  18. Neonatal NMDA Receptor Blockade Disrupts Spike Timing and Glutamatergic Synapses in Fast Spiking Interneurons in a NMDA Receptor Hypofunction Model of Schizophrenia

    PubMed Central

    Jones, Kevin S.; Corbin, Joshua G.; Huntsman, Molly M.

    2014-01-01

    The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model. PMID:25290690

  19. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  20. The Emergence of NMDA Receptor Metabotropic Function: Insights from Imaging.

    PubMed

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2016-01-01

    The NMDA receptor (R) participates in many important physiological and pathological processes. For example, its activation is required for both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, cellular models of learning and memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses as well as in the signaling leading to cell death following stroke. Until recently, these processes were thought to be mediated by ion-flux through the receptor. Using a combination of imaging and electrophysiological approaches, ion-flux independent functions of the NMDAR were recently examined. In this review, we will discuss the role of metabotropic NMDAR function in LTD and synaptic dysfunction. PMID:27516738

  1. Serotonin and NMDA receptors in respiratory long-term facilitation

    PubMed Central

    Ling, Liming

    2008-01-01

    Some have postulated that long-term facilitation (LTF), a persistent augmentation of respiratory activity after episodic hypoxia, may play a beneficial role in helping stabilize upper airway patency in obstructive sleep apnea (OSA) patients. However, the neuronal and cellular mechanisms underlying this plasticity of respiratory motor behavior are still poorly understood. The main purpose of this review is to summarize recent findings about serotonin and NMDA receptors involved in both LTF and its enhancement after chronic intermittent hypoxia (CIH). The potential roles of these receptors in the initiation, formation and/or maintenance of LTF, as well as the CIH effect on LTF, will be discussed. As background, different paradigms for the stimulus protocol, different patterns of LTF expression and their mechanistic implications in LTF will also be discussed. PMID:18606575

  2. Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane.

    PubMed

    Zoladz, Phillip R; Campbell, Adam M; Park, Collin R; Schaefer, Daniela; Danysz, Wojciech; Diamond, David M

    2006-10-01

    Memantine and neramexane are noncompetitive NMDA receptor antagonists which have been investigated for their promising effects in aiding memory in people with dementia. Memantine is approved for the treatment of Alzheimer's disease, and neramexane is currently under development for this indication. Therefore, the present study provided a comparative assessment of the effects of equimolar doses of memantine and neramexane on spatial (hippocampus-dependent) memory. Adult male rats were given only 3 training trials to learn the location of a hidden platform in a water maze. In control (vehicle-injected) rats, this minimal amount of training produced intact short-term (15 min), but poor long-term (24 h), memory. Pre-training administration of memantine or neramexane produced a dose-dependent enhancement of long-term memory. Pharmacokinetic experiments with equimolar doses of both agents indicated that lower plasma levels of neramexane were more effective than memantine at enhancing memory. The effective doses of both agents in the current study produced plasma levels (and extrapolated brain CSF levels) within a range of activity at NMDA receptors and plasma levels seen in patients with Alzheimer's disease. These findings provide support for the use of neramexane as a pharmacological intervention in the treatment of dementia. PMID:17045636

  3. Approach to the Management of Pediatric-Onset Anti-N-Methyl-d-Aspartate (Anti-NMDA) Receptor Encephalitis: A Case Series.

    PubMed

    Brenton, J Nicholas; Kim, Joshua; Schwartz, Richard H

    2016-08-01

    Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis is a treatable cause of autoimmune encephalitis. It remains unclear if the natural history of this disease is altered by choice of acute therapy or the employment of chronic immunotherapy. Chart review was undertaken for pediatric patients diagnosed with anti-NMDA receptor encephalitis. Data obtained included patient demographics, disease manifestations, treatment course, and clinical outcomes. Ten patients with anti-NMDA receptor encephalitis were identified. All patients were treated with immunotherapy in the acute period, and all patients experienced good recovery. Neurologic relapse did not occur in any patient. All patients received varied forms of chronic immunosuppression to prevent relapses. Complications of chronic immunotherapy occurred in 50% of patients. The benefits of chronic immunotherapy and the duration of use should be carefully weighed against the risks. Complications from immunotherapy are not uncommon and can be serious. Clinical trials assessing the benefit of long-term immunotherapy in this population are needed. PMID:27121044

  4. Disruption of Performance in the 5-Choice Serial Reaction Time Task Induced by Administration of NMDA Receptor Antagonists: Relevance to Cognitive Dysfunction in Schizophrenia

    PubMed Central

    Amitai, Nurith; Markou, Athina

    2010-01-01

    Schizophrenia patients suffer from cognitive impairments that are not satisfactorily treated by currently available medications. Cognitive dysfunction in schizophrenia encompasses deficits in several cognitive modalities that can be differentially responsive to different medications and are likely to be mediated by different neurobiological substrates. Translational animal models of cognitive deficits with relevance to schizophrenia are critical for gaining insights into the mechanisms underlying these impairments and developing more effective treatments. The 5-choice serial reaction time task (5-CSRTT) is a cognitive task used in rodents that allows simultaneous assessment of several cognitive modalities, including attention, response inhibition, cognitive flexibility, and processing speed. Administration of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists disrupts multiple 5-CSRTT performance measures in a way that mirrors various cognitive deficits exhibited by schizophrenia patients. Some of these disruptions are partially attenuated by antipsychotic medications that exhibit partial effectiveness on cognitive dysfunction in schizophrenia, suggesting that the model has predictive validity. Examination of the effects of pharmacological manipulations on 5-CSRTT performance disruptions induced by NMDA antagonists have implicated a range of brain regions, neurotransmitter systems, and specific receptor subtypes in schizophrenia-like impairment of different cognitive modalities. Thus, disruption of 5-CSRTT performance by NMDA antagonists represents a valuable tool for exploring the neurobiological bases of cognitive dysfunction in schizophrenia. PMID:20488434

  5. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut

    PubMed Central

    Prüss, H.; Leubner, J.; Wenke, N. K.; Czirják, G. Á.; Szentiks, C. A.; Greenwood, A. D.

    2015-01-01

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut’s encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut’s cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed. PMID:26313569

  6. Kynurenic acid amides as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, István; Kolok, Sándor; Galgóczy, Kornél; Gere, Anikó; Horváth, Csilla; Farkas, Sándor; Greiner, István; Domány, György

    2007-01-15

    A novel series of kynurenic acid amides, ring-enlarged derivatives of indole-2-carboxamides, was prepared and identified as in vivo active NR2B subtype selective NMDA receptor antagonists. The synthesis and SAR studies are discussed. PMID:17074483

  7. Effects of pharmacological manipulations of NMDA-receptors on deliberation in the Multiple-T task

    PubMed Central

    Blumenthal, Anna; Steiner, Adam; Seeland, Kelsey

    2011-01-01

    Both humans and non-human animals have the ability to navigate and make decisions within complex environments. This ability is largely dependent upon learning and memory processes, many of which are known to depend on NMDA-sensitive receptors. When humans come to difficult decisions they often pause to deliberate over their choices. Similarly, rats pause at difficult choice points. This behavior, known as vicarious trial and error (VTE), is hippocampally dependent and entails neurophysiological representations of expectations of future outcomes in hippocampus and downstream structures. In order to determine the dependence of VTE behaviors on NMDA-sensitive receptors, we tested rats on a Multiple-T choice task with a reward-delivery reversal known to elicit VTE. Rats under the influence of NMDA-receptor antagonists (CPP) showed a significant reduction in VTE, particularly at the reward reversal, implying a role for NMDA-sensitive receptors in the generation of vicarious trial and error behaviors. PMID:21296174

  8. POTENTIATION OF INHIBITION WITH PERFORANT PATH KINDLING: AN NMDA-DEPENDENT PROCESS

    EPA Science Inventory

    Kindling produces a long lasting enhancement of excitatory and inhibitory neurotransmission. Both long-term potentiation and kindling-induced potentiation of hippocampal excitatory neurotransmission are suppressed by N-methyl-d-aspartate (NMDA) antagonists. We have previously rep...

  9. Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

    PubMed

    Prüss, H; Leubner, J; Wenke, N K; Czirják, G Á; Szentiks, C A; Greenwood, A D

    2015-01-01

    Knut the polar bear of the Berlin Zoological Garden drowned in 2011 following seizures and was diagnosed as having suffered encephalitis of unknown etiology after exhaustive pathogen screening. Using the diagnostic criteria applied to human patients, we demonstrate that Knut's encephalitis is almost identical to anti-NMDA receptor encephalitis which is a severe autoimmune disease representing the most common non-infectious encephalitis in humans. High concentrations of antibodies specific against the NR1 subunit of the NMDA receptor were detected in Knut's cerebrospinal fluid. Histological examination demonstrated very similar patterns of plasma cell infiltration and minimal neuronal loss in affected brain areas. We conclude that Knut suffered anti-NMDA receptor encephalitis making his the first reported non-human case of this treatable disease. The results suggest that anti-NMDA receptor encephalitis may be a disease of broad relevance to mammals that until now has remained undiagnosed. PMID:26313569

  10. Discrimination reversal conditioning of an eyeblink response is impaired by NMDA receptor blockade.

    PubMed

    Churchill, J D; Green, J T; Voss, S E; Manley, E; Steinmetz, J E; Garraghty, P E

    2001-01-01

    In the present study we examined the effects of the specific NMDA receptor antagonist CPP on discrimination reversal learning in rabbits. We report two primary findings. First, the institution of NMDA receptor blockade had no effect on a learned discrimination. Second, after stimulus reversal, CPP treatment impaired acquisition of the discrimination reversal. This impairment manifested itself early in training as a retardation in acquisition of a CR to the new CS+ and late in training as an inability to suppress responsiveness to the new CS-. Given the comparability of the present results with previously published results for phenytoin-treated rabbits, we suggest that the effects of phenytoin on learning in this paradigm is at least in part mediated by its effects on NMDA receptors. We further suggest that these findings emphasize the need to better define the role of NMDA receptor activation and hippocampally-mediated circuits in a variety of associative learning paradigms. PMID:11484997

  11. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus

  12. NMDA Neurotransmission Dysfunction in Behavioral and Psychological Symptoms of Alzheimer’s Disease

    PubMed Central

    Huang, Yu-Jhen; Lin, Chieh-Hsin; Lane, Hsien-Yuan; Tsai, Guochuan E

    2012-01-01

    Dementia has become an all-important disease because the population is aging rapidly and the cost of health care associated with dementia is ever increasing. In addition to cognitive function impairment, associated behavioral and psychological symptoms of dementia (BPSD) worsen patient’s quality of life and increase caregiver’s burden. Alzheimer’s disease is the most common type of dementia and both behavioral disturbance and cognitive impairment of Alzheimer’s disease are thought to be associated with the N-methyl-D-aspartate (NMDA) dysfunction as increasing evidence of dysfunctional glutamatergic neurotransmission had been reported in behavioral changes and cognitive decline in Alzheimer’s disease. We review the literature regarding dementia (especially Alzheimer’s disease), BPSD and relevant findings on glutamatergic and NMDA neurotransmission, including the effects of memantine, a NMDA receptor antagonist, and NMDA-enhancing agents, such as D-serine and D-cycloserine. Literatures suggest that behavioral disturbance and cognitive impairment of Alzheimer’s disease may be associated with excitatory neurotoxic effects which result in impairment of neuronal plasticity and degenerative processes. Memantine shows benefits in improving cognition, function, agitation/aggression and delusion in Alzheimer’s disease. On the other hand, some NMDA modulators which enhance NMDA function through the co-agonist binding site can also improve cognitive function and psychotic symptoms. We propose that modulating NMDA neurotransmission is effective in treating behavioral and psychological symptoms of Alzheimer’s disease. Prospective study using NMDA enhancers in patients with Alzheimer’s disease and associated behavioral disturbance is needed to verify this hypothesis. PMID:23450042

  13. Exaggerated NMDA Mediated LTD in a Mouse Model of Down Syndrome and Pharmacological Rescuing by Memantine

    ERIC Educational Resources Information Center

    Scott-McKean, Jonah J.; Costa, Alberto C. S.

    2011-01-01

    The Ts65Dn mouse is the best-studied animal model for Down syndrome. In the experiments described here, NMDA-mediated or mGluR-mediated LTD was induced in the CA1 region of hippocampal slices from Ts65Dn and euploid control mice by bath application of 20 [mu]M NMDA for 3 min and 50 [mu]M DHPG for 5 min, respectively. We found that Ts65Dn mice…

  14. Interaction between positive allosteric modulators and trapping blockers of the NMDA receptor channel

    PubMed Central

    Emnett, Christine M; Eisenman, Lawrence N; Mohan, Jayaram; Taylor, Amanda A; Doherty, James J; Paul, Steven M; Zorumski, Charles F; Mennerick, Steven

    2015-01-01

    Background and Purpose Memantine and ketamine are clinically used, open-channel blockers of NMDA receptors exhibiting remarkable pharmacodynamic similarities despite strikingly different clinical profiles. Although NMDA channel gating constitutes an important difference between memantine and ketamine, it is unclear how positive allosteric modulators (PAMs) might affect the pharmacodynamics of these NMDA blockers. Experimental Approach We used two different PAMs: SGE-201, an analogue of an endogenous oxysterol, 24S-hydroxycholesterol, along with pregnenolone sulphate (PS), to test on memantine and ketamine responses in single cells (oocytes and cultured neurons) and networks (hippocampal slices), using standard electrophysiological techniques. Key Results SGE-201 and PS had no effect on steady-state block or voltage dependence of a channel blocker. However, both PAMs increased the actions of memantine and ketamine on phasic excitatory post-synaptic currents, but neither revealed underlying pharmacodynamic differences. SGE-201 accelerated the re-equilibration of blockers during voltage jumps. SGE-201 also unmasked differences among the blockers in neuronal networks – measured either by suppression of activity in multi-electrode arrays or by neuroprotection against a mild excitotoxic insult. Either potentiating NMDA receptors while maintaining the basal activity level or increasing activity/depolarization without potentiating NMDA receptor function is sufficient to expose pharmacodynamic blocker differences in suppressing network function and in neuroprotection. Conclusions and Implications Positive modulation revealed no pharmacodynamic differences between NMDA receptor blockers at a constant voltage, but did expose differences during spontaneous network activity. Endogenous modulator tone of NMDA receptors in different brain regions may underlie differences in the effects of NMDA receptor blockers on behaviour. PMID:25377730

  15. NMDA and non-NMDA glutamate receptors in the paraventricular nucleus of the hypothalamus modulate different stages of hemorrhage-evoked cardiovascular responses in rats.

    PubMed

    Busnardo, C; Crestani, C C; Fassini, A; Resstel, L B M; Corrêa, F M A

    2016-04-21

    Here we report the involvement of N-Methyl-d-Aspartate (NMDA) and non-NMDA glutamate receptors from the paraventricular nucleus of the hypothalamus (PVN) in the mediation of cardiovascular changes observed during hemorrhage and post-bleeding periods. In addition, the present study provides further evidence of the involvement of circulating vasopressin and cardiac sympathetic activity in cardiovascular responses to hemorrhage. Systemic treatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 μg/kg, i.v.) increased the latency to the onset of hypotension during hemorrhage and slowed post-bleeding recovery of blood pressure. Systemic treatment with the β1-adrenergic receptor antagonist atenolol (1 mg/kg, i.v.) also increased the latency to the onset of hypotension during hemorrhage. Moreover, atenolol reversed the hemorrhage-induced tachycardia into bradycardia. Bilateral microinjection of the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) into the PVN blocked the hypotensive response to hemorrhage and reduced the tachycardia during the post-hemorrhage period. Systemic treatment with dTyr(CH2)5(Me)AVP inhibited the effect of LY235959 on hemorrhage-induced hypotension, without affecting the post-bleeding tachycardia. PVN treatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) reduced the recovery of blood pressure to normal levels in the post-bleeding phase and reduced hemorrhage-induced tachycardia. Combined blockade of both NMDA and non-NMDA glutamate receptors in the PVN completely abolished the hypotensive response in the hemorrhage period and reduced the tachycardiac response in the post-hemorrhage period. These results indicate that local PVN glutamate neurotransmission is involved in the neural pathway mediating cardiovascular responses to hemorrhage, via an integrated control involving autonomic nervous system activity and vasopressin release into the circulation. PMID:26861418

  16. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil.

    PubMed

    Tajima, Nami; Karakas, Erkan; Grant, Timothy; Simorowski, Noriko; Diaz-Avalos, Ruben; Grigorieff, Nikolaus; Furukawa, Hiro

    2016-06-01

    The physiology of N-methyl-d-aspartate (NMDA) receptors is fundamental to brain development and function. NMDA receptors are ionotropic glutamate receptors that function as heterotetramers composed mainly of GluN1 and GluN2 subunits. Activation of NMDA receptors requires binding of neurotransmitter agonists to a ligand-binding domain (LBD) and structural rearrangement of an amino-terminal domain (ATD). Recent crystal structures of GluN1-GluN2B NMDA receptors bound to agonists and an allosteric inhibitor, ifenprodil, represent the allosterically inhibited state. However, how the ATD and LBD move to activate the NMDA receptor ion channel remains unclear. Here we applied X-ray crystallography, single-particle electron cryomicroscopy and electrophysiology to rat NMDA receptors to show that, in the absence of ifenprodil, the bi-lobed structure of GluN2 ATD adopts an open conformation accompanied by rearrangement of the GluN1-GluN2 ATD heterodimeric interface, altering subunit orientation in the ATD and LBD and forming an active receptor conformation that gates the ion channel. PMID:27135925

  17. Differential Expression of AMPA Subunits Induced by NMDA Intrahippocampal Injection in Rats

    PubMed Central

    Fachim, Helene A.; Pereira, Adriana C.; Iyomasa-Pilon, Melina M.; Rosa, Maria L. N. M.

    2016-01-01

    Glutamate is involved in excitotoxic mechanisms by interacting with different receptors. Such interactions result in neuronal death associated with several neurodegenerative disorders of the central nervous system (CNS). The aim of this work was to study the time course of changes in the expression of GluR1 and GluR2 subunits of glutamate amino-acid-3-hydroxy-5-methyl-isoxazol-4-propionic acid (AMPA) receptors in rat hippocampus induced by NMDA intrahippocampal injection. Rats were submitted to stereotaxic surgery for NMDA or saline (control) microinjection into dorsal hippocampus and the parameters were evaluated 24 h, 1, 2, and 4 weeks after injection. The extension and efficacy of the NMDA-induced injury were evaluated by Morris water maze (MWM) behavioral test and Nissl staining. The expression of GluR1 and GluR2 receptors, glial fibrillary acidic protein (GFAP), and neuronal marker (NeuN) was analyzed by immunohistochemistry. It was observed the impairment of learning and memory functions, loss of neuronal cells, and glial proliferation in CA1 area of NMDA compared with control groups, confirming the injury efficacy. In addition, NMDA injection induced distinct changes in GluR1 and GluR2 expression over the time. In conclusion, such changes may be related to the complex mechanism triggered in response to NMDA injection resulting in a local injury and in the activation of neuronal plasticity. PMID:26912994

  18. Nitric oxide modulates blood pressure through NMDA receptors in the rostral ventrolateral medulla of conscious rats.

    PubMed

    Machado, Natalia L S; Silva, Fernanda C S; Chianca, Deoclecio A; de Menezes, Rodrigo C

    2016-07-15

    The rostral ventrolateral medulla (RVLM) is an important site of cardiovascular control related to the tonic excitation and regulating the sympathetic vasomotor tone through local presympathetic neurons. Nitric oxide (NO) has been implicated in the modulation of neurotransmission by several areas of the central nervous system including the RVLM. However the pathways driving NO affects and the correlation between NO and glutamate-induced mechanisms are not well established. Here, we investigate the influence of NO on the cardiovascular response evoked by the activation of NMDA and non-NMDA glutamatergic receptors in the RVLM in conscious rats. For that, we examined the influence of acute inhibition of the NO production within the RVLM, by injecting the nonselective constitutive NOS inhibitor, l-NAME, on responses evoked by the microinjection of excitatory amino acids l-glutamate, NMDA or AMPA agonists into RVLM. Our results show that the injection of l-glutamate, NMDA or AMPA agonists into RVLM, unilaterally, induced a marked increase in the mean arterial pressure (MAP). Pretreatment with l-NAME reduced the hypertensive response evoked by the glutamate injection, and also abolished the pressor response induced by the injection of NMDA into the RVLM. However, blocking the NO synthesis did not alter the response produced by the injection of AMPA agonist. These data provide evidence that the glutamatergic neurotransmission within the RVLM depends on excitatory effects exerted by NO on NMDA receptors, and that this mechanism might be essential to regulate systemic blood pressure. PMID:27150817

  19. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice.

    PubMed

    Hasan, Mazahir T; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking NMDA receptors in the [corrected] primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  20. Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes

    PubMed Central

    Poleg-Polsky, Alon

    2015-01-01

    Cortical neurons can respond to glutamatergic stimulation with regenerative N-Methyl-D-aspartic acid (NMDA)-spikes. NMDA-spikes were initially thought to depend on clustered synaptic activation. Recent work had shown however a new variety of a global NMDA-spike, which can be generated by randomly distributed inputs. Very little is known about the factors that influence the generation of these global NMDA-spikes, as well the potentially distinct rules of synaptic integration and the computational significance conferred by the two types of NMDA-spikes. Here I show that the input resistance (RIN) plays a major role in influencing spike initiation; while the classical, focal NMDA-spike depended upon the local (dendritic) RIN, the threshold of global NMDA-spike generation was set by the somatic RIN. As cellular morphology can exert a large influence on RIN, morphologically distinct neuron types can have dissimilar rules for NMDA-spikes generation. For example, cortical neurons in superficial layers were found to be generally prone to global NMDA-spike generation. In contrast, electric properties of cortical layer 5b cells clearly favor focal NMDA-spikes. These differences can translate into diverse synaptic integration rules for the different classes of cortical cells; simulated superficial layers neurons were found to exhibit strong synaptic interactions between different dendritic branches, giving rise to a single integrative compartment mediated by the global NMDA-spike. In these cells, efficiency of postsynaptic activation was relatively little dependent on synaptic distribution. By contrast, layer 5b neurons were capable of true multi-unit computation involving independent integrative compartments formed by clustered synaptic input which could trigger focal NMDA-spikes. In a sharp contrast to superficial layers neurons, randomly distributed synaptic inputs were not very effective in driving firing the layer 5b cells, indicating a possibility for different

  1. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder. PMID:26894301

  2. Distribution of NMDA receptor subunit NR1 in Arctic ground squirrel central nervous system

    PubMed Central

    Zhao, Huiwen W.; Christian, Sherri L.; Castillo, Marina R.; Bult-Ito, Abel; Drew, Kelly L.

    2013-01-01

    Hibernation is a natural model of neuroprotection and adult synaptic plasticity. NMDA receptors (NMDAR), which play key roles in excitotoxicity and synaptic plasticity, have not been characterized in a hibernating species. Tolerance to excitotoxicity and cognitive enhancement in Arctic ground squirrels (AGS, Spermophilus parryii) suggests that NMDAR expression may decrease in hibernation and increase upon arousal. NMDAR consist of at least one NMDAR1 (NR1) subunit, which is required for receptor function. Localization of NR1 reflects localization of the majority, if not all, NMDAR complexes. The purpose of this study, therefore, was to characterize the distribution of NR1 subunits in AGS central nervous system using immunohistochemistry. In addition, we compare NR1 expression in hippocampus of hibernating AGS (hAGS) and inter-bout euthermic AGS (ibeAGS) and assess changes in cell somata size using NR1 stained sections in three hippocampal sub-regions (CA1, CA3, and dentate gyrus). For the first time, we report that immunoreactivity of anti-NR1 is widely distributed throughout the central nervous system in AGS and is similar to other species. No differences exist in the expression and distribution of NR1 in hAGS and ibeAGS. However, we report a significant decrease in size of hippocampal CA1 and dentate gyrus NR1-expressing neuronal somata during hibernation torpor. PMID:17097266

  3. Mitochondria and NMDA Receptor-Dependent Toxicity of Berberine Sensitizes Neurons to Glutamate and Rotenone Injury

    PubMed Central

    Kysenius, Kai; Brunello, Cecilia A.; Huttunen, Henri J.

    2014-01-01

    The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine. PMID:25192195

  4. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat

    PubMed Central

    Losi, Gabriele; Prybylowski, Kate; Fu, Zhanyan; Luo, Jianhong; Wenthold, Robert J; Vicini, Stefano

    2003-01-01

    We transfected a green fluorescent protein-tagged PSD-95 (PSD-95gfp) into cultured rat cerebellar granule cells (CGCs) to investigate the role of PSD-95 in excitatory synapse maturation. Cells were grown in low potassium to favour functional synapse formation in vitro. Transfected cells displayed clear clusters of PSD-95gfp, often at the extremities of the short dendritic trees. We recorded NMDA and AMPA miniature excitatory postsynaptic currents (NMDA- and AMPA-mESPCs) in the presence of TTX and bicuculline. At days in vitro (DIV) 7–8 PSD-95gfp-transfected cells had NMDA-mEPSCs with faster decay and smaller amplitudes than matching controls. In contrast, AMPA-mEPSC frequencies and amplitudes were increased. Whole-cell current density and ifenprodil sensitivity were reduced in PSD-95gfp cells, indicating a reduction of NR2B subunits containing NMDA receptors. No changes were observed compared to control when cells were transfected with cDNA for PSD-95gfp with palmitoylation site mutations that prevent targeting to the synapse. Overexpression of the NMDA receptor NR2A subunit, but not the NR2B subunit, prevented NMDA-mEPSC amplitude reduction when cotransfected with PSD-95gfp. PSD-95gfp overexpression produced faster NMDA-mEPSC decay when transfected alone or with either NR2 subunit. Surface staining of the epitope-tagged NR2 subunits revealed that colocalization with PSD-95gfp was higher for flag-tagged NR2A subunit clusters than for flag-tagged NR2B subunit clusters. These data suggest that PSD-95 overexpression in CGCs favours synaptic maturation by allowing synaptic insertion of NR2A and depressing expression of NR2B subunits. PMID:12576494

  5. Synthesis of 4-(aminoalkyl) substituted 1,3-dioxanes as potent NMDA and σ receptor antagonists.

    PubMed

    Utech, Tina; Köhler, Jens; Wünsch, Bernhard

    2011-06-01

    Elongation of the distance between the oxygen heterocycle and the basic amino moiety or ring expansion of the oxygen heterocycle of the NMDA receptor antagonists dexoxadrol and etoxadrol led to compounds with promising NMDA receptor affinity. Herein the combination of both structural features, i.e. elongation of the O-heterocycle--amine distance with a 1,3-dioxane ring is envisaged. The synthesis of aminoethyl-1,3-dioxanes 13, 22, 23 and 29 was performed by transacetalization of various acetals with pentane-1,3,5-triol, activation of the remaining free OH moiety with tosyl chloride and subsequent nucleophilic substitution. The corresponding 3-aminopropyl derivatives 33-35 were prepared by substitution of the tosylates with KCN and LiAlH4 reduction. The highest NMDA receptor affinity was found for 1,3-dioxanes with a phenyl and an ethyl residue at the acetalic position (23) followed by diphenyl (22) and monophenyl derivatives (13). Generally the NMDA affinity of primary amines is higher than the NMDA affinity of secondary and tertiary amines. Altogether the primary amine 23a (Ki=24 nM) represents the most promising NMDA receptor antagonist of this series exceeding the NMDA affinity of the mono-homologues (2-aminoethyl)-1,3-dioxolanes (3,4) and (aminomethyl)-1,3-dioxanes (5,6). Whereas the primary amine 23a turned out to be selective against σ1 and σ2 receptors the benzylamine 13d was identified as potent (Ki=19 nM) and selective σ1 antagonist, which showed extraordinarily high antiallodynic activity in the capsaicin assay. PMID:21444132

  6. NMDA receptor antagonists attenuate the proconvulsant effect of juvenile social isolation in male mice.

    PubMed

    Amiri, Shayan; Haj-Mirzaian, Arya; Amini-Khoei, Hossein; Momeny, Majid; Shirzadian, Armin; Balaei, Maryam Rahimi; Zarrinrad, Ghazaleh; Ghazi-Khansari, Mahmoud; Azizi, Romina; Dehpour, Ahmad Reza; Mehr, Shahram Ejtemaei

    2016-03-01

    Experiencing psychosocial stress in early life, such as social isolation stress (SIS), is known to have negative enduring effects on the development of the brain and behavior. In addition to anxiety and depressive-like behaviors, we previously showed that juvenile SIS increases susceptibility to pentylenetetrazole (PTZ)-induced seizures in mice through enhancing the nitrergic system activity in the hippocampus. In this study, we investigated the possible involvement of N-methyl-d-aspartate (NMDA) receptors in proconvulsant effects of juvenile SIS. Applying 4 weeks of SIS to juvenile male mice at postnatal day 21-23, we observed an increased susceptibility to PTZ as well as anxiety and depressive-like behaviors in adult mice. Intraperitoneal (i.p.) administration of NMDA receptor antagonists, MK-801 (0.05mg/kg) and ketamine (0.5mg/kg), reversed the proconvulsant effects of SIS in Isolated (and not social) housed animals. Co-administration of non-effective doses of nitric oxide synthase (NOS) inhibitors, 7NI (25mg/kg) and L-NAME (10mg/kg), with NMDA receptor antagonists, MK-801 (0.01mg/kg) and ketamine (0.1mg/kg) attenuated the proconvulsant effects of juvenile SIS only in isolated housed mice. Also, using real time RT-PCR, we showed that hippocampal upregulation of NR2B subunit of NMDA receptor may play a critical role in proconvulsant effects of juvenile SIS by dysregulation of NMDA/NO pathway. In conclusion, results of present study revealed that experiencing SIS during adolescence predisposes the co-occurrence of seizure disorders with psychiatric comorbidities and also, alteration of NMDA receptor structure and function in hippocampus plays a role in proconvulsant effects of juvenile SIS through enhancing the NMDA/NO pathway. PMID:26836272

  7. NMDA receptor antibodies associated with distinct white matter syndromes

    PubMed Central

    Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R.; Buckley, Camilla

    2014-01-01

    Objective: To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Method: Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody–positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. Results: Three distinct clinicoradiologic phenotypes were recognized: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Conclusion: Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease. PMID:25340058

  8. NMDA Receptor Involvement in Spatial Delayed Alternation in Developing Rats

    PubMed Central

    Watson, Deborah J.; Herbert, Mariel R.; Stanton, Mark E.

    2014-01-01

    Two experiments examined the effect of the non-competitive NMDA receptor antagonist, dizocilpine maleate (MK-801), on spatial working memory during development. Rats were trained on spatial delayed alternation (SDA) in a T-maze following i.p. administration of 0.06 mg/kg MK-801, 0.1 mg/kg MK-801, or saline on postnatal days (P) P23 and P33 (Experiment 1), or following bilateral intrahippocampal administration of 2.5 or 5.0 micro-g per side MK-801 or saline on P26 (Experiment 2). In Experiment 1, MK-801 dose-dependently impaired SDA learning at both ages. Because the same doses of systemic MK-801 have no effect on T-maze position discrimination learning, impairment of SDA by MK-801 likely reflects disruption of spatial working memory. Both doses of MK-801 abolished acquisition of SDA performance in Experiment 2. Disruption of hippocampal plasticity may account for the effects produced by systemic MK-801 administration. These results confirm and extend earlier lesion studies by implicating plasticity of hippocampal neurons in the ontogeny of spatial delayed alternation. PMID:19170429

  9. Three-dimensional models of non-NMDA glutamate receptors.

    PubMed Central

    Sutcliffe, M J; Wo, Z G; Oswald, R E

    1996-01-01

    Structural models have been produced for three types of non-NMDA inotropic glutamate receptors: an AMPA receptor, GluR1, a kainate receptor, GluR6; and a low-molecular-weight kainate receptor from goldfish, GFKAR alpha. Modeling was restricted to the domains of the proteins that bind the neurotransmitter glutamate and that form the ion channel. Model building combined homology modeling, distance geometry, molecular mechanics, interactive modeling, and known constraints. The models indicate new potential interactions in the extracellular domain between protein and agonists, and suggest that the transition from the "closed" to the "open" state involves the movement of a conserved positive residue away from, and two conserved negative residues into, the extracellular entrance to the pore upon binding. As a first approximation, the ion channel domain was modeled with a structure comprising a central antiparallel beta-barrel that partially crosses the membrane, and against which alpha-helices from each subunit are packed; a third alpha-helix packs against these two helices in each subunit. Much, but not all, of the available data were consistent with this structure. Modifying the beta-barrel to a loop-like topology produced a model consistent with available data. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:8785317

  10. Visual dysfunction, but not retinal thinning, following anti-NMDA receptor encephalitis

    PubMed Central

    Oberwahrenbrock, Timm; Mikolajczak, Janine; Zimmermann, Hanna; Prüss, Harald; Paul, Friedemann; Finke, Carsten

    2016-01-01

    Objective: To assess structural and functional changes in the afferent visual system following anti-NMDA receptor (NMDAR) encephalitis. Methods: In this cross-sectional study including 31 patients after acute NMDAR encephalitis and matched healthy controls, visual function was assessed as high-contrast visual acuity using Early Treatment Diabetic Retinopathy Study charts and low-contrast sensitivity using Functional Acuity Contrast Test. Retinal changes were measured using optical coherence tomography with assessment of peripapillary retinal nerve fiber layer (pRNFL) and macular intraretinal layer thicknesses. Residual clinical impairment was described using the modified Rankin Scale. Results: High-contrast (logMAR 0.02 ± 0.14 vs −0.09 ± 0.14, p < 0.001) and low-contrast (area under the curve 1.89 ± 0.21 vs 2.00 ± 0.26, p = 0.039) visual acuity were reduced in patients in comparison to healthy controls. More severely affected patients performed worse in visual acuity testing than patients with good recovery (logMAR −0.02 ± 0.11 vs 0.08 ± 0.17, p = 0.030). In contrast, patients did not differ from matched healthy controls in pRNFL or in thickness of intraretinal layers, including the ganglion cell complex, the inner nuclear layer, the outer nuclear and plexiform layers, and the photoreceptor layer. Conclusions: After acute NMDAR encephalitis, patients have mild visual dysfunction in comparison to matched healthy controls, while retinal structure appears unaltered. These observations could point to an impairment of anterior or posterior visual pathway NMDAR function that is similar to dysfunction of NMDAR in cerebral cortex and subcortical structures. Alternatively, residual cognitive impairment might reduce visual function. PMID:26894203

  11. NR2C and NR2D subunits of NMDA receptors in frog and turtle retina.

    PubMed

    Vitanova, Lily Alexandrova

    2012-12-01

    Glutamate NMDA (N-methyl-D-aspartate) receptors are widely distributed in the central nervous system where they are involved in cognitive processes, motor control and many other functions. They are also well studied in the retina, which may be regarded as a biological model of the nervous system. However, little is known about NR2C and NR2D subunits of NMDA receptors, which have some specific features as compared to other subunits. Consequently the aim of the present study was to investigate their distribution in frog (Rana ridibunda) and turtle (Emys orbicularis) retinas which possess mixed and cone types of retina respectively. The experiments were performed using an indirect immunofluorescence method. Four antibodies directed to NR2C and NR2D subunits of NMDA receptor, as well as three antibodies directed to different splice variants of NR1 subunit, which is known to be obligatory for proper functioning of the receptor, were applied. All antibodies caused well expressed labeling in frog and turtle retinas. The NR2C and NR2D subunits were localized in glial Müller cells, while the NR1 subunit had both neuronal and glial localization. Our results show that glial NMDA receptors differ from neuronal ones in their subunit composition. The functional significance of the NMDA receptors and their NR2C and NR2D subunits, in particular for the neuron-glia interactions, is discussed. PMID:22386206

  12. Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors

    PubMed Central

    Terunuma, Miho; Vargas, Karina J.; Wilkins, Megan E.; Ramírez, Omar A.; Jaureguiberry-Bravo, Matías; Pangalos, Menelas N.; Smart, Trevor G.; Moss, Stephen J.; Couve, Andrés

    2010-01-01

    Slow and persistent synaptic inhibition is mediated by metabotropic GABAB receptors (GABABRs). GABABRs are responsible for the modulation of neurotransmitter release from presynaptic terminals and for hyperpolarization at postsynaptic sites. Postsynaptic GABABRs are predominantly found on dendritic spines, adjacent to excitatory synapses, but the control of their plasma membrane availability is still controversial. Here, we explore the role of glutamate receptor activation in regulating the function and surface availability of GABABRs in central neurons. We demonstrate that prolonged activation of NMDA receptors (NMDA-Rs) leads to endocytosis, a diversion from a recycling route, and subsequent lysosomal degradation of GABABRs. These sorting events are paralleled by a reduction in GABABR-dependent activation of inwardly rectifying K+ channel currents. Postendocytic sorting is critically dependent on phosphorylation of serine 783 (S783) within the GABABR2 subunit, an established substrate of AMP-dependent protein kinase (AMPK). NMDA-R activation leads to a rapid increase in phosphorylation of S783, followed by a slower dephosphorylation, which results from the activity of AMPK and protein phosphatase 2A, respectively. Agonist activation of GABABRs counters the effects of NMDA. Thus, NMDA-R activation alters the phosphorylation state of S783 and acts as a molecular switch to decrease the abundance of GABABRs at the neuronal plasma membrane. Such a mechanism may be of significance during synaptic plasticity or pathological conditions, such as ischemia or epilepsy, which lead to prolonged activation of glutamate receptors. PMID:20643948

  13. Effects of Anti-NMDA Antibodies on Functional Recovery and Synaptic Rearrangement Following Hemicerebellectomy.

    PubMed

    Laricchiuta, Daniela; Cavallucci, Virve; Cutuli, Debora; De Bartolo, Paola; Caporali, Paola; Foti, Francesca; Finke, Carsten; D'Amelio, Marcello; Manto, Mario; Petrosini, Laura

    2016-06-01

    The compensation that follows cerebellar lesions is based on synaptic modifications in many cortical and subcortical regions, although its cellular mechanisms are still unclear. Changes in glutamatergic receptor expression may represent the synaptic basis of the compensated state. We analyzed in rats the involvement of glutamatergic system of the cerebello-frontal network in the compensation following a right hemicerebellectomy. We evaluated motor performances, spatial competencies and molecular correlates in compensated hemicerebellectomized rats which in the frontal cortex contralateral to the hemicerebellectomy side received injections of anti-NMDA antibodies from patients affected by anti-NMDA encephalitis. In the compensated hemicerebellectomized rats, the frontal injections of anti-NMDA antibodies elicited a marked decompensation state characterized by slight worsening of the motor symptoms as well as severe impairment of spatial mnesic and procedural performances. Conversely, in the sham-operated group the frontal injections of anti-NMDA antibodies elicited slight motor and spatial impairment. The molecular analyses indicated that cerebellar compensatory processes were related to a relevant rearrangement of glutamatergic synapses (NMDA and AMPA receptors and other glutamatergic components) along the entire cortico-cerebellar network. The long-term maintenance of the rearranged glutamatergic activity plays a crucial role in the maintenance of recovered function. PMID:27027521

  14. Actions of Bupivacaine, a Widely Used Local Anesthetic, on NMDA Receptor Responses

    PubMed Central

    Paganelli, Meaghan A.

    2015-01-01

    NMDA receptors mediate excitatory neurotransmission in brain and spinal cord and play a pivotal role in the neurological disease state of chronic pain, which is caused by central sensitization. Bupivacaine is the indicated local anesthetic in caudal, epidural, and spinal anesthesia and is widely used clinically to manage acute and chronic pain. In addition to blocking Na+ channels, bupivacaine affects the activity of many other channels, including NMDA receptors. Importantly, bupivacaine inhibits NMDA receptor-mediated synaptic transmission in the dorsal horn of the spinal cord, an area critically involved in central sensitization. We used recombinant NMDA receptors expressed in HEK293 cells and found that increasing concentrations of bupivacaine decreased channel open probability in GluN2 subunit- and pH-independent manner by increasing the mean duration of closures and decreasing the mean duration of openings. Using kinetic modeling of one-channel currents, we attributed the observed current decrease to two main mechanisms: a voltage-dependent “foot-in-the-door” pore block and an allosteric gating effect. Further, the inhibition was state-independent because it occurred to the same degree whether the drug was applied before or after glutamate stimulation and was mediated by extracellular and intracellular inhibitory sites, via hydrophilic and hydrophobic pathways. These results predict that clinical doses of bupivacaine would decrease the peak and accelerate the decay of synaptic NMDA receptor currents during normal synaptic transmission. These quantitative predictions inform possible applications of bupivacaine as preventative and therapeutic approaches in chronic pain. PMID:25589775

  15. Enantiopure Indolo[2,3-a]quinolizidines: Synthesis and Evaluation as NMDA Receptor Antagonists.

    PubMed

    Pereira, Nuno A L; Sureda, Francesc X; Pérez, Maria; Amat, Mercedes; Santos, Maria M M

    2016-01-01

    Enantiopure tryptophanol is easily obtained from the reduction of its parent natural amino acid trypthophan (available from the chiral pool), and can be used as chiral auxiliary/inductor to control the stereochemical course of a diastereoselective reaction. Furthermore, enantiopure tryptophanol is useful for the syntheses of natural products or biological active molecules containing the aminoalcohol functionality. In this communication, we report the development of a small library of indolo[2,3-a]quinolizidines and evaluation of their activity as N-Methyl d-Aspartate (NMDA) receptor antagonists. The indolo[2,3-a]quinolizidine scaffold was obtained using the following key steps: (i) a stereoselective cyclocondensation of (S)- or (R)-tryptophanol with appropriate racemic δ-oxoesters; (ii) a stereocontrolled cyclization on the indole nucleus. The synthesized enantiopure indolo[2,3-a]quinolizidines were evaluated as NMDA receptor antagonists and one compound was identified to be 2.9-fold more potent as NMDA receptor blocker than amantadine (used in the clinic for Parkinson's disease). This compound represents a hit compound for the development of novel NMDA receptor antagonists with potential applications in neurodegenerative disorders associated with overactivation of NMDA receptors. PMID:27509489

  16. Role of motor cortex NMDA receptors in learning-dependent synaptic plasticity of behaving mice

    PubMed Central

    Hasan, Mazahir T.; Hernández-González, Samuel; Dogbevia, Godwin; Treviño, Mario; Bertocchi, Ilaria; Gruart, Agnès; Delgado-García, José M.

