These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

A Brief Review of Molecular Techniques to Assess Plant Diversity  

PubMed Central

Massive loss of valuable plant species in the past centuries and its adverse impact on environmental and socioeconomic values has triggered the conservation of plant resources. Appropriate identification and characterization of plant materials is essential for the successful conservation of plant resources and to ensure their sustainable use. Molecular tools developed in the past few years provide easy, less laborious means for assigning known and unknown plant taxa. These techniques answer many new evolutionary and taxonomic questions, which were not previously possible with only phenotypic methods. Molecular techniques such as DNA barcoding, random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), microsatellites and single nucleotide polymorphisms (SNP) have recently been used for plant diversity studies. Each technique has its own advantages and limitations. These techniques differ in their resolving power to detect genetic differences, type of data they generate and their applicability to particular taxonomic levels. This review presents a basic description of different molecular techniques that can be utilized for DNA fingerprinting and molecular diversity analysis of plant species. PMID:20559503

Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.; Bahkali, Ali H.; Sadoon, Mohammad Al; Shobrak, Mohammad

2010-01-01

2

Incorporating plant functional diversity effects in ecosystem service assessments  

PubMed Central

Global environmental change affects the sustained provision of a wide set of ecosystem services. Although the delivery of ecosystem services is strongly affected by abiotic drivers and direct land use effects, it is also modulated by the functional diversity of biological communities (the value, range, and relative abundance of functional traits in a given ecosystem). The focus of this article is on integrating the different possible mechanisms by which functional diversity affects ecosystem properties that are directly relevant to ecosystem services. We propose a systematic way for progressing in understanding how land cover change affects these ecosystem properties through functional diversity modifications. Models on links between ecosystem properties and the local mean, range, and distribution of plant trait values are numerous, but they have been scattered in the literature, with varying degrees of empirical support and varying functional diversity components analyzed. Here we articulate these different components in a single conceptual and methodological framework that allows testing them in combination. We illustrate our approach with examples from the literature and apply the proposed framework to a grassland system in the central French Alps in which functional diversity, by responding to land use change, alters the provision of ecosystem services important to local stakeholders. We claim that our framework contributes to opening a new area of research at the interface of land change science and fundamental ecology. PMID:18093933

Diaz, Sandra; Lavorel, Sandra; de Bello, Francesco; Quetier, Fabien; Grigulis, Karl; Robson, T. Matthew

2007-01-01

3

Assessing the diversity of bacterial communities associated with plants  

PubMed Central

Plant–bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants. PMID:24031382

Andreote, Fernando Dini; Azevedo, Joao Lucio; Araujo, Welington Luiz

2009-01-01

4

Biodiversity in riverbank techniques for erosion control: assessment of animal and plant species diversity along a natural gradient.  

E-print Network

and ecological succession processes. We compared plant species diversity and animal taxonomic diversity aboveBiodiversity in riverbank techniques for erosion control: assessment of animal and plant species * Corresponding author: paul.cavaille@cemagref.fr Keywords: beetles, biodiversity, ecological restoration, plant

Paris-Sud XI, Université de

5

Understanding plant reproductive diversity  

PubMed Central

Flowering plants display spectacular floral diversity and a bewildering array of reproductive adaptations that promote mating, particularly outbreeding. A striking feature of this diversity is that related species often differ in pollination and mating systems, and intraspecific variation in sexual traits is not unusual, especially among herbaceous plants. This variation provides opportunities for evolutionary biologists to link micro-evolutionary processes to the macro-evolutionary patterns that are evident within lineages. Here, I provide some personal reflections on recent progress in our understanding of the ecology and evolution of plant reproductive diversity. I begin with a brief historical sketch of the major developments in this field and then focus on three of the most significant evolutionary transitions in the reproductive biology of flowering plants: the pathway from outcrossing to predominant self-fertilization, the origin of separate sexes (females and males) from hermaphroditism and the shift from animal pollination to wind pollination. For each evolutionary transition, I consider what we have discovered and some of the problems that still remain unsolved. I conclude by discussing how new approaches might influence future research in plant reproductive biology. PMID:20008389

Barrett, Spencer C. H.

2010-01-01

6

and traditional rural homegardens in Zululand to (1) assess the useful-plant diversity, (2) determine the origin of the species  

E-print Network

of 149 useful plant species belonging to 72 plant families were recorded, comprising 91 medicinal, 32and traditional rural homegardens in Zululand to (1) assess the useful-plant diversity, (2) document the positions of plants in indigenous gar- dening systems. We conducted a survey of 40 muzis

7

Assessing the impact of wind farms on the plant diversity of blanket bogs in the Xistral Mountains (NW Spain)  

Microsoft Academic Search

SUMMARY The work reported in this paper explored the effects of wind farms on the plant species and vegetation diversity of summits and slopes in the Xistral Mountains, where priority habitats occur (EU Habitats Directive, code 7130 blanket bog). Quantitatively, our results showed significantly lower ? diversity and higher ? diversity in impacted areas when compared to non-impacted areas. These

M. I. Fraga; D. Romero-Pedreira; M. Souto; D. Castro; E. Sahuquillo

8

Assessing culturally diverse exceptional children  

Microsoft Academic Search

Major issues that are confronting professionals in the assessment of culturally diverse exceptional children are discussed. The difference between testing and assessment is examined, along with the purpose of assessment and the factors that should be considered in the assessment of culturally diverse children. A definition of cultural diversity is examined along with somediscussion of the importance of cultural awareness

LaDelle Olion

1984-01-01

9

The Influence of Linear Elements on Plant Species Diversity of Mediterranean Rural Landscapes: Assessment of Different Indices and Statistical Approaches  

Microsoft Academic Search

This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements -habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land- whose plant composition were examined.

J. M. García Del Barrio; M. Ortega; A. Vázquez De La Cueva; R. Elena-rosselló

2006-01-01

10

Plant Diversity in Paraguay  

NSDL National Science Digital Library

This Web site contains a database of Paraguayan plant specimens from the Natural History Museum herbarium in London, as well as all records of collections made during a biological inventory of the Mbaracay Forest Nature Reserve (a project funded by the UK government's Darwin Initiative). In addition to the database, which is searchable by taxonomy or geography via convenient dropdown menus, visitors will find detailed background information on the Darwin Initiative, the vegetation of Paraguay, and the Mbaracay Forest Nature Reserve. The site's attractive and well-designed interface is an added bonus.

2003-01-01

11

Plant diversity in mediterranean-climate regions  

Microsoft Academic Search

The high plant diversity of mediterranean-climate regions has attracted much attention over the past few years. This review discusses patterns and determinants of local, differential and regional plant diversity in all five regions. Local diversity shows great variation within and between regions and explanations for these patterns invoke a wide range of hypotheses. Patterns of regional diversity are the result

Richard M. Cowling; Philip W. Rundel; Byron B. Lamont; Mary Kalin Arroyo; Margarita Arianoutsou

1996-01-01

12

Aquatic Plant Diversity in Eutrophic Ecosystems  

Microsoft Academic Search

\\u000a The chapter contains studies conducted on the impact of eutrophication on aquatic plant diversity. It covers the concept of\\u000a eutrophication, its causes and effects on plant diversity within an aquatic ecosystem. A decrease in species diversity and\\u000a disappearance of aquatic plants were noted in most of the water bodies of the world as a result of eutrophication. The plant\\u000a diversity

Abid A. Ansari; Fareed A. Khan; Sarvajeet S. Gill; Jyoti Varshney

13

Resource availability controls fungal diversity across a plant diversity gradient  

USGS Publications Warehouse

Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

Waldrop, M. P.; Zak, D. R.; Blackwood, C. B.; Curtis, C. D.; Tilman, D.

2006-01-01

14

Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms  

Microsoft Academic Search

A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing\\u000a the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities\\u000a have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species\\u000a composition and diversity influence

George. A. Kowalchuk; Douwe S. Buma; Wietse de Boer; Peter G. L. Klinkhamer; Johannes A. van Veen

2002-01-01

15

Diversity protects plant communities against generalist molluscan herbivores.  

PubMed

Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a "low plant diversity - high mollusk abundance" trajectory. PMID:23145332

Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Kehrli, Patrik; Aebi, Alexandre; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

2012-10-01

16

Diversity protects plant communities against generalist molluscan herbivores  

PubMed Central

Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a “low plant diversity – high mollusk abundance” trajectory. PMID:23145332

Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Kehrli, Patrik; Aebi, Alexandre; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Felix

2012-01-01

17

Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata.  

PubMed

The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

2014-01-01

18

How does pedogenesis drive plant diversity?  

USGS Publications Warehouse

Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.

Laliberté, Etienne; Grace, James B.; Huston, Michael A.; Lambers, Hans; Teste, François P.; Turner, Benjamin L.; Wardle, David A.

2013-01-01

19

Mutualistic rhizobia reduce plant diversity and alter community composition.  

PubMed

Mutualistic interactions can be just as important to community dynamics as antagonistic species interactions like competition and predation. Because of their large effects on both abiotic and biotic environmental variables, resource mutualisms, in particular, have the potential to influence plant communities. Moreover, the effects of resource mutualists such as nitrogen-fixing rhizobia on diversity and community composition may be more pronounced in nutrient-limited environments. I experimentally manipulated the presence of rhizobia across a nitrogen gradient in early assembling mesocosm communities with identical starting species composition to test how the classic mutualism between nitrogen-fixing rhizobia and their legume host influence diversity and community composition. After harvest, I assessed changes in ?-diversity, community composition, ?-diversity, and ecosystem properties such as inorganic nitrogen availability and productivity as a result of rhizobia and nitrogen availability. The presence of rhizobia decreased plant community diversity, increased community convergence (reduced ?-diversity), altered plant community composition, and increased total community productivity. These community-level effects resulted from rhizobia increasing the competitive dominance of their legume host Chamaecrista fasciculata. Moreover, different non-leguminous species responded both negatively and positively to the presence of rhizobia, indicating that rhizobia are driving both inhibitory and potentially facilitative effects in communities. These findings expand our understanding of plant communities by incorporating the effects of positive symbiotic interactions on plant diversity and composition. In particular, rhizobia that specialize on dominant plants may serve as keystone mutualists in terrestrial plant communities, reducing diversity by more than 40 %. PMID:25245262

Keller, Kane R

2014-12-01

20

Rapid plant diversity assessment using a pixel nested plot design: A case study in Beaver Meadows, Rocky Mountain National Park, Colorado, USA  

USGS Publications Warehouse

Geospatial statistical modelling and thematic maps have recently emerged as effective tools for the management of natural areas at the landscape scale. Traditional methods for the collection of field data pertaining to questions of landscape were developed without consideration for the parameters of these applications. We introduce an alternative field sampling design based on smaller unbiased random plot and subplot locations called the pixel nested plot (PNP). We demonstrate the applicability of the PNP design of 15 m x 15 m to assess patterns of plant diversity and species richness across the landscape at Rocky Mountain National Park (RMNP), Colorado, USA in a time (cost)-efficient manner for field data collection. Our results produced comparable results to a previous study in the Beaver Meadow study (BMS) area within RMNP, where there was a demonstrated focus of plant diversity. Our study used the smaller PNP sampling design for field data collection which could be linked to geospatial information data and could be used for landscape-scale analyses and assessment applications. In 2003, we established 61 PNP in the eastern region of RMNP. We present a comparison between this approach using a sub-sample of 19 PNP from this data set and 20 of Modified Whittaker nested plots (MWNP) of 20 m x 50 m that were collected in the BMS area. The PNP captured 266 unique plant species while the MWNP captured 275 unique species. Based on a comparison of PNP and MWNP in the Beaver Meadows area, RMNP, the PNP required less time and area sampled to achieve a similar number of species sampled. Using the PNP approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and therefore cost-effective manner. ?? 2007 The Authors.

Kalkhan, M.A.; Stafford, E.J.; Stohlgren, T.J.

2007-01-01

21

The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant.  

PubMed

Assessments of bacterial community diversity and dynamics are fundamental for the understanding of microbial ecology as well as biotechnological applications. We show that the choice of PCR primers has great impact on the results of analyses of diversity and dynamics using gene libraries and DNA fingerprinting. Two universal primer pairs targeting the 16S rRNA gene, 27F&1492R and 63F&M1387R, were compared and evaluated by analyzing the bacterial community in the activated sludge of a large-scale wastewater treatment plant. The two primer pairs targeted distinct parts of the bacterial community, none encompassing the other, both with similar richness. Had only one primer pair been used, very different conclusions had been drawn regarding dominant phylogenetic and putative functional groups. With 27F&1492R, Betaproteobacteria would have been determined to be the dominating taxa while 63F&M1387R would have described Alphaproteobacteria as the most common taxa. Microscopy and fluorescence in situ hybridization analysis showed that both Alphaproteobacteria and Betaproteobacteria were abundant in the activated sludge, confirming that the two primer pairs target two different fractions of the bacterial community. Furthermore, terminal restriction fragment polymorphism analyses of a series of four activated sludge samples showed that the two primer pairs would have resulted in different conclusions about community stability and the factors contributing to changes in community composition. In conclusion, different PCR primer pairs, although considered universal, target different ranges of bacteria and will thus show the diversity and dynamics of different fractions of the bacterial community in the analyzed sample. We also show that while a database search can serve as an indicator of how universal a primer pair is, an experimental assessment is necessary to evaluate the suitability for a specific environmental sample. PMID:24098498

Fredriksson, Nils Johan; Hermansson, Malte; Wilén, Britt-Marie

2013-01-01

22

Effects of herbivores on grassland plant diversity  

Microsoft Academic Search

The role of herbivores in controlling plant species richness is a critical issue in the conservation and management of grassland biodiversity. Numerous field experiments in grassland plant communities show that herbivores often, but not always, increase plant diversity. Recent work suggests that the mechanisms of these effects involve alteration of local colonization of species from regional species pools or local

Han Olff; Mark E. Ritchie

1998-01-01

23

Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients  

EPA Science Inventory

Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, Yaq...

24

Plant Diversity has "Luxury" Effect, Say Scientists  

NSF Publications Database

... hgholz@nsf.gov Plant Diversity has "Luxury" Effect, Say Scientists Biodiversity in urban/suburban ... becomes greater as the elevation of the site increases, but in the city resource abundance (wealth ...

25

Experimental Tests of the Dependence of Arthropod Diversity on Plant Diversity  

Microsoft Academic Search

Because a diversity of resources should support a di- versity of consumers, most models predict that increasing plant di- 1998) have found that increasing plant diversity increases versity increases animal diversity. We report results of a direct ex- arthropod herbivore diversity. However, these studies are perimental test of the dependence of animal diversity on plant confounded by changes in plant

Evan Siemann; David Tilman; John Haarstad; Mark Ritchie

1998-01-01

26

Experimental Tests of Effects of Plant Productivity and Diversity on Grassland Arthropod Diversity  

Microsoft Academic Search

Because the quantity, quality, and heterogeneity of resources should affect the diversity of consumers, plant productivity, plant composition, and plant diversity may influence the diversity of trophic levels higher up the food chain (''bottom-up'' control of diversity). Increasing plant productivity may increase herbivore diversity by: increasing the abundance of rare resources (''resource rarity hypothesis''), increasing herbivore abun- dance and local

Evan Siemann

1998-01-01

27

Diversity collection assessment in large academic libraries  

Microsoft Academic Search

Purpose – This paper aims to examine the methods of diversity-related collection assessment useful for large academic libraries. Design\\/methodology\\/approach – Several examples of diversity-related collection assessment (circulation and use statistics, WorldCat Collection Analysis, comparison to standard bibliographies, focus groups, patron interviews and surveys, stewardship letters, and a diversity collection development statement) are explored. Findings – Libraries wishing to assess a

Matthew P. Ciszek; Courtney L. Young

2010-01-01

28

Mycorrhizal fungal identity and diversity relaxes plant-plant competition.  

PubMed

There is a great interest in ecology in understanding the role of soil microbial diversity for plant productivity and coexistence. Recent research has shown increases in species richness of mutualistic soil fungi, the arbuscular mycorrhizal fungi (AMF), to be related to increases in aboveground productivity of plant communities. However, the impact of AMF richness on plant-plant interactions has not been determined. Moreover, it is unknown whether species-rich AMF communities can act as insurance to maintain productivity in a fluctuating environment (e.g., upon changing soil conditions). We tested the impact of four different AMF taxa and of AMF diversity (no AMF, single AMF taxa, and all four together) on competitive interactions between the legume Trifolium pratense and the grass Lolium multiflorum grown under two different soil conditions of low and high sand content. We hypothesized that more diverse mutualistic interactions (e.g., when four AMF taxa are present) can ease competitive effects between plants, increase plant growth, and maintain plant productivity across different soil environments. We used quantitative PCR to verify that AMF taxa inoculated at the beginning of the experiment were still present at the end. The presence of AMF reduced the competitive inequality between the two plant species by reducing the growth suppression of the legume by the grass. High AMF richness enhanced the combined biomass production of the two plant species and the yield of the legume, particularly in the more productive soil with low sand content. In the less productive (high sand content) soil, the single most effective AMF had an equally beneficial effect on plant productivity as the mixture of four AMF. Since contributions of single AMF to plant productivity varied between both soils, higher AMF richness would be required to maintain plant productivity in heterogeneous environments. Overall this work shows that AMF diversity promotes plant productivity and that AMF diversity can act as insurance to sustain plant productivity under changing environmental conditions. PMID:21797158

Wagg, Cameron; Jansa, Jan; Stadler, Marina; Schmid, Bernhard; van der Heijden, Marcel G A

2011-06-01

29

Diversion-Resistance Assessment Bases. Interim Report.  

National Technical Information Service (NTIS)

This document describes a logical approach to diversion resistance assessment methodology. A combination of objective attribute assessments and subjective evaluations based upon a composite expert opinion is advocated. The objective approach shows where t...

M. H. Campbell, J. L. Jaech, L. E. Hansen, R. Nilson, R. A. Schneider

1982-01-01

30

A hierarchical perspective of plant diversity  

USGS Publications Warehouse

Predictive models of plant diversity have typically focused on either a landscapea??s capacity for richness (equilibrium models), or on the processes that regulate competitive exclusion, and thus allow species to coexist (nonequilibrium models). Here, we review the concepts and purposes of a hierarchical, multiscale model of the controls of plant diversity that incorporates the equilibrium model of climatic favorability at macroscales, nonequilibrium models of competition at microscales, and a mixed model emphasizing environmental heterogeneity at mesoscales. We evaluate the conceptual model using published data from three spatially nested datasets: (1) a macroscale analysis of ecoregions in the continental and western U.S.; (2) a mesoscale study in California; and (3) a microscale study in the Siskiyou Mountains of Oregon and California. At the macroscale (areas from 3889 km2 to 638,300 km2), climate (actual evaporation) was a strong predictor of tree diversity (R2 = 0.80), as predicted by the conceptual model, but area was a better predictor for vascular plant diversity overall (R2 = 0.38), which suggests different types of plants differ in their sensitivity to climatic controls. At mesoscales (areas from 1111 km2 to 15,833 km2 ), climate was still an important predictor of richness (R2 = 0.52), but, as expected, topographic heterogeneity explained an important share of the variance (R2 = 0.19), showed positive correlations with diversity of trees, shrubs, and annual and perennial herbs, and was the primary predictor of shrub and annual plant species richness. At microscales (0.1 ha plots), spatial patterns of diversity showed a clear unimodal pattern along a climatea??driven productivity gradient and a negative relationship with soil fertility. The strong decline in understory and total diversity at the most productive sites suggests that competitive controls, as predicted, can override climatic controls at this scale. We conclude that this hierarchical, multiscale model provides a sound basis to understand and analyze plant species diversity. Specifically, future research should employ the principles in this paper to explore climatic controls on species richness of different life forms, better quantify environmental heterogeneity in landscapes, and analyze how these largea??scale factors interact with local nonequilibrium dynamics to maintain plant diversity.

Sarr, Daniel; Hibbs, D.E.; Huston, M.

2005-01-01

31

Assessment of Species Diversity in the Montane Cordillera Ecozone  

NSDL National Science Digital Library

The Ecological Monitoring and Assessment Network has released this 1998 publication entitled "Assessment of species diversity in the Montane Cordillera Ecozone." Extending from the eastern Rocky Mountains in Alberta to the western slope of the Cascades in British Columbia, the Montane Cordillera Ecozone is Canada's sixth largest ecozone, covering "more than 49 million hectares." Diverse in topography and climate, the ecozone's landscape ranges "from alpine tundra to dense coniferous forests, grasslands, riparian woodlands, dry sagebrush and Canada's only true desert." The report covers environmental history, habitat types, and human use of the area, in addition to emphasizing species diversity (namely insects, mammals, fish, plants, fungi, birds, and amphibians and reptiles).

1999-01-01

32

Plant parasite control and soil fauna diversity.  

PubMed

The use of pesticides to control plant parasites and diseases has generated serious problems of public health and environmental quality, leading to the promotion of alternative Integrated Pest Management strategies that tend to rely more on natural processes and the active participation of farmers as observers and experimenters in their own fields. We present three case studies that point at different options provided by locally available populations of soil organisms, the maintenance of diverse populations of pests or increased resistance of plants to pest attacks by their interactions with earthworms and other useful soil organisms. These examples demonstrate the diversity of options offered by the non-planned agro-ecosystem diversity in pest control and the need to identify management options that maintain this biodiversity. PMID:15344813

Lavelle, Patrick; Blouin, Manuel; Boyer, Johnny; Cadet, Patrice; Laffray, Daniel; Pham-Thi, Anh-Thu; Reversat, Georges; Settle, William; Zuily, Yasmine

2004-07-01

33

Biology 2004: Diversity II Microorganisms and Plants  

E-print Network

Biology 2004: Diversity II Microorganisms and Plants Winter 2011 Class description: Microbes were in when her door is open; E-mail: Arunika.Gunawardena@dal.ca Microorganisms- Dr. Alastair Simpson ; Office of the microorganisms section. These will be made available to you later in the term. Course Website: The Course Website

Adl, Sina

34

Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity  

PubMed Central

Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

Muller, Jonathon N.; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L.

2014-01-01

35

Plant Functional Diversity and Species Diversity in the Mongolian Steppe  

PubMed Central

Background The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. Methodology/Principal Findings In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity. Conclusions/Significance These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought. PMID:24116233

Liu, Guofang; Xie, Xiufang; Ye, Duo; Ye, Xuehua; Tuvshintogtokh, Indree; Mandakh, Bayart; Huang, Zhenying; Dong, Ming

2013-01-01

36

Impacts of salmon on riparian plant diversity.  

PubMed

The study of natural gradients in nutrient subsidies between ecosystems allows for predictions of how changes in one system can affect biodiversity in another. We performed a large-scale empirical test of the role of Pacific salmon (Oncorhynchus spp.) in structuring riparian plant communities. A comparison of 50 watersheds in the remote Great Bear Rainforest of British Columbia's central coast in Canada shows that salmon influence nutrient loading to plants,shifting plant communities toward nutrient-rich species, which in turn decreases plant diversity.These effects are mediated by interactions between salmon density and the physical characteristics of watersheds. Predicting how salmon affect terrestrial ecosystems is central to conservation plans that aim to better integrate ecosystem values into resource management. PMID:21442794

Hocking, Morgan D; Reynolds, John D

2011-03-25

37

Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes  

PubMed Central

Summary The bacterial community composition of activated sludge from a wastewater treatment plant (Almería, Spain) with the particularity of using seawater was investigated by applying 454-pyrosequencing. The results showed that Deinococcus-Thermus, Proteobacteria, Chloroflexi and Bacteroidetes were the most abundant retrieved sequences, while other groups, such as Actinobacteria, Chlorobi, Deferribacteres, Firmicutes, Planctomycetes, Spirochaetes and Verrumicrobia were reported at lower proportions. Rarefaction analysis showed that very likely the diversity is higher than what could be described despite most of the unknown microorganisms probably correspond to rare diversity. Furthermore, the majority of taxa could not be classified at the genus level and likely represent novel members of these groups. Additionally, the nitrifiers in the sludge were characterized by pyrosequencing the amoA gene. In contrast, the nitrifying bacterial community, dominated by the genera Nitrosomonas, showed a low diversity and rarefaction curves exhibited saturation. These results suggest that only a few populations of low abundant but specialized bacteria are responsible for removal of ammonia in these saline wastewater systems. PMID:23574645

Sánchez, Olga; Ferrera, Isabel; González, Jose M; Mas, Jordi

2013-01-01

38

Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms.  

PubMed

A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species composition and diversity influence the community composition of micro-organisms in the soil. We examined this relationship in fields subjected to different above-ground biodiversity treatments and in field experiments designed to examine the influence of plant species on soil-borne microbial communities. Culture-independent strategies were applied to examine the role of wild or native plant species composition on bacterial diversity and community structure in bulk soil and in the rhizosphere. In comparing the influence of Cynoglossum officinale (hound's tongue) and Cirsium vulgare (spear thistle) on soil-borne bacterial communities, detectable differences in microbial community structure were confined to the rhizosphere. The colonisation of the rhizosphere of both plants was highly reproducible, and maintained throughout the growing season. In a separate experiment, effects of plant diversity on bacterial community profiles were also only observed for the rhizosphere. Rhizosphere soil from experimental plots with lower macrophyte diversity showed lower diversity, and bacterial diversity was generally lower in the rhizosphere than in bulk soil. These results demonstrate that the level of coupling between above-ground macrophyte communities and below-ground microbial communities is related to the tightness of the interactions involved. Although plant species composition and community structure appear to have little discernible effect on microbial communities inhabiting bulk soil, clear and reproducible changes in microbial community structure and diversity are observed in the rhizosphere. PMID:12448746

Kowalchuk, George A; Buma, Douwe S; de Boer, Wietse; Klinkhamer, Peter G L; van Veen, Johannes A

2002-08-01

39

Diverse pollinator communities enhance plant reproductive success  

PubMed Central

Understanding the functional consequences of biodiversity loss is a major goal of ecology. Animal-mediated pollination is an essential ecosystem function and service provided to mankind. However, little is known how pollinator diversity could affect pollination services. Using a substitutive design, we experimentally manipulated functional group (FG) and species richness of pollinator communities to investigate their consequences on the reproductive success of an obligate out-crossing model plant species, Raphanus sativus. Both fruit and seed set increased with pollinator FG richness. Furthermore, seed set increased with species richness in pollinator communities composed of a single FG. However, in multiple-FG communities, highest species richness resulted in slightly reduced pollination services compared with intermediate species richness. Our analysis indicates that the presence of social bees, which showed roughly four times higher visitation rates than solitary bees or hoverflies, was an important factor contributing to the positive pollinator diversity–pollination service relationship, in particular, for fruit set. Visitation rate at different daytimes, and less so among flower heights, varied among social bees, solitary bees and hoverflies, indicating a niche complementarity among these pollinator groups. Our study demonstrates enhanced pollination services of diverse pollinator communities at the plant population level and suggests that both the niche complementarity and the presence of specific taxa in a pollinator community drive this positive relationship. PMID:23034701

Albrecht, Matthias; Schmid, Bernhard; Hautier, Yann; Muller, Christine B.

2012-01-01

40

An experimental test of the effect of plant functional group diversity on arthropod diversity  

Microsoft Academic Search

Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect

Amy J. Symstad; Evan Siemann; John Haarstad

2000-01-01

41

Herbivory enhances positive effects of plant genotypic diversity.  

PubMed

Both plant diversity and vertebrate herbivores can impact plant fitness and ecosystem functioning, however their interactions have not been explicitly tested. We manipulated plant genotypic diversity of the native plant Oenothera biennis and monitored its survivorship and lifetime fitness with and without one of its major vertebrate consumers, white-tailed deer Odocoileus virginianus. Intense but unmanipulated herbivory by meadow voles Microtus pennsylvanicus killed over 70% of nearly 4000 experimental plants. However, plants grown in genotypically diverse patches suffered fewer vole attacks and had higher survival and reproductive output than plants in monoculture. Moreover, positive effects of genotypic diversity were enhanced by the presence of deer, indicating a non-additive interaction between diversity and trophic-level complexity. Genetic selection analyses showed that the selective value of ecologically important traits depended on plant diversity and exposure to deer, demonstrating that community complexity can promote fitness through multiple ecologically and evolutionarily important feedbacks. PMID:20298460

Parker, John D; Salminen, Juha-Pekka; Agrawal, Anurag A

2010-05-01

42

Phylogenetic Exploration of Medicinal Plant Diversity MedPlant PhD Fellowship  

E-print Network

MedPlant Phylogenetic Exploration of Medicinal Plant Diversity MedPlant PhD Fellowship Incense Phylogenetic Exploration of Medicinal Plant Diversity, MedPlant (www.MedPlant.eu). Project description Burning of incense plants for purification and the use of smoke for medicinal purposes are ancient practices in many

Zürich, Universität

43

Diversity: Challenges and Implications for Assessment.  

ERIC Educational Resources Information Center

Discusses the inappropriate referral of culturally and linguistically diverse (CLD) students for speech-language therapy. Preassessment considerations that should be considered and the interrelatedness of culture, language, and communication as they impact on an individual learner's behavior are explained. Culturally appropriate assessment

Cheng, Li-Rong Lilly

1997-01-01

44

Soil microbes drive the classic plant diversity­ productivity pattern  

E-print Network

and empirically that host-specific soil microbes can be major determinants of the diversity–productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500...

Schnitzer, Stefan A.; Klironomos, John N.; HilleRisLambers, Jannek; Kinkel, Linda L.; Reich, Peter B.; Xiao, Kun; Rillig, Matthias C.; Sikes, Benjamin A.; Callaway, Ragan M.; Mangan, Scott A.; van Nes, Egbert H.; Scheffer, Marten

2011-02-01

45

Decomposer diversity and identity influence plant diversity effects on ecosystem functioning.  

PubMed

Plant productivity and other ecosystem functions often increase with plant diversity at a local scale. Alongside various plant-centered explanations for this pattern, there is accumulating evidence that multi-trophic interactions shape this relationship. Here, we investigated for the first time if plant diversity effects on ecosystem functioning are mediated or driven by decomposer animal diversity and identity using a double-diversity microcosm experiment. We show that many ecosystem processes and ecosystem multifunctionality (herbaceous shoot biomass production, litter removal, and N uptake) were affected by both plant and decomposer diversity, with ecosystem process rates often being maximal at intermediate to high plant and decomposer diversity and minimal at both low plant and decomposer diversity. Decomposers relaxed interspecific plant competition by enlarging chemical (increased N uptake and surface-litter decomposition) and spatial (increasing deep-root biomass) habitat space and by promoting plant complementarity. Anecic earthworms and isopods functioned as key decomposers; although decomposer diversity effects did not solely rely on these two decomposer species, positive plant net biodiversity and complementarity effects only occurred in the absence of isopods and the presence of anecic earthworms. Using a structural equation model, we explained 76% of the variance in plant complementarity, identified direct and indirect effect paths, and showed that the presence of key decomposers accounted for approximately three-quarters of the explained variance. We conclude that decomposer animals have been underappreciated as contributing agents of plant diversity-ecosystem functioning relationships. Elevated decomposer performance at high plant diversity found in previous experiments likely positively feeds back to plant performance, thus contributing to the positive relationship between plant diversity and ecosystem functioning. PMID:23185884

Eisenhauer, Nico; Reich, Peter B; Isbell, Forest

2012-10-01

46

PLANT DIVERSITY OF WESTERN CHITWAN FLORISTIC APPROACH  

PubMed Central

This paper identifies and documents the plant biodiversity of western Chitwan, Nepal. Specifically, our attention was focussed on the plants of forests, grasslands and common lands based on our “Reciprocal Relation of Population and Environment Study Project” conducted during January-April 1996. This species-diversity of trees, shrubs and herbaceous flora was recorded from 117, 117, and 1049 sampling quadrats of 10×10, 3×3 and 1×1 m2, respectively. The flora of our study plots contains 236 species that belong to 191 genera and 66 families. Of 236 species of plants, 119, 113, 59, 35 and 119 species were recorded from Tikauli forest, National Park forest, forests along the Narayani river, grasslands of National Park and common lands of the western Chitwan, respectively. Dicotyledons represent 184 (77.97%) species of the total flora species followed by monocotyledons (46 spp., 19.49%) and ferns (6 spp., 2.54%), respectively. The five largest families are Leguminosae (38 spp.), Poaceae (27 spp.), Asteraceae (22 spp.), Rubiaceae (10 spp.), and Scrophulariaceae (9 spp.). Hedyotis, Grewia and Lindernia, each with 4 spp., are the most speciose genera in the flora. PMID:22899874

Dangol, D. R.; Shivakoti, G. P.

2012-01-01

47

Estimation of Plant Diversity at Landscape Level: A Methodological Approach Applied to Three Spanish Rural Areas  

Microsoft Academic Search

Approaches linking biodiversity assessment with landscape structure are necessary in the framework of sustainable rural development. The present paper describes a methodology to estimate plant diversity involving landscape structure as a proportional weight associated with different plant communities found in the landscape mosaic. The area occupied by a plant community, its patch number or its spatial distribution of patches are

M. Ortega; R. Elena-Rosellió; J. M. García del Barrio

2004-01-01

48

Functional Diversity of Plant-Pollinator Interaction Webs Enhances the Persistence of Plant Communities  

PubMed Central

Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability. PMID:16332160

Dajoz, Isabelle; Meriguet, Jacques; Loreau, Michel

2006-01-01

49

Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities.  

PubMed

Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant-pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability. PMID:16332160

Fontaine, Colin; Dajoz, Isabelle; Meriguet, Jacques; Loreau, Michel

2006-01-01

50

Exotic plant species invade hot spots of native plant diversity  

USGS Publications Warehouse

Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and biodiversity), are invasible in many landscapes; and (2) this pattern may be more closely related to the degree resources are available in native plant communities, independent of species richness. Exotic plant invasions in rare habitats and distinctive plant communities pose a significant challenge to land managers and conservation biologists.

Stohlgren, T. J.; Binkley, D.; Chong, G. W.; Kalkhan, M. A.; Schell, L. D.; Bull, K. A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

1999-01-01

51

Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness  

E-print Network

LETTER Additive and interactive effects of plant genotypic diversity on arthropod communities species of naturally colonizing arthropods. Genetically diverse plant patches had 18% more arthropod species, and a greater abundance of omnivorous and predacious arthropods, but not herbivores, compared

Agrawal, Anurag

52

Factors influencing levels of genetic diversity in woody plant species  

Microsoft Academic Search

The plant allozyme literature was reviewed to: (1) compare genetic diversity in long-lived woody species with species representing other life forms, and (2) to investigate whether the levels and distribution of genetic diversity in woody species are related to life history and ecological characteristics. Data from 322 woody taxa were used to measure genetic diversity within species, and within and

J. L. Hamrick; Mary Jo W. Godt; Susan L. Sherman-Broyles

1992-01-01

53

Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity  

PubMed Central

The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. PMID:18695215

Bryant, Jessica A.; Lamanna, Christine; Morlon, Helene; Kerkhoff, Andrew J.; Enquist, Brian J.; Green, Jessica L.

2008-01-01

54

Cattle waste reduces plant diversity in vernal pool mesocosms  

Microsoft Academic Search

In California, much of the remaining vernal pool habitat is used for cattle grazing. Some studies suggest that grazing helps promote native plant diversity on grasslands, but the impact of grazing on plants that reside in pool basins is largely unknown. We investigated how one aspect of cattle grazing, the deposition of waste, affects these plant species by adding dung

Russell C. Croel; Jamie M. Kneitel

2011-01-01

55

Positive interactions between herbivores and plant diversity shape forest regeneration.  

PubMed

The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity. PMID:24718763

Cook-Patton, Susan C; LaForgia, Marina; Parker, John D

2014-05-22

56

Plant Chitinases: Genetic Diversity and Physiological Roles  

Microsoft Academic Search

Chitinase proteins are widely distributed across diverse biological systems. Chitinases hydrolyze chitin, chitosan, lipochitooligosaccharides, peptidoglycan, arabinogalactan and glycoproteins containing N-acetylglucosamine. Analyses of genome-wide sequence and microarray expression profilings show that chitinase genes are represented by large families and the individual member genes are expressed in diverse conditions. Chitinase proteins are members in the group of the pathogenesis-related proteins that are

Anita Grover

2012-01-01

57

COURSE INFORMATION Plant Diversity and Evolution  

E-print Network

to the Northeastern United States (Jeffrey Glassberg Field Guide Series). Oxford University Press. Supplies needed phylogenetics ch 3-5 green land plants ch 6 flowering plants ch 7 monocots and neighbors ch 8 eudicots ch 9

Chen, Kuang-Yu

58

ORIGINAL PAPER Resident plant diversity and introduced earthworms have  

E-print Network

ORIGINAL PAPER Resident plant diversity and introduced earthworms have contrasting effects such as earthworms can also affect invasibility by reducing leaf litter stocks and influencing soil conditions. In a greenhouse experiment, we simulta- neously manipulated resident species diversity and earthworm presence

Minnesota, University of

59

Vole disturbances and plant diversity in a grassland metacommunity  

Microsoft Academic Search

We studied the disturbance associated with prairie vole burrows and its effects on grassland plant diversity at the patch\\u000a (1 m2) and metacommunity (>5 ha) scales. We expected vole burrows to increase patch-scale plant species diversity by locally reducing\\u000a competition for resources or creating niche opportunities that increase the presence of fugitive species. At the metacommunity\\u000a scale, we expected burrows to increase

Erin J. Questad; Bryan L. Foster

2007-01-01

60

Detection and Diversity Assessment of Xylella fastidiosa in Field-Collected Plant and Insect Samples by Using 16S rRNA and gyrB Sequences  

PubMed Central

The causal agent of diseases in many economically important plants is attributed to the xylem-limited bacterium Xylella fastidiosa. The detection of this plant pathogen has been hampered due to its difficult isolation and slow growth on plates. Nearly complete nucleotide sequences of the 16S rRNA gene and partial sequences of the gyrB gene were determined for 18 strains of X. fastidiosa isolated from different plant hosts. A phylogenetic analysis, based on gyrB, grouped strains in three clusters; grape-isolated strains formed one cluster, citrus-coffee strains formed another cluster, and a third cluster resulted from all other strains. Primer pairs designed for the 16S rRNA and gyrB genes were extensively searched in databases to verify their in silico specificity. Primer pairs were certified with 30 target and 36 nontarget pure cultures of microorganisms, confirming 100% specificity. A multiplex PCR protocol was developed and its sensitivity tested. Sequencing of PCR products confirmed the validity of the multiplex PCR. Xylella fastidiosa was detected in field-collected plants, disease vector insects, and nonsymptomatic but infected plants. Specific detection of X. fastidiosa may facilitate the understanding of its ecological significance and prevention of spread of the disease. PMID:12839807

Rodrigues, Jorge L. M.; Silva-Stenico, M. E.; Gomes, J. E.; Lopes, J. R. S.; Tsai, S. M.

2003-01-01

61

Severe plant invasions can increase mycorrhizal fungal abundance and diversity  

PubMed Central

Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

Lekberg, Ylva; Gibbons, Sean M; Rosendahl, S?ren; Ramsey, Philip W

2013-01-01

62

Severe plant invasions can increase mycorrhizal fungal abundance and diversity.  

PubMed

Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)--but not cheatgrass (Bromus tectorum)--support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

2013-07-01

63

Environmental filtering explains variation in plant diversity along resource gradients.  

PubMed

The mechanisms that shape plant diversity along resource gradients remain unresolved because competing theories have been evaluated in isolation. By testing multiple theories simultaneously across a >2-million-year dune chronosequence in an Australian biodiversity hotspot, we show that variation in plant diversity is not explained by local resource heterogeneity, resource partitioning, nutrient stoichiometry, or soil fertility along this strong resource gradient. Rather, our results suggest that diversity is determined by environmental filtering from the regional flora, driven by soil acidification during long-term pedogenesis. This finding challenges the prevailing view that resource competition controls local plant diversity along resource gradients, and instead reflects processes shaping species pools over evolutionary time scales. PMID:25258078

Laliberté, Etienne; Zemunik, Graham; Turner, Benjamin L

2014-09-26

64

Macroevolution and the biological diversity of plants and herbivores  

Microsoft Academic Search

Terrestrial biodiversity is dominated by plants and the herbivores that consume them, and they are one of the major conduits of en- ergy flow up to higher trophic levels. Here, we address the processes that have generated the spectacular diversity of flowering plants (>300,000 species) and insect herbivores (likely >1 million species). Long-standing macroevolutionary hypotheses have postu- lated that reciprocal

Douglas J. Futuyma; Anurag A. Agrawal

2009-01-01

65

Plant species loss decreases arthropod diversity and shifts trophic structure  

E-print Network

LETTER Plant species loss decreases arthropod diversity and shifts trophic structure Nick M. Haddad results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative

Haddad, Nick

66

High plant diversity in Eocene South America: Evidence from Patagonia  

USGS Publications Warehouse

Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude ???47??S, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

Wilf, P.; Cuneo, N.R.; Johnson, K.R.; Hicks, J.F.; Wing, S.L.; Obradovich, J.D.

2003-01-01

67

T Plant hazards assessment  

SciTech Connect

This document establishes the technical basis in support of Emergency Planning activities for the T Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

Broz, R.E.

1994-09-27

68

Native plant diversity increases herbivory to non-natives.  

PubMed

There is often an inverse relationship between the diversity of a plant community and the invasibility of that community by non-native plants. Native herbivores that colonize novel plants may contribute to diversity-invasibility relationships by limiting the relative success of non-native plants. Here, we show that, in large collections of non-native oak trees at sites across the USA, non-native oaks introduced to regions with greater oak species richness accumulated greater leaf damage than in regions with low oak richness. Underlying this trend was the ability of herbivores to exploit non-native plants that were close relatives to their native host. In diverse oak communities, non-native trees were on average more closely related to native trees and received greater leaf damage than those in depauperate oak communities. Because insect herbivores colonize non-native plants that are similar to their native hosts, in communities with greater native plant diversity, non-natives experience greater herbivory. PMID:25232143

Pearse, Ian S; Hipp, Andrew L

2014-11-01

69

Diversity reduces invasibility in experimental plant communities: the role of plant species  

Microsoft Academic Search

Several studies have presented experimental evidence that diversity reduces invasibility in grassland communities. The interpretation of these results has been disputed recently and it was proposed that sampling effects were responsible for the observed decrease of invasibility with diversity. The experiments performed to date were not designed to adequately separate sampling from diversity effects. Using the establishment of native plant

Jasper van Ruijven; Gerlinde B. De Deyn; Frank Berendse

2003-01-01

70

Plant genotypic diversity increases population size of a herbivorous insect.  

PubMed

It is critical to incorporate the process of population dynamics into community genetics studies to identify the mechanisms of the linkage between host plant genetics and associated communities. We studied the effects of plant genotypic diversity of tall goldenrod Solidago altissima on the population dynamics of the aphid Uroleucon nigrotuberculatum. We found genotypic variation in plant resistance to the aphid in our experiments. To determine the impact of plant genotypic diversity on aphid population dynamics, we compared aphid densities under conditions of three treatments: single-genotype plots, mixed-genotype plots and mixed-genotype-with-cages plots. In the latter treatment plants were individually caged to prevent natural enemy attack and aphid movement among plants. The synergistic effects of genotypes on population size were demonstrated by the greater aphid population size in the mixed-genotype treatment than expected from additive effects alone. Two non-exclusive hypotheses are proposed to explain this pattern. First, there is a source-sink relationship among plant genotypes: aphids move from plant genotypes where their reproduction is high to genotypes where their reproduction is low. Second, natural enemy mortality is reduced in mixed plots in a matrix of diverse plant genotypes. PMID:21378084

Utsumi, Shunsuke; Ando, Yoshino; Craig, Timothy P; Ohgushi, Takayuki

2011-10-22

71

Plant genotypic diversity increases population size of a herbivorous insect  

PubMed Central

It is critical to incorporate the process of population dynamics into community genetics studies to identify the mechanisms of the linkage between host plant genetics and associated communities. We studied the effects of plant genotypic diversity of tall goldenrod Solidago altissima on the population dynamics of the aphid Uroleucon nigrotuberculatum. We found genotypic variation in plant resistance to the aphid in our experiments. To determine the impact of plant genotypic diversity on aphid population dynamics, we compared aphid densities under conditions of three treatments: single-genotype plots, mixed-genotype plots and mixed-genotype-with-cages plots. In the latter treatment plants were individually caged to prevent natural enemy attack and aphid movement among plants. The synergistic effects of genotypes on population size were demonstrated by the greater aphid population size in the mixed-genotype treatment than expected from additive effects alone. Two non-exclusive hypotheses are proposed to explain this pattern. First, there is a source–sink relationship among plant genotypes: aphids move from plant genotypes where their reproduction is high to genotypes where their reproduction is low. Second, natural enemy mortality is reduced in mixed plots in a matrix of diverse plant genotypes. PMID:21378084

Utsumi, Shunsuke; Ando, Yoshino; Craig, Timothy P.; Ohgushi, Takayuki

2011-01-01

72

Population density of North American elk: effects on plant diversity.  

PubMed

Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory. PMID:19484268

Stewart, Kelley M; Bowyer, R Terry; Kie, John G; Dick, Brian L; Ruess, Roger W

2009-08-01

73

Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems  

SciTech Connect

This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same technology, and (3) different architectures within the same technology. Using this convention, the first diversity usage family, designated Strategy A, is characterized by fundamentally diverse technologies. Strategy A at the system or platform level is illustrated by the example of analog and digital implementations. The second diversity usage family, designated Strategy B, is achieved through the use of distinctly different technologies. Strategy B can be described in terms of different digital technologies, such as the distinct approaches represented by general-purpose microprocessors and field-programmable gate arrays. The third diversity usage family, designated Strategy C, involves the use of variations within a technology. An example of Strategy C involves different digital architectures within the same technology, such as that provided by different microprocessors (e.g., Pentium and Power PC). The grouping of diversity criteria combinations according to Strategies A, B, and C establishes baseline diversity usage and facilitates a systematic organization of strategic approaches for coping with CCF vulnerabilities. Effectively, these baseline sets of diversity criteria constitute appropriate CCF mitigating strategies for digital safety systems. The strategies represent guidance on acceptable diversity usage and can be applied directly to ensure that CCF vulnerabilities identified through a D3 assessment have been adequately resolved. Additionally, a framework has been generated for capturing practices regarding diversity usage and a tool has been developed for the systematic assessment of the comparative effect of proposed diversity strategies (see Appendix A).

Wood, Richard Thomas [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL; Korsah, Kofi [ORNL; Loebl, Andy [ORNL; Mays, Gary T [ORNL; Muhlheim, Michael David [ORNL; Mullens, James Allen [ORNL; Poore III, Willis P [ORNL; Qualls, A L [ORNL; Wilson, Thomas L [ORNL; Waterman, Michael E. [U.S. Nuclear Regulatory Commission

2010-02-01

74

Herbivores and nutrients control grassland plant diversity via light limitation  

USGS Publications Warehouse

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen I.; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

2014-01-01

75

Exotic Plant Species Invade Hot Spots of Native Plant Diversity  

Microsoft Academic Search

Some theories and experimental studies suggest that areas of low plant spe- cies richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in

Thomas J. Stohlgren; Dan Binkley; Geneva W. Chong; Mohammed A. Kalkhan; Lisa D. Schell; Kelly A. Bull; Yuka Otsuki; Gregory Newman; Michael Bashkin; Yowhan Son

1999-01-01

76

36 CFR 219.9 - Diversity of plant and animal communities.  

Code of Federal Regulations, 2013 CFR

...the diversity of plant and animal communities and support...the diversity of plant and animal communities, within Forest...aquatic and terrestrial plant and animal communities; and (iii...species, and maintain a viable population of each species of...

2013-07-01

77

36 CFR 219.9 - Diversity of plant and animal communities.  

Code of Federal Regulations, 2012 CFR

...the diversity of plant and animal communities and support...the diversity of plant and animal communities, within Forest...aquatic and terrestrial plant and animal communities; and (iii...species, and maintain a viable population of each species of...

2012-07-01

78

Does harvesting sustain plant diversity in central Mexican wetlands?  

Microsoft Academic Search

In Central México, wetland plants are harvested for weaving, fodder, and fertilizer. To test whether harvesting alters plant\\u000a diversity, we compared the effects of harvesting all vegetation once, follow-up harvesting of Typha domingensis Pers. one or three more times, and a non-harvested control, using two sites differing in water depth in an annually burned\\u000a wetland near Morelia, México. After one

Steven J. Hall; Roberto Lindig-Cisneros; Joy B. Zedler

2008-01-01

79

THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY  

EPA Science Inventory

Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

80

PHYLOGENY AND THE HIERARCHICAL ORGANIZATION OF PLANT DIVERSITY  

Microsoft Academic Search

R. H. Whittaker's idea that plant diversity can be divided into a hierarchy of spatial components from a at the within-habitat scale through b for the turnover of species between habitats to c along regional gradients implies the underlying existence of a, b, and c niches. We explore the hypothesis that the evolution of a, b, and c niches is

Jonathan Silvertown; Mike Dodd; David Gowing; Clare Lawson; Kevin McConway

2006-01-01

81

ORIGINAL PAPER Dry grassland plant diversity conservation using  

E-print Network

ORIGINAL PAPER Dry grassland plant diversity conservation using low-intensity sheep and goat+Business Media B.V. 2008 Abstract After abandonment, dry grassland (Festuco-Brometea) areas decline due to gradual overgrowing by woody species and the expansion of perennial tall grass species. Dry grassland

Janouskova, Martina

82

PLANT DIVERSITY OF THE CAPE REGION OF SOUTHERN AFRICA  

Microsoft Academic Search

ABSTRACT Comprising a land area of ca. 90,000 km,, less than one twentieth (5%) the land area of the southern African subcontinent, the Cape Floristic Region (CFR) is, for its size, one of the world’s richest areas of plant species diversity. A new synoptic flora for the Region has made possible an accurate reassessment of the flora, which has an

Peter Goldblatt; John C. Manning

83

Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots  

NASA Astrophysics Data System (ADS)

Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

Picard, Christine; Bosco, Marco

2008-01-01

84

Rapid assessment of butterfly diversity in a montane landscape  

Microsoft Academic Search

We present the results of a rapid assessment of butterfly diversity in the 754 ha Beaver Meadows study area in Rocky Mountain National Park, Larimer County, Colorado. We measured butterfly species richness and relative abundance as part of a landscape-scale investigation of diversity patterns involving several groups of organisms. A stratified random sampling design was used to include replication in

Sara E. Simonson; Paul A. Opler; Thomas J. Stohlgren; Geneva W. Chong

2001-01-01

85

Arctic plant diversity in the Early Eocene greenhouse  

PubMed Central

For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

2012-01-01

86

Fostering Respect Creating Community DIVERSITY ASSESSMENT  

E-print Network

University has a long his- tory of providing access to higher education as a land grant institution's Strategic Plan, landmark court cases regarding diversity in higher education have recognized's faculty, staff, and students, however, remained below that of its peer institutions. The retention rate

87

MSU Departmental Assessment Plan Department: Plant Sciences and Plant Pathology  

E-print Network

(Environmental Horticultural Science, Landscape Design, Plant Biology, Crop Science, and Biotechnology--PlantMSU Departmental Assessment Plan 2009-2010 Department: Plant Sciences and Plant Pathology/Majors/Options Offered by Department List here Plant Sciences major Crop Science option Plant Biology option

Maxwell, Bruce D.

88

Using Plant Functional Traits to Explain Diversity–Productivity Relationships  

PubMed Central

Background The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings We used two community-wide measures of plant functional composition, (1) community-weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (<1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production. PMID:22623961

Roscher, Christiane; Schumacher, Jens; Gubsch, Marlén; Lipowsky, Annett; Weigelt, Alexandra; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef

2012-01-01

89

Effects of plant diversity on invertebrate herbivory in experimental grassland.  

PubMed

The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60 species of Central European Arrhenatherum grasslands. Plots differed in plant species richness (1, 2, 4, 8, 16, 60 species), number of functional groups (1, 2, 3, 4), functional group and species composition. We estimated herbivore damage by insects and molluscs at the level of transplanted plant individuals ("phytometer" species Plantago lanceolata, Trifolium pratense, Rumex acetosa) and of the entire plant community during 2003 and 2004. In contrast to previous studies, our design allows specific predictions about the relative contributions of functional diversity, plant functional identity, and species richness in relation to herbivory. Additionally, the phytometer approach is new to biodiversity-herbivory studies, allowing estimates of species-specific herbivory rates within the larger biodiversity-ecosystem functioning context. Herbivory in phytometers and experimental communities tended to increase with plant species richness and the number of plant functional groups, but the effects were rarely significant. Herbivory in phytometers was in some cases positively correlated with community biomass or leaf area index. The most important factor influencing invertebrate herbivory was the presence of particular plant functional groups. Legume (grass) presence strongly increased (decreased) herbivory at the community level. The opposite pattern was found for herbivory in T. pratense phytometers. We conclude that (1) plant species richness is much less important than previously thought and (2) plant functional identity is a much better predictor of invertebrate herbivory in temperate grassland ecosystems. PMID:16231192

Scherber, Christoph; Mwangi, Peter N; Temperton, Vicky M; Roscher, Christiane; Schumacher, Jens; Schmid, Bernhard; Weisser, Wolfgang W

2006-03-01

90

Vole disturbances and plant diversity in a grassland metacommunity.  

PubMed

We studied the disturbance associated with prairie vole burrows and its effects on grassland plant diversity at the patch (1 m(2)) and metacommunity (>5 ha) scales. We expected vole burrows to increase patch-scale plant species diversity by locally reducing competition for resources or creating niche opportunities that increase the presence of fugitive species. At the metacommunity scale, we expected burrows to increase resource heterogeneity and have a community composition distinct from the matrix. We measured resource variables and plant community composition in 30 paired plots representing disturbed burrows and undisturbed matrix patches in a cool-season grassland. Vole disturbance affected the mean values of nine resource variables measured and contributed more to resource heterogeneity in the metacommunity than matrix plots. Disturbance increased local plant species richness, metacommunity evenness, and the presence and abundance of fugitive species. To learn more about the contribution of burrow and matrix habitats to metacommunity diversity, we compared community similarity among burrow and matrix plots. Using Sorenson's similarity index, which considers only presence-absence data, we found no difference in community similarity among burrows and matrix plots. Using a proportional similarity index, which considers both presence-absence and relative abundance data, we found low community similarity among burrows. Burrows appeared to shift the identity of dominant species away from the species dominant in the matrix. They also allowed subordinate species to persist in higher abundances. The patterns we observed are consistent with several diversity-maintaining mechanisms, including a successional mosaic and alternative successional trajectories. We also found evidence that prairie voles may be ecosystem engineers. PMID:17440750

Questad, Erin J; Foster, Bryan L

2007-08-01

91

Intraspecific plant chemical diversity and its relation to herbivory.  

PubMed

Several aromatic plant species are well known for their high intraspecific variation in terpene composition. Within these species, different chemotypes can be distinguished, which are characterised by one major metabolite and distinct satellite compounds in lower abundance. Such intraspecific differences in plant quality should have major effects on herbivorous insects but may also be partly shaped by their feeding activities. In the present study, the effects of selected Tanacetum vulgare L. chemotypes on herbivore presence and preferences were investigated, and the naturally occurring diversity of T. vulgare was explored at a small spatial scale. A distinct distribution pattern of aphids and miners was found on different chemotypes of different origin of T. vulgare, with species-specific preferences of different herbivorous species. Larvae of two generalist noctuid species performed worse on most chemotypes of T. vulgare than on other plant species. Furthermore, the specific terpene composition of T. vulgare influenced larval development of these two generalist species. The naturally occurring chemical diversity of T. vulgare plants in an area smaller than 3 km(2) was extremely high, exhibiting 14 different chemotypes. Several individual patches of T. vulgare consisted of more than one chemotype. In conclusion, the existing chemotypical pattern of T. vulgare plants leads to a species-specific distribution of herbivores but may in turn be the result of contrasting selection pressures of various specialist and generalist herbivores. PMID:21053017

Kleine, Sandra; Müller, Caroline

2011-05-01

92

Herbivores and nutrients control grassland plant diversity via light limitation.  

SciTech Connect

Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

Borer, Elizabeth T. [Department of Ecology, Evolution, and Behavior, University of Minnesota; et al, et al

2014-01-01

93

Effects of riparian plant diversity loss on aquatic microbial decomposers become more pronounced with increasing time.  

PubMed

We examined the potential long-term impacts of riparian plant diversity loss on diversity and activity of aquatic microbial decomposers. Microbial assemblages were obtained in a mixed-forest stream by immersion of mesh bags containing three leaf species (alder, oak and eucalyptus), commonly found in riparian corridors of Iberian streams. Simulation of species loss was done in microcosms by including a set of all leaf species, retrieved from the stream, and non-colonized leaves of three, two or one leaf species. Leaves were renewed every month throughout six months, and microbial inoculum was ensured by a set of colonized leaves from the previous month. Microbial diversity, leaf mass loss and fungal biomass were assessed at the second and sixth months after plant species loss. Molecular diversity of fungi and bacteria, as the total number of operational taxonomic units per leaf diversity treatment, decreased with leaf diversity loss. Fungal biomass tended to decrease linearly with leaf species loss on oak and eucalyptus, suggesting more pronounced effects of leaf diversity on lower quality leaves. Decomposition of alder and eucalyptus leaves was affected by leaf species identity, mainly after longer times following diversity loss. Leaf decomposition of alder decreased when mixed with eucalyptus, while decomposition of eucalyptus decreased in mixtures with oak. Results suggest that the effects of leaf diversity on microbial decomposers depended on leaf species number and also on which species were lost from the system, especially after longer times. This may have implications for the management of riparian forests to maintain stream ecosystem functioning. PMID:23963224

Fernandes, Isabel; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia

2013-11-01

94

Evaluation of a Breastfeeding Assessment Score in a Diverse Population  

Microsoft Academic Search

A previous study performed in a predominately suburban population developed a breastfeeding assessment score (BAS) that was designed to predict, prior to hospital discharge, those mothers who would discontinue breastfeeding within the first 10 days of age. The purpose of the present study was to assess the BAS in a more diverse population. Patients were solicited from 3 urban hospitals

Anne M. Mercer; Susan L. Teasley; Judy Hopkinson; Deanna M. McPherson; Stephen D. Simon; Robert T. Hall

2010-01-01

95

Drivers of Spatial Variation in Plant Diversity Across the Central Arizona-Phoenix Ecosystem  

Microsoft Academic Search

We examined how growth of the Phoenix urban landscape has changed spatial patterns in native Sonoran desert plant diversity. Combining data from the U.S. Census with a probability-based field inventory, we used spatial and multivariate statistics to show how plant diversity across the region is influenced by human actions. Spatial variations in plant diversity among sites were best explained by

Diane Hope; Corinna Gries; David Casagrande; Charles L. Redman; Nancy B. Grimm; Chris Martin

2006-01-01

96

Using a diverse seed mix to establish native plants on a Sonoran Desert burn  

Microsoft Academic Search

Revegetating burns is a major challenge facing resource managers in the low- and unpredictable-precipitation deserts of the southwestern US. We monitored the effectiveness of using a diverse, 28-species seed mix for establishing native plants on a 1.5-ha (3.7-ac) burn in the northern Sonoran Desert. Our objective was to compare species performances, which we assessed by measuring species frequencies and cover

2009-01-01

97

Macroevolution and the biological diversity of plants and herbivores  

PubMed Central

Terrestrial biodiversity is dominated by plants and the herbivores that consume them, and they are one of the major conduits of energy flow up to higher trophic levels. Here, we address the processes that have generated the spectacular diversity of flowering plants (>300,000 species) and insect herbivores (likely >1 million species). Long-standing macroevolutionary hypotheses have postulated that reciprocal evolution of adaptations and subsequent bursts of speciation have given rise to much of this biodiversity. We critically evaluate various predictions based on this coevolutionary theory. Phylogenetic reconstruction of ancestral states has revealed evidence for escalation in the potency or variety of plant lineages' chemical defenses; however, escalation of defense has been moderated by tradeoffs and alternative strategies (e.g., tolerance or defense by biotic agents). There is still surprisingly scant evidence that novel defense traits reduce herbivory and that such evolutionary novelty spurs diversification. Consistent with the coevolutionary hypothesis, there is some evidence that diversification of herbivores has lagged behind, but has nevertheless been temporally correlated with that of their host-plant clades, indicating colonization and radiation of insects on diversifying plants. However, there is still limited support for the role of host-plant shifts in insect diversification. Finally, a frontier area of research, and a general conclusion of our review, is that community ecology and the long-term evolutionary history of plant and insect diversification are inexorably intertwined. PMID:19815508

Futuyma, Douglas J.; Agrawal, Anurag A.

2009-01-01

98

Application of diversity to regional ecological assessment: a review with recommendations  

SciTech Connect

Species diversity is frequently considered a primary indicator of ecosystem health, stability, and resilience. As such, species diversity is commonly the major criterion upon which environmental impact statements and ecological assessments are based. This report describes the theoretical development and refinement of the concept of ecological diversity and the various mathematical expressions of diversity. Advantages and disadvantages of each diversity expression are discussed. The application and interpretation of diversity indices for different spatial scales (e.g., specific sites and regional assessments) and variables (e.g., species diversity, habitat diversity, landscape diversity) are contrasted. Recommendations indicate the appropriate diversity indices for regional ecological assessments.

Levenson, J.B.; Stearns, F.W.

1980-03-01

99

Risk assessment of nuclear power plants  

Microsoft Academic Search

The objective of the present work is to develop recommendations for controlling the safety of nuclear power plants on the\\u000a basis of risk assessments and safety certification of nuclear power plants. The Kursk nuclear power plant is considered as\\u000a an example of a nuclear power plant with an RBMK reactor. The concept of risk assessment of a nuclear power plant

R. T. Islamov; A. A. Derevyankin; I. V. Zhukov; M. A. Berberova; I. V. Glukhov; D. R. Islamov

2011-01-01

100

Diversity of endophytic enterobacteria associated with different host plants.  

PubMed

Fifty-three endophytic enterobacteria isolates from citrus, cocoa, eucalyptus, soybean, and sugar cane were evaluated for susceptibility to the antibiotics ampicillin and kanamycin, and cellulase production. Susceptibility was found on both tested antibiotics. However, in the case of ampicillin susceptibility changed according to the host plant, while all isolates were susceptible to kanamycin. Cellulase production also changed according to host plants. The diversity of these isolates was estimated by employing BOX-PCR genomic fingerprints and 16S rDNA sequencing. In total, twenty-three distinct operational taxonomic units (OTUs) were identified by employing a criterion of 60% fingerprint similarity as a surrogate for an OTU. The 23 OTUs belong to the Pantoea and Enterobacter genera, while their high diversity could be an indication of paraphyletic classification. Isolates representing nine different OTUs belong to Pantoea agglomerans, P. ananatis, P. stewartii, Enterobacter sp., and E. homaechei. The results of this study suggest that plant species may select endophytic bacterial genotypes. It has also become apparent that a review of the Pantoea/Enterobacter genera may be necessary. PMID:18758726

Torres, Adalgisa Ribeiro; Araújo, Welington Luiz; Cursino, Luciana; Hungria, Mariangela; Plotegher, Fábio; Mostasso, Fábio Luís; Azevedo, João Lúcio

2008-08-01

101

Plant formins: diverse isoforms and unique molecular mechanism.  

PubMed

The completed genome from the model plant Arabidopsis thaliana reveals the presence of a diverse multigene family of formin-like sequences, comprising more than 20 isoforms. This review highlights recent findings from biochemical, cell biological and reverse-genetic analyses of this family of actin nucleation factors. Important advances in understanding cellular function suggest major roles for plant formins during cytokinesis and cell expansion. Biochemical studies on a subset of plant formins emphasize the need to examine molecular mechanisms outside of mammalian and yeast systems. Notably, a combination of solution-based assays for actin dynamics and timelapse, single-filament imaging with TIRFM provide evidence for the first non-processive formin (AtFH1) in eukaryotes. Despite these advances it remains difficult to generate a consensus view of plant formin activities and cellular functions. One limitation to summarizing formin properties relates to the enormous variability in domain organization among the plant formins. Generating homology-based predictions that depend on conserved domains outside of the FH1 and FH2 will be virtually impossible for plant formins. A second major drawback is the lack of facile techniques for examining dynamics of individual actin filaments within live plant cells. This constraint makes it extremely difficult to bridge the gap between biochemical characterization of particular formin and its specific cellular function. There is promise, however, that recent technical advances in engineering appropriate fluorescent markers and new fluoresence imaging techniques will soon allow the direct visualization of cortical actin filament dynamics. The emergence of other model systems for studying actin cytoskeleton in vivo, such as the moss Physcomitrella patens, may also enhance our knowledge of plant formins. PMID:18977251

Blanchoin, Laurent; Staiger, Christopher J

2010-02-01

102

Spatial aggregation facilitates coexistence and diversity of wild plant species in field margins  

Microsoft Academic Search

European agri-environment schemes encourage farmers to establish sown field margin strips to protect and enhance wild plant diversity. However, plant diversity in such wild plant sowings based on seed mixtures is often low due to the high competitiveness of few, common species. Here we analysed whether intraspecific aggregation could enhance the performance of less competitive species, and how plant performance

Birte Eleen Wassmuth; Peter Stoll; Teja Tscharntke; Carsten Thies

2009-01-01

103

Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family.  

PubMed

Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications. PMID:24912659

Soltani, Jalal; Moghaddam, Mahdieh S Hosseyni

2014-09-01

104

Plant traits mediate consumer and nutrient control on plant community productivity and diversity.  

PubMed

The interactive effects of consumers and nutrients on terrestrial plant communities, and the role of plant functional traits in mediating these responses, are poorly known. We carried out a six-year full-factorial field experiment using mammalian herbivore exclusion and fertilization in two habitat types (fertile and infertile alpine tundra heaths) that differed in plant functional traits related to resource acquisition and palatability. Infertile habitats were dominated by species with traits indicative of a slow-growing strategy: high C:N ratio, low specific leaf area, and high condensed tannins. We found that herbivory counteracted the effect of fertilization on biomass, and that this response differed between the two habitats and was correlated with plant functional traits. Live biomass dominated the treatment responses in infertile habitats, whereas litter accumulation dominated the treatment responses in fertile habitats and was strongly negatively associated with resident community tannin concentration. Species richness declined under herbivore exclusion and fertilization in fertile habitats, where litter accumulation was greatest. Community means of plant C:N ratio predicted treatment effects on diversity: fertilization decreased and herbivory increased dominance in communities originally dominated by plants with high C:N, while fertilization increased and herbivory diminished dominance in communities where low C:N species were abundant. Our results highlight the close interdependence between consumer effects, soil nutrients, and plant functional traits and suggest that plant traits may provide an improved understanding of how consumers and nutrients influence plant community productivity and diversity. PMID:23431600

Eskelinen, Anu; Harrison, Susan; Tuomi, Maria

2012-12-01

105

Using Qualitative Methods to Assess Diverse Institutional Cultures  

ERIC Educational Resources Information Center

This article focuses on describing how institutional researchers can use qualitative cultural assessments to better understand the role that their campus cultures play in shaping individual and group behaviors and experiences. A special emphasis is given to the implications of institutional diversity in the processes of designing and conducting…

Museus, Samuel D.

2007-01-01

106

Assessment of a Diversity Assignment in a PR Principles Course  

ERIC Educational Resources Information Center

This study assesses an assignment for incorporating diversity into the principles of public relations course. The assignment is tailored to the challenges of using an active learning approach in a large lecture class. For the assignment, students write a goal, objectives, strategies, an identification of tactics, and evaluation plans for either…

Gallicano, Tiffany Derville; Stansberry, Kathleen

2012-01-01

107

Cultural Diversity, Mental Retardation, and Assessment: The Case for Nonlabeling.  

ERIC Educational Resources Information Center

The System of Multicultural Pluralistic Assessment (SOMPA) is designed for use in a culturally diverse society. The system was developed on 700 English-speaking caucasian children (hereafter called Anglos) from the anglo core culture, 700 black children, and 700 Latino Children (90 percent were of Mexican-American heritage) five through eleven…

Mercer, Jane R.

108

Diversity, classification and function of the plant protein kinase superfamily  

PubMed Central

Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

Lehti-Shiu, Melissa D.; Shiu, Shin-Han

2012-01-01

109

Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese  

E-print Network

in a Chinese subtropical forest CHENG GAO,* NAN-NAN SHI,* YUE-XING LIU,* KABIR G. PEAY, YONG ZHENG,* QIONG DING light on this problem, we examined the diversity of a key guild of root-associated microbes, that is, ectomycorrhizal (EM) fungi along a plant diversity gradient in a Chinese sub- tropical forest. The results

Bruns, Tom

110

How generalist herbivores exploit belowground plant diversity in temperate grasslands.  

PubMed

Belowground herbivores impact plant performance, thereby inducing changes in plant community composition, which potentially leads to cascading effects onto higher trophic levels and ecosystem processes and productivity. Among soil-living insects, external root-chewing generalist herbivores have the strongest impact on plants. However, the lack of knowledge on their feeding behaviour under field conditions considerably hampers achieving a comprehensive understanding of how they affect plant communities. Here, we address this gap of knowledge by investigating the feeding behaviour of Agriotes click beetle larvae, which are common generalist external root-chewers in temperate grassland soils. Utilizing diagnostic multiplex PCR to assess the larval diet, we examined the seasonal patterns in feeding activity, putative preferences for specific plant taxa, and whether species identity and larval instar affect food choices of the herbivores. Contrary to our hypothesis, most of the larvae were feeding-active throughout the entire vegetation period, indicating that the grassland plants are subjected to constant belowground feeding pressure. Feeding was selective, with members of Plantaginaceae and Asteraceae being preferred; Apiaceae were avoided. Poaceae, although assumed to be most preferred, had an intermediate position. The food preferences exhibited seasonal changes, indicating a fluctuation in plant traits important for wireworm feeding choice. Species- and instar-specific differences in dietary choice of the Agriotes larvae were small, suggesting that species and larval instars occupy the same trophic niche. According to the current findings, the food choice of these larvae is primarily driven by plant identity, exhibiting seasonal changes. This needs to be considered when analysing soil herbivore-plant interactions. PMID:24188592

Wallinger, Corinna; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Juen, Anita; Traugott, Michael

2014-08-01

111

Soil stability and plant diversity in eco-engineering  

NASA Astrophysics Data System (ADS)

Slopes affected by superficial sliding and subsequently re-stabilised with eco-engineering measures were investigated, particularly related to soil stability and plant diversity. The sites are situated in three different areas of beech-fir-spruce forest associations of the higher montane zone of Switzerland. Climatic and site characteristics, in paraticular soil properties after the sliding event, of the three investigation areas are very similar. However, the number of species (shrubs and trees) used for the initial planting as well as the year of application of the eco-engineering measures differ substantially. In the investigation area Dallenwil-Wirzweli the biological measures taken in 1981 were restricted to one tree species, namely White Alder (Alnus incana). In Klosters, where measures were taken in 1983 as well as in the Arieschbach valley, where eco-engineering was applied in 1998, the initial planting consisted of 15 species either. Investigations in 2005/2006 revealed neither obvious differences among the three areas nor distinct correlations related to the diversity of the initial planting on the on hand and the development of the vegetation cover and soil stability on the other hand. During the available time of development, the soil aggregate stability increased by 30 to 39%. Compared to the corresponding climax association, the relative values of soil aggregate stability varied between 90 and 120%. Concurrently, the dry unit weight decreased between 1.1 and 3.1 kN/m3. The cumulative vegetation cover varied from 110 to 150%. Due to processes of soil development a distinct shift in the grain size distribution was noticed, from a well sorted gravel with clay and sand (GW-GC) to a silty gravel with sand (GM) in Dallenwil-Wirzweli and a silty to clayey gravel with sand (GC-GM) in Klosters and the Arieschbach valley. Furthermore, in all three investigation areas succession processes were observed that are comparable to average rates of natural secondary succession. The number of shrub and tree species recorded in 2005/2006 varied between 12 and 16. According to the recommendations for silvicultural maintenance of protective forests, the shrub- and tree layer consisted of 75 to 100% of the required plant species in view of the potential target association.

Böll, Albert; Gerber, Werner; Rickli, Christian; Graf, Frank

2010-05-01

112

Frequency and Diversity of Plant Life Forms in Residential Urban Landscapes  

E-print Network

Frequency and Diversity of Plant Life Forms in Residential Urban Landscapes K. A. Peterson, L. B of frequency and diversity of landscape plants as well as measures of canopy cover and irrigation application- adapted plant recognized by local municipalities and the absence of turf. All landscapes were installed

Hall, Sharon J.

113

Ex situ cultivation affects genetic structure and diversity in arable plants.  

PubMed

Worldwide, botanical gardens cultivate around 80,000 taxa, corresponding to approximately one-quarter of all vascular plants. Most cultivated taxa are, however, held in a small number of collections, and mostly only in small populations. Lack of genetic exchange and stochastic processes in small populations make them susceptible to detrimental genetic effects, which should be most severe in annual species, as sowing cycles are often short. In order to assess whether ex situ cultivation affects genetic diversity of annuals, five annual arable species with similar breeding systems were assessed with 42 in situ populations being compared to 20 ex situ populations using a random amplified polymorphic DNA (RAPD) analysis approach. Population sizes tended to be lower under ex situ cultivation and levels of genetic diversity also tended to be lower in four of the five species, with differences being significant in only two. Ex situ populations showed incomplete representation of alleles found in the wild. The duration of cultivation did not indicate any effect on genetic diversity. This implies that cultivation strategies resulted in different genetic structures in the garden populations. Although not unequivocally pronounced, differences nonetheless imply that conservation strategies in the involved gardens may need improvement. One option is cold storage of seeds, a practice that is not currently followed in the studied ex situ collections. This may reflect that the respective gardens focus on displaying living plant populations. PMID:22882447

Brütting, C; Hensen, I; Wesche, K

2013-05-01

114

Long-term effects of sowing high or low diverse seed mixtures on plant and gastropod diversity  

NASA Astrophysics Data System (ADS)

A number of studies have reported that consumers affect a range of community-level processes, and in turn their diversity and abundance is influenced by the structure and diversity of the plant community. Although gastropods are important generalist herbivores in many environments, few studies have examined the effects of plant species richness and plant community structure on gastropods. This study investigated gastropod species richness and interactions with various above-ground parameters of the vegetation on an experimental field with four plant treatments: low and high diversity of sown later succession plant species, natural colonization at the start of the experiment and natural colonization after 3 years of continued agricultural practice. The investigated gastropod assemblage contained only seven species and was highly dominated by two of them. Both in pitfalls and with hand-sorting the number of species collected per plot was highest in plots with natural plant colonization. Multivariate analysis revealed that overall gastropod abundance was positively associated with plant height and percentage cover of plants, and negatively with percentage grass cover. The same pattern holds for one of the dominant species-complex ( Cochlicopa lubrica/ lubricella). The other dominant gastropod species ( Deroceras reticulatum) was more abundant in samples with higher percentages of moss cover and higher plant diversity, while less abundant at samples with higher plant cover, indicating that the gastropod species preferences may matter more than just their response to plant diversity. Two plant-gastropod species-level associations were observed: Senecio jacobaea with D. reticulatum and Tanacetum vulgare with Cochlicopa spp. The present study also demonstrated that pitfall-traps are suitable for collecting terrestrial gastropods, at least for species-poor grassland habitats.