    2013-01-01

    The primary motor cortex has an important role in the precise execution of learned motor responses. During motor learning, synaptic efficacy between sensory and primary motor cortical neurons is enhanced, possibly involving long-term potentiation and N-methyl-D-aspartate (NMDA)-specific glutamate receptor function. To investigate whether NMDA receptor in the primary motor cortex can act as a coincidence detector for activity-dependent changes in synaptic strength and associative learning, here we generate mice with deletion of the Grin1 gene, encoding the essential NMDA receptor subunit 1 (GluN1), specifically in the primary motor cortex. The loss of NMDA receptor function impairs primary motor cortex long-term potentiation in vivo. Importantly, it impairs the synaptic efficacy between the primary somatosensory and primary motor cortices and significantly reduces classically conditioned eyeblink responses. Furthermore, compared with wild-type littermates, mice lacking primary motor cortex show slower learning in Skinner-box tasks. Thus, primary motor cortex NMDA receptors are necessary for activity-dependent synaptic strengthening and associative learning. PMID:23978820

  17. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE USING PATTERN ELICITED VISUAL EVOKED POTENTIALS.

    EPA Science Inventory

    In vitro studies have demonstrated that toluene disrupts the function of NMDA-glutamate receptors, as well as other channels. This has led to the hypothesis that effects on NMDA receptor function may contribute to toluene neurotoxicity, CNS depression, and altered visual evoked ...

  18. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95.

    PubMed

    Kornau, H C; Schenker, L T; Kennedy, M B; Seeburg, P H

    1995-09-22

    The N-methyl-D-aspartate (NMDA) receptor subserves synaptic glutamate-induced transmission and plasticity in central neurons. The yeast two-hybrid system was used to show that the cytoplasmic tails of NMDA receptor subunits interact with a prominent postsynaptic density protein PSD-95. The second PDZ domain in PSD-95 binds to the seven-amino acid, COOH-terminal domain containing the terminal tSXV motif (where S is serine, X is any amino acid, and V is valine) common to NR2 subunits and certain NR1 splice forms. Transcripts encoding PSD-95 are expressed in a pattern similar to that of NMDA receptors, and the NR2B subunit co-localizes with PSD-95 in cultured rat hippocampal neurons. The interaction of these proteins may affect the plasticity of excitatory synapses. PMID:7569905

  19. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death.

    PubMed

    Wang, Hongmin; Yu, Seong-Woon; Koh, David W; Lew, Jasmine; Coombs, Carmen; Bowers, William; Federoff, Howard J; Poirier, Guy G; Dawson, Ted M; Dawson, Valina L

    2004-12-01

    The profound neuroprotection observed in poly(ADP-ribose) polymerase-1 (PARP-1) null mice to ischemic and excitotoxic injury positions PARP-1 as a major mediator of neuronal cell death. We report here that apoptosis-inducing factor (AIF) mediates PARP-1-dependent glutamate excitotoxicity in a caspase-independent manner after translocation from the mitochondria to the nucleus. In primary murine cortical cultures, neurotoxic NMDA exposure triggers AIF translocation, mitochondrial membrane depolarization, and phosphatidyl serine exposure on the cell surface, which precedes cytochrome c release and caspase activation. NMDA neurotoxicity is not affected by broad-spectrum caspase inhibitors, but it is prevented by Bcl-2 overexpression and a neutralizing antibody to AIF. These results link PARP-1 activation with AIF translocation in NMDA-triggered excitotoxic neuronal death and provide a paradigm in which AIF can substitute for caspase executioners. PMID:15574746

  20. Anti-NMDA receptor encephalitis presenting as atypical anorexia nervosa: an adolescent case report.

    PubMed

    Mechelhoff, David; van Noort, Betteke Maria; Weschke, Bernhard; Bachmann, Christian J; Wagner, Christiane; Pfeiffer, Ernst; Winter, Sibylle

    2015-11-01

    Since 2007, more than 600 patients have been diagnosed with anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, with almost 40 % of those affected being children or adolescents. In early phases of the illness, this life-threatening disease is characterized by psychiatric symptoms, such as depression, anxiety, obsessions, hallucinations or delusions. Consequently, a high percentage of patients receive psychiatric diagnoses at first, hindering the crucial early diagnosis and treatment of the anti-NMDA receptor encephalitis. We report on a 15-year-old girl initially presenting with pathological eating behaviour and significant weight loss resulting in an (atypical) anorexia nervosa (AN) diagnosis. Her early course of illness, diagnostic process, treatment and short-term outcome are described. This case report aims to raise awareness about the association between anorectic behaviour and anti-NMDA receptor encephalitis and highlight the importance of multidisciplinary teams in child and adolescent services. PMID:25663428

  1. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders.

    PubMed

    Kang, Jaeseung; Park, Haram; Kim, Eunjoon

    2016-01-01

    IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines. In addition, IRSp53 has been implicated in diverse psychiatric disorders, including autism spectrum disorders, schizophrenia, and attention deficit/hyperactivity disorder. Mice lacking IRSp53 display enhanced NMDA (N-methyl-d-aspartate) receptor function accompanied by social and cognitive deficits, which are reversed by pharmacological suppression of NMDA receptor function. These results suggest the hypothesis that defective actin/membrane modulation in IRSp53-deficient dendritic spines may lead to social and cognitive deficits through NMDA receptor dysfunction. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:26275848

  2. Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus

    PubMed Central

    Zeiler, F. A.

    2015-01-01

    Refractory status epilepticus (RSE) and superrefractory status epilepticus (SRSE) pose a difficult clinical challenge. Multiple cerebral receptor and transporter changes occur with prolonged status epilepticus leading to pharmacoresistance patterns unfavorable for conventional antiepileptics. In particular, n-methyl-d-aspartate (NMDA) receptor upregulation leads to glutamate mediated excitotoxicity. Targeting these NMDA receptors may provide a novel approach to otherwise refractory seizures. Ketamine has been utilized in RSE. Recent systematic review indicates 56.5% and 63.5% cessation in seizures in adults and pediatrics, respectively. No complications were described. We should consider earlier implementation of ketamine or other NMDA receptor antagonists, for RSE. Prospective study of early implementation of ketamine should shed light on the role of such medications in RSE. PMID:25649724

  3. The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.

    PubMed Central

    Chen, L; Gu, Y; Huang, L Y

    1995-01-01

    1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors. PMID:7537820

  4. Relief learning is dependent on NMDA receptor activation in the nucleus accumbens

    PubMed Central

    Mohammadi, Milad; Fendt, Markus

    2015-01-01

    Background and Purpose Recently, we demonstrated that the nucleus accumbens (NAC) is required for the acquisition and expression of relief memory. The purpose of this study was to investigate the role of NMDA receptors within the NAC in relief learning. Experimental Approach The NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) was injected into the NAC. The effects of these injections on the acquisition and expression of relief memory, as well as on the reactivity to aversive electric stimuli, were tested. Key Results Intra-accumbal AP-5 injections blocked the acquisition but not the expression of relief memory. Furthermore, reactivity to aversive electric stimuli was not affected by the AP-5 injections. Conclusion and Implication The present data indicate that NMDA-dependent plasticity within the NAC is crucial for the acquisition of relief memory. PMID:25572550

  5. NMDA-induced rhythmical activity in XII nerve of isolated CNS from newborn rats.

    PubMed

    Katakura, N; Jia, L; Nakamura, Y

    1995-03-01

    We tried to induce rhythmical oro-facial motor activities in an isolated brain stem-spinal cord preparation from newborn rats. Neural activities were monitored from the hypoglossal nerve (XII N) and the ventral roots of the cervical cord. Bath application of N-methyl-D-aspartate (NMDA) as well as glutamate induced rhythmical burst activity in XII N distinct from and much faster than respiratory rhythm. This NMDA-induced rhythmical activity was blocked by simultaneous application of 2-amino-5-phosphonovalerate (AP5). The results demonstrate that NMDA receptor activation can induce rhythmical XII N activity different from respiration in an isolated mammalian CNS. This preparation will be useful for the investigation of neural mechanisms underlying the central generation of food ingestive movements. PMID:7605909

  6. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  7. The function of the NMDA-receptor during normal brain aging.

    PubMed

    Müller, W E; Stoll, S; Scheuer, K; Meichelböck, A

    1994-01-01

    Age-related changes of N-methyl-D-aspartate (NMDA) receptors have been found in cortical areas and in the hippocampus of many species. On the basis of a variety of experimental observations it has been suggested that the decrease of NMDA-receptor density might be one of the causative factors of the cognitive decline with aging. Based on these findings several strategies have been developed to improve cognition by compensating the NMDA-receptor deficits in aging. The most promising approaches are the indirect activation of glutamatergic neurotransmission by agonists of the glycine site or the restoration of the age-related deficit of receptor density by several nootropics. PMID:7897387

  8. Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release

    PubMed Central

    Nisticò, Robert; Florenzano, Fulvio; Mango, Dalila; Ferraina, Caterina; Grilli, Massimo; Di Prisco, Silvia; Nobili, Annalisa; Saccucci, Stefania; D'Amelio, Marcello; Morbin, Michela; Marchi, Mario; Mercuri, Nicola B.; Davis, Roger J.; Pittaluga, Anna; Feligioni, Marco

    2015-01-01

    Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored. Here, by means of biochemical, morphological and functional approaches, we demonstrate that JNK and its scaffold protein JIP1 are also expressed at the presynaptic level and that the NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Moreover, using knockout mice for single JNK isoforms, we proved that JNK2 is the essential isoform in mediating this presynaptic event. Overall the present findings unveil a novel JNK2 localization and function, which is likely to play a role in different physiological and pathological conditions. PMID:25762148

  9. A dual mechanism for impairment of GABAA receptor activity by NMDA receptor activation in rat cerebellum granule cells.

    PubMed

    Robello, M; Amico, C; Cupello, A

    1997-01-01

    The function of the GABAA receptor has been studied using the whole cell voltage clamp recording technique in rat cerebellum granule cells in culture. Activation of NMDA-type glutamate receptors causes a reduction in the effect of GABA. Full GABAA receptor activity was recovered after washing out NMDA and NMDA action was prevented in a Mg+2 containing medium. The NMDA effect was also absent when extracellular Ca+2 was replaced by Ba+2 and when 10 mM Bapta was present in the intracellular solution. Charge accumulations via voltage activated Ca+2 channels greater than the ones via NMDA receptors do not cause any reduction in GABAA receptor function, suggesting that Ca+2 influx through NMDA receptor channels is critical for the effect. The NMDA effect was reduced by including adenosine-5'-O-3-thiophosphate (ATP-gamma-S) in the internal solution and there was a reduction in the NMDA effect caused by deltamethrin, a calcineurin inhibitor. Part of the NMDA induced GABAA receptor impairment was prevented by prior treatment with L-arginine. Analogously, part of the NMDA effect was prevented by blockage of NO-synthase activity by N omega-nitro-L-arginine. A combination of NO-synthase and calcineurin inhibitors completely eliminated the NMDA action. An analogous result was obtained by combining the NO-synthase inhibitor with the addition of ATP-gamma-S to the pipette medium. The additivity of the prevention of the NMDA impairment of GABAA receptor by blocking the L-arginine/NO pathway and inhibiting calcineurin activity suggests an independent involvement of these two pathways in the interaction between NMDA and the GABAA receptor. On the one hand Ca+2 influx across NMDA channels activates calcineurin and dephosphorylates the GABAA receptor complex directly or dephosphorylates proteins critical for the function of the receptor. On the other hand, Ca+2 influx activates NO-synthase and induces nitric oxide production, which regulates such receptors via protein kinase G

  10. NMDA-Receptor Activation but Not Ion Flux Is Required for Amyloid-Beta Induced Synaptic Depression

    PubMed Central

    Tamburri, Albert; Dudilot, Anthony; Licea, Sara; Bourgeois, Catherine; Boehm, Jannic

    2013-01-01

    Alzheimer disease is characterized by a gradual decrease of synaptic function and, ultimately, by neuronal loss. There is considerable evidence supporting the involvement of oligomeric amyloid-beta (Aβ) in the etiology of Alzheimer’s disease. Historically, AD research has mainly focused on the long-term changes caused by Aβ rather than analyzing its immediate effects. Here we show that acute perfusion of hippocampal slice cultures with oligomeric Aβ depresses synaptic transmission within 20 minutes. This depression is dependent on synaptic stimulation and the activation of NMDA-receptors, but not on NMDA-receptor mediated ion flux. It, therefore, appears that Aβ dependent synaptic depression is mediated through a use-dependent metabotropic-like mechanism of the NMDA-receptor, but does not involve NMDA-receptor mediated synaptic transmission, i.e. it is independent of calcium flux through the NMDA-receptor. PMID:23750255

  11. Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit

    SciTech Connect

    Karakas, E.; Simorowski, N; Furukawa, H

    2009-01-01

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-free and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.

  12. Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes

    PubMed Central

    Ryan, Tomás J; Emes, Richard D; Grant, Seth GN; Komiyama, Noboru H

    2008-01-01

    Background Glutamate gated postsynaptic receptors in the central nervous system (CNS) are essential for environmentally stimulated behaviours including learning and memory in both invertebrates and vertebrates. Though their genetics, biochemistry, physiology, and role in behaviour have been intensely studied in vitro and in vivo, their molecular evolution and structural aspects remain poorly understood. To understand how these receptors have evolved different physiological requirements we have investigated the molecular evolution of glutamate gated receptors and ion channels, in particular the N-methyl-D-aspartate (NMDA) receptor, which is essential for higher cognitive function. Studies of rodent NMDA receptors show that the C-terminal intracellular domain forms a signalling complex with enzymes and scaffold proteins, which is important for neuronal and behavioural plasticity Results The vertebrate NMDA receptor was found to have subunits with C-terminal domains up to 500 amino acids longer than invertebrates. This extension was specific to the NR2 subunit and occurred before the duplication and subsequent divergence of NR2 in the vertebrate lineage. The shorter invertebrate C-terminus lacked vertebrate protein interaction motifs involved with forming a signaling complex although the terminal PDZ interaction domain was conserved. The vertebrate NR2 C-terminal domain was predicted to be intrinsically disordered but with a conserved secondary structure. Conclusion We highlight an evolutionary adaptation specific to vertebrate NMDA receptor NR2 subunits. Using in silico methods we find that evolution has shaped the NMDA receptor C-terminus into an unstructured but modular intracellular domain that parallels the expansion in complexity of an NMDA receptor signalling complex in the vertebrate lineage. We propose the NR2 C-terminus has evolved to be a natively unstructured yet flexible hub organising postsynaptic signalling. The evolution of the NR2 C-terminus and its

  13. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation.

    PubMed

    Song, Ying; Wei, Er-Qing; Zhang, Wei-Ping; Ge, Qiu-Fu; Liu, Jian-Ren; Wang, Meng-Ling; Huang, Xiao-Jia; Hu, Xin; Chen, Zhong

    2006-04-26

    Recently, we have reported that minocycline, a semi-synthetic tetracycline with neuroprotective effects, inhibits the in vitro ischemic-like injury and 5-lipoxygenase (5-LOX) activation in PC12 cells. In the present study, we further determined whether minocycline protects PC12 cells from excitotoxicity via inhibiting 5-LOX activation. We used N-methyl-d-aspartate (NMDA, 200 microM) to induce early (exposure for 6 h) and delayed (exposure for 6 h followed by 24 h recovery) injuries. We found that NMDA receptor antagonist ketamine, 5-LOX inhibitor caffeic acid and minocycline concentration dependently attenuated NMDA-induced early and delayed cell injuries (viability reduction and cell death). However, only ketamine (1 microM) inhibited NMDA-evoked elevation of intracellular calcium. In addition, immunohistochemical analysis showed that NMDA induced 5-LOX translocation to the nuclear membrane after 1- to 6-h exposure which was confirmed by Western blotting, indicating that 5-LOX was activated. Ketamine, caffeic acid and minocycline (each at 1 microM) inhibited 5-LOX translocation after early injury. After delayed injury, PC12 cells were shrunk, and 5-LOX was translocated to the nuclei and nuclear membrane; ketamine, caffeic acid and minocycline inhibited both cell shrinking and 5-LOX translocation. As a control, 12-LOX inhibitor baicalein showed a weak effect on cell viability and death, but no effect on 5-LOX translocation. Therefore, we conclude that the protective effect of minocycline on NMDA-induced injury is partly mediated by inhibiting 5-LOX activation. PMID:16574083

  14. Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus.

    PubMed

    Kervern, Myriam; Silvestre de Ferron, Benoît; Alaux-Cantin, Stéphanie; Fedorenko, Olena; Antol, Johann; Naassila, Mickael; Pierrefiche, Olivier

    2015-08-01

    Irreversible cognitive deficits induced by ethanol exposure during fetal life have been ascribed to a lower NMDA-dependent synaptic long-term potentiation (LTP) in the hippocampus. Whether NMDA-dependent long-term depression (LTD) may also play a critical role in those deficits remains unknown. Here, we show that in vitro LTD induced with paired-pulse low frequency stimulation is enhanced in CA1 hippocampus field of young adult rats exposed to ethanol during brain development. Furthermore, single pulse low frequency stimulation, ineffective at this age (LFS600), induced LTD after ethanol exposure accompanied with a stronger response than controls during LFS600, thus revealing an aberrant form of activity-dependent plasticity at this age. Blocking NMDA receptor or GluN2B containing NMDA receptor prevented both the stronger response during LFS600 and LTD whereas Zinc, an antagonist of GluN2A containing NMDA receptor, was ineffective on both responses. In addition, LFS600-induced LTD was revealed in controls only with a reduced-Mg(2+) medium. In whole dissected hippocampus CA1 field, perinatal ethanol exposure increased GluN2B subunit expression in the synaptic compartment whereas GluN2A was unaltered. Using pharmacological tools, we suggest that LFS600 LTD was of synaptic origin. Altogether, we describe a new mechanism by which ethanol exposure during fetal life induces a long-term alteration of synaptic plasticity involving NMDA receptors, leading to an aberrant LTD. We suggest this effect of ethanol may reflect a delayed maturation of the synapse and that aberrant LTD may also participates to long-lasting cognitive deficits in fetal alcohol spectrum disorder. PMID:25581546

  15. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity.

    PubMed

    Yang, Junfeng; Hertz, Ellen; Zhang, Xiaoqun; Leinartaité, Lina; Lundius, Ebba Gregorsson; Li, Jie; Svenningsson, Per

    2016-01-12

    Progressive accumulation of α-synuclein (α-syn)-containing protein aggregates throughout the nervous system is a pathological hallmark of Parkinson's disease (PD). The mechanisms whereby α-syn exerts neurodegeneration remain to be fully understood. Here we show that overexpression of α-syn in transgenic mice leads to increased phosphorylation of glutamate NMDA receptor (NMDAR) subunits NR1 and NR2B in substantia nigra and striatum as well as reduced glucocerebrosidase (GCase) levels. Similarly, molecular studies performed in mouse N2A cells stably overexpressing human α-syn ((α-syn)N2A) showed that phosphorylation states of the same NMDAR subunits were increased, whereas GCase levels and lysosomal GCase activity were reduced. (α-syn)N2A cells showed an increased sensitivity to neurotoxicity towards 6-hydroxydopamine and NMDA. However, wildtype N2A, but not (α-syn)N2A cells, showed a further reduction in viability when co-incubated with 6-hydroxydopamine and the lysosomal inhibitors NH4Cl and leupeptin, suggesting that α-syn per se perturbs lysosomal functions. NMDA treatment reduced lysosomal GCase activity to the same extent in (α-syn)N2A cells as in wildtype N2A cells, indicating that the α-syn-dependent difference in NMDA neurotoxicity is unrelated to an altered GCase activity. Nevertheless, these data provide molecular evidence that overexpression of α-syn simultaneously induces two potential neurotoxic hits by increasing glutamate NMDA receptor phosphorylation, consistent with increased NMDA receptors functionality, and reducing GCase activity. PMID:26610904

  16. The HIV coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains

    PubMed Central

    Xu, Hangxiu; Bae, Mihyun; Tovar-y-Romo, Luis B.; Patel, Neha; Bandaru, Veera Venkata Ratnam; Pomerantz, Daniel; Steiner, Joseph; Haughey, Norman J.

    2011-01-01

    Infection by the Human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV associated neurocognitive disorders (HAND). While the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. HIV gp120 enlarged, and stabilized the structure of lipid rafts on neuronal dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2; nSMase2) to the plasma membrane. A concurrent pathway was activated that enhanced the forward traffic of NMDA receptors by promoting a PKA-dependent phopshorylation of the NR1 C-terminal serine 897 (that masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses, and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse, and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced three-fold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from enhancing the surface localization and clustering of NMDA receptors, while disrupting the structure of membrane microdomains restored the ability of NMDA receptors to disperse and internalize following gp120. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV-infection by interfering with the traffic of NMDA receptors. PMID:22114277

  17. Effects of N-methyl-D-aspartate (NMDA) receptor blockade on breathing pattern in newborn cat.

    PubMed

    Schweitzer, P; Pierrefiche, O; Foutz, A S; Denavit-Saubié, M

    1990-11-01

    We gave newborn kittens the N-methyl-D-aspartate (NMDA) receptor blocker MK-801 systemically while recording their breathing patterns by the barometric method. Unlike pentobarbital, MK-801 at an anaesthetic dose increased the relative length of inspiration within the respiratory cycle. The section of both vagus nerves under MK-801 produced apneustic breathing, whereas vagotomy under pentobarbital had no such effect. We conclude that the central inspiratory-termination mechanism mediated through NMDA receptors and the vagally-mediated mechanism that independently 'switches off' inspiration are both functional at birth. PMID:2148125

  18. Ethanol withdrawal hyper-responsiveness mediated by NMDA receptors in spinal cord motor neurons

    PubMed Central

    Li, Hui-Fang; Kendig, Joan J

    2003-01-01

    Following ethanol (EtOH) exposure, population excitatory postsynaptic potentials (pEPSPs) in isolated spinal cord increase to a level above control (withdrawal hyper-responsiveness). The present studies were designed to characterize this phenomenon and in particular to test the hypothesis that protein kinases mediate withdrawal. Patch-clamp studies were carried out in motor neurons in rat spinal cord slices. Currents were evoked by brief pulses of glutamate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or N-methyl-D-aspartic acid (NMDA). Of 15 EtOH-sensitive neurons in which currents were evoked by glutamate, four (27%) displayed withdrawal hyper-responsiveness in the washout period. Mean current area after washout was 129.6±5% of control. When currents were evoked by AMPA, two of 10 neurons (20%) displayed withdrawal hyper-responsiveness, with a mean current area 122±8% of control on washout. Of a group of 11 neurons in which currents were evoked by NMDA, nine (82%) displayed withdrawal hyper-responsiveness. Mean increase in current area at the end of the washout period was to 133±6% of control (n=9, P<0.001). When NMDA applications were stopped durithe period of EtOH exposure, mean area of NMDA-evoked responses on washout was only 98.0±5% of control (n=6, P>0.05). The tyrosine kinase inhibitor genistein (10–20 μM) blocked withdrawal hyper-responsiveness. Of six EtOH-sensitive neurons, the mean NMDA-evoked current area after washout was 89±6% of control, P>0.05. The protein kinase A (PKA) inhibitor Rp-cAMP (20–500 μM) did not block withdrawal hyper-responsiveness. On washout, the mean NMDA-evoked current area was 124±6% of control (n=5, P<0.05). Two broad-spectrum specific protein kinase C (PKC) inhibitors, GF-109203X (0.3 μM) and chelerythrine chloride (0.5–2 nM), blocked withdrawal hyper-responsiveness. Responses on washout were 108±7%, n=5 and 88±4%, n=4 of control, respectively, P>0.05. NMDA activation during EtOH exposure

  19. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis in a young Lebanese girl.

    PubMed

    Safadieh, Layal; Dabbagh, Omar

    2013-10-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a recently recognized autoimmune neurologic disorder that presents with severe neuropsychiatric symptoms in previously healthy children. A 4-year-old Lebanese girl presented with new-onset behavioral changes, orofacial dyskinesias, fluctuation in consciousness, inability to walk, and mutism. Antibodies directed against NMDA receptors were detected in the patient's serum and cerebrospinal fluid. Prompt treatment with a single course of intravenous immunoglobulin resulted in early complete recovery. This is the first case report of a Middle Eastern child affected with this condition. PMID:22992990

  20. Frequency-dependent facilitation of synaptic throughput via postsynaptic NMDA receptors in the nucleus of the solitary tract.

    PubMed

    Zhao, Huan; Peters, James H; Zhu, Mingyan; Page, Stephen J; Ritter, Robert C; Appleyard, Suzanne M

    2015-01-01

    Hindbrain NMDA receptors play important roles in reflexive and behavioural responses to vagal activation. NMDA receptors have also been shown to contribute to the synaptic responses of neurons in the nucleus of the solitary tract (NTS), but their exact role remains unclear. In this study we used whole cell patch-clamping techniques in rat horizontal brain slice to investigate the role of NMDA receptors in the fidelity of transmission across solitary tract afferent-NTS neuron synapses. Results show that NMDA receptors contribute up to 70% of the charge transferred across the synapse at high (>5 Hz) firing rates, but have little contribution at lower firing frequencies. Results also show that NMDA receptors critically contribute to the fidelity of transmission across these synapses during high frequency (>5 Hz) afferent discharge rates. This novel role of NMDA receptors may explain in part how primary visceral afferents, including vagal afferents, can maintain fidelity of transmission across a broad range of firing frequencies. Neurons within the nucleus of the solitary tract (NTS) receive vagal afferent innervations that initiate gastrointestinal and cardiovascular reflexes. Glutamate is the fast excitatory neurotransmitter released in the NTS by vagal afferents, which arrive there via the solitary tract (ST). ST stimulation elicits excitatory postsynaptic currents (EPSCs) in NTS neurons mediated by both AMPA- and NMDA-type glutamate receptors (-Rs). Vagal afferents exhibit a high probability of vesicle release and exhibit robust frequency-dependent depression due to presynaptic vesicle depletion. Nonetheless, synaptic throughput is maintained even at high frequencies of afferent activation. Here we test the hypothesis that postsynaptic NMDA-Rs are essential in maintaining throughput across ST-NTS synapses. Using patch clamp electrophysiology in horizontal brainstem slices, we found that NMDA-Rs, including NR2B subtypes, carry up to 70% of the charge transferred

  1. Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus.

    PubMed

    Qiu, Shenfeng; Zhao, Lisa F; Korwek, Kimberly M; Weeber, Edwin J

    2006-12-13

    The developmental lamination of the hippocampus and other cortical structures requires a signaling cascade initiated by reelin and its receptors, apoER2 (apolipoprotein E receptor 2) and VLDLR (very-low-density lipoprotein receptor). However, the functional significance of continued reelin expression in the postnatal brain remains poorly understood. Here, we show that reelin application to adult mice hippocampal slices leads to enhanced glutamatergic transmission mediated by NMDA receptors (NMDARs) and AMPA receptors (AMPARs) through distinct mechanisms. Application of recombinant reelin enhanced NMDAR-mediated currents through postsynaptic mechanisms, as revealed by the variance-mean analysis of synaptic NMDAR currents, assessment of spontaneous miniature events, and the levels of NMDAR subunits at synaptic surface. In comparison, nonstationary fluctuation analysis of miniature AMPAR currents and quantification of synaptic surface proteins revealed that reelin-induced enhancement of AMPAR responses was mediated by increased AMPAR numbers. Reelin enhancement of synaptic NMDAR currents was abolished when receptor-associated protein (RAP) or the Src inhibitor 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) was bath applied and was abrogated by including PP1 in the recording electrodes. In comparison, including RAP or an inactive PP1 analog PP3 in the recording electrode was without effect. Interestingly, the increased AMPAR response after reelin application was not blocked by PP1 but was blocked by the phosphoinositide-3' kinase (PI3K) inhibitors wortmannin and LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride]. Furthermore, reelin-induced, PI3K-dependent AMPAR surface insertion was also observed in cultured hippocampal neurons. Together, these results reveal a differential functional coupling of reelin signaling with NMDAR and AMPAR function and define a novel mechanism for controlling synaptic strength and plasticity

  2. Ethanol (EtOH) inhibition of NMDA-activated ion current is not voltage-dependent and EtOH does not interact with other binding sites on the NMDA receptor/ionophore complex

    SciTech Connect

    Lovinger, D.M.; White, G.; Weight, F.F. )

    1990-02-26

    Recent studies indicate that intoxicating concentrations of EtOH inhibit neuronal responses to activation of NMDA-type glutamate receptors. The authors have observed that the potency of different alcohols for inhibiting NMDA-activated ion current in hippocampal neurons increases as a function of increasing hydrophobicity, suggesting that EtOH acts at a hydrophobic site. To further characterize the mechanisms of this effect, the authors examined the voltage-dependence of the EtOH inhibition of NMDA-activated ion current as well as potential interactions of EtOH with other effectors of the NMDA receptor/ionophore complex. The amount of inhibition of peak NMDA-activated current by 50 mM EtOH did not differ over a range of membrane potentials from {minus}60 to +60 mV, and EtOH did not alter the reversal potential of NMDA-activated current. The percent inhibition observed in the presence of 10-100 mM EtOH did not differ with NMDA concentrations from 10-100 {mu}M. The percent inhibition by 50 mM EtOH (30-48%) did not differ in the absence or presence of the channel blockers Mg{sup 2+} (50-500 {mu}M), Zn{sup 2+} (5 and 20 {mu}M) or ketamine (2 and 10 {mu}M), or with increasing concentrations of the NMDA receptor cofactor glycine (0.01-1 {mu}M). These data indicate that: (i) EtOH does not change the ion selectivity of the ionophore, and (ii) EtOH does not appear to interact with previously described binding sites on the NMDA receptor/ionophore complex.

  3. Treatment of the Ppt1−/− Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis with the NMDA Receptor Antagonist Memantine

    PubMed Central

    Finn, Rozzy; Kovács, Attila D.; Pearce, David A.

    2014-01-01

    The neuronal ceroid lipofuscinoses, a family of neurodegenerative lysosomal storage disorders, represent the most common cause of pediatric-onset neurodegeneration. The infantile form has a devastatingly early onset and one of the fastest progressing disease courses. Despite decades of research, the molecular mechanisms driving neuronal loss in infantile neuronal ceroid lipofuscinosis remain unknown. We have previously shown that NMDA-type glutamate receptors in the Ppt1−/− mouse model of this disease exhibit a hyperfunctional phenotype and postulate that aberrant glutamatergic activity may contribute to neural pathology in both the mouse model and human patients. To test this hypothesis, we treated Ppt1−/− mice with the NMDA receptor antagonist memantine and assessed their response to the drug using an accelerating rotarod. At 20 mg/kg, memantine treatment induced a delayed but notable improvement in Ppt1−/− mice. Much remains to be assessed before moving to patient trials, but these results suggest memantine has potential as a treatment. PMID:24014511

  4. NMDA receptors are the basis for persistent network activity in neocortex slices

    PubMed Central

    Favero, Morgana

    2015-01-01

    During behavioral quiescence the neocortex generates spontaneous slow oscillations that consist of Up and Down states. Up states are short epochs of persistent activity, but their underlying source is unclear. In neocortex slices of adult mice, we monitored several cellular and network variables during the transition between a traditional buffer, which does not cause Up states, and a lower-divalent cation buffer, which leads to the generation of Up states. We found that the resting membrane potential and input resistance of cortical cells did not change with the development of Up states. The synaptic efficacy of excitatory postsynaptic potentials mediated by non-NMDA receptors was slightly reduced, but this is unlikely to facilitate the generation of Up states. On the other hand, we identified two variables that are associated with the generation of Up states: an enhancement of the intrinsic firing excitability of cortical cells and an enhancement of NMDA-mediated responses evoked by electrical or optogenetic stimulation. The fact that blocking NMDA receptors abolishes Up states indicates that the enhancement in intrinsic firing excitability alone is insufficient to generate Up states. NMDA receptors have a crucial role in the generation of Up states in neocortex slices. PMID:25878152

  5. New benzoyl urea derivatives as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, I; Greiner, I; Kolok, S; Galgóczy, K; Ignácz-Szendrei, Gy; Horváth, Cs; Farkas, S; Gáti, T; Háda, V; Domány, Gy

    2006-09-01

    A novel series of benzoyl urea derivatives was prepared and identified as NR2B selective NMDA receptor antagonists. The influence of the substitution of the piperidine ring on the biological activity of the compounds was studied. Compound 9 was active in the formalin test in mice. PMID:17020160

  6. A conserved structural mechanism of NMDA receptor inhibition: A comparison of ifenprodil and zinc

    PubMed Central

    Sirrieh, Rita E.; MacLean, David M.

    2015-01-01

    N-methyl-d-aspartate (NMDA) receptors, one of the three main types of ionotropic glutamate receptors (iGluRs), are involved in excitatory synaptic transmission, and their dysfunction is implicated in various neurological disorders. NMDA receptors, heterotetramers typically composed of GluN1 and GluN2 subunits, are the only members of the iGluR family that bind allosteric modulators at their amino-terminal domains (ATDs). We used luminescence resonance energy transfer to characterize the conformational changes the receptor undergoes upon binding ifenprodil, a synthetic compound that specifically inhibits activation of NMDA receptors containing GluN2B. We found that ifenprodil induced an overall closure of the GluN2B ATD without affecting conformation of the GluN1 ATD or the upper lobes of the ATDs, the same mechanism whereby zinc inhibits GluN2A. These data demonstrate that the conformational changes induced by zinc and ifenprodil represent a conserved mechanism of NMDA receptor inhibition. Additionally, we compared the structural mechanism of zinc inhibition of GluN1–GluN2A receptors to that of ifenprodil inhibition of GluN1–GluN2B. The similarities in the conformational changes induced by inhibitor binding suggest a conserved structural mechanism of inhibition independent of the binding site of the modulator. PMID:26170175

  7. Reconsolidation after Remembering an Odor-Reward Association Requires NMDA Receptors

    ERIC Educational Resources Information Center

    Torras-Garcia, Meritxell; Tronel, Sophie; Sara, Susan J.; Lelong, Julien

    2005-01-01

    A rapidly learned odor discrimination task based on spontaneous foraging behavior of the rat was used to evaluate the role of N-methyl-D-aspartate (NMDA) receptors (NMDARs) in ongoing memory consolidation. Rats were trained in a single session to discriminate among three odors, one of which was associated with palatable food reward. Previous…

  8. Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons.

    PubMed

    Toulmond, S; Vige, X; Fage, D; Benavides, J

    1992-09-14

    The potential neuroprotective effects of IL-6 against the excitotoxic neuronal loss induced by N-methyl-D-aspartate (NMDA) have been studied. Infusion into the rat striatum of excitotoxic amounts (250 nmol) of NMDA resulted in a 45% decrease in striatal choline acetyl transferase activity (ChAT; a marker of cholinergic neurons) and glutamate decarboxylase (GAD, a marker of GABAergic neurons) at 2 days post-injection. Co-infusion of 10 U of IL-6 reduced the loss of ChAT activity to 21% but failed to prevent the loss of GAD activity. IL-6 per se, up to the dose of 500 U, failed to affect ChAT or GAD activities. The in vivo effects of IL-6 are not mediated by a direct antagonism of NMDA toxicity, since IL-6 (up to a concentration of 500 and 5000 U/ml, respectively) did not antagonize either the increase in cyclic GMP levels resulting from NMDA receptor activation in cerebellar slices or the glutamate-induced release of lactate dehydrogenase, an index of neurotoxicity, by cultured cortical neurons. These results suggest that the increase in IL-6 levels observed in experimental brain lesions may play a role in the protection and regeneration of cholinergic neurons. PMID:1331914

  9. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study.

    PubMed

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  10. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study

    PubMed Central

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  11. Preclinical anticonvulsant and neuroprotective profile of 8319, a non-competitive NMDA antagonist

    SciTech Connect

    Fielding, S.; Wilker, J.C.; Chernack, J.; Ramirez, V.; Wilmot, C.A.; Martin, L.L.; Payack, J.F.; Cornfeldt, M.L.; Rudolphi, K.A.; Rush, D.K. )

    1990-01-01

    8319, ((+-)-2-Amino-N-ethyl-alpha- (3-methyl-2-thienyl) benzeneethanamine 2HCl), is a novel compound with the profile of a non-competitive NMDA antagonist. The compound displaced (3H) TCP with high affinity (IC50 = 43 nM), but was inactive at the NMDA, benzodiazepine and GABA sites; in vivo, 8319 showed good efficacy as an anticonvulsant and potential neuroprotective agent. It blocked seizures induced by NMDLA, supramaximal electroshock, pentylenetetrazol (PTZ), picrotoxin, and thiosemicarbazide with ED50's of 1-20 mg/kg ip. As a neuroprotective agent, 8319 (30-100 mg/kg sc) prevented the death of dorsal hippocampal pyramidal cells induced by direct injection of 20 nmol NMDA. At 15 mg/kg ip, the compound was also effective against hippocampal neuronal necrosis induced via bilateral occlusion of the carotid arteries in gerbils. In summary, 8319 is a noncompetitive NMDA antagonist with good anticonvulsant activity and may possess neuroprotective properties useful in the treatment of brain ischemia.

  12. The Impact of NMDA Receptor Blockade on Human Working Memory-Related Prefrontal Function and Connectivity

    PubMed Central

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-01-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments. PMID:23856634

  13. Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling

    PubMed Central

    Cooray, Gerald K.; Sengupta, Biswa; Douglas, Pamela; Englund, Marita; Wickstrom, Ronny; Friston, Karl

    2015-01-01

    We characterised the pathophysiology of seizure onset in terms of slow fluctuations in synaptic efficacy using EEG in patients with anti-N-methyl-d-aspartate receptor (NMDA-R) encephalitis. EEG recordings were obtained from two female patients with anti-NMDA-R encephalitis with recurrent partial seizures (ages 19 and 31). Focal electrographic seizure activity was localised using an empirical Bayes beamformer. The spectral density of reconstructed source activity was then characterised with dynamic causal modelling (DCM). Eight models were compared for each patient, to evaluate the relative contribution of changes in intrinsic (excitatory and inhibitory) connectivity and endogenous afferent input. Bayesian model comparison established a role for changes in both excitatory and inhibitory connectivity during seizure activity (in addition to changes in the exogenous input). Seizures in both patients were associated with a sequence of changes in inhibitory and excitatory connectivity; a transient increase in inhibitory connectivity followed by a transient increase in excitatory connectivity and a final peak of excitatory–inhibitory balance at seizure offset. These systematic fluctuations in excitatory and inhibitory gain may be characteristic of (anti NMDA-R encephalitis) seizures. We present these results as a case study and replication to motivate analyses of larger patient cohorts, to see whether our findings generalise and further characterise the mechanisms of seizure activity in anti-NMDA-R encephalitis. PMID:26032883

  14. NMDA signaling in CA1 mediates selectively the spatial component of episodic memory.

    PubMed

    Place, Ryan; Lykken, Christy; Beer, Zachery; Suh, Junghyup; McHugh, Thomas J; Tonegawa, Susumu; Eichenbaum, Howard; Sauvage, Magdalena M

    2012-04-01

    Recent studies focusing on the memory for temporal order have reported that CA1 plays a critical role in the memory for the sequences of events, in addition to its well-described role in spatial navigation. In contrast, CA3 was found to principally contribute to the memory for the association of items with spatial or contextual information in tasks focusing on spatial memory. Other studies have shown that NMDA signaling in the hippocampus is critical to memory performance in studies that have investigated spatial and temporal order memory independently. However, the role of NMDA signaling separately in CA1 and CA3 in memory that combines both spatial and temporal processing demands (episodic memory) has not been examined. Here we investigated the effect of the deletion of the NR1 subunit of the NMDA receptor in CA1 or CA3 on the spatial and the temporal aspects of episodic memory, using a behavioral task that allows for these two aspects of memory to be evaluated distinctly within the same task. Under these conditions, NMDA signaling in CA1 specifically contributes to the spatial aspect of memory function and is not required to support the memory for temporal order of events. PMID:22419815

  15. NMDA-induced accumulation of Shank at the postsynaptic density is mediated by CaMKII

    SciTech Connect

    Tao-Cheng, Jung-Hwa; Yang, Yijung; Bayer, K. Ulrich; Reese, Thomas S.; Dosemeci, Ayse

    2014-07-18

    Highlights: • NMDA-induces accumulation of Shank at the postsynaptic density. • Shank accumulation is preferential to the distal region of the postsynaptic density. • Shank accumulation is mediated by CaMKII. - Abstract: Shank is a specialized scaffold protein present in high abundance at the postsynaptic density (PSD). Using pre-embedding immunogold electron microscopy on cultured hippocampal neurons, we had previously demonstrated further accumulation of Shank at the PSD under excitatory conditions. Here, using the same experimental protocol, we demonstrate that a cell permeable CaMKII inhibitor, tatCN21, blocks NMDA-induced accumulation of Shank at the PSD. Furthermore we show that NMDA application changes the distribution pattern of Shank at the PSD, promoting a 7–10 nm shift in the median distance of Shank labels away from the postsynaptic membrane. Inhibition of CaMKII with tatCN21 also blocks this shift in the distribution of Shank. Altogether these results imply that upon activation of NMDA receptors, CaMKII mediates accumulation of Shank, preferentially at the distal regions of the PSD complex extending toward the cytoplasm.