Dedov, Ivailo; Stoyanov, Ivailo L.; Penev, Lyubomir; Harvey, Jeffrey A.; Van der Putten, Wim H.; Bezemer, T. Martijn

2006-09-01

115

Assessing Students' Ideas About Plants  

NSDL National Science Digital Library

This article contains an interview protocol that will help you gather information about your elementary students' ideas related to plants. By implementing the protocol, you will be able to discover what kinds of organisms your students think are plants an

Barman, Charles R.; Stein, Mary; Barman, Natalie S.; Mcnair, Shannan

2002-09-01

116

Floral colour diversity in plant communities, bee colour space and a null model  

PubMed Central

Evolutionary biologists have long hypothesized that the diversity of flower colours we see is in part a strategy to promote memorization by pollinators, pollinator constancy, and therefore, a directed and efficient pollen transfer between plants. However, this hypothesis has never been tested against a biologically realistic null model, nor were colours assessed in the way pollinators see them. Our intent here is to fill these gaps. Throughout one year, we sampled floral species compositions at five ecologically distinct sites near Berlin, Germany. Bee-subjective colours were quantified for all 168 species. A model of colour vision was used to predict how similar the colours of sympatric and simultaneously blooming flowers were for bees. We then compared flower colour differences in the real habitats with those of random plant communities. We did not find pronounced deviations from chance when we considered common plants. When we examined rare plants, however, we found significant divergence in two of the five plant communities. At one site, similarly coloured species were found to be more frequent than expected, and at the other two locations, flower colours were indistinguishable from a random distribution. These results fit theoretical considerations that rare plants are under stronger selective pressure to secure pollination than common plants. Our study illustrates the power of linking such distinct biological traditions as community ecology and the neuroethology of bee vision.

Gumbert, A.; Kunze, J.; Chittka, L.

1999-01-01

117

Bottom-up effects of host-plant species diversity and top-down effects of ants  

E-print Network

to increase plant performance; diversity increased plant growth (but not biomass), and this effect; plant growth; top-down effects 1. INTRODUCTION The consequences of plant species diversity on ecosystem plant growth as well as the abundance and diversity of associated arthropods in grasses, legumes, forbs

Mooney, Kailen A.

118

Does plant diversity benefit agroecosystems? A synthetic review.  

PubMed

Predictive theory on how plant diversity promotes herbivore suppression through movement patterns, host associations, and predation promises a potential alternative to pesticide-intensive monoculture crop production. We used meta-analysis on 552 experiments in 45 articles published over the last 10 years to test if plant diversification schemes reduce herbivores and/or increase the natural enemies of herbivores as predicted by associational resistance hypotheses, the enemies hypothesis, and attraction and repellency model applications in agriculture. We found extensive support for these models with intercropping schemes, inclusion of flowering plants, and use of plants that repel herbivores or attract them away from the crop. Overall, herbivore suppression, enemy enhancement, and crop damage suppression effects were significantly stronger on diversified crops than on crops with none or fewer associated plant species. However, a relatively small, but significantly negative, mean effect size for crop yield indicated that pest-suppressive diversification schemes interfered with production, in part because of reducing densities of the main crop by replacing it with intercrops or non-crop plants. This first use of meta-analysis to evaluate the effects of diversification schemes, a potentially more powerful tool than tallies of significant positive and negative outcomes (vote-counting), revealed stronger overall effects on all parameters measured compared to previous reviews. Our analysis of the same articles used in a recent review facilitates comparisons of vote-counting and meta-analysis, and shows that pronounced results of the meta-analysis are not well explained by a reduction in articles that met its stricter criteria. Rather, compared to outcome counts, effect sizes were rarely neutral (equal to zero), and a mean effect size value for mixed outcomes could be calculated. Problematic statistical properties of vote-counting were avoided with meta-analysis, thus providing a more precise test of the hypotheses. The unambiguous and encouraging results from this meta-analysis of previous research should motivate ecologists to conduct more mechanistic experiments to improve the odds of designing effective crop diversification schemes for improved pest regulation and enhanced crop yield. PMID:21516884

Letourneau, Deborah K; Armbrecht, Inge; Rivera, Beatriz Salguero; Lerma, James Montoya; Carmona, Elizabeth Jiménez; Daza, Martha Constanza; Escobar, Selene; Galindo, Victor; Gutiérrez, Catalina; López, Sebastián Duque; Mejía, Jessica López; Rangel, Aleyda Maritza Acosta; Rangel, Janine Herrera; Rivera, Leonardo; Saavedra, Carlos Arturo; Torres, Alba Marina; Trujillo, Aldemar Reyes

2011-01-01

119

Plant Diversity and Evolution (11:704:411) and Advanced Plant Systematics (16:215:507) Schedule 2009  

E-print Network

reconstruction chapter 7 (pp. 138-153) Mon 21 Sep fieldtrip Plant Diversity in the Floriculture greenhouse: meet at Floriculture Greenhouse when class starts Thu 24 Sep lecture Monocots: basal, Asparagales, Liliales, etc fieldtrip (self- study) Plant Diversity in the Floriculture greenhouse: meet at Floriculture Greenhouse when

Chen, Kuang-Yu

120

Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan  

PubMed Central

Background Due to its diverse geographical and habitat conditions, northern Pakistan harbors a wealth of medicinal plants. The plants and their traditional use are part of the natural and cultural heritage of the region. This study was carried out to document which medicinal plant species and which plant parts are used in the region of Swat, which syndrome categories are particularly concerned, and which habitat spectrum is frequented by collectors. Finally, we assessed to which extent medicinal plants are vulnerable due to collection and habitat destruction. Methods An ethnobotanical survey was undertaken in the Miandam area of Swat, North Pakistan. Data were collected through field assessment as well as from traditional healers and locals by means of personal interviews and semi-structured questionnaires. Results A total of 106 ethno-medicinal plant species belonging to 54 plant families were recorded. The most common growth forms were perennial (43%) and short-lived herbs (23%), shrubs (16%), and trees (15%). Most frequently used plant parts were leaves (24%), fruits (18%) and subterranean parts (15%). A considerable proportion of the ethno-medicinal plant species and remedies concerns gastro-intestinal disorders. The remedies were mostly prepared in the form of decoction or powder and were mainly taken orally. Eighty out of 106 ethno-medicinal plants were indigenous. Almost 50% of the plants occurred in synanthropic vegetation while slightly more than 50% were found in semi-natural, though extensively grazed, woodland and grassland vegetation. Three species (Aconitum violaceum, Colchicum luteum, Jasminum humile) must be considered vulnerable due to excessive collection. Woodlands are the main source for non-synanthropic indigenous medicinal plants. The latter include many range-restricted taxa and plants of which rhizomes and other subterranean parts are dug out for further processing as medicine. Conclusion Medicinal plants are still widely used for treatment in the area of Swat. Some species of woodlands seem to be adapted to wood-pasture, but vulnerable to overcollecting, and in particular to deforestation. It is suggested to implement local small-scaled agroforestry systems to cultivate vulnerable and commercially valuable ethno-medicinal woodland plants under local self-government responsibility. PMID:23587127

2013-01-01

121

Risk assessment strategies for transgenic plants  

Microsoft Academic Search

Advances in recombinant DNA technology have created advantages for the development of plants with high agro-economical values.\\u000a Since the production of transgenic plants, some issues concerning the safe use of these plants and their products have been\\u000a under debate throughout the world. In this respect, the potential risks and benefits of transgenic plants need to be evaluated\\u000a objectively. Risk assessment

Tijen Talas-O?ra?

2011-01-01

122

Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions.  

PubMed

Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations. PMID:18376564

Lau, Jennifer A; Strengbom, Joachim; Stone, Laurie R; Reich, Peter B; Tiffin, Peter

2008-01-01

123

Tiger Team assessment of the Pinellas Plant  

SciTech Connect

This Document contains findings identified during the Tiger Team Compliance Assessment of the Department of Energy's (DOE's) Pinellas Plant, Pinellas County, Florida. The assessment wa directed by the Department's Office of Environment, Safety, and Health (ES H) from January 15 to February 2, 1990. The Pinellas Tiger Team Compliance Assessment is comprehensive in scope. It covers the Environment Safety and Health, and Management areas and determines the plant's compliance with applicable Federal (including DOE), State, and local regulations and requirements.

Not Available

1990-05-01

124

Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland  

PubMed Central

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

2014-01-01

125

Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.  

PubMed

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

2014-01-01

126

AfroDb: a select highly potent and diverse natural product library from African medicinal plants.  

PubMed

Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of such is vital for drug discovery protocols. We assess the bioactivity and "drug-likeness" of a relatively small but structurally diverse dataset (containing >1,000 compounds) from African medicinal plants, which have been tested and proven a wide range of biological activities. The geographical regions of collection of the medicinal plants cover the entire continent of Africa, based on data from literature sources and information from traditional healers. For each isolated compound, the three dimensional (3D) structure has been used to calculate physico-chemical properties used in the prediction of oral bioavailability on the basis of Lipinski's "Rule of Five". A comparative analysis has been carried out with the "drug-like", "lead-like", and "fragment-like" subsets, as well as with the Dictionary of Natural Products. A diversity analysis has been carried out in comparison with the ChemBridge diverse database. Furthermore, descriptors related to absorption, distribution, metabolism, excretion and toxicity (ADMET) have been used to predict the pharmacokinetic profile of the compounds within the dataset. Our results prove that drug discovery, beginning with natural products from the African flora, could be highly promising. The 3D structures are available and could be useful for virtual screening and natural product lead generation programs. PMID:24205103

Ntie-Kang, Fidele; Zofou, Denis; Babiaka, Smith B; Meudom, Rolande; Scharfe, Michael; Lifongo, Lydia L; Mbah, James A; Mbaze, Luc Meva'a; Sippl, Wolfgang; Efange, Simon M N

2013-01-01

127

AfroDb: A Select Highly Potent and Diverse Natural Product Library from African Medicinal Plants  

PubMed Central

Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of such is vital for drug discovery protocols. We assess the bioactivity and “drug-likeness” of a relatively small but structurally diverse dataset (containing >1,000 compounds) from African medicinal plants, which have been tested and proven a wide range of biological activities. The geographical regions of collection of the medicinal plants cover the entire continent of Africa, based on data from literature sources and information from traditional healers. For each isolated compound, the three dimensional (3D) structure has been used to calculate physico-chemical properties used in the prediction of oral bioavailability on the basis of Lipinski’s “Rule of Five”. A comparative analysis has been carried out with the “drug-like”, “lead-like”, and “fragment-like” subsets, as well as with the Dictionary of Natural Products. A diversity analysis has been carried out in comparison with the ChemBridge diverse database. Furthermore, descriptors related to absorption, distribution, metabolism, excretion and toxicity (ADMET) have been used to predict the pharmacokinetic profile of the compounds within the dataset. Our results prove that drug discovery, beginning with natural products from the African flora, could be highly promising. The 3D structures are available and could be useful for virtual screening and natural product lead generation programs. PMID:24205103

Ntie-Kang, Fidele; Zofou, Denis; Babiaka, Smith B.; Meudom, Rolande; Scharfe, Michael; Lifongo, Lydia L.; Mbah, James A.; Mbaze, Luc Meva'a; Sippl, Wolfgang; Efange, Simon M. N.

2013-01-01

128

Plant and Soil Responses to High and Low Diversity Grassland Restoration Practices  

NASA Astrophysics Data System (ADS)

The USDA's Conservation Reserve Program (CRP) has predominantly used only a few species of dominant prairie grasses (CP2 practice) to reduce soil erosion, but recently has offered a higher diversity planting practice (CP25) to increase grassland habitat quality. We quantified plant community composition in CP25 and CP2 plantings restored for 4 or 8 years and compared belowground properties and processes among restorations and continuously cultivated soils in southeastern Nebraska, USA. Relative to cultivated soils, restoration increased soil microbial biomass ( P = 0.033), specifically fungi ( P < 0.001), and restored soils exhibited higher rates of carbon (C) mineralization ( P = 0.010). High and low diversity plantings had equally diverse plant communities; however, CP25 plantings had greater frequency of cool-season (C3) grasses ( P = 0.007). Older (8 year) high diversity restorations contained lower microbial biomass ( P = 0.026), arbuscular mycorrhizal fungi (AMF) biomass ( P = 0.003), and C mineralization rates ( P = 0.028) relative to 8 year low diversity restorations; older plantings had greater root biomass than 4 year plantings in all restorations ( P = 0.001). Low diversity 8 year plantings contained wider root C:N ratios, and higher soil microbial biomass, microbial community richness, AMF biomass, and C mineralization rate relative to 4 year restorations ( P < 0.050). Net N mineralization and nitrification rates were lower in 8 year than 4 year high diversity plantings ( P = 0.005). We attributed changes in soil C and N pools and fluxes to increased AMF associated with C4 grasses in low diversity plantings. Thus, reduced recovery of AMF in high diversity plantings restricted restoration of belowground microbial diversity and microbially-mediated soil processes over time.

Bach, Elizabeth M.; Baer, Sara G.; Six, Johan

2012-02-01

129

CO2, nitrogen, and diversity differentially affect seed production of prairie plants.  

PubMed

Plant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, U.S.A. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses: We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we caution against relying on them for predictive purposes without a mechanistic understanding of how resource availability and biotic interactions affect seed production. PMID:19694130

HilleRisLambers, J; Harpole, W S; Schnitzer, S; Tilman, D; Reich, P B

2009-07-01

130

Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity  

E-print Network

Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity Gregory of associated arthropod communities, but the temporal dynamics of this relationship, along with the underlying genotypes m(2 and measured both host-plant and arthropod responses to genotypic diversity throughout

Sanders, Nathan J.

131

Soil fungal pathogens and the relationship between plant diversity and productivity  

E-print Network

LETTER Soil fungal pathogens and the relationship between plant diversity and productivity John L whether suppression of plant productivity by soil fungal pathogens might also drive a positive diversity treatment. In control (non-fungicide treated) assemblages there was a strong positive relationship between

Cleveland, Cory

132

Longitudinal patterns of plant diversity in the North American boreal forest  

Microsoft Academic Search

Spatial patterns of plant diversity in the North American boreal forest were examined according to three plant life forms (woody plants, herbaceous plants, and bryophytes) and two taxonomic levels (species and genus), using sixty 9-ha plots sampled in white spruce (Picea glauca (Moench) Voss) and black spruce (Picea mariana (P. Mill.) B.S.P.) ecosystems along a transcontinental transect from the Pacific

Hong Qian; Karel Klinka; Gordon J. Kayahara

1998-01-01

133

Pollinating Flies (Diptera): A major contribution to plant diversity and agricultural production  

E-print Network

are present in almost all habitats and biomes and for many medicinal, food and ornamental plants, pollinating, Agrobiodiversity, Pollination, Flower Flies, Bio-Control, medicinal plants, ornamental plants AUTHORS' ADDRESSESPollinating Flies (Diptera): A major contribution to plant diversity and agricultural production

Mathis, Wayne N.

134

Invasive plant erodes local song diversity in a migratory passerine.  

PubMed

Exotic plant invasions threaten ecosystems globally, but we still know little about the specific consequences for animals. Invasive plants can alter the quality of breeding habitat for songbirds, thereby impacting important demographic traits such as dispersal, philopatry, and age structure. These demographic effects may in turn alter song-learning conditions to affect song structure and diversity. We studied Chipping Sparrows (Spizella passerina) breeding in six savannas that were either dominated by native vegetation or invaded by spotted knapweed (Centaurea stoebe), an exotic forb known to diminish food resources and reproductive success. Here, we report that the prevalence of older birds was relatively low in knapweed-invaded habitat, where recruitment of yearlings compensated for diminished site fidelity to sustain territory abundance. In both habitat types, yearling males tended to adopt songs similar to their neighbors and match the songs of older birds rather than introducing new song types, a pattern seen in many songbird species. As a consequence, in invaded habitat where age structure was skewed away from older birds serving as potential song models, yearlings converged on fewer song types. Similarity of songs among individuals was significantly higher and the overall number of song types averaged nearly 20% lower in invaded relative to native habitat. Degradation of habitat quality generally impacts site fidelity and age ratios in migratory songbirds and hence may commonly alter song-learning conditions. Associated shifts in song attributes known to influence reproductive success could in turn enforce demographic declines driven by habitat degradation. Local song structure may serve as an important indicator of habitat quality and population status for songbirds. PMID:24669738

Ortega, Yvette K; Benson, Aubree; Greene, Erick

2014-02-01

135

Influence of plant genetic diversity on interactions between higher trophic levels  

PubMed Central

While the ecological consequences of plant diversity have received much attention, the mechanisms by which intraspecific diversity affects associated communities remains understudied. We report on a field experiment documenting the effects of patch diversity in the plant Baccharis salicifolia (genotypic monocultures versus polycultures of four genotypes), ants (presence versus absence) and their interaction on ant-tended aphids, ants and parasitic wasps, and the mechanistic pathways by which diversity influences their multi-trophic interactions. Five months after planting, polycultures (versus monocultures) had increased abundances of aphids (threefold), ants (3.2-fold) and parasitoids (1.7-fold) owing to non-additive effects of genetic diversity. The effect on aphids was direct, as plant genetic diversity did not mediate ant–aphid, parasitoid–aphid or ant–parasitoid interactions. This increase in aphid abundance occurred even though plant growth (and thus aphid resources) was not higher in polycultures. The increase in ants and parasitoids was an indirect effect, due entirely to higher aphid abundance. Ants reduced parasitoid abundance by 60 per cent, but did not affect aphid abundance or plant growth, and these top-down effects were equivalent between monocultures and polycultures. In summary, intraspecific plant diversity did not increase primary productivity, but nevertheless had strong effects across multiple trophic levels, and effects on both herbivore mutualists and enemies could be predicted entirely as an extension of plant–herbivore interactions. PMID:23485879

Moreira, Xoaquin; Mooney, Kailen A.

2013-01-01

136

Evaluation of a breastfeeding assessment score in a diverse population.  

PubMed

A previous study performed in a predominately suburban population developed a breastfeeding assessment score (BAS) that was designed to predict, prior to hospital discharge, those mothers who would discontinue breastfeeding within the first 10 days of age. The purpose of the present study was to assess the BAS in a more diverse population. Patients were solicited from 3 urban hospitals serving patients primarily supported by public funding. Results of the present study with 1182 mother-infant pairs confirmed that 5 variables scored on a 0-2 scale (maternal age, previous breastfeeding experience, latching difficulty, breastfeeding interval, number bottles) remained highly significant for predicting discontinuation of breastfeeding. The data also demonstrate that the BAS is inversely related to the risk of cessation of breastfeeding at 7 to 10 days of age. Those at an early risk of cessation of breastfeeding, identified by the BAS, may benefit from early identification and a lactation consultation. PMID:19759350

Mercer, Anne M; Teasley, Susan L; Hopkinson, Judy; McPherson, Deanna M; Simon, Stephen D; Hall, Robert T

2010-02-01

137

Host-plant genotypic diversity and community genetic interactions mediate aphid spatial distribution  

PubMed Central

Genetic variation in plants can influence the community structure of associated species, through both direct and indirect interactions. Herbivorous insects are known to feed on a restricted range of plants, and herbivore preference and performance can vary among host plants within a species due to genetically based traits of the plant (e.g., defensive compounds). In a natural system, we expect to find genetic variation within both plant and herbivore communities and we expect this variation to influence species interactions. Using a three-species plant-aphid model system, we investigated the effect of genetic diversity on genetic interactions among the community members. Our system involved a host plant (Hordeum vulgare) that was shared by an aphid (Sitobion avenae) and a hemi-parasitic plant (Rhinanthus minor). We showed that aphids cluster more tightly in a genetically diverse host-plant community than in a genetic monoculture, with host-plant genetic diversity explaining up to 24% of the variation in aphid distribution. This is driven by differing preferences of the aphids to the different plant genotypes and their resulting performance on these plants. Within the two host-plant diversity levels, aphid spatial distribution was influenced by an interaction among the aphid's own genotype, the genotype of a competing aphid, the origin of the parasitic plant population, and the host-plant genotype. Thus, the overall outcome involves both direct (i.e., host plant to aphid) and indirect (i.e., parasitic plant to aphid) interactions across all these species. These results show that a complex genetic environment influences the distribution of herbivores among host plants. Thus, in genetically diverse systems, interspecific genetic interactions between the host plant and herbivore can influence the population dynamics of the system and could also structure local communities. We suggest that direct and indirect genotypic interactions among species can influence community structure and processes. PMID:24558568

Zytynska, Sharon E; Frantz, Laurent; Hurst, Ben; Johnson, Andrew; Preziosi, Richard F; Rowntree, Jennifer K

2014-01-01

138

Environmental Conditions Influence the Plant Functional Diversity Effect on Potential Denitrification  

PubMed Central

Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD)) and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP). We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning. PMID:21311768

Sutton-Grier, Ariana E.; Wright, Justin P.; McGill, Bonnie M.; Richardson, Curtis

2011-01-01

139

Ground Layer Plant Species Turnover and Beta Diversity in Southern-European Old-Growth Forests  

PubMed Central

Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155

Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

2014-01-01

140

Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants.  

PubMed

To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards VERTICILLIUM: The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere. PMID:12089011

Berg, Gabriele; Roskot, Nicolle; Steidle, Anette; Eberl, Leo; Zock, Angela; Smalla, Kornelia

2002-07-01

141

Differential effects of plant diversity on functional trait variation of grass species  

PubMed Central

Background and Aims Functional trait differences and trait adjustment in response to influences of the biotic environment could reflect niche partitioning among species. In this study, we tested how variation in above-ground plant traits, chosen as indicators for light and nitrogen acquisition and use, differs among taxonomically closely related species (Poaceae) to assess their potential for niche segregation at increasing plant diversity. Methods Traits of 12 grass species were measured in experimental grasslands (Jena Experiment) of varying species richness (from 1 to 60) and presence of particular functional groups (grasses, legumes, tall herbs and small herbs). Key Results Grass species increased shoot and leaf length, investment into supporting tissue (stem mass fraction) and specific leaf area as well as reduced foliar ?13C values with increasing species richness, indicating higher efforts for light acquisition. These species-richness effects could in part be explained by a higher probability of legume presence in more diverse communities. Leaf nitrogen concentrations increased and biomas s : N ratios in shoots decreased when grasses grew with legumes, indicating an improved nitrogen nutrition. Foliar ?15N values of grasses decreased when growing with legumes suggesting the use of depleted legume-derived N, while decreasing ?15N values with increasing species richness indicated a shift in the uptake of different N sources. However, efforts to optimize light and nitrogen acquisition by plastic adjustment of traits in response to species richness and legume presence, varied significantly among grass species. It was possible to show further that trait adjustment of grass species increased niche segregation in more diverse plant communities but that complementarity through niche separation may differ between light and nutrient acquisition. Conclusions The results suggest that even among closely related species such as grasses different strategies are used to cope with neighbours. This lack in redundancy in turn may facilitate complementary resource use and coexistence. PMID:21068024

Gubsch, Marlen; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef; Lipowsky, Annett; Roscher, Christiane

2011-01-01

142

Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants.  

PubMed

A preliminary study was conducted to compare the community level physiological profile (CLPP) and genetic diversity of rhizosphere microbial communities of four plant species growing nearby Kiskunság soda ponds, namely Böddi-szék, Kelemen-szék and Zab-szék. CLPP was assessed by MicroResp method using 15 different substrates while Denaturing Gradient Gel Electrophoresis (DGGE) was used to analyse genetic diversity of bacterial communities. The soil physical and chemical properties were quite different at the three sampling sites. Multivariate statistics (PCA and UPGMA) revealed that Zab-szék samples could be separated according to their genetic profile from the two others which might be attributed to the geographical location and perhaps the differences in soil physical properties. Böddi-szék samples could be separated from the two others considering the metabolic activity which could be explained by their high salt and low humus contents. The number of bands in DGGE gels was related to the metabolic activity, and positively correlated with soil humus content, but negatively with soil salt content. The main finding was that geographical location, soil physical and chemical properties and the type of vegetation were all important factors influencing the metabolic activity and genetic diversity of rhizosphere microbial communities. PMID:25261946

Bárány, Agnes; Szili-Kovács, Tibor; Krett, Gergely; Füzy, Anna; Márialigeti, Károly; Borsodi, Andrea K

2014-09-01

143

Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis)  

PubMed Central

Background Castor bean (Ricinus communis) is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale). We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs) at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74%) followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ?PT values, p < 0.01). Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity. PMID:20082707

2010-01-01

144

Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future.  

PubMed

China is one of the richest countries for plant diversity with approximately 33 000 vascular plant species, ranking second in the world. However, the plant diversity in China is increasingly threatened, with an estimated 4000–5000 plant species being threatened or on the verge of extinction, making China, proportionally, one of the highest priorities for global plant biodiversity conservation. Coming in the face of the current ecological crisis, it is timely that China has launched China's Strategy for Plant Conservation (CSPC). China has increasingly recognized the importance of plant diversity in efforts to conserve and sustainably use its plant diversity. More than 3000 nature reserves have been established, covering approximately 16% of the land surface of China. These natural reserves play important roles in plant conservation, covering more than 85% of types of terrestrial natural ecosystems, 40% of types of natural wetlands, 20% of native forests and 65% of natural communities of vascular plants. Meanwhile, the flora conserved in botanical gardens is also extensive. A recent survey shows that the 10 largest botanical gardens have living collections of 43 502 taxa, with a total of 24 667 species in ex situ conservation. These provide an important reserve of plant resources for sustainable economic and social development in China. Plant diversity is the basis for bioresources and sustainable utilization. The 21st century is predicted to be an era of bio-economy driven by advances of bioscience and biotechnology. Bio-economy may become the fourth economy form after agricultural, industrial, and information and information technology economies, having far-reaching impacts on sustainable development in agriculture, forestry, environmental protection, light industry, food supply and health care and other micro-economy aspects. Thus, a strategic and forward vision for conservation of plant diversity and sustainable use of plant resources in the 21st century is of far-reaching significance for sustainable development of Chinese economy and society. PMID:22059249

Huang, Hongwen

2011-01-01

145

Monotropa uniflora plants of eastern Massachusetts form mycorrhizae with a diversity of russulacean fungi.  

PubMed

Plant species in the subfamily Monotropoideae are mycoheterotrophs; they obtain fixed carbon from photosynthetic plants via a shared mycorrhizal network. Previous findings show mycoheterotrophic plants exhibit a high level of specificity to their mycorrhizal fungi. In this study we explore the association of mycorrhizal fungi and Monotropa uniflora (Monotropoideae: Ericaceae) in eastern North America. We collected M. uniflora roots and nearby basidiomycete sporocarps from four sites within a 100 km2 area in eastern Massachusetts. We analyzed DNA sequences of the internal transcribed spacer region (ITS) from the fungal nuclear ribosomal gene to assess the genetic diversity of fungi associating with M. uniflora roots. In this analysis we included 20 ITS sequences from Russula sporocarps collected nearby, 44 sequences of Russula or Lactarius species from GenBank and 12 GenBank sequences of fungi isolated from M. uniflora roots in previous studies. We found that all 56 sampled M. uniflora mycorrhizal fungi were members of the Russulaceae, confirming previous research. The analysis showed that most of the diversity of mycorrhizal fungi spreads across the genus Russula. ITS sequences of the mycorrhizal fungi consisted of 20 different phylotypes: 18 of the genus Russula and two of Lactarius, based on GenBank searches. Of the sampled plants, 57% associated with only three of the 20 mycorrhizal fungi detected in roots, and of the 25 sporocarp phylotypes collected three, were associated with M. uniflora. Furthermore the results indicate that the number of different fungal phylotypes associating with M. uniflora of eastern North America is higher than that of western North America but patterns of fungal species abundance might be similar between mycorrhizae from the two locations. PMID:17139846

Yang, S; Pfister, D H

2006-01-01

146

Habitat fragmentation, tree diversity, and plant invasion interact to structure forest caterpillar communities.  

PubMed

Habitat fragmentation and invasive species are two of the most prominent threats to terrestrial ecosystems. Few studies have examined how these factors interact to influence the diversity of natural communities, particularly primary consumers. Here, we examined the effects of forest fragmentation and invasion of exotic honeysuckle (Lonicera maackii, Caprifoliaceae) on the abundance and diversity of the dominant forest herbivores: woody plant-feeding Lepidoptera. We systematically surveyed understory caterpillars along transects in 19 forest fragments over multiple years in southwestern Ohio and evaluated how fragment area, isolation, tree diversity, invasion by honeysuckle and interactions among these factors influence species richness, diversity and abundance. We found strong seasonal variation in caterpillar communities, which responded differently to fragmentation and invasion. Abundance and richness increased with fragment area, but these effects were mitigated by high levels of honeysuckle, tree diversity, landscape forest cover, and large recent changes in area. Honeysuckle infestation was generally associated with decreased caterpillar abundance and diversity, but these effects were strongly dependent on other fragment traits. Effects of honeysuckle on abundance were moderated when fragment area, landscape forest cover and tree diversity were high. In contrast, negative effects of honeysuckle invasion on caterpillar diversity were most pronounced in fragments with high tree diversity and large recent increases in area. Our results illustrate the complex interdependencies of habitat fragmentation, plant diversity and plant invasion in their effects on primary consumers and emphasize the need to consider these processes in concert to understand the consequences of anthropogenic habitat change for biodiversity. PMID:25015121

Stireman, John O; Devlin, Hilary; Doyle, Annie L

2014-09-01

147

Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species  

PubMed Central

Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses. PMID:25141305

Moreira, Xoaquin; Abdala-Roberts, Luis; Parra-Tabla, Victor; Mooney, Kailen A.

2014-01-01

148

Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.  

PubMed

Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses. PMID:25141305

Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

2014-01-01

149

Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web  

Microsoft Academic Search

Previous studies on biodiversity and soil food web composition have mentioned plant species identity, as well as plant species diversity as the main factors affecting the abundance and diversity of soil organisms. However, most studies have been carried out under limitations of time, space, or appropriate controls. In order to further examine the relation between plant species diversity and the

Gerlinde B. De Deyn; Ciska E. Raaijmakers; Jasper van Ruijven; Frank Berendse; Wim H. van der Putten

2004-01-01

150

Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action  

PubMed Central

Vascular plants are often considered to be among the better known large groups of organisms, but gaps in the available baseline data are extensive, and recent estimates of total known (described) seed plant species range from 200?000 to 422?000. Of these, global assessments of conservation status using International Union for the Conservation of Nature (IUCN) categories and criteria are available for only approximately 10?000 species. In response to recommendations from the Conference of the Parties to the Convention on Biological Diversity to develop biodiversity indicators based on changes in the status of threatened species, and trends in the abundance and distribution of selected species, we examine how existing data, in combination with limited new data collection, can be used to maximum effect. We argue that future work should produce Red List Indices based on a representative subset of plant species so that the limited resources currently available are directed towards redressing taxonomic and geographical biases apparent in existing datasets. Sampling the data held in the world's major herbaria, in combination with Geographical Information Systems techniques, can produce preliminary conservation assessments and help to direct selective survey work using existing field networks to verify distributions and gather population data. Such data can also be used to backcast threats and potential distributions through time. We outline an approach that could result in: (i) preliminary assessments of the conservation status of tens of thousands of species not previously assessed, (ii) significant enhancements in the coverage and representation of plant species on the IUCN Red List, and (iii) repeat and/or retrospective assessments for a significant proportion of these. This would result in more robust Sampled Red List Indices that can be defended as more representative of plant diversity as a whole; and eventually, comprehensive assessments at species level for one or more major families of angiosperms. The combined results would allow scientifically defensible generalizations about the current status of plant diversity by 2010 as well as tentative comments on trends. Together with other efforts already underway, this approach would establish a firmer basis for ongoing monitoring of the status of plant diversity beyond 2010 and a basis for comparison with the trend data available for vertebrates. PMID:15814350

Nic Lughadha, E; Baillie, J; Barthlott, W; Brummitt, N.A; Cheek, M.R; Farjon, A; Govaerts, R; Hardwick, K.A; Hilton-Taylor, C; Meagher, T.R; Moat, J; Mutke, J; Paton, A.J; Pleasants, L.J; Savolainen, V; Schatz, G.E; Smith, P; Turner, I; Wyse-Jackson, P; Crane, P.R

2005-01-01

151

Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta  

PubMed Central

The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of ?T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20?m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing ?-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20?m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

2014-01-01

152

Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity  

PubMed Central

Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420

Bartlett, Madelaine E.; Whipple, Clinton J.

2013-01-01

153

Visiting insect diversity and visitation rates for seven globally-imperiled plant species in  

E-print Network

Visiting insect diversity and visitation rates for seven globally-imperiled plant species in Colorado's middle Arkansas Valley by Susan C. Spackman Panjabi Colorado Natural Heritage Program College............................................................................................ 20 Measuring insect visitation rates

154

Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra  

Microsoft Academic Search

Ecologists have long been intrigued by the ways co-occurring species divide limiting resources. Such resource partitioning, or niche differentiation, may promote species diversity by reducing competition. Although resource partitioning is an important determinant of species diversity and composition in animal communities, its importance in structuring plant communities has been difficult to resolve. This is due mainly to difficulties in studying

Robert B. McKane; Loretta C. Johnson; Gaius R. Shaver; Knute J. Nadelhoffer; Edward B. Rastetter; Brian Fry; Anne E. Giblin; Knut Kielland; Bonnie L. Kwiatkowski; James A. Laundre; Georgia Murray

2002-01-01

155

Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity  

Microsoft Academic Search

Genotypic diversity within host-plant populations has been linked to the diversity of associated arthropod communities, but the temporal dynamics of this relationship, along with the underlying mechanisms, are not well understood. In this study, we employed a common garden experiment that manipulated the number of genotypes within patches of Solidago altissima, tall goldenrod, to contain 1, 3, 6 or 12

Gregory M. Crutsinger; Michael D. Collins; James A. Fordyce; Nathan J. Sanders

2008-01-01

156

Effects of plant diversity on invertebrate herbivory in experimental grassland  

Microsoft Academic Search

The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60

Christoph Scherber; Peter N. Mwangi; Vicky M. Temperton; Christiane Roscher; Jens Schumacher; Bernhard Schmid; Wolfgang W. Weisser

2006-01-01

157

Disentangling direct and indirect effects of experimental grassland management and plant functional-group manipulation on plant and leafhopper diversity  

PubMed Central

Background Plant biodiversity can affect trophic interactions in many ways, including direct bottom-up effects on insects, but is negatively affected by agricultural intensification. Grassland intensification promotes plant productivity, resulting in changes in plant community composition, and impacts on higher trophic levels. Here, we use a novel grassland management experiment combining manipulations of cutting and fertilization with experimental changes in plant functional group composition (independent of management effects) to disentangle the direct and indirect effects of agricultural management on insect herbivore diversity and abundance. We used leafhoppers as model organisms as they are a key insect taxon in grasslands and react rapidly to management changes. Leafhoppers were sampled between May and September 2010 using standardized sweep netting and pan traps. Results Plant diversity, functional group composition and management regime in grasslands affected leafhopper species richness and abundance. Higher cutting frequencies directly led to decreasing leafhopper species richness, presumably due to the higher disturbance frequency and the reduction in food-resource heterogeneity. In contrast, fertilizer application had only a small indirect negative effect via enhanced aboveground plant biomass, reduced plant diversity and changes in functional group composition. The manipulated increase in grass cover had contrasting direct and indirect effects on leafhopper species richness: grass cover directly increased leafhopper species richness, but negatively affected plant diversity, which in turn was positively related to leafhopper species richness. In conclusion, insect diversity is driven in complex direct and indirect ways by grassland management, including changes in functional group composition. Conclusions The availability of preferred food sources and the frequency of disturbance are important direct and indirect drivers of leafhopper species richness, interacting in complex ways with plant diversity and food resource heterogeneity. PMID:24438134

2014-01-01

158

Genetic diversity in the threatened insular endemic plant Aster asa-grayi ( Asteraceae )  

Microsoft Academic Search

Genetic diversity in an insular endemic plantAster asa-grayi was examined using enzyme electrophoresis. Distribution ofA. asa-grayi is restricted to only four subtropical islands of Japan, and this species is listed as ‘vulnerable to extinction’ in the Red Data Book of Japanese wild plants. A total of 161 individuals were sampled from five populations on four islands. Genetic diversity values at

Masayuki Maki

1999-01-01

159

Pathways of nutrient loading and impacts on plant diversity in a New York peatland  

USGS Publications Warehouse

Nutrient loading is a subtle, yet serious threat to the preservation of high diversity wetlands such as peatlands. Pathways of nutrient loading and impacts on plant diversity in a small peatland in New York State, USA were determined by collecting and analyzing a suite of hydrogeological, hydro-chemical, soil, and vegetation data. Piezometer clusters within an intensive network constituted hydro-chemical sampling points and focal points for randomly selected vegetation quadrats and soil-coring locations. Hydrogeological data and nutrient analyses showed that P and K loading occurred chiefly by means of overland flow from an adjacent farm field, whereas N loading occurred predominantly through ground-water flow from the farm field. Redundancy analysis and polynomial regression showed that nutrients, particularly total P in peat, total K in peat, extractable NH4-N, and NO3-N flux in ground water, were strongly negatively correlated with plant diversity measures at the site. No other environmental variables except vegetation measures associated with eutrophication demonstrated such a strong relationship with plant diversity. Nitrate loading over 4 mg m -2 day-1 was associated with low plant diversity, and Ca fluxes between 80 and 130 mg m-2 day-1 were associated with high plant diversity. Areas in the site with particularly low vascular plant and bryophyte species richness and Shannon-Wiener diversity (H') occurred adjacent to the farm field and near a hillside spring. High H' and species richness of vascular plants and bryophytes occurred in areas that were further removed from agriculture, contained no highly dominant vegetation, and were situated directly along the ground-water flow paths of springs. These areas were characterized by relatively constant water levels and consistent, yet moderate fluxes of base cations and nutrients. Overall, this study demonstrates that knowledge of site hydrogeology is crucial for determining potential pathways of nutrient loading and for developing relationships between nutrient inflows and wetland plant diversity. ?? 2002, The Society of Wetland Scientists.