  16. Inhibition of Acetylcholinesterase Modulates NMDA Receptor Antagonist Mediated Alterations in the Developing Brain

    PubMed Central

    Bendix, Ivo; Serdar, Meray; Herz, Josephine; von Haefen, Clarissa; Nasser, Fatme; Rohrer, Benjamin; Endesfelder, Stefanie; Felderhoff-Mueser, Ursula; Spies, Claudia D.; Sifringer, Marco

    2014-01-01

    Exposure to N-methyl-d-aspartate (NMDA) receptor antagonists has been demonstrated to induce neurodegeneration in newborn rats. However, in clinical practice the use of NMDA receptor antagonists as anesthetics and sedatives cannot always be avoided. The present study investigated the effect of the indirect cholinergic agonist physostigmine on neurotrophin expression and the extracellular matrix during NMDA receptor antagonist induced injury to the immature rat brain. The aim was to investigate matrix metalloproteinase (MMP)-2 activity, as well as expression of tissue inhibitor of metalloproteinase (TIMP)-2 and brain-derived neurotrophic factor (BDNF) after co-administration of the non-competitive NMDA receptor antagonist MK801 (dizocilpine) and the acetylcholinesterase (AChE) inhibitor physostigmine. The AChE inhibitor physostigmine ameliorated the MK801-induced reduction of BDNF mRNA and protein levels, reduced MK801-triggered MMP-2 activity and prevented decreased TIMP-2 mRNA expression. Our results indicate that AChE inhibition may prevent newborn rats from MK801-mediated brain damage by enhancing neurotrophin-associated signaling pathways and by modulating the extracellular matrix. PMID:24595240

  17. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  18. Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation.

    PubMed

    Xu, Fei; Plummer, Mark R; Len, Guo-Wei; Nakazawa, Takanobu; Yamamoto, Tadashi; Black, Ira B; Wu, Kuo

    2006-11-22

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of hippocampal synaptic plasticity. Previously, we found that one of the targets of BDNF modulation is NR2B-containing NMDA receptors. Furthermore, exposure to the trophin rapidly increases NMDA receptor activity and enhances tyrosine phosphorylation of NR2B in cortical and hippocampal postsynaptic densities (PSDs), potentially linking receptor phosphorylation to synaptic plasticity. To define the specific NR2B residue(s) regulated by BDNF, we focused on tyrosine 1472, phosphorylation of which increases after LTP. BDNF rapidly increased phosphorylation in cortical PSDs. The tyrosine kinase Fyn is critical since BDNF-dependent phosphorylation was abolished in Fyn knockout mice. Single-channel patch clamp recordings showed that Fyn is required for the increase in NMDA receptor activity elicited by BDNF. Collectively, our results suggest that BDNF enhances phosphorylation of NR2B tyrosine 1472 through activation of Fyn, leading to alteration of NMDA receptor activity and increased synaptic transmission. PMID:17045972

  19. Interaction between NMDA glutamatergic and nitrergic enteric pathways during in vitro ischemia and reperfusion.

    PubMed

    Filpa, Viviana; Carpanese, Elisa; Marchet, Silvia; Prandoni, Valeria; Moro, Elisabetta; Lecchini, Sergio; Frigo, Gianmario; Giaroni, Cristina; Crema, Francesca

    2015-03-01

    Nitric oxide (NO) and glutamate, via N-methyl-d-aspartate (NMDA) receptors, participate to changes in neuromuscular responses after ischemic/reperfusion (I/R) injury in the gut. In the present study we investigated the existence of a possible interplay between nitrergic and NMDA receptor pathways in the guinea pig ileum after in vitro I/R injury, resorting to functional and biomolecular approaches. In normal metabolic conditions NMDA concentration-dependently enhanced both glutamate (analyzed by high performance liquid chromatography with fluorimetric detection) and NO (spectrophotometrically quantified as NO2(-) and NO3(-)) spontaneous overflow from isolated ileal segments. Both effects were reduced by the NMDA antagonists, (-)-AP5 (10µM) and 5,7-diCl-kynurenic acid (10µM, 5,7-diCl-KYN). N(ω)-propyl-l-arginine (1µM, NPLA) and 1400W (10µM), respectively, nNOS and iNOS inhibitors, reduced NMDA-stimulated glutamate overflow. After in vitro I/R, glutamate overflow increased, and returned to control values in the presence of NPLA and 1400W. NO2(-) and NO3(-) levels transiently increased during I/R and were reduced by both (-)-AP5 and 5,7-diCl-KYN. In longitudinal muscle myenteric plexus preparations, iNOS mRNA and protein levels increased after in vitro I/R; both parameters were reduced to control values by (-)-AP5 and 5,7-diCl-KYN. Both antagonists were also able to reduce ischemia-induced enhancement of nNOS mRNA levels. Protein levels of GluN1, the ubiquitary subunit of NMDA receptors, increased after I/R and were reduced by both NPLA and 1400W. On the whole, this data suggests the existence of a cross-talk between NMDA receptor and nitrergic pathways in guinea pig ileum myenteric plexus, which may participate to neuronal rearrangements occurring during I/R. PMID:25641749

  20. Interleukin-6 protects cerebellar granule neurons from NMDA-induced neurotoxicity.

    PubMed

    Wang, Xiao-Chun; Qiu, Yi-Hua; Peng, Yu-Ping

    2007-04-25

    Interleukin-6 (IL-6) is an important cytokine that participates in inflammation reaction and cell growth and differentiation in the immune and nervous systems. However, the neuroprotection of IL-6 against N-methyl-D-aspartate (NMDA)-induced neurotoxicity and the related underlying mechanisms are still not identified. In the present study, the cultured cerebellar granule neurons (CGNs) from postnatal (8-day) infant rats were chronically exposed to IL-6 for 8 d, and then NMDA (100 micromol/L) was applied to the cultured CGNs for 30 min. Methyl-thiazole-tetrazolium (MTT) assay, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and confocal laser scanning microscope (CLSM) were used to detect neuronal vitality, apoptosis and dynamic changes of intracellular Ca(2+) levels in the neurons, respectively. Anti-gp130 monoclonal antibody (75 ng/mL) was employed to the cultured CGNs with IL-6 to inhibit IL-6 activity so as to evaluate the role of gp130 (a 130 kDa glucoprotein transducing IL-6 signal) in mediating IL-6 neuroprotection. Western blot was used to measure the expressions of phospho-signal transducer and activator of transcription 3 (STAT3) and phospho-extracellular signal regulated kinase 1/2 (ERK1/2) in the cultured CGNs. The NMDA stimulation of the cultured CGNs without IL-6 pretreatment resulted in a significant reduction of the neuronal vitality, notable enhancement of the neuronal apoptosis and intracellular Ca(2+) overload in the neurons. The NMDA stimulation of the CGNs chronically pretreated with IL-6 caused a remarkable increase in the neuronal vitality, marked suppression of neuronal apoptosis and intracellular Ca(2+) overload in the neurons, compared with that in the control neurons without IL-6 pretreatment. Furthermore, anti-gp130 antibody blocked the inhibitory effect of IL-6 on NMDA-induced intracellular Ca(2+) overload in the neurons. The levels of phospho-STAT3 and phospho-ERK1/2 were significantly higher in IL-6

  1. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus.

    PubMed

    Swanger, Sharon A; Vance, Katie M; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland; Traynelis, Stephen F

    2015-12-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)-P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. PMID:26631477

  2. PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating

    PubMed Central

    Lin, Ying; Jover-Mengual, Teresa; Wong, Judy; Bennett, Michael V. L.; Zukin, R. Suzanne

    2006-01-01

    Neuronal NMDA receptors (NMDARs) colocalize with postsynaptic density protein-95 (PSD-95), a putative NMDAR anchoring protein and core component of the PSD, at excitatory synapses. PKC activation and PSD-95 expression each enhance NMDAR channel opening rate and number of functional channels at the cell surface. Here we show in Xenopus oocytes that PSD-95 and PKC potentiate NMDA gating and trafficking in a nonadditive manner. PSD-95 and PKC each enhance NMDA channel activity, with no change in single-channel conductance, reversal potential or mean open time. PSD-95 and PKC each potentiate NMDA channel opening rate (kβ) and number of functional channels at the cell surface (N), as indicated by more rapid current decay and enhanced charge transfer in the presence of the open channel blocker MK-801. PSD-95 and PKC each increase NMDAR surface expression, as indicated by immunofluorescence. PKC potentiates NMDA channel function and NMDAR surface expression to the same final absolute values in the absence or presence of PSD-95. Thus, PSD-95 partially occludes PKC potentiation. We further show that Ser-1462, a putative phosphorylation target within the PDZ-binding motif of the NR2A subunit, is required for PSD-95-induced potentiation and partial occlusion of PKC potentiation. Coimmunoprecipitation experiments with cortical neurons in culture indicate that PKC activation promotes assembly of NR2 with NR1, and that the newly assembled NMDARs are not associated with PSD-95. These findings predict that synaptic scaffolding proteins and protein kinases convergently modulate NMDAR gating and trafficking at synaptic sites. PMID:17179037

  3. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons.

    PubMed

    Oswald, Manfred J; Schulz, Jan M; Kelsch, Wolfgang; Oorschot, Dorothy E; Reynolds, John N J

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission. PMID:25914618

  4. NMDA Antagonists in the Superior Colliculus Prevent Developmental Plasticity But Not Visual Transmission or Map Compression

    PubMed Central

    HUANG, L.; PALLAS, S. L.

    2016-01-01

    Partial ablation of the superior colliculus (SC) at birth in hamsters compresses the retinocollicular map, increasing the amount of visual field represented at each SC location. Receptive field sizes of single SC neurons are maintained, however, preserving receptive field properties in the prelesion condition. The mechanism that allows single SC neurons to restrict the number of convergent retinal inputs and thus compensate for induced brain damage is unknown. In this study, we examined the role of N-methyl-d-aspartate (NMDA) receptors in controlling retinocollicular convergence. We found that chronic 2-amino-5-phosphonovaleric acid (APV) blockade of NMDA receptors from birth in normal hamsters resulted in enlarged single-unit receptive fields in SC neurons from normal maps and further enlargement in lesioned animals with compressed maps. The effect was linearly related to lesion size. These results suggest that NMDA receptors are necessary to control afferent/target convergence in the normal SC and to compensate for excess retinal afferents in lesioned animals. Despite the alteration in receptive field size in the APV-treated animals, a complete visual map was present in both normal and lesioned hamsters. Visual responsiveness in the treated SC was normal; thus the loss of compensatory plasticity was not due to reduced visual responsiveness. Our results argue that NMDA receptors are essential for map refinement, construction of receptive fields, and compensation for damage but not overall map compression. The results are consistent with a role for the NMDA receptor as a coincidence detector with a threshold, providing visual neurons with the ability to calculate the amount of visual space represented by competing retinal inputs through the absolute amount of coincidence in their firing patterns. This mechanism of population matching is likely to be of general importance during nervous system development. PMID:11535668

  5. Subtype selective NMDA receptor antagonists induce recovery of synapses lost following exposure to HIV-1 Tat

    PubMed Central

    Shin, AH; Kim, HJ; Thayer, SA

    2012-01-01

    BACKGROUND AND PURPOSE Neurocognitive disorders afflict approximately 20% of HIV-infected patients. HIV-1-infected cells in the brain shed viral proteins such as transactivator of transcription (Tat). Tat elicits cell death and synapse loss via processes initiated by NMDA receptor activation but mediated by separate downstream signalling pathways. Subunit selective NMDA receptor antagonists may differentially modulate survival relative to synaptic changes. EXPERIMENTAL APPROACH Tat-evoked cell death was quantified by measuring propidium iodide uptake into rat hippocampal neurons in culture. The effects of Tat on synaptic changes were measured using an imaging-based assay that quantified clusters of the scaffolding protein postsynaptic density 95 fused to green fluorescent protein. KEY RESULTS Dizocilpine, a non-competitive NMDA receptor antagonist, inhibited Tat-induced synapse loss, subsequent synapse recovery and Tat-induced cell death with comparable potencies. Memantine (10 µM) and ifenprodil (10 µM), which preferentially inhibit GluN2B-containing NMDA receptors, protected from Tat-induced cell death with no effect on synapse loss. Surprisingly, memantine and ifenprodil induced synapse recovery in the presence of Tat. In contrast, the GluN2A-prefering antagonist TCN201 prevented synapse loss and recovery with no effect on cell death. CONCLUSIONS AND IMPLICATIONS Synapse loss is a protective mechanism that enables the cell to cope with excess excitatory input. Thus, memantine and ifenprodil are promising neuroprotective drugs because they spare synaptic changes and promote survival. These GluN2B-preferring drugs induced recovery from Tat-evoked synapse loss, suggesting that synaptic pharmacology changed during the neurotoxic process. NMDA receptor subtypes differentially participate in the adaptation and death induced by excitotoxic insult. PMID:22142193

  6. Phosphorylation of NMDA NR1 subunits in the myenteric plexus during TNBS induced colitis.

    PubMed

    Zhou, QiQi; Caudle, Robert M; Moshiree, Baharak; Price, Donald D; Verne, G Nicholas

    2006-10-01

    N-Methyl-d-aspartic acid (NMDA) receptors are known to function in the mediation of pain and have a significant role in the development of hyperalgesia following inflammation. Serine phosphorylation regulation of NMDA receptor function occurs in a variety of conditions. No studies have demonstrated a change in phosphorylation of enteric NMDA receptors following colonic inflammation. We examined the levels of NMDA NR1 phosphorylation in trinitrobenzene sulfonic acid (TNBS) induced colitis in rats and compared it to protein translation and the development of visceral hypersensitivity. We have previously, demonstrated an increase in the C1 cassette of NR1 mRNA expression at 14, 21, and 28 days following TNBS administration. In this study, we examined the NR1 serine phosphorylation at 14 days following TNBS injection. Male Sprague-Dawley rats (200-250 g) were treated with TNBS (20mg per rat) diluted in 50% ethanol (n=3) and vehicle controls of 50% ethanol (n=3). TNBS and vehicle controls were administered with a 24 gauge catheter inserted into the lumen of the rat colon. The animals were sacrificed at 14 days after induction of the colitis and their distal colon was retrieved for two-dimensional (2D) western blot analysis. Serine phosphorylation of the NR1 subunit with C1 cassette appears at 14 days after TNBS injection. In contrast, there was no NR1-C1 expression in the vehicle controls and untreated normal controls. These results suggest a role for colonic-NMDA receptor phosphorylation in the development of neuronal plasticity following colonic inflammation. Phosphorylation of NR1 may partially explain visceral hypersensitivity present during colonic inflammation. PMID:16942839

  7. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents. PMID:21763704

  8. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    SciTech Connect

    Watanabe, Kanako; Kanno, Takeshi; Oshima, Tadayuki; Miwa, Hiroto; Tashiro, Chikara; Nishizaki, Tomoyuki

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.

  9. Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications.

    PubMed

    Rodrigo, Regina; Cauli, Omar; Boix, Jordi; ElMlili, Nisrin; Agusti, Ana; Felipo, Vicente

    2009-01-01

    Acute liver failure (ALF) may lead to rapid death unless the patients receive a liver for transplantation. However, the number of livers available is not enough and a number of patients die before a suitable liver is available for transplantation. The liver has a high capacity for regeneration which may allow complete recovery even in patients with severe liver failure. It would be therefore very useful to have procedures to prevent or delay the mechanisms by which ALF leads to death. These mechanisms are no well understood. Progression of ALF leads to multi-organ failure, systemic inflammatory response, hepatic encephalopathy, cerebral oedema and increased intracranial pressure, which seem the most important immediate causes of mortality in patients with ALF. A main contributor to these events is hyperammonemia, due to impaired ammonia detoxification in the liver. Acute hyperammonemia per se leads to death, which is mediated by activation of the NMDA type of glutamate receptors in brain and may be prevented by antagonists blocking these receptors. Acute liver failure also leads to hyperammonemia and excessive activation of NMDA receptors in brain which contributes to ALF-induced death. Sustained blocking of NMDA receptors by continuous administration of the antagonists MK-801 or memantine increases about twice the survival time of rats with severe ALF due to injection of 2.5g/kg of galactosamine. In rats with milder ALF due to injection of 1.5g/kg of galactosamine, blocking NMDA receptors increases the percentage of surviving rats from 23% to 62% and increases about twice the survival time of the rats which die. These data strongly support that blocking NMDA receptors would improve survival of patients with ALF, either by allowing more time for liver regeneration or to get a liver suitable for transplantation. PMID:19428814

  10. Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus

    2014-01-01

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select (“approach”) rewarding and to reject (“avoid”) punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  11. Differential modulation of reinforcement learning by D2 dopamine and NMDA glutamate receptor antagonism.

    PubMed

    Jocham, Gerhard; Klein, Tilmann A; Ullsperger, Markus

    2014-09-24

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select ("approach") rewarding and to reject ("avoid") punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  12. Heterogeneity of clinical features and corresponding antibodies in seven patients with anti-NMDA receptor encephalitis

    PubMed Central

    SÜHS, KURT-WOLFRAM; WEGNER, FLORIAN; SKRIPULETZ, THOMAS; TREBST, CORINNA; TAYEB, SAID BEN; RAAB, PETER; STANGEL, MARTIN

    2015-01-01

    Anti-N-methyl D-aspartate (NMDA) receptor encephalitis is the most common type of encephalitis in the spectrum of autoimmune encephalitis defined by antibodies targeting neuronal surface antigens. In the present study, the clinical spectrum of this disease is presented using instructive cases in correlation with the anti-NMDA receptor antibody titers in the cerebrospinal fluid (CSF) and serum. A total of 7 female patients admitted to the hospital of Hannover Medical School (Hannover, Germany) between 2008 and 2014 were diagnosed with anti-NMDA receptor encephalitis. Among these patients, 3 cases were selected to illustrate the range of similar and distinct clinical features across the spectrum of the disease and to compare anti-NMDA antibody levels throughout the disease course. All patients received immunosuppressive treatment with methylprednisolone, intravenous immunoglobulin and/or plasmapheresis, followed in the majority of patients by second-line therapy with rituximab and cyclophosphamide. The disease course correlated with NMDA receptor antibody titers, and to a greater extent with the ratio between antibody titer and protein concentration. A favorable clinical outcome with a modified Rankin Scale (mRS) score of ≤1 was achieved in 4 patients, 1 patient had an mRS score of 2 after 3 months of observation only, whereas 2 patients remained severely impaired (mRS score 4). Early and aggressive immunosuppressive treatment appears to support a good clinical outcome; however, the clinical signs and symptoms differ distinctively and treatment decisions have to be made on an individual basis. PMID:26622479

  13. The role of non-receptor protein tyrosine kinases in the excitotoxicity induced by the overactivation of NMDA receptors.

    PubMed

    Sun, Yongjun; Chen, You; Zhan, Liying; Zhang, Linan; Hu, Jie; Gao, Zibin

    2016-04-01

    Protein tyrosine phosphorylation is one of the primary modes of regulation of N-methyl-d-aspartate (NMDA) receptors. The non-receptor tyrosine kinases are one of the two types of protein tyrosine kinases that are involved in this process. The overactivation of NMDA receptors is a primary reason for neuron death following cerebral ischemia. Many studies have illustrated the important role of non-receptor tyrosine kinases in ischemia insults. This review introduces the roles of Src, Fyn, focal adhesion kinase, and proline-rich tyrosine kinase 2 in the excitotoxicity induced by the overactivation of NMDA receptors following cerebral ischemia. PMID:26540220

  14. Knockdown of BNST GluN2B-containing NMDA receptors mimics the actions of ketamine on novelty-induced hypophagia

    PubMed Central

    Louderback, K M; Wills, T A; Muglia, L J; Winder, D G

    2013-01-01

    Administration of a single low dose of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has been demonstrated to elicit long-lasting antidepressant effects in humans with depression, as well as in rodent models of depression. Although pharmacological studies have implicated the GluN2B subunit of the NMDA receptor in these effects, drugs targeting this subunit have off-target actions, and systemic administration of these compounds does not allow for delineation of specific brain regions involved. In this study, we assessed the role of GluN2B in the bed nucleus of the stria terminalis (BNST) in novelty-induced hypophagia (NIH) in mice. First, we verified that ketamine, as well as the GluN2B antagonist Ro25–6981, decreased the latency to consume food in a novel environment in a version of the NIH test. We then hypothesized that GluN2B-containing receptors within the BNST may be a target of systemic ketamine and contribute to behavioral effects. Through the combination of a GluN2B-floxed mouse line and stereotaxic delivery of lentiviral Cre recombinase, we found that targeted knockdown of this subunit within the BNST mimicked the reduction in affective behavior observed with systemic ketamine or Ro25–6981 in the NIH test. These data suggest a role for GluN2B-containing NMDARs within the BNST in the affective effects of systemic ketamine. PMID:24301649

  15. Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice

    PubMed Central

    Tang, Juanjuan; Xue, Wenda; Xia, Baomei; Ren, Li; Tao, Weiwei; Chen, Chang; Zhang, Hailou; Wu, Ruyan; Wang, Qisheng; Wu, Haoxin; Duan, Jinao; Chen, Gang

    2015-01-01

    Yueju, a Traditional Chinese Medicine formula, exhibited fast-onset antidepressant responses similar to ketamine. This study focused on assessing the rapid and persistent antidepressant efficacy of Yueju and ketamine in chronically stressed mice and its association with alternations in prefrontal N-methyl-D-aspartate (NMDA) receptor and mammalian target of rapamycin (mTOR)-related activity. Chronic mild stress (CMS) led to deficits in sucrose preference test (SPT), forced swim test, tail suspension test, and novelty-suppressed feeding test, which were improved differently by acute Yueju or ketamine administration. The improvement in SPT started as soon as 2 hours post Yueju and ketamine but lasted for 6 days only by Yueju. Body weight was regained by Yueju more than ketamine at post-drug administration day (PAD) 6. CMS decreased phosphorylation of the mTOR effectors 4E-BP1 and p70S6K, their upstream regulators ERK and Akt, and downstream targets including synaptic protein GluR1. Yueju or ketamine reversed these changes at PAD 2, but only Yueju reversed phosphor-Akt at PAD 6. CMS selectively and lastingly increased NMDA receptor subunit NR1 expression, which was reversed by ketamine or Yueju at PAD 2 but only by Yueju at PAD 6. These findings suggest that NR1 and Akt/mTOR signaling are important therapeutic targets for depression. PMID:26315757

  16. Antidepressant-Like Effect of the Leaves of Pseudospondias microcarpa in Mice: Evidence for the Involvement of the Serotoninergic System, NMDA Receptor Complex, and Nitric Oxide Pathway.

    PubMed

    Adongo, Donatus Wewura; Kukuia, Kennedy Kwami Edem; Mante, Priscilla Kolibea; Ameyaw, Elvis Ofori; Woode, Eric

    2015-01-01

    Depression continues to be a major global health problem. Although antidepressants are used for its treatment, efficacy is often inconsistent. Thus, the search for alternative therapeutic medicines for its treatment is still important. In this study, the antidepressant-like effect of Pseudospondias microcarpa extract (30-300 mg kg(-1), p.o.) was investigated in two predictive models of depression--forced swimming test and tail suspension test in mice. Additionally, the mechanism(s) of action involved were assessed. Acute treatment with the extract dose dependently reduced immobility of mice in both models. The antidepressant-like effect of the extract (100 mg kg(-1), p.o.) was blocked by p-chlorophenylalanine and cyproheptadine but not prazosin, propranolol, or yohimbine. Concomitant administration of D-cycloserine and the extract potentiated the anti-immobility effect. In contrast, D-serine, a full agonist of glycine/NMDA receptors, abolished the effects. Anti-immobility effects of PME were prevented by pretreatment of mice with L-arginine (750 mg kg(-1), i.p.) and sildenafil (5 mg kg(-1), i.p.). On the contrary, pretreatment of mice with L-NAME (30 mg kg(-1), i.p.) or methylene blue (10 mg kg(-1), i.p.) potentiated its effects. The extract produces an antidepressant-like effect in the FST and TST that is dependent on the serotoninergic system, NMDA receptor complex, and the nitric oxide pathway. PMID:26539489

  17. Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina.

    PubMed

    Zhou, Yifan; Tencerová, Barbora; Hartveit, Espen; Veruki, Margaret L

    2016-01-01

    At many glutamatergic synapses, non-N-methyl-d-aspartate (NMDA) and NMDA receptors are coexpressed postsynaptically. In the mammalian retina, glutamatergic rod bipolar cells are presynaptic to two rod amacrine cells (AII and A17) that constitute dyad postsynaptic partners opposite each presynaptic active zone. Whereas there is strong evidence for expression of non-NMDA receptors by both AII and A17 amacrines, the expression of NMDA receptors by the pre- and postsynaptic neurons in this microcircuit has not been resolved. In this study, using patch-clamp recording from visually identified cells in rat retinal slices, we investigated the expression and functional properties of NMDA receptors in these cells with a combination of pharmacological and biophysical methods. Pressure application of NMDA did not evoke a response in rod bipolar cells, but for both AII and A17 amacrines, NMDA evoked responses that were blocked by a competitive antagonist (CPP) applied extracellularly and an open channel blocker (MK-801) applied intracellularly. NMDA-evoked responses also displayed strong Mg(2+)-dependent voltage block and were independent of gap junction coupling. With low-frequency application (60-s intervals), NMDA-evoked responses remained stable for up to 50 min, but with higher-frequency stimulation (10- to 20-s intervals), NMDA responses were strongly and reversibly suppressed. We observed strong potentiation when NMDA was applied in nominally Ca(2+)-free extracellular solution, potentially reflecting Ca(2+)-dependent NMDA receptor inactivation. These results indicate that expression of functional (i.e., conductance-increasing) NMDA receptors is common to both AII and A17 amacrine cells and suggest that these receptors could play an important role for synaptic signaling, integration, or plasticity in the rod pathway. PMID:26561610

  18. Non-N-methyl-D-aspartate (NMDA) receptor antagonist 1,2,3, 4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulphonamide (NBQX) decreases functional disorders in cytotoxic brain oedema.

    PubMed

    Häntzschel, A; Andreas, K

    2000-01-01

    N-methyl-D-aspartate (NMDA) and non-NMDA receptors were found to be involved in development of functional disorders caused by hexachlorophene. In order to specify the role of glutamate receptors we studied the protective effects of the selective antagonist of the kainate/(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor/channel 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulphonamide disodium (NBQX) and of the non-competitive NMDA receptor antagonist ifenprodil tartrate on coordinative motor behaviour of adult male Wistar rats as assessed in a simple 'ladder-test'. Neurotoxic injury of the cerebrum after hexachlorophene administration and putative amelioration after treatment with test substances was demonstrated histologically. Hexachlorophene-induced motor disturbance remitted spontaneously when stopping the noxis, but remittance occurred significantly earlier when NBQX [0.45 and 0.6 mg/kg intraperitoneal (i.p.)] was applied as well. Ifenprodil (0.15 to 1.2 mg/kg) did not improve the motor function. Vacuolation of white matter of the whole cerebrum was observed after 3 weeks of treatment with hexachlorophene. These morphological alterations caused by hexachlorophene treatment [central nervous system (CNS) vacuolation] spontaneously revert only after 5-6 weeks. The 5-day duration with test substances was too short for remission of vacuolation which thus may not apply to the situation after treatment with glutamate antagonists, despite improvement of motor function. The results suggest that kainate/AMPA receptor channels are at least partially involved in the mechanism of brain damage induced by hexachlorophene, however, the polyamine binding site of the NMDA receptor evidently is not involved. PMID:10663390

  19. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse.

    PubMed

    Feltenstein, Matthew W; See, Ronald E

    2007-11-01

    Previous research from our laboratory has implicated the basolateral amygdala (BLA) complex in the acquisition and consolidation of cue-cocaine associations, as well as extinction learning, which may regulate the long-lasting control of conditioned stimuli (CS) over drug-seeking behavior. Given the well established role of NMDA glutamate receptor activation in other forms of amygdalar-based learning, we predicted that BLA-mediated drug-cue associative learning would be NMDA receptor dependent. To test this hypothesis, male Sprague-Dawley rats self-administered i.v. cocaine (0.6 mg/kg/infusion) in the absence of explicit CS pairings (2-h sessions, 5 days), followed by a single 1-h classical conditioning (CC) session, during which they received passive infusions of cocaine discretely paired with a light+tone stimulus complex. Following additional cocaine self-administration sessions in the absence of the CS (2-h sessions, 5 days) and extinction training sessions (no cocaine or CS presentation, 2-h sessions, 7 days), the ability of the CS to reinstate cocaine-seeking on three test days was assessed. Rats received bilateral intra-BLA infusions (0.5 microl/hemisphere) of vehicle or the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP-5), immediately prior to the CC session (acquisition), immediately following the CC session (consolidation), or immediately following reinstatement testing (consolidation of conditioned-cued extinction learning). AP-5 administered before or after CC attenuated subsequent CS-induced reinstatement, whereas AP-5 administered immediately following the first two reinstatement tests impaired the extinction of cocaine-seeking behavior. These results suggest that NMDA receptor-mediated mechanisms within the BLA play a crucial role in the consolidation of drug-CS associations into long-term memories that, in turn, drive cocaine-seeking during relapse. PMID:17613253

  20. Chronic brain inflammation causes a reduction in GluN2A and GluN2B subunits of NMDA receptors and an increase in the phosphorylation of mitogen-activated protein kinases in the hippocampus

    PubMed Central

    2014-01-01

    Neuroinflammation plays a key role in the initiation and progression of neurodegeneration in Alzheimer’s disease (AD). Chronic neuroinflammation results in diminished synaptic plasticity and loss of GluN1 N-methyl-D-aspartate (NMDA) receptors in the hippocampus, leading to the cognitive deficits that are the most common symptoms of AD. Therefore, it is suggested that chronic inflammation may alter expression levels of GluN2A and GluN2B subunits of NMDA receptors and associated intracellular signalling. Chronic neuroinflammation was induced by chronic infusion of lipopolysaccharide (LPS) into the fourth ventricle in Fischer-344 rats. The status of hippocampus-dependent memory was evaluated in control rats and rats chronically infused with LPS. Microglial activation in the hippocampus was examined using immunohistochemical staining. Western blot analysis was used to measure membrane levels of GluN2A and GluN2B subunits of NMDA receptors and mitogen-activated protein kinase (MAPK) in the hippocampi of these rats, and immunofluorescent double labeling was used to assess the cellular location of MAPK. Microglial activation was observed in the hippocampi of rats that showed memory impairments with chronic LPS infusion. Chronic LPS infusion reduced the levels of GluN2A and GluN2B and increased the levels of phosphorylated MAPKs in the hippocampus. MAPK-positive immunoreactivity was observed mostly in the neurons and also in non-neuronal cells. Reductions in GluN2A and GluN2B subunits of NMDA receptors coupled with altered MAPK signaling, in response to inflammatory stimuli may be related to the cognitive deficits observed in AD. PMID:24761931

  1. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse

    PubMed Central

    Feltenstein, Matthew W.; See, Ronald E.

    2007-01-01

    Previous research from our laboratory has implicated the basolateral amygdala (BLA) complex in the acquisition and consolidation of cue-cocaine associations, as well as extinction learning, which may regulate the long-lasting control of conditioned stimuli (CS) over drug-seeking behavior. Given the well established role of NMDA glutamate receptor activation in other forms of amygdalar-based learning, we predicted that BLA-mediated drug-cue associative learning would be NMDA receptor dependent. To test this hypothesis, male Sprague-Dawley rats self-administered i.v. cocaine (0.6 mg/kg/infusion) in the absence of explicit CS pairings (2-h sessions, 5 days), followed by a single 1-h classical conditioning (CC) session, during which they received passive infusions of cocaine discretely paired with a light+tone stimulus complex. Following additional cocaine self-administration sessions in the absence of the CS (2-h sessions, 5 days) and extinction training sessions (no cocaine or CS presentation, 2-h sessions, 7 days), the ability of the CS to reinstate cocaine-seeking on three test days was assessed. Rats received bilateral intra-BLA infusions (0.5 μl/hemisphere) of vehicle or the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP-5), immediately prior to the CC session (acquisition), immediately following the CC session (consolidation), or immediately following reinstatement testing (consolidation of conditioned-cued extinction learning). AP-5 administered before or after CC attenuated subsequent CS-induced reinstatement, whereas AP-5 administered immediately following the first two reinstatement tests impaired the extinction of cocaine-seeking behavior. These results suggest that NMDA receptor-mediated mechanisms within the BLA play a crucial role in the consolidation of drug-CS associations into long-term memories that, in turn, drive cocaine-seeking during relapse. PMID:17613253

  2. Pregnenolone sulfate and its enantiomer: differential modulation of memory in a spatial discrimination task using forebrain NMDA receptor deficient mice

    PubMed Central

    Petit, Géraldine H.; Tobin, Christine; Krishnan, Kathiresan; Moricard, Yves; Covey, Douglas F.; Rondi-Reig, Laure; Akwa, Yvette

    2010-01-01

    This study examined the role of forebrain N-methyl-D-aspartate receptors (NMDA-Rs) in the promnesiant effects of natural (+) pregnenolone sulfate (PREGS) and its synthetic (−) enantiomer ent-PREGS in young adult mice. Using the two-trial arm discrimination task in a Y-maze, PREGS and ent-PREGS administration to control mice increased memory performances. In mice with a knock-out of the NR1 subunit of NMDA-Rs in the forebrain, the promnesiant effect of ent-PREGS was maintained whereas the activity of PREGS was lost. Memory enhancement by PREGS involves the NMDA-R activity in the hippocampal CA1 area and possibly in some locations of the cortical layers, whereas ent-PREGS acts independently of NMDA-R function. PMID:21036556

  3. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  4. Inducible Nitric Oxide Inhibitors Block NMDA Antagonist-Stimulated Motoric Behaviors and Medial Prefrontal Cortical Glutamate Efflux

    PubMed Central

    Bergstrom, Hadley C.; Darvesh, Altaf S.; Berger, S. P.

    2015-01-01

    Nitric oxide (NO) plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA)-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS) for studying the neurobehavioral effects of non-competitive NMDA-antagonist stimulants such as dizocilpine (MK-801) and phencyclidine (PCP). This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS) aminoguanidine (AG) and (-)-epigallocatechin-3-gallate (EGCG) in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG, or vehicle prior to receiving NMDA antagonists MK-801, PCP, or a conventional psychostimulant (cocaine) and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex (mPFC) was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated mPFC glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in “green tea” and chocolate) may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia. PMID:26696891

  5. NMDA Receptor Agonism and Antagonism within the Amygdaloid Central Nucleus Suppresses Pain Affect: Differential Contribution of the Ventrolateral Periaqueductal Gray

    PubMed Central

    Spuz, Catherine A.; Tomaszycki, Michelle L.; Borszcz, George S.

    2015-01-01

    The amygdala contributes to the generation of pain affect and the amygdaloid central nucleus (CeA) receives nociceptive input that is mediated by glutamatergic neurotransmission. The present study compared the contribution of N-methyl-D-aspartate (NMDA) receptor agonism and antagonism in CeA to generation of the affective response of rats to an acute noxious stimulus. Vocalizations that occur following a brief tail shock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed, in a dose dependent manner, by bilateral injection into CeA of NMDA (.1 µg, .25 µg, .5 µg, or 1 µg/side), or the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (AP5, 1 µg, 2 µg, or 4 µg/side). Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas, spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of NMDA or AP5 into CeA. Injection of NMDA, but not AP5, into CeA increased c-Fos immunoreactivity in the ventrolateral periaqueductal gray (vlPAG), and unilateral injection of the µ-opiate receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP, 0.25 µg) into vlPAG prevented the antinociception generated by injection of NMDA into CeA. These findings demonstrate that although NMDA receptor agonism and antagonism in CeA produce similar suppression of pain behaviors they do so via different neurobiological mechanisms. Perspective The amygdala contributes to production of the emotional dimension of pain. NMDA receptor agonism and antagonism within the central nucleus of the amygdala suppressed rats’ emotional response to acute painful stimulation. Understanding the neurobiology underlying emotional responses to pain will provide insights into new treatments for pain and its associated affective disorders. PMID:25261341

  6. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration.

    PubMed

    Mantuano, Elisabetta; Lam, Michael S; Shibayama, Masataka; Campana, W Marie; Gonias, Steven L

    2015-09-15

    NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury. PMID:26272917

  7. Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord.

    PubMed

    Baba, H; Doubell, T P; Moore, K A; Woolf, C J

    2000-02-01

    In vitro whole cell patch-clamp recording techniques were utilized to study silent pure-N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in lamina II (substantia gelatinosa, SG) and lamina III of the spinal dorsal horn. To clarify whether these synapses are present in the adult and contribute to neuropathic pain, transverse lumbar spinal cord slices were prepared from neonatal, naive adult and adult sciatic nerve transected rats. In neonatal rats, pure-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were elicited in SG neurons either by focal intraspinal stimulation (n = 15 of 20 neurons) or focal stimulation of the dorsal root (n = 2 of 7 neurons). In contrast, in slices from naive adult rats, no silent pure-NMDA EPSCs were recorded in SG neurons following focal intraspinal stimulation (n = 27), and only one pure-NMDA EPSC was observed in lamina III (n = 23). Furthermore, in rats with chronic sciatic nerve transection, pure-NMDA EPSCs were elicited by focal intraspinal stimulation in only 2 of 45 SG neurons. Although a large increase in Abeta fiber evoked mixed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptor-mediated synapses was detected after sciatic nerve injury, Abeta fiber-mediated pure-NMDA EPSCs were not evoked in SG neurons by dorsal root stimulation. Pure-NMDA receptor-mediated EPSCs are therefore a transient, developmentally regulated phenomenon, and, although they may have a role in synaptic refinement in the immature dorsal horn, they are unlikely to be involved in receptive field plasticity in the adult. PMID:10669507

  8. Combined stimulation of the glycine and polyamine sites of the NMDA receptor attenuates NMDA blockade-induced learning deficits of rats in a 14-unit T-maze.

    PubMed

    Meyer, R C; Knox, J; Purwin, D A; Spangler, E L; Ingram, D K

    1998-02-01

    The present study examined the effects of multi-site activation of the glycine and polyamine sites of the NMDA receptor on memory formation in rats learning a 14-unit T-maze task. The competitive NMDA receptor antagonist, (+/-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP, 9 mg/kg), was used to impair learning. The objectives were two-fold: (1) to investigate the effects of independent stimulation of the strychnine-insensitive glycine site or the polyamine site; (2) to investigate the effects of simultaneous activation of these two sites. Male, Fischer-344 rats were pretrained to a criterion of 13 out of 15 shock avoidances in a straight runway, and 24 h later were trained in a 14-unit T-maze that also required shock avoidance. Prior to maze training, rats received intraperitoneal (i.p.) injections of saline, saline plus CPP, CPP plus the glycine agonist, D-cycloserine (DCS, 30 or 40 mg/kg), CPP plus the polyamine agonist, spermine (SPM, 2.5 or 5 mg/kg), or CPP plus a combination of DCS (7.5 mg/kg) and SPM (0.625 mg/kg). Individual administration of either DCS or SPM attenuated the CPP-induced maze learning impairment in a dose-dependent manner. However, the combined treatment with both DCS and SPM completely reversed the learning deficit at doses five-fold less than either drug given alone. These findings provide additional evidence that the glycine and polyamine modulatory sites of the NMDA receptor are involved in memory formation. Furthermore, the potent synergistic effect resulting from combined activation of the glycine and polyamine sites would suggest a stronger interaction between these two sites than previously considered, and might provide new therapeutic approaches for enhancing glutamatergic function. PMID:9498733

  9. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy.

    PubMed

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A; Zhang, Peng; Dubel, Steve J; Perez-Reyes, Edward; Snutch, Terrance P; Stornetta, Ruth L; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P; Zhu, J Julius

    2015-07-15

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  10. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy

    PubMed Central

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A.; Zhang, Peng; Dubel, Steve J.; Perez-Reyes, Edward; Snutch, Terrance P.; Stornetta, Ruth L.; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M.; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P.; Zhu, J. Julius

    2015-01-01

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  11. Protective effect of donepezil in primary-cultured rat cortical neurons exposed to N-methyl-d-aspartate (NMDA) toxicity.

    PubMed

    Akasofu, Shigeru; Kimura, Manami; Kosasa, Takashi; Ogura, Hiroo; Sawada, Kohei

    2006-01-20

    Donepezil has a neuroprotective effect against oxygen-glucose deprivation injury and glutamate toxicity in cultured cortical neurons. In this study, we further characterized the neuroprotective properties of donepezil in rat cortical cell cultures using glutamate receptor-specific agonists (N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and kainate). Pretreatment with donepezil (1 microM) for 12 h significantly decreased the lactate dehydrogenase (LDH) release in response to NMDA (100 microM) by 43.8%, and reduced the LDH release in response to kainate (100 microM) and AMPA (100 microM) by 11.9% and 7.5% (without statistical significance), respectively. Donepezil appeared to inhibit LDH release in a concentration-dependent manner at 0.1-10 microM. Cortical neurons exposed to NMDA retained a normal morphological appearance in the presence of 10 microM donepezil. In binding assay for glutamate receptors, donepezil at 100 microM only slightly inhibited binding to the glycine and polyamine sites on NMDA receptor complex. On the other hand, 12 h pretreatment with donepezil at 10 and 100 microM significantly decreased the NMDA-induced increase of intracellular calcium concentration ([Ca2+]i). In conclusion, our results show that donepezil has protective activity against NMDA toxicity in cortical neurons, and this neuroprotection seems to be partially mediated by inhibition of the increase of [Ca2+]i. PMID:16406045

  12. The Effects of NMDA Antagonists on Neuronal Activity in Cat Spinal Cord Evoked by Acute Inflammation in the Knee Joint.