Drexler, J.Z.; Bedford, B.L.

2002-01-01

160

Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds.  

PubMed

Classical niche theory explains the coexistence of species through their exploitation of different resources. Assemblages of herbivores coexisting on a particular plant species are thus expected to be dominated by species from host-specific guilds with narrow, coexistence-facilitating niches rather than by species from generalist guilds. Exactly the opposite pattern is observed for folivores feeding on trees in New Guinea. The least specialized mobile chewers were the most species rich, followed by the moderately specialized semiconcealed and exposed chewers. The highly specialized miners and mesophyll suckers were the least species-rich guilds. The Poisson distribution of herbivore species richness among plant species in specialized guilds and the absence of a negative correlation between species richness in different guilds on the same plant species suggest that these guilds are not saturated with species. We show that herbivore assemblages are enriched with generalists because these are more completely sampled from regional species pools. Herbivore diversity increases as a power function of plant diversity, and the rate of increase is inversely related to host specificity. The relative species diversity among guilds is thus scale dependent, as the importance of specialized guilds increases with plant diversity. Specialized insect guilds may therefore comprise a larger component of overall diversity in the tropics (where they are also poorly known taxonomically) than in the temperate zone, which has lower plant diversity. PMID:22322223

Novotny, Vojtech; Miller, Scott E; Hrcek, Jan; Baje, Leontine; Basset, Yves; Lewis, Owen T; Stewart, Alan J A; Weiblen, George D

2012-03-01

161

?-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan  

PubMed Central

Two main theories have attempted to explain variation in plant species composition (?-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of ?-diversity. In this study, we first explored how ?- and ?-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on ?-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that ?-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. ?-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced ?-diversity across functional groups, but showed a low influence on ?-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both ?- and ?-diversity patterns and correlates that are not apparent when focusing on overall woody plant diversity, and that have important implications for ecological theory and biodiversity conservation. PMID:24040014

Lopez-Martinez, Jorge Omar; Sanaphre-Villanueva, Lucia; Dupuy, Juan Manuel; Hernandez-Stefanoni, Jose Luis; Meave, Jorge Arturo; Gallardo-Cruz, Jose Alberto

2013-01-01

162

Assessing invasive plant infestation in freshwater wetlands  

Microsoft Academic Search

Recent shifts in wetland ecosystem management goals have directed efforts toward measuring ecological integrity, rather than only using physical and chemical measures of ecosystems as health indicators. Invasive species pose one of the largest threats to wetlands integrity. Resource managers can benefit from improved methods for identifying invasive plant species, assessing infestation, and monitoring control measures. The utilization of advanced

Nathan M. Torbick

2007-01-01

163

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-print Network

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California that the uses of this information will not infringe upon privately owned rights. This report has not been and recognizing the importance of publishing this work so it could be used by other researchers and decision

164

Plant Wide Assessment for SIFCO Industries, Inc.  

SciTech Connect

Sifco Industries carreid out a plant wide energy assessment under a collaborative program with the U.S. Department of Energy during October 2004 to September 2005. During the year, personnel from EIS, E3M, DPS, BuyCastings.Com, and Sifco plant facilities and maintenance personnel, as a team collected energy use, construction, process, equipment and operational information about the plant. Based on this information, the team identified 13 energy savings opportunities. Near term savings opportunities have a total potential savings of about $1,329,000 per year and a combined simple payback of about 11 months. Implementation of these recommendations would reduce CO2 emissions by about 16,000,000 pounds per year, which would reduce overall plant CO2 emissions by about 45%. These totals do not include another $830,000 per year in potential savings with an estimated 9-month payback, from converting the forging hammers from steam to compressed air.

Kelly Kissock, Arvind Thekdi et. al.

2005-07-06

165

Effects of grassland plant species diversity on soil animal food web components  

Microsoft Academic Search

To investigate the feedback of the plant community to the soil food web we set up a greenhouse experiment manipulating both (1) the diversity of a model grassland community, consisting of 43 common plant species of a Central European Arrhenatherion grassland following \\

Alexandru Milcu; Stephan Partsch; Stefan Scheu

166

Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal  

E-print Network

Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal by horizontal gene transfer (HGT), but whether these or any other plants have acquired many foreign genes sequencing has revealed that horizontal gene trans- fer (HGT), the transfer of genes between nonmating spe

Palmer, Jeffrey

167

Diversity dynamics of silurian-early carboniferous land plants in South china.  

PubMed

New megafossil and microfossil data indicate four episodes in the diversification of Silurian-Early Carboniferous land plants of South China, a relatively continuous regional record. Plant diversity increased throughout, but the rising curve was punctuated by three major falls. There were peaks of origination in the Ludlow-Pragian, Givetian, late Famennian and Visean and peaks of extinction in the Pragian-Emsian, Givetian and early Tournaisian. Speciation and extinction rates were highest in the Lochkovian-Pragian and became progressively lower in subsequent stages. High correlation coefficients indicate that these events are associated with the availability of land habitat contingent on eustatic variations and increasing numbers of cosmopolitan genera. Meanwhile, proportions of endemic genera declined gradually. Due to less endemism and more migrations, both speciation and species extinction rates reduced. The changes of diversity and the timing of the three extinctions of land plants in South China are similar to those known already from Laurussia. However, the largest events in the Lochkovian-Pragian and subsequent smaller ones have not been seen in the global pattern of plant evolution. These land plant events do not correspond well temporally with those affecting land vertebrates or marine invertebrates. In South China, the diversity curve of land plants is generally opposite to that of marine faunas, showing a strong effect of eustatic variations. The increasing diversity of both land vertebrates and plants was punctuated above the Devonian-Carboniferous boundary, known as Romer's Gap, implying common underlying constraints on macroevolution of land animals and plants. PMID:24073276

Xiong, Conghui; Wang, Deming; Wang, Qi; Benton, Michael J; Xue, Jinzhuang; Meng, Meicen; Zhao, Qi; Zhang, Jing

2013-01-01

168

Successful herbivore attack due to metabolic diversion of a plant chemical defense  

Microsoft Academic Search

Plants protect themselves against herbivory with a diverse array of repellent or toxic secondary metabolites. However, many herbivorous insects have developed counteradaptations that enable them to feed on chemically defended plants without apparent negative effects. Here, we present evidence that larvae of the specialist insect, Pieris rapae (cabbage white butterfly, Lepidoptera: Pieridae), are biochemically adapted to the glucosinolate-myrosinase system, the

Ute Wittstock; Niels Agerbirk; Einar J. Stauber; Carl Erik Olsen; Michael Hippler; Thomas Mitchell-Olds; Jonathan Gershenzon; Heiko Vogel

2004-01-01

169

Strategies to Enhance Plant Structure and Diversity in Crested Wheatgrass Seedings  

Microsoft Academic Search

Crested wheatgrass (Agropyron cristatum sensu amplo (L.) Gaertn.) is an introduced, caespitose grass that has been seeded on millions of acres of Western rangelands. In some areas, crested wheatgrass seedings overlap with critical sage-grouse (Centrocercus urophasianus; C. minimus) habitat, raising the question of how plant diversity might be restored in these closed plant communities. A three-step process is described to

Mike Pellant; Cindy R. Lysne

2005-01-01

170

Plant diversity differs between young and old mesic meadows in a central European low mountain region  

Microsoft Academic Search

Effects of habitat age on species diversity are an important issue in plant conservation. However, effects of habitat age on mesic meadows are poorly investigated. Here we compare plant species richness between old mesic meadows (>150 years) and young mesic meadows (40–60 years) in a low mountain region (Thuringian Forest, Germany). Species richness and species traits were determined in 20

Gunnar Waesch; Thomas Becker

2009-01-01

171

MSU Departmental Assessment Plan 2009-2010 Department: Plant Sciences and Plant Pathology  

E-print Network

) (horticulture, landscape design, plant biology, crop science and plant biotechnology) each have separateMSU Departmental Assessment Plan 2009-2010 Department: Plant Sciences and Plant Pathology by Department #12;Assessment and Outcomes Progress 2008-2009--Department of Plant Sciences and Plant Pathology

Maxwell, Bruce D.

172

Plant Diversity in Live Fences and Pastures, Two Examples from the Mexican Humid Tropics  

NASA Astrophysics Data System (ADS)

This study analyzes the potential uses of live fences and pastures as reservoirs of plant diversity for two regions with different management histories, Los Tuxtlas (LT) and Uxpanapa (UX), Veracruz, México. We studied two habitats, live fences and pastures, analyzed their species richness, diversity, structure and plant composition and classified species according to plant regeneration modes (light-demanding and shade tolerant), seed dispersal syndrome and their local uses. We recorded 62 species of trees at LT and 48 at UX. Live fences were more diverse than pastures in both regions. The LT site showed to analyze the relationship a higher diversity of plants in regeneration stages than the one at UX. However, UX had higher diversity of adult plants in the pastures than LT. Composition and structure of live fences were different between regions, as well as within live fences and pastures, 53 % of species were light-demanding and 40 % were shade tolerant; 70 % of the species were dispersed by birds. Differences between sites are associated with the modifications in live fences structure, which changed according to managerial practices and the use of local species; this may influence plant regeneration modes as well as the visits of avian dispersal agents. In LT, all species found in live fences were useful to humans, whereas in UX, less than half were used by the local population. Our results underline the importance of live fences and isolated trees in pasture habitats as potential sites to host native and useful species from tropical rain forests in livestock landscapes.

Ruiz-Guerra, Betsabé; Rosas, Noé Velázquez; López-Acosta, Juan Carlos

2014-09-01

173

Changes in plant species diversity along a chronosequence of vegetation restoration in the humid evergreen broad-leaved forest in the Rainy Zone of West China  

Microsoft Academic Search

Plant species diversity has been recognized as one of the vital attributes for assessing vegetation restoration. Changes in\\u000a the diversity may be related to different stages of succession. In this study, 54 sites of humid, evergreen, broad-leaved\\u000a forest were selected in the Rainy Zone of West China. A chronosequence of the sites was used to study the successive patterns\\u000a of

Wanze Zhu; Song Cheng; Xiaohu Cai; Fei He; Jinxi Wang

2009-01-01

174

Effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China.  

PubMed

This study evaluated the effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Poplar plantations resulted in a higher species number and Shannon's diversity. Species compositions were different between areas with poplar and reed populations: a lower ratio of hygrophytes but a higher ratio of mesophytes, and a higher ratio of heliophytes but a lower ratio of neutrophilous or shade plants in poplar areas compared to reed areas. Poplar plantations supported a higher ratio of ligneous plants in the entire Dongting Lake area, but there was no difference in the monitored plots. Unlike reedy areas, poplar plantations had higher light availability but lower soil water content during the growing seasons. These data suggest that young poplar plantations generally increased species richness and plant diversity, but significantly changed species composition due to the reduced soil water and increased light availability. PMID:25208975

Li, Youzhi; Chen, Xinsheng; Xie, Yonghong; Li, Xu; Li, Feng; Hou, Zhiyong

2014-01-01

175

A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus.  

PubMed

In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples. PMID:15590089

Yergeau, E; Filion, M; Vujanovic, V; St-Arnaud, M

2005-02-01

176

Assessing the Effectiveness of Undergraduate Diversity Courses Using the Multicultural Experiences Questionnaire  

ERIC Educational Resources Information Center

The Multicultural Experiences Questionnaire (MEQ) is a validated and easy-to-administer tool for assessing individuals' multicultural competencies (Narvaez & Hill, 2010). The current study examined the utility of the MEQ for assessing the impact of undergraduate diversity courses. A total of 137 students in six university-designated diversity

You, Di; Matteo, Elizabeth

2013-01-01

177

Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion  

Microsoft Academic Search

Endophytic bacteria have been found in virtually every plant studied, where they colonize the internal tissues of their host\\u000a plant and can form a range of different beneficial relationships. The diversity of bacterial endophytes associated with ginseng\\u000a plants of varying age levels in Korea was investigated. Fifty-one colonies were isolated from the interior of ginseng stems.\\u000a Although a mixed composition

Regupathy Thamizh Vendan; Young Joon Yu; Sun Hee Lee; Young Ha Rhee

2010-01-01

178

Plant Community Diversity Influences Allocation to Direct Chemical Defence in Plantago lanceolata  

Microsoft Academic Search

BackgroundForecasting the consequences of accelerating rates of changes in biodiversity for ecosystem functioning requires a mechanistic understanding of the relationships between the structure of biological communities and variation in plant functional characteristics. So far, experimental data of how plant species diversity influences the investment of individual plants in direct chemical defences against herbivores and pathogens is lacking.Methodology\\/Principal FindingsWe used Plantago

Anne Mraja; Sybille B. Unsicker; Michael Reichelt; Jonathan Gershenzon; Christiane Roscher

2011-01-01

179

Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory  

PubMed Central

Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale. PMID:23825795

2013-01-01

180

Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities.  

PubMed

Invasive plants have been shown to negatively affect the diversity of plant communities. However, little is known about the effect of invasive plants on the diversity at other trophic levels. In this study, we examine the per capita effects of two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), on moth diversity in wetland communities at 20 sites in the Pacific Northwest, USA. Prior studies document that increasing abundance of these two plant species decreases the diversity of plant communities. We predicted that this reduction in plant diversity would result in reduced herbivore diversity. Four measurements were used to quantify diversity: species richness (S), community evenness (J), Brillouin's index (H) and Simpson's index (D). We identified 162 plant species and 156 moth species across the 20 wetland sites. The number of moth species was positively correlated with the number of plant species. In addition, invasive plant abundance was negatively correlated with species richness of the moth community (linear relationship), and the effect was similar for both invasive plant species. However, no relationship was found between invasive plant abundance and the three other measures of moth diversity (J, H, D) which included moth abundance in their calculation. We conclude that species richness within, and among, trophic levels is adversely affected by these two invasive wetland plant species. PMID:18947450

Schooler, S S; McEvoy, P B; Hammond, P; Coombs, E M

2009-06-01

181

Simulated climate-vegetation interaction in semi-arid regions affected by plant diversity  

NASA Astrophysics Data System (ADS)

The end of the African Humid Period between 6,000 and 4,000 years ago was associated with large changes in precipitation and vegetation cover. Sediment records from Lake Yoa, Chad, show a gradual decline in precipitation and fluctuation in vegetation over this interval, and have been suggested to demonstrate a weak interaction between climate and vegetation. However, interpretation of these data has neglected the potential effects of plant diversity on the stability of the climate-vegetation system. Here we use a conceptual model that represents plant diversity in terms of moisture requirement. Some of the plant types simulated are sensitive to changes in precipitation, which alone would lead to an unstable system with the possibility of abrupt changes. Other plants are more resilient, resulting in a stable system that changes gradually. We demonstrate that plant diversity tends to attenuate the instability of the interaction between climate and sensitive plant types, whereas it reduces the stability of the interaction between climate and less-sensitive plant types. Hence, despite large sensitivities of individual plant types to precipitation, a gradual decline in precipitation and shift in mean vegetation cover can occur. However, we suggest that the system could become unstable if some plant types were removed or introduced, leading to an abrupt regime shift.

Claussen, M.; Bathiany, S.; Brovkin, V.; Kleinen, T.

2013-11-01

182

Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas.  

PubMed

A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. PMID:21638006

Namgail, Tsewang; Rawat, Gopal S; Mishra, Charudutt; van Wieren, Sipke E; Prins, Herbert H T

2012-01-01

183

Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas  

USGS Publications Warehouse

A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. ?? 2011 The Author(s).

Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E.; Prins, H.H.T.

2012-01-01

184

A phylogenetic perspective on the distribution of plant diversity  

PubMed Central

Phylogenetic studies are revealing that major ecological niches are more conserved through evolutionary history than expected, implying that adaptations to major climate changes have not readily been accomplished in all lineages. Phylogenetic niche conservatism has important consequences for the assembly of both local communities and the regional species pools from which these are drawn. If corridors for movement are available, newly emerging environments will tend to be filled by species that filter in from areas in which the relevant adaptations have already evolved, as opposed to being filled by in situ evolution of these adaptations. Examples include intercontinental disjunctions of tropical plants, the spread of plant lineages around the Northern Hemisphere after the evolution of cold tolerance, and the radiation of northern alpine plants into the Andes. These observations highlight the role of phylogenetic knowledge and historical biogeography in explanations of global biodiversity patterns. They also have implications for the future of biodiversity. PMID:18695216

Donoghue, Michael J.

2008-01-01

185

Biosynthesis of Plant Volatiles: Nature's Diversity and Ingenuity  

NSDL National Science Digital Library

Plant volatiles (PVs) are lipophilic molecules with high vapor pressure that serve various ecological roles. The synthesis of PVs involves the removal of hydrophilic moieties and oxidation/hydroxylation, reduction, methylation, and acylation reactions. Some PV biosynthetic enzymes produce multiple products from a single substrate or act on multiple substrates. Genes for PV biosynthesis evolve by duplication of genes that direct other aspects of plant metabolism; these duplicated genes then diverge from each other over time. Changes in the preferred substrate or resultant product of PV enzymes may occur through minimal changes of critical residues. Convergent evolution is often responsible for the ability of distally related species to synthesize the same volatile.

Eran Pichersky (University of Michigan;Department of Molecular, Cellular and Developmental Biology); Joseph P. Noel (The Salk Institute for Biological Studies;Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics); Natalia Dudareva (Purdue University;Department of Horticulture and Landscape Architecture)

2006-02-10

186

Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field  

Microsoft Academic Search

The relationship between plant diversity and productivity has received much attention in ecology, but the relationship of these factors to soil microbial communities has been little explored. The carbon resources that support soil microbial communities are primarily derived from plants, so it is likely that the soil microbial community should respond to changes in plant diversity or productivity, particularly if

L. C. Broughton; K. L. Gross

2000-01-01

187

Selection of plant heterokaryons from diverse origins by flow cytometry  

Microsoft Academic Search

Summary Protoplasts from a range of tissue sources for 21 species within the plant familiesCompositae, Cruciferae, Leguminosae, andSolanaceae were fused electrically to produce heterokaryons. Protoplasts were labelled by application of green fluorescein fluorescence to one parental protoplast population, and the red fluorescence of either naturally occurring chlorophyll or of rhodamine exogenously applied to the other parental type. Heterokaryon populations were

N. Hammatt; A. Lister; N. W. Blackhall; J. Gartland; T. K. Ghose; D. M. Gilmour; J. B. Power; M. R. Davey; E. C. Cocking

1990-01-01

188

Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity  

PubMed Central

Background Two decades of research showing that increasing plant diversity results in greater community productivity has been predicated on greater functional diversity allowing access to more of the total available resources. Thus, understanding phenotypic attributes that allow species to partition resources is fundamentally important to explaining diversity-productivity relationships. Methodology/Principal Findings Here we use data from a long-term experiment (Cedar Creek, MN) and compare the extent to which productivity is explained by seven types of community metrics of functional variation: 1) species richness, 2) variation in 10 individual traits, 3) functional group richness, 4) a distance-based measure of functional diversity, 5) a hierarchical multivariate clustering method, 6) a nonmetric multidimensional scaling approach, and 7) a phylogenetic diversity measure, summing phylogenetic branch lengths connecting community members together and may be a surrogate for ecological differences. Although most of these diversity measures provided significant explanations of variation in productivity, the presence of a nitrogen fixer and phylogenetic diversity were the two best explanatory variables. Further, a statistical model that included the presence of a nitrogen fixer, seed weight and phylogenetic diversity was a better explanation of community productivity than other models. Conclusions Evolutionary relationships among species appear to explain patterns of grassland productivity. Further, these results reveal that functional differences among species involve a complex suite of traits and that perhaps phylogenetic relationships provide a better measure of the diversity among species that contributes to productivity than individual or small groups of traits. PMID:19479086

Cadotte, Marc W.; Cavender-Bares, Jeannine; Tilman, David; Oakley, Todd H.

2009-01-01

189

Diversity of lepidopteran stem borers on monocotyledonous plants in eastern Africa and the islands of Madagascar and Zanzibar revisited.  

PubMed

Surveys were completed in Eritrea, Ethiopia, Kenya, Madagascar, Mozambique, Tanzania, Uganda and Zanzibar to assess the lepidopteran stem borer species diversity on wild host plants. A total of 24,674 larvae belonging to 135 species were collected from 75 species of wild host plants belonging to the Poaceae, Cyperaceae and Typhaceae. Amongst them were 44 noctuid species belonging to at least nine genera, 33 crambids, 15 pyralids, 16 Pyraloidea species not yet identified, 25 tortricids and three cossids. The noctuid larvae represented 73.6% of the total number of larvae collected, with 66.3, 3.5 and 3.8% found on Poaceae, Cyperaceae and Typhaceae, respectively. The Crambidae, Pyralidae, Tortricidae and Cossidae represented 19.8, 1.9, 2.5 and 0.1% of the total larvae collected, respectively, with 90.4% of the Crambidae and Pyralidae collected from Poaceae, and 99.7% of the Tortricidae collected from Cyperaceae. The lepidopteran stem borer species diversity in the wild host plants was far more diverse than previously reported. PMID:17201973

Le Ru, B P; Ong'amo, G O; Moyal, P; Ngala, L; Musyoka, B; Abdullah, Z; Cugala, D; Defabachew, B; Haile, T A; Matama, T Kauma; Lada, V Y; Negassi, B; Pallangyo, K; Ravolonandrianina, J; Sidumo, A; Omwega, C O; Schulthess, F; Calatayud, P A; Silvain, J F

2006-12-01

190

Additive partitioning of plant species diversity in an agricultural mosaic landscape  

Microsoft Academic Search

In this paper, we quantify the effects of habitat variability and habitat heterogeneity based on the partitioning of landscape species diversity into additive components and link them to patch-specific diversity. The approach is illustrated with a case study from central Switzerland, where we recorded the presence of vascular plant species in a stratified random sample of 1'280 quadrats of 1 m2

Helene H. Wagner; Otto Wildi; Klaus C. Ewald

2000-01-01

191

Effects of Plant Biomass, Plant Diversity, and Water Content on Bacterial Communities in Soil Lysimeters: Implications for the Determinants of Bacterial Diversity? †  

PubMed Central

Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches. PMID:17873072

Zul, Delita; Denzel, Sabine; Kotz, Andrea; Overmann, Jorg

2007-01-01

192

Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity.  

PubMed

Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches. PMID:17873072

Zul, Delita; Denzel, Sabine; Kotz, Andrea; Overmann, Jörg

2007-11-01

193

Automated Software Engineering Process Assessment: Supporting Diverse Models using an Ontology  

E-print Network

assessment tooling; semantic technology; Capability Maturity Model Integration; ISO/IEC 15504; ISO 9000 I assessment while simultaneously supporting diverse process assessment reference models (CMMI, ISO/IEC 15504, ISO 9001). It also provides an in-the-loop automated process assessment capability that can help

Ulm, Universität

194

Diverse small RNA-directed silencing pathways in plants  

Microsoft Academic Search

Small silencing RNAs of 21- to 24-nucleotide (nt) in length are essential regulatory components expressed in most eukaryotic organisms. These regulatory small RNAs are produced through pathways that involve several evolutionarily conserved protein families, including DICER (DCR) or DICER-LIKE (DCL), ARGONAUTE (AGO), and RNA-DEPENDENT RNA POLYMERASE (RDR). Plants possess multiple functional DCL, RDR, and AGO proteins. Genetic analyses in the

Zhixin Xie; Xiaopeng Qi

2008-01-01

195

Effects of soil disturbance on plant diversity of calcareous grasslands  

Microsoft Academic Search

A soil disturbance experiment was performed during two seasons in degraded, calcareous sandy grassland in southern Sweden. pH, extractable phosphorus, plant species richness and vegetation composition were analyzed. Mechanical soil disturbance had no effect on pH, and caused only a minor increase in extractable phosphorus. Positive effects compared to control plots were seen on plot scale (360m2) in species richness

Tim Krone Schnoor; Pål Axel Olsson

2010-01-01

196

Microbes do not follow the elevational diversity patterns of plants and animals.  

PubMed

The elevational gradient in plant and animal diversity is one of the most widely documented patterns in ecology and, although no consensus explanation exists, many hypotheses have been proposed over the past century to explain these patterns. Historically, research on elevational diversity gradients has focused almost exclusively on plant and animal taxa. As a result, we do not know whether microbes exhibit elevational gradients in diversity that parallel those observed for macroscopic taxa. This represents a key knowledge gap in ecology, especially given the ubiquity, abundance, and functional importance of microbes. Here we show that, across a montane elevational gradient in eastern Peru, bacteria living in three distinct habitats (organic soil, mineral soil, and leaf surfaces) exhibit no significant elevational gradient in diversity (r2<0.17, P>0.1 in all cases), in direct contrast to the significant diversity changes observed for plant and animal taxa across the same montane gradient (r2>0.75, P<0.001 in all cases). This finding suggests that the biogeographical patterns exhibited by bacteria are fundamentally different from those of plants and animals, highlighting the need for the development of more inclusive concepts and theories in biogeography to explain these disparities. PMID:21661542

Fierer, Noah; McCain, Christy M; Meir, Patrick; Zimmermann, Michael; Rapp, Joshua M; Silman, Miles R; Knight, Rob

2011-04-01

197

Plant species diversity and composition of wetlands within an upland forest.  

PubMed

Though often overlooked, small wetlands in an upland matrix can support diverse plant communities that increase both local and regional species richness. Here we characterize the full range of wetland vegetation within an upland forest landscape and compare the diversity and composition of different wetland plant communities. In an old-growth forest reserve in southern Quebec, Canada, we sampled wet habitats including lakeshores, permanent and seasonal ponds, swamps, glades, and streamsides. We used clustering, indicator species analysis, and nonmetric multidimensional scaling ordination to identify and compare vegetation types. The wetlands contained 280 species of vascular plants, 45% of the reserve's flora, in only 1.1% of its area. Local diversity averaged 24 ± 0.7 species per 7 m(2), much higher than in the surrounding upland forests. Plant communities sorted into five types, whose strongest indicator species were Osmunda regalis, Glyceria striata, O. cinnamomea, Deparia acrostichoides, and Matteuccia struthiopteris, respectively. Both local species richness and compositional variation among sites differed among the vegetation types. By combining species representative of the region's major wetlands with species from the upland forest matrix, the plant assemblages of these wetlands make disproportionately important contributions to landscape-level diversity. PMID:21632326

Flinn, Kathryn M; Lechowicz, Martin J; Waterway, Marcia J

2008-10-01

198

Assessment of diversity in Harpagophytum with RAPD and ISSR markers provides evidence of introgression.  

PubMed

The genus Harpagophytum has two species: H. procumbens which is an important medicinal plant in southern Africa, and H. zeyheri. Genetic diversity in 96 samples, obtained by germinating seeds collected from Botswana, was assessed using six inter-simple sequence repeat (ISSR) and 10 random amplified polymorphic DNA (RAPD) primers. These DNA markers yielded a total of 138 polymorphic bands. Polymorphism information content (PIC) ranged from 0.06 to 0.39 for ISSR primers, and from 0.09 to 0.43 for RAPD primers. Jaccard's similarity coefficients were highest when seedlings derived from the same fruit capsule were compared, while seedlings from different fruits on the same plant had intermediate values. The lowest values were recorded among seedlings from different plants. These results were consistent with an outcrossing breeding system in Harpagophytum. Analysis of molecular variance revealed significant differentiation (P < 0.01) between taxonomic units within Harpagophytum. About 39% of the variability occurred between the two species, H. procumbens and H. zeyheri. Plants with an intermediate morphology, i.e. putative hybrids (PH), showed 21% differentiation when compared with H. procumbens ssp. procumbens (PP), and 19% when compared with H. procumbens ssp. transvaalense (PT) or with H. zeyheri (ZZ). In addition, a deviating variant of PT was identified, here termed 'procumbens new variety' (PN). PN showed only 9% differentiation when compared with PT, 22% when compared with PP or with PH, and 41% when compared with ZZ. Considerable differentiation between the two Harpagophytum species was revealed also by a cluster analysis. Introgression was, however, suggested by the intermediate position of the putative hybrid plants in a principal component analysis while inter-specific gene flow was shown by a Bayesian genetic structure analysis. PMID:25363276

Muzila, Mbaki; Werlemark, Gun; Ortiz, Rodomiro; Sehic, Jasna; Fatih, Moneim; Setshogo, Moffat; Mpoloka, Wata; Nybom, Hilde

2014-10-01

199

Patterns, determinants and models of woody plant diversity in China.  

PubMed

What determines large-scale patterns of species richness remains one of the most controversial issues in ecology. Using the distribution maps of 11 405 woody species in China, we compared the effects of habitat heterogeneity, human activities and different aspects of climate, particularly environmental energy, water-energy dynamics and winter frost, and explored how biogeographic affinities (tropical versus temperate) influence richness-climate relationships. We found that the species richness of trees, shrubs, lianas and all woody plants strongly correlated with each other, and more strongly correlated with the species richness of tropical affinity than with that of temperate affinity. The mean temperature of the coldest quarter was the strongest predictor of species richness, and its explanatory power for species richness was significantly higher for tropical affinity than for temperate affinity. These results suggest that the patterns of woody species richness mainly result from the increasing intensity of frost filtering for tropical species from the equator/lowlands towards the poles/highlands, and hence support the freezing-tolerance hypothesis. A model based on these results was developed, which explained 76-85% of species richness variation in China, and reasonably predicted the species richness of woody plants in North America and the Northern Hemisphere. PMID:21147804

Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao; Lin, Xin

2011-07-22

200

The “Hidden Diversity” of Medicinal Plants in Northeastern Brazil: Diagnosis and Prospects for Conservation and Biological Prospecting  

PubMed Central

Increases in ethnobotanical studies and knowledge in recent decades have led to a greater and more accurate interpretation of the overall patterns related to the use of medicinal plants, allowing for a clear identification of some ecological and cultural phenomena. “Hidden diversity” of medicinal plants refers in the present study to the existence of several species of medicinal plants known by the same vernacular name in a given region. Although this phenomenon has previously been observed in a localized and sporadic manner, its full dimensions have not yet been established. In the present study, we sought to assess the hidden diversity of medicinal plants in northeastern Brazil based on the ethnospecies catalogued by local studies. The results indicate that there are an average of at least 2.78 different species per cataloged ethnospecies in the region. Phylogenetic proximity and its attendant morphological similarity favor the interchangeable use of these species, resulting in serious ecological and sanitary implications as well as a wide range of options for conservation and bioprospecting. PMID:24228056

Cavalcanti, Deyvson Rodrigues; Albuquerque, Ulysses Paulino

2013-01-01

201

Assessing the Effect of Disturbances on Ectomycorrhiza Diversity  

PubMed Central

Ectomycorrhiza (ECM) communities can be described on a species level or on a larger scale at an ecosystem level. Here we show that the species level approach of successional processes in ECM communities is not appropriate for understanding the diversity patterns of ECM communities at contaminated sites. An ecosystem based approach improves predictability since different biotic and abiotic factors are included. However, it still does not take into account the hierarchical structure of the ecosystem. We suggest that diversity patterns of ECMs communities in forests can best be investigated at three levels. This hypothetical approach for investigation can be tested at sites of secondary succession in areas contaminated with metals. Once the diversity patterns are appropriately described by a hierarchical ecosystem approach, to the species level is used to explain these patterns by populational and ecotoxicological mechanisms. PMID:19440391

Iordache, Virgil; Gherghel, Felicia; Kothe, Erika

2009-01-01

202

Plant diversity in live fences and pastures, two examples from the Mexican humid tropics.  

PubMed

This study analyzes the potential uses of live fences and pastures as reservoirs of plant diversity for two regions with different management histories, Los Tuxtlas (LT) and Uxpanapa (UX), Veracruz, México. We studied two habitats, live fences and pastures, analyzed their species richness, diversity, structure and plant composition and classified species according to plant regeneration modes (light-demanding and shade tolerant), seed dispersal syndrome and their local uses. We recorded 62 species of trees at LT and 48 at UX. Live fences were more diverse than pastures in both regions. The LT site showed to analyze the relationship a higher diversity of plants in regeneration stages than the one at UX. However, UX had higher diversity of adult plants in the pastures than LT. Composition and structure of live fences were different between regions, as well as within live fences and pastures, 53 % of species were light-demanding and 40 % were shade tolerant; 70 % of the species were dispersed by birds. Differences between sites are associated with the modifications in live fences structure, which changed according to managerial practices and the use of local species; this may influence plant regeneration modes as well as the visits of avian dispersal agents. In LT, all species found in live fences were useful to humans, whereas in UX, less than half were used by the local population. Our results underline the importance of live fences and isolated trees in pasture habitats as potential sites to host native and useful species from tropical rain forests in livestock landscapes. PMID:24981271

Ruiz-Guerra, Betsabé; Rosas, Noé Velázquez; López-Acosta, Juan Carlos

2014-09-01

203

Plant Trait Diversity Buffers Variability in Denitrification Potential over Changes in Season and Soil Conditions  

PubMed Central

Background Denitrification is an important ecosystem service that removes nitrogen (N) from N-polluted watersheds, buffering soil, stream, and river water quality from excess N by returning N to the atmosphere before it reaches lakes or oceans and leads to eutrophication. The denitrification enzyme activity (DEA) assay is widely used for measuring denitrification potential. Because DEA is a function of enzyme levels in soils, most ecologists studying denitrification have assumed that DEA is less sensitive to ambient levels of nitrate (NO3?) and soil carbon and thus, less variable over time than field measurements. In addition, plant diversity has been shown to have strong effects on microbial communities and belowground processes and could potentially alter the functional capacity of denitrifiers. Here, we examined three questions: (1) Does DEA vary through the growing season? (2) If so, can we predict DEA variability with environmental variables? (3) Does plant functional diversity affect DEA variability? Methodology/Principal Findings The study site is a restored wetland in North Carolina, US with native wetland herbs planted in monocultures or mixes of four or eight species. We found that denitrification potentials for soils collected in July 2006 were significantly greater than for soils collected in May and late August 2006 (p<0.0001). Similarly, microbial biomass standardized DEA rates were significantly greater in July than May and August (p<0.0001). Of the soil variables measured—soil moisture, organic matter, total inorganic nitrogen, and microbial biomass—none consistently explained the pattern observed in DEA through time. There was no significant relationship between DEA and plant species richness or functional diversity. However, the seasonal variance in microbial biomass standardized DEA rates was significantly inversely related to plant species functional diversity (p<0.01). Conclusions/Significance These findings suggest that higher plant functional diversity may support a more constant level of DEA through time, buffering the ecosystem from changes in season and soil conditions. PMID:20661464

McGill, Bonnie M.; Sutton-Grier, Ariana E.; Wright, Justin P.

2010-01-01

204

The contrasting roles of growth traits and architectural traits in diversity maintenance in clonal plant communities.  

PubMed

Plant communities often exhibit high diversity, even though pairwise experiments usually result in competitive hierarchies that should result in competitive exclusion. Such experiments, however, do not typically allow expression of spatial traits, despite theoretical studies showing the potential importance of spatial mechanisms of diversity maintenance. Here we ask whether, in a clonal plant model system, spatial trait variation is more likely than growth trait variation to maintain diversity. We used a field-calibrated, spatially explicit model to simulate communities comprising sets of four simulated species differing in only one of a suite of architectural or growth traits at a time, examining their dynamics and long-term diversity. To compare trait manipulation effects across traits measured in different units, we scaled traits to have identical effects on initial productivity. We found that in communities of species differing only in an architectural trait, all species usually persist, whereas communities of species differing only in a growth trait experienced rapid competitive exclusion. To examine the roles of equalizing and stabilizing mechanisms in maintaining diversity, we conducted reciprocal invasion experiments for species pairs differing only in single traits. The results suggest that stabilizing mechanisms cannot account for the observed long-term co-occurrence. Strong positive correlations between diversity and similarity both in monoculture carrying capacity and reciprocal invasion ability suggesting equalizing mechanisms may instead be responsible. PMID:23149395

Wildová, Radka; Goldberg, Deborah E; Herben, Tomáš

2012-12-01

205

Plant-soil feedbacks provide an additional explanation for diversity-productivity relationships  

PubMed Central

Plant–soil feedbacks (PSFs) have gained attention for their role in plant community dynamics, but their role in productivity has been overlooked. We developed and tested a biomass-specific, multi-species model to examine the role of PSFs in diversity–productivity relationships. The model predicts a negative relationship between PSFs and overyielding: plants with negative PSFs grow more in communities than in monoculture (i.e. overyield), and plants with positive PSFs grow less in communities than in monoculture (i.e. underyield). This effect is predicted to increase with diversity and saturate at low species richness because the proportion of ‘self-cultivated’ soils rapidly decreases as species are added to a community. Results in a set of glasshouse experiments supported model predictions. We found that PSFs measured in one experiment were negatively correlated with overyielding in three-species plant communities measured in a separate experiment. Furthermore, when parametrized with our experimental PSF data, our model successfully predicted species-level overyielding and underyielding. The model was less effective at predicting community-level overyielding and underyielding, although this appeared to reflect large differences between communities with or without nitrogen-fixing plants. Results provide conceptual and experimental support for the role of PSFs in diversity–productivity relationships. PMID:22496190

Kulmatiski, Andrew; Beard, Karen H.; Heavilin, Justin

2012-01-01

206

[Effects of different removal disturbance intensity on plant diversity of Bursaphelenchus xylophilus-invaded Masson pine community].  