    PubMed

    Schaible, Hans-Georg; Grubb, Blair D.; Neugebauer, Volker; Oppmann, Maria

    1991-01-01

    In alpha-chloralose-anaesthetized, spinalized cats we examined the effects of NMDA antagonists on the discharges of 71 spinal neurons which had afferent input from the knee joint. These neurons were rendered hyperexcitable by acute arthritis in the knee induced by kaolin and carrageenan. They were located in the deep dorsal and ventral horn and some of them had ascending axons. The N-methyl-d-aspartate (NMDA) antagonists ketamine and d-2-amino-5-phosphonovalerate (AP5), were administered ionophoretically, and ketamine was also administered intravenously. In some of the experiments the antagonists were tested against the agonists NMDA and quisqualate. The effects of the NMDA antagonists consisted of a significant reduction in the resting activity of neurons and/or the responses of the same neurons to mechanical stimulation of the inflamed knee. Intravenous ketamine was most effective in suppressing the resting and mechanically evoked activity in 25 of 26 neurons tested. Ionophoretically applied ketamine had a suppressive effect in 11 of 21 neurons, and AP5 decreased activity in 17 of 24 cells. The reduction in the resting and/or the mechanically evoked discharges was achieved with doses of the antagonists which suppressed the responses to NMDA but not those to quisqualate. These results suggest that NMDA receptors are involved in the enhanced responses and basal activity of spinal neurons induced by inflammation in the periphery. PMID:12106256

  13. The hippocampal NMDA receptors may be involved in acquisition, but not expression of ACPA-induced place preference.

    PubMed

    Nasehi, Mohammad; Sharaf-Dolgari, Elmira; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2015-12-01

    Numerous studies have investigated the functional interactions between the endocannabinoid and glutamate systems in the hippocampus. The present study was made to test whether N-methyl-D-aspartate (NMDA) receptors of the CA1 region of the dorsal hippocampus (CA1) are implicated in ACPA (a selective cannabinoid CB1 receptor agonist)-induced place preference. Using a 3-day schedule of conditioning, it was found that intraperitoneal (i.p.) administration of ACPA (0.02mg/kg) caused a significant conditioned place preference (CPP) in male albino NMRI mice. Intra-CA1 microinjection of the NMDA or D-[1]-2-amino-7-Phosphonoheptanoic acid (D-AP7, NMDA receptor antagonist), failed to induce CPP or CPA (condition place aversion), while NMDA (0.5μg/mouse) potentiated the ACPA (0.01mg/kg)-induced CPP; and D-AP7 (a specific NMDA receptor antagonist; 0.5 and 1μg/mouse) reversed the ACPA (0.02mg/kg)-induced CPP. Moreover, microinjection of different doses of glutamatergic agents on the testing day did not alter the expression of ACPA-induced place preference. None of the treatments, with the exception of ACPA (0.04mg/kg), had an effect on locomotor activity. In conclusion, these observations provide evidence that glutamate NMDA receptors of the CA1 may be involved in the potentiation of ACPA rewarding properties in the acquisition, but not expression, of CPP in mice. PMID:26072736

  14. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines.

    PubMed

    Tolias, Kimberley F; Bikoff, Jay B; Burette, Alain; Paradis, Suzanne; Harrar, Dana; Tavazoie, Sohail; Weinberg, Richard J; Greenberg, Michael E

    2005-02-17

    NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines. PMID:15721239

  15. Dual Allosteric Effect in Glycine/NMDA Receptor Antagonism: A Comparative QSAR Approach

    PubMed Central

    Sharma, Manish; Gupta, Vipin B.

    2010-01-01

    A comparative Hansch type QSAR study was conducted using multiple regression analysis on various sets of quinoxalines, quinoxalin-4-ones, quinazoline-2-carboxylates, 4-hydroxyquinolin-2(1H)-ones, 2-carboxytetrahydroquinolines, phenyl-hydroxy-quinolones, nitroquinolones and 4-substituted-3-phenylquinolin-2(1H)-ones as selective glycine/NMDA site antagonists. Ten statistically validated equations were developed, which indicated the importance of CMR, Verloop’s sterimol L1 and ClogP parameters in contributing towards biological activity. Interestingly, normal and inverse parabolic relationships were found with CMR in different series, indicating a dual allosteric binding mode in glycine/NMDA antagonism. Equations reveal an optimum CMR of 10 ± 10% is required for good potency of antagonists. Other equations indicate the presence of anionic functionality at 4-position of quinoline/quinolone ring system is not absolutely required for effective binding. The observations are laterally validated and in accordance with previous studies.

  16. The Role of Excitatory Amino Acids and NMDA Receptors in Traumatic Brain Injury

    NASA Astrophysics Data System (ADS)

    Faden, Alan I.; Demediuk, Paul; Panter, S. Scott; Vink, Robert

    1989-05-01

    Brain injury induced by fluid percussion in rats caused a marked elevation in extracellular glutamate and aspartate adjacent to the trauma site. This increase in excitatory amino acids was related to the severity of the injury and was associated with a reduction in cellular bioenergetic state and intracellular free magnesium. Treatment with the noncompetitive N-methyl-D-aspartate (NMDA) antagonist dextrorphan or the competitive antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid limited the resultant neurological dysfunction; dextrorphan treatment also improved the bioenergetic state after trauma and increased the intracellular free magnesium. Thus, excitatory amino acids contribute to delayed tissue damage after brain trauma; NMDA antagonists may be of benefit in treating acute head injury.

  17. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors

    PubMed Central

    Fedder, Karlie N.; Sabo, Shasta L.

    2015-01-01

    Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases. PMID:26694480

  18. NMDA Receptor-Dependent Synaptic Reinforcement as a Crucial Process for Memory Consolidation

    NASA Astrophysics Data System (ADS)

    Shimizu, Eiji; Tang, Ya-Ping; Rampon, Claire; Tsien, Joe Z.

    2000-11-01

    The hippocampal CA1 region is crucial for converting new memories into long-term memories, a process believed to continue for week(s) after initial learning. By developing an inducible, reversible, and CA1-specific knockout technique, we could switch N-methyl-D-aspartate (NMDA) receptor function off or on in CA1 during the consolidation period. Our data indicate that memory consolidation depends on the reactivation of the NMDA receptor, possibly to reinforce site-specific synaptic modifications to consolidate memory traces. Such a synaptic reinforcement process may also serve as a cellular means by which the new memory is transferred from the hippocampus to the cortex for permanent storage.

  19. The effect of the NMDA receptor blocker, dextromethorphan, on cribbing in horses.

    PubMed

    Rendon, R A; Shuster, L; Dodman, N H

    2001-01-01

    Stereotypic cribbing in horses is thought to involve excess dopaminergic activity within the striatum. Various models of stress-induced stereotypies including cribbing in horses postulate that stress stimulates the release of endorphins, triggering the release of striatal dopamine. Dopamine in turn activates basal ganglia motor programs, reinforcing behavior via a reward mechanism. Furthermore, the release of dopamine by endorphins has been shown to depend on activation of NMDA receptors. In the present study, horses identified as cribbers and volunteered by their owners were treated with the NMDA receptor antagonist dextromethorphan (DM). When DM was administered via jugular injection (1 mg/kg), eight of nine horses responded with reductions in cribbing rate (CR) compared to baseline, and cribbing was suppressed completely for a period of time in almost half of the horses tested. PMID:11274707

  20. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors.

    PubMed

    Fedder, Karlie N; Sabo, Shasta L

    2015-01-01

    Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases. PMID:26694480

  1. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    NASA Technical Reports Server (NTRS)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  2. Diagnostic Potential of the NMDA Receptor Peptide Assay for Acute Ischemic Stroke

    PubMed Central

    Dambinova, Svetlana A.; Bettermann, Kerstin; Glynn, Theodore; Tews, Matthew; Olson, David; Weissman, Joseph D.; Sowell, Richard L.

    2012-01-01

    Background The acute assessment of patients with suspected ischemic stroke remains challenging. The use of brain biomarker assays may improve the early diagnosis of ischemic stroke. The main goal of the study was to evaluate whether the NR2 peptide, a product of the proteolytic degradation of N-methyl-D-aspartate (NMDA) receptors, can differentiate acute ischemic stroke (IS) from stroke mimics and persons with vascular risk factors/healthy controls. A possible correlation between biomarker values and lesion sizes was investigated as the secondary objective. Methods and Findings A total of 192 patients with suspected stroke who presented within 72 h of symptom onset were prospectively enrolled. The final diagnosis was determined based on clinical observations and radiological findings. Additionally gender- and age-matched healthy controls (n = 52) and persons with controlled vascular risk factors (n = 48) were recruited to compare NR2 peptide levels. Blinded plasma was assayed by rapid magnetic particles (MP) ELISA for NR2 peptide within 30 min and results for different groups compared using univariate and multivariate statistical analyses. There was a clinical diagnosis of IS in 101 of 192 (53%) and non-stroke in 91 (47%) subjects. The non-stroke group included presented with acute stroke symptoms who had no stroke (n = 71) and stroke mimics (n = 20). The highest NR2 peptide elevations where found in patients with IS that peaked at 12 h following symptom onset. When the biomarker cut off was set at 1.0 ug/L, this resulted in a sensitivity of 92% and a specificity of 96% to detect IS. A moderate correlation (rs = 0.73) between NR2 peptide values and acute ischemic cortical lesions (<200 mL) was found. Conclusions This study suggests that the NR2 peptide may be a brain specific biomarker to diagnose acute IS and may allow the differentiation of IS from stroke mimics and controls. Additional larger scale clinical validation studies are required

  3. Mobility of NMDA autoreceptors but not postsynaptic receptors at glutamate synapses in the rat entorhinal cortex

    PubMed Central

    Yang, Jian; Chamberlain, Sophie E L; Woodhall, Gavin L; Jones, Roland S G

    2008-01-01

    NMDA receptors (NMDAr) are known to undergo recycling and lateral diffusion in postsynaptic spines and dendrites. However, NMDAr are also present as autoreceptors on glutamate terminals, where they act to facilitate glutamate release, but it is not known whether these receptors are also mobile. We have used functional pharmacological approaches to examine whether NMDA receptors at excitatory synapses in the rat entorhinal cortex are mobile at either postsynaptic sites or in presynaptic terminals. When NMDAr-mediated evoked EPSCs (eEPSCs) were blocked by MK-801, they showed no evidence of recovery when the irreversible blocker was removed, suggesting that postsynaptic NMDAr were relatively stably anchored at these synapses. However, using frequency-dependent facilitation of AMPA receptor (AMPAr)-mediated eEPSCs as a reporter of presynaptic NMDAr activity, we found that when facilitation was blocked with MK-801 there was a rapid (∼30–40 min) anomalous recovery upon removal of the antagonist. This was not observed when global NMDAr blockade was induced by combined perfusion with MK-801 and NMDA. Anomalous recovery was accompanied by an increase in frequency of spontaneous EPSCs, and a variable increase in frequency-facilitation. Following recovery from blockade of presynaptic NMDAr with a competitive antagonist, frequency-dependent facilitation of AMPAr-mediated eEPSCs was also transiently enhanced. Finally, an increase in frequency of miniature EPSCs induced by NMDA was succeeded by a persistent decrease. Our data provide the first evidence for mobility of NMDAr in the presynaptic terminals, and may point to a role of this process in activity-dependent control of glutamate release. PMID:18718983

  4. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    SciTech Connect

    Dekundy, Andrzej . E-mail: andrzej.dekundy@merz.de; Kaminski, Rafal M.; Zielinska, Elzbieta; Turski, Waldemar A.

    2007-03-15

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.

  5. Benzimidazole-2-carboxamides as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, István; Kolok, Sándor; Gere, Anikó; Nagy, József; Fodor, László; Galgóczy, Kornél; Fetter, József; Bertha, Ferenc; Agai, Béla; Horváth, Csilla; Farkas, Sándor; Domány, György

    2006-09-01

    A novel series of benzimidazole-2-carboxamide derivatives was prepared and identified as NR2B selective NMDA receptor antagonists. The influence of some structural elements, like H-bond donor groups placed on the benzimidazole skeleton and the substitution pattern of the piperidine ring, on the biological activity was studied. Compound 6a showed excellent analgetic activity in the mouse formalin test following po administration. PMID:16782335

  6. NMDA Receptor-Mediated Activation of NADPH Oxidase and Glomerulosclerosis in Hyperhomocysteinemic Rats

    PubMed Central

    Zhang, Chun; Yi, Fan; Xia, Min; Boini, Krishna M.; Zhu, Qing; Laperle, Laura A.; Abais, Justine M.; Brimson, Christopher A.

    2010-01-01

    Abstract This study investigated the role of NMDA receptor in hyperhomocyteinemia (hHcys)-induced NADPH oxidase (Nox) activation and glomerulosclerosis. Sprague–Dawley rats were fed a folate-free (FF) diet to produce hHcys, and a NMDA receptor antagonist, MK-801, was administrated. Rats fed the FF diet exhibited significantly increased plasma homocysteine levels, upregulated NMDA receptor expression, enhanced Nox activity and Nox-dependent O2.− production in the glomeruli, which were accompanied by remarkable glomerulosclerosis. MK-801 treatment significantly inhibited Nox-dependent O2.− production induced by hHcys and reduced glomerular damage index as compared with vehicle-treated hHcys rats. Correspondingly, glomerular deposition of extracellular matrix components in hHcys rats was ameliorated by the administration of MK-801. Additionally, hHcys induced an increase in tissue inhibitor of metalloproteinase-1 (TIMP-1) expression and a decrease in matrix metalloproteinase (MMP)-1 and MMP-9 activities, all of which were abolished by MK-801 treatment. In vitro studies showed that homocysteine increased Nox-dependent O2.− generation in rat mesangial cells, which was blocked by MK-801. Pretreatment with MK-801 also reversed homocysteine-induced decrease in MMP-1 activity and increase in TIMP-1 expression. These results support the view that the NMDA receptor may mediate Nox activation in the kidney during hHcys and thereby play a critical role in the development of hHcys-induced glomerulosclerosis. Antioxid. Redox Signal. 13, 975–986. PMID:20406136

  7. Phrenic long-term facilitation requires NMDA receptors in the phrenic motonucleus in rats

    PubMed Central

    McGuire, Michelle; Zhang, Yi; White, David P; Ling, Liming

    2005-01-01

    Exposure to episodic hypoxia induces a persistent augmentation of respiratory activity, known as long-term facilitation (LTF). LTF of phrenic nerve activity has been reported to require serotonin receptor activation and protein syntheses. However, the underlying cellular mechanism still remains poorly understood. NMDA receptors play key roles in synaptic plasticity (e.g. some forms of hippocampal long-term potentiation). The present study was designed to examine the role of NMDA receptors in phrenic LTF and test if the relevant receptors are located in the phrenic motonucleus. Integrated phrenic nerve activity was measured in anaesthetized, vagotomized, neuromuscularly blocked and artificially ventilated rats before, during and after three episodes of 5 min isocapnic hypoxia (Pa,O2= 30–45 mmHg), separated by 5 min hyperoxia (50% O2). Either saline (as control) or the NMDA receptor antagonist MK-801 (0.2 mg kg−1, i.p.) was systemically injected ∼1 h before hypoxia. Phrenic LTF was eliminated by the MK-801 injection (vehicle, 32.8 ± 3.7% above baseline in phrenic amplitude at 60 min post-hypoxia; MK-801, −0.5 ± 4.1%, means ± s.e.m.), with little change in both the CO2-apnoeic threshold and the hypoxic phrenic response (HPR). Vehicle (saline, 5 × 100 nl) or MK-801 (10 μm; 5 × 100 nl) was also microinjected into the phrenic motonucleus region in other groups. Phrenic LTF was eliminated by the MK-801 microinjection (vehicle, 34.2 ± 3.4%; MK-801, −2.5 ± 2.8%), with minimal change in HPR. Collectively, these results suggest that the activation of NMDA receptors in the phrenic motonucleus is required for the episodic hypoxia-induced phrenic LTF. PMID:15932891

  8. Genetic NMDA receptor deficiency disrupts acute and chronic effects of cocaine but not amphetamine.

    PubMed

    Ramsey, Amy J; Laakso, Aki; Cyr, Michel; Sotnikova, Tatyana D; Salahpour, Ali; Medvedev, Ivan O; Dykstra, Linda A; Gainetdinov, Raul R; Caron, Marc G

    2008-10-01

    NMDA receptor-mediated glutamate transmission is required for several forms of neuronal plasticity. Its role in the neuronal responses to addictive drugs is an ongoing subject of investigation. We report here that the acute locomotor-stimulating effect of cocaine is absent in NMDA receptor-deficient mice (NR1-KD). In contrast, their acute responses to amphetamine and to direct dopamine receptor agonists are not significantly altered. The striking attenuation of cocaine's acute effects is not likely explained by alterations in the dopaminergic system of NR1-KD mice, since most parameters of pre- and postsynaptic dopamine function are unchanged. Consistent with the behavioral findings, cocaine induces less c-Fos expression in the striatum of these mice, while amphetamine-induced c-Fos expression is intact. Furthermore, chronic cocaine-induced sensitization and conditioned place preference are attenuated and develop more slowly in mutant animals, but amphetamine's effects are not altered significantly. Our results highlight the importance of NMDA receptor-mediated glutamatergic transmission specifically in cocaine actions, and support a hypothesis that cocaine and amphetamine elicit their effects through differential actions on signaling pathways. PMID:18185498

  9. Presynaptic NMDA receptors – dynamics and distribution in developing axons in vitro and in vivo

    PubMed Central

    Gill, Ishwar; Droubi, Sammy; Giovedi, Silvia; Fedder, Karlie N.; Bury, Luke A. D.; Bosco, Federica; Sceniak, Michael P.; Benfenati, Fabio; Sabo, Shasta L.

    2015-01-01

    ABSTRACT During cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner. The NR1 and NR2B subunits (also known as GRIN1 and GRIN2B, respectively) were found within the active zone membrane, where they could respond to synaptic glutamate release. Surprisingly, NR1 also appeared in glutamatergic and GABAergic synaptic vesicles. During synaptogenesis, NR1 was mobile throughout axons – including growth cones and filopodia, structures that are involved in synaptogenesis. Upon synaptogenic contact, NMDA receptors were quickly recruited to terminals by neuroligin-1 signaling. Unlike dendrites, the trafficking and distribution of axonal NR1 were insensitive to activity changes, including NMDA exposure, local glutamate uncaging or action potential blockade. These results support the idea that presynaptic NMDARs play an early role in presynaptic development. PMID:25526735

  10. Effects of blockade of NMDA receptors on cerebral oxygen consumption during hyperosmolar BBB disruption in rats.

    PubMed

    Chi, Oak Z; Barsoum, Sylviana; Grayson, Jeremy; Hunter, Christine; Liu, Xia; Weiss, Harvey R

    2013-03-15

    Hyperosmolar blood-brain barrier (BBB) disruption has been reported to increase cerebral O2 consumption. This study was performed to test whether blockade of N-methyl-d-aspartate (NMDA) receptor would affect cerebral O2 consumption during hyperosmolar BBB disruption. A competitive NMDA receptor antagonist CGS-19755 10mg/kg was injected iv 15min before intracarotid infusion of 25% mannitol. Twelve min after BBB disruption, the BBB transfer coefficient (Ki) of (14)C-α-aminoisobutyric acid ((14)C-AIB) was measured. Regional cerebral blood flow (rCBF), regional arteriolar and venular O2 saturation (SaO2 and SvO2 respectively), and O2 consumption were determined using (14)C-iodoantipyrine autoradiography and cryomicrospectrophotometry in alternate slices of the brain tissue. The Ki of (14)C-AIB was markedly increased with hyperosmolar mannitol in both the control (5.8×) and the CGS treated rats (5.2×). With BBB disruption, the O2 consumption was significantly increased (+39%) only in the control but not in the CGS treated rats and was significantly lower (-29%) in the CGS treated than the control rats. The distribution of SvO2 was significantly shifted to the higher concentrations with CGS treatment. Our data demonstrated an increase of O2 consumption by hyperosmolar BBB disruption and attenuation of the increase with NMDA blockade without affecting the degree of BBB disruption. PMID:23357315

  11. A randomized placebo-controlled trial of an NMDA receptor antagonist in sleep-disordered breathing.

    PubMed

    Torvaldsson, Stefan; Grote, Ludger; Peker, Yüksel; Basun, Hans; Hedner, Jan

    2005-06-01

    Hypoxemia is a powerful stimulus of glutamate release in the central nervous system (CNS) and a hallmark phenomenon in sleep disordered breathing (SDB). Glutamate effects that include neuronal damage and apoptosis following hypoxemia and apnea following microinjections in animal models are in part mediated via postjunctional N-methyl-D-aspartate (NMDA) receptors. This was a double blind, randomized, placebo-controlled single dose cross-over study of the NMDA receptor antagonist AR-R15896AR in 15 male patients with moderate to severe SDB. Seven patients received 120 mg and eight patients received 350 mg AR-R15896AR or corresponding placebo (given by 2 h infusion) starting half an hour before estimated sleep onset. AR-R15896AR concentrations were in line with the predicting kinetic model. A standard polysomnographic montage was applied. Repeated plasma samples were obtained in nine patients for analysis of plasma glutamate. Glutamate concentration in plasma did not change overnight and was unrelated to severity of SDB. Overall AHI (apnea-hypopnea index; primary efficacy variable) or investigated oxygen saturation variables were not significantly changed after AR-R15896AR at either dosage level. Side effects were mostly confined to the higher dose level and included vivid dreams, nightmares as well as in two cases mild hallucinations. The previously postulated role of glutamate in SDB could not be confirmed after AR-R15896AR induced NMDA-receptor blockade. PMID:15910512

  12. Opposite effects of GABAA and NMDA receptor antagonists on ethanol-induced behavioral sleep in rats.

    PubMed

    Beleslin, D B; Djokanović, N; Jovanović Mićić, D; Samardzić, R

    1997-01-01

    The effects of the GABAA receptor antagonists, pentylenetetrazol, bicuculline, and picrotoxin, the glycine antagonist, strychnine, and the NMDA receptor antagonist, memantine, on ethanol-induced behavioral sleep and body temperature were investigated. Pentylenetetrazol, bicuculline, and picrotoxin given prior and following ethanol reduced the behavioral sleep and potentiated the hypothermia caused by ethanol. However, convulsions appeared when bicuculline, but not pentylenetetrazol and picrotoxin, were given following ethanol. After the reversal of unconsciousness in rats without convulsions the animals remained awake throughout the experiments without motor incoordination, hyperexcitability, and sedation, but they were in hypothermia within 12 h. The glycine antagonist, strychnine, given prior or after ethanol had virtually no effect on ethanol-induced behavioral sleep and hypothermia. Ethanol given prior or following strychnine failed to antagonize strychnine-induced convulsions. The NMDA receptor antagonist, memantine, given following ethanol potentiated the behavioral sleep and had virtually no effect on hypothermia induced by ethanol. It is suggested that the ethanol-induced behavioral sleep may be attributed to its ability to enhance the GABAergic mechanisms and to inhibit NMDA-mediated excitatory responses. However, the ethanol-induced hypothermia may be ascribed solely to the facilitation of GABAergic transmission. Further, it is postulated that a bidirectional inhibitory system subserves the regulation of behavioral sleep and convulsions. However, one-way inhibitory system underlies the ethanol-induced hypothermia. PMID:9085718

  13. NMDA Receptor Antagonist Ketamine Distorts Object Recognition by Reducing Feedback to Early Visual Cortex.

    PubMed

    van Loon, Anouk M; Fahrenfort, Johannes J; van der Velde, Bauke; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Scholte, H Steven; Lamme, Victor A F

    2016-05-01

    It is a well-established fact that top-down processes influence neural representations in lower-level visual areas. Electrophysiological recordings in monkeys as well as theoretical models suggest that these top-down processes depend on NMDA receptor functioning. However, this underlying neural mechanism has not been tested in humans. We used fMRI multivoxel pattern analysis to compare the neural representations of ambiguous Mooney images before and after they were recognized with their unambiguous grayscale version. Additionally, we administered ketamine, an NMDA receptor antagonist, to interfere with this process. Our results demonstrate that after recognition, the pattern of brain activation elicited by a Mooney image is more similar to that of its easily recognizable grayscale version than to the pattern evoked by the identical Mooney image before recognition. Moreover, recognition of Mooney images decreased mean response; however, neural representations of separate images became more dissimilar. So from the neural perspective, unrecognizable Mooney images all "look the same", whereas recognized Mooneys look different. We observed these effects in posterior fusiform part of lateral occipital cortex and in early visual cortex. Ketamine distorted these effects of recognition, but in early visual cortex only. This suggests that top-down processes from higher- to lower-level visual areas might operate via an NMDA pathway. PMID:25662715

  14. Glossopharyngeal long-term facilitation requires serotonin 5-HT2 and NMDA receptors in rats

    PubMed Central

    Cao, Ying; Liu, Chun; Ling, Liming

    2009-01-01

    Although the glossopharyngeal nerve (IX) is mainly a sensory nerve, it innervates stylopharyngeus and some other pharyngeal muscles, whose excitations would likely improve upper airway patency since electrical IX stimulation increases pharyngeal airway size. As acute intermittent hypoxia (AIH) induces hypoglossal and genioglossal long-term facilitation (LTF), we hypothesized that AIH induces glossopharyngeal LTF, which requires serotonin 5-HT2 and NMDA receptors. Integrated IX activity was recorded in anesthetized, vagotomized, paralyzed and ventilated rats before, during and after 5 episodes of 3-min isocapnic 12% O2 with 3-min intervals of 50% O2. Either saline, ketanserin (5-HT2 antagonist, 2 mg/kg) or MK-801 (NMDA antagonist, 0.2 mg/kg) was (i.v.) injected 30–60 min before AIH. Both phasic and tonic IX activities were persistently increased (both P<0.05) after AIH in vehicle, but not ketanserin or MK-801, rats. Hypoxic glossopharyngeal responses were minimally changed after either drug. These data suggest that AIH induces both phasic and tonic glossopharyngeal LTF, which requires activation of 5-HT2 and NMDA receptors. PMID:20026287

  15. Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation.

    PubMed

    Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F

    2011-07-01

    Using an antibody against 5α-reduced neurosteroids, predominantly allopregnanolone, we found that immunostaining in the CA1 region of rat hippocampal slices was confined to pyramidal neurons. This neurosteroid staining was increased following 15 min administration of 60 mm but not 20 mm ethanol, and the enhancement was blocked by finasteride and dutasteride, selective inhibitors of 5α-reductase, a key enzyme required for allopregnanolone synthesis. Consistent with a prior report indicating that N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can promote steroid production, we observed that D-2-amino-5-phosphonovalerate (APV), a competitive NMDAR antagonist, blocked the effects of 60 mm ethanol on staining. We previously reported that 60 mm ethanol inhibits the induction of long-term potentiation (LTP), a cellular model for memory formation, in the CA1 region. In the present study, LTP inhibition by 60 mm ethanol was also overcome by both the 5α-reductase inhibitors and by APV. Furthermore, the effects of ethanol on neurosteroid production and LTP were mimicked by a low concentration of NMDA (1 μm), and the ability of NMDA to inhibit LTP and to enhance neurosteroid staining was reversed by finasteride and dutasteride, as well as by APV. These results indicate that ethanol paradoxically enhances GABAergic neurosteroid production by activation of unblocked NMDARs and that acute LTP inhibition by ethanol represents a form of NMDAR-mediated metaplasticity. PMID:21734282

  16. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference123

    PubMed Central

    Tokarski, Krzysztof; Bobula, Bartosz; Zygmunt, Magdalena; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Hess, Grzegorz; Przewlocki, Ryszard

    2016-01-01

    Abstract Plasticity of the brain’s dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1D1CreERT2 mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1D1CreERT2 mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general. PMID:27294197

  17. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference.

    PubMed

    Sikora, Magdalena; Tokarski, Krzysztof; Bobula, Bartosz; Zajdel, Joanna; Jastrzębska, Kamila; Cieślak, Przemysław Eligiusz; Zygmunt, Magdalena; Sowa, Joanna; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Engblom, David; Hess, Grzegorz; Przewlocki, Ryszard; Rodriguez Parkitna, Jan

    2016-01-01

    Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general. PMID:27294197

  18. Novel Fluorine-Containing NMDA Antagonists for Brain Imaging: In Vitro Evaluation

    SciTech Connect

    Alvarado, M.; Biegon, A.

    2001-01-01

    The NMDA receptor has been implicated in neuronal death following stroke, brain injury and neurodegenerative disorders (e.g. Alzheimer's, Parkinson's and Huntington's disease) and in physiological functions (e.g. memory and cognition). Non-competitive antagonists, such as MK- 801 and CNS-1102, that block the action of glutamate at the NMDA receptor have been shown to be neuroprotective by blocking the influx of calcium into the cells. As a result, they are being considered as therapeutic agents for the above mentioned diseases. Several Fluorine-containing novel analogs of NMDA channel blockers have been synthesized and evaluated in search of a compound suitable for 18F labeling and Positron Emission Tomography (PET). Based on in vitro binding assay studies on rat brain membranes, the novel compounds examined displayed a range of affinities. Preliminary analyses indicated that chlorine is the best halogen on the ring, and that ethyl fluoro derivatives are more potent than methyl-fluoro compounds. Further analysis based on autoradiography will be needed to examine the regional binding characteristics of the novel compounds examined in this study. Labeling with 18F will allow the use of these compounds in humans, generating new insights into mechanisms and treatment of diseases involving malfunction of the glutamatergic system in the brain.

  19. SNAP-25 Is a Target of Protein Kinase C Phosphorylation Critical to NMDA Receptor Trafficking

    PubMed Central

    Lau, C. Geoffrey; Takayasu, Yukihiro; Rodenas-Ruano, Alma; Paternain, Ana V.; Lerma, Juan; Bennett, Michael V. L.

    2010-01-01

    Protein kinase C (PKC) enhances NMDA receptor (NMDAR)-mediated currents and promotes NMDAR delivery to the cell surface via SNARE-dependent exocytosis. Although the mechanisms of PKC potentiation are established, the molecular target of PKC is unclear. Here we show that synaptosomal-associated protein of 25 kDa (SNAP-25), a SNARE protein, is functionally relevant to PKC-dependent NMDAR insertion, and identify serine residue-187 as the molecular target of PKC phosphorylation. Constitutively active PKC delivered via the patch pipette potentiated NMDA (but not AMPA) whole-cell currents in hippocampal neurons. Expression of RNAi targeting SNAP-25 or mutant SNAP-25(S187A) and/or acute disruption of the SNARE complex by treatment with BoNT A, BoNT B or SNAP-25 C-terminal blocking peptide abolished NMDAR potentiation. A SNAP-25 peptide and function-blocking antibody suppressed PKC potentiation of NMDA EPSCs at mossy fiber-CA3 synapses. These findings identify SNAP-25 as the target of PKC phosphorylation critical to PKC-dependent incorporation of synaptic NMDARs and document a postsynaptic action of this major SNARE protein relevant to synaptic plasticity. PMID:20053906

  20. A segmental chronic pain syndrome in rats associated with intrathecal infusion of NMDA: evidence for selective action in the dorsal horn.

    PubMed

    Zochodne, D W; Murray, M; Nag, S; Riopelle, R J

    1994-02-01

    We explored the effects of chronic lumbar intrathecal NMDA infusion (mini-osmotic pumps) in Sprague-Dawley rats on motor and sensory axon integrity. Several different infusion protocols, each given over a 4 week period were examined: 0.15 M NMDA in phosphate buffered saline; phosphate buffered saline without NMDA; and 0.20 M magnesium sulfate plus 0.15 M NMDA; 0.35 M NMDA. In two additional protocols, 0.15 M NMDA or phosphate buffered saline were infused for a total of 8 weeks. Within 1-2 weeks of the onset of NMDA, but not phosphate buffered saline infusions, the rats exhibited irritability, circling, biting and excessive grooming resulting in loss of hair, and skin ulcerations from autotomy localized to lumbar and sacral innervated dermatomes. Co-infusion of NMDA with magnesium sulfate almost completely prevented these findings. The behavioural changes were not associated with abnormalities of sensory or motor conduction. Intrathecal infusion of NMDA induces a chronic "central" experimental pain disorder in rats, localized to the cord segment with the greatest exposure to the infusion, without involvement of peripheral sensory axons and sparing the axonal integrity of anterior horn cells. PMID:8180899

  1. Voltage-clamp frequency domain analysis of NMDA-activated neurons.

    PubMed

    Moore, L E; Hill, R H; Grillner, S

    1993-02-01

    1. Voltage and current-clamp steps were added to a sum of sine waves to measure the tetrodotoxin-insensitive membrane properties of neurons in the intact lamprey spinal cord. A systems analysis in the frequency domain was carried out on two types of cells that have very different morphologies in order to investigate the structural dependence of their electrophysiological properties. The method explicitly takes into account the geometrical shapes of (i) nearly spherical dorsal cells with one or two processes and (ii) motoneurons and interneurons that have branched dendritic structures. Impedance functions were analysed to obtain the cable properties of these in situ neurons. These measurements show that branched neurons are not isopotential and, therefore, a conventional voltage-clamp analysis is not valid. 2. The electrophysiological data from branched neurons were curve-fitted with a lumped soma-equivalent cylinder model consisting of eight equal compartments coupled to an isopotential cell body to obtain membrane parameters for both passive and active properties. The analysis provides a quantitative description of both the passive electrical properties imposed by the geometrical structure of neurons and the voltage-dependent ionic conductances determined by ion channel kinetics. The model fitting of dorsal cells was dominated by a one-compartment resistance and capacitance in parallel (RC) corresponding to the spherical, non-branched shape of these cells. Branched neurons required a model that contained both an RC compartment and a cable that reflected the structure of the cells. At rest, the electrotonic length of the cable was about two. Uniformly distributed voltage-dependent ionic conductance sites were adequate to describe the data at different membrane potentials. 3. The frequency domain admittance method in conjunction with a step voltage clamp was used to control and measure the oscillatory behavior induced by N-methyl-D-aspartate (NMDA) on lamprey spinal

  2. NMDA receptors are involved in the antidepressant-like effects of capsaicin following amphetamine withdrawal in male mice.

    PubMed

    Amiri, Shayan; Alijanpour, Sakineh; Tirgar, Fatemeh; Haj-Mirzaian, Arya; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Rastegar, Mojgan; Ghaderi, Marzieh; Ghazi-Khansari, Mahmoud; Zarrindast, Mohammad-Reza

    2016-08-01

    Amphetamine withdrawal (AW) is accompanied by diminished pleasure and depression which plays a key role in drug relapse and addictive behaviors. There is no efficient treatment for AW-induced depression and underpinning mechanisms were not well determined. Considering both transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and N-Methyl-d-aspartate (NMDA) receptors contribute to pathophysiology of mood and addictive disorders, in this study, we investigated the role of TRPV1 and NMDA receptors in mediating depressive-like behaviors following AW in male mice. Results revealed that administration of capsaicin, TRPV1 agonist, (100μg/mouse, i.c.v.) and MK-801, NMDA receptor antagonist (0.005mg/kg, i.p.) reversed AW-induced depressive-like behaviors in forced swimming test (FST) and splash test with no effect on animals' locomotion. Co-administration of sub-effective doses of MK-801 (0.001mg/kg, i.p.) and capsaicin (10μg/mouse, i.c.v) exerted antidepressant-like effects in behavioral tests. Capsazepine, TRPV1 antagonist, (100μg/mouse, i.c.v) and NMDA, NMDA receptor agonist (7.5mg/kg, i.p.) abolished the effects of capsaicin and MK-801, respectively. None of aforementioned treatments had any effect on behavior of control animals. Collectively, our findings showed that activation of TRPV1 and blockade of NMDA receptors produced antidepressant-like effects in male mice following AW, and these receptors are involved in AW-induced depressive-like behaviors. Further, we found that rapid antidepressant-like effects of capsaicin in FST and splash test are partly mediated by NMDA receptors. PMID:27167081

  3. Effects of several cerebroprotective drugs on NMDA channel function: evaluation using Xenopus oocytes and [3H]MK-801 binding.

    PubMed

    Kaneko, S; Sugimura, M; Inoue, T; Satoh, M

    1991-06-19

    The effects of several cerebroprotective and nootropic drugs on the function of excitatory amino acid (EAA) receptor subtypes expressed in Xenopus oocytes after injection of rodent brain poly(A)+ mRNA were investigated. The oocyte response to N-methyl-D-aspartate (NMDA) in the presence of glycine (Gly) was inhibited dose-dependently by bifemelane, indeloxazine, vinpocetine and vincamine while no effect was observed by idebenone, Ca hopantenate, aniracetam or piracetam. Bifemelane, indeloxazine and vinpocetine suppressed the maximum response of NMDA and Gly without affecting their EC50 values. Unlike Mg2+, they did not affect the current-voltage relationship of the NMDA response below 0 mV. On the non-NMDA-type responses of the injected oocytes to kainate (KA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and quisqualate (QA), no significant effects were observed by these drugs at 100 microM. On the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne (MK-801) to brain membranes, the estimated IC50 values were 88 microM for bifemelane, 102 microM for indeloxazine, and 115 microM for vinpocetine. The dissociation rate of [3H]MK-801 was significantly slowed by Zn2+ and vinpocetine, but not affected by bifemelane or indeloxazine. The Kd value for [3H]MK-801 binding was increased by bifemelane and indeloxazine while Bmax was unchanged. These results suggest that the inhibition of NMDA channels by vinpocetine shows a similarity to the action of Zn2+ which closes the gate of the NMDA channel. In contrast, bifemelane and indeloxazine may affect the phencyclidine (PCP)-site in the open channels and inhibit NMDA function. PMID:1652446

  4. Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates.

    PubMed

    Wang, Min; Arnsten, Amy F T

    2015-04-01

    Cognitive disorders such as schizophrenia and Alzheimer's disease are associated with dysfunction of the highly evolved dorsolateral prefrontal cortex (dlPFC), and with changes in glutamatergic N-methyl-D-aspartate receptors (NMDARs). Recent research on the primate dlPFC discovered that the pyramidal cell circuits that generate the persistent firing underlying spatial working memory communicate through synapses on spines containing NMDARs with NR2B subunits (GluN2B) in the post-synaptic density. This contrasts with synapses in the hippocampus and primary visual cortex, where GluN2B receptors are both synaptic and extrasynaptic. Blockade of GluN2B in the dlPFC markedly reduces the persistent firing of the Delay cells needed for neuronal representations of visual space. Cholinergic stimulation of nicotinic α7 receptors within the glutamate synapse is necessary for NMDAR actions. In contrast, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors have only subtle effects on the persistent firing of Delay cells, but contribute substantially to the firing of Cue and Response cells. Systemic administration of the NMDAR antagonist ketamine reduces the persistent firing of Delay cells, but increases the firing of some Response cells. The reduction in persistent firing produced by ketamine may explain why this drug can mimic or worsen the cognitive symptoms of schizophrenia. Similar actions in the medial PFC circuits representing the emotional aspects of pain may contribute to the rapid analgesic and anti-depressant actions of ketamine. PMID:25754145

  5. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Modulates N-Methyl-d-aspartate (NMDA) Receptor-dependent Intracellular Signaling and NMDA-induced Regulation of Postsynaptic Protein Complexes*

    PubMed Central

    Nakajima, Chikako; Kulik, Akos; Frotscher, Michael; Herz, Joachim; Schäfer, Michael; Bock, Hans H.; May, Petra

    2013-01-01

    The lipoprotein receptor LRP1 is essential in neurons of the central nervous system, as was revealed by the analysis of conditional Lrp1-deficient mouse models. The molecular basis of its neuronal functions, however, is still incompletely understood. Here we show by immunocytochemistry, electron microscopy, and postsynaptic density preparation that LRP1 is located postsynaptically. Basal and NMDA-induced phosphorylation of the transcription factor cAMP-response element-binding protein (CREB) as well as NMDA target gene transcription are reduced in LRP1-deficient neurons. In control neurons, NMDA promotes γ-secretase-dependent release of the LRP1 intracellular domain (LRP1-ICD). However, pull-down and chromatin immunoprecipitation (ChIP) assays showed no direct interaction between the LRP1-ICD and either CREB or target gene promoters. On the other hand, NMDA-induced degradation of the postsynaptic scaffold protein PSD-95 was impaired in the absence of LRP1, whereas its ubiquitination was increased, indicating that LRP1 influences the composition of postsynaptic protein complexes. Accordingly, NMDA-induced internalization of the AMPA receptor subunit GluA1 was impaired in LRP1-deficient neurons. These results show a role of LRP1 in the regulation and turnover of synaptic proteins, which may contribute to the reduced dendritic branching and to the neurological phenotype observed in the absence of LRP1. PMID:23760271

  6. Dopamine D1 receptor inhibition of NMDA receptor currents mediated by tyrosine kinase-dependent receptor trafficking in neonatal rat striatum

    PubMed Central

    Tong, Huaxia; Gibb, Alasdair J

    2008-01-01

    NMDA receptors are of particular importance in the control of synaptic strength and integration of synaptic activity. Dopamine receptor modulation of NMDA receptors in neonatal striatum may influence the efficacy of synaptic transmission in the cortico-striatal pathway and if so, this modulation will affect the behaviour of the basal ganglia network. Here, we show that in acute brain slices of neonatal (P7) rat striatum the dopamine D1 receptor agonist SKF-82958 significantly decreases NMDA receptor currents in patch-clamp whole-cell recordings. This inhibition is not abolished by application of a G protein inhibitor (GDP-β-S) or irreversible G protein activator (GTP-γ-S) suggesting a G protein-independent mechanism. In addition, intracellular application of protein tyrosine kinase inhibitors (lavendustin A or PP2) abolished D1 inhibition of NMDA currents. In contrast, in older animals (P28) D1 receptor activation produces a potentiation of the NMDA response which suggests there is a developmental switch in D1 modulation of striatal NMDA receptors. Single-channel recordings show that direct D1 receptor inhibition of NMDA receptors cannot be observed in isolated membrane patches. We hypothesize that D1 inhibition in whole-cell recordings from neonatal rats may be mediated by a change in NMDA receptor trafficking. Consistent with this hypothesis, intracellular application of a dynamin inhibitory peptide (QVPSRPNRAP) abolished D1 inhibition of NMDA receptor currents. We therefore conclude that a tyrosine kinase-dependent alteration of NMDA receptor trafficking underlies D1 dopamine receptor-mediated down-regulation of NMDA receptor currents in medium spiny neurons of neonatal rat striatum. PMID:18703578

  7. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction

    PubMed Central

    Sonekatsu, Mayumi; Yamanaka, Manabu; Nishio, Naoko; Tsutsui, Shunji; Yamada, Hiroshi; Yoshida, Munehito; Nakatsuka, Terumasa

    2016-01-01

    Background Glia–neuron interactions play an important role in the development of neuropathic pain. Expression of the pro-inflammatory cytokne →cytokine Interferon-gamma (IFNγ) is upregulated in the dorsal horn after peripheral nerve injury, and intrathecal IFNγ administration induces mechanical allodynia in rats. A growing body of evidence suggests that IFNγ might be involved in the mechanisms of neuropathic pain, but its effects on the spinal dorsal horn are unclear. We performed blind whole-cell patch-clamp recording to investigate the effect of IFNγ on postsynaptic glutamate-induced currents in the substantia gelatinosa neurons of spinal cord slices from adult male rats. Results IFNγ perfusion significantly enhanced the amplitude of NMDA-induced inward currents in substantia gelatinosa neurons, but did not affect AMPA-induced currents. The facilitation of NMDA-induced current by IFNγ was inhibited by bath application of an IFNγ receptor-selective antagonist. Adding the Janus activated kinase inhibitor tofacitinib to the pipette solution did not affect the IFNγ-induced facilitation of NMDA-induced currents. However, the facilitatory effect of IFNγ on NMDA-induced currents was inhibited by perfusion of the microglial inhibitor minocycline. These results suggest that IFNγ binds the microglial IFNγ receptor and enhances NMDA receptor activity in substantia gelatinosa neurons. Next, to identify the effector of signal transmission from microglia to dorsal horn neurons, we added an inhibitor of G proteins, GDP-β-S, to the pipette solution. In a GDP-β-S–containing pipette solution, IFNγ-induced potentiation of the NMDA current was significantly suppressed after 30 min. In addition, IFNγ-induced potentiation of NMDA currents was blocked by application of a selective antagonist of CCR2, and its ligand CCL2 increased NMDA-induced currents. Conclusion Our findings suggest that IFNγ enhance the amplitude of NMDA-induced inward currents in substantia

  8. Neonatal Prefrontal Inactivation Results in Reversed Dopaminergic Responses in the Shell Subregion of the Nucleus Accumbens to NMDA Antagonists.