PubMed

The study on the plant diversity of Bursaphelenchus xylophilus-invaded Masson pine community under effects of different removal disturbance intensity showed that the species diversity indices (richness, Shannon-Wiener index and evenness) of arbor layer decreased in the sequence of broad-leaved stand after the removal of all infected pine trees in the pure pine stand in Fuyang > lightly infected Masson pine - Schima superba mixed stand in Fuyang > uninfected stand mixture of Masson pine and Castanopsis fargessi as the control > lightly infected pure Masson pine stand in Fuyang > Quercus variables stand formed after selective removal of infected pine trees from a mixed Masson pine and Q. variables stand in Zhoushan Islands > pure young Masson pine stand formed after the removal of all infected pine trees from a pure Masson pine stand > pure Liquidambar formosana stand after the removal of infected pine trees from a pure pine stand in Zhoushan Islands > mixed stand consisted of Pinus thunbergii and the Masson pine in Zhoushan Islands > moderately infected Masson pine stand in Zhoushan Islands. All the three indices of shrub layer did not show any significant differences among different communities, except for the pure pine stand in Zhoushan Island, which were the lowest. The three indices of herb layer were higher in pure young Masson pine, Q. variables stand, and L. formosana stand than in other stands. The Masson pine forest at different geographical situation and with different harm extent had distinct disparity, as well as that in different disturbance degree and restoring manner. The "Index of Disturbing Intensity of Stump and Fallen Woods" or IDISF was created to represent the disturbance degree of tree removal on plant diversity. It was found that for both less and more removal disturbing degree, the relationship between species diversity indices and IDISF followed the "Mid-altitude bulge" theory. Specifically, both excessive and insufficient removal of infected trees would cause the decline of plant species diversity in certain degree. Covariance analysis of IDISF indicated that different IDISF had no significant effects on the species diversity of arbor layer, but had different effects on that of shrub and herb layers, which could be used to assess the changes in species diversity of different Masson pine communities after the invasion of pine wood nematode. PMID:17044484

Shi, Juan; Luo, Youqing; Song, Jiying; Yan, Xiaosu; Jiang, Ping; Wang, Yijiao

2006-07-01

207

Changing Attitudes over Time: Assessing the Effectiveness of a Workplace Diversity Course  

ERIC Educational Resources Information Center

Diversity is increasing within the United States, and higher education will likely play a key role in preparing people to function in this new environment. This study assessed the effectiveness of a semester-long psychology workplace diversity course at changing student levels of ethnocentrism and attitudes regarding gender roles; the disabled;…

Probst, Tahira M.

2003-01-01

208

Assessing Nutritional Diversity of Cropping Systems in African Villages  

Microsoft Academic Search

BackgroundIn Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool,

Roseline Remans; Dan F. B. Flynn; Fabrice DeClerck; Willy Diru; Jessica Fanzo; Kaitlyn Gaynor; Isabel Lambrecht; Joseph Mudiope; Patrick K. Mutuo; Phelire Nkhoma; David Siriri; Clare Sullivan; Cheryl A. Palm

2011-01-01

209

Biological Diversity Assessment of Tok Bali Mangrove Forest, Kelantan, Malaysia  

Microsoft Academic Search

This paper attempts to give information about the structure of mangrove distribution at Tok Bali, Kelantan in order to initiate for management and rehabilitation program. A study was conducted in July to November 2006 to determine the species composition, diversity index and above-ground biomass in 15.8 ha Mixed Mangrove Forest. A transects forest profile length of 30 meter and 20

Lebuh Silikon

2007-01-01

210

Land-use intensification reduces functional redundancy and response diversity in plant communities.  

PubMed

Ecosystem resilience depends on functional redundancy (the number of species contributing similarly to an ecosystem function) and response diversity (how functionally similar species respond differently to disturbance). Here, we explore how land-use change impacts these attributes in plant communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We identify functional groups using multivariate analysis of plant traits which influence ecosystem processes. Functional redundancy is calculated as the species richness within each group, and response diversity as the multivariate within-group dispersion in response trait space, using traits that influence responses to disturbances. Meta-analysis across all datasets showed that land-use intensification significantly reduced both functional redundancy and response diversity, although specific relationships varied considerably among the different land-use gradients. These results indicate that intensified management of ecosystems for resource extraction can increase their vulnerability to future disturbances. PMID:19917052

Laliberté, Etienne; Wells, Jessie A; Declerck, Fabrice; Metcalfe, Daniel J; Catterall, Carla P; Queiroz, Cibele; Aubin, Isabelle; Bonser, Stephen P; Ding, Yi; Fraterrigo, Jennifer M; McNamara, Sean; Morgan, John W; Merlos, Dalia Sánchez; Vesk, Peter A; Mayfield, Margaret M

2010-01-01

211

Diversity of Marine Plants. Man and the Gulf of Mexico Series.  

ERIC Educational Resources Information Center

"Man and the Gulf of Mexico" (MGM) is a marine science curriculum series developed to meet the needs of 10th through 12th grade students in Mississippi and Alabama schools. This MGM unit on the diversity of marine plants is divided into 12 sections. The first section introduces the unit by providing objectives and activities on why people classify…

Irby, Bobby N., Comp.; And Others

212

Vascular plant diversity in the sacred groves of Jaintia Hills in northeast India  

Microsoft Academic Search

Diversity of vascular plants was studied in three sacred groves of the Jaintia Hills, in northeast India. About 395 species, 250 genera, and 108 families comprising pteridophytes, gymnosperms and angiosperms were found in the groves. Orchidaceae, Rubiaceae, Asteraceae and Lauraceae were dominant families and Ficus was the largest genus, with nine species. About 160 tree species were distributed in canopy,

S. Alemmeren Jamir; H. N. Pandey

2003-01-01

213

Plant succession in perennial grass strips and effects on the diversity of leafhoppers (Homoptera, Auchenorrhyncha)  

Microsoft Academic Search

The biodiversity of agroecosystems may be enhanced by increasing species richness and structural diversity of vegetation by creating perennial strips. Aims of the study were (1) to describe the plant succession of perennial strips in northern conditions; (2) to clarify the difference in insect fauna between cereal fields and perennial strips; (3) to determine the effect of succession on leafhoppers

Erja Huusela-Veistola; Arja Vasarainen

2000-01-01

214

Distribution and diversity of exotic plant species in montane to alpine areas of Kosciuszko National Park  

Microsoft Academic Search

Diversity and distribution of exotic plant taxa in Kosciuszko National Park in south-eastern Australia were reviewed based on 1103 records of exotics from 18 vegetation surveys conducted between 1986 and 2004. 154 taxa from 23 families were recorded in the alpine to montane zones, with eleven taxa in the alpine, 128 taxa in the subalpine and 69 taxa in the

Roxana Bear; Wendy Hill; Catherine M. Pickering

215

Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae)  

Microsoft Academic Search

The purpose of his research was to describethe organization of genetic variation in thefederally endangered plant taxon Eriogonumovalifolium var. vineum using allozymes. Such information can help prioritize sites andmanagement choices for capturing andmaintaining genetic variation and can reducethe number of populations necessary to committo conservation, thus reducing costs andconflicts with competing land uses. Information on genetic diversity patterns alsoprovides insight

Maile C. Neel; Norman C. Ellstrand

2003-01-01

216

Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged  

Microsoft Academic Search

Alternative splicing has recently emerged as one of the most significant generators of functional complexity in several relatively well-studied animal genomes, but little is known about the extent of this phenomenon in higher plants. However, recent computational and experimental studies discussed here suggest that alternative splicing probably plays a far more significant role in the generation of proteome diversity in

Kemal Kazan

2003-01-01

217

Separating the chance effect from other diversity effects in the functioning of plant communities  

Microsoft Academic Search

The effect of plant species diversity on productivity and competitive ability was studied in an experiment carried out simultaneously in five European countries: Czech Republic (CZ), the Netherlands (NL), Sweden (SE), Spain (SP), and United Kingdom (UK). The aim was to separate the 'chance' or 'sampling effect' (increasing the number of sown species increases the probability that a species able

J. Lepš; Valerie K. Brown; Tomas A. Diaz Len; Dagmar Gormsen; Katarina Hedlund; Jana Kailova; Gerard W. Korthals; Simon R. Mortimer; Claudino Rodriguez-Barrueco; Jacques Roy; Regina Santa I; Cornelis van Dijk; Wim H. van der Putten

2001-01-01

218

Contemporary Issues in the Assessment of Culturally and Linguistically Diverse Learners  

Microsoft Academic Search

This article addresses issues faced by school psychologists when assessing students who are culturally and linguistically diverse (CLD). The authors describe the growing CLD population and legal requirements for assessment of CLD students for special education eligibility. Difficulties associated with referral and assessment procedures of CLD students and essential knowledge for examiners are explained, including second language acquisition at the

Jacqueline Schon; Julia Shaftel; Paul Markham

2008-01-01

219

Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal).  

PubMed

Cyanobacteria are common in eutrophic natural waters. Being favoured by warm, stable and nutrient-enriched waters they may constitute an important part of the phytoplankton community in Wastewater Treatment Plants (WWTP). The phytoplankton communities of two ponds (facultative and maturation) of the WWTP of Esmoriz (North Portugal) were studied, with particular importance given to cyanobacteria. Mouse bioassays were performed with cyanobacteria samples during some of the blooms and ELISA assays specific for hepatotoxic microcystins were carried out. During the study period (January-July 1999) cyanobacteria were frequently dominant in the ponds ranging from 15.2 to 99.8% of the total phytoplankton density. The main species were Planktothrix mougeotii, Microcystis aeruginosa and Pseudanabaena mucicola. Mouse bioassays were performed during Oscillatoria bloom period but the results were negative, in spite of the high cyanobacteria biomass. ELISA assays were performed for both ponds but only in the maturation pond positive values were found. Microcystin concentrations (as MCYST-LR equivalents) varied from 2.3 to 56.0 micrograms/l on the margin of the pond and between 1.7 and 4.6 micrograms/l in the outflow of this pond. These values indicate that WWTP may be a source of contamination of water bodies with cyanobacteria toxins. PMID:11268858

Vasconcelos, V M; Pereira, E

2001-04-01

220

How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands  

USGS Publications Warehouse

We used multiscale plots to sample vascular plant diversity and soil characteristics in and adjacent to 26 long-term grazing exclosure sites in Colorado, Wyoming, Montana, and South Dakota, USA. The exclosures were 7-60 yr old (31.2 ?? 2.5 yr, mean ?? 1 SE). Plots were also randomly placed in the broader landscape in open rangeland in the same vegetation type at each site to assess spatial variation in grazed landscapes. Consistent sampling in the nine National Parks, Wildlife Refuges, and other management units yielded data from 78 1000-m2 plots and 780 1-m2 subplots. We hypothesized that native species richness would be lower in the exclosures than in grazed sites, due to competitive exclusion in the absence of grazing. We also hypothesized that grazed sites would have higher native and exotic species richness compared to ungrazed areas, due to disturbance (i.e., the intermediate-disturbance hypothesis) and the conventional wisdom that grazing may accelerate weed invasion. Both hypotheses were soundly rejected. Although native species richness in 1-m2 subplots was significantly higher (P < 0.05) in grazed sites, we found nearly identical native or exotic species richness in 1000-m2 plots in exclosures (31.5 ?? 2.5 native and 3.1 ?? 0.5 exotic species), adjacent grazed plots (32.6 ?? 2.8 native and 3.2 ?? 0.6 exotic species), and randomly selected grazed plots (31.6 ?? 2.9 native and 3.2 ?? 0.6 exotic species). We found no significant differences in species diversity (Hill's diversity indices, N1 and N2), evenness (Hill's ratio of evenness, E5), cover of various life-forms (grasses, forbs, and shrubs), soil texture, or soil percentage of N and C between grazed and ungrazed sites at the 1000-m2 plot scale. The species lists of the long-ungrazed and adjacent grazed plots overlapped just 57.9 ?? 2.8%. This difference in species composition is commonly attributed solely to the difference in grazing regimes. However, the species lists between pairs of grazed plots (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

1999-01-01

221

A Psychometric Review of Career Assessment Tools for Use with Diverse Individuals.  

ERIC Educational Resources Information Center

Reviews career-related issues for employees with diverse characteristics and job status. Evaluates 44 psychometrically sound career-assessment instruments for their usefulness in dealing with issues. (SK)

Eby, Lillian T.; Johnson, C. Douglas; Russell, Joyce E. A.

1998-01-01

222

Plant community diversity and native plant abundance decline with increasing abundance of an exotic annual grass  

Microsoft Academic Search

Exotic plants are generally considered a serious problem in wildlands around the globe. However, some argue that the impacts\\u000a of exotic plants have been exaggerated and that biodiversity and other important plant community characteristics are commonly\\u000a improved with invasion. Thus, disagreement exists among ecologists as to the relationship of exotic plants with biodiversity\\u000a and native plant communities. A better understanding

Kirk W. Davies

223

Latitudinal changes in species diversity of permafrost wetland plant communities in Great Xing’an Mountain valleys of Northeast China  

Microsoft Academic Search

Studying the changes of species diversity in plant communities along latitude gradients is important to discover the correlation between biodiversity and environmental factors. Along the main ridges of the Great Xing’an Mountains, 12 natural permafrost wetlands in the valleys were investigated from north to south. Latitudinal changes in species diversity were analyzed with regressive analysis. About 150 plant species were

Ju Sun; Xiu-Zhen Li; Xian-Wei Wang; Jiu-Jun Lv; Zong-Mei Li; Yuan-Man Hu

2009-01-01

224

Genetic and functional diversity among root-associated psychrotrophic Pseudomonad's isolated from the Himalayan plants.  

PubMed

Out of 534 psychrotrophic bacteria, 12 bacteria were selected on the basis of plant growth promoting activities at 4 °C and identified as Pseudomonas genus. These strains showed high level of genetic polymorphisms based on RAPD and rep-PCR fingerprinting. This genetic variability revealed that isolates belonging to same species were as high as the variability among different species. Further inoculation of these Pseudomonas strains significantly improves root/shoot biomass and nutrients uptake of lentil plant as compared to non-bacterized control after 40 days of seed showing. Agglomerative hierarchical clustering analysis of pot assay results revealed that genetically diverse strains showing the same prototype in functional parameter and representing diverse blueprint of plant growth promoting attributes. Results of present findings explain the huge beneficial microbial resources from root zone of hilly crops of Himalayan region that could be effectively exploited as bio-inoculums for cold climatic condition. PMID:23861148

Bisht, Shekhar Chandra; Mishra, Pankaj Kumar; Joshi, Gopal Kishna

2013-09-01

225

The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities  

PubMed Central

Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities. PMID:23765101

Lee, Yong-Jin; van Nostrand, Joy D; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; Carter, Michelle Q; He, Zhili; Wu, Liyou; Yang, Fang; Xu, Jian; Zhou, Jizhong

2013-01-01

226

A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.  

NASA Astrophysics Data System (ADS)

The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

2012-04-01

227

Mechanisms for increased soil C storage with increasing temporal and spatial plant diversity in Agroecosystems  

NASA Astrophysics Data System (ADS)

Generally, there are positive relationships between plant species diversity and net primary production and other key ecosystem functions. However, the effects of aboveground diversity on soil microbial communities and ecosystem processes they mediate, such as soil C sequestration, remain unclear. In this study, we used an 11-y cropping diversity study where increases in diversity have increased crop yields. At the experimental site, temporal diversity is altered using combinations of annual crop rotations, while spatial diversity is altered using cover crop species. We used five treatments ranging in diversity from one to five species consisting of continuous corn with no cover crop or one cover crop and corn-soy-wheat rotations with no cover, one cover or two cover crop species. We collected soils from four replicate plots of each treatment and measured the distribution of mega- (>2 mm), macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates. Within each aggregate size class, we also measured total soil C and N, permanganate oxidizable C (POXC), extracellular enzyme activities (EEA), and microbial community structure with phospholipid fatty acid (PLFA) analysis. We use these data to address the impacts of both rotational and cover crop diversity on soil physical structure, associated microbial community structure and activity and soil C storage. As spatial diversity increased, we found concurrent increases in mega-aggregate abundance as well as increasing soil C in the mega- and micro-aggregates but not macro-aggregates. The proportion of total soil C in each aggregate size class that is relatively labile (POXC) was highest in the micro-aggregates, as was enzyme activity associated with labile C acquisition across all levels of diversity. Enzyme activity associated with more recalcitrant forms of soil C was highest in the mega-aggregate class, also across all diversity levels; however, the ratio of labile to recalcitrant EEA increased with increasing diversity in the mega- and micro-aggregates. In addition, soil N increased with diversity such that microbial C:N EEA simultaneously decreased in mega-aggregates. We also found that cropping diversity has created distinctive soil microbial communities, highlighted by variation in the abundance of gram positive bacteria and Actinomycetes. Further research will help us determine how these changes in community structure with increasing diversity are related to concomitant changes in aggregation and enzyme activities. We suggest that the additional organic matter inputs from cover crops in the high diversity treatments have increased aggregation processes and C pools. While microbial activity has also increased in association with this increased C availability, the activity of recalcitrant and N-acquiring enzymes has declined, suggesting an overall decrease in SOM mineralization with possible increased SOM stabilization. The addition of crop species in rotation (temporal diversity) had minimal influence on any of the measured parameters. We thus conclude that spatial diversity is a more important driver of soil structure and microbial activity, likely due to the high quality organic matter inputs derived from the leguminous cover crops; however, spatial diversity alone did not lead to the same level of C storage potential as mixtures of temporal and spatial diversity.

Tiemann, L. K.; Grandy, S.; Marin-Spiotta, E.; Atkinson, E. E.

2012-12-01

228

Reproductive consequences of mate quantity versus mate diversity in a wind-pollinated plant  

NASA Astrophysics Data System (ADS)

Since most pollen travels limited distances in wind-pollinated plants, both the local quantity and diversity of mates may limit female reproductive success. Yet little evidence exists on their relative contribution, despite the importance of viable seed production to population dynamics. To study how variation in female reproductive success is affected by the quantity versus the diversity of surrounding mates contributing pollen, we integrated pollination experiments, data on natural seed set and seed viability, and AFLP genetic marker data in the wind-pollinated dioecious clonal forest herb Mercurialis perennis. Pollination experiments indicated weak quantitative pollen limitation effects on seed set. Among-population crosses showed reduced seed viability, suggesting outbreeding depression due to genetic divergence. Pollination with pollen from a single source did not negatively affect reproductive success. These findings were consistent with results of the survey of natural female reproductive success. Seed set decreased with the distance to males in a female plants' local neighborhood, suggesting a shortage of pollen in isolated female plants, and increased with the degree of local genetic diversity. Spatial isolation to other populations and population size did not affect seed set. None of these variables were related to seed viability. We conclude that pollen movement in M. perennis is likely very limited. Both male proximity and the local degree of genetic diversity influenced female reproductive success.

Vandepitte, K.; Roldán-Ruiz, I.; Honnay, O.

2009-07-01

229

Grazer exclusion alters plant spatial organization at multiple scales, increasing diversity  

PubMed Central

Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai-Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter- and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m2), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra- and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter- and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter- and intraspecific aggregation produces local spatial patterns that scale-up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing. PMID:24223294

Zhang, Hui; Gilbert, Benjamin; Wang, Wenbin; Liu, Junjie; Zhou, Shurong

2013-01-01

230

Paramagnetic cellulose DNA isolation improves DNA yield and quality among diverse plant taxa1  

PubMed Central

• Premise of the study: The chemical diversity of land plants ensures that no single DNA isolation method results in high yield and purity with little effort for all species. Here we evaluate a new technique originally developed for forensic science, based on MagnaCel paramagnetic cellulose particles (PMC), to determine its efficacy in extracting DNA from 25 plant species representing 21 families and 15 orders. • Methods and Results: Yield and purity of DNA isolated by PMC, DNeasy Plant Mini Kit (silica column), and cetyltrimethylammonium bromide (CTAB) methods were compared among four individuals for each of 25 plant species. PMC gave a twofold advantage in average yield, and the relative advantage of the PMC method was greatest for samples with the lowest DNA yields. PMC also produced more consistent sample purity based on absorbance ratios at 260:280 and 260:230 nm. • Conclusions: PMC technology is a promising alternative for plant DNA isolation. PMID:25309836

Moeller, Jackson R.; Moehn, Nicholas R.; Waller, Donald M.; Givnish, Thomas J.

2014-01-01

231

76 FR 44891 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...  

Federal Register 2010, 2011, 2012, 2013

...DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No...Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental...for Drought Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA....

2011-07-27

232

Diversity of Woodland Communities and Plant Species along an Altitudinal Gradient in the Guancen Mountains, China  

PubMed Central

Study on plant diversity is the base of woodland conservation. The Guancen Mountains are the northern end of Luliang mountain range in North China. Fifty-three quadrats of 10?m × 20?m of woodland communities were randomly established along an altitudinal gradient. Data for species composition and environmental variables were measured and recorded in each quadrat. To investigate the variation of woodland communities, a Two-Way Indicator Species Analysis (TWINSPAN) and a Canonical Correspondence Analysis (CCA) were conducted, while species diversity indices were used to analyse the relationships between species diversity and environmental variables in this study. The results showed that there were eight communities of woodland vegetation; each of them had their own characteristics in composition, structure, and environment. The variation of woodland communities was significantly related to elevation and also related to slope, slope aspect, and litter thickness. The cumulative percentage variance of species-environment relation for the first three CCA axes was 93.5%. Elevation was revealed as the factor which most influenced community distribution and species diversity. Species diversity was negatively correlated with elevation, slope aspect, and litter thickness, but positively with slope. Species richness and heterogeneity increased first and then decreased but evenness decreased significantly with increasing elevation. Species diversity was correlated with slope, slope aspect, and litter thickness. PMID:22566768

Meng, Dongping; Zhang, Jin-Tun; Li, Min

2012-01-01

233

In silico identification of conserved microRNAs in large number of diverse plant species  

PubMed Central

Background MicroRNAs (miRNAs) are recently discovered small non-coding RNAs that play pivotal roles in gene expression, specifically at the post-transcriptional level in plants and animals. Identification of miRNAs in large number of diverse plant species is important to understand the evolution of miRNAs and miRNA-targeted gene regulations. Now-a-days, publicly available databases play a central role in the in-silico biology. Because, at least ~21 miRNA families are conserved in higher plants, a homology based search using these databases can help identify orthologs or paralogs in plants. Results We searched all publicly available nucleotide databases of genome survey sequences (GSS), high-throughput genomics sequences (HTGS), expressed sequenced tags (ESTs) and nonredundant (NR) nucleotides and identified 682 miRNAs in 155 diverse plant species. We found more than 15 conserved miRNA families in 11 plant species, 10 to14 families in 10 plant species and 5 to 9 families in 29 plant species. Nineteen conserved miRNA families were identified in important model legumes such as Medicago, Lotus and soybean. Five miRNA families – miR319, miR156/157, miR169, miR165/166 and miR394 – were found in 51, 45, 41, 40 and 40 diverse plant species, respectively. miR403 homologs were found in 16 dicots, whereas miR437 and miR444 homologs, as well as the miR396d/e variant of the miR396 family, were found only in monocots, thus providing large-scale authenticity for the dicot- and monocot-specific miRNAs. Furthermore, we provide computational and/or experimental evidence for the conservation of 6 newly found Arabidopsis miRNA homologs (miR158, miR391, miR824, miR825, miR827 and miR840) and 2 small RNAs (small-85 and small-87) in Brassica spp. Conclusion Using all publicly available nucleotide databases, 682 miRNAs were identified in 155 diverse plant species. By combining the expression analysis with the computational approach, we found that 6 miRNAs and 2 small RNAs that have been identified only in Arabidopsis thus far, are also conserved in Brassica spp. These findings will be useful for tracing the evolution of small RNAs by examining their expression in common ancestors of the Arabidopsis-Brassica lineage. PMID:18416839

Sunkar, Ramanjulu; Jagadeeswaran, Guru

2008-01-01

234

Explaining intraspecific diversity in plant secondary metabolites in an ecological context.  

PubMed

Plant secondary metabolites (PSMs) are ubiquitous in plants and play many ecological roles. Each compound can vary in presence and/or quantity, and the composition of the mixture of chemicals can vary, such that chemodiversity can be partitioned within and among individuals. Plant ontogeny and environmental and genetic variation are recognized as sources of chemical variation, but recent advances in understanding the molecular basis of variation may allow the future deployment of isogenic mutants to test the specific adaptive function of variation in PSMs. An important consequence of high intraspecific variation is the capacity to evolve rapidly. It is becoming increasingly clear that trait variance linked to both macro- and micro-environmental variation can also evolve and may respond more strongly to selection than mean trait values. This research, which is in its infancy in plants, highlights what could be a missing piece of the picture of PSM evolution. PSM polymorphisms are probably maintained by multiple selective forces acting across many spatial and temporal scales, but convincing examples that recognize the diversity of plant population structures are rare. We describe how diversity can be inherently beneficial for plants and suggest fruitful avenues for future research to untangle the causes and consequences of intraspecific variation. PMID:24117919

Moore, Ben D; Andrew, Rose L; Külheim, Carsten; Foley, William J

2014-02-01

235

The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms  

NASA Astrophysics Data System (ADS)

Previous studies have shown that plant diversity can improve the wastewater purification efficiency of constructed wetlands (CWs), but its effect on the nitrous oxide (N2O) emission in CWs has been unknown. To investigate the effect of plant diversity on the N2O emission, we established four plant species richness levels (each level containing 1, 2, 3 and 4 species, respectively) by using 96 hydroponic microcosms. Results showed that plant species richness enhanced the N2O emission, ranging from 27.1 to 115.4 ?g N2O m-2 d-1, and improved nitrate removal (P < 0.001). The presence of Phalaris arundinacea within a given plant community increased the N2O emission (P < 0.001). The presence of Rumex japonicas had no influence on the N2O emissions (P > 0.05), but improved nitrogen removal (P < 0.001). Hence, our study highlights the importance of both plant species richness and species identity in mediating the N2O emission and nitrogen removal in CWs.

Sun, Hongying; Zhang, Chongbang; Song, Changchun; Chang, Scott X.; Gu, Baojing; Chen, Zhengxin; Peng, Changhui; Chang, Jie; Ge, Ying

2013-10-01

236

Terrestrial water and carbon fluxes across climatic gradients: does plant diversity matter?  

NASA Astrophysics Data System (ADS)

Vegetation diversity in many land-surface, ecohydrological, and dynamic vegetation models is crudely represented using a discrete classification of a handful of "plant types" (named Plant Functional Types; PFTs). The parameterization of PFTs typically reflects mean properties of observed plant functional traits over broad categories (e.g., temperate broadleaf deciduous forest) ignoring most of the inter- and intra-specific trait variability. In the present study, taking advantage of well-established plant-trait cross-correlations described by the Leaf Economics Spectrum, we generated coordinated hypothetical species across a continuous spectrum of leaf traits, rather than using pre-defined categories. The behavior of these proxy species is then tested using a mechanistic ecohydrological model (T&C) that operates as a filter of their performance. Simulations are carried out for a range of climates representative of different elevations and wetness conditions in Switzerland. Using this framework the following questions are addressed: (i) how sensitive are the carbon and water dynamics to species diversity? and (ii) which is the correlation between plant physiological traits, plant performance and observed trait distribution across climatic gradients?

Pappas, Christoforos; Fatichi, Simone; Burlando, Paolo

2014-05-01

237

Lead Exposure and Blood Pressure among Workers in Diverse Industrial Plants in Kenya.  

PubMed

The study evaluated airborne exposures and blood lead (BPb) levels in 233 production workers at six diverse industrial plants in Kenya. Blood and personal breathing zone air samples were collected and analyzed for lead (Pb) using atomic absorption spectroscopy. Blood pressure (BP) levels were measured using a standard mercury sphygmomanometer. The results indicated mean airborne Pb levels ± standard deviation (SD) as follows: 183.2 ± 53.6 ?g/m(3) in battery recycling, 133.5 ± 39.6 ?g/m(3) in battery manufacturing, 126.2 ± 39.9 ?g/m(3) in scrap metal welding, 76.3 ± 33.2 ?g/m(3) in paint manufacturing, 27.3 ± 12.1 ?g/m(3) in a leather manufacturing, and 5.5 ± 3.6 ?g/m(3) in a pharmaceutical plant. The mean airborne Pb levels exceeded the U.S. Occupational Safety and Health Administration (OSHA) 8-hr time-weighted average (TWA) permissible exposure limit (PEL) for Pb of 50 ?g/m(3) in the battery manufacturing, battery recycling, welding, and paint manufacturing plants. Similarly, mean BPb concentrations exceeded the American Conference of Governmental Industrial Hygienists (ACGIH®) biological exposure index (BEI) for Pb of 30 ?g/dl. A significant positive association was observed between BPb and breathing zone air Pb (R(2) = 0.73, P < 0.001). Approximately 30% of the production workers (N = 233) were in the hypertensive range with an average systolic and diastolic blood pressure (BP) of 134.7 ± 12.7 mmHg and 86.4 ± 8.9 mmHg, respectively. In the multivariate regression analysis, age, duration of work, airborne Pb and BPb levels were significantly associated (P < 0.05) with a change in BP. We recommend improved engineering controls, work practices, and personal hygiene to reduce Pb exposures. In addition, workers should undergo comprehensive medical surveillance to include BPb and BP testing, and airborne Pb assessments in all industries with significant lead exposures. PMID:24690073

Were, Faridah H; Moturi, M Charles; Gottesfeld, P; Wafula, Godfrey A; Kamau, Geoffrey N; Shiundu, Paul M

2014-11-01

238

Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure  

Microsoft Academic Search

It is unclear whether certain plant species and plant diversity could reduce the impacts of multiple heavy metal pollution\\u000a on soil microbial structure and soil enzyme activities. Random amplified polymorphic DNA (RAPD) was used to analyze the genetic\\u000a diversity and microbial similarity in planted and unplanted soil under combined cadmium (Cd) and lead (Pb) pollution. A metal\\u000a hyperaccumulator, Brassica juncea,

Yang Gao; Chiyuan Miao; Jun Xia; Liang Mao; Yafeng Wang; Pei Zhou

239

Assessing invasive plant infestation in freshwater wetlands  

NASA Astrophysics Data System (ADS)

Recent shifts in wetland ecosystem management goals have directed efforts toward measuring ecological integrity, rather than only using physical and chemical measures of ecosystems as health indicators. Invasive species pose one of the largest threats to wetlands integrity. Resource managers can benefit from improved methods for identifying invasive plant species, assessing infestation, and monitoring control measures. The utilization of advanced remote sensing tools for species-level mapping has been increasing and techniques need to be explored for identifying species of interest and characterizing infestation. The overarching goal of this research was to develop monitoring technologies to map invasive plants and quantify wetland infestation. The first field-level objective was to characterize absorption and reflectance features and assess processing techniques for separating wetland species. The second field-level objective was to evaluate the abilities of a shape filter to identify wetland invasive plant species. The first landscape-level objective was to classify hyperspectral imagery in order to identify invasives of interest. The second landscape-level objective was to quantify infestation within the study area. Field-level hyperspectral data (350-2500nm) were collected for twenty-two wetland plant species in a wetland located in the lower Muskegon River watershed in Michigan, USA. The Jeffries-Matusita distance measure, continuum removal, and a shape-filter were applied to hyperspectral species reflectance data to characterize spectral features. Generally, continuum removal decreased separation distance for the invasive species of interest. Using the shape-filter, Lythrum salicaria, Phragmites australis, and Typha latifolia possessed maximum separation (distinguished from other species) at the near-infrared edge (700nm) and water absorption region (1350nm), the near-infrared down slope (1000 and 1100nm), and the visible/chlorophyll absorption region (500nm) and near-infrared edge (650nm), respectively. Airborne hyperspectral imagery was classified using a two-step approach in order to obtain an optimal map (overall accuracy ˜ 70%). Information in the near-infrared enabled relatively accurate classification for Phragmites australis using the Spectral Angle Mapper algorithm and image-derived training, while Typha latifolia signatures possessed high spectral overlap and required ISODATA clustering techniques. Landscape pattern metrics relate infestation to disturbances and hydrological controls. The highest levels of infestation and infestation patterns coincide with the most substantial levels of hydrological modifications indicating human disturbances are correlated with Typha and Phragmites percentages in the landscape. Overall the approach was successful and increased the level of information ultimately desired by decision makers. The rapidly advancing field of wetland remote sensing science can obtain more meaningful information from hyperspectral imagery; however, the data are challenging to work with and only the most precisely calibrated datasets will provide utility. Combining these data with traditional wetland assessment techniques can substantially advanced goals of preserving and restoring wetland ecosystem integrity.

Torbick, Nathan M.

240

[Effects of artificial Ulmus pumila forest on plant diversity of temperate grassland in Inner Mongolia].  

PubMed

Based on field survey, the effects of artificial Ulmus pumila forest on the species diversity of temperate grassland in Siziwang Banner of Inner Mongolia were studied. The results showed that U. pumila forest had obvious effects on the species diversity of grassland. With increasing density of U. pumila, the Patrick's richness, Pielou's evenness and Shannon-Wiener index of grass species under the forest had a decreasing trend, and were higher nearby the forest than far from the forest. The habitat inside the forest was favorable to Silene jenisseensis, while that nearby the forest was favorable to Heteropappus altaicus, Pocockia ruthenia, Potentilla bifurca, Leymus secalinus and Cleistogenes squarrosa, suggesting that to blindly exclude forestation on grassland could be less scientific, while properly afforesting U. pumila on the sides with relatively abundant soil moisture should be available to the conservation of plant diversity in temperate grassland regions. PMID:18808008

Yang, Hong-Xiao; Wang, Xue-Quan; Yang, Wen-Bin; Lu, Qi

2008-06-01

241

Impact of invasive plants on the species richness, diversity and composition of invaded communities  

Microsoft Academic Search

Summary 1. Much attention has been paid to negative effects of alien species on resident communities but studies that quantify community-level effects of a number of invasive plants are scarce. We address this issue by assessing the impact of 13 species invasive in the Czech Republic on a wide range of plant communities. 2. Vegetation in invaded and uninvaded plots

Martin Hejda; Petr Pyšek; Vojt?ch Jarošík

2009-01-01

242

Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste  

PubMed Central

Background Molecular studies of Bacillus diversity in various environments have been reported. However, there have been few investigations concerning Bacillus in steel plant environments. In this study, genotypic and phenotypic diversity and phylogenetic relationships among 40 bacterial isolates recovered from steel plant waste were investigated using classical and molecular methods. Results 16S rDNA partial sequencing assigned all the isolates to the Bacillus genus, with close genetic relatedness to the Bacillus subtilis and Bacillus cereus groups, and to the species Bacillus sphaericus. tDNA-intergenic spacer length polymorphisms and the 16S–23S intergenic transcribed spacer region failed to identify the isolates at the species level. Genomic diversity was investigated by molecular typing with rep (repetitive sequence) based PCR using the primer sets ERIC2 (enterobacterial repetitive intergenic consensus), (GTG)5, and BOXAIR. Genotypic fingerprinting of the isolates reflected high intraspecies and interspecies diversity. Clustering of the isolates using ERIC-PCR fingerprinting was similar to that obtained from the 16S rRNA gene phylogenetic tree, indicating the potential of the former technique as a simple and useful tool for examining relationships among unknown Bacillus spp. Physiological, biochemical and heavy metal susceptibility profiles also indicated considerable phenotypic diversity. Among the heavy metal compounds tested Zn, Pb and Cu were least toxic to the bacterial isolates, whereas Ag inhibited all isolates at 0.001 mM. Conclusion Isolates with identical 16S rRNA gene sequences had different genomic fingerprints and differed considerably in their physiological capabilities, so the high levels of phenotypic diversity found in this study are likely to have ecological relevance. PMID:18928552

Freitas, Dulcecleide B; Reis, Mariana P; Lima-Bittencourt, Cláudia I; Costa, Patrícia S; Assis, Paulo S; Chartone-Souza, Edmar; Nascimento, Andréa MA

2008-01-01

243

Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.  

PubMed

This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. PMID:23073370

Stefanowicz, Anna M; Kapusta, Pawe?; Szarek-?ukaszewska, Gra?yna; Grodzi?ska, Krystyna; Nikli?ska, Maria; Vogt, Rolf D

2012-11-15

244

Host-plant genotypic diversity mediates the distribution of an ecosystem engineer.  

PubMed

Ecosystem engineers affect ecological communities by physically modifying the environment. Understanding the factors determining the distribution of engineers offers a powerful predictive tool for community ecology. In this study, we examine whether the goldenrod bunch gall midge (Rhopalomyia solidaginis) functions as an ecosystem engineer in an old-field ecosystem by altering the composition of arthropod species associated with a dominant host plant, Solidago altissima. We also examine the suite of factors that could affect the distribution and abundance of this ecosystem engineer. The presence of bunch galls increased species richness and altered the structure of associated arthropod communities. The best predictors of gall abundance were host-plant genotype and plot-level genotypic diversity. We found positive, nonadditive effects of genotypic diversity on gall abundance. Our results indicate that incorporating a genetic component in studies of ecosystem engineers can help predict their distribution and abundance, and ultimately their effects on biodiversity. PMID:17824442

Crawford, Kerri M; Crutsinger, Gregory M; Sanders, Nathan J

2007-08-01

245

Diversity of plant–animal interactions: Possibilities for a new plant defense indicator value?  

Microsoft Academic Search

The interactions between herbivores and plants are of general interest in ecology. Even though the extensive research carried out during the last decades has culminated in many theories, additional studies are necessary to validate these findings. In particular, the hypotheses dealing with the complex interrelations of plant defense mechanisms and herbivores continue to be debated.In this paper, we develop a

Fabian Borchard; Hans-Joachim Berger; Margret Bunzel-Drüke; Thomas Fartmann

2011-01-01

246

An overlooked source of fungal diversity: novel hyphomycete genera on trichomes of cerrado plants.  

PubMed

Eight monotypic hyphomycete genera new to science are described from the trichomes of native plants growing in the cerrado of Brazil: Trichomatoclava cerradensis, Echinoconidiophorum cerradense, Globoconidiopsis cerradensis, Globoconidium cerradense, Helminthosporiomyces cerradensis, Trichomatosphaera [corrected] cerradensis , Phragmoconidium cerradense, and Vesiculohyphomyces cerradensis gens. spp. nov. Two of the new genera were found on hosts belonging in Myrtaceae, and one of each of the following families: Icacinaceae, Malphigiaceae, Fabaceae, Dilleniaceae, Chrysobalanaceae, and Caryocaraceae. These discoveries suggest that the trichomes of neotropical plants are an unexplored source of novel fungal diversity, and merit more attention in biodiversity surveys. PMID:19059339

Pereira-Carvalho, Rita C; Sepúlveda-Chavera, German; Armando, Eliane A S; Inácio, Carlos A; Dianese, José C

2009-02-01

247

Natural Products from Plant-associated Microorganisms: Distribution, Structural Diversity, Bioactivity, and Implications of Their Occurrence?  

PubMed Central

A growing body of evidence suggests that plant-associated microorganisms, especially endophytic and rhizosphere bacteria and fungi, represent a huge and largely untapped resource of natural products with chemical structures that have been optimized by evolution for biological and ecological relevance. A diverse array of bioactive small molecule natural products has been encountered in these microorganisms. The structures of over 230 metabolites isolated and characterized from over 70 plant-associated microbial strains during the past four years are presented with information on their hosts, culture conditions, and biological activities. Some significant biological and ecological implications of their occurrence are also reviewed. PMID:16562864

Gunatilaka, A. A. Leslie

2012-01-01

248

Plant species richness and diversity in urban and peri-urban gardens of Niamey, Niger  

Microsoft Academic Search

Urban and peri-urban agriculture (UPA) significantly contributes to food and nutritional security of urban dwellers in many\\u000a African countries. Economic and demographic pressures often lead to transformation of subsistence-oriented traditional homegardens\\u000a into commercial production units. Such transformation is claimed to result in decreasing plant diversity, particularly of\\u000a local species. A study was therefore undertaken in 51 gardens of Niamey, Niger,

Hannah Bernholt; Katja Kehlenbeck; Jens Gebauer; Andreas Buerkert

2009-01-01

249

Plant Community Composition More Predictive than Diversity of Carbon Cycling in Freshwater Wetlands  

Microsoft Academic Search

Changes in the world’s species composition and the loss of biodiversity have prompted a closer investigation of the importance\\u000a of biodiversity and community composition to ecosystem functioning. However, few studies have explored this relationship outside\\u000a of controlled experiments. Here, we examined the relationship between plant diversity, primary production, and methane efflux\\u000a in freshwater wetlands in an across-site field study and

Rachel Schultz; Sarah Andrews; Lindsay O’Reilly; Virginie Bouchard; Serita Frey

250

Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants.  

PubMed

Phyllosphere bacteria on ornamental plants were characterized based on their diversity and activity towards the removal of polycyclic aromatic hydrocarbons (PAHs), the major air pollutants in urban area. The amounts of PAH-degrading bacteria were about 1-10% of the total heterotrophic phyllosphere populations and consisted of diverse bacterial species such as Acinetobacter, Pseudomonas, Pseudoxanthomonas, Mycobacterium, and uncultured bacteria. Bacterial community structures analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis from each plant species showed distinct band patterns. The uniqueness of these phyllosphere bacterial communities was partly due to the variation in leaf morphology and chemical properties of ornamental plants. The PAH degradation activity of these bacteria was monitored in gas-tight systems containing sterilized or unsterilized leaves. The results indicated that phyllosphere bacteria on unsterilized leaves were able to enhance the activity of leaves for phenanthrene removal. When compared between plant species, phenanthrene removal efficiency corresponded to the size of phenanthrene-degrading bacteria. In addition, phyllosphere bacteria on Wrightia religiosa were able to reduce other PAHs such as acenaphthylene, acenaphthene, and fluorine in 60-ml glass vials and in a 14-l glass chamber. Thus, phyllosphere bacteria on ornamental plants may play an important role in natural attenuation of airborne PAHs in urban areas. PMID:20107780

Yutthammo, Chontisak; Thongthammachat, Nudchanard; Pinphanichakarn, Pairoh; Luepromchai, Ekawan

2010-02-01

251

Diversity  

NSDL National Science Digital Library

Look at the following resources to find information about diversity. Use your information to complete the assignment for your class. CIVIL RIGHTS Civil Rights Era Civil Rights Timeline JIM CROW LAWS AND SEGREGATION The Rise and Fall of Jim Crow Jim Crow and Segregation MARTIN LUTHER KING Dr. Martin Luther King, Jr. Biography Dr. Martin Luther King: I Have a Dream ROSA PARKS Rosa Parks: The Woman Who Changed a Nation Rosa Parks Biography EMMETT TILL The Murder of Emmett Till About African American History: The Biography of Emmett Till THE LITTLE ROCK 9 Little Rock 9 The 1957-1958 School Year School Integration in Little Rock, Arkansas MONTGOMERY BUS BOYCOTT Montgomery Bus Boycott They Changed the World: The Story of the Montgomery Bus Boycott Montgomery Bus Boycott FREEDOM RIDES Freedom Rides SNCC: Freedom Rides WOMEN'S RIGHTS Women s Rights Movement in the US--Timeline Women s Rights: National Historic Park History of the Equal Rights Amendment JAPANESE INTERNMENT Topaz Museum Japanese Relocation Photographs TRAIL OF TEARS Trail of Tears Trail of Tears Era HOLOCAUST Holocaust Encyclopedia The History Place: Holocaust Timeline Holocaust History Project ...

Bates, Albion M.

2007-01-25

252

An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China.  

PubMed

Using ecosystem attributes identified by the Society of Ecological Restoration International, we assessed three restoration projects in the loess plateau, northwestern China, including planting Larix principis-rupprechtii (LS) and Pinus tabulaeformis (PS) on shrubland, and planting L. principis-rupprechtii on open forest land (LO). The reestablishment of native species in LS and PS was poorer than LO because of the excessive stand density. Species diversity, seedling number, and seedling diversity were significantly higher in LO than in LS and PS. Soil nutrient was also significantly higher in the LO treatment. The vegetation composition, species diversity, and soil nutrient in LO, however, were more similar to these in the reference. Our results indicate that planting L. principis-rupprechtii on open forest land had accelerated the succession of the ecosystem for approximately 30 years. But the poor natural regeneration of L. principis-rupprechtii suggests that post-planting activities in LO are required after timber harvesting or the natural mortality of the L. principis-rupprechtii. Management operation such as selective thinning will be required in LS and PS to promote the true restoration of native species diversity in the future. PMID:19373438

Yang, Zhanbiao; Jin, Hongxi; Wang, Gang

2010-05-01

253

Diversity of fungi associated with hair roots of ericaceous plants is affected by land use.  

PubMed

Culture-independent molecular studies have provided new insights into the diversity of fungi associating with ericaceous plant roots. However, there is little understanding of the distribution of these fungi across landscapes, or the effects of environmental heterogeneity on ericoid mycorrhizal (ERM) fungal diversity and distribution. Terminal-restriction fragment length polymorphism and selective sequence analyses of the internal transcribed spacer regions of rDNA were used to infer fungal diversity of bait Vaccinium macrocarpon grown in soils from nine peatland sites in Ireland, representing three different land uses (bog, rough grazing and forest plantation) and the fungal communities of field-collected Calluna vulgaris for five of these nine sites. A diverse range of potential ERM fungi were found, and the sampling approach significantly affected the diversity of the fungal community. Despite significant site groupings of the fungal communities associated with V. macrocarpon and C. vulgaris, fungal communities were significantly dissimilar between sites with different land uses. Soil nitrogen content significantly explained 52% of the variation in the V. macrocarpon fungal communities. Evidence suggests that environmental heterogeneity has a role in shaping ERM fungal community composition at the landscape scale. PMID:24741702

Hazard, Christina; Gosling, Paul; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

2014-03-01

254

Roles of mesophyll conductance and plant functional diversities in tropical photosynthesis  

NASA Astrophysics Data System (ADS)

Tropical photosynthesis dominates global terrestrial gross primary production (GPP) and will likely play a defining role in determining how global GPP will respond to climate change. Yet, our current understanding of biological, ecological, edaphic and environmental controls on tropical photosynthesis is poor. The overly simplistic schemes that current Earth System Models use to simulate tropical photosynthesis cannot capture the functional diversities associated with high species diversities in the tropics. New approaches that explicitly represent the functional diversities of tropical photosynthesis in Earth System Models are needed in order to realistically model responses of tropical photosynthesis to increased atmospheric CO2 concentrations and associated climate changes. To establish a basis for such approaches, we conducted intensive field measurements of leaf photosynthesis at three forest sites along a strong rainfall gradient in Panama in 2012-2013. The three sites are Parque Natural Metropolitano, Gamboa, and Parque Nacional San Lorenzo. The Parque Natural Metropolitano receives an annual precipitation of less than 1800mm and Parque Nacional San Lorenzo over 3300 mm with Gamboa in between. The three sites differ in species diversity with Parque Nacional San Lorenzo having the highest species diversity and Parque Nacional San Lorenzo the lowest. At the three contrasting sites, we measured A/Ci curves, leaf traits and leaf nutrient (N and P) contents of about 100 species. We determined mesophyll conductance with the LeafWeb approach. From these measurements, we developed practical but realistic parameterizations of functional diversities of tropical plant species at the three sites and implemented these parameterizations in the latest version of the Community Land Model. We found that mesophyll conductance is key to representing functional diversities of tropical forest species. Without it, responses of tropical photosynthesis to increased atmospheric CO2 concentrations may be underestimated. Interactive effects of mesophyll conductance, nutrient limitations, CO2 concentrations and climate change will be discussed in the context of new parameterizations enabled with our intensive measurements in Panama.

Gu, L.

2013-12-01

255

Seed Interventions and Cultivar Diversity in Pigeon Pea: A Farmer Based Assessment in Eastern Kenya  

Microsoft Academic Search

We have assessed the impact of three seed-based intervention programs on crop diversity levels of pigeon pea (Cajanus cajun) in the semi-arid districts of Kitui and Makueni in eastern Kenya. We adopted four-cell analysis along with focus-group discussions to determine the cultivar diversity of pigeon pea. Often intercropped with maize (Zea mays L.), pigeon pea is widely adapted to drought

Patrick Audi; Latha Nagarajan; Richard B. Jones

2008-01-01

256

How do soil texture, plant community composition and earthworms affected the infiltration rate in a grassland plant diversity experiment depending on season?  

NASA Astrophysics Data System (ADS)

Background and aims: In this study we analyzed the influences of plant community characteristics, soil texture and earthworm presence on infiltration rates on a managed grassland plant diversity experiment assessing the role of biotic and abiotic factors on soil hydrology. Methods: We measured infiltration using a hood infiltrometer in subplots with ambient and reduced earthworm density (earthworm extraction) nested in plots of different plant species richness (1, 4, and 16), plant functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) in early summer (June) and autumn (September, October) 2011. Results: The presence of certain plant functional groups such as grasses and legumes influenced infiltration rates and this effect enhanced during the growing season. Infiltration was significantly higher in plots containing legumes than in plots without, and it was significantly lower in the presence of grasses than in their absence. In early summer, earthworm presence and biomass increased the infiltration rates, independently of plant species richness. In October, plant species richness only affected infiltration rates in reduced earthworm plots. At the end of the growing season earthworm populations were negatively influenced by grasses and positively by legumes. In September, infiltration rates were positive related to the proportion of finer grains. The correlation disappears when removing all plots containing legumes from the sample. For all measurements the infiltration rates decreases from early summer to autumn at the matric potentials at pressure zero and -0.02 m, but not for smaller macropores at matric potentials -0.04 and -0.06m. Conclusions: Considering infiltration rates as ecosystem function, this function will largely depend on the ecosystem composition and season, not on biodiversity per se. Our results indicate that biotic factors are of overriding influence for shaping infiltration rates mainly for larger macropores, and should be taken into account in hydrological applications.

Fischer, Christine; Britta, Merkel; Nico, Eisenhauer; Christiane, Roscher; Sabine, Attinger; Stefan, Scheu; Anke, Hildebrandt

2013-04-01

257

[Correlation between aquatic plant diversity and water environment in the typical sites of Hangzhou section of the Beijing-Hangzhou Grand Canal].  

PubMed

Community characteristics of aquatic plant are important indicators for water quality. In order to understand the distribution characteristics of aquatic plants in aquatic ecosystem of the Beijing-Hangzhou Grand Canal ( Hangzhou section) , and to analyze the relationship between water quality and plant community, an investigation of the aquatic plants in five typical sites was made in this study. Species composition, biological diversity, quantity distribution and dominant species of aquatic plants in five sites were studied for ecological changes. Physicochemical factors such as temperature, pH value, transparency, dissolved oxygen and main elements of living were also analyzed. Based on the results, the distribution of phytoplankton diversity and environment factor correlations by multivariate statistical analysis were discussed. The trophic levels of these sites were assessed by using related biological standards. Results indicated that the diversity of aquatic plant mainly depends on the diversity of phytoplankton in the typical sites of the Beijing-Hangzhou Grand Canal. We observed and identified 35 genus algae, including advantage community of Hyalodiscus Ehrenberg and Melosira Agardh, which belonged to Bacillariophyta. According to the impact on the phytoplankton diversity and distribution, factors such as dissolved oxygen, transparency, water temperature, etc. had an obvious influence on the distribution of phytoplankton in the existing 6 environmental factors, while the influence of pH value was the highest. In terms of water quality eutrophication, site Tangxi Bridge and Maiyu Bridge showed a relatively lighter pollution, while site Yiqiao Bridge, Gujia Bridge and Gongchen Bridge showed a higher pollution, and the pollution of site Yiqiao Bridge was the most serious. PMID:25055657

Lu, Yin; Xu, Xiao-Lu; Zhang, De-Yong; Wang, Li; Zhu, Xu-Ni; Feng, Feng; Zhou, Qiao-Jun; Xie, Peng

2014-05-01

258

CASTAt'ffiA 62(2): 112-118. J1JNE 1997 Plant Diversity Along a Salinity Gradient of Four  

E-print Network

CASTAt'ffiA 62(2): 112-118. J1JNE 1997 Plant Diversity Along a Salinity Gradient of Four Marshes or quantify plant species diversity parameters along the salinity gradient. . The establishment of the York Science, . Newport News, Virginia 23606-2998 '\\ I ABSTRACT Diversity of emergent wetland plant species

Newman, Michael C.

259

Measuring plant diversity in the tall threetip sagebrush steppe: influence of previous grazing management practices.  

PubMed

In July 2000, a 490-ha wildfire burned a portion of a long-term grazing study that had been established in 1924 at the US Sheep Experiment Station north of Dubois, Idaho, USA. Earlier vegetation measurements in this tall threetip sagebrush (Artemisia tripartita spp. tripartita) bunchgrass plant community documented significant changes in vegetation due to grazing and the timing of grazing by sheep. A study was initiated in May 2001 using 12 multiscale modified Whittaker plots to determine the consequences of previous grazing practices on postfire vegetation composition. Because there was only one wildfire and it did not burn all of the original plots, the treatments are not replicated in time or space. We reduce the potential effects of psuedoreplication by confining our discussion to the sample area only. There were a total of 84 species in the sampled areas with 69 in the spring-grazed area and 70 each in the fall- and ungrazed areas. Vegetation within plots was equally rich and even with similar numbers of abundant species. The spring-grazed plots, however, had half as much plant cover as the fall- and ungrazed plots and the spring-grazed plots had the largest proportion of plant cover composed of introduced (27%) and annual (34%) plants. The fall-grazed plots had the highest proportion of native perennial grasses (43%) and the lowest proportion of native annual forbs (1%). The ungrazed plots had the lowest proportion of introduced plants (4%) and the highest proportion of native perennial forbs (66%). The vegetation of spring-grazed plots is in a degraded condition for the environment and further degradation may continue, with or without continued grazing or some other disturbance. If ecosystem condition was based solely on plant diversity and only a count of species numbers was used to determine plant diversity, this research would have falsely concluded that grazing and timing of grazing did not impact the condition of the ecosystem. PMID:14753648

Seefeldt, Steven S; McCoy, Scott D

2003-08-01

260

Nuclear power plant performance assessment pertaining to plant aging in France and the United States  

E-print Network

The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

Guyer, Brittany (Brittany Leigh)

2013-01-01

261

Assessment of Parameter Uncertainty in Plant Growth Model Identification  

E-print Network

Assessment of Parameter Uncertainty in Plant Growth Model Identification Yuting CHEN, Paul: yuting.chen@ecp.fr Abstract--For the parametric identification of plant growth models, we generally face; Parameter estima- tion; Particle filtering; Plant growth model; LNAS. I. Introduction Accurate

Boyer, Edmond

262

ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS  

E-print Network

ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS: THE STARLITE STUDY Farrokh plants. The research also has aimed at identifying both the trade-offs that lead to the optimal regime of operation for a tokamak power plant and the critical plasma physics and technology issues. During

California at San Diego, University of

263

Variations in AOC and microbial diversity in an advanced water treatment plant  

NASA Astrophysics Data System (ADS)

SummaryThe objective of this study was to evaluate the variations in assimilable organic carbon (AOC) and microbial diversities in an advanced water treatment plant. The efficiency of biofiltration on AOC removal using anthracite and granular activated carbon (GAC) as the media was also evaluated through a pilot-scale column experiment. Effects of hydrological factors (seasonal effects and river flow) on AOC concentrations in raw water samples and hydraulic retention time (HRT) of biofiltration on AOC treatment were also evaluated. Results show that AOC concentrations in raw water and clear water of the plant were about 138 and 27 ?g acetate-C/L, respectively. Higher AOC concentrations were observed in wet seasons probably due to the resuspension of organic-contained sediments and discharges of non-point source (NPS) pollutants from the upper catchment. This reveals that seasonal effect played an important role in the variations in influent AOC concentrations. Approximately 82% and 70% of AOC removal efficiencies were observed in GAC and anthracite columns, respectively. Results from column experiment reveal that the applied treatment processes in the plant and biofiltration system were able to remove AOC effectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic (SEM) images. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal significant decrease in microbial diversities after the ozonation process. Higher HRT caused higher microbial contact time, and thus, more microbial colonies and higher microbial diversity were observed in the latter part of the biofilters. Some of the dominant microbial species in the biofiltration columns belonged to the beta- proteobacterium, which might contribute to the AOC degradation. Results of this study provide us insight into the variations in AOC and microbial diversity in the advanced water treatment processes.

Yang, B. M.; Liu, J. K.; Chien, C. C.; Surampalli, R. Y.; Kao, C. M.

2011-10-01

264

Disentangling the roles of plant diversity and precipitation in structuring microbial community composition and function in a tropical rain forest  

NASA Astrophysics Data System (ADS)

Shifting frequency and intensity of precipitation events is expected to impact soil fungi through a variety of complex feedbacks, although the general patterns and mechanisms are not fully understood. Precipitation and plant diversity often covary, and disentangling the relative contribution of each is important for predicting changes in global C and N fluxes. In order to test the relative contributions of plant diversity and precipitation in shaping fungal community structure and function, soil samples (0-10cm) from six established 1-ha plots across a natural precipitation gradient on the isthmus of Panama were collected. These plots co-vary in mean annual precipitation and plant diversity. Fungal DNA was sequenced using general fungal primers for the 18S region and 454 pyrosequencing. We found that total fungal taxa significantly increased with increasing mean annual precipitation, but not with plant diversity. Activity for some extracellular enzymes increased, whereas as others decreased with mean annual precipitation, indicating that the effect of shifting precipitation on nutrient transformations may be process-specific. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in nylon, 2 mm screen litter bags with 1, 25, and 50 species of plant leaf litter. After six months, we found a significant effect of plant litter diversity on decomposition rate, but only after the increase from one to 25 species of leaf litter. Total fungal taxa as determined by 454 sequencing and extracellular enzyme activity did not track plant species richness, suggesting that precipitation may be a more important factor than plant diversity in structuring soil fungi in tropical rain forests.

McGuire, Krista; Treseder, Kathleen; Fierer, Noah; Turner, Benjamin

2010-05-01

265

How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?  

PubMed Central

Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

2014-01-01

266

Evolution and diversity of plant cell walls: from algae to flowering plants.  

PubMed

All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence. PMID:21351878

Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

2011-01-01

267

[Degradation process and plant diversity of alfalfa grassland in North Loess Plateau of China].  

PubMed

Vegetation recovery and reconstruction is the key of ecosystem restoration in the North Loess Plateau. With the Liudaogou catchment of Shenmu County, Shaanxi Province as test area, this paper studied the dynamics of the plant diversity of artificial alfalfa (Medicago sativa) grassland during its degradation process. The results showed that the degradation process of the grassland could be divided into three stages, i.e., artificial alfalfa grassland stage (1-6 yrs), transitional stage from artificial to natural grassland (6-10 yrs), and secondary natural grassland stage dominated by Stipa bungeana ( >10 yrs). In the whole degradation process from 1-to 30-yrs, 32 species belonging to 13 families and 28 genera were found, of which, 90% appeared in the initial 6-yrs. The dynamics of accumulatively appeared family, genus, and species in the vegetation succession process were well described by logarithmic function. During the process of community succession, the species richness (Gleason index and Margalef index),plant diversity (Shannon-Wiener index), and Pielou evenness index were changed with a similar tendency, i.e., increased more rapidly at the first stage, and the climax phase appeared in the second stage. The plant diversity and evenness decreased slightly, and gradually became stable later. Planting alfalfa could markedly accelerate the natural vegetation succession process in the forest-steppe ecotone of Loess Plateau, mainly due to the intensive soil water consumption of artificial grassland, which accelerated the process of soil aridification. To develop artificial grasslands in the Loess Plateau is an optimal joint between accelerating natural vegetation recovery and increasing farmers' income by stockbreeding, and is also a favorable paradigm both for the ecological and for the economic benefits in the eco-environmental construction in West China. PMID:16515180

Li, Yuyua; Shao, Ming'an

2005-12-01

268

Congruence and Diversity of Butterfly-Host Plant Associations at Higher Taxonomic Levels  

PubMed Central

We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages. PMID:23717448

Ferrer-Paris, Jose R.; Sanchez-Mercado, Ada; Viloria, Angel L.; Donaldson, John

2013-01-01

269

High plant species diversity indirectly mitigates CO 2- and N-induced effects on grasshopper growth  

NASA Astrophysics Data System (ADS)

We examined how elevated atmospheric [CO 2] and higher rate of nitrogen (N) input may influence grasshopper growth by changing food plant quality and how such effects may be modified by species diversity of the plant community. We reared grasshopper nymphs ( Melanoplus femurrubrum) on Poa pratensis from field-grown monocultures or polycultures (16 species) that were subjected to either ambient or elevated levels of CO 2 and N. Grasshopper growth rate was higher on P. pratensis leaves grown in monocultures than in polycultures, higher on P. pratensis grown under elevated than under ambient [CO 2], and higher on P. pratensis grown under elevated than under ambient [N]. The higher growth rate observed on P. pratensis exposed to elevated [CO 2] was, however, less pronounced for polyculture- than monoculture-grown P. pratensis. Growth rate of the grasshoppers was positively correlated with leaf [N], [C], and concentration of soluble carbohydrates + lipids. Concentration of non-structural carbohydrates + lipids was higher in leaves grown under elevated than under ambient [CO 2], and the difference between P. pratensis grown under ambient and elevated [CO 2] was greater for monoculture- than polyculture-grown P. pratensis. In addition, leaf N concentration was higher in P. pratensis grown in monocultures than in polycultures, suggesting that plant species richness, indirectly, may influence insect performance by changed nutritional value of the plants. Because we found interactive effects between all factors included ([CO 2], [N], and plant species diversity), our results suggest that these parameters may influence plant-insect interactions in a complex way that is not predictable from the sum of single factor manipulations.

Strengbom, Joachim; Reich, Peter B.; Ritchie, Mark E.

2008-09-01

270

Beta Diversity of Plant-Pollinator Networks and the Spatial Turnover of Pairwise Interactions  

PubMed Central

Interactions between species form complex networks that vary across space and time. Even without spatial or temporal constraints mutualistic pairwise interactions may vary, or rewire, across space but this variability is not well understood. Here, we quantify the beta diversity of species and interactions and test factors influencing the probability of turnover of pairwise interactions across space. We ask: 1) whether beta diversity of plants, pollinators, and interactions follow a similar trend across space, and 2) which interaction properties and site characteristics are related to the probability of turnover of pairwise interactions. Geographical distance was positively correlated with plant and interaction beta diversity. We find that locally frequent interactions are more consistent across space and that local flower abundance is important for the realization of pairwise interactions. While the identity of pairwise interactions is highly variable across space, some species-pairs form interactions that are locally frequent and spatially consistent. Such interactions represent cornerstones of interacting communities and deserve special attention from ecologists and conservation planners alike. PMID:25384058

Carstensen, Daniel W.; Sabatino, Malena; Trøjelsgaard, Kristian; Morellato, Leonor Patricia C.

2014-01-01

271

Evolutionarily Related Sindbis-Like Plant Viruses Maintain Different Levels of Population Diversity in a Common Host  

Microsoft Academic Search

The levels of population diversity of three related Sindbis-like plant viruses, Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), and Cowpea chlorotic mottle virus (CCMV), in infections of a common host, Nicotiana benthamiana, established from genetically identical viral RNA were examined. Despite probably having a common evolutionary ancestor, the three viruses maintained different levels of population diversity. CMV had the

WILLIAM L. SCHNEIDER; MARILYN J. ROOSSINCK

2000-01-01

272

Ground-water level affects plant species diversity along the lower reaches of the Tarim river, Western China  

Microsoft Academic Search

We examined the relationship between plant species diversity and ground-water level in the lower reaches of the Tarim River, western China, by analysing the field data from 40 monitoring wells across nine study sites and 18 vegetation survey plots during the period from 2000 to 2002. We found that several of the species diversity indices were closely related to ground-water

Y.-N. Chen; H. Zilliacus; W.-H. Li; H.-F. Zhang

2006-01-01

273

Earthworms counterbalance the negative effects of microorganisms on plant diversity and enhance the tolerance of grasses to nematodes  

Microsoft Academic Search

Plant community composition is affected by a wide array of soil organisms with diverse feeding modes and functions. Former studies dealt with the high diversity and complexity of soil communities by focusing on particular functional groups in isolation, by grouping soil organisms into body size classes or by using whole communities from different origins. Our approach was to investigate both

S. Wurst; B. Allema; H. Duyts; W. H. Van der Putten

2008-01-01

274

Earthworms counterbalance the negative effect of microorganisms on plant diversity and enhance to tolerance of grasses to nematodes  

Microsoft Academic Search

Plant community composition is affected by a wide array of soil organisms with diverse feeding modes and functions. Former studies dealt with the high diversity and complexity of soil communities by focusing on particular functional groups in isolation, by grouping soil organisms into body size classes or by using whole communities from different origins. Our approach was to investigate both

S. Wurst; A. B. Allema; H. Duyts; Putten van der W. H

2008-01-01

275

Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity.  

PubMed

We provide the first comparative multispecies analysis of spatial genetic structure and diversity in the circumpolar Arctic using a common strategy for sampling and genetic analyses. We aimed to identify and explain potential general patterns of genetic discontinuity/connectivity and diversity, and to compare our findings with previously published hypotheses. We collected and analyzed 7707 samples of 17 widespread arctic-alpine plant species for amplified fragment length polymorphisms (AFLPs). Genetic structure, diversity and distinctiveness were analyzed for each species, and extrapolated to cover the geographic range of each species. The resulting maps were overlaid to produce metamaps. The Arctic and Atlantic Oceans, the Greenlandic ice cap, the Urals, and lowland areas between southern mountain ranges and the Arctic were the strongest barriers against gene flow. Diversity was highest in Beringia and gradually decreased into formerly glaciated areas. The highest degrees of distinctiveness were observed in Siberia. We conclude that large-scale general patterns exist in the Arctic, shaped by the Pleistocene glaciations combined with long-standing physical barriers against gene flow. Beringia served as both refugium and source for interglacial (re)colonization, whereas areas further west in Siberia served as refugia, but less as sources for (re)colonization. PMID:23869846

Eidesen, Pernille Bronken; Ehrich, Dorothee; Bakkestuen, Vegar; Alsos, Inger Greve; Gilg, Oliver; Taberlet, Pierre; Brochmann, Christian

2013-11-01

276

Testing successional hypotheses of stability, heterogeneity, and diversity in pitcher-plant inquiline communities.  

PubMed

Succession is a foundation concept in ecology that describes changes in species composition through time, yet many successional patterns have not been thoroughly investigated. We highlight three hypotheses about succession that are often not clearly stated or tested: (1) individual communities become more stable over time, (2) replicate communities become more similar over time, and (3) diversity peaks at mid-succession. Testing general patterns of succession requires estimates of variation in trajectories within and among replicate communities. We followed replicate aquatic communities found within leaves of purple pitcher plants (Sarracenia purpurea) to test these three hypotheses. We found that stability of individual communities initially decreased, but then increased in older communities. Predation was highest in younger leaves but then declined, while competition was likely strongest in older leaves, as resources declined through time. Higher levels of predation and competition corresponded with periods of higher stability. As predicted, heterogeneity among communities decreased with age, suggesting that communities became more similar over time. Changes in diversity depended on trophic level. The diversity of bacteria slightly declined over time, but the diversity of consumers of bacteria increased linearly and strongly throughout succession. We suggest that studies need to focus on the variety of environmental drivers of succession, which are likely to vary through time and across habitats. PMID:22430372

Miller, Thomas E; terHorst, Casey P

2012-09-01

277

Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes.  

PubMed

Following studies that showed negative effects of species loss on ecosystem functioning, newer studies have started to investigate if similar consequences could result from reductions of genetic diversity within species. We tested the influence of genotypic richness and dissimilarity (plots containing one, three, six or 12 genotypes) in stands of the invasive plant Solidago canadensis in China on the decomposition of its leaf litter and associated soil animals over five monthly time intervals. We found that the logarithm of genotypic richness was positively linearly related to mass loss of C, N and P from the litter and to richness and abundance of soil animals on the litter samples. The mixing proportion of litter from two sites, but not genotypic dissimilarity of mixtures, had additional effects on measured variables. The litter diversity effects on soil animals were particularly strong under the most stressful conditions of hot weather in July: at this time richness and abundance of soil animals were higher in 12-genotype litter mixtures than even in the highest corresponding one-genotype litter. The litter diversity effects on decomposition were in part mediated by soil animals: the abundance of Acarina, when used as covariate in the analysis, fully explained the litter diversity effects on mass loss of N and P. Overall, our study shows that high genotypic richness of S. canadensis leaf litter positively affects richness and abundance of soil animals, which in turn accelerate litter decomposition and P release from litter. PMID:24276771

Wang, Xiao-Yan; Miao, Yuan; Yu, Shuo; Chen, Xiao-Yong; Schmid, Bernhard

2014-03-01

278

Effects of genotype identity and diversity on the invasiveness and invasibility of plant populations.  

PubMed

Genetic diversity within species is a potentially important, but poorly studied, determinant of plant community dynamics. Here we report experiments testing the influence of genotype identity and genotypic diversity both on the invasibility of a foundation, matrix-forming species (Kentucky bluegrass, Poa pratensis), and on the invasiveness of a colonizing species (dandelion, Taraxacum officinale). Genotypes of Kentucky bluegrass in monoculture showed significant variation in productivity and resistance to dandelion invasion, but the productivity and invasion resistance of genotypic mixtures were not significantly different from those of genotypic monocultures. Indirect evidence suggested temporal shifts in the genotypic composition of mixtures. Dandelion genotypes in monoculture showed striking and significant variation in productivity and seed production, but there was no significant tendency for these variables in mixtures to deviate from null expectations based on monocultures. However, productivity and seed production of dandelion mixtures were consistently greater than those of the two least productive genotypes, and statistically indistinguishable from those of the three most productive genotypes, suggesting the possibility of greater invasiveness of genotypically diverse populations in the long run due to dominance by highly productive genotypes. In both experiments, the identity of genotypes was far more important than genetic diversity per se. PMID:19865832

Vellend, Mark; Drummond, Emily B M; Tomimatsu, Hiroshi

2010-02-01

279

Changing concepts of a plant: current knowledge on plant diversity and evolution  

Microsoft Academic Search

From a phylogenetic perspective, most plant biodiversity lie in the algae, which comprise nine divisions distinct in cell architecture. In the past decade or so, molecular phylogenies have revealed that many algal divisions are only distantly related, and belong to five different supergroups of eukaryotes. The scattered and distant distributions of algae are interpreted as the result of separate endosymbioses

Isao Inouye; Noriko Okamoto

280

[Changes of plant community structure and species diversity in degradation process of Shouqu wetland of Yellow River].  

PubMed

Shouqu wetland of Yellow River plays important roles in the ecological security of the lower reaches of Yellow River. By the method of replacing time series with spatial sequence, an investigation was made on the changes of plant species diversity in the process of the natural degradation of the wetland. A comparison was also made to study the effects of artificial drainage on the plant species diversity. The results indicated that in the degradation process of Shouqu wetland, i.e., from swamp to swamp meadow, to alpine meadow, and to steppe meadow, the dominant plants followed the pattern of hygrophytes being gradually replaced by mesophytes and xerophytes, richness index and diversity index were increasing while dominance index was decreasing, and evenness index decreased first and increased then. The species diversity had an overall increasing trend. After artificial drainage, the proportion of poisonous weeds in the plant community increased, resulting in the increase of richness index and diversity index, slight decrease of evenness index and dominance index, and gradual decrease of Sorensen index. Artificial drainage made the habitat drying, which provided a chance for some mesophytes to invade, resulting in the increase of diversity index and richness index and the decrease of evenness index. On the whole, artificial drainage increased the plant diversity in the community, but the increase accompanied with increasing poisonous weeds, and thus, led the Shouqu wetland degraded into weed type wetland. PMID:19449561

Hou, Yuan; Guo, Zheng-gang; Long, Rui-jun

2009-01-01

281

The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia's headwaters.  

PubMed

A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland. PMID:25023744

Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun

2014-10-01

282

Environmental controls on dominance and diversity of woody plant species in a Madrean, Sky Island ecosystem, Arizona, USA  

Microsoft Academic Search

The Sky Island archipelagos of the Sierra Madre Occidental contain diverse, highly endemic, and topographically complex ecosystems,\\u000a yet the local and landscape-scale controls on woody plant dominance and diversity patterns are poorly understood. This study\\u000a examines variation in woody plant species composition in relation to a suite of environmental variables (i.e., elevation,\\u000a potential soil moisture, soil type, geologic substrate, and

Helen M. Poulos; Alan H. Taylor; R. Matthew Beaty

2007-01-01

283

Safety\\/security interface assessments at commercial nuclear power plants  

Microsoft Academic Search

The findings of the Haynes Task Force Committee (NUREG-0992) are used as the basis for defining safety\\/security assessment team activities at commercial nuclear power plants in NRC Region V. A safety\\/security interface assessment outline and the approach used for making the assessments are presented along with the composition of team members. As a result of observing simulated plant emergency conditions

K. R. Byers; P. J. Brown; L. R. Norderhaug

1985-01-01

284

Desert Farming Benefits from Microbial Potential in Arid Soils and Promotes Diversity and Plant Health  

PubMed Central

Background To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. Methodology/Principal Findings We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt). Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90), and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37%) than in the desert (11%). Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%); disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. Conclusions/Significance After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural soil showed a higher diversity and a better ecosystem function for plant health but a loss of extremophilic bacteria. Interestingly, we detected that indigenous desert microorganisms promoted plant health in desert agro-ecosystems. PMID:21912695

Koberl, Martina; Muller, Henry; Ramadan, Elshahat M.; Berg, Gabriele

2011-01-01

285

Assessing the xylanolytic bacterial diversity during the malting process.  