    PubMed

    Pouvreau, Tiphaine; Tagliabue, Emmanuelle; Usun, Yusuf; Eybrard, Séverine; Meyer, Francisca; Louilot, Alain

    2016-07-20

    Striatal dopaminergic dysregulation in schizophrenia could result from a prefronto-striatal dysconnectivity, of neurodevelopmental origin, involving N-methyl-d-aspartate (NMDA) receptors. The dorsomedian shell part of the nucleus accumbens is a striatal subregion of particular interest inasmuch as it has been described as the common target region for antipsychotics. Moreover, NMDA receptors located on the dopaminergic endings have been reported in the shell. The present study examines in adult rats the effects of early functional inactivation of the left prefrontal cortex on behavioral and dopaminergic responses in the dorsomedian shell part of the nucleus accumbens following administration of two noncompetitive NMDA receptor antagonists, ketamine, and dizocilpine (MK-801). The results showed that postnatal blockade of the prefrontal cortex led to increased locomotor activity as well as increased extracellular dopamine levels in the dorsomedian shell following administration of both noncompetitive NMDA receptor antagonists, and, more markedly, after treatment with the more specific one, MK-801, whereas decreased dopaminergic levels were observed in respective controls. These data suggest a link between NMDA receptor dysfunctioning and dopamine dysregulation at the level of the dorsomedian shell part of the nucleus accumbens. They may help to understand the pathophysiology of schizophrenia in a neurodevelopmental perspective. PMID:27145294

  9. Potencies and unblocking kinetic properties of antagonists at recombinant human NMDA receptors in a Xenopus oocytes model.

    PubMed

    Heusler, Peter; Tourette, Amélie; Cussac, Didier

    2015-05-01

    N-methyl-D-aspartate (NMDA) receptor channels are implicated in a wide range of physiological and pathophysiological processes, and a large number of pharmacological agents have been introduced that target the receptor via diverse mechanisms of action. Amongst others, subunit selectivity (in particular for the NR2B receptor subunit) and rapid unblocking kinetics have been put forward as favourable pharmacological properties of NMDA receptor-targeting drugs. Here, we describe a pharmacological characterization of human recombinant NMDA receptors expressed in Xenopus oocytes in an electrophysiological set-up. Using this approach, we compare inhibitor potencies of several known NMDA receptor ligands as well as unblocking kinetic properties of selected compounds. All compounds tested had similar potencies at receptors containing NR2A or NR2B receptors with the exception of traxoprodil, which was selective for NR2B. The rank order of potency was (+)MK-801 > phencyclidine (PCP) ≈ traxoprodil > memantine ≈ ketamine > duloxetine. In line with its proposed rapid dissociation properties, the relatively well-tolerated drug memantine exhibits markedly faster unblocking than ketamine and PCP, similar to the low-affinity compound, duloxetine. Electrophysiological recording in Xenopus oocytes thus allows a relatively convenient comparison of key pharmacological parameters at recombinant human NMDA receptors. PMID:25604077

  10. GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo.

    PubMed

    Hu, Neng-Wei; Klyubin, Igor; Anwyl, Roger; Anwy, Roger; Rowan, Michael J

    2009-12-01

    Currently, treatment with the relatively low-affinity NMDA receptor antagonist memantine provides limited benefit in Alzheimer's disease (AD). One probable dose-limiting factor in the use of memantine is the inhibition of NMDA receptor-dependent synaptic plasticity mechanisms believed to underlie certain forms of memory. Moreover, amyloid-beta protein (Abeta) oligomers that are implicated in causing the cognitive deficits of AD potently inhibit this form of plasticity. Here we examined if subtype-preferring NMDA receptor antagonists could preferentially protect against the inhibition of NMDA receptor-dependent plasticity of excitatory synaptic transmission by Abeta in the hippocampus in vivo. Using doses that did not affect control plasticity, antagonists selective for NMDA receptors containing GluN2B but not other GluN2 subunits prevented Abeta(1-42) -mediated inhibition of plasticity. Evidence that the proinflammatory cytokine TNFalpha mediates this deleterious action of Ass was provided by the ability of TNFalpha antagonists to prevent Abeta(1-42) inhibition of plasticity and the abrogation of a similar disruptive effect of TNFalpha using a GluN2B-selective antagonist. Moreover, at nearby synapses that were resistant to the inhibitory effect of TNFalpha, Abeta(1-42) did not significantly affect plasticity. These findings suggest that preferentially targeting GluN2B subunit-containing NMDARs may provide an effective means of preventing cognitive deficits in early Alzheimer's disease. PMID:19918059

  11. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    PubMed Central

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  12. Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex

    PubMed Central

    Toriumi, Kazuya; Mouri, Akihiro; Narusawa, Shiho; Aoyama, Yuki; Ikawa, Natsumi; Lu, Lingling; Nagai, Taku; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2012-01-01

    N-methyl--aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression. PMID:22257896

  13. Activation of type 5 metabotropic glutamate receptors attenuates deficits in cognitive flexibility induced by NMDA receptor blockade

    PubMed Central

    Stefani, Mark R.; Moghaddam, Bita

    2010-01-01

    Metabotropic glutamate (mGlu) receptors provide a mechanism by which the function of NMDA glutamate receptors can be modulated. As NMDA receptor hypofunction is implicated in the etiology of psychiatric disorders, including schizophrenia, the pharmacological regulation of mGlu receptor activity represents a promising therapeutic approach. We examined the effects of the positive allosteric mGlu5 receptor modulator 3- cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), alone and in combination with the NMDA receptor antagonist MK-801, on a task measuring cognitive set-shifting ability. This task measures NMDA receptor-dependent cognitive abilities analogous to those impaired in schizophrenia. Systemic administration of CDPPB (10 & 30 mg/kg i.p) blocked MK-801 (0.1 mg/kg, i.p.)-induced impairments in set-shifting ability. The effect on learning was dose-dependent, with the 30 mg/kg dose having a greater effect than the 10 mg/kg dose across all trials. This ameliorative effect of CDPPB reflected a reduction in MK-801-induced perseverative responding. These results add to the evidence that mGlu5 receptors interact functionally with NMDA receptors to regulate behavior, and suggest that positive modulators of mGlu5 receptors may have therapeutic potential in the treatment of disorders, like schizophrenia, characterized by impairments in cognitive flexibility and memory. PMID:20371234

  14. PhTx3-4, a Spider Toxin Calcium Channel Blocker, Reduces NMDA-Induced Injury of the Retina

    PubMed Central

    Binda, Nancy Scardua; Porto Petruceli Carayon, Charles; Agostini, Rafael Mourão; do Nascimento Pinheiro, Ana Cristina; Nascimento Cordeiro, Marta; Romano Silva, Marco Aurélio; Figueira Silva, Juliana; Rita Pereira, Elizete Maria; da Silva Junior, Claudio Antonio; de Castro Junior, Célio José; Sena Guimarães, Andre Luiz; Gomez, Marcus Vinicius

    2016-01-01

    The in vivo neuroprotective effect of PhTx3-4, a spider toxin N-P/Q calcium channel blocker, was studied in a rat model of NMDA-induced injury of the retina. NMDA (N-Methyl-d-Aspartate)-induced retinal injury in rats reduced the b-wave amplitude by 62% ± 3.6%, indicating the severity of the insult. PhTx3-4 treatment increased the amplitude of the b-wave, which was almost equivalent to the control retinas that were not submitted to injury. The PhTx3-4 functional protection of the retinas recorded on the ERG also was observed in the neuroprotection of retinal cells. NMDA-induced injury reduced live cells in the retina layers and the highest reduction, 84%, was in the ganglion cell layer. Notably, PhTx3-4 treatment caused a remarkable reduction of dead cells in the retina layers, and the highest neuroprotective effect was in the ganglion cells layer. NMDA-induced cytotoxicity of the retina increased the release of glutamate, reactive oxygen species (ROS) production and oxidative stress. PhTx3-4 treatment reduced glutamate release, ROS production and oxidative stress measured by malondialdehyde. Thus, we presented for the first time evidence of in vivo neuroprotection from NMDA-induced retinal injury by PhTx3-4 (-ctenitoxin-Pn3a), a spider toxin that blocks N-P/Q calcium channels. PMID:26978403

  15. PhTx3-4, a Spider Toxin Calcium Channel Blocker, Reduces NMDA-Induced Injury of the Retina.

    PubMed

    Binda, Nancy Scardua; Porto Petruceli Carayon, Charles; Agostini, Rafael Mourão; do Nascimento Pinheiro, Ana Cristina; Nascimento Cordeiro, Marta; Romano Silva, Marco Aurélio; Figueira Silva, Juliana; Rita Pereira, Elizete Maria; da Silva Junior, Claudio Antonio; de Castro Junior, Célio José; Sena Guimarães, Andre Luiz; Gomez, Marcus Vinicius

    2016-01-01

    The in vivo neuroprotective effect of PhTx3-4, a spider toxin N-P/Q calcium channel blocker, was studied in a rat model of NMDA-induced injury of the retina. NMDA (N-Methyl-d-Aspartate)-induced retinal injury in rats reduced the b-wave amplitude by 62% ± 3.6%, indicating the severity of the insult. PhTx3-4 treatment increased the amplitude of the b-wave, which was almost equivalent to the control retinas that were not submitted to injury. The PhTx3-4 functional protection of the retinas recorded on the ERG also was observed in the neuroprotection of retinal cells. NMDA-induced injury reduced live cells in the retina layers and the highest reduction, 84%, was in the ganglion cell layer. Notably, PhTx3-4 treatment caused a remarkable reduction of dead cells in the retina layers, and the highest neuroprotective effect was in the ganglion cells layer. NMDA-induced cytotoxicity of the retina increased the release of glutamate, reactive oxygen species (ROS) production and oxidative stress. PhTx3-4 treatment reduced glutamate release, ROS production and oxidative stress measured by malondialdehyde. Thus, we presented for the first time evidence of in vivo neuroprotection from NMDA-induced retinal injury by PhTx3-4 (-ctenitoxin-Pn3a), a spider toxin that blocks N-P/Q calcium channels. PMID:26978403

  16. A negative feedback loop controls NMDA receptor function in cortical interneurons via neuregulin 2/ErbB4 signalling

    PubMed Central

    Vullhorst, Detlef; Mitchell, Robert M.; Keating, Carolyn; Roychowdhury, Swagata; Karavanova, Irina; Tao-Cheng, Jung-Hwa; Buonanno, Andres

    2015-01-01

    The neuregulin receptor ErbB4 is an important modulator of GABAergic interneurons and neural network synchronization. However, little is known about the endogenous ligands that engage ErbB4, the neural processes that activate them or their direct downstream targets. Here we demonstrate, in cultured neurons and in acute slices, that the NMDA receptor is both effector and target of neuregulin 2 (NRG2)/ErbB4 signalling in cortical interneurons. Interneurons co-express ErbB4 and NRG2, and pro-NRG2 accumulates on cell bodies atop subsurface cisternae. NMDA receptor activation rapidly triggers shedding of the signalling-competent NRG2 extracellular domain. In turn, NRG2 promotes ErbB4 association with GluN2B-containing NMDA receptors, followed by rapid internalization of surface receptors and potent downregulation of NMDA but not AMPA receptor currents. These effects occur selectively in ErbB4-positive interneurons and not in ErbB4-negative pyramidal neurons. Our findings reveal an intimate reciprocal relationship between ErbB4 and NMDA receptors with possible implications for the modulation of cortical microcircuits associated with cognitive deficits in psychiatric disorders. PMID:26027736

  17. FMRP mediates chronic ethanol induced changes in NMDA, Kv4.2, and KChIP3 expression in the hippocampus

    PubMed Central

    Spencer, Kathryn B.; Mulholland, Patrick J.; Chandler, L. Judson

    2016-01-01

    Background Exposure to chronic ethanol results in changes in expression of proteins that regulate neuronal excitability. The present study examined whether chronic ethanol alters the hippocampal expression and function of Fragile-X mental retardation protein (FMRP), and the role of FMRP in the modulation of chronic ethanol-induced changes in expression of NMDA receptors and Kv4.2 channels. Methods For in-vivo studies, C57Bl6/J mice underwent a chronic intermittent ethanol (CIE) vapor exposure procedure. After CIE, hippocampal tissue was collected and subjected to immunoblot blot analysis of NMDA receptor subunits (GluN1, GluN2B), Kv4.2 and its accessory protein KChIP3. For in-vitro studies, hippocampal slice cultures were exposed to 75 mM ethanol for 8 days. Following ethanol exposure, mRNAs bound to FMRP was measured. In a separate set of studies, cultures were exposed to an inhibitor of S6K1 (PF-4708671, 6 μM) in order to assess whether ethanol-induced homeostatic changes in protein expression depend upon changes in FMRP activity. Results Immunoblot blot analysis revealed increases in GluN1 and GluN2B but reductions in Kv4.2 and KChIP3. Analysis of mRNAs bound to FMRP revealed a similar bidirectional change observed as reduction of GluN2B and increase in Kv4.2 and KChiP3 mRNA transcripts. Analysis of FMRP further revealed that while chronic ethanol did not alter the expression of FMRP, it significantly increased phosphorylation of FMRP at the S499 residue that is known to critically regulate its activity. Inhibition of S6K1 prevented the chronic ethanol-induced increase in phospho-FMRP and changes in NMDA subunits, Kv4.2 and KChiP3. In contrast, PF-4708671 had no effect in the absence of alcohol, indicating it was specific for the chronic ethanol-induce changes. Conclusions These findings demonstrate that chronic ethanol exposure enhances translational control of plasticity related proteins by FMRP, and that S6K1 and FMRP activity are required for expression of

  18. Characterization of temporal expressions of FOXO and pFOXO proteins in the hippocampus by kainic acid in mice: involvement of NMDA and non-NMDA receptors.

    PubMed

    Park, Soo-Hyun; Sim, Yun-Beom; Lee, Jin-Koo; Lee, Jae-Yong; Suh, Hong-Won

    2016-05-01

    In the present study, we characterized the expression and role of forkhead box O (FoxO3a) in kainic acid (KA)-induced hippocampal neuronal cell death. FoxO3a and pFoxO3a expression in the CA1, CA2, and dentate gyrus regions in the hippocampus increased 0.5 and 1 h after intracerebroventricular administration of KA. In addition, both FoxO3a and pFoxO3a expression in the hippocampal CA3 region increased significantly and equally for 1 h but decreased gradually for 24 h after KA administration. In particular, the KA-induced increases in FoxO3a and pFoxO3a expression in the hippocampal CA3 region were inhibited by pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801, dizocilpine, 1 µg/5 µl) or a non-NMDA receptor antagonist (CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione, 0.5 µg/5 µl). Furthermore, dizocilpine and CNQX produced a neuroprotective effect against KA-induced neuronal death in the CA3 region of the hippocampus. Our results suggest that FoxO3a and pFoxO3 expression is upregulated by KA. Both FoxO3a and pFoxO3a expression appear to be responsible for KA-induced neuronal death in the CA3 region of the hippocampus. PMID:26987339

  19. Subthreshold receptive fields and baseline excitability of "silent" S1 callosal neurons in awake rabbits: contributions of AMPA/kainate and NMDA receptors.

    PubMed

    Swadlow, H A; Hicks, T P

    1997-07-01

    The contribution of NMDA and non-NMDA receptors to excitatory subthreshold receptive fields was examined in callosal efferent neurons (CC neurons) in primary somatosensory cortex of the fully awake rabbit. Only neurons showing no traditional (suprathreshold) receptive fields were examined. Subthreshold responses were examined by monitoring the thresholds of efferent neurons to juxtasomal current pulses (JSCPs) delivered through the recording microelectrode. Changes in threshold following a peripheral conditioning stimulus signify a subthreshold response. Using this method, excitatory postsynaptic potentials and inhibitory postsynaptic potentials are manifested as decreases and increases in JSCP threshold, respectively. NMDA and non-NMDA agonists and antagonists were administered iontophoretically via a multibarrel micropipette assembly attached to the recording/stimulating microelectrode. Receptor-selective doses of both AMPA/kainate and NMDA antagonists decreased the excitability of CC neurons in the absence of any peripheral stimulation. Threshold to JSCPs rose by a mean of 20% for both classes of antagonist. Despite the similar effects of NMDA and non-NMDA antagonists on baseline excitability, these antagonists had dramatically different effects on the subthreshold excitatory response to activation of the receptive field. Whereas receptor-selective doses of AMPA/kainate antagonists either eliminated or severely attenuated the subthreshold excitatory responses to peripheral stimulation, NMDA antagonists had little or no effect on the subthreshold evoked response. PMID:9262195

  20. Pharmacological Intervention of Hippocampal CA3 NMDA Receptors Impairs Acquisition and Long-Term Memory Retrieval of Spatial Pattern Completion Task

    ERIC Educational Resources Information Center

    Fellini, Laetitia; Florian, Cedrick; Courtey, Julie; Roullet, Pascal

    2009-01-01

    Pattern completion is the ability to retrieve complete information on the basis of incomplete retrieval cues. Although it has been demonstrated that this cognitive capacity depends on the NMDA receptors (NMDA-Rs) of the hippocampal CA3 region, the role played by these glutamatergic receptors in the pattern completion process has not yet been…

  1. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning

    PubMed Central

    Parker, Jones G.; Zweifel, Larry S.; Clark, Jeremy J.; Evans, Scott B.; Phillips, Paul E. M.; Palmiter, Richard D.

    2010-01-01

    During Pavlovian conditioning, phasic dopamine (DA) responses emerge to reward-predictive stimuli as the subject learns to anticipate reward delivery. This observation has led to the hypothesis that phasic dopamine signaling is important for learning. To assess the ability of mice to develop anticipatory behavior and to characterize the contribution of dopamine, we used a food-reinforced Pavlovian conditioning paradigm. As mice learned the cue–reward association, they increased their head entries to the food receptacle in a pattern that was consistent with conditioned anticipatory behavior. D1-receptor knockout (D1R-KO) mice had impaired acquisition, and systemic administration of a D1R antagonist blocked both the acquisition and expression of conditioned approach in wild-type mice. To assess the specific contribution of phasic dopamine transmission, we tested mice lacking NMDA-type glutamate receptors (NMDARs) exclusively in dopamine neurons (NR1-KO mice). Surprisingly, NR1-KO mice learned at the same rate as their littermate controls. To evaluate the contribution of NMDARs to phasic dopamine release in this paradigm, we performed fast-scan cyclic voltammetry in the nucleus accumbens of awake mice. Despite having significantly attenuated phasic dopamine release following reward delivery, KO mice developed cue-evoked dopamine release at the same rate as controls. We conclude that NMDARs in dopamine neurons enhance but are not critical for phasic dopamine release to behaviorally relevant stimuli; furthermore, their contribution to phasic dopamine signaling is not necessary for the development of cue-evoked dopamine or anticipatory activity in a D1R-dependent Pavlovian conditioning paradigm. PMID:20616081

  2. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex

    PubMed Central

    Yang, Yang; Paspalas, Constantinos D.; Jin, Lu E.; Picciotto, Marina R.; Arnsten, Amy F. T.; Wang, Min

    2013-01-01

    The cognitive function of the highly evolved dorsolateral prefrontal cortex (dlPFC) is greatly influenced by arousal state, and is gravely afflicted in disorders such as schizophrenia, where there are genetic insults in α7 nicotinic acetylcholine receptors (α7-nAChRs). A recent behavioral study indicates that ACh depletion from dlPFC markedly impairs working memory [Croxson PL, Kyriazis DA, Baxter MG (2011) Nat Neurosci 14(12):1510–1512]; however, little is known about how α7-nAChRs influence dlPFC cognitive circuits. Goldman-Rakic [Goldman-Rakic (1995) Neuron 14(3):477–485] discovered the circuit basis for working memory, whereby dlPFC pyramidal cells excite each other through glutamatergic NMDA receptor synapses to generate persistent network firing in the absence of sensory stimulation. Here we explore α7-nAChR localization and actions in primate dlPFC and find that they are enriched in glutamate network synapses, where they are essential for dlPFC persistent firing, with permissive effects on NMDA receptor actions. Blockade of α7-nAChRs markedly reduced, whereas low-dose stimulation selectively enhanced, neuronal representations of visual space. These findings in dlPFC contrast with the primary visual cortex, where nAChR blockade had no effect on neuronal firing [Herrero JL, et al. (2008) Nature 454(7208):1110–1114]. We additionally show that α7-nAChR stimulation is needed for NMDA actions, suggesting that it is key for the engagement of dlPFC circuits. As ACh is released in cortex during waking but not during deep sleep, these findings may explain how ACh shapes differing mental states during wakefulness vs. sleep. The results also explain why genetic insults to α7-nAChR would profoundly disrupt cognitive experience in patients with schizophrenia. PMID:23818597

  3. Transcription inhibitors prevent amnesia induced by NMDA antagonist-mediated impairment of memory reconsolidation.

    PubMed

    Nikitin, Vladimir P; Solntseva, Svetlana V; Shevelkin, Alexey V

    2016-09-01

    Recent studies report that long-term memory retrieval can induce memory reconsolidation, and impairment of this reconsolidation might lead to amnesia. Previously, we found that reconsolidation of a conditioned food aversion memory could be disrupted by translation inhibitors for up to 3 h following a reconsolidation event, thus inducing amnesia. We examined the role of transcription processes in the induction of amnesia in the land snail, Helix lucorum. It received N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and transcription inhibitor 2 days after learning in a neutral context environment; it was then transferred to the learning context followed by reminder with conditioned food stimulus. NMDA receptor blockade, followed by a reminder session, impaired reconsolidation of an aversive memory. Simultaneous administration of an NMDA receptor antagonist and a transcription inhibitor prior to reminder of an aversive event prevented amnesia induction. In contrast, when a transcription inhibitor alone was injected prior to a reminder session, the blockade had no effect on memory. We found that transcription inhibition 0-6 h after amnesia induction suppressed memory loss, but this suppression was lost when inhibitors were administered 9 h after amnesia. Thus, amnesia is likely dependent on transcription processes within a 9-h time window. We can hypothesize that amnesia induction initiates synthesis of specific mRNAs and proteins; furthermore, these events occur within specific time-dependent windows. Our findings could prove useful for the analysis of amnesia formation and for the development of possible ways to prevent memory loss associated with various diseases and injuries in animals and humans. PMID:26742927

  4. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    PubMed Central

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic-clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic-clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABAA receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists are more likely to be effective in treating TMDT poisoning. PMID:23022509

  5. Anti-NMDA-R encephalitis: Should we consider extreme delta brush as electrical status epilepticus?

    PubMed

    Chanson, Eve; Bicilli, Élodie; Lauxerois, Michel; Kauffmann, Sophie; Chabanne, Russell; Ducray, François; Honnorat, Jérome; Clavelou, Pierre; Rosenberg, Sarah

    2016-02-01

    Seizures are common clinical manifestations in anti-N-methyl-d-aspartate receptor (anti-NMDA-R) encephalitis, among other neurological and psychiatric symptoms. During the course of the disease, some specific EEG patterns have been described: generalized rhythmic delta activity (GRDA) and extreme delta brush (EDB). In comatose patients, the association of these EEG abnormalities with subtle motor manifestations can suggest ongoing non-convulsive status epilepticus (NCSE). We report the case of a 28-year-old woman admitted for a clinical presentation typical of anti-NMDA-R encephalitis, which was confirmed by CSF analysis. She was rapidly intubated because of severe dysautonomia and disturbed consciousness. Clinical examination revealed subtle paroxysmal and intermittent myoclonic and tonic movements, correlated on video-EEG with GRDA and/or EDB. NCSE was then suspected, but electroclinical manifestations persisted despite many anti-epileptic drugs combinations, or reappeared when barbiturate anesthesia was decreased. In order to confirm or dismiss the diagnosis, intracranial pressure (ICP) and surface video-EEG monitoring were performed simultaneously and revealed no ICP increase, thus being strongly against a diagnosis of seizures. Sedation was progressively weaned, and clinical condition as well as EEG appearance progressively improved. Literature review revealed 11 similar cases, including 2 with focal NCSE. Of the nine other cases, NCSE diagnosis was finally excluded in 5 cases. NCSE diagnosis in association with anti-NMDA-R encephalitis is sometimes very difficult and its occurrence might be overestimated. Video-EEG is highly recommended and more invasive techniques may sometimes be necessary. PMID:26922283

  6. Involvement of hippocampal NMDA receptors in retrieval of spontaneous object recognition memory in rats.

    PubMed

    Iwamura, Etsushi; Yamada, Kazuo; Ichitani, Yukio

    2016-07-01

    The involvement of hippocampal N-methyl-d-aspartate (NMDA) receptors in the retrieval process of spontaneous object recognition memory was investigated. The spontaneous object recognition test consisted of three phases. In the sample phase, rats were exposed to two identical objects several (2-5) times in the arena. After the sample phase, various lengths of delay intervals (24h-6 weeks) were inserted (delay phase). In the test phase in which both the familiar and the novel objects were placed in the arena, rats' novel object exploration behavior under the hippocampal treatment of NMDA receptor antagonist, AP5, or vehicle was observed. With 5 exposure sessions in the sample phase (experiment 1), AP5 treatment in the test phase significantly decreased discrimination ratio when the delay was 3 weeks but not when it was one week. On the other hand, with 2 exposure sessions in the sample phase (experiment 2) in which even vehicle-injected control animals could not discriminate the novel object from the familiar one with a 3 week delay, AP5 treatment significantly decreased discrimination ratio when the delay was one week, but not when it was 24h. Additional experiment (experiment 3) showed that the hippocampal treatment of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, NBQX, decreased discrimination ratio with all delay intervals tested (24h-3 weeks). Results suggest that hippocampal NMDA receptors play an important role in the retrieval of spontaneous object recognition memory especially when the memory trace weakens. PMID:27036649

  7. Time and space profiling of NMDA receptor co-agonist functions.

    PubMed

    Mothet, Jean-Pierre; Le Bail, Matildé; Billard, Jean-Marie

    2015-10-01

    The N-Methyl D-Aspartic acid (NMDA) receptors (NMDAR) are key tetrameric ionotropic glutamate receptors that transduce glutamatergic signals throughout the central nervous system (CNS) and spinal cord. Although NMDARs are diverse in their subunit composition, subcellular localization, and biophysical and pharmacological properties, their activation always requires the binding of a co-agonist that has long been thought to be glycine. However, intense research over the last decade has challenged this classical model by showing that another amino acid, d-serine, is the preferential co-agonist for a subset of synaptic NMDARs in many areas of the adult brain. Nowadays, a totally new picture of glutamatergic synapses at work is emerging where both glycine and d-serine are involved in a complex interplay to regulate NMDAR functions in the CNS following time and space constraints. The purpose of this review was to highlight the particular role of each co-agonist in modulating NMDAR-dependent activities in healthy and diseased brains. We have herein integrated our most advanced knowledge of how glycine and d-serine may orchestrate synapse dynamics and drive neuronal network activity in a time- and synapse-specific manner and how changes in synaptic availability of these amino acids may contribute to cognitive impairments such as those associated with healthy aging, epilepsy, and schizophrenia. The N-Methyl D-Aspartic acid (NMDA) subtype of glutamate receptors are central to many physiological functions and are linked to brain disorders. Their functions require glutamate and a co-agonist d-serine or glycine. After years of intense research and controversy on the identity of the amino acid that serves as the right co-agonist, we are just entering a new era of consensus where glycine and d-serine are teaming up to regulate the function of different subsets of NMDA receptors and at different synapses during different time windows of brain development. PMID:26088787

  8. Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice.

    PubMed

    Chang, Chih-Hua; Hsiao, Ya-Hsin; Chen, Yu-Wen; Yu, Yang-Jung; Gean, Po-Wu

    2015-04-01

    Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. PMID:25348768

  9. Effects of Memantine, an NMDA Antagonist, on Metabolic Syndromes in Female NMRI Mice

    PubMed Central

    Osanloo, Naser; Sarahian, Nahid; Zardooz, Homeira; Sahraei, Hedayat; Sahraei, Mohammad; Sadeghi, Bahareh

    2015-01-01

    Introduction: The brain glutamate neurotransmitter system and its NMDA (N-methyl-D-aspartate) receptors in the nucleus accumbens play an important role in the incidence of sensitivity and addiction. The present study examined the inhibitory effect of glutamate NMDA receptors in the nucleus accumbens in response to chronic stress. Methods: After the unilateral and bilateral placement of cannula(e) in the nucleus accumbens, one group of the animals received different doses of intra-accumbens memantine (0.1, 0.5 and 1 μg/mouse) 5 minutes before receiving the electric shock stress at their soles (using a Communication Box) and the other group received intraperitoneal memantine (doses of 0.1, 0.5 and 1mg/kg) 30 minutes before receiving the same shock. Chronic stress increased the animals’ weight, plasma corticosterone, food and water intake, but reduced their defecation rates and eating latency. Results: The intraperitoneal administration of memantine increased plasma corticosterone, water intake, fecal weight, and eating latency, but had no effect on food intake or weight. The dose and site-dependent intra-accumbens administration of memantine either exacerbated the effects of stress on plasma corticosterone levels, water and food intake, or had no effect on these parameters. Furthermore, the administration of memantine had no effect on animal’s weight and inhibited the effects of stress on fecal weight and eating latency. Discussion: The inhibition of glutamate NMDA receptors in the nucleus accumbens can inhibit and/or exacerbate the dose and site-dependent effects of chronic stress, and gender plays a significant role in producing this effect too. PMID:26649162

  10. Paradoxical proepileptic response to NMDA receptor blockade linked to cortical interneuron defect in stargazer mice.

    PubMed

    Maheshwari, Atul; Nahm, Walter K; Noebels, Jeffrey L

    2013-01-01

    Paradoxical seizure exacerbation by anti-epileptic medication is a well-known clinical phenomenon in epilepsy, but the cellular mechanisms remain unclear. One possibility is enhanced network disinhibition by unintended suppression of inhibitory interneurons. We investigated this hypothesis in the stargazer mouse model of absence epilepsy, which bears a mutation in stargazin, an AMPA receptor trafficking protein. If AMPA signaling onto inhibitory GABAergic neurons is impaired, their activation by glutamate depends critically upon NMDA receptors. Indeed, we find that stargazer seizures are exacerbated by NMDA receptor blockade with CPP (3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-1-phosphonic acid) and MK-801, whereas other genetic absence epilepsy models are sensitive to these antagonists. To determine how an AMPA receptor trafficking defect could lead to paradoxical network activation, we analyzed stargazin and AMPA receptor localization and found that stargazin is detected exclusively in parvalbumin-positive (PV (+)) fast-spiking interneurons in somatosensory cortex, where it is co-expressed with the AMPA receptor subunit GluA4. PV (+) cortical interneurons in stargazer show a near twofold decrease in the dendrite:soma GluA4 expression ratio compared to wild-type (WT) littermates. We explored the functional consequence of this trafficking defect on network excitability in neocortical slices. Both NMDA receptor antagonists suppressed 0 Mg (2) (+)-induced network discharges in WT but augmented bursting in stargazer cortex. Interneurons mediate this paradoxical response, since the difference between genotypes was masked by GABA receptor blockade. Our findings provide a cellular locus for AMPA receptor-dependent signaling defects in stargazer cortex and define an interneuron-dependent mechanism for paradoxical seizure exacerbation in absence epilepsy. PMID:24065886

  11. Synaptic commitment: developmentally regulated reciprocal changes in hippocampal granule cell NMDA and AMPA receptors over the lifespan.

    PubMed

    Yang, Zhiyong; Krause, Michael; Rao, Geeta; McNaughton, Bruce L; Barnes, C A

    2008-06-01

    Synaptic transmission in hippocampal field CA1 is largely N-methyl-d-aspartate receptor (NMDA(R)) dependent during the early postnatal period. It becomes increasingly mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptors until an adult ratio of AMPA to NMDA receptors is achieved. It is shown here that increases in the AMPA receptor (AMPA(R))-mediated field potential response continue over the life span of the F-344 rat at the perforant path-granule cell synapse in the dentate gyrus. In contrast, the NMDA(R)-dependent component of the response decreases with age between 1 and 27 mo, leading to an increase of AMPA(R)/NMDA(R) ratio with age. One possible explanation of this age difference is that the AMPA(R)/NMDA(R) ratio can be modified by experience. To test the idea that the changed ratio is caused by the old rats' longer lives, an intensive 10-mo period of enrichment treatment was given to a group of animals, beginning at 3 mo of age. Compared with animals housed in standard cages, the enrichment treatment did not alter the glutamatergic response ratio measured with field potential recording methods. These data provide support for the conclusion that the observed change with age is developmentally regulated rather than experience dependent. Given the role of the NMDA(R) in synaptic plasticity, these changes suggest a progressive commitment of perforant path synapses to particular weights over the life span. One possible implication of this effect includes preservation of selected memories, ultimately at the expense of a reduced capacity to store new information. PMID:18417629

  12. 40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors.

    PubMed

    Sivarao, Digavalli V; Chen, Ping; Senapati, Arun; Yang, Yili; Fernandes, Alda; Benitex, Yulia; Whiterock, Valerie; Li, Yu-Wen; Ahlijanian, Michael K

    2016-08-01

    Schizophrenia patients exhibit dysfunctional gamma oscillations in response to simple auditory stimuli or more complex cognitive tasks, a phenomenon explained by reduced NMDA transmission within inhibitory/excitatory cortical networks. Indeed, a simple steady-state auditory click stimulation paradigm at gamma frequency (~40 Hz) has been reproducibly shown to reduce entrainment as measured by electroencephalography (EEG) in patients. However, some investigators have reported increased phase locking factor (PLF) and power in response to 40 Hz auditory stimulus in patients. Interestingly, preclinical literature also reflects this contradiction. We investigated whether a graded deficiency in NMDA transmission can account for such disparate findings by administering subanesthetic ketamine (1-30 mg/kg, i.v.) or vehicle to conscious rats (n=12) and testing their EEG entrainment to 40 Hz click stimuli at various time points (~7-62 min after treatment). In separate cohorts, we examined in vivo NMDA channel occupancy and tissue exposure to contextualize ketamine effects. We report a robust inverse relationship between PLF and NMDA occupancy 7 min after dosing. Moreover, ketamine could produce inhibition or disinhibition of the 40 Hz response in a temporally dynamic manner. These results provide for the first time empirical data to understand how cortical NMDA transmission deficit may lead to opposite modulation of the auditory steady-state response (ASSR). Importantly, our findings posit that 40 Hz ASSR is a pharmacodynamic biomarker for cortical NMDA function that is also robustly translatable. Besides schizophrenia, such a functional biomarker may be of value to neuropsychiatric disorders like bipolar and autism spectrum where 40 Hz ASSR deficits have been documented. PMID:26837462

  13. Blockade of NMDA receptors reverses the depressant, but not anxiogenic effect of adolescence social isolation in mice.