PubMed

The presence of microorganisms producing cell wall hydrolyzing enzymes such as xylanases during malting can improve mash filtration behavior and consequently have potential for more efficient wort production. In this study, the xylanolytic bacterial community during malting was assessed by isolation and cultivation on growth media containing arabinoxylan, and identification by 16S rRNA gene sequencing. A total of 33 species-level operational taxonomic units (OTUs) were found, taking into account a 3% sequence dissimilarity cut-off, belonging to four phyla (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) and 25 genera. Predominant OTUs represented xylanolytic bacteria identified as Sphingobacterium multivorum, Stenotrophomonas maltophilia, Aeromonas hydrophila and Pseudomonas fulva. DNA fingerprinting of all xylanolytic isolates belonging to S. multivorum obtained in this study revealed shifts in S. multivorum populations during the process. Xylanase activity was determined for a selection of isolates, with Cellulomonas flavigena showing the highest activity. The xylanase of this species was isolated and purified 23.2-fold by ultrafiltration, 40% ammonium sulfate precipitation and DEAE-FF ion-exchange chromatography and appeared relatively thermostable. This study will enhance our understanding of the role of microorganisms in the barley germination process. In addition, this study may provide a basis for microflora management during malting. PMID:24010623

Malfliet, Sofie; Justé, Annelies; Crauwels, Sam; Willems, Kris; De Cooman, Luc; Lievens, Bart; Aerts, Guido

2013-12-01

286

Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast  

NASA Technical Reports Server (NTRS)

The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.

Sze, H.; Liang, F.; Hwang, I.; Curran, A. C.; Harper, J. F.; Evans, M. L. (Principal Investigator)

2000-01-01

287

[Effects of tourism disturbance on plant diversity in Qingshan Lake scenic area of Zhejiang Province].  

PubMed

From May 2007 to June 2008, an investigation was made on the changes of plant community in Qingshan Lake scenic area of Zhejiang Province under the effects of tourism disturbance. With the increase of tourism disturbance, the importance value of the plants was mainly fastened on a few species such as Pinus hwangshanensis, apt to decrease for tree and shrub species and to increase for herb species, and the individuals of the plants increased. The values of richness index (D) and diversity index (H) were in the order of medium disturbance > slight disturbance > severe disturbance, while the evenness index (J) value was in the order of medium disturbance > severe disturbance > slight disturbance. At the same vegetation layers, only a few species such as Cinnamomum camphora existed under different disturbances, and thereby, the similarity index values were smaller than 0.500. Slight disturbance affected coniferous forest most, with the average values of D, H, and J being the lowest (1.188, 1.056, and 0.697, respectively); severe disturbance affected broadleaf forest and shrub-herbage most, with the D value (2.013) of shrub-herbage and the H value (1.286) and J value (0.807) of broadleaf forest being the lowest; while medium disturbance was favorable to the increase of plant diversity and to the normal exertion of ecosystem function. The eco-safety of the structural elements of plant community in the scenic area was threatened to some extent, resulting in the reduction of indigenous species such as Sinocalycanthus chinensis and the incursion of exotic species as Setaria viridis. PMID:21608239

Lu, Qing-Bin; You, Wei-Yun; Zhao, Chang-Jie; Wang, Xiang-Wei; Meng-Xiang, Xiu

2011-02-01

288

A structural equation model analysis of postfire plant diversity in California shrublands  

USGS Publications Warehouse

This study investigates patterns of plant diversity following wildfires in fire-prone shrublands of California, seeks to understand those patterns in terms of both local and landscape factors, and considers the implications for fire management. Ninety study sites were established following extensive wildfires in 1993, and 1000-m2 plots were used to sample a variety of parameters. Data on community responses were collected for five years following fire. Structural equation modeling (SEM) was used to relate plant species richness to plant abundance, fire severity, abiotic conditions, within-plot heterogeneity, stand age, and position in the landscape. Temporal dynamics of average richness response was also modeled. Richness was highest in the first year following fire, indicating postfire enhancement of diversity. A general decline in richness over time was detected, with year-to-year variation attributable to annual variations in precipitation. Peak richness in the landscape was found where (1) plant abundance was moderately high, (2) within-plot heterogeneity was high, (3) soils were moderately low in nitrogen, high in sand content, and with high rock cover, (4) fire severity was low, and (5) stands were young prior to fire. Many of these characteristics were correlated with position in the landscape and associated conditions. We infer from the SEM results that postfire richness in this system is strongly influenced by local conditions and that these conditions are, in turn, predictably related to landscape-level conditions. For example, we observed that older stands of shrubs were characterized by more severe fires, which were associated with a low recovery of plant cover and low richness. These results may have implications for the use of prescribed fire in this system if these findings extrapolate to prescribed burns as we would expect. ?? 2006 by the Ecological Society of America.

Grace, J. B.; Keeley, J. E.

2006-01-01

289

Organic Farming and Landscape Structure: Effects on Insect-Pollinated Plant Diversity in Intensively Managed Grasslands  

PubMed Central

Parallel declines in insect-pollinated plants and their pollinators have been reported as a result of agricultural intensification. Intensive arable plant communities have previously been shown to contain higher proportions of self-pollinated plants compared to natural or semi-natural plant communities. Though intensive grasslands are widespread, it is not known whether they show similar patterns to arable systems nor whether local and/or landscape factors are influential. We investigated plant community composition in 10 pairs of organic and conventional dairy farms across Ireland in relation to the local and landscape context. Relationships between plant groups and local factors (farming system, position in field and soil parameters) and landscape factors (e.g. landscape complexity) were investigated. The percentage cover of unimproved grassland was used as an inverse predictor of landscape complexity, as it was negatively correlated with habitat-type diversity. Intensive grasslands (organic and conventional) contained more insect-pollinated forbs than non-insect pollinated forbs. Organic field centres contained more insect-pollinated forbs than conventional field centres. Insect-pollinated forb richness in field edges (but not field centres) increased with increasing landscape complexity (% unimproved grassland) within 1, 3, 4 and 5km radii around sites, whereas non-insect pollinated forb richness was unrelated to landscape complexity. Pollination systems within intensive grassland communities may be different from those in arable systems. Our results indicate that organic management increases plant richness in field centres, but that landscape complexity exerts strong influences in both organic and conventional field edges. Insect-pollinated forb richness, unlike that for non-insect pollinated forbs, showed positive relationships to landscape complexity reflecting what has been documented for bees and other pollinators. The insect-pollinated forbs, their pollinators and landscape context are clearly linked. This needs to be taken into account when managing and conserving insect-pollinated plant and pollinator communities. PMID:22666450

Power, Eileen F.; Kelly, Daniel L.; Stout, Jane C.

2012-01-01

290

Assessing genetic diversity of wheat ( Triticum aestivum L.) germplasm using microsatellite markers  

Microsoft Academic Search

A set of 24 wheat microsatellite markers, representing at least one marker from each chromosome, was used for the assessment of genetic diversity in 998 accessions of hexaploid bread wheat (Triticum aestivum L.) which originated from 68 countries of five continents. A total of 470 alleles were detected with an average allele number of 18.1 per locus. The highest number

X. Q. Huang; A. Börner; M. S. Röder; M. W. Ganal

2002-01-01

291

Looking Deeper than the Gradebook: Assessing Cultural Diversity Attitudes among Undergraduates  

ERIC Educational Resources Information Center

Identification of college students' attitudes about diversity issues is an important part of the assessment of student development across many fields of study. This article discusses an action research approach and classroom application strategies stemming from a survey of 88 pre-service teacher candidates on their attitudes toward homosexuality,…

Lake, Robert; Rittschof, Kent

2012-01-01

292

Assessment of an Online Course on Adult Development, Aging, and Diversity  

Microsoft Academic Search

We describe a project evaluating the academic effectiveness of an online psychology course entitled “Adult Development, Aging, and Diversity.” Course evaluation was conducted by monitoring students' participation in group discussions, examining the quality of their work on written assignments, tracking their retention and engagement in the course, and assessing their performance on two exams. In addition, we used two online

Chandra M. Mehrotra; Stephen B. Fried

2003-01-01

293

Convergence or Divergence: Alignment of Standards, Assessment, and Issues of Diversity.  

ERIC Educational Resources Information Center

In this report, teacher educators scrutinize the relationships between the standards and assessment movement in education and the United States' increasingly multicultural population. The papers include: "Foreword" (Jacqueline Jordan Irvine); (1) "Diversity and Standards: Defining the Issues" (Norvella P. Carter); (2) "Accountability and…

Carter, Norvella, Ed.

294

Assessing Culturally and Linguistically Diverse Students: A Practical Guide. Practical Intervention in the Schools Series  

ERIC Educational Resources Information Center

This is the first book to present a practical, problem-solving approach and hands-on tools and techniques for assessing English-language learners and culturally diverse students in K-12 settings. It meets a crucial need among practitioners and special educators working in today's schools. Provided are research-based, step-by-step procedures for…

Rhodes, Robert L.; Ochoa, Salvador Hector; Ortiz, Samuel O.

2005-01-01

295

Multiscale sampling of plant diversity: Effects of minimum mapping unit size  

USGS Publications Warehouse

Only a small portion of any landscape can be sampled for vascular plant diversity because of constraints of cost (salaries, travel time between sites, etc.). Often, the investigator decides to reduce the cost of creating a vegetation map by increasing the minimum mapping unit (MMU), and/or by reducing the number of vegetation classes to be considered. Questions arise about what information is sacrificed when map resolution is decreased. We compared plant diversity patterns from vegetation maps made with 100-ha, 50-ha, 2-ha, and 0.02-ha MMUs in a 754-ha study area in Rocky Mountain National Park, Colorado, United States, using four 0.025-ha and 21 0.1-ha multiscale vegetation plots. We developed and tested species-log(area) curves, correcting the curves for within-vegetation type heterogeneity with Jaccard's coefficients. Total species richness in the study area was estimated from vegetation maps at each resolution (MMU), based on the corrected species-area curves, total area of the vegetation type, and species overlap among vegetation types. With the 0.02-ha MMU, six vegetation types were recovered, resulting in an estimated 552 species (95% CI = 520-583 species) in the 754-ha study area (330 plant species were observed in the 25 plots). With the 2-ha MMU, five vegetation types were recognized, resulting in an estimated 473 species for the study area. With the 50-ha MMU, 439 plant species were estimated for the four vegetation types recognized in the study area. With the 100-ha MMU, only three vegetation types were recognized, resulting in an estimated 341 plant species for the study area. Locally rare species and keystone ecosystems (areas of high or unique plant diversity) were missed at the 2-ha, 50-ha, and 100-ha scales. To evaluate the effects of minimum mapping unit size requires: (1) an initial stratification of homogeneous, heterogeneous, and rare habitat types; and (2) an evaluation of within-type and between-type heterogeneity generated by environmental gradients and other factors. We suggest that at least some portions of vegetation maps created at a coarser level of resolution be validated at a higher level of resolution.

Stohlgren, T. J.; Chong, G. W.; Kalkhan, M. A.; Schell, L. D.

1997-01-01

296

Diversity patterns of selected Andean plant groups correspond to topography and habitat dynamics, not orogeny.  

PubMed

The tropical Andes are a hotspot of biodiversity, but detailed altitudinal and latitudinal distribution patterns of species are poorly understood. We compare the distribution and diversity patterns of four Andean plant groups on the basis of georeferenced specimen data: the genus Nasa (Loasaceae), the two South American sections of Ribes (sect. Parilla and sect. Andina, Grossulariaceae), and the American clade of Urtica (Urticaceae). In the tropical Andes, these often grow together, especially in (naturally or anthropogenically) disturbed or secondary vegetation at middle to upper elevations. The climatic niches of the tropical groups studied here are relatively similar in temperature and temperature seasonality, but do differ in moisture seasonality. The Amotape-Huancabamba Zone (AHZ) between 3 and 8° S shows a clear diversity peak of overall species richness as well as for narrowly endemic species across the groups studied. For Nasa, we also show a particular diversity of growth forms in the AHZ. This can be interpreted as proxy for a high diversity of ecological niches based on high spatial habitat heterogeneity in this zone. Latitudinal ranges are generally larger toward the margins of overall range of the group. Species number and number of endemic species of our taxa peak at elevations of 2,500-3,500 m in the tropical Andes. Altitudinal diversity patterns correspond well with the altitudinal distribution of slope inclination. We hypothesize that the likelihood and frequency of landslides at steeper slopes translate into temporal habitat heterogeneity. The frequency of landslides may be causally connected to diversification especially for the numerous early colonizing taxa, such as Urtica and annual species of Nasa. In contrast to earlier hypotheses, uplift history is not reflected in the pattern here retrieved, since the AHZ is the area of the most recent Andean uplift. Similarly, a barrier effect of the low-lying Huancabamba depression is not retrieved in our data. PMID:25346750

Mutke, Jens; Jacobs, Rana; Meyers, Katharina; Henning, Tilo; Weigend, Maximilian

2014-01-01

297

Population structure and genetic diversity of a medicinal plant species Retama raetam in southern Tunisia.  

PubMed

Retama raetam is a stem-assimilating, C3, evergreen, medicinal plant species, desert legume common to arid ecosystems around the Mediterranean basin. This study addresses the genetic diversity and relationship among and within three populations collected from different habitats in southern Tunisia by Random Amplified Polymorphic DNA (RAPD). Estimates of the percentage of polymorphic bands, Shannon's diversity information index and Nei's gene diversity index were determined. Results showed that population from the Island Djerba has the lowest Nei's gene diversity; this also was for Shannon diversity index. An analysis of molecular variance indicated that the majority of variation existed within populations (68%) and that there was significant differentiation among populations (phiPT = 0.316, p < 0.001). Genetic distance (phiPT based values) between pairwise populations ranged from 0.098 to 0.505 and the differentiation between pair-wise populations was significant when individual pairs of populations were compared. Based on the coefficient of gene differentiation (Gst), gene flow (Nm) was estimated and was found to vary from 0.490 to 4.609 between pair-wise populations and 1.42 among populations. The results of UPGMA cluster analysis and PCoA analysis indicated that most variation occurred within populations and that genetic differentiation had happened between populations. These findings are important for a better understanding of the adaptive strategy of R. raetam in southern Tunisia and will be useful for conservation managers to work out an effective strategy to protect this important species. PMID:24783800

Abdellaoui, Raoudha; Yahyaoui, Faouzia; Neffati, Mohamed

2014-01-15

298

Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation  

PubMed Central

Background and Aims Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Methods Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. Key Results High within-population genetic diversity (HE = 0·76) and a relatively low inbreeding coefficient (FIS = 0·022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G?ST = 0·53). A significant isolation-by-distance relationship was found (r = 0·62, P < 0·001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. Conclusions The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western–eastern differentiation in this species merits consideration in future conservation efforts. PMID:19797423

AEgisdottir, Hafdis Hanna; Kuss, Patrick; Stocklin, Jurg

2009-01-01

299

Diversity patterns of selected Andean plant groups correspond to topography and habitat dynamics, not orogeny  

PubMed Central

The tropical Andes are a hotspot of biodiversity, but detailed altitudinal and latitudinal distribution patterns of species are poorly understood. We compare the distribution and diversity patterns of four Andean plant groups on the basis of georeferenced specimen data: the genus Nasa (Loasaceae), the two South American sections of Ribes (sect. Parilla and sect. Andina, Grossulariaceae), and the American clade of Urtica (Urticaceae). In the tropical Andes, these often grow together, especially in (naturally or anthropogenically) disturbed or secondary vegetation at middle to upper elevations. The climatic niches of the tropical groups studied here are relatively similar in temperature and temperature seasonality, but do differ in moisture seasonality. The Amotape–Huancabamba Zone (AHZ) between 3 and 8° S shows a clear diversity peak of overall species richness as well as for narrowly endemic species across the groups studied. For Nasa, we also show a particular diversity of growth forms in the AHZ. This can be interpreted as proxy for a high diversity of ecological niches based on high spatial habitat heterogeneity in this zone. Latitudinal ranges are generally larger toward the margins of overall range of the group. Species number and number of endemic species of our taxa peak at elevations of 2,500–3,500 m in the tropical Andes. Altitudinal diversity patterns correspond well with the altitudinal distribution of slope inclination. We hypothesize that the likelihood and frequency of landslides at steeper slopes translate into temporal habitat heterogeneity. The frequency of landslides may be causally connected to diversification especially for the numerous early colonizing taxa, such as Urtica and annual species of Nasa. In contrast to earlier hypotheses, uplift history is not reflected in the pattern here retrieved, since the AHZ is the area of the most recent Andean uplift. Similarly, a barrier effect of the low-lying Huancabamba depression is not retrieved in our data. PMID:25346750

Mutke, Jens; Jacobs, Rana; Meyers, Katharina; Henning, Tilo; Weigend, Maximilian

2014-01-01

300

Effects of the brown anole invasion and betelnut palm planting on arthropod diversity in southern Taiwan.  

PubMed

The brown anole ( Anolis sagrei ) occurs naturally in various localities in Central America, and an exotic invasive population was first reported in Sheishan District, Chiayi County, Taiwan, in 2000. Previous studies showed that following the invasion of A. sagrei , the diversity and abundance of local terrestrial arthropods, such as orb spiders and arboreal insects, were severely affected. In this study, we assessed the impact of A. sagrei on arthropod diversity in Taiwan by comparing spider and insect diversities among betelnut palm plantations, in which this lizard species was either present or absent, and a secondary forest. In addition, enclosures were established in which the density of A. sagrei was manipulated to investigate the effect of this predator on spiders. The results of a lizard stomach content analysis showed that spiders comprised 7% and insects 90% of the prey consumed. Among the insects consumed by A. sagrei , more than 50% were ants. The abundances of the major arthropod prey of A. sagrei , such as jumping spiders and hymenopterans, in the lizard-present sites were much lower than in the lizard-removed sites. The enclosure experiments also showed that predation by the lizards significantly reduced the abundance of jumping spiders. All these results indicated that the introduced lizard greatly affected the diversity and abundance of terrestrial arthropods in agricultural areas in southern Taiwan. PMID:19267623

Huang, Shao-Chang; Norval, Gerrut; Wei, Chia-Shian; Tso, I-Min

2008-11-01

301

Consequences of plant-chemical diversity for domestic goat food preference in Mediterranean forests  

NASA Astrophysics Data System (ADS)

The domestic goat, a major herbivore in the Mediterranean basin, has demonstrated a strong ability to adapt its feeding behaviour to the chemical characteristics of food, selecting plants according to their nutritive quality. In this study, we determine some chemical characteristics related to plant nutritional quality and its variability among and within five tree species, these being the main components of the mountain forests of SE Spain, with the aim of determining their influence on food selection by this generalist herbivore. We analyse nitrogen, total phenols, condensed tannins and fibre concentration as an indicator of the nutritive value of the different trees. To determine the preference by the domestic goat, we performed two types of feeding-choice assays, where goats had to select between different species or between branches of the same species but from trees of different nutritional quality. The analysis of the plant nutritional quality showed significant differences in the chemical characteristics between species, and a high variability within species. However, when faced with different tree species, the domestic goat selected some of them but showed striking individual differences between goats. When selecting between trees of the same species, the goats showed no differential selection. This limited effect of chemical plant characteristics, together with the variability in foraging behaviour, resulted in a widespread consumption of diverse plant species, which can potentially modulate the effect of the goat on vegetation composition, and open the way for the conservation of traditional livestock grazing on natural protected areas.

Baraza, Elena; Hódar, José A.; Zamora, Regino

2009-01-01

302

Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants.  

PubMed

This work aimed to evaluate the symbiotic compatibility and nodulation efficiency of rhizobia isolated from Desmodium incanum, Lotus corniculatus, L. subbiflorus, L. uliginosus and L. glaber plants by cross-inoculation. Twelve reference strains and 21 native isolates of rhizobia were genetically analyzed by the BOX-PCR technique, which showed a high genetic diversity among the rhizobia studied. The isolates were also characterized based on their production of indolic compounds and siderophores, as well as on their tolerance to salinity. Fifteen of the 33 rhizobia analyzed were able to produce indolic compounds, whereas 13 produced siderophores. All the tested rhizobia were sensitive to high salinity, although some were able to grow in solutions of up to 2% NaCl. Most of the native rhizobia isolated from L. uliginosus were able to induce nodulation in all plant species studied. In a greenhouse experiment using both D. incanum and L. corniculatus plants, the rhizobia isolate UFRGS Lu2 promoted the greatest plant growth. The results demonstrate that there are native rhizobia in the soils of southern Brazil that have low host specificity and are able to induce nodulation and form active nodules in several plant species. PMID:25071405

Granada, Camille E; Strochein, Marcos; Vargas, Luciano K; Bruxel, Manuela; de Sá, Enilson Luiz Saccol; Passaglia, Luciane M P

2014-06-01

303

Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in semiarid Grasslands National Park, Canada.  

PubMed

Septate endophytes proliferating in the roots of grasslands' plants shed doubts on the importance of arbuscular mycorrhizal (AM) symbioses in dry soils. The functionality and diversity of the AM symbioses formed in four replicates of three adjacent plant communities (agricultural, native, and restored) in Grasslands National Park, Canada were assessed in periods of moisture sufficiency and deficiency typical of early and late summer in the region. The community structure of AM fungi, as determined by polymerase chain reaction-denaturing gradient gel electrophoresis, varied with sampling time and plant community. Soil properties other than soil moisture did not change significantly with sampling time. The DNA sequences dominating AM extraradical networks in dry soil apparently belonged to rare taxa unreported in GenBank. DNA sequences of Glomus viscosum, Glomus mosseae, and Glomus hoi were dominant under conditions of moisture sufficiency. In total, nine different AM fungal sequences were found suggesting a role for the AM symbioses in semiarid areas. Significant positive linear relationships between plant P and N concentrations and active extraradical AM fungal biomass, estimated by the abundance of the phospholipid fatty acid marker 16:1 omega 5, existed under conditions of moisture sufficiency, but not under dry conditions. Active extraradical AM fungal biomass had significantly positive linear relationship with the abundance of two early season grasses, Agropyron cristatum (L.) Gaertn. and Koeleria gracilis Pers., but no relationship was found under dry conditions. The AM symbioses formed under conditions of moisture sufficiency typical of early summer at this location appear to be important for the nutrition of grassland plant communities, but no evidence of mutualism was found under the dry conditions of late summer. PMID:20082070

Yang, Chao; Hamel, Chantal; Schellenberg, Michael P; Perez, Juan C; Berbara, Ricardo L

2010-05-01

304

Use of RAPD for the study of diversity within plant germplasm collections.  

PubMed

As part of the development of a molecular toolkit for the study of diversity within large plant germplasm collections, RAPD technology has been applied to accessions of rice (Oryza sativa) obtained from the major world collection held at IRRI (the International Rice Research Institute) which supplies germplasm to breeders. Methods for the speedy extraction of DNA representative of a rice accession, its amplification by PCR to reveal reproducible products, and the analysis of the banding data using numerical techniques have been established. The biological meaningfulness of RAPD data has also been demonstrated by reference to previous work on classification and crossability. PMID:7706109

Virk, P S; Ford-Lloyd, B V; Jackson, M T; Newbury, H J

1995-02-01

305

Genetic and functional diversity of soil microbial communities associated to grapevine plants and wine quality  

NASA Astrophysics Data System (ADS)

Despite the economic importance of vineyards in Italy, the wine sector is facing severe challenges from increased global competition and climate changes. The quality of the grape at harvest has a strong direct impact on wine final quality and the strong relationship between wine composition, aroma, taste, and soil properties has been outlined in the "Terroir concept". However, information on the impact of soil microbial communities on soil functions, grapevine plants, and wine quality is generally lacking. In the current study, soils from two close sites in Central Tuscany (BRO11 and BRO12) cultivated with the same grapevine cultivar Sangiovese, but with contrasting wine quality, were examined. Although the BRO12 site provided a better wine quality than the BRO11, the two soils showed similar physical, chemical, and hydrological properties. Also soil humidity, as determined by FDR (Frequency Domain Reflectometry) sensors, indicated a similar water availability in the first 75 cm during a three years trial (2000-2010). Interestingly, the mean three years value of the ratio between the two stable carbon isotopes 13C/12C, measured in the alcohol of the wines, was significantly higher in BRO12 than in BRO11 (-28,3‰ and -24,4‰, respectively), indicating the presence of a relatively higher water stress in the BRO11 soil. Functional GeoChip microarray analyses revealed higher presence of Actinobacteria in the BRO12 than in the BRO11 soil, where the alfa-Proteobacteria were more abundant. Furthermore, a consistent difference in genes involved in S cycling, with a significant overrepresentation of sulphur-oxidation genes in BRO11 and increased levels of sulphate reduction genes BRO12 was detected. These results are consistent with the high content of sulphates and the abundance of Firmicutes such as Sulfobacillus thermosulfidooxidans in the BRO11 soil. Therefore, the different microbiology of the two soils could be related to the different redox conditions of the two soils. The structure of soil microbial communities was assessed using 16S and 18S rRNA genes pyrosequencing and the determination of some soil microbial properties such as microbial respiration, microbial C-biomass were also determined. The role of both genetic and functional diversity of soil bacterial community on grape physiology and wine quality will be discussed.

Mocali, Stefano; Fabiani, Arturo; Kuramae, Eiko; de Hollander, Mattias; Kowalchuk, George A.; Vignozzi, Nadia; Valboa, Giuseppe; Costantini, Edoardo

2013-04-01

306

Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA  

USGS Publications Warehouse

Plant community diversity, measured as species richness, is typically highest in the early post-fire years in California shrublands. However, this generalization is overly simplistic and the present study demonstrates that diversity is determined by a complex of temporal and spatial effects. Ninety sites distributed across southern California were studied for 5 years after a series of fires. Characteristics of the disturbance event, in this case fire severity, can alter post-fire diversity, both decreasing and increasing diversity, depending on life form. Spatial variability in resource availability is an important factor explaining patterns of diversity, and there is a complex interaction between landscape features and life form. Temporal variability in resource availability affects diversity, and the diversity peak in the immediate post-fire year (or two) appears to be driven by factors different from subsequent diversity peaks. Early post-fire diversity is influenced by life-history specialization, illustrated by species that spend the bulk of their life cycle as a dormant seed bank, which is then triggered to germinate by fire. Resource fluctuations, precipitation in particular, may be associated with subsequent post-fire diversity peaks. These later peaks in diversity comprise a flora that is compositionally different from the immediate post-fire flora, and their presence may be due to mass effects from population expansion of local populations in adjacent burned areas. ?? 2005 Blackwell Publishing Ltd.

Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.

2005-01-01

307

Applications of DNA barcoding to fish landings: authentication and diversity assessment  

PubMed Central

Abstract DNA barcoding methodologies are being increasingly applied not only for scientific purposes but also for diverse real-life uses. Fisheries assessment is a potential niche for DNA barcoding, which serves for species authentication and may also be used for estimating within-population genetic diversity of exploited fish. Analysis of single-sequence barcodes has been proposed as a shortcut for measuring diversity in addition to the original purpose of species identification. Here we explore the relative utility of different mitochondrial sequences (12S rDNA, COI, cyt b, and D-Loop) for application as barcodes in fisheries sciences, using as case studies two marine and two freshwater catches of contrasting diversity levels. Ambiguous catch identification from COI and cyt b was observed. In some cases this could be attributed to duplicated names in databases, but in others it could be due to mitochondrial introgression between closely related species that may obscure species assignation from mtDNA. This last problem could be solved using a combination of mitochondrial and nuclear genes. We suggest to simultaneously analyze one conserved and one more polymorphic gene to identify species and assess diversity in fish catches. PMID:24453550

Ardura, Alba; Planes, Serge; Garcia-Vazquez, Eva

2013-01-01

308

Community Structure and Diversity of Biofilms from a Beer Bottling Plant as Revealed Using 16S rRNA Gene Clone Libraries†  

PubMed Central

The microbial composition of biofilms from a beer bottling plant was analyzed by a cultivation independent analysis of the 16S rRNA genes. Clone libraries were differentiated by amplified 16S rRNA gene restriction analysis and representative clones from each group were sequenced. The diversity of the clone libraries was comparable with the diversity found for environmental samples. No evidences for the presence of strictly anaerobic taxa or important beer spoilers were found, indicating that biofilms developed for more than 6 months at the plant formed no appropriate habitat for those microorganisms. The genus Methylobacterium was one of the dominating groups of the clone libraries. The size of this population was assessed by fluorescence in situ hybridization and fatty acid analysis. In addition, considerable numbers of clones were assigned to uncultivated organisms. PMID:16204578

Timke, Markus; Wang-Lieu, Ngoc Quynh; Altendorf, Karlheinz; Lipski, André

2005-01-01

309

Coastal plants : chemical sensitivities and risk assessments  

EPA Science Inventory

The ability of plant-dominated ecosystems to improve water quality and provide habitat for biodiversity are important ecological services. These services are impacted by natural and anthropogenic stressors which includes contaminant toxicity. Scientific information describing the...

310

Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism  

PubMed Central

Oxidative enzymes catalyze many different reactions in plant metabolism. Among this suite of enzymes are the 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs). Cytochromes P450 (CYPs) as often considered the most versatile oxidative enzymes in nature, but the diversity and complexity of reactions catalyzed by 2-ODDs is superior to the CYPs. The list of oxidative reactions catalyzed by 2-ODDs includes hydroxylations, demethylations, desaturations, ring closure, ring cleavage, epimerization, rearrangement, halogenation, and demethylenation. Furthermore, recent work, including the discovery of 2-ODDs involved in epigenetic regulation, and others catalyzing several characteristic steps in specialized metabolic pathways, support the argument that 2-ODDs are among the most versatile and important oxidizing biological catalysts. In this review, we survey and summarize the pertinent literature with a focus on several key reactions catalyzed by 2-ODDs, and discuss the significance and impact of these enzymes in plant metabolism. PMID:25346740

Farrow, Scott C.; Facchini, Peter J.

2014-01-01

311

Environmental Determinants of Woody Plant Diversity at a Regional Scale in China  

PubMed Central

Understanding what drives the geographic variation of species richness across the globe is a fundamental goal of ecology and biogeography. Environmental variables have been considered as drivers of global diversity patterns but there is no consensus among ecologists on what environmental variables are primary drivers of the geographic variation of species richness. Here, I examine the relationship of woody plant species richness at a regional scale in China with sixteen environmental variables representing energy availability, water availability, energy-water balance, seasonality, and habitat heterogeneity. I found that temperature seasonality is the best predictor of woody species richness in China. Other important environmental variables include annual precipitation, mean temperature of the coldest month, and potential evapotranspiration. The best model explains 85% of the variation in woody plant species richness at the regional scale in China. PMID:24086642

Qian, Hong

2013-01-01

312

Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology.  

PubMed

Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2) Miniprep DNA from E. coli can be eluted with as little as 5 mul water, leading to high DNA concentrations (>1 mug/mul) for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG)-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3) Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4) High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research. PMID:20180960

Li, Jian-Feng; Li, Li; Sheen, Jen

2010-01-01

313

The impact of livestock grazing on plant diversity: an analysis across dryland ecosystems and scales in southern Africa.  

PubMed

A general understanding of grazing effects on plant diversity in drylands is still missing, despite an extensive theoretical background. Cross-biome syntheses are hindered by the fact that the outcomes of disturbance studies are strongly affected by the choice of diversity measures, and the spatial and temporal scales of measurements. The aim of this study is to overcome these weaknesses by applying a wide range of diversity measures to a data set derived from identical sampling in three distinct ecosystems. We analyzed three fence-line contrasts (heavier vs. lighter grazing intensity), representing different degrees of aridity (from arid to semiarid) and precipitation regimes (summer rain vs. winter rain) in southern Africa. We tested the impact of grazing intensity on multiple aspects of plant diversity (species and functional group level, richness and evenness components, alpha and beta diversity, and composition) at two spatial scales, and for both 5-yr means and interannual variability. Heavier grazing reduced total plant cover and substantially altered the species and functional composition at all sites. However, a significant decrease in species alpha diversity was detected at only one of the three sites. By contrast, alpha diversity of plant functional groups responded consistently across ecosystems and scales, with a significant decrease at heavier grazing intensity. The cover-based measures of functional group diversity responded more sensitively and more consistently than functional group richness. Beta diversity of species and functional types increased under heavier grazing, showing that at larger scales, the heterogeneity of the community composition and the functional structure were increased. Heavier grazing mostly increased interannual variability of alpha diversity, while effects on beta diversity and cover were inconsistent. Our results suggest that species diversity alone may not adequately reflect the shifts in vegetation structure that occur in response to increased grazing intensity in the dryland biomes of southern Africa. Compositional and structural changes of the vegetation are better reflected by trait-based diversity measures. In particular, measures of plant functional diversity that include evenness represent a promising tool to detect and quantify disturbance effects on ecosystems. PMID:25154106

Hanke, Wiebke; Böhner, Jürgen; Dreber, Niels; Jürgens, Norbert; Schmiedel, Ute; Wesuls, Dirk; Dengler, Jürgen

2014-07-01

314

Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes  

PubMed Central

Next-generation sequencing plays a central role in the characterization and quantification of transcriptomes. Although numerous metrics are purported to quantify the quality of RNA, there have been no large-scale empirical evaluations of the major determinants of sequencing success. We used a combination of existing and newly developed methods to isolate total RNA from 1115 samples from 695 plant species in 324 families, which represents >900 million years of phylogenetic diversity from green algae through flowering plants, including many plants of economic importance. We then sequenced 629 of these samples on Illumina GAIIx and HiSeq platforms and performed a large comparative analysis to identify predictors of RNA quality and the diversity of putative genes (scaffolds) expressed within samples. Tissue types (e.g., leaf vs. flower) varied in RNA quality, sequencing depth and the number of scaffolds. Tissue age also influenced RNA quality but not the number of scaffolds ?1000 bp. Overall, 36% of the variation in the number of scaffolds was explained by metrics of RNA integrity (RIN score), RNA purity (OD 260/230), sequencing platform (GAIIx vs HiSeq) and the amount of total RNA used for sequencing. However, our results show that the most commonly used measures of RNA quality (e.g., RIN) are weak predictors of the number of scaffolds because Illumina sequencing is robust to variation in RNA quality. These results provide novel insight into the methods that are most important in isolating high quality RNA for sequencing and assembling plant transcriptomes. The methods and recommendations provided here could increase the efficiency and decrease the cost of RNA sequencing for individual labs and genome centers. PMID:23185583

Bruskiewich, Richard; Burris, Jason N.; Carrigan, Charlotte T.; Chase, Mark W.; Clarke, Neil D.; Covshoff, Sarah; dePamphilis, Claude W.; Edger, Patrick P.; Goh, Falicia; Graham, Sean; Greiner, Stephan; Hibberd, Julian M.; Jordon-Thaden, Ingrid; Kutchan, Toni M.; Leebens-Mack, James; Melkonian, Michael; Miles, Nicholas; Myburg, Henrietta; Patterson, Jordan; Pires, J. Chris; Ralph, Paula; Rolf, Megan; Sage, Rowan F.; Soltis, Douglas; Soltis, Pamela; Stevenson, Dennis; Stewart, C. Neal; Surek, Barbara; Thomsen, Christina J. M.; Villarreal, Juan Carlos; Wu, Xiaolei; Zhang, Yong; Deyholos, Michael K.; Wong, Gane Ka-Shu

2012-01-01

315

Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system  

E-print Network

food web in which we manipulated the diversity of host plant species (Medicago sativa, Trifolium pratense and Vicia faba) and natural enemy species (Harmonia axyridis, Coleomegilla maculata and Nabis sp polycultures. A reduction in predator efficiency on a single host plant, Vicia faba, appeared to be responsible

Stachowicz, Jay

316

Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns  

E-print Network

Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic): Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. ­ Preslia 84: 155­255. A complete list of all alien taxa ever recorded in the flora

Kratochvíl, Lukas

317

Framework development in plant disease risk assessment and its application  

Microsoft Academic Search

This article reviews recent developments in plant disease risk assessment.The role of risk assessment as an application area\\u000a in macrophytopathology and its contribution to the development of macroscale disease study are discussed.This article also\\u000a discusses the concepts and components of risk assessment for different end points and the assessment framework of different\\u000a potential ranges of a new pathogen:establishment range,suitability range,damage

X. B. Yang

318

Framework Development in Plant Disease Risk Assessment and its Application  

Microsoft Academic Search

This article reviews recent developments in plant disease risk assessment. The role of risk assessment as an application area\\u000a in macrophytopathology and its contribution to the development of macroscale disease study are discussed. This article also\\u000a discusses the concepts and components of risk assessment for different end points and the assessment framework of different\\u000a potential ranges of a new pathogen:

X. B. Yang

2006-01-01

319

The roles of community biomass and species pools in the regulation of plant diversity  

USGS Publications Warehouse

Considerable debate has developed over the importance of community biomass and species pools in the regulation of community diversity. Attempts to explain patterns of plant diversity as a function of community biomass or productivity have been only partially successful and in general, have explained only a fraction of the observed variation in diversity. At the same time studies that have focused on the importance of species pools have led some to conclude that diversity is primarily regulated in the short term by the size of the species pool rather than by biotic interactions. In this paper, I explore how community biomass and species pools may work in combination to regulate diversity in herbaceous plant communities. To address this problem, I employ a simple model in which the dynamics of species richness are a function of aboveground community biomass and environmentally controlled gradients in species pools. Model results lead to two main predictions about the role of biomass regulation: (1) Seasonal dynamics of richness will tend to follow a regular oscillation, with richness rising to peak values during the early to middle portion of the growing season and then declining during the latter part of the season. (2.) Seasonal dieback of aboveground tissues facilitates the long-term maintenance of high levels of richness in the community. The persistence of aboveground tissues and accumulation of litter are especially important in limiting the number of species through the suppression of recruitment. Model results also lead to two main predictions about the role of species pools: (1) The height and position of peak richness relative to community biomass will be influenced by the rate at which the species pool increases as available soil resources increase. (2) Variations in nonresource environmental factors (e.g. soil pH or soil salinity) have the potential to regulate species pools in a way that is uncorrelated with aboveground biomass. Under extreme conditions, such nonresource effects can create a unimodal envelope of biomass-richness values. Available evidence from the literature provides partial support for these predictions, though additional data are needed to provide more convincing tests.