    PubMed

    Haj-Mirzaian, Arya; Amiri, Shayan; Kordjazy, Nastaran; Rahimi-Balaei, Maryam; Haj-Mirzaian, Arvin; Marzban, Hassan; Aminzadeh, Azadeh; Dehpour, Ahmad Reza; Mehr, Shahram Ejtemaei

    2015-03-01

    Early life social isolation stress (SIS), a well-known chronic stress paradigm, is contributed to a number of pathophysiological and neurochemical changes including depression and anxiety. The underlying mechanisms for these disorders in socially isolated animals have not been fully cleared. Previous studies have shown that N-Methyl-d-aspartate (NMDA) receptor function is changed by social isolation condition. It is now well recognized that NMDA receptor blockade can exhibit antidepressant and anxiolytic actions. In our study, postnatal day 21-25 mice were randomly housed for 4 weeks under either social condition (SC) or isolated condition (IC). Then, animals were subjected to different behavioral experiments to investigate whether blockade of NMDA receptor resulted in behavioral alterations in animals. Social isolation stress induced depressive and anxiety-like behaviors in IC animals in comparison with SC mice. Also, we applied subeffective doses of antagonists including ketamine (1mg/kg), MK-801 (0.05mg/kg), and magnesium sulfate (10mg/kg) to both SC and IC mice prior to behavioral experiments. Administration of a single dose of all mentioned drugs did not affect the SC mice but modulated the depressant effects of SIS on IC mice. Administration of NMDA receptor antagonists decreased the immobility time in the forced swimming test as well as an increase in grooming behavior in splash test. However, anxiety-like behaviors in IC animals remained unchanged in hole-board test and open field test after blockade of NMDA receptors. Taken together, our results showed the possible involvement of the NMDA receptors in the depressive, but not anxiety-like behaviors induced by SIS. PMID:25592321

  14. Effects of NMDA-receptor antagonist treatment on c-fos expression in rat brain areas implicated in schizophrenia.

    PubMed

    Väisänen, Jussi; Ihalainen, Jouni; Tanila, Heikki; Castrén, Eero

    2004-12-01

    1. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists produce behavioral responses that closely resemble both positive and negative symptoms of schizophrenia. These drugs also induce excitatory and neurotoxic effects in limbic cortical areas. 2. We have here mapped the brain areas which show increased activity in response to noncompetitive NMDA-receptor antagonist administration concentrating especially to those brain areas that have been suggested to be relevant in the pathophysiology of schizophrenia. 3. Rats were treated intraperitoneally with a NMDA-receptor antagonist MK801 and activation of brain areas was detected by monitoring the expression of c-fos mRNA by using in situ hybridization. 4. MK801 induced c-fos mRNA expression of in the retrosplenial, entorhinal, and prefrontal cortices. Lower c-fos expression was observed in the layer IV of the parietal and frontal cortex. In the thalamus, c-fos mRNA expression was detected in the midline nuclei and in the reticular nucleus but not in the dorsomedial nucleus. In addition, c-fos mRNA was expressed in the anterior olfactory nucleus, the ventral tegmental area, and in cerebellar granule neurons. 5. NMDA-receptor antagonist ketamine increased dopamine release in the parietal cortex, in the region where NMDA-receptor antagonist increased c-fos mRNA expression. 6. Thus, the psychotropic NMDA-receptor antagonist induced c-fos mRNA expression in most, but not all, brain areas implicated in the pathophysiology of schizophrenia. The high spatial resolution of in situ hybridization may help to define regions of interest for human imaging studies. PMID:15672679

  15. Chronic alcohol remodels prefrontal neurons and disrupts NMDA receptor-mediated fear extinction encoding

    PubMed Central

    Holmes, Andrew; Fitzgerald, Paul J.; MacPherson, Kathryn P.; DeBrouse, Lauren; Colacicco, Giovanni; Flynn, Shaun M.; Masneuf, Sophie; Pleil, Kristen E.; Li, Chia; Marcinkiewcz, Catherine A.; Kash, Thomas L.; Gunduz-Cinar, Ozge; Camp, Marguerite

    2012-01-01

    Alcoholism is frequently co-morbid with posttraumatic stress disorder (PTSD) but it is unclear how alcohol impacts neural circuits mediating recovery from trauma. We found that chronic intermittent ethanol (CIE) impaired fear extinction and remodeled the dendritic arbor of medial prefrontal cortical (mPFC) neurons in mice. CIE impaired extinction encoding by infralimbic (IL) mPFC neurons in vivo, and functionally downregulated burst-mediating NMDA GluN1 receptors. These findings suggest alcohol may increase risk for trauma-related anxiety disorders by disrupting mPFC-mediated extinction of fear. PMID:22941108

  16. Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex

    PubMed Central

    Ahmadi, Shamseddin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2016-01-01

    Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels in rat striatum and prefrontal cortex (PFC) after induction of morphine tolerance. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: The results showed that long-term morphine a administration induces tolerance to analgesic effect of the opioid, as revealed by a significant decrease in morphine-induced analgesia on day 8 compared to day 1 of the injections (P<0.001). The results also showed that the NR1 gene expression at mRNA level in rats tolerant to morphine was significantly increased in the striatum (P<0.01) but decreased in the PFC (P<0.001). Conclusion: Therefore, changes in the NR1 gene expression in rat striatum and PFC have a region-specific association with morphine-induced analgesic tolerance. PMID:27563417

  17. Antidepressant-Like Effect of the Leaves of Pseudospondias microcarpa in Mice: Evidence for the Involvement of the Serotoninergic System, NMDA Receptor Complex, and Nitric Oxide Pathway

    PubMed Central

    Adongo, Donatus Wewura; Kukuia, Kennedy Kwami Edem; Mante, Priscilla Kolibea; Ameyaw, Elvis Ofori; Woode, Eric

    2015-01-01

    Depression continues to be a major global health problem. Although antidepressants are used for its treatment, efficacy is often inconsistent. Thus, the search for alternative therapeutic medicines for its treatment is still important. In this study, the antidepressant-like effect of Pseudospondias microcarpa extract (30–300 mg kg−1, p.o.) was investigated in two predictive models of depression—forced swimming test and tail suspension test in mice. Additionally, the mechanism(s) of action involved were assessed. Acute treatment with the extract dose dependently reduced immobility of mice in both models. The antidepressant-like effect of the extract (100 mg kg−1, p.o.) was blocked by p-chlorophenylalanine and cyproheptadine but not prazosin, propranolol, or yohimbine. Concomitant administration of d-cycloserine and the extract potentiated the anti-immobility effect. In contrast, d-serine, a full agonist of glycine/NMDA receptors, abolished the effects. Anti-immobility effects of PME were prevented by pretreatment of mice with L-arginine (750 mg kg−1, i.p.) and sildenafil (5 mg kg−1, i.p.). On the contrary, pretreatment of mice with L-NAME (30 mg kg−1, i.p.) or methylene blue (10 mg kg−1, i.p.) potentiated its effects. The extract produces an antidepressant-like effect in the FST and TST that is dependent on the serotoninergic system, NMDA receptor complex, and the nitric oxide pathway. PMID:26539489

  18. NMDA Receptor Subunits in the Adult Rat Hippocampus Undergo Similar Changes after 5 Minutes in an Open Field and after LTP Induction

    PubMed Central

    Baez, Maria Veronica; Oberholzer, Maria Victoria; Aguirre, Alejandra Ines; Jerusalinsky, Diana Alicia

    2013-01-01

    NMDA receptor subunits change during development and their synaptic expression is modified rapidly after synaptic plasticity induction in hippocampal slices. However, there is scarce information on subunits expression after synaptic plasticity induction or memory acquisition, particularly in adults. GluN1, GluN2A and GluN2B NMDA receptor subunits were assessed by western blot in 1) adult rats that had explored an open field (OF) for 5 minutes, a time sufficient to induce habituation, 2) mature rat hippocampal neuron cultures depolarized by KCl and 3) hippocampal slices from adult rats where long term potentiation (LTP) was induced by theta-burst stimulation (TBS). GluN1 and GluN2A, though not GluN2B, were significantly higher 70 minutes –but not 30 minutes- after a 5 minutes session in an OF. GluN1 and GluN2A total immunofluorescence and puncta in neurites increased in cultures, as evaluated 70 minutes after KCl stimulation. Similar changes were found in hippocampal slices 70 minutes after LTP induction. To start to explore underlying mechanisms, hippocampal slices were treated either with cycloheximide (a translation inhibitor) or actinomycin D (a transcription inhibitor) during electrophysiological assays. It was corroborated that translation was necessary for LTP induction and expression. The rise in GluN1 depends on transcription and translation, while the increase in GluN2A appears to mainly depend on translation, though a contribution of some remaining transcriptional activity during actinomycin D treatment could not be rouled out. LTP effective induction was required for the subunits to increase. Although in the three models same subunits suffered modifications in the same direction, within an apparently similar temporal course, further investigation is required to reveal if they are related processes and to find out whether they are causally related with synaptic plasticity, learning and memory. PMID:23383317

  19. Psychotic symptoms in anti-N-methyl-d-aspartate (NMDA) receptor encephalitis: A case report and challenges.

    PubMed

    Sharma, Pawan; Sagar, Rajesh; Patra, Bichitrananda; Saini, Lokesh; Gulati, Sheffali; Chakrabarty, Biswaroop

    2016-08-01

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis, only recently first described, is an increasingly well-recognized inflammatory encephalitis that is seen in children and adults. An 11-year old girl admitted to the psychiatry ward with a presentation of acute psychosis was diagnosed with NMDA receptor encephalitis following neurology referral and was treated accordingly. This case highlights psychiatric manifestations in encephalitis and the need for the psychiatrist to have high index of suspicion when atypical symptoms (e.g., dyskinesia, seizure, fever etc.) present in acutely psychotic patients. PMID:27520914

  20. Activity-dependent regulation of NMDA receptors in substantia nigra dopaminergic neurones.

    PubMed

    Wild, Angela R; Jones, Susan; Gibb, Alasdair J

    2014-02-15

    N-Methyl-d-aspartate receptors (NMDARs) are Ca(2+)-permeable glutamate receptors that play a critical role in synaptic plasticity and promoting cell survival. However, overactive NMDARs can trigger cell death signalling pathways and have been implicated in substantia nigra pars compacta (SNc) pathology in Parkinson's disease. Calcium ion influx through NMDARs recruits Ca(2+)-dependent proteins that can regulate NMDAR activity. The surface density of NMDARs can also be regulated dynamically in response to receptor activity via Ca(2+)-independent mechanisms. We have investigated the activity-dependent regulation of NMDARs in SNc dopaminergic neurones. Repeated whole-cell agonist applications resulted in a decline in the amplitude of NMDAR currents (current run-down) that was use dependent and not readily reversible. Run-down was reduced by increasing intracellular Ca(2+) buffering or by reducing Ca(2+) influx but did not appear to be mediated by the same regulatory proteins that cause Ca(2+)-dependent run-down in hippocampal neurones. The NMDAR current run-down may be mediated in part by a Ca(2+)-independent mechanism, because intracellular dialysis with a dynamin-inhibitory peptide reduced run-down, suggesting a role for clathrin-mediated endocytosis in the regulation of the surface density of receptors. Synaptic NMDARs were also subject to current run-down during repeated low-frequency synaptic stimulation in a Ca(2+)-dependent but dynamin-independent manner. Thus, we report, for the first time, regulation of NMDARs in SNc dopaminergic neurones by changes in intracellular Ca(2+) at both synaptic and extrasynaptic sites and provide evidence for activity-dependent changes in receptor trafficking. These mechanisms may contribute to intracellular Ca(2+) homeostasis in dopaminergic neurones by limiting Ca(2+) influx through the NMDAR. PMID:24344168

  1. Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits

    PubMed Central

    Buchanan, Katherine A.; Blackman, Arne V.; Moreau, Alexandre W.; Elgar, Dale; Costa, Rui P.; Lalanne, Txomin; Tudor Jones, Adam A.; Oyrer, Julia; Sjöström, P. Jesper

    2012-01-01

    Summary Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at pyramidal cell inputs to other pyramidal cells and to Martinotti cells, while leaving those to basket cells unaffected. We also reveal a type of interneuron that mediates ascending inhibition. In agreement with synapse-specific expression, we find preNMDAR-mediated calcium signals in a subset of pyramidal cell terminals. A tuned network model predicts that preNMDARs specifically reroute information flow in local circuits during high-frequency firing, in particular by impacting frequency-dependent disynaptic inhibition mediated by Martinotti cells, a finding that we experimentally verify. We conclude that postsynaptic cell type determines presynaptic terminal molecular identity and that preNMDARs govern information processing in neocortical columns. PMID:22884329

  2. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  3. Cholinergic, but not NMDA, receptors in the lateral entorhinal cortex mediate acquisition in trace eyeblink conditioning.

    PubMed

    Tanninen, Stephanie E; Yu, XiaoTian; Giritharan, Thamy; Tran, Lina; Bakir, Rami; Volle, Julien; Morrissey, Mark D; Takehara-Nishiuchi, Kaori

    2015-11-01

    Anatomical and electrophysiological studies collectively suggest that the entorhinal cortex consists of several subregions, each of which is involved in the processing of different types of information. Consistent with this idea, we previously reported that the dorsolateral portion of the entorhinal cortex (DLE), but not the caudomedial portion, is necessary for the expression of a memory association between temporally discontiguous stimuli in trace eyeblink conditioning (Morrissey et al. (2012) J Neurosci 32:5356-5361). The present study examined whether memory acquisition depends on the DLE and what types of local neurotransmitter mechanisms are involved in memory acquisition and expression. Male Long-Evans rats experienced trace eyeblink conditioning, in which an auditory conditioned stimulus (CS) was paired with a mildly aversive electric shock to the eyelid (US) with a stimulus-free interval of 500 ms. Immediately before the conditioning, the rats received a microinfusion of neuroreactive substances into the DLE. We found that reversible inactivation of the DLE with GABAA receptor agonist, muscimol impaired memory acquisition. Furthermore, blockade of local muscarinic acetylcholine receptors (mACh) with scopolamine retarded memory acquisition while blockade of local NMDA receptors with APV had no effect. Memory expression was not impaired by either type of receptor blocker. These results suggest that the DLE is necessary for memory acquisition, and that acquisition depends on the integrity of local mACh receptor-dependent firing modulation, but not NMDA receptor-dependent synaptic plasticity. PMID:25865030

  4. Enhanced Polyubiquitination of Shank3 and NMDA receptor in a mouse model of Autism

    PubMed Central

    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E.; Kee, Sara E.; Tu, Jian Cheng; Hu, Jia-Hua; Petralia, Ronald S.; Linden, David J.; Powell, Craig M.; Savonenko, Alena; Xiao, Bo; Worley, Paul F.

    2011-01-01

    Summary We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C-terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the WT gene product and results in >90 % reduction of Shank3 at synapses. This “gain of function” phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with increased polyubiquitination. Assays of post-synaptic density proteins, spine morphology and synapse number are unchanged in Shank3(+/ΔC) mice, but the amplitude of NMDAR responses is reduced together with reduced NMDAR-dependent LTP and LTD. Reciprocally, mGluR-dependent LTD is markedly enhanced. Shank3(+/ΔC) mice show behavioral deficits suggestive of autism and reduced NMDA receptor function. These studies reveal a mechanism distinct from haploinsufficiency by which mutations of Shank3 can evoke an autism-like disorder. PMID:21565394

  5. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke

    PubMed Central

    Shi, Zhong-Qing; Sunico, Carmen R.; McKercher, Scott R.; Cui, Jiankun; Feng, Gen-Sheng; Nakamura, Tomohiro; Lipton, Stuart A.

    2013-01-01

    Overproduction of nitric oxide (NO) can cause neuronal damage, contributing to the pathogenesis of several neurodegenerative diseases and stroke (i.e., focal cerebral ischemia). NO can mediate neurotoxic effects at least in part via protein S-nitrosylation, a reaction that covalently attaches NO to a cysteine thiol (or thiolate anion) to form an S-nitrosothiol. Recently, the tyrosine phosphatase Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) and its downstream pathways have emerged as important mediators of cell survival. Here we report that in neurons and brain tissue NO can S-nitrosylate SHP-2 at its active site cysteine, forming S-nitrosylated SHP-2 (SNO–SHP-2). We found that NMDA exposure in vitro and transient focal cerebral ischemia in vivo resulted in increased levels of SNO–SHP-2. S-Nitrosylation of SHP-2 inhibited its phosphatase activity, blocking downstream activation of the neuroprotective physiological ERK1/2 pathway, thus increasing susceptibility to NMDA receptor-mediated excitotoxicity. These findings suggest that formation of SNO–SHP-2 represents a key chemical reaction contributing to excitotoxic damage in stroke and potentially other neurological disorders. PMID:23382182

  6. Reverse Translation of Clinical Electrophysiological Biomarkers in Behaving Rodents under Acute and Chronic NMDA Receptor Antagonism

    PubMed Central

    Sullivan, Elyse M; Timi, Patricia; Hong, L Elliot; O'Donnell, Patricio

    2015-01-01

    Electroencephalogram (EEG) stands out as a highly translational tool for psychiatric research, yet rodent and human EEG are not typically obtained in the same way. In this study we developed a tool to record skull EEG in awake-behaving rats in a similar manner to how human EEG are obtained and then used this technique to test whether acute NMDA receptor antagonism alters rodent EEG signals in a similar manner as in humans. Acute MK-801 treatment elevated gamma power and reduced beta band power, which closely mirrored EEG data from healthy volunteers receiving acute ketamine. To explore the mechanisms behind these oscillatory changes, we examined the effects of GABA-A receptor blockade, finding that picrotoxin (PTX) recapitulated the decrease in sound-evoked beta oscillations observed with acute MK-801, but did not produce changes in gamma band power. Chronic treatment with either PTX or MK-801 did not affect frequency-specific oscillatory activity when tested 24 h after the last drug injection, but decreased total broadband oscillatory power. Overall, this study validated a novel platform for recording rodent EEG and demonstrated similar oscillatory changes after acute NMDA receptor antagonism in both humans and rodents, suggesting that skull EEG may be a powerful tool for further translational studies. PMID:25176166

  7. Intracellular Ca2+ stores modulate SOCCs and NMDA receptors via tyrosine kinases in rat hippocampal neurons.

    PubMed

    Koss, David J; Riedel, Gernot; Platt, Bettina

    2009-07-01

    The regulation of intracellular Ca(2+) signalling by phosphorylation processes remains poorly defined, particularly with regards to tyrosine phosphorylation. Evidence from non-excitable cells implicates tyrosine phosphorylation in the activation of so-called store-operated Ca(2+) channels (SOCCs), but their involvement in neuronal Ca(2+) signalling is still elusive. In the present study, we determined the role of protein tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs) in the coupling between intracellular Ca(2+) stores and SOCCs in neonatal rat hippocampal neurons by Fura-2 Ca(2+) imaging. An early Ca(2+) response from intracellular stores was triggered with thapsigargin, and followed by a secondary plasma membrane Ca(2+) response. This phase was blocked by the non-specific Ca(2+) channel blocker NiCl and the SOCC blocker, 2-aminoethoxydiphenyl borate (2-APB). Interestingly, two structurally distinct PTK inhibitors, genistein and AG126, also inhibited this secondary response. Application of the PTP inhibitor sodium orthovanadate (OV) also activated a sustained and tyrosine kinase dependent Ca(2+) response, blocked by NiCl and 2-APB. In addition, OV resulted in a Ca(2+) store dependent enhancement of NMDA responses, corresponding to, and occluding the signalling pathway for group I metabotropic glutamate receptors (mGluRs). This study provides first evidence for tyrosine based phospho-regulation of SOCCs and NMDA signalling in neurons. PMID:19423160

  8. Sexually dimorphic development and binding characteristics of NMDA receptors in the brain of the platyfish

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Yablonsky-Alter, E.; Banerjee, S. P.

    1999-01-01

    This study investigated age- and gender-specific variations in properties of the glutamate N-methyl-d-aspartate receptor (NMDAR) in a freshwater teleost, the platyfish (Xiphophorus maculatus). Prior localization of the immunoreactive (ir)-R1 subunit of the NMDAR protein (R1) in cells of the nucleus olfactoretinalis (NOR), a primary gonadotropin-releasing hormone (GnRH)-containing brain nucleus in the platyfish, suggests that NMDAR, as in mammals, is involved in modulation of the platyfish brain-pituitary-gonad (BPG) axis. The current study shows that the number of cells in the NOR displaying ir-R1 is significantly increased in pubescent and mature female platyfish when compared to immature and senescent animals. In males, there is no significant change in ir-R1 expression in the NOR at any time in their lifespan. The affinity of the noncompetitive antagonist ((3)H)MK-801 for the NMDAR is significantly increased in pubescent females while maximum binding of ((3)H)MK-801 to the receptor reaches a significant maximum in mature females. In males, both MK-801 affinity and maximum binding remain unchanged throughout development. This is the first report of gender differences in the association of NMDA receptors with neuroendocrine brain areas during development. It is also the first report to suggest NMDA receptor involvement in the development of the BPG axis in a nonmammalian vertebrate. Copyright 1999 Academic Press.

  9. SP-8203 shows neuroprotective effects and improves cognitive impairment in ischemic brain injury through NMDA receptor.

    PubMed

    Noh, Su-Jin; Lee, Jong Min; Lee, Ki Sung; Hong, Hyun Su; Lee, Chul Kyu; Cho, Il Hwan; Kim, Hye-Sun; Suh, Yoo-Hun

    2011-11-01

    The extracts of earth worms, Eisenia andrei, have been used as a therapeutic agent for stroke in the traditional medicine. It is also reported that the protease fraction separated from the extracts has strong anti-thrombotic activity. Besides anti-thrombotic actions, we found that SP-8203, N-[3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)propyl]-N-{4-[3-(2,4-dioxo-1,4-dihydro-2H-quinazolin-3-yl)propylamino]butyl}acetamide, derived from the extracts of earth worms blocked N-methyl-(D)-aspartate (NMDA) receptor-mediated excitotoxicity in a competitive manner. The neuroprotective effects of SP-8203 were attributable to prevention of Ca(2+) influx through NMDA receptors. The systemic administration of SP-8203 markedly reduced neuronal death following middle cerebral artery occlusion in rats. SP-8203 significantly improved spatial learning and memory in the water maze test. These results provided strong pharmacological basis for its potential therapeutic roles in cerebral ischemia. PMID:21835192

  10. Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5

    PubMed Central

    Hou, Hailong; Sun, Lu; Siddoway, Benjamin A.; Petralia, Ronald S.; Yang, Hongtian; Gu, Hua; Nairn, Angus C.

    2013-01-01

    The serine/threonine protein phosphatase protein phosphatase 1 (PP1) is known to play an important role in learning and memory by mediating local and downstream aspects of synaptic signaling, but how PP1 activity is controlled in different forms of synaptic plasticity remains unknown. We find that synaptic N-methyl-d-aspartate (NMDA) receptor stimulation in neurons leads to activation of PP1 through a mechanism involving inhibitory phosphorylation at Thr320 by Cdk5. Synaptic stimulation led to proteasome-dependent degradation of the Cdk5 regulator p35, inactivation of Cdk5, and increased auto-dephosphorylation of Thr320 of PP1. We also found that neither inhibitor-1 nor calcineurin were involved in the control of PP1 activity in response to synaptic NMDA receptor stimulation. Rather, the PP1 regulatory protein, inhibitor-2, formed a complex with PP1 that was controlled by synaptic stimulation. Finally, we found that inhibitor-2 was critical for the induction of long-term depression in primary neurons. Our work fills a major gap regarding the regulation of PP1 in synaptic plasticity. PMID:24189275

  11. The NMDA Receptor Promotes Sleep in the Fruit Fly, Drosophila melanogaster.

    PubMed

    Tomita, Jun; Ueno, Taro; Mitsuyoshi, Madoka; Kume, Shoen; Kume, Kazuhiko

    2015-01-01

    Considerable evidence indicates that sleep is essential for learning and memory. Drosophila melanogaster has emerged as a novel model for studying sleep. We previously found a short sleeper mutant, fumin (fmn), and identified its mutation in the dopamine transporter gene. We reported similarities in the molecular basis of sleep and arousal regulation between mammals and Drosophila. In aversive olfactory learning tasks, fmn mutants demonstrate defective memory retention, which suggests an association between sleep and memory. In an attempt to discover additional sleep related genes in Drosophila, we carried out a microarray analysis comparing mRNA expression in heads of fmn and control flies and found that 563 genes are differentially expressed. Next, using the pan-neuronal Gal4 driver elav-Gal4 and UAS-RNA interference (RNAi) to knockdown individual genes, we performed a functional screen. We found that knockdown of the NMDA type glutamate receptor channel gene (Nmdar1) (also known as dNR1) reduced sleep. The NMDA receptor (NMDAR) plays an important role in learning and memory both in Drosophila and mammals. The application of the NMDAR antagonist, MK-801, reduced sleep in control flies, but not in fmn. These results suggest that NMDAR promotes sleep regulation in Drosophila. PMID:26023770

  12. The 40-Hz auditory steady-state response: a selective biomarker for cortical NMDA function.

    PubMed

    Sivarao, Digavalli V

    2015-05-01

    When subjected to a phasic input, sensory cortical neurons display a remarkable ability to entrain faithfully to the driving stimuli. The entrainment to rhythmic sound stimuli is often referred to as the auditory steady-state response (ASSR) and can be captured using noninvasive techniques, such as scalp-recorded electroencephalography (EEG). An ASSR to a driving frequency of approximately 40 Hz is particularly interesting in that it shows, in relative terms, maximal power, synchrony, and synaptic activity. Moreover, the 40-Hz ASSR has been consistently found to be abnormal in schizophrenia patients across multiple studies. The nature of the reported abnormality has been less consistent; while most studies report a deficit in entrainment, several studies have reported increased signal power, particularly when there are concurrent positive symptoms, such as auditory hallucinations. However, the neuropharmacological basis for the 40-Hz ASSR, as well as its dysfunction in schizophrenia, has been unclear until recently. On the basis of several recent reports, it is argued that the 40-Hz ASSR represents a specific marker for cortical NMDA transmission. If confirmed, the 40-Hz ASSR may be a simple and easy-to-access pharmacodynamic biomarker for testing the integrity of cortical NMDA neurotransmission that is robustly translational across species. PMID:25809615

  13. Benzimidazolone bioisosteres of potent GluN2B selective NMDA receptor antagonists.

    PubMed

    Lütnant, Ines; Schepmann, Dirk; Wünsch, Bernhard

    2016-06-30

    Overactivation of the NMDA receptor is associated with excitotoxic events leading to neurodegenerative processes as observed during the development of Alzheimer's disease, ParFnson's disease, Chorea Huntington and epilepsy. Negative allosteric modulators addressing selectively the ifenprodil binding site of GluN2B subunit containing NMDA receptors are of major interest due to their neuroprotective potential accompanied by few side effects. Herein benzimidazolone bioisosteres of potent GluN2B antagonists 1-5 were designed and synthesized. A seven step sequence provided the central intermediate 19 in 28% yield. Elimination of water, methylation, epoxidation, epoxide rearrangement and finally reductive amination afforded the [7]annulenobenzimidazolone 30 with a 3-phenylpropylamino substituent in 6-position. Although 30 fits nicely into the pharmacophore of potent GluN2B antagonists, the gluN2B binding affinity of 30 was only moderate (Ki = 697 nM). Additionally, 30 shows low selectivity over the σ2 receptor (Ki = 549 nM). The moderate GluN2B affinity was explained by the rigid tricyclic structure of the [7]annulenobenzimidazolone 30. PMID:27061977

  14. Memantine, an NMDA receptor antagonist, improves working memory deficits in DGKβ knockout mice.

    PubMed

    Kakefuda, Kenichi; Ishisaka, Mitsue; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2016-09-01

    Diacylglycerol kinase (DGK) β is a type 1 isozyme of the DGK family. We previously reported that DGKβ was deeply involved in neurite spine formation, and DGKβ knockout (KO) mice exhibited behavioral abnormalities concerning spine formation, such as cognitive, emotional, and attentional impairment. Moreover, some of these abnormalities were ameliorated by the administration of a mood stabilizer. However, there is no data about how memory-improving drugs used in the treatment of Alzheimer's disease affect DGKβ KO mice. In the present study, we evaluated the effect of an anti-Alzheimer's drug, memantine on the working memory deficit observed in DGKβ KO mice. In the Y-maze test, the administration of memantine significantly improved working memory of DGKβ KO mice. We also found that the expression levels of the NR2A and NR2B N-methyl-d-aspartate (NMDA) receptor subunits were increased in the prefrontal cortex, but decreased in the hippocampus of DGKβ KO mice. These altered expression levels of NR2 subunits might be related to the effect of an NMDA receptor antagonist, memantine. Taken together, these findings may support the hypothesis that DGKβ has a pivotal role in cognitive function. PMID:27495014

  15. The NMDA Receptor Promotes Sleep in the Fruit Fly, Drosophila melanogaster

    PubMed Central

    Tomita, Jun; Ueno, Taro; Mitsuyoshi, Madoka; Kume, Shoen; Kume, Kazuhiko

    2015-01-01

    Considerable evidence indicates that sleep is essential for learning and memory. Drosophila melanogaster has emerged as a novel model for studying sleep. We previously found a short sleeper mutant, fumin (fmn), and identified its mutation in the dopamine transporter gene. We reported similarities in the molecular basis of sleep and arousal regulation between mammals and Drosophila. In aversive olfactory learning tasks, fmn mutants demonstrate defective memory retention, which suggests an association between sleep and memory. In an attempt to discover additional sleep related genes in Drosophila, we carried out a microarray analysis comparing mRNA expression in heads of fmn and control flies and found that 563 genes are differentially expressed. Next, using the pan-neuronal Gal4 driver elav-Gal4 and UAS-RNA interference (RNAi) to knockdown individual genes, we performed a functional screen. We found that knockdown of the NMDA type glutamate receptor channel gene (Nmdar1) (also known as dNR1) reduced sleep. The NMDA receptor (NMDAR) plays an important role in learning and memory both in Drosophila and mammals. The application of the NMDAR antagonist, MK-801, reduced sleep in control flies, but not in fmn. These results suggest that NMDAR promotes sleep regulation in Drosophila. PMID:26023770

  16. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals.

    PubMed

    Scott, Derek B; Michailidis, Ioannis; Mu, Yuanyue; Logothetis, Diomedes; Ehlers, Michael D

    2004-08-11

    Regulation of the abundance of NMDA receptors (NMDARs) at excitatory synapses is critical during changes in synaptic efficacy underlying learning and memory as well as during synapse formation throughout neural development. However, the molecular signals that govern NMDAR delivery, maintenance, and internalization remain unclear. In this study, we identify a conserved family of membrane-proximal endocytic signals, two within the NMDAR type 1 (NR1) subunit and one within the NR2A and NR2B subunits, necessary and sufficient to drive the internalization of NMDARs. These endocytic motifs reside in the region of NMDAR subunits immediately after the fourth membrane segment, a region implicated in use-dependent rundown and NMDA channel inactivation. Although endocytosis driven by the distal C-terminal domain of NR2B is followed by rapid recycling, internalization mediated by membrane-proximal motifs selectively targets receptors to late endosomes and accelerates degradation. These results define a novel conserved signature of NMDARs regulating internalization and postendocytic trafficking. PMID:15306643

  17. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity.

    PubMed

    Hammer, C; Stepniak, B; Schneider, A; Papiol, S; Tantra, M; Begemann, M; Sirén, A-L; Pardo, L A; Sperling, S; Mohd Jofrry, S; Gurvich, A; Jensen, N; Ostmeier, K; Lühder, F; Probst, C; Martens, H; Gillis, M; Saher, G; Assogna, F; Spalletta, G; Stöcker, W; Schulz, T F; Nave, K-A; Ehrenreich, H

    2014-10-01

    In 2007, a multifaceted syndrome, associated with anti-NMDA receptor autoantibodies (NMDAR-AB) of immunoglobulin-G isotype, has been described, which variably consists of psychosis, epilepsy, cognitive decline and extrapyramidal symptoms. Prevalence and significance of NMDAR-AB in complex neuropsychiatric disease versus health, however, have remained unclear. We tested sera of 2817 subjects (1325 healthy, 1081 schizophrenic, 263 Parkinson and 148 affective-disorder subjects) for presence of NMDAR-AB, conducted a genome-wide genetic association study, comparing AB carriers versus non-carriers, and assessed their influenza AB status. For mechanistic insight and documentation of AB functionality, in vivo experiments involving mice with deficient blood-brain barrier (ApoE(-/-)) and in vitro endocytosis assays in primary cortical neurons were performed. In 10.5% of subjects, NMDAR-AB (NR1 subunit) of any immunoglobulin isotype were detected, with no difference in seroprevalence, titer or in vitro functionality between patients and healthy controls. Administration of extracted human serum to mice influenced basal and MK-801-induced activity in the open field only in ApoE(-/-) mice injected with NMDAR-AB-positive serum but not in respective controls. Seropositive schizophrenic patients with a history of neurotrauma or birth complications, indicating an at least temporarily compromised blood-brain barrier, had more neurological abnormalities than seronegative patients with comparable history. A common genetic variant (rs524991, P=6.15E-08) as well as past influenza A (P=0.024) or B (P=0.006) infection were identified as predisposing factors for NMDAR-AB seropositivity. The >10% overall seroprevalence of NMDAR-AB of both healthy individuals and patients is unexpectedly high. Clinical significance, however, apparently depends on association with past or present perturbations of blood-brain barrier function. PMID:23999527

  18. The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish.

    PubMed

    Wilkie, Michael P; Pamenter, Matthew E; Duquette, Stephanie; Dhiyebi, Hadi; Sangha, Navjeet; Skelton, Geoffrey; Smith, Matthew D; Buck, Leslie T

    2011-12-15

    Acute ammonia toxicity in vertebrates is thought to be characterized by a cascade of deleterious events resembling those associated with anoxic/ischemic injury in the central nervous system. A key event is the over-stimulation of neuronal N-methyl-D-aspartate (NMDA) receptors, which leads to excitotoxic cell death. The similarity between the responses to acute ammonia toxicity and anoxia suggests that anoxia-tolerant animals such as the goldfish (Carassius auratus Linnaeus) may also be ammonia tolerant. To test this hypothesis, the responses of goldfish were compared with those of the anoxia-sensitive rainbow trout (Oncorhynchus mykiss Walbaum) during exposure to high external ammonia (HEA). Acute toxicity tests revealed that goldfish are ammonia tolerant, with 96 h median lethal concentration (LC(50)) values of 199 μmol l(-1) and 4132 μmol l(-1) for NH(3) and total ammonia ([T(Amm)]=[NH(3)]+[NH(4)(+)]), respectively. These values were ~5-6 times greater than corresponding NH(3) and T(Amm) LC(50) values measured in rainbow trout. Further, the goldfish readily coped with chronic exposure to NH(4)Cl (3-5 mmol l(-1)) for 5 days, despite 6-fold increases in plasma [T] to ~1300 μmol l(-1) and 3-fold increases in brain [T(Amm)] to 6700 μmol l(-1). Muscle [T(Amm)] increased by almost 8-fold from ~900 μmol kg(-1) wet mass (WM) to greater than 7000 μmol kg(-1) WM by 48 h, and stabilized. Although urea excretion rates (J(Urea)) increased by 2-3-fold during HEA, the increases were insufficient to offset the inhibition of ammonia excretion that occurred, and increases in urea were not observed in the brain or muscle. There was a marked increase in brain glutamine concentration at HEA, from ~3000 μmol kg(-1) WM to 15,000 μmol kg(-1) WM after 48 h, which is consistent with the hypothesis that glutamine production is associated with ammonia detoxification. Injection of the NMDA receptor antagonists MK801 (0.5-8 mg kg(-1)) or ethanol (1-8 mg kg(-1)) increased trout

  19. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression

    PubMed Central

    Feyissa, Anteneh M.; Zyga, Agata; Stockmeier, Craig A.; Karolewicz, Beata

    2009-01-01

    Recent neuroimaging and postmortem studies have demonstrated abnormalities in glutamatergic transmission in major depression. Glutamate NMDA (N-methyl-D-aspartate) receptors are one of the major mediators of excitatory neurotransmission in the central nervous system. At synaptic sites, NMDA receptors are linked with postsynaptic density protein-95 (PSD-95) that plays a key role in mediating trafficking, clustering, and downstream signaling events, following receptor activation. In this study, we examined the expression of NMDA receptor subunits NR1, NR2A, and NR2B as well as PSD-95 in the anterior prefrontal cortex (PFC) using Western blot method. Cortical samples were obtained from age, gender and postmortem interval matched depressed and psychiatrically healthy controls. The results revealed that there was a reduced expression of the NMDA receptor subunits NR2A (−54%) and NR2B (−48%), and PSD-95 protein level (−40%) in the PFC of depressed subjects relative to controls, with no change in the NR1 subunit. The alterations in NMDA receptor subunits, especially the NR2A and NR2B, as well as PSD-95 suggest an abnormality in the NMDA receptor signaling in the PFC in major depression. Our findings in conjunction with recent clinical, cellular, and neuroimaging studies further implicate the involvement of glutamate neurotransmission in the pathophysiology of depression. This study provides additional evidence that NMDA receptor complex is a target for discovery of novel antidepressants. PMID:18992785

  20. Anti-NMDA Receptor Encephalitis in a Patient with Previous Psychosis and Neurological Abnormalities: A Diagnostic Challenge

    PubMed Central

    Heekin, R. David; Catalano, Maria C.; Frontera, Alfred T.; Catalano, Glenn

    2015-01-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is an autoimmune disorder characterized by IgG autoantibodies directed against the NR1 subunit of the NMDA glutamate receptor. Psychiatric symptoms are common and include psychosis, mania, depressed mood, aggression, and speech abnormalities. Neurological symptoms such as seizures, decreased responsiveness, dyskinesias, and other movement abnormalities and/or autonomic instability are frequently seen as well. We present the case of a woman who was followed up at our facility for over 14 years for the treatment of multiple neuropsychiatric symptoms. Initially, she presented with paresthesias, memory loss, and manic symptoms. Nine years later, she presented to our facility again, this time with left sided numbness, left eyelid droop, and word finding difficulties. Finally, five years later, she presented with manic symptoms, hallucinations, and memory impairment. During her hospitalization, she subsequently developed catatonic symptoms and seizures. During her stay, it was discovered that she was positive for anti-NMDA receptor antibodies and her symptoms responded well to appropriate therapy. This case demonstrates that it may be useful for clinicians to consider screening for anti-NMDA receptor antibodies in long-term patients with neuropsychiatric symptoms that have not adequately responded to therapy. PMID:26199781

  1. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex.

    PubMed

    Li, Ji-Tao; Su, Yun-Ai; Wang, Hong-Li; Zhao, Ying-Ying; Liao, Xue-Mei; Wang, Xiao-Dong; Si, Tian-Mei

    2016-01-01

    Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC) and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg), a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV)-, calbindin (CB)- and calretinin (CR)-positive neurons in mPFC was analyzed at either 24 h or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV(+) and CB(+) neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV(+) and CB(+) neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease. PMID:26973457

  2. A novel form of long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses

    PubMed Central

    Kwon, Hyung-Bae; Castillo, Pablo E.

    2008-01-01

    The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP which is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this “classical” LTP, mf-CA3 synapses can undergo a form of LTP characterized by a selective enhancement of NMDA receptor-mediated transmission. This potentiation requires coactivation of NMDA and mGlu5 receptors, and a postsynaptic calcium rise. Unlike classical LTP, expression of this novel mossy fiber LTP is due to a PKC-dependent recruitment of NMDA receptors specifically to the mf-CA3 synapse via a SNARE-dependent process. Having two mechanistically different forms of LTP may allow mf-CA3 synapses to respond with more flexibility to the changing demands of the hippocampal network. PMID:18184568

  3. Olfactory Bulb Glomerular NMDA Receptors Mediate Olfactory Nerve Potentiation and Odor Preference Learning in the Neonate Rat

    PubMed Central

    Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular dishinhibtion also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABAA receptor agonist. A glomerular GABAA receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning. PMID:22496886

  4. Role for the NR2B Subunit of the NMDA Receptor in Mediating Light Input to the Circadian System

    PubMed Central

    Wang, LM; Schroeder, A; Loh, D; Smith, D; Lin, K; Han, JH; Michel, S; Hummer, DL; Ehlen, JC; Albers, HE; Colwell, CS

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that utilize glutamate as a neurotransmitter. A variety of evidence suggests that the release of glutamate then activates N-methyl-Daspartate (NMDA) receptors within the SCN and triggers a signaling cascade that ultimately leads to phase shifts in the circadian system. In this study, we first sought to explore the role of the NR2B subunit in mediating the effects of light on the circadian system. We found that localized microinjection of the NR2B subunit antagonist ifenprodil into the SCN region inhibits the magnitude of light-induced phase shifts of the circadian rhythm in wheel-running activity. Next, we found that the NR2B message and levels of phospho-NR2B levels vary with time of day in SCN tissue using semi-quantitative real-time PCR and Western blot analysis, respectively. Functionally, we found that blocking the NR2B subunit with ifenprodil significantly reduced the magnitude of NMDA currents recorded in SCN neurons. Ifenprodil also significantly reduced the magnitude of NMDA-induced calcium changes in SCN cells. Together, these results demonstrate that the NR2B subunit is an important component of NMDA receptor mediated responses within SCN neurons and that this subunit contributes to light-induced phase shifts of the mammalian circadian system. PMID:18380671

  5. Spatial Discrimination Reversal Learning in Weanling Rats Is Impaired by Striatal Administration of an NMDA-Receptor Antagonist

    ERIC Educational Resources Information Center

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    The striatum plays a major role in both motor control and learning and memory, including executive function and "behavioral flexibility." Lesion, temporary inactivation, and infusion of an N-methyl-d-aspartate (NMDA)-receptor antagonist into the dorsomedial striatum (dmSTR) impair reversal learning in adult rats. Systemic administration of MK-801…

  6. Understanding Neuropsychiatric Diseases, Analyzing the Peptide Sharing between Infectious Agents and the Language-Associated NMDA 2A Protein

    PubMed Central

    Lucchese, Guglielmo

    2016-01-01

    Language disorders and infections may occur together and often concur, to a different extent and via different modalities, in characterizing brain pathologies, such as schizophrenia, autism, epilepsies, bipolar disorders, frontotemporal neurodegeneration, and encephalitis, inter alia. The biological mechanism(s) that might channel language dysfunctions and infections into etiological pathways connected to neuropathologic sequelae are unclear. Searching for molecular link(s) between language disorders and infections, the present study explores the language-associated NMDA 2A subunit for peptide sharing with pathogens that have been described in concomitance with neuropsychiatric diseases. It was found that a vast peptide commonality links the human glutamate ionotropic receptor NMDA 2A subunit to infectious agents. Such a link expands to and interfaces with neuropsychiatric disorders in light of the specific allocation of NMDA 2A gene expression in brain areas related to language functions. The data hint at a possible pathologic scenario based on anti-pathogen immune responses cross-reacting with NMDA 2A in the brain. PMID:27148089

  7. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    PubMed Central

    Li, Ji-Tao; Su, Yun-Ai; Wang, Hong-Li; Zhao, Ying-Ying; Liao, Xue-Mei; Wang, Xiao-Dong; Si, Tian-Mei

    2016-01-01

    Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC) and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg), a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV)-, calbindin (CB)- and calretinin (CR)-positive neurons in mPFC was analyzed at either 24 h or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease. PMID:26973457

  8. Methylphenidate Enhances NMDA-Receptor Response in Medial Prefrontal Cortex via Sigma-1 Receptor: A Novel Mechanism for Methylphenidate Action

    PubMed Central

    Liu, Yue; Ji, Xiao-Hua; Peng, Ji-Yun; Zhang, Xue-Han; Zhen, Xue-Chu; Li, Bao-Ming

    2012-01-01

    Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca2+ increase, but does not require PKA and extracellular Ca2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects. PMID:23284812

  9. NAAG reduces NMDA receptor current in CA1 hippocampal pyramidal neurons of acute slices and dissociated neurons.

    PubMed

    Bergeron, Richard; Coyle, Joseph T; Tsai, Guochan; Greene, Robert W

    2005-01-01

    N-acetylaspartylglutamate (NAAG) is an abundant neuropeptide in the nervous system, yet its functions are not well understood. Pyramidal neurons of the CA1 sector of acutely prepared hippocampal slices were recorded using the whole-cell patch-clamp technique. At low concentrations (20 microM), NAAG reduced isolated N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic currents or NMDA-induced currents. The NAAG-induced change in the NMDA concentration/response curve suggested that the antagonism was not competitive. However, the NAAG-induced change in the concentration/response curve for the NMDAR co-agonist, glycine, indicated that glycine can overcome the NAAG antagonism. The antagonism of the NMDAR induced by NAAG was still observed in the presence of LY-341495, a potent and selective mGluR3 antagonist. Moreover, in dissociated pyramidal neurons of the CA1 region, NAAG also reduced the NMDA current and this effect was reversed by glycine. These results suggest that NAAG reduces the NMDA currents in hippocampal CA1 pyramidal neurons. PMID:15354184

  10. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains.

    PubMed

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137

  11. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    ERIC Educational Resources Information Center

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  12. Dissociation of extinction and behavioral disinhibition: the role of NMDA receptors in the pigeon associative forebrain during extinction.

    PubMed

    Lissek, Silke; Güntürkün, Onur

    2003-09-01

    Extinction is a unique learning process that requires the alteration of stimulus-response associations such that the organism ceases to respond to a previously rewarded stimulus. Extinction is mostly studied with fear conditioning and is impaired by lesions of the prefrontal cortex as well as by blockade of NMDA receptors in the amygdala. Because previous tasks could not clearly disambiguate extinction from behavioral disinhibition, the underlying process was difficult to define. In this study, we examined the possible role of NMDA receptors and the pigeon "prefrontal cortex," the neostriatum caudolaterale (NCL), for extinction of appetitive instrumental conditioning. We used a new design that discerns extinction from behavioral disinhibition. Our results demonstrate that NCL lesions cause deficits neither in extinction learning nor in extinction recall. However, blockade of NMDA receptors in the pigeon NCL by DL-AP-5 drastically impairs extinction learning without producing behavioral disinhibition or deficits in extinction recall. We suggest that NMDA receptors in the NCL contribute to the establishment of a learning process that selectively signals the change in value of the instrumental stimulus. Although NCL plays a key role for extinction learning, other structures can subsume similar functions after postlesional regeneration. PMID:12954874

  13. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons.

    PubMed

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca(2+)-activated K(+) (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5'-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  14. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory.

    PubMed

    Alaghband, Yasaman; O'Dell, Steven J; Azarnia, Siavash; Khalaj, Anna J; Guzowski, John F; Marshall, John F

    2014-12-01

    The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal-associated (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine

  15. Concomitant manipulation of murine NMDA- and AMPA-receptors to produce pro-cognitive drug effects in mice.

    PubMed

    Vignisse, Julie; Steinbusch, Harry W M; Grigoriev, Vladimir; Bolkunov, Alexei; Proshin, Alexey; Bettendorff, Lucien; Bachurin, Sergey; Strekalova, Tatyana

    2014-02-01

    Bifunctional drug therapy targeting distinct receptor signalling systems can generate increased efficacy at lower concentrations compared to monofunctional therapy. Non-competitive blockade of the NMDA receptors or the potentiation of AMPA receptors is well documented to result in memory enhancement. Here, we compared the efficacy of the low-affinity NMDA receptor blocker memantine or the positive modulator of AMPA receptor QXX (in C57BL/6J at 1 or 5mg/kg, ip) with new derivatives of isothiourea (0.5-1 mg/kg, ip) that have bifunctional efficacy. Low-affinity NMDA blockade by these derivatives was achieved by introducing greater flexibility into the molecule, and AMPA receptor stimulation was produced by a sulfamide-containing derivative of isothiourea. Contextual learning was examined in a step-down avoidance task and extinction of contextual memory was studied in a fear-conditioning paradigm. Memantine enhanced contextual learning while QXX facilitated memory extinction; both drugs were effective at 5 mg/kg. The new derivative IPAC-5 elevated memory scores in both tasks at the dose 0.5 mg/kg and exhibited the lowest IC₅₀ values of NMDA receptor blockade and highest potency of AMPA receptor stimulation. Thus, among the new drugs tested, IPAC-5 replicated the properties of memantine and QXX in one administration with increased potency. Our data suggest that a concomitant manipulation of NMDA- and AMPA-receptors results in pro-cognitive effects and supports the concept bifunctional drug therapy as a promising strategy to replace monofunctional therapies with greater efficacy and improved compliance. PMID:23993168

  16. N-acetylaspartylglutamate and beta-NAAG protect against injury induced by NMDA and hypoxia in primary spinal cord cultures.

    PubMed

    Yourick, Debra L; Koenig, Michael L; Durden, Anna V; Long, Joseph B

    2003-11-21

    The acidic dipeptide N-acetylaspartylglutamate (NAAG) is the most prevalent peptide in the central nervous system. NAAG is a low potency agonist at the NMDA receptor, and hydrolysis of NAAG yields the more potent excitatory amino acid neurotransmitter glutamate. beta-NAAG is a competitive inhibitor of the NAAG hydrolyzing enzyme N-acetylated alpha-linked acidic dipeptidase (NAAG peptidase activity) or glutamate carboxypeptidase II, and may also act as a NAAG-mimetic at some of the sites of NAAG pharmacological activity. Since NAAG has been shown to have neuroprotective characteristics in a number of experimental preparations, it is the purpose of the present study to specifically evaluate the possible efficacy of NAAG and beta-NAAG against NMDA- and hypoxia-induced injury to spinal cord mixed neuronal and glial cell cultures. NAAG (500-1000 microM) protected against NMDA- or hypoxia-induced injuries to spinal cord cultures, and the nonhydrolyzable analog beta-NAAG (250-1000 microM) completely eliminated the loss of viability caused by either insult. Both peptides also attenuated NMDA-induced increases in intraneuronal Ca(2+). Nonspecific mGluR antagonists, pertussis toxin, a stable cAMP analog, and manipulation of NAAG peptidase activity did not by themselves alter cell damage and did not influence the neuroprotective effects of NAAG. NAAG was not protective against kainate- or AMPA-induced cellular injury, while beta-NAAG was partially neuroprotective against both insults. At 2 mM, NAAG and beta-NAAG reduced neuronal survival and increased intraneuronal Ca(2+); these effects were only marginally attenuated by dizocilpine and APV. The results indicate that NAAG and beta-NAAG protect against excitotoxic and hypoxic injury to spinal cord neurons, and do so predominantly by interactions with NMDA and not mGluR receptors. PMID:14575876

  17. NMDA receptors are expressed in human ovarian cancer tissues and human ovarian cancer cell lines.

    PubMed

    North, William G; Liu, Fuli; Tian, Ruiyang; Abbasi, Hamza; Akerman, Bonnie

    2015-01-01

    We have earlier demonstrated that breast cancer and small-cell lung cancer express functional NMDA receptors that can be targeted to promote cancer cell death. Human ovarian cancer tissues and human ovarian cancer cell lines (SKOV3, A2008, and A2780) have now been shown to also express NMDA-receptor subunit 1 (GluN1) and subunit 2B (GluN2B). Seventeen ovarian cancers in two arrays were screened by immunohistochemistry using polyclonal antibodies that recognize an extracellular moiety on GluN1 and on GluN2B. These specimens comprised malignant tissue with pathology diagnoses of serous papillary cystadenocarcinoma, endometrioid adenocarcinoma, and clear-cell carcinoma. Additionally, archival tissues defined as ovarian adenocarcinoma from ten patients treated at this institute were also evaluated. All of the cancerous tissues demonstrated positive staining patterns with the NMDA-receptor antibodies, while no staining was found for tumor-adjacent normal tissues or sections of normal ovarian tissue. Human ovarian adenocarcinoma cell lines (A2008, A2780, SKOV3) were demonstrated to express GluN1 by Western blotting, but displayed different levels of expression. Through immunocytochemistry utilizing GluN1 antibodies and imaging using a confocal microscope, we were able to demonstrate that GluN1 protein is expressed on the surface of these cells. In addition to these findings, GluN2B protein was demonstrated to be expressed using polyclonal antibodies against this protein. Treatment of all ovarian cell lines with antibodies against GluN1 was found to result in decreased cell viability (P<0.001), with decreases to 10%-25% that of untreated cells. Treatment of control HEK293 cells with various dilutions of GluN1 antibodies had no effect on cell viability. The GluN1 antagonist MK-801 (dizocilpine maleate) and the GluN2B antagonist ifenprodil, like antibodies, dramatically decreased the viability of A2780 ovarian tumor cells (P<0.01). Treatment of A2780 tumor xenografts with

  18. NMDA receptors are expressed in human ovarian cancer tissues and human ovarian cancer cell lines

    PubMed Central

    North, William G; Liu, Fuli; Tian, Ruiyang; Abbasi, Hamza; Akerman, Bonnie

    2015-01-01

    We have earlier demonstrated that breast cancer and small-cell lung cancer express functional NMDA receptors that can be targeted to promote cancer cell death. Human ovarian cancer tissues and human ovarian cancer cell lines (SKOV3, A2008, and A2780) have now been shown to also express NMDA-receptor subunit 1 (GluN1) and subunit 2B (GluN2B). Seventeen ovarian cancers in two arrays were screened by immunohistochemistry using polyclonal antibodies that recognize an extracellular moiety on GluN1 and on GluN2B. These specimens comprised malignant tissue with pathology diagnoses of serous papillary cystadenocarcinoma, endometrioid adenocarcinoma, and clear-cell carcinoma. Additionally, archival tissues defined as ovarian adenocarcinoma from ten patients treated at this institute were also evaluated. All of the cancerous tissues demonstrated positive staining patterns with the NMDA-receptor antibodies, while no staining was found for tumor-adjacent normal tissues or sections of normal ovarian tissue. Human ovarian adenocarcinoma cell lines (A2008, A2780, SKOV3) were demonstrated to express GluN1 by Western blotting, but displayed different levels of expression. Through immunocytochemistry utilizing GluN1 antibodies and imaging using a confocal microscope, we were able to demonstrate that GluN1 protein is expressed on the surface of these cells. In addition to these findings, GluN2B protein was demonstrated to be expressed using polyclonal antibodies against this protein. Treatment of all ovarian cell lines with antibodies against GluN1 was found to result in decreased cell viability (P<0.001), with decreases to 10%–25% that of untreated cells. Treatment of control HEK293 cells with various dilutions of GluN1 antibodies had no effect on cell viability. The GluN1 antagonist MK-801 (dizocilpine maleate) and the GluN2B antagonist ifenprodil, like antibodies, dramatically decreased the viability of A2780 ovarian tumor cells (P<0.01). Treatment of A2780 tumor xenografts with

  19. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow.

    PubMed

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-11-24

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  20. All quiet on the neuronal front: NMDA receptor inhibition by prion protein.

    PubMed

    Steele, Andrew D

    2008-06-01

    The normal function of the prion protein (PrP)--the causative agent of mad cow or prion disease--has long remained out of reach. Deciphering PrP's function may help to unravel the complex chain of events triggered by PrP misfolding during prion disease. In this issue of the JCB, an exciting paper (Khosravani, H., Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F.R. Jirik, and G.W. Zamponi. 2008. J. Cell Biol. 181:551-565) connects diverse observations regarding PrP into a coherent framework whereby PrP dampens the activity of an N-methyl-D-aspartate (NMDA) receptor (NMDAR) subtype and reduces excitotoxic lesions. The findings of this study suggest that understanding the normal function of proteins associated with neurodegenerative disease may elucidate the molecular pathogenesis. PMID:18504309

  1. All quiet on the neuronal front: NMDA receptor inhibition by prion protein.

    PubMed

    Steele, Andrew D

    2008-05-01

    The normal function of the prion protein (PrP)-the causative agent of mad cow or prion disease-has long remained out of reach. Deciphering PrP's function may help to unravel the complex chain of events triggered by PrP misfolding during prion disease. In this issue of the JCB, an exciting paper (Khosravani, H., Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F.R. Jirik, and G.W. Zamponi. 2008. J. Cell Biol. 181:551-565) connects diverse observations regarding PrP into a coherent framework whereby PrP dampens the activity of an N-methyl-d-aspartate (NMDA) receptor (NMDAR) subtype and reduces excitotoxic lesions. The findings of this study suggest that understanding the normal function of proteins associated with neurodegenerative disease may elucidate the molecular pathogenesis. PMID:18443224

  2. Ring finger protein 10 is a novel synaptonuclear messenger encoding activation of NMDA receptors in hippocampus

    PubMed Central

    Dinamarca, Margarita C; Guzzetti, Francesca; Karpova, Anna; Lim, Dmitry; Mitro, Nico; Musardo, Stefano; Mellone, Manuela; Marcello, Elena; Stanic, Jennifer; Samaddar, Tanmoy; Burguière, Adeline; Caldarelli, Antonio; Genazzani, Armando A; Perroy, Julie; Fagni, Laurent; Canonico, Pier Luigi; Kreutz, Michael R; Gardoni, Fabrizio; Luca, Monica Di

    2016-01-01

    Synapses and nuclei are connected by bidirectional communication mechanisms that enable information transfer encoded by macromolecules. Here, we identified RNF10 as a novel synaptonuclear protein messenger. RNF10 is activated by calcium signals at the postsynaptic compartment and elicits discrete changes at the transcriptional level. RNF10 is enriched at the excitatory synapse where it associates with the GluN2A subunit of NMDA receptors (NMDARs). Activation of synaptic GluN2A-containing NMDARs and induction of long term potentiation (LTP) lead to the translocation of RNF10 from dendritic segments and dendritic spines to the nucleus. In particular, we provide evidence for importin-dependent long-distance transport from synapto-dendritic compartments to the nucleus. Notably, RNF10 silencing prevents the maintenance of LTP as well as LTP-dependent structural modifications of dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.12430.001 PMID:26977767

  3. Essential role of postsynaptic NMDA receptors in developmental refinement of excitatory synapses.

    PubMed

    Zhang, Zhong-wei; Peterson, Matthew; Liu, Hong

    2013-01-15

    Neurons in the brains of newborns are usually connected with many other neurons through weak synapses. This early pattern of connectivity is refined through pruning of many immature connections and strengthening of the remaining ones. NMDA receptors (NMDARs) are essential for the development of excitatory synapses, but their role in synaptic refinement is controversial. Although chronic application of blockers or global knockdown of NMDARs disrupts developmental refinement in many parts of the brain, the ubiquitous presence of NMDARs makes it difficult to dissociate direct effects from indirect ones. We addressed this question in the thalamus by using genetic mosaic deletion of NMDARs. We demonstrate that pruning and strengthening of immature synapses are blocked in neurons without NMDARs, but occur normally in neighboring neurons with NMDARs. Our data support a model in which activation of NMDARs in postsynaptic neurons initiates synaptic refinement. PMID:23277569

  4. Essential role of postsynaptic NMDA receptors in developmental refinement of excitatory synapses

    PubMed Central

    Zhang, Zhong-wei; Peterson, Matthew; Liu, Hong

    2013-01-01

    Neurons in the brains of newborns are usually connected with many other neurons through weak synapses. This early pattern of connectivity is refined through pruning of many immature connections and strengthening of the remaining ones. NMDA receptors (NMDARs) are essential for the development of excitatory synapses, but their role in synaptic refinement is controversial. Although chronic application of blockers or global knockdown of NMDARs disrupts developmental refinement in many parts of the brain, the ubiquitous presence of NMDARs makes it difficult to dissociate direct effects from indirect ones. We addressed this question in the thalamus by using genetic mosaic deletion of NMDARs. We demonstrate that pruning and strengthening of immature synapses are blocked in neurons without NMDARs, but occur normally in neighboring neurons with NMDARs. Our data support a model in which activation of NMDARs in postsynaptic neurons initiates synaptic refinement. PMID:23277569

  5. NMDA Receptors Multiplicatively Scale Visual Signals and Enhance Directional Motion Discrimination in Retinal Ganglion Cells.

    PubMed

    Poleg-Polsky, Alon; Diamond, Jeffrey S

    2016-03-16

    Postsynaptic responses in many CNS neurons are typically small and variable, often making it difficult to distinguish physiologically relevant signals from background noise. To extract salient information, neurons are thought to integrate multiple synaptic inputs and/or selectively amplify specific synaptic activation patterns. Here, we present evidence for a third strategy: directionally selective ganglion cells (DSGCs) in the mouse retina multiplicatively scale visual signals via a mechanism that requires both nonlinear NMDA receptor (NMDAR) conductances in DSGC dendrites and directionally tuned inhibition provided by the upstream retinal circuitry. Postsynaptic multiplication enables DSGCs to discriminate visual motion more accurately in noisy visual conditions without compromising directional tuning. These findings demonstrate a novel role for NMDARs in synaptic processing and provide new insights into how synaptic and network features interact to accomplish physiologically relevant neural computations. PMID:26948896

  6. In vitro and in vivo evaluation of polymethylene tetraamine derivatives as NMDA receptor channel blockers.

    PubMed

    Saiki, Ryotaro; Yoshizawa, Yuki; Minarini, Anna; Milelli, Andrea; Marchetti, Chiara; Tumiatti, Vincenzo; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-07-01

    The biological activities of six symmetrically substituted 2-methoxy-benzyl polymethylene tetraamines (1-4) and diphenylethyl polymethylene tetraamines (5 and 6) as N-methyl-D-aspartate (NMDA) receptor channel blockers, were evaluated in vitro and in vivo. Although all compounds exhibited stronger channel block activities in comparison to memantine in Xenopus oocytes voltage clamped at -70 mV, only compound 2 (0.4 mg/kg intravenous injection) decreased the size of brain infarction in a photochemically induced thrombosis model mice at the same extent of memantine (10mg/kg intravenous injection). Other compounds (1, 3, 4, 5 and 6) did not decrease the size of brain infarction significantly due to the limited injection doses. The present study suggests that compound 2 could represent a valuable lead compound to design low toxicity polyamines for clinical use against stroke. PMID:23692871

  7. Conformational signaling required for synaptic plasticity by the NMDA receptor complex.

    PubMed

    Aow, Jonathan; Dore, Kim; Malinow, Roberto

    2015-11-24

    The NMDA receptor (NMDAR) is known to transmit important information by conducting calcium ions. However, some recent studies suggest that activation of NMDARs can trigger synaptic plasticity in the absence of ion flow. Does ligand binding transmit information to signaling molecules that mediate synaptic plasticity? Using Förster resonance energy transfer (FRET) imaging of fluorescently tagged proteins expressed in neurons, conformational signaling is identified within the NMDAR complex that is essential for downstream actions. Ligand binding transiently reduces FRET between the NMDAR cytoplasmic domain (cd) and the associated protein phosphatase 1 (PP1), requiring NMDARcd movement, and persistently reduces FRET between the NMDARcd and calcium/calmodulin-dependent protein kinase II (CaMKII), a process requiring PP1 activity. These studies directly monitor agonist-driven conformational signaling at the NMDAR complex required for synaptic plasticity. PMID:26553983

  8. Nr3a-containing NMDA receptors promote neurotransmitter release and spike timing-dependent plasticity

    PubMed Central

    Larsen, Rylan S.; Corlew, Rebekah J.; Henson, Maile A.; Roberts, Adam C.; Mishina, Masayoshi; Watanabe, Masahiko; Lipton, Stuart A.; Nakanishi, Nobuki; Pérez-Otaño, Isabel; Weinberg, Richard J.; Philpot, Benjamin D.

    2012-01-01

    Recent evidence suggests that presynaptic-acting NMDA receptors (preNMDARs) are important for neocortical synaptic transmission and plasticity. We found that unique properties of the Nr3a subunit enable preNMDARs to enhance spontaneous and evoked glutamate release and that Nr3a is required for spike timing–dependent long-term depression in the juvenile mouse visual cortex. In the mature cortex, Nr2b-containing preNMDARs enhanced neurotransmission in the absence of magnesium, indicating that presynaptic NMDARs may function under depolarizing conditions throughout life. Our findings indicate that Nr3a relieves preNMDARs from the dual-activation requirement of ligand-binding and depolarization; the developmental removal of Nr3a limits preNMDAR functionality by restoring this associative property. PMID:21297630

  9. Agonist binding to the NMDA receptor drives movement of its cytoplasmic domain without ion flow

    PubMed Central

    Dore, Kim; Aow, Jonathan; Malinow, Roberto

    2015-01-01

    The NMDA receptor (R) plays important roles in brain physiology and pathology as an ion channel. Here we examine the ion flow-independent coupling of agonist to the NMDAR cytoplasmic domain (cd). We measure FRET between fluorescently tagged cytoplasmic domains of GluN1 subunits of NMDARs expressed in neurons. Different neuronal compartments display varying levels of FRET, consistent with different NMDARcd conformations. Agonist binding drives a rapid and transient ion flow-independent reduction in FRET between GluN1 subunits within individual NMDARs. Intracellular infusion of an antibody targeting the GluN1 cytoplasmic domain blocks agonist-driven FRET changes in the absence of ion flow, supporting agonist-driven movement of the NMDARcd. These studies indicate that extracellular ligand binding to the NMDAR can transmit conformational information into the cell in the absence of ion flow. PMID:26553997

  10. Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors.

    PubMed

    Zhang, Rong-Wei; Li, Xiao-Quan; Kawakami, Koichi; Du, Jiu-Lin

    2016-01-01

    Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. PMID:27586999

  11. NMDA receptor activation and calpain contribute to disruption of dendritic spines by the stress neuropeptide CRH.

    PubMed

    Andres, Adrienne L; Regev, Limor; Phi, Lucas; Seese, Ronald R; Chen, Yuncai; Gall, Christine M; Baram, Tallie Z

    2013-10-23

    The complex effects of stress on learning and memory are mediated, in part, by stress-induced changes in the composition and structure of excitatory synapses. In the hippocampus, the effects of stress involve several factors including glucocorticoids and the stress-released neuropeptide corticotropin-releasing hormone (CRH), which influence the integrity of dendritic spines and the structure and function of the excitatory synapses they carry. CRH, at nanomolar, presumed-stress levels, rapidly abolishes short-term synaptic plasticity and destroys dendritic spines, yet the mechanisms for these effects are not fully understood. Here we tested the hypothesis that glutamate receptor-mediated processes, which shape synaptic structure and function, are engaged by CRH and contribute to spine destabilization. In cultured rat hippocampal neurons, CRH application reduced dendritic spine density in a time- and dose-dependent manner, and this action depended on the CRH receptor type 1. CRH-mediated spine loss required network activity and the activation of NMDA, but not of AMPA receptors; indeed GluR1-containing dendritic spines were resistant to CRH. Downstream of NMDA receptors, the calcium-dependent enzyme, calpain, was recruited, resulting in the breakdown of spine actin-interacting proteins including spectrin. Pharmacological approaches demonstrated that calpain recruitment contributed critically to CRH-induced spine loss. In conclusion, the stress hormone CRH co-opts mechanisms that contribute to the plasticity and integrity of excitatory synapses, leading to selective loss of dendritic spines. This spine loss might function as an adaptive mechanism preventing the consequences of adverse memories associated with severe stress. PMID:24155300

  12. Therapeutic effect of the NMDA antagonist MK-801 on low-level laser induced retinal injury

    NASA Astrophysics Data System (ADS)

    Yan, W.-H.; Wu, J.; Chen, P.; Dou, J.-T.; Pan, C.-Y.; Mu, Y.-M.; Lu, J.-M.

    2009-03-01

    The aim of this article was to explore the mechanism of injury in rat retina after constant low-level helium-neon (He-Ne) laser exposure and therapeutic effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, on laser-induced retinal injury. He-Ne laser lesions were created in the central retina of adult Wistar Kyoto rats and were followed immediately by intraperitoneal injection of MK-801 (2 mg/kg) or saline, macroscopical and microscopical lesion were observed by funduscope and light microscope. Ultrastructural changes of the degenerating cells were examined by electron microscopy. Photoreceptor apoptosis was evaluated by TdT-mediated dUTP nick end-labeling (TUNEL). mRNA levels were measured by in situ hybridization and NMDA receptor expression was determined by immunohistochemistry. Laser induced damage was histologically quantified by image-analysis morphometry. Electroretinograms (ERGs) were recorded at different time point after the cessation of exposure to constant irradiation. There was no visible bleeding, exudation or necrosis under funduscope. TUNEL and electron microscopy showed photoreceptor apoptosis after irradiation. MK-801-treated animals had significantly fewer TUNEL-positive cells in the photoreceptors than saline-treated animals after exposure to laser. In situ hybridization (ISH) showed that the NMDAR mRNA level of MK-801-treated rats decreased in the inner plexiform layer 6 h after the cessation of exposure to constant irradiation when compared with that of saline-treated rats. So did Immunohistochemistry (IHC). Electroretinogram showed that b-wave amplitudes of MK-801-treated group were higher than that of saline-treated group after laser exposure. These findings suggest that Low level laser may cause the retinal pathological changes under given conditions. High expression of NMDAR is one of the possible mechanisms causing experimental retinal laser injury of rats. MK-801 exhibits the therapeutic effect due to promote the

  13. NMDA Receptor Activation and Calpain Contribute to Disruption of Dendritic Spines by the Stress Neuropeptide CRH

    PubMed Central

    Andres, Adrienne L.; Regev, Limor; Phi, Lucas; Seese, Ronald R.; Chen, Yuncai; Gall, Christine M.

    2013-01-01

    The complex effects of stress on learning and memory are mediated, in part, by stress-induced changes in the composition and structure of excitatory synapses. In the hippocampus, the effects of stress involve several factors including glucocorticoids and the stress-released neuropeptide corticotropin-releasing hormone (CRH), which influence the integrity of dendritic spines and the structure and function of the excitatory synapses they carry. CRH, at nanomolar, presumed-stress levels, rapidly abolishes short-term synaptic plasticity and destroys dendritic spines, yet the mechanisms for these effects are not fully understood. Here we tested the hypothesis that glutamate receptor-mediated processes, which shape synaptic structure and function, are engaged by CRH and contribute to spine destabilization. In cultured rat hippocampal neurons, CRH application reduced dendritic spine density in a time- and dose-dependent manner, and this action depended on the CRH receptor type 1. CRH-mediated spine loss required network activity and the activation of NMDA, but not of AMPA receptors; indeed GluR1-containing dendritic spines were resistant to CRH. Downstream of NMDA receptors, the calcium-dependent enzyme, calpain, was recruited, resulting in the breakdown of spine actin-interacting proteins including spectrin. Pharmacological approaches demonstrated that calpain recruitment contributed critically to CRH-induced spine loss. In conclusion, the stress hormone CRH co-opts mechanisms that contribute to the plasticity and integrity of excitatory synapses, leading to selective loss of dendritic spines. This spine loss might function as an adaptive mechanism preventing the consequences of adverse memories associated with severe stress. PMID:24155300

  14. NMDA receptor mediates chronic visceral pain induced by neonatal noxious somatic stimulation

    PubMed Central

    Miranda, Adrian; Mickle, Aaron; Bruckert, Mitchell; Kannampalli, Pradeep; Banerjee, Banani; Sengupta, Jyoti N.

    2014-01-01

    NMDA receptors (NMDAR) are important in the development and maintenance of central sensitization. Our objective was to investigate the role of spinal neurons and NMDAR in the maintenance of chronic visceral pain. Neonatal rats were injected with acidic saline adjusted to pH4.0 in the gastrocnemius muscle every other day for 12 days. In adult rats, NR1 and NR2B subunits were examined in the lumbo-sacral (LS) spinal cord. A baseline, visceromotor response (VMR) to graded colorectal distension (CRD) was recorded before and after administration of the NMDA antagonist, CGS-19755. Extracellular recordings were performed from CRD-sensitive LS spinal neurons and pelvic nerve afferents (PNA) before and after CGS-19755. Rats that received pH 4.0 saline injections demonstrated a significant increase in the expression NR2B subunits and VMR response to CRD >20mmHg. CGS-19755 (i.v. or i.t.) had no effect in naïve rats, but significantly decreased the response to CRD in pH4.0 saline injected rats. CGS-19755 had no effect on the spontaneous firing of SL-A, but decreased that of SL-S. Similarly, CGS-19755 attenuates the responses of SL-S neurons to CRD, but had no effect on SL-A neurons or on the response characteristics of PNA fibers. Neonatal noxious somatic stimulation results in chronic visceral hyperalgesia and sensitizes a specific subpopulation of CRD-sensitive spinal neurons. The sensitization of these SL-S spinal neurons is attenuated by the NMDAR antagonist. The results of this study suggest that spinal NMDARs play an important role in the development of hyperalgesia early in life. PMID:25281204

  15. Opposite function of dopamine D1 and NMDA receptors in striatal cannabinoid-mediated signaling

    PubMed Central

    Daigle, Tanya L.; Wetsel, William C.; Caron, Marc G.

    2011-01-01

    It is well established that the cannabinoid and dopamine systems interact at various levels to regulate basal ganglia function. While it is well known that acute administration of cannabinoids to mice can modify dopamine-dependent behaviors, an understanding of the intraneuronal signaling pathways employed by these agents in the striatum is not well understood. Here we use knockout (KO) mouse models to examine the regulation of striatal ERK1/2 signaling by behaviorally relevant doses of cannabinoids. This cellular pathway has been implicated as a central mediator of drug reward and synaptic plasticity. In C57BL/6J mice, acute administration of cannabinoid agonists, HU-210 and Δ9-THC, promotes a dose- and time-dependent decrease in the phosphorylation of ERK1/2 in dorsal striatum. Co-administration of the CB1 cannabinoid receptor (CB1R) antagonist AM251 with HU-210 prevents ERK1/2 inactivation, indicating a requirement for activation of this receptor. In dopamine D1 receptor (D1R) KO animals treated with HU-210, the magnitude of the HU-210-dependent decrease in striatal ERK1/2 signaling is greater than in wild-type controls. In contrast, the HU-210 administration to NMDA receptor knockdown mice (NR1-Kd) was ineffective at promoting striatal ERK1/2 inactivation. Genetic deletion of other potential ERK1/2 mediators, the dopamine D2 receptors (D2R)s or βarrestin-1 or -2, did not affect HU-210-induced modulation of ERK1/2 signaling in the striatum. These results support the hypothesis that dopamine D1 receptors and NMDA receptors act in an opposite manner to regulate striatal CB1R signal transduction. PMID:22034973

  16. Contribution of Primary Afferent Input to Trigeminal Astroglial Hyperactivity, Cytokine Induction and NMDA Receptor Phosphorylation.

    PubMed

    Wang, H; Guo, W; Yang, K; Wei, F; Dubner, R; Ren, K

    2010-03-01

    We tested the hypothesis that primary afferent inputs play a role in astroglial hyperactivity after tissue injury. We first injected complete Freund's adjuvant (CFA, 0.05 ml, 1:1 oil/saline) into the masseter muscle, which upregulated glial fibrillary acidic protein (GFAP), a marker of astrocytes, interleukin (IL)-1β an inflammatory cytokine, and phosphorylation of serine896 of the NR1 subunit (P-NR1) of the NMDA receptor in the subnuclei interpolaris/caudalis (Vi/Vc) transition zone, an important structure for processing trigeminal nociceptive input. Local anesthetic block with lidocaine (2%) of the masseter muscle at 10 min prior to injection of CFA into the same site significantly reduced the CFA-induced increase in GFAP, IL-1β and P-NR1 (p<0.05, n=4/group). We then tested the effect of peripheral electrical stimulation (ES). The ES protocol was burst stimulation consisting of trains of 4 square pulses (10-100 Hz, 0.1-3 mA, 0.5 ms pulse width). Under pentobarbital anesthesia, an ES was delivered every 0.2 s for a total of 30 min. The Vi/Vc tissues were processed for immunohistochemistry or western blot analysis at 10-120 min after ES. Compared to naive and SHAM-treated rats, there was increased immunoreactivity against GFAP, IL-1β and P-NR1 in the Vi/Vc in rats receiving ES. Double staining showed that IL-1β was selectively localized in GFAP-positive astroglia, and P-NR1-immunoreactivity was localized to neurons. These findings indicate that primary afferent inputs are necessary and sufficient to induce astroglial hyperactivity and upregulation of IL-1β, as well as neuronal NMDA receptor phosphorylation. PMID:21170295

  17. Sustained NMDA receptor activation by spreading depolarizations can initiate excitotoxic injury in metabolically compromised neurons

    PubMed Central

    Aiba, Isamu; Shuttleworth, C William

    2012-01-01

    Spreading depolarizations (SDs) are slowly propagating waves of near-complete neuronal and glial depolarization. SDs have been recorded in patients with brain injury, and the incidence of SD significantly correlates with outcome severity. Although it is well accepted that the ionic dyshomeostasis of SD presents a severe metabolic burden, there is currently limited understanding of SD-induced injury processes at a cellular level. In the current study we characterized events accompanying SD in the hippocampal CA1 region of murine brain slices, using whole-cell recordings and single-cell Ca2+ imaging. We identified an excitatory phase that persisted for approximately 2 min following SD onset, and accompanied with delayed dendritic ionic dyshomeostasis. The excitatory phase coincided with a significant increase in presynaptic glutamate release, evidenced by a transient increase in spontaneous EPSC frequency and paired-pulse depression of evoked EPSCs. Activation of NMDA receptors (NMDARs) during this late excitatory phase contributed to the duration of individual neuronal depolarizations and delayed recovery of extracellular slow potential changes. Selectively targeting the NMDAR activation following SD onset (by delayed pressure application of a competitive NMDAR antagonist) significantly decreased the duration of cellular depolarizations. Recovery of dendritic Ca2+ elevations following SD were also sensitive to delayed NMDA antagonist application. Partial inhibition of neuronal energy metabolism converted SD into an irrecoverable event with persistent Ca2+ overload and membrane compromise. Delayed NMDAR block was sufficient to prevent these acute injurious events in metabolically compromised neurons. These results identify a significant contribution of a late component of SD that could underlie neuronal injury in pathological circumstances. PMID:22907056

  18. Depolarization and CaM kinase IV modulate NMDA receptor splicing through two essential RNA elements.

    PubMed

    Lee, Ji-Ann; Xing, Yi; Nguyen, David; Xie, Jiuyong; Lee, Christopher J; Black, Douglas L

    2007-02-01

    Alternative splicing controls the activity of many proteins important for neuronal excitation, but the signal-transduction pathways that affect spliced isoform expression are not well understood. One particularly interesting system of alternative splicing is exon 21 (E21) of the NMDA receptor 1 (NMDAR1 E21), which controls the trafficking of NMDA receptors to the plasma membrane and is repressed by Ca(++)/calmodulin-dependent protein kinase (CaMK) IV signaling. Here, we characterize the splicing of NMDAR1 E21. We find that E21 splicing is reversibly repressed by neuronal depolarization, and we identify two RNA elements within the exon that function together to mediate the inducible repression. One of these exonic elements is similar to an intronic CaMK IV-responsive RNA element (CaRRE) originally identified in the 3' splice site of the BK channel STREX exon, but not previously observed within an exon. The other element is a new RNA motif. Introduction of either of these two motifs, called CaRRE type 1 and CaRRE type 2, into a heterologous constitutive exon can confer CaMK IV-dependent repression on the new exon. Thus, either exonic CaRRE can be sufficient for CaMK IV-induced repression. Single nucleotide scanning mutagenesis defined consensus sequences for these two CaRRE motifs. A genome-wide motif search and subsequent RT-PCR validation identified a group of depolarization-regulated alternative exons carrying CaRRE consensus sequences. Many of these exons are likely to alter neuronal function. Thus, these two RNA elements define a group of co-regulated splicing events that respond to a common stimulus in neurons to alter their activity. PMID:17298178

  19. Changes in NMDA receptor-induced cyclic nucleotide synthesis regulate the age-dependent increase in PDE4A expression in primary cortical cultures

    PubMed Central

    Hajjhussein, Hassan; Suvarna, Neesha U.; Gremillion, Carmen; Judson Chandler, L.; O’Donnell, James M.

    2007-01-01

    NMDA receptor-induced cAMP and cGMP are selectively hydrolyzed by PDE4 and PDE2, respectively, in rat primary cerebral cortical and hippocampal cultures. Because cAMP levels regulate the expression of PDE4 in rat primary cortical cultures, we examined the manner in which NMDA receptor activity regulates the age-dependent increase in the expression of PDE4A observed in vivo and in vitro. Inhibiting the activity of NR2B subunit with ifenprodil blocked NMDA receptor-induced cGMP synthesis and increased NMDA receptor-induced cAMP levels in a manner that reduced PDE4 activity. Therefore, NR1/NR2B receptor-induced cGMP signaling is involved in an acute cross-talk regulation of NR1/NR2A receptor-induced cAMP levels, mediated by PDE4. Chronic inhibition of NMDA receptor activity with MK-801 reduced PDE4A1 and PDE4A5 expression and activity in a time-dependent manner; this effect was reversed by adding the PKA activator dbr-cAMP. Inhibiting GABA receptors with bicuculline increased NMDA receptor-induced cAMP synthesis and PDE4A expression in cultures treated between DIV 16 and DIV 21 but not in cultures treated between DIV 8 and DIV 13. This effect was due to a high tone of NMDA receptor-induced cGMP in younger cultures, which negatively regulated the expression of PDE4A by a PKG-mediated process. The present results are consistent with behavioral data showing that both PDE4 and PDE2 are involved in NMDA receptor-mediated memory processes. PMID:17407767

  20. Age-associated memory impairment. Assessing the role of nitric oxide.

    PubMed

    Meyer, R C; Spangler, E L; Kametani, H; Ingram, D K

    1998-11-20

    Several neurotransmitter systems have been investigated to assess hypothesized mechanisms underlying the decline in recent memory abilities in normal aging and in Alzheimer's disease. Examining the performance of F344 rats in a 14-unit T-maze (Stone maze), we have focused on the muscarinic cholinergic (mACh) and the N-methyl-D-aspartate (NMDA) glutamate (Glu) systems and their interactions. Maze learning is impaired by antagonists to mACh or NMDA receptors. We have also shown that stimulation of mACh receptors can overcome a maze learning deficit induced by NMDA blockade, and stimulation of the NMDA receptor can overcome a similar blockade of mACh receptors. No consistent evidence in rats has been produced from our laboratory to reveal significant age-related declines in mACh or NMDA receptor binding in the hippocampus (HC), a brain region that is greatly involved in processing of recent memory. Thus, we have directed attention to the possibility of a common signal transduction pathway, the nitric oxide (NO) system. Activated by calcium influx through the NMDA receptor, NO is hypothesized to be a retrograde messenger that enhances presynaptic Glu release. Maze learning can be impaired by inhibiting the synthetic enzyme for NO, nitric oxide synthase (NOS), or enhanced by stimulating NO release. However, we have found no age-related loss of NOS-containing HC neurons or fibers in rats. Additionally, other laboratories have reported no evidence of an age-related loss of HC NOS activity. In a microdialysis study we have found preliminary evidence of reduced NO production following NMDA stimulation. We are currently working to identify the parameters of this phenomenon as well as testing various strategies for safely stimulating the NO system to improve memory function in aged rats. PMID:9928439

  1. Activation of NMDA receptors in the brainstem, RVM and NGC, mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats

    PubMed Central

    Da Silva, LFS; DeSantana, JM; Sluka, KA

    2010-01-01

    Repeated injections of acidic saline into the gastrocnemius muscle induced both muscle and cutaneous hypersensitivity. We have previously shown that microinjection of local anesthetic into either the rostral ventromedial medulla (RVM) or the nucleus reticularis gigantocellularis (NGC) reverses this muscle and cutaneous hypersensitivity. Although prior studies show that NMDA receptors in the RVM play a clear role in mediating visceral and inflammatory hypersensitivity, the role of NMDA receptors in the NGC, or in non-inflammatory muscle pain is unclear. Therefore, the present study evaluated involvement of the NMDA receptors in the RVM and NGC in muscle and cutaneous hypersensitivity induced by repeated intramuscular injections of acidic saline. Repeated intramuscular injections of acidic saline, 5 days apart, resulted in a bilateral decrease in the withdrawal thresholds of the paw and muscle in all groups 24 h after the second injection. Microinjection of NMDA receptor antagonists into the RVM reversed both the muscle and cutaneous hypersensitivity. However, microinjection of NMDA receptor antagonists into the NGC only reversed cutaneous, but not muscle hypersensitivity. These results suggest that NMDA receptors in the RVM mediate both muscle and cutaneous hypersensitivity, but those in the NGC mediated only cutaneous hypersensitivity after muscle insult. PMID:19853525

  2. D-cycloserine facilitates extinction the first time but not the second time: an examination of the role of NMDA across the course of repeated extinction sessions.

    PubMed

    Langton, Julia M; Richardson, Rick

    2008-12-01

    Extinction of learned fear is facilitated by the partial NMDA agonist D-cycloserine (DCS). However, some studies suggest that the involvement of NMDA in learning differs depending on whether learning is for the first or second time. The current study aimed to extend these findings by examining the role of NMDA in extinction for the first and the second time. Specifically, the present series of experiments used Pavlovian fear conditioning and extinction paradigms to compare the effect of DCS on extinction of fear to a light CS the first and second time around. As found previously, DCS facilitated extinction of learned fear (Experiment 1). A novel finding, however, was that DCS did not facilitate the re-extinction of fear to this same CS following retraining (Experiments 2A and 2B). Finally, it was demonstrated that the transition from NMDA-dependent to NMDA-independent extinction was stimulus specific (Experiment 3). That is, rats were first trained to fear a CS (light); this fear was then extinguished. Following this, rats were then retrained to fear the same CS (light) or a new CS (white noise). When given a second extinction session, DCS was found to facilitate extinction of the new CS but not the original CS. The results of this series of experiments suggest that the role of NMDA in extinction depends on whether extinction is new learning (first extinction) or retrieval of a previous extinction memory (re-extinction). PMID:18354389

  3. HIV-1 protein Tat produces biphasic changes in NMDA-evoked increases in intracellular Ca2+ concentration via activation of Src kinase and nitric oxide signaling pathways

    PubMed Central

    Krogh, Kelly A; Wydeven, Nicole; Wickman, Kevin; Thayer, Stanley A.

    2014-01-01

    HIV-associated neurocognitive disorders (HAND) afflict about half of HIV-infected patients. HIV-infected cells shed viral proteins, such as the transactivator of transcription (Tat), which can cause neurotoxicity by over activation of NMDA receptors (NMDARs). Here, we show that Tat causes a time-dependent, biphasic change in NMDA-evoked increases in intracellular Ca2+ concentration ([Ca2+]i). NMDA-evoked responses were potentiated following 2 h exposure to Tat (50 ng/mL). Tat-induced potentiation of NMDA-evoked increases in [Ca2+]i peaked by 8 h and then adapted by gradually reversing to baseline by 24 h and eventually dropping below control by 48 h. Tat-induced potentiation of NMDA-evoked responses was blocked by inhibition of lipoprotein receptors (LRP) or Src tyrosine kinase. Potentiation was unaffected by inhibition of nitric oxide synthase (NOS). However, NOS activity was required for adaptation. Adaptation was also prevented by inhibition of soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG). Together, these findings indicate that Tat potentiates NMDA-evoked increases in [Ca2+]i via LRP-dependent activation of Src and that this potentiation adapts via activation of the NOS/sGC/PKG pathway. Adaptation may protect neurons from excessive Ca2+ influx and could reveal targets for the treatment of HAND. PMID:24666322

  4. Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24

    SciTech Connect

    Lewis, T.B.; DuPont, B.R.; Leach, R.

    1996-02-15

    This article reports on the localization of a gene for a glutamate binding subunit of an N-methyl-D-aspartate (NMDA) receptor, called GRINA, to human chromosome 8q24 using fluorescence in situ hybridization and radiation hybridization mapping. This gene mapped outside the critical region for benign familial neonatal convulsions (BFNC), a rare form of epilepsy; however, GRINA could be the causative genetic factor inducing idiopathic generalized epilepsy. Further studies need to be conducted. 15 refs., 2 figs.

  5. Enhanced attention and impulsive action following NMDA receptor GluN2B-selective antagonist pretreatment.

    PubMed

    Higgins, Guy A; Silenieks, Leo B; MacMillan, Cam; Sevo, Julia; Zeeb, Fiona D; Thevarkunnel, Sandy

    2016-09-15

    NMDA GluN2B (NR2B) subtype selective antagonists are currently in clinical development for a variety of indications, including major depression. We previously reported the selective NMDA GluN2B antagonists Ro 63-1908 and traxoprodil, increase premature responding in a 5-choice serial reaction time task (5-CSRTT) suggesting an effect on impulsive action. The present studies extend these investigations to a Go-NoGo and delay discounting task, and the 5-CSRTT under test conditions of both regular (5s) and short (2-5s) multiple ITI (Intertrial interval). Dizocilpine was included for comparison. Both Ro 63-1908 (0.1-1mg/kg SC) and traxoprodil (0.3-3mg/kg SC) increased premature and perseverative responses in both 5-CSRT tasks and improved attention when tested under a short ITI test condition. Ro 63-1908 but not traxoprodil increased motor impulsivity (false alarms) in a Go-NoGo task. Dizocilpine (0.01-0.06mg/kg SC) affected both measures of motor impulsivity and marginally improved attention. In a delay discounting test of impulsive choice, both dizocilpine and Ro 63-1908 decreased impulsive choice (increased choice for the larger, delayed reward), while traxoprodil showed a similar trend. Motor stimulant effects were evident following Ro 63-1908, but not traxoprodil treatment - although no signs of motor stereotypy characteristic of dizocilpine (>0.1mg/kg) were noted. The findings of both NMDA GluN2B antagonists affecting measures of impulsive action and compulsive behavior may underpin emerging evidence to suggest glutamate signaling through the NMDA GluN2B receptor plays an important role in behavioural flexibility. The profiles between Ro 63-1908 and traxoprodil were not identical, perhaps suggesting differences between members of this drug class. PMID:27180168

  6. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    SciTech Connect

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr. )

    1991-04-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative {sup 14}C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.

  7. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

    PubMed Central

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-01-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  8. β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain.

    PubMed

    Chen, Gang; Xie, Rou-Gang; Gao, Yong-Jing; Xu, Zhen-Zhong; Zhao, Lin-Xia; Bang, Sangsu; Berta, Temugin; Park, Chul-Kyu; Lay, Mark; Chen, Wei; Ji, Ru-Rong

    2016-01-01

    Mechanisms of acute pain transition to chronic pain are not fully understood. Here we demonstrate an active role of β-arrestin 2 (Arrb2) in regulating spinal cord NMDA receptor (NMDAR) function and the duration of pain. Intrathecal injection of the mu-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin produces paradoxical behavioural responses: early-phase analgesia and late-phase mechanical allodynia which requires NMDAR; both phases are prolonged in Arrb2 knockout (KO) mice. Spinal administration of NMDA induces GluN2B-dependent mechanical allodynia, which is prolonged in Arrb2-KO mice and conditional KO mice lacking Arrb2 in presynaptic terminals expressing Nav1.8. Loss of Arrb2 also results in prolongation of inflammatory pain and neuropathic pain and enhancement of GluN2B-mediated NMDA currents in spinal lamina IIo not lamina I neurons. Finally, spinal over-expression of Arrb2 reverses chronic neuropathic pain after nerve injury. Thus, spinal Arrb2 may serve as an intracellular gate for acute to chronic pain transition via desensitization of NMDAR. PMID:27538456

  9. Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats.

    PubMed

    Rogóz, Zofia; Skuza, Grazyna; Maj, Jerzy; Danysz, Wojciech

    2002-06-01

    In spite of intensive research, the problem of treating antidepressant-resistant depressive patients has not yet been solved. The authors previously reported that combined administration of imipramine and the uncompetitive NMDA receptor antagonist amantadine reduced immobility time in the forced swimming test in rats to a much greater extent than either treatment alone. The present paper investigates the possibility of synergistic interactions between three antidepressants (imipramine, venlafaxine, fluoxetine) with three uncompetitive NMDA receptor antagonists (amantadine, memantine and neramexane). Most combinations resulted in synergistic (hyperadditive) antidepressive-like effects in the forced swim test. Most interesting was the observation that fluoxetine, which was inactive when given alone, showed a positive effect when combined with amantadine (10 and 20 mg/kg), memantine (2.5 and 5 mg/kg) or neramexane (2.5 and 5 mg/kg). The specificity of these observations is supported by control open field studies, which demonstrated no significant increase, or even a decrease in general locomotion after coadministration of the compounds. The present results suggest that the combination of traditional antidepressant drugs and NMDA receptor antagonists may produce enhanced antidepressive effects, and this is of particular relevance for antidepressant-resistant patients. PMID:12128003

  10. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission.

    PubMed

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-07-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  11. Control of Appetite and Food Preference by NMDA Receptor and Its Co-Agonist d-Serine.

    PubMed

    Sasaki, Tsutomu; Matsui, Sho; Kitamura, Tadahiro

    2016-01-01

    Obesity causes a significant negative impact on health of human beings world-wide. The main reason for weight gain, which eventually leads to obesity, is excessive ingestion of energy above the body's homeostatic needs. Therefore, the elucidation of detailed mechanisms for appetite control is necessary to prevent and treat obesity. N-methyl-d-aspartate (NMDA) receptor is a post-synaptic glutamate receptor and is important for excitatory neurotransmission. It is expressed throughout the nervous system, and is important for long-term potentiation. It requires both ligand (glutamate) and co-agonist (d-serine or glycine) for efficient opening of the channel to allow calcium influx. d-serine is contained in fermented foods and marine invertebrates, and brain d-serine level is maintained by synthesis in vivo and supply from food and gut microbiota. Although the NMDA receptor has been reported to take part in the central regulation of appetite, the role of d-serine had not been addressed. We recently reported that exogenous d-serine administration can suppress appetite and alter food preference. In this review, we will discuss how NMDA receptor and its co-agonist d-seine participate in the control of appetite and food preference, and elaborate on how this system could possibly be manipulated to suppress obesity. PMID:27399680

  12. NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II

    PubMed Central

    Wang, Gang; Coleman, Christal G.; Chan, June; Ogorodnik, Evgeny; Van Kempen, Tracey A.; Milner, Teresa A.; Butler, Scott D.; Young, Colin N.; Davisson, Robin L.; Iadecola, Costantino; Pickel, Virginia M.

    2015-01-01

    Hypertension induced by angiotensin II (Ang II) is associated with glutamate-dependent dysregulation of the hypothalamic paraventricular nucleus (PVN). Many forms of glutamate-dependent plasticity are mediated by NMDA receptor GluN1 subunit expression and the distribution of functional receptor to the plasma membrane of dendrites. Here, we use a combined ultrastructural and functional analysis to examine the relationship between PVN NMDA receptors and the blood pressure increase induced by chronic infusion of a low dose of Ang II. We report that the increase in blood pressure produced by a 2 week administration of a subpressor dose of Ang II results in an elevation in plasma membrane GluN1 in dendrites of PVN neurons in adult male mice. The functional implications of these observations are further demonstrated by the finding that GluN1 deletion in PVN neurons attenuated the Ang II-induced increases in blood pressure. These results indicate that NMDA receptor plasticity in PVN neurons significantly contributes to the elevated blood pressure mediated by Ang II. PMID:26134639

  13. Control of Appetite and Food Preference by NMDA Receptor and Its Co-Agonist d-Serine

    PubMed Central

    Sasaki, Tsutomu; Matsui, Sho; Kitamura, Tadahiro

    2016-01-01

    Obesity causes a significant negative impact on health of human beings world-wide. The main reason for weight gain, which eventually leads to obesity, is excessive ingestion of energy above the body’s homeostatic needs. Therefore, the elucidation of detailed mechanisms for appetite control is necessary to prevent and treat obesity. N-methyl-d-aspartate (NMDA) receptor is a post-synaptic glutamate receptor and is important for excitatory neurotransmission. It is expressed throughout the nervous system, and is important for long-term potentiation. It requires both ligand (glutamate) and co-agonist (d-serine or glycine) for efficient opening of the channel to allow calcium influx. d-serine is contained in fermented foods and marine invertebrates, and brain d-serine level is maintained by synthesis in vivo and supply from food and gut microbiota. Although the NMDA receptor has been reported to take part in the central regulation of appetite, the role of d-serine had not been addressed. We recently reported that exogenous d-serine administration can suppress appetite and alter food preference. In this review, we will discuss how NMDA receptor and its co-agonist d-seine participate in the control of appetite and food preference, and elaborate on how this system could possibly be manipulated to suppress obesity. PMID:27399680

  14. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects.

    PubMed

    Sanacora, G; Smith, M A; Pathak, S; Su, H-L; Boeijinga, P H; McCarthy, D J; Quirk, M C

    2014-09-01

    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) channel blocker, has been found to induce rapid and robust antidepressant-like effects in rodent models and in treatment-refractory depressed patients. However, the marked acute psychological side effects of ketamine complicate the interpretation of both preclinical and clinical data. Moreover, the lack of controlled data demonstrating the ability of ketamine to sustain the antidepressant response with repeated administration leaves the potential clinical utility of this class of drugs in question. Using quantitative electroencephalography (qEEG) to objectively align doses of a low-trapping NMDA channel blocker, AZD6765 (lanicemine), to that of ketamine, we demonstrate the potential for NMDA channel blockers to produce antidepressant efficacy without psychotomimetic and dissociative side effects. Furthermore, using placebo-controlled data, we show that the antidepressant response to NMDA channel blockers can be maintained with repeated and intermittent drug administration. Together, these data provide a path for the development of novel glutamatergic-based therapeutics for treatment-refractory mood disorders. PMID:24126931

  15. Ligand-specific Deactivation Time Course of GluN1/GluN2D NMDA Receptors

    SciTech Connect

    K Vance; N Simorowski; S Traynelis; H Furukawa

    2011-12-31

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors that mediate a majority of excitatory synaptic transmission. One unique property of GluN1/GluN2D NMDA receptors is an unusually prolonged deactivation time course following the removal of L-glutamate. Here we show, using x-ray crystallography and electrophysiology, that the deactivation time course of GluN1/GluN2D receptors is influenced by the conformational variability of the ligand-binding domain (LBD) as well as the structure of the activating ligand. L-glutamate and L-CCG-IV induce significantly slower deactivation time courses compared with other agonists. Crystal structures of the isolated GluN2D LBD in complex with various ligands reveal that the binding of L-glutamate induces a unique conformation at the backside of the ligand-binding site in proximity to the region at which the transmembrane domain would be located in the intact receptors. These data suggest that the activity of the GluN1/GluN2D NMDA receptor is controlled distinctively by the endogenous neurotransmitter L-glutamate.

  16. Dentate gyrus–CA3 glutamate release/NMDA transmission mediates behavioral despair and antidepressant-like responses to leptin

    PubMed Central

    Wang, Xuezhen; Zhang, Di; Lu, Xin-Yun

    2014-01-01

    Compelling evidence supports the important role of the glutamatergic system in the pathophysiology of major depression and also as a target for rapid-acting antidepressants. However, the functional role of glutamate release/transmission in behavioral processes related to depression and antidepressant efficacy remains to be elucidated. In this study, glutamate release and behavioral responses to tail suspension, a procedure commonly used for inducing behavioral despair, were simultaneously monitored in real time. The onset of tail suspension stress evoked a rapid increase in glutamate release in hippocampal field CA3, which declined gradually after its offset. Blockade of NMDA receptors by intra-CA3 infusion of MK-801, a non-competitive NMDA receptor antagonist, reversed behavioral despair. The CA3 was innervated by granule neurons expressing the leptin receptor (LepRb) in the dentate gyrus (DG), representing a subpopulation of granule neurons that were devoid of stress-induced activation. Leptin treatment dampened tail suspension-evoked glutamate release in CA3. On the other hand, intra-CA3 infusion of NMDA blocked the antidepressant-like effect of leptin in reversing behavioral despair in both the tail suspension and forced swim tests, which involved activation of Akt signaling in DG. Together, these results suggest that the DG-CA3 glutamatergic pathway is critical for mediating behavioral despair and antidepressant-like responses to leptin. PMID:25092243

  17. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage

    PubMed Central

    Stein, Ivar S.; Gray, John A.

    2015-01-01

    The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca2+ transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca2+ influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. SIGNIFICANCE STATEMENT Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca2+ influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long

  18. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors.

    PubMed

    Cui, Hong; Hayashi, Amy; Sun, Hong-Shuo; Belmares, Michael P; Cobey, Carolyn; Phan, Thuymy; Schweizer, Johannes; Salter, Michael W; Wang, Yu Tian; Tasker, R Andrew; Garman, David; Rabinowitz, Joshua; Lu, Peter S; Tymianski, Michael

    2007-09-12

    In neuronal synapses, PDZ domains [postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] of PSD-95 proteins interact with C termini of NMDA receptor [NMDAR (NR)] subunits, linking them to downstream neurotoxic signaling molecules. Perturbing NMDAR/PSD-95 interactions with a Tat peptide comprising the nine C-terminal residues of the NR2B subunit (Tat-NR2B9c) reduces neurons' vulnerability to excitotoxicity and ischemia. However, NR subunit C termini may bind many of >240 cellular PDZs, any of which could mediate neurotoxic signaling independently of PSD-95. Here, we performed a proteomic and biochemical analysis of the interactions of all known human PDZs with synaptic signaling proteins including NR1, NR2A-NR2D, and neuronal nitric oxide synthase (nNOS). Tat-NR2B9c, whose interactions define PDZs involved in neurotoxic signaling, was also used. NR2A-NR2D subunits and Tat-NR2B9c had similar, highly specific, PDZ protein interactions, of which the strongest were with the PSD-95 family members (PSD-95, PSD-93, SAP97, and SAP102) and Tax interaction protein 1 (TIP1). The PSD-95 PDZ2 domain bound NR2A-NR2C subunits most strongly (EC50, approximately 1 microM), and fusing the NR2B C terminus to Tat enhanced its affinity for PSD-95 PDZ2 by >100-fold (EC50, approximately 7 nM). IC50 values for Tat-NR2B9c inhibiting NR2A-NR2C/PSD-95 interactions (approximately 1-10 microM) and nNOS/PSD-95 interactions (200 nM) confirmed the feasibility of such inhibition. To determine which of the PDZ interactions of Tat-NR2B9c mediate neuroprotection, one of PSD-95, PSD-93, SAP97, SAP102, TIP1, or nNOS expression was inhibited in cortical neurons exposed to NMDA toxicity. Only neurons lacking PSD-95 or nNOS but not PSD-93, SAP97, SAP102, or TIP1 exhibited reduced excitotoxic vulnerability. Thus, despite the ubiquitousness of PDZ domain-containing proteins, PSD-95 and nNOS above any other PDZ proteins are keys in effecting NMDAR-dependent excitotoxicity. Consequently, PSD-95

  19. ANTIDEPRESSANT-LIKE EFFECTS OF LOW KETAMINE DOSE IS ASSOCIATED WITH INCREASED HIPPOCAMPAL AMPA/NMDA RECEPTOR DENSITY RATIO IN FEMALE WISTAR-KYOTO RATS

    PubMed Central

    Tizabi, Yousef; Bhatti, Babur H; Manaye, Kebreten F; Das, Jharna R; Akinfiresoye, Luli

    2012-01-01

    Preclinical as well as limited clinical studies indicate that ketamine, a non-competitive glutamate NMDA receptor antagonist, may exert a quick and prolonged antidepressant effect. It has been postulated that ketamine action is due to inhibition of NMDA and stimulation of AMPA receptors. Here, we sought to determine whether ketamine would exert antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of depression and whether this effect would be associated with changes in AMPA/NMDA receptor densities in the hippocampus. Adult female WKY rats and their control Wistar rats were subjected to acute and chronic ketamine doses and their locomotor activity (LMA) and immobility in the forced swim test (FST) were evaluated. Hippocampal AMPA and NMDA receptor densities were also measured following a chronic ketamine dose. Ketamine, both acutely (0.5–5.0 mg/kg ip) and chronically (0.5–2.5 mg/kg daily for 10 days) resulted in a dose-dependent and prolonged decrease in immobility in the FST in WKY rats only, suggesting an antidepressant-like effect in this model. Chronic treatment with an effective dose of ketamine also resulted in an increase in AMPA/NMDA receptor density ratio in the hippocampus of WKY rats. LMA was not affected by any ketamine treatment in either strain. These results indicate a rapid and lasting antidepressant-like effect of a low ketamine dose in WKY rat model of depression. Moreover, the increase in AMPA/NMDA receptor density in hippocampus could be a contributory factor to behavioral effects of ketamine. These findings suggest potential therapeutic benefit in simultaneous reduction of central NMDA and elevation of AMPA receptor function in treatment of depression. PMID:22521815

  20. Rapastinel (GLYX-13) has therapeutic potential for the treatment of post-traumatic stress disorder: Characterization of a NMDA receptor-mediated metaplasticity process in the medial prefrontal cortex of rats.

    PubMed

    Burgdorf, Jeffrey; Kroes, Roger A; Zhang, Xiao-lei; Gross, Amanda L; Schmidt, Mary; Weiss, Craig; Disterhoft, John F; Burch, Ronald M; Stanton, Patric K; Moskal, Joseph R

    2015-11-01

    Rapastinel (GLYX-13) is a NMDA receptor modulator with glycine-site partial agonist properties. It is a robust cognitive enhancer and shows rapid and long-lasting antidepressant properties in both animal models and in humans. Contextual fear extinction (CFE) in rodents has been well characterized and used extensively as a model to study the neurobiological mechanisms of post-traumatic stress disorder (PTSD). Since CFE is NMDA receptor modulated and neural circuitry in the medial prefrontal cortex (MPFC) regulates both depression and PTSD, studies were undertaken to examine the effects of rapastinel for its therapeutic potential in PTSD and to use rapastinel as a tool to study its underlying glutamatergic mechanisms. A 21-day chronic mild unpredictable stress (CUS) rat model was used to model depression and PTSD. The effects of CUS alone compared to No CUS controls, and the effects of rapastinel (3 mg/kg IV) on CUS-treated animals were examined. The effect of rapastinel was first assessed using CUS-treated rats in three depression models, Porsolt, sucrose preference, and novelty-induced hypophagia tests, and found to produce a complete reversal of the depressive-like state in each model. Rapastinel was then assessed in a MPFC-dependent positive emotional learning paradigm and in CFE and again a reversal of the impairments induced by CUS treatment was observed. Both synaptic plasticity and metaplasticity, as measured by the induction of long-term potentiation in rat MPFC slice preparations, was found to be markedly impaired in CUS-treated animals. This impairment was reversed when CUS-treated rats were administered rapastinel and tested 24 h later. Transcriptomic analysis of MPFC mRNA expression in CUS-treated rats corroborated the link between rapastinel's behavioral effects and synaptic plasticity. A marked enrichment in both the LTP and LTD connectomes in rapastinel-treated CUS rats was observed compared to CUS-treated controls. The effects of rapastinel on

  1. Properties and molecular identity of NMDA receptors at synaptic and non-synaptic inputs in cerebellar molecular layer interneurons

    PubMed Central

    Bidoret, Céline; Bouvier, Guy; Ayon, Annick; Szapiro, Germán; Casado, Mariano

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) in cerebellar molecular layer interneurons (MLIs) are expressed and activated in unusual ways: at parallel fibre (PF) synapses they are only recruited by repetitive stimuli, suggesting an extrasynaptic location, whereas their activation by climbing fibre is purely mediated by spillover. NMDARs are thought to play an important role in plasticity at different levels of the cerebellar circuitry. Evaluation of the location, functional properties and physiological roles of NMDARs will be facilitated by knowledge of the NMDAR isoforms recruited. Here we show that MLI-NMDARs activated by both PF and climbing fibre inputs have similar kinetics and contain GluN2B but not GluN2A subunits. On the other hand, no evidence was found of functional NMDARs in the axons of MLIs. At the PF-Purkinje cell (PF-PC) synapse, the activation of GluN2A-containing NMDARs has been shown to be necessary for the induction of long-term depression (LTD). Our results therefore provide a clear distinction between the NMDARs located on MLIs and those involved in plasticity at PF-PC synapses. PMID:25750623

  2. Facilitated glutamate release at Schaffer collateral to CA1 synapses has access to an exclusive population of NMDA receptors.

    PubMed

    Scullin, Chessa S; Schiess, Adrian R B; Donald Partridge, L

    2015-10-01

    In order to explore short-term facilitation of the Schaffer collateral to CA1 synapse in mouse hippocampal brain slices, we measured the time course of the decay of the peak amplitude of successive EPSCs during progressive MK-801-dependent block (PMDB) of NMDAR responses to paired (R1 and R2) stimuli. We made the unexpected observation that the R2 response exhibited a slower PMDB decay constant than that of the R1 response. This indicated that the facilitated R2 response engages release sites with NMDARs that are protected from opening and consequent MK-801 block during the basal R1 response. We then utilized conditions that affect synaptic glutamate distribution to dissect the components of the distinct PMDB decay constants of the first and second of paired pulses. While extra-synaptic NMDARs and glutamate transporters appear to play only minor roles in the differences of the PMDB decay constant, we showed important roles for the R1 response itself and for glutamate diffusion in determining the PMDB decay constant of R2. We used a simple computational model with realistic parameters that allowed us to predict the time course of R2 decay based on the R1 decay time course. PMID:26100337

  3. Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction.

    PubMed

    Kosten, Lauren; Verhaeghe, Jeroen; Verkerk, Robert; Thomae, David; De Picker, Livia; Wyffels, Leonie; Van Eetveldt, Annemie; Dedeurwaerdere, Stefanie; Stroobants, Sigrid; Staelens, Steven

    2016-02-28

    There are many indications of a connection between abnormal glutamate transmission through N-methyl-d-aspartate (NMDA) receptor hypofunction and the occurrence of schizophrenia. The importance of metabotropic glutamate receptor subtype 5 (mGluR5) became generally recognized due to its physical link through anchor proteins with NMDAR. Neuroinflammation as well as the kynurenine (tryptophan catabolite; TRYCAT) pathway are equally considered as major contributors to the pathology. We aimed to investigate this interplay between glutamate release, neuronal activation and inflammatory markers, by using small-animal positron emission tomography (PET) in a rat model known to induce schizophrenia-like symptoms. Daily intraperitoneal injection of MK801 or saline were administered to induce the model together with N-Acetyl-cysteine (NAc) or saline as the treatment in 24 male Sprague Dawley rats for one month. Biweekly in vivo [(11)C]-ABP688 microPET was performed together with mGluR5 immunohistochemistry. Simultaneously, weekly in vivo [(18)F]-FDG microPET imaging data for glucose metabolism was acquired and microglial activation was investigated with biweekly in vivo [(18)F]-PBR111 scans versus OX42 immunohistochemistry. Finally, plasma samples were analyzed for TRYCAT metabolites. We show that chronic MK801 administration (and thus elevated endogenous glutamate) causes significant tissue loss in rat brain, enhances neuroinflammatory pathways and may upregulate mGluR5 expression. PMID:26803479

  4. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  5. Effects of the uncompetitive NMDA receptor antagonist memantine on spatial memory in medial septal lesioned rats.

    PubMed

    Dashniani, M; Burjanadze, M; Beselia, G; Chkhikvishvili, N; Kruashvili, L

    2011-12-01

    These experiments examined the effects of acute administration of memantine (2.5 or 5 mg/kg) or saline on spatial memory and learning process within single sessions, on place versions of food-rewarded maze in MS electrolytic lesioned and sham-lesioned rats. Sham-lesioned rats trained in the place task learned more rapidly than did MS electrolytic lesioned rats. This fact certifies for obvious deficit of the place learning performance strategy in the MS-lesioned rats. The results indicate that the drug-treated (5 mg/kg memantine) sham-lesioned rats exhibited significantly impaired performance relative to the saline controls in terms of trials-to-criterion (P<0.05). 2.5 mg/kg memantine administered 30 min before behavioral testing, did not affect performance in place learning task. 2.5 mg/kg and 5 mg/kg memantine administered before behavioral testing, did not improve performance in place learning task in MS electrolytic lesioned rats. Our experimental data support the interpretation that memantine does not produce intolerable side effects in human AD patients because it is being used at doses that are below the threshold for interacting with NMDA receptors. PMID:22306503

  6. Effects of the uncompetitive nmda receptor antagonist memantine on recognition memory in rats.

    PubMed

    Dashniani, M; Burjanadze, M; Beselia, G; Chkhikvishvili, N; Naneishvili, T

    2010-06-01

    Memantine is an NMDA receptor antagonist that has been recently approved in EU for the treatment of moderate to severe Alzheimer's disease. The previous studies have not allowed for the evaluation of the possible effects of this drug at therapeutic doses on different forms of memory. To address this question, we administered memantine to adult rats, using doses 2.5 or 5 mg/kg and evaluated the effects of these doses on open field activity and recognition memory. Memantine or saline was administered daily by intraperitoneal injection beginning on the day of behavioral testing and continuing 5 days. The main results of experiments are as follows: the memantine treatment produced a dose-related suppression of total ambulations. There was no significant impairment in detecting spatial and object novelty in the 2.5 mg/kg memantine treated rats. However, the 5 mg/kg intraperitoneal dose of memantine disrupted both recognition memory and locomotor behaviors. Our evaluation of memantine reveals that at doses lower than are required for neuroprotection disrupt memory. This raises the possibility that the beneficial effects seen in AD patients may be attributable to the interaction of memantine with other transmitter systems. PMID:20622272

  7. Dextromethorphan Addiction Mediated Through the NMDA System: Common Pathways With Alcohol?

    PubMed

    Roy, A Kenison; Hsieh, Chenen; Crapanzano, Kathleen

    2015-01-01

    Dextromethorphan, an antitussive (cough suppressant) drug of the morphinan class with sedative and dissociative properties found in cough syrup and other over-the-counter products, is also a substance of abuse, seen primarily in young adults all over the world. A case of dextromethorphan use disorder is presented in a 45-year-old women. Her repeated attempts at abstinence were unsuccessful secondary to continued intense cravings. Treatment with topiramate resulted in complete resolution of her cravings. Topiramate was chosen empirically because of a common action with dextromethorphan in the NMDA system. Genetic testing was obtained and the patient was found to be a carrier of the GRIK1 rs2832407(C:C) allele. The (C:C) allele has been associated with an increased risk of alcohol use disorder and a treatment response of patients with heavy drinking to topiramate. This case provides an opportunity to discuss personalized medicine (treatment options aided by the use of genetic testing) and the possible shared genetic susceptibility for dependence in 2 substances of abuse. PMID:26441400

  8. Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity

    PubMed Central

    Matta, Jose A; Pelkey, Kenneth A; Craig, Michael T; Chittajallu, Ramesh; Jeffries, Brian W; McBain, Chris J

    2014-01-01

    Disrupted excitatory synapse maturation in GABAergic interneurons may promote neuropsychiatric disorders such as schizophrenia. However, establishing developmental programs for nascent synapses in GABAergic cells is confounded by their sparsity, heterogeneity and late acquisition of subtype-defining characteristics. We investigated synaptic development in mouse interneurons targeting cells by lineage from medial ganglionic eminence (MGE) or caudal ganglionic eminence (CGE) progenitors. MGE-derived interneuron synapses were dominated by GluA2-lacking AMPA-type glutamate receptors (AMPARs), with little contribution from NMDA-type receptors (NMDARs) throughout development. In contrast, CGE-derived cell synapses had large NMDAR components and used GluA2-containing AMPARs. In neonates, both MGE- and CGE-derived interneurons expressed primarily GluN2B subunit–containing NMDARs, which most CGE-derived interneurons retained into adulthood. However, MGE-derived interneuron NMDARs underwent a GluN2B-to-GluN2A switch that could be triggered acutely with repetitive synaptic activity. Our findings establish ganglionic eminence–dependent rules for early synaptic integration programs of distinct interneuron cohorts, including parvalbumin- and cholecystokinin-expressing basket cells. PMID:23852113

  9. SynCAM1 recruits NMDA receptors via protein 4.1B.

    PubMed

    Hoy, Jennifer L; Constable, John R; Vicini, Stefano; Fu, Zhanyan; Washbourne, Philip

    2009-12-01

    Cell adhesion molecules have been implicated as key organizers of synaptic structures, but there is still a need to determine how these molecules facilitate neurotransmitter receptor recruitment to developing synapses. Here, we identify erythrocyte protein band 4.1-like 3 (protein 4.1B) as an intracellular effector molecule of Synaptic Cell Adhesion Molecule 1 (SynCAM1) that is sufficient to recruit NMDA-type receptors (NMDARs) to SynCAM1 adhesion sites in COS7 cells. Protein 4.1B in conjunction with SynCAM1 also increased the frequency of NMDAR-mediated mEPSCs and area of presynaptic contact in an HEK293 cell/ neuron co-culture assay. Studies in cultured hippocampal neurons reveal that manipulation of protein 4.1B expression levels specifically affects NMDAR-mediated activity and localization. Finally, further experimentation in COS7 cells show that SynCAM1 may also interact with protein 4.1N to specifically effect AMPA type receptor (AMPAR) recruitment. Thus, SynCAM1 may recruit both AMPARs and NMDARs by independent mechanisms during synapse formation. PMID:19796685

  10. Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial

    PubMed Central

    Boada, R; Hutaff-Lee, C; Schrader, A; Weitzenkamp, D; Benke, T A; Goldson, E J; Costa, A C S

    2012-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability. The N-methyl-D-aspartate (NMDA) receptor uncompetitive antagonist, memantine hydrochloride (memantine), has been shown to improve learning/memory and rescue one form of hippocampus synaptic plasticity dysfunction in the best-studied mouse model of DS available, the Ts65Dn mouse. Given the status of memantine as a treatment for Alzheimer's disease (AD) approved by the Food and Drug Administration, the preclinical evidence of potential efficacy in Ts65Dn mice, and the favorable safety profile of memantine, we designed a study to investigate whether the findings in the mouse model could be translated to individuals with DS. In this pilot, proof-of-principle study we hypothesized that memantine therapy would improve test scores of young adults with DS on measures of episodic and spatial memory, which are generally considered to be hippocampus dependent. Accordingly, in this randomized, double-blind, placebo-controlled trial, we compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS using a carefully selected set of neuropsychological outcome measures. Safety and tolerability were also monitored. Although no significant differences were observed between the memantine and placebo groups on the two primary outcome measures, we found a significant improvement in the memantine group in one of the secondary measures associated with the primary hypothesis. Only infrequent and mild adverse events were noted. PMID:22806212

  11. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity.

    PubMed

    Weilinger, Nicholas L; Lohman, Alexander W; Rakai, Brooke D; Ma, Evelyn M M; Bialecki, Jennifer; Maslieieva, Valentyna; Rilea, Travis; Bandet, Mischa V; Ikuta, Nathan T; Scott, Lucas; Colicos, Michael A; Teskey, G Campbell; Winship, Ian R; Thompson, Roger J

    2016-03-01

    Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg(2+) or a Ca(2+)-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology. PMID:26854804

  12. Synaptonuclear messenger PRR7 inhibits c-Jun ubiquitination and regulates NMDA-mediated excitotoxicity.

    PubMed

    Kravchick, Dana O; Karpova, Anna; Hrdinka, Matous; Lopez-Rojas, Jeffrey; Iacobas, Sanda; Carbonell, Abigail U; Iacobas, Dumitru A; Kreutz, Michael R; Jordan, Bryen A

    2016-09-01

    Elevated c-Jun levels result in apoptosis and are evident in neurodegenerative disorders such as Alzheimer's disease and dementia and after global cerebral insults including stroke and epilepsy. NMDA receptor (NMDAR) antagonists block c-Jun upregulation and prevent neuronal cell death following excitotoxic insults. However, the molecular mechanisms regulating c-Jun abundance in neurons are poorly understood. Here, we show that the synaptic component Proline rich 7 (PRR7) accumulates in the nucleus of hippocampal neurons following NMDAR activity. We find that PRR7 inhibits the ubiquitination of c-Jun by E3 ligase SCF(FBW) (7) (FBW7), increases c-Jun-dependent transcriptional activity, and promotes neuronal death. Microarray assays show that PRR7 abundance is directly correlated with transcripts associated with cellular viability. Moreover, PRR7 knockdown attenuates NMDAR-mediated excitotoxicity in neuronal cultures in a c-Jun-dependent manner. Our results show that PRR7 links NMDAR activity to c-Jun function and provide new insights into the molecular processes that underlie NMDAR-dependent excitotoxicity. PMID:27458189

  13. Chloride Homeostasis Critically Regulates Synaptic NMDA Receptor Activity in Neuropathic Pain.

    PubMed

    Li, Lingyong; Chen, Shao-Rui; Chen, Hong; Wen, Lei; Hittelman, Walter N; Xie, Jing-Dun; Pan, Hui-Lin

    2016-05-17

    Chronic neuropathic pain is a debilitating condition that remains difficult to treat. Diminished synaptic inhibition by GABA and glycine and increased NMDA receptor (NMDAR) activity in the spinal dorsal horn are key mechanisms underlying neuropathic pain. However, the reciprocal relationship between synaptic inhibition and excitation in neuropathic pain is unclear. Here, we show that intrathecal delivery of K(+)-Cl(-) cotransporter-2 (KCC2) using lentiviral vectors produces a complete and long-lasting reversal of pain hypersensitivity induced by nerve injury. KCC2 gene transfer restores Cl(-) homeostasis disrupted by nerve injury in both spinal dorsal horn and primary sensory neurons. Remarkably, restoring Cl(-) homeostasis normalizes both presynaptic and postsynaptic NMDAR activity increased by nerve injury in the spinal dorsal horn. Our findings indicate that nerve injury recruits NMDAR-mediated signaling pathways through the disruption of Cl(-) homeostasis in spinal dorsal horn and primary sensory neurons. Lentiviral vector-mediated KCC2 expression is a promising gene therapy for the treatment of neuropathic pain. PMID:27160909

  14. The Role of NMDA Receptor Subtypes in Short-Term Plasticity in the Rat Entorhinal Cortex

    PubMed Central

    Chamberlain, Sophie E. L.; Yang, Jian; Jones, Roland S. G.

    2008-01-01

    We have previously shown that spontaneous release of glutamate in the entorhinal cortex (EC) is tonically facilitated via activation of presynaptic NMDA receptors (NMDAr) containing the NR2B subunit. Here we show that the same receptors mediate short-term plasticity manifested by frequency-dependent facilitation of evoked glutamate release at these synapses. Whole-cell patch-clamp recordings were made from layer V pyramidal neurones in rat EC slices. Evoked excitatory postsynaptic currents showed strong facilitation at relatively low frequencies (3 Hz) of activation. Facilitation was abolished by an NR2B-selective blocker (Ro 25-6981), but unaffected by NR2A-selective antagonists (Zn2+, NVP-AAM077). In contrast, postsynaptic NMDAr-mediated responses could be reduced by subunit-selective concentrations of all three antagonists. The data suggest that NMDAr involved in presynaptic plasticity in layer V are exclusively NR1/NR2B diheteromers, whilst postsynaptically they are probably a mixture of NR1/NR2A, NR1/NR2B diheteromers and NR1/NR2A/NR2B triheteromeric receptors. PMID:18989370

  15. Diagnóstico diferencial en la encefalitis por anticuerpos contra el receptor NMDA

    PubMed Central

    González-Valcárcel, J.; Rosenfeld, M.R.; Dalmau, J.

    2011-01-01

    Resumen Introducción La encefalitis por anticuerpos contra el receptor de NMDA (NMDAR) suele desarrollarse como un síndrome característico de evolución multifásica y diagnóstico diferencial amplio. Pacientes Presentamos a 2 pacientes diagnosticadas de encefalitis por anticuerpos NMDAR con un cuadro clínico típico, pero que inicialmente señaló otras etiologías. Discusión La afectación frecuente de pacientes jóvenes con manifestaciones psiquiátricas prominentes indica frecuentemente otras consideraciones diagnósticas; las más frecuentes son las encefalitis virales, los procesos psiquiátricos y el síndrome neuroléptico maligno. Varios síndromes previamente definidos de manera parcial o descriptiva en adultos y pacientes pediátricos probablemente eran casos de encefalitis anti-NMDAR. Conclusiones La encefalitis anti-NMDAR debe considerarse en pacientes jóvenes con manifestaciones psiquiátricas subagudas, movimientos anormales y alteraciones autonómicas. La caracterización clínica e inmunológica de esta enfermedad ha llevado a la identificación de nuevos anticuerpos que afectan a procesos de memoria, aprendizaje, conducta y psicosis. PMID:20964986

  16. [Contributions of neuropsychology to anti-NMDA receptor antibody encephalitis: a literature review].

    PubMed

    Luna-Lario, P; Hernaez-Goni, P; Tirapu-Ustarroz, J

    2016-05-01

    Limbic encephalitis generated by anti-N-methyl-D-aspartate (NMDA) receptor antibodies is an acute and severe neurological entity, which is more prevalent in young females and is associated to an underlying tumour. Since it leads to severe cognitive impairment, thought needs to be given to the contributions of neuropsychology to the diagnosis, development and treatment of the disease, which have received little attention from researchers to date. A review is conducted of the prior literature, evaluating the measurement of the cognitive symptoms (predominantly mnemonic and executive) associated to this disease. Valid, reliable neuropsychological instruments are proposed, and it is suggested that neuropsychological measures may be used as parameters to follow up these patients which help monitor their functionality in daily living once they have recovered from the acute phase. Similarly they can become a basis on which to assemble rehabilitation programmes that favour the accomplishment of personal autonomy and the patients' reintegration in the community. Nevertheless, we stress the need to include neuropsychologists and neuropsychiatrists in not only the detection but also the treatment of these patients so as to enable them to recover their personal independence and re-adapt to their natural settings. PMID:27113067

  17. Interaction of the NMDA receptor noncompetitive antagonist MK-801 with model and native membranes.

    PubMed Central

    Moring, J; Niego, L A; Ganley, L M; Trumbore, M W; Herbette, L G

    1994-01-01

    MK-801, a noncompetitive antagonist of the NMDA (N-methyl-D-aspartate) receptor, has protective effects against excitotoxicity and ethanol withdrawal seizures. We have determined membrane/buffer partition coefficients (Kp[mem]) of MK-801 and its rates of association with and dissociation from membranes. Kp[mem] (+/- SD) = 1137 (+/- 320) in DOPC membranes and 485 (+/- 99) in synaptoneurosomal (SNM) lipid membranes from rat cerebral cortex (unilamellar vesicles). In multilamellar vesicles, Kp[mem] was higher: 3374 (+/- 253) in DOPC and 6879 (+/- 947) in SNM. In cholesterol/DOPC membranes, Kp[mem] decreased as the cholesterol content increased. MK-801 associated with and dissociated from membranes rapidly. Addition of ethanol to SNM did not affect Kp[mem]. MK-801 decreased the cooperative unit size of DMPC membranes. The decrease was smaller than that caused by 1,4-dihydropyridine drugs, indicating a weaker interaction with the hydrocarbon core. Small angle x-ray diffraction, with multilayer autocorrelation difference function modeling, indicated that MK-801 in a cholesterol/DOPC membrane (mole ratio = 0.6) causes a perturbation at approximately 16.0 A from the bilayer center. In bilayers of cholesterol/DOPC = 0.15 (mole ratio) or pure DOPC, the perturbation caused by MK-801 was more complex. The physical chemical interactions of MK-801 with membranes in vitro are consistent with a fast onset and short duration of action in vivo. PMID:7696477

  18. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system

    PubMed Central

    Baxter, Paul S.; Bell, Karen F.S.; Hasel, Philip; Kaindl, Angela M.; Fricker, Michael; Thomson, Derek; Cregan, Sean P.; Gillingwater, Thomas H.; Hardingham, Giles E.

    2015-01-01

    How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked. PMID:25854456

  19. Glutamate dependent NMDA receptor 2D is a novel angiogenic tumour endothelial marker in colorectal cancer

    PubMed Central

    Ward, Stephen; Heath, Victoria L.; Ismail, Tariq; Bicknell, Roy

    2016-01-01

    Current vascular-targeted therapies in colorectal cancer (CRC) have shown limited benefit. The lack of novel, specific treatment in CRC has been hampered by a dearth of specific endothelial markers. Microarray comparison of endothelial gene expression in patient-matched CRC and normal colon identified a panel of putative colorectal tumour endothelial markers. Of these the glutamate dependent NMDA receptor GRIN2D emerged as the most interesting target. GRIN2D expression was shown to be specific to colorectal cancer vessels by RTqPCR and IHC analysis. Its expression was additionally shown be predictive of improved survival in CRC. Targeted knockdown studies in vitro demonstrated a role for GRIN2D in endothelial function and angiogenesis. This effect was also shown in vivo as vaccination against the extracellular region of GRIN2D resulted in reduced vascularisation in the subcutaneous sponge angiogenesis assay. The utility of immunologically targeting GRIN2D in CRC was demonstrated by the vaccination approach inhibiting murine CRC tumour growth and vascularisation. GRIN2D represents a promising target for the future treatment of CRC. PMID:26943033

  20. Confidence and psychosis: a neuro-computational account of contingency learning disruption by NMDA blockade.

    PubMed

    Vinckier, F; Gaillard, R; Palminteri, S; Rigoux, L; Salvador, A; Fornito, A; Adapa, R; Krebs, M O; Pessiglione, M; Fletcher, P C

    2016-07-01

    A state of pathological uncertainty about enviro