Grace, J. B.

2001-01-01

320

Centres of Crop Diversity and\\/or Origin, Genetically Modified Crops and Implications for Plant Genetic Resources Conservation  

Microsoft Academic Search

The concept of centres of crop diversity and\\/or origin of agriculture is briefly reviewed. The conservation status of crop genetic resources, either ex situ or in situ, cultivated or wild, has been assessed for species of the Central American and Mexican centre, demonstrating that that region is indeed one of the important centres of crop diversity for human kind. Furthermore,

J. M. M. Engels; A. W. Ebert; I. Thormann; M. C. de Vicente

2006-01-01

321

Life-cycle assessment of wastewater treatment plants  

E-print Network

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01

322

Diversity and Taxonomy of Endophytic Xylariaceous Fungi from Medicinal Plants of Dendrobium (Orchidaceae)  

PubMed Central

Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery. PMID:23472167

Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

2013-01-01

323

Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi  

PubMed Central

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress. PMID:23236275

Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

2012-01-01

324

Molecular Diversity of a North Carolina Wastewater Treatment Plant as Revealed by Pyrosequencing? †  

PubMed Central

We report the results of pyrosequencing of DNA collected from the activated sludge basin of a wastewater treatment plant in Charlotte, NC. Using the 454-FLX technology, we generated 378,601 sequences with an average read length of 250.4 bp. Running the 454 assembly algorithm over our sequences yielded very poor assembly, with only 0.3% of our sequences participating in assembly of significant contigs. Of the 117 contigs greater than 500 bp long that were assembled, the most common annotations were to transposases and hypothetical proteins. Comparing our sequences to known microbial genomes showed nonspecific recruitment, indicating that previously described taxa are only distantly related to the most abundant microbes in this treatment plant. A comparison of proteins generated by translating our sequence set to translations of other sequenced microbiomes shows a distinct metabolic profile for activated sludge with high counts for genes involved in metabolism of aromatic compounds and low counts for genes involved in photosynthesis. Taken together, these data document the substantial levels of microbial diversity within activated sludge and further establish the great utility of pyrosequencing for investigating diversity in complex ecosystems. PMID:19114525

Sanapareddy, Nina; Hamp, Timothy J.; Gonzalez, Luis C.; Hilger, Helene A.; Fodor, Anthony A.; Clinton, Sandra M.

2009-01-01

325

Diversity of Endophytic Bacterial Populations and Their Interaction with Xylella fastidiosa in Citrus Plants  

PubMed Central

Citrus variegated chlorosis (CVC) is caused by Xylella fastidiosa, a phytopathogenic bacterium that can infect all Citrus sinensis cultivars. The endophytic bacterial communities of healthy, resistant, and CVC-affected citrus plants were studied by using cultivation as well as cultivation-independent techniques. The endophytic communities were assessed in surface-disinfected citrus branches by plating and denaturing gradient gel electrophoresis (DGGE). Dominant isolates were characterized by fatty-acid methyl ester analysis as Bacillus pumilus, Curtobacterium flaccumfaciens, Enterobacter cloacae, Methylobacterium spp. (including Methylobacterium extorquens, M. fujisawaense, M. mesophilicum, M. radiotolerans, and M. zatmanii), Nocardia sp., Pantoea agglomerans, and Xanthomonas campestris. We observed a relationship between CVC symptoms and the frequency of isolation of species of Methylobacterium, the genus that we most frequently isolated from symptomatic plants. In contrast, we isolated C. flaccumfaciens significantly more frequently from asymptomatic plants than from those with symptoms of CVC while P. agglomerans was frequently isolated from tangerine (Citrus reticulata) and sweet-orange (C. sinensis) plants, irrespective of whether the plants were symptomatic or asymptomatic or showed symptoms of CVC. DGGE analysis of 16S rRNA gene fragments amplified from total plant DNA resulted in several bands that matched those from the bacterial isolates, indicating that DGGE profiles can be used to detect some endophytic bacteria of citrus plants. However, some bands had no match with any isolate, suggesting the occurrence of other, nonculturable or as yet uncultured, endophytic bacteria. A specific band with a high G+C ratio was observed only in asymptomatic plants. The higher frequency of C. flaccumfaciens in asymptomatic plants suggests a role for this organism in the resistance of plants to CVC. PMID:12324338

Araújo, Welington L.; Marcon, Joelma; Maccheroni, Walter; van Elsas, Jan Dirk; van Vuurde, Jim W. L.; Azevedo, João Lúcio

2002-01-01

326

Development and Initial Psychometric Assessment of the Plant Attitude Questionnaire  

ERIC Educational Resources Information Center

Plants are integral parts of ecosystems which determine life on Earth. People's attitudes toward them are however, largely overlooked. Here we present initial psychometric assessment of self-constructed Plant Attitude Scale (PAS) that was administered to a sample of 310 Slovakian students living in rural areas aged 10-15 years. The final version…

Fancovicova, Jana; Prokop, Pavol

2010-01-01

327

ENVIRONMENTAL ASSESSMENT OF COKE BY-PRODUCT RECOVERY PLANTS  

EPA Science Inventory

The report gives results of an initial screening study, initiating a multimedia environmental assessment of coke by-product recovery plants in the U.S. The study included both the gathering and analysis of existing data and sampling and analysis at one plant based on EPA's Indust...

328

A computational situation assessment model for nuclear power plant operations  

Microsoft Academic Search

This paper presents a computational situation assessment (SA) model and a model-based SA metric for nuclear power plant operations. The model and metric development starts with a definition of the plant operator's SA centered decision making behavior. A computational SA model and a model-based SA metric are then developed to quantify and measure operator SA. Using the SA model as

Adam X. Miao; Greg L. Zacharias; Shih-Ping Kao

1997-01-01

329

AQUATIC PLANT COMMUNITIES FOR IMPACT MONITORING AND ASSESSMENT  

EPA Science Inventory

The studies revewed here suggest that both structural and functional assessments of aquatic plant communities are valuable tools in the determination of environmental impacts and water quality. I am not suggesting that aquatic plants be used in lieu of macronivertebrates or fish ...

330

Communities of different plant diversity respond similarly to drought stress: experimental evidence from field non-weeded and greenhouse conditions  

NASA Astrophysics Data System (ADS)

Accelerating rate of species loss has prompted researchers to study the role of species diversity in processes that control ecosystem functioning. Although negative impact of species loss has been documented, the evidence concerning its impact on ecosystem stability is still limited. Here, we studied the effects of declining species and functional diversity on plant community responses to drought in the field (open to weed colonization) and greenhouse conditions. Both species and functional diversity positively affected the average yields of field communities. However, this pattern was similar in both drought-stressed and control plots. No effect of diversity on community resistance, biomass recovery after drought and resilience was found because drought reduced biomass production similarly at each level of diversity by approximately 30 %. The use of dissimilarity (characterized by Euclidean distance) revealed higher variation under changing environments (drought-stressed vs. control) in more diverse communities compared to less species-rich assemblages. In the greenhouse experiment, the effect of species diversity affected community resistance, indicating that more diverse communities suffered more from drought than species-poor ones. We conclude that our study did not support the insurance hypothesis (stability properties of a community should increase with species richness) because species diversity had an equivocal effect on ecosystem resistance and resilience in an environment held under non-weeded practice, regardless of the positive relationship between sown species diversity and community biomass production. More species-rich communities were less resistant against drought-stressed conditions than species-poor ones grown in greenhouse conditions.

Lanta, Vojt?ch; Doležal, Ji?í; Zemková, Lenka; Lepš, Jan

2012-06-01

331

Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers.  

PubMed

Four Korean native cattle (KNC) breeds-Hanwoo, Chikso, Heugu, and Jeju black-are entered in the Domestic Animal Diversity Information System of the United Nations Food and Agriculture Organization (FAO). The objective of this study was to assess the genetic diversity, phylogenetic relationships and population structure of these KNC breeds (n = 120) and exotic breeds (Holstein and Charolais, n = 56). Thirty microsatellite loci recommended by the International Society for Animal Genetics/FAO were genotyped. These genotypes were used to determine the allele frequencies, allelic richness, heterozygosity and polymorphism information content per locus and breed. Genetic diversity was lower in Heugu and Jeju black breeds. Phylogenetic analysis, Factorial Correspondence Analysis and genetic clustering grouped each breed in its own cluster, which supported the genetic uniqueness of the KNC breeds. These results will be useful for conservation and management of KNC breeds as animal genetic resources. PMID:25358313

Suh, Sangwon; Kim, Young-Sin; Cho, Chang-Yeon; Byun, Mi-Jeong; Choi, Seong-Bok; Ko, Yeoung-Gyu; Lee, Chang Woo; Jung, Kyoung-Sub; Bae, Kyoung Hun; Kim, Jae-Hwan

2014-11-01

332

Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers  

PubMed Central

Four Korean native cattle (KNC) breeds—Hanwoo, Chikso, Heugu, and Jeju black—are entered in the Domestic Animal Diversity Information System of the United Nations Food and Agriculture Organization (FAO). The objective of this study was to assess the genetic diversity, phylogenetic relationships and population structure of these KNC breeds (n = 120) and exotic breeds (Holstein and Charolais, n = 56). Thirty microsatellite loci recommended by the International Society for Animal Genetics/FAO were genotyped. These genotypes were used to determine the allele frequencies, allelic richness, heterozygosity and polymorphism information content per locus and breed. Genetic diversity was lower in Heugu and Jeju black breeds. Phylogenetic analysis, Factorial Correspondence Analysis and genetic clustering grouped each breed in its own cluster, which supported the genetic uniqueness of the KNC breeds. These results will be useful for conservation and management of KNC breeds as animal genetic resources. PMID:25358313

Suh, Sangwon; Kim, Young-Sin; Cho, Chang-Yeon; Byun, Mi-Jeong; Choi, Seong-Bok; Ko, Yeoung-Gyu; Lee, Chang Woo; Jung, Kyoung-Sub; Bae, Kyoung Hun; Kim, Jae-Hwan

2014-01-01

333

Woody plants and the prediction of climate-change impacts on bird diversity.  

PubMed

Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant-animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic. PMID:20513712

Kissling, W D; Field, R; Korntheuer, H; Heyder, U; Böhning-Gaese, K

2010-07-12

334

Woody plants and the prediction of climate-change impacts on bird diversity  

PubMed Central

Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant–animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic. PMID:20513712

Kissling, W. D.; Field, R.; Korntheuer, H.; Heyder, U.; Bohning-Gaese, K.

2010-01-01

335

SENSITVE PLANT SPECIES AND NOXIOUS WEED ASSESSMENT  

E-print Network

This report summarizes vegetation survey results for the proposed Boulder Bay Resort in Crystal Bay, Lake Tahoe, Nevada. The proposed project is located on private land, including the existing Tahoe Biltmore and the old Tahoe Mariner site. The survey addressed special interest, proposed, endangered, threatened, and sensitive plant species as well as noxious and invasive species.

unknown authors

2009-01-01

336

Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in pakistan.  

PubMed

Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to 41degrees C and at pH 11. PMID:21193815

Mehnaz, Samina; Baig, Deeba Noreen; Lazarovits, George

2010-12-01

337

The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses  

PubMed Central

Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV) and the Tobamovirus Tobacco mosaic virus (TMV) through plasmodesmata (Lewis and Lazarowitz, 2010). To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV), the Caulimovirus Cauliflower mosaic virus (CaMV) and the Tobamovirus Turnip vein clearing virus (TVCV), which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP), Tobamoviruses (TVCV and TMV 30K protein) and Potyviruses (TuMV P3N-PIPO) to alter PD and thereby mediate virus cell-to-cell spread.

Uchiyama, Asako; Shimada-Beltran, Harumi; Levy, Amit; Zheng, Judy Y.; Javia, Parth A.; Lazarowitz, Sondra G.

2014-01-01

338

Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum.  

PubMed

Psilotum nudum Griseb is a pteridophyte and belongs to the single family (Psilotaceae) of the division, Psilophyta. Being the only living species of a once populated division, P. nudum is the most primitive vascular plant. Chalcone synthase (CHS; EC 2.3.1.74) superfamily enzymes are responsible for biosyntheses of diverse secondary metabolites, including flavonoids and stilbenes. Using a reverse transcription-polymerase chain reaction strategy, four CHS-superfamily enzymes (PnJ, PnI, PnL and PnP) were cloned from P. nudum, and heterologously expressed in Escherichia coli. These four enzymes of 396-406 amino acids showed sequence identity of > 50% among themselves and to other higher-plant CHS-superfamily enzymes. PnJ and PnP preferred p-coumaroyl-CoA and isovaleryl-CoA respectively, as starter CoA and catalyzed CHS-type ring formation, indicating that they are CHS and phlorisovalerophenone synthase, respectively. On the other hand, PnI and PnL preferred cinnamoyl-CoA as starter CoA and catalyzed stilbene synthase-type cyclization and thus were determined to be pinosylvin synthases (EC 2.3.1.146). In addition, PnE, which uniquely contains a glutamine in place of otherwise strictly conserved histidine, had no apparent in vitro catalytic activity. Phylogenetic analysis indicated that these P. nudum clones form a separate cluster together with Equisetum arvense CHS. This cluster of pteridophytes is located next to the cluster formed by pine (gymnosperm) enzymes, in agreement with their evolutionary relationships. Psilotum nudum represents a plant with the most diverse CHS-superfamily enzymes and this ability to diverge may have provided a survival edge during evolution. PMID:11762173

Yamazaki, Y; Suh, D Y; Sitthithaworn, W; Ishiguro, K; Kobayashi, Y; Shibuya, M; Ebizuka, Y; Sankawa, U

2001-11-01

339

Genetic Diversity Analysis of Highly Incomplete SNP Genotype Data with Imputations: An Empirical Assessment  

PubMed Central

Genotyping by sequencing (GBS) recently has emerged as a promising genomic approach for assessing genetic diversity on a genome-wide scale. However, concerns are not lacking about the uniquely large unbalance in GBS genotype data. Although some genotype imputation has been proposed to infer missing observations, little is known about the reliability of a genetic diversity analysis of GBS data, with up to 90% of observations missing. Here we performed an empirical assessment of accuracy in genetic diversity analysis of highly incomplete single nucleotide polymorphism genotypes with imputations. Three large single-nucleotide polymorphism genotype data sets for corn, wheat, and rice were acquired, and missing data with up to 90% of missing observations were randomly generated and then imputed for missing genotypes with three map-independent imputation methods. Estimating heterozygosity and inbreeding coefficient from original, missing, and imputed data revealed variable patterns of bias from assessed levels of missingness and genotype imputation, but the estimation biases were smaller for missing data without genotype imputation. The estimates of genetic differentiation were rather robust up to 90% of missing observations but became substantially biased when missing genotypes were imputed. The estimates of topology accuracy for four representative samples of interested groups generally were reduced with increased levels of missing genotypes. Probabilistic principal component analysis based imputation performed better in terms of topology accuracy than those analyses of missing data without genotype imputation. These findings are not only significant for understanding the reliability of the genetic diversity analysis with respect to large missing data and genotype imputation but also are instructive for performing a proper genetic diversity analysis of highly incomplete GBS or other genotype data. PMID:24626289

Fu, Yong-Bi

2014-01-01

340

Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure  

PubMed Central

Summary PCR-based surveys of microbial communities commonly use regions of the small subunit ribosomal RNA (SSU rRNA) gene to determine taxonomic membership and estimate total diversity. Here we show that the length of the target amplicon has a significant effect on assessments of microbial richness and community membership. Using OTU- and taxonomy-based tools, we compared the V6 hypervariable region of the bacterial SSU rRNA gene of three amplicon libraries of ca. 100 base pair (bp), 400bp, and 1000bp from each of two hydrothermal vent fluid samples. We found that the smallest amplicon libraries contained more unique sequences, higher diversity estimates, and a different community structure than the other two libraries from each sample. We hypothesize that a combination of polymerase dissociation, cloning bias, and mis-priming due to secondary structure accounts for the differences. While this relationship is not linear, it is clear that the smallest amplicon libraries contained more different types of sequences, and accordingly, more diverse members of the community. Because divergent and lower abundant taxa can be more readily detected with smaller amplicons, they may provide better assessments of total community diversity and taxonomic membership than longer amplicons in molecular studies of microbial communities. PMID:19220394

Huber, Julie A.; Morrison, Hilary G.; Huse, Susan M.; Neal, Phillip R.; Sogin, Mitchell L.; Mark Welch, David B.

2009-01-01

341

Tools for Assessing Building Energy Use in Industrial Plants  

E-print Network

. The nature and extent of building energy assessment tools will then be profiled, and the beneficial use of an appropriate subset of these tools for assessing energy savings in buildings at industrial plants will be described. Possible future tools that may...

Martin, M.; MacDonald, M.

2007-01-01

342

Diversity of plant life cycles is generated by dynamic epigenetic regulation in response to vernalization.  

PubMed

I developed a genetic-physiological model to investigate the molecular mechanisms regulating annual and perennial life histories, and theoretically explored local adaptation caused by environment-specific selection. The model integrates signal transmission in the vernalization pathway and physiological process regarding growth and resource accumulation. The transition from vegetative to reproductive growth was modeled as the process of accumulating the flowering signal, which is transported from leaves to meristems. The model predicted four distinct flowering behaviors, monocarpic annual/perennial and polycarpic-yearly or -intermittent flowering, depending on the epigenetic regulation of FLOWERING LOCUS C (FLC), a transcription factor that acts as a floral repressor. When FLC transcription was not activated after repression, plants always behaved monocarpically, while only a low activation rate of FLC allowed plants to become polycarpal. When mortality was high, rapid repression of FLC was evolutionarily favored, resulting in a summer annual phenotype. As mortality decreased, the evolutionarily favored phenotype shifted from summer to winter annuals, and further to polycarpic phenotypes in which FLC repression occurred slowly. Analysis of local adaptation demonstrated that sensitivity to low temperature increased from northern to southern habitats. These predictions provide important insights into the evolution of diversity in plant life cycles under rapid climate change. PMID:20659481

Satake, Akiko

2010-10-21

343

Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana  

Microsoft Academic Search

Cultivation-dependent and molecular-based culture-independent methods were used to assess alkaliphilic haloarchaeal diversity at Sua pan evaporator ponds in Botswana. Isolates belonging to the genera Natrialba, Natronococcus and Natronorubrum were recovered from brine samples by enrichment and identified through a series of biochemical tests as well as sequencing of 16S rRNA fragments. In addition, an environmental 16S rRNA library was constructed

Ashant Pravin Gareeb; Mathabatha Evodia Setati

2009-01-01

344

Assessing Genetic Diversity in Olea europaea L. Using ISSR and SSR Markers  

Microsoft Academic Search

Olea europaea L. is one of the most economically important crops in the Mediterranean area, and known for having large genetic variability.\\u000a In order to assess the genetic diversity, DNA from 41 olive cultivars, present in the protected denomination of origin (PDO)\\u000a region of Trás-os-Montes, was screened using inter simple sequence repeat (ISSR) and microsatellite (SSR) markers. Eleven\\u000a ISSR primers

Sónia Gomes; Paula Martins-Lopes; João Lopes; Henrique Guedes-Pinto

2009-01-01

345

Floristic Diversity and Distribution Pattern of Plant Communities along Altitudinal Gradient in Sangla Valley, Northwest Himalaya  

PubMed Central

Himalayas are globally important biodiversity hotspots and are facing rapid loss in floristic diversity and changing pattern of vegetation due to various biotic and abiotic factors. This has necessitated the qualitative and quantitative assessment of vegetation here. The present study was conducted in Sangla Valley of northwest Himalaya aiming to assess the structure of vegetation and its trend in the valley along the altitudinal gradient. In the forest and alpine zones of the valley, 15 communities were recorded. Study revealed 320 species belonging to 199 genera and 75 families. Asteraceae, Rosaceae, Apiaceae, and Ranunculaceae were dominant. Among genera, Artemisia followed by Polygonum, Saussurea, Berberis, and Thalictrum were dominant. Tree and shrub's density ranged from 205 to 600 and from 105 to 1030 individual per hectare, respectively, whereas herbs ranged from 22.08 to 78.95 individual/m2. Nearly 182 species were native to the Himalaya. Maximum altitudinal distribution of few selected climate sensitive species was found to be highest in northeast and north aspects. This study gives an insight into the floristic diversity and community structure of the fragile Sangla Valley which was hitherto not available. PMID:25383363

Rana, J. C.; Devi, Usha; Randhawa, S. S.; Kumar, Rajesh

2014-01-01

346

B Plant low level waste system integrity assessment report  

SciTech Connect

This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03.

Walter, E.J.

1995-09-01

347

Assessing pollutions of soil and plant by municipal waste dump  

Microsoft Academic Search

Research is few in the literature regarding the investigation and assessment of pollutions of soil and plant by municipal\\u000a waste dumps. Based upon previous work in seven waste dumping sites (nonsanitary landfills) in Beijing, Shanghai and Shijiazhuang,\\u000a this study expounds the investigation and assessment method and report major pollutants. Using relative background values,\\u000a this study assesses soil pollution degree in

Changli Liu; Yun Zhang; Feng’e Zhang; Sheng Zhang; Miying Yin; Hao Ye; Hongbing Hou; Hua Dong; Ming Zhang; Jianmei Jiang; Lixin Pei

2007-01-01

348

Risk assessment of GM plants: avoiding gridlock?  

Microsoft Academic Search

Cultivation of genetically modified crops is presently based largely on four crops containing few transgenes and grown in four countries. This will soon change and pose new challenges for risk assessment. A more structured approach that is as generic as possible is advocated to study consequences of gene flow. Hazards should be precisely defined and prioritized, with emphasis on quantifying

Mike J. Wilkinson; Jeremy Sweet; Guy M. Poppy

2003-01-01

349

Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus Caldicellulosiruptor?  

PubMed Central

Phylogenetic, microbiological, and comparative genomic analyses were used to examine the diversity among members of the genus Caldicellulosiruptor, with an eye toward the capacity of these extremely thermophilic bacteria to degrade the complex carbohydrate content of plant biomass. Seven species from this genus (C. saccharolyticus, C. bescii, C. hydrothermalis, C. owensensis, C. kronotskyensis, C. lactoaceticus, and C. kristjanssonii) were compared on the basis of 16S rRNA gene phylogeny and cross-species DNA-DNA hybridization to a whole-genome C. saccharolyticus oligonucleotide microarray, revealing that C. saccharolyticus was the most divergent within this group. Growth physiology of the seven Caldicellulosiruptor species on a range of carbohydrates showed that, while all could be cultivated on acid-pretreated switchgrass, only C. saccharolyticus, C. bescii, C. kronotskyensis, and C. lactoaceticus were capable of hydrolyzing Whatman no. 1 filter paper. Two-dimensional gel electrophoresis of the secretomes from cells grown on microcrystalline cellulose revealed that the cellulolytic species also had diverse secretome fingerprints. The C. saccharolyticus secretome contained a prominent S-layer protein that appears in the cellulolytic Caldicellulosiruptor species, suggesting a possible role in cell-substrate interactions. Growth physiology also correlated with glycoside hydrolase (GH) and carbohydrate-binding module (CBM) inventories for the seven bacteria, as deduced from draft genome sequence information. These inventories indicated that the absence of a single GH and CBM family was responsible for diminished cellulolytic capacity. Overall, the genus Caldicellulosiruptor appears to contain more genomic and physiological diversity than previously reported, and this argues for continued efforts to isolate new members from high-temperature terrestrial biotopes. PMID:20971878

Blumer-Schuette, Sara E.; Lewis, Derrick L.; Kelly, Robert M.

2010-01-01

350

Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant.  

PubMed

Plasmid metagenome nucleotide sequence data were recently obtained from wastewater treatment plant (WWTP) bacteria with reduced susceptibility to selected antimicrobial drugs by applying the ultrafast 454-sequencing technology. The sequence dataset comprising 36,071,493 bases (346,427 reads with an average read length of 104 bases) was analysed for genetic diversity and composition by using a newly developed bioinformatic pipeline based on assignment of environmental gene tags (EGTs) to protein families stored in the Pfam database. Short amino acid sequences deduced from the plasmid metagenome sequence reads were compared to profile hidden Markov models underlying Pfam. Obtained matches evidenced that many reads represent genes having predicted functions in plasmid replication, stability and plasmid mobility which indicates that WWTP bacteria harbour genetically stabilised and mobile plasmids. Moreover, the data confirm a high diversity of plasmids residing in WWTP bacteria. The mobile organic peroxide resistance plasmid pMAC from Acinetobacter baumannii was identified as reference plasmid for the most abundant replication module type in the sequenced sample. Accessory plasmid modules encode different transposons, insertion sequences, integrons, resistance and virulence determinants. Most of the matches to Transposase protein families were identified for transposases similar to the one of the chromate resistance transposon Tn5719. Noticeable are hits to beta-lactamase protein families which suggests that plasmids from WWTP bacteria encode different enzymes possessing beta-lactam-hydrolysing activity. Some of the sequence reads correspond to antibiotic resistance genes that were only recently identified in clinical isolates of human pathogens. EGT analysis thus proofed to be a very valuable method to explore genetic diversity and composition of the present plasmid metagenome dataset. PMID:18603322

Schlüter, Andreas; Krause, Lutz; Szczepanowski, Rafael; Goesmann, Alexander; Pühler, Alfred

2008-08-31

351

Hydroperiod and plant diversity in the wet meadow zone of glaciated prairie wetlands  

SciTech Connect

Stewart and Kantrud`s (1971) widely used wetland classification system does not recognize the large differences in hydroperiod and species diversity that often occur in the same vegetation zone in wetlands of different water permanence class (temporary, seasonal, semi-permanent). Research in eastern South Dakota wetlands in 1994 indicated that annual range in surface water/groundwater elevation within a zone varied inversely with permanence. For example, within the wet meadow zone, average annual water elevation range was 124 cm in temporary wetlands, 65 cm in seasonal wetlands, and 15 cm in semi-permanent wetlands. The number of dominant plants in this zone was strongly and positively correlated to the amount of annual fluctuation in water elevation, from an average of 5 species in the relatively stable, semi-permanent wetlands to 14 species in the ephemeral, temporary wetlands. These results have application to research in wetland restoration and climate change.

Boettcher, S.E.; Johnson, W.C. [South Dakota State Univ., Brookings, SD (United States)

1995-06-01

352

Directed seed dispersal of Piper by Carollia perspicillata and its effect on understory plant diversity and folivory.  

PubMed

Directed dispersal occurs when seeds are differentially deposited to sites where offspring survivorship is higher than at randomly chosen sites. Traditionally, characteristics of the dispersal target sites that could increase survivorship of the dispersed plants are thought to be intrinsic to the sites. If directed dispersal is constant over extended periods of time, however, it is likely that nonrandom patterns of dispersal could modify the ecological characteristics of the target site in ways that could increase survivorship and fitness of the dispersed plants. Here we report patterns of Piper diversity (richness, equitability, and similarity) and Piper folivory within plots near natural or artificial roosts of Carollia perspicillata vs. similar plots without bat roosts. Plots with bat roosts, both natural and artificial, had significantly higher Piper species diversity. Additionally, we found that plots with a higher Piper species diversity showed less specialist folivory, higher generalist folivory, and lower total herbivore leaf damage than plots with low Piper diversity. Finally, plots with bat roosts also showed less specialist folivory, lower generalist folivory, and lower total folivory when compared to plots without roosts. We propose that long-lasting nonrandom patterns of seed dispersal can change the local ecological characteristics of target sites via changes in plant diversity, and that these changes are likely to reduce the local rates of folivory and, therefore, increase seed and adult plant survivorship. PMID:24400496

Salazar, Diego; Kelm, Detlev H; Salazar, Diego

2013-11-01

353

Review: Chios mastic gum: a plant-produced resin exhibiting numerous diverse pharmaceutical and biomedical properties.  

PubMed

Chios mastic gum (CMG) is a resin produced by the plant Pistacia lentiscus var. chia. CMG is used to extract the mastic gum essential oil (MGO). CMG and MGO consist of nearly 70 constituents and have demonstrated numerous and diverse biomedical and pharmacological properties including (a) eradication of bacteria and fungi that may cause peptic ulcers, tooth plaque formation and malodor of the mouth and saliva; (b) amelioration or dramatic reduction of symptoms of autoimmune diseases by inhibiting production of pro-inflammatory substances by activated macrophages, production of cytokines by peripheral blood mononuclear cells in patients with active Crohn's disease, and suppression of production of inflammatory cytokines and chemokines in an asthma model in mice; (c) protection of the cardiovascular system by effectively lowering the levels of total serum cholesterol, low-density lipoprotein and triglycerides in rats, and protection of low-density lipoprotein from oxidation in humans; (d) induction of apoptosis in human cancer cells in vitro and extensive inhibition of growth of human tumors xenografted in immunodeficient mice; and (e) improvement of symptoms in patients with functional dyspepsia. Collectively taken, these numerous and diverse medical and pharmaceutical properties of CMG and MGO warrant further research in an effort to enhance specific properties and identify specific constituent(s) that might be associated with each property. PMID:22949590

Dimas, Konstantinos S; Pantazis, Panayotis; Ramanujam, Rama

2012-01-01

354

Direct Anthelmintic Effects of Condensed Tannins from Diverse Plant Sources against Ascaris suum  

PubMed Central

Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis. PMID:24810761

Williams, Andrew R.; Fryganas, Christos; Ramsay, Aina; Mueller-Harvey, Irene; Thamsborg, Stig M.

2014-01-01

355

Forest Ecology and Management 155 ?2002) 291±302 Plant species diversity on logged versus burned sites in central Alaska  

E-print Network

Natural ®res and logging are two of the main disturbances affecting upland boreal forest in Alaska. The objectives of this study were to determine whether logged sites differ from burned sites in ?1) overall plant species richness, ?2) successional trajectories, and ?3) species diversity at particular stand structural development stages. We compared plant species diversity on sites burned in natural ®res to sites that were logged and not subsequently burned in central Alaska. We sampled 12 logged and 12 burned former upland white spruce ?Picea glauca ?Moench) Voss) forests in four stand development stages representing

Daniel C. Rees; Glenn Patrick Juday

356

78 FR 66892 - BASF Plant Science LP; Availability of Plant Pest Risk Assessment and Environmental Assessment...  

Federal Register 2010, 2011, 2012, 2013

...Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to...organisms and products altered or produced through genetic engineering that are plant pests or that there is reason...

2013-11-07

357

Novel Symbiotic Protoplasts Formed by Endophytic Fungi Explain Their Hidden Existence, Lifestyle Switching, and Diversity within the Plant Kingdom  

PubMed Central

Diverse fungi live all or part of their life cycle inside plants as asymptomatic endophytes. While endophytic fungi are increasingly recognized as significant components of plant fitness, it is unclear how they interact with plant cells; why they occur throughout the fungal kingdom; and why they are associated with most fungal lifestyles. Here we evaluate the diversity of endophytic fungi that are able to form novel protoplasts called mycosomes. We found that mycosomes cultured from plants and phylogenetically diverse endophytic fungi have common morphological characteristics, express similar developmental patterns, and can revert back to the free-living walled state. Observed with electron microscopy, mycosome ontogeny within Aureobasidium pullulans may involve two organelles: double membrane-bounded promycosome organelles (PMOs) that form mycosomes, and multivesicular bodies that may form plastid-infecting vesicles. Cultured mycosomes also contain a double membrane-bounded organelle, which may be homologous to the A. pullulans PMO. The mycosome PMO is often expressed as a vacuole-like organelle, which alternatively may contain a lipoid body or a starch grain. Mycosome reversion to walled cells occurs within the PMO, and by budding from lipid or starch-containing mycosomes. Mycosomes discovered in chicken egg yolk provided a plant-independent source for analysis: they formed typical protoplast stages, contained fungal ITS sequences and reverted to walled cells, suggesting mycosome symbiosis with animals as well as plants. Our results suggest that diverse endophytic fungi express a novel protoplast phase that can explain their hidden existence, lifestyle switching, and diversity within the plant kingdom. Importantly, our findings outline “what, where, when and how”, opening the way for cell and organelle-specific tests using in situ DNA hybridization and fluorescent labels. We discuss developmental, ecological and evolutionary contexts that provide a robust framework for continued tests of the mycosome phase hypothesis. PMID:24777121

Atsatt, Peter R.; Whiteside, Matthew D.

2014-01-01

358

Documenting and comparing plant species diversity by using numerical and parametric methods in Khaje Kalat, NE Iran.  

PubMed

The aim was to examine and document several aspects of numerical diversity such as species richness, species diversity and evenness and to compare diversity in different slope aspects of the area by using numerical and parametric methods. About 193 quadrats of 4 m2 were located according to the nature of vegetation. Species composition and their abundance were recorded in a two-year period (2005 to 2006). The result of field investigation was collecting and identifying of the total 225 plant species belonging to 154 genera and 37 families. The abundance data were subjected to analyses by specific diversity packages to characterize and obtain numerical indices (Shannon, Simpson, Brillouin, McIntosh, etc.,) and parametric families of species diversity. Numerical indices were calculated and documented for monitoring purposes. The results of diversity in main slope aspects (N, S, E, W) showed higher species richness and species diversity indices in the north aspect than in the others but it was not true with evenness indices. About 30 species such as Acanthophyllum glandulosum, Acroptilon repens, Alcea tiliacea, Bromus sericeous, Astragalus turbinatus, Centaurea balsamita etc., were detected exclusively in the north aspect. This can be important in reducing the evenness. Diversity comparing by using rank-abundance plot as well as diversity ordering of Hill, Renyi and Patil and Taillie confirmed high species diversity in the north yet the result of ANOVA showed no significant differences in the four aspects. The result of diversity based on the models revealed that the whole area, the south and the west aspects follow lognormal distribution, north aspect follows logarithmic whereas the east follows both lognormal and logarithmic distribution. In other word, a shift from being lognormal to logarithmic model was observed in the east aspect. PMID:19093482

Ejtehadi, H; Soltani, R; Zahedi Pour, H

2007-10-15

359

AVLIS Production Plant Preliminary Quality Assurance Plan and Assessment  

SciTech Connect

This preliminary Quality Assurance Plan and Assessment establishes the Quality Assurance requirements for the AVLIS Production Plant Project. The Quality Assurance Plan defines the management approach, organization, interfaces, and controls that will be used in order to provide adequate confidence that the AVLIS Production Plant design, procurement, construction, fabrication, installation, start-up, and operation are accomplished within established goals and objectives. The Quality Assurance Program defined in this document includes a system for assessing those elements of the project whose failure would have a significant impact on safety, environment, schedule, cost, or overall plant objectives. As elements of the project are assessed, classifications are provided to establish and assure that special actions are defined which will eliminate or reduce the probability of occurrence or control the consequences of failure. 8 figures, 18 tables.

Not Available

1984-11-15

360

Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica  

NASA Astrophysics Data System (ADS)

This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients defining species turnover and changes in functional diversity. The study will provide novel approaches to use detailed spatial information from remote sensing data to study relations between functional and taxonomic dimensions of diversity.

Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

2012-12-01

361

ASSESSING OFF-TARGET IMPACTS OF HERBICIDE DRIFT ON NATIVE PLANTS - IMPLICATIONS FOR PLANT COMMUNITIES AND WILDLIFE  

EPA Science Inventory

The off target movement of herbicidess onto nontarget vegetation can affect native plants, plant communities and ecosystems. Within the agroecosystem, plants provide the basis for food and shelter for wildlife. The risk assessment process to determine potential pesticide impacts...

362

A Continent of Plant Defense Peptide Diversity: Cyclotides in Australian Hybanthus (Violaceae)W?  

PubMed Central

Cyclotides are plant-derived miniproteins that have the unusual features of a head-to-tail cyclized peptide backbone and a knotted arrangement of disulfide bonds. It had been postulated that they might be an especially large family of host defense agents, but this had not yet been tested by field data on cyclotide variation in wild plant populations. In this study, we sampled Australian Hybanthus (Violaceae) to gain an insight into the level of variation within populations, within species, and between species. A wealth of cyclotide diversity was discovered: at least 246 new cyclotides are present in the 11 species sampled, and 26 novel sequences were characterized. A new approach to the discovery of cyclotide sequences was developed based on the identification of a conserved sequence within a signal sequence in cyclotide precursors. The number of cyclotides in the Violaceae is now estimated to be >9000. Cyclotide physicochemical profiles were shown to be a useful taxonomic feature that reflected species and their morphological relationships. The novel sequences provided substantial insight into the tolerance of the cystine knot framework in cyclotides to amino acid substitutions and will facilitate protein engineering applications of this framework. PMID:16199617

Simonsen, Shane M.; Sando, Lillian; Ireland, David C.; Colgrave, Michelle L.; Bharathi, Rekha; Goransson, Ulf; Craik, David J.

2005-01-01

363

Food plant diversity as broad-scale determinant of avian frugivore richness  

PubMed Central

The causes of variation in animal species richness at large spatial scales are intensively debated. Here, we examine whether the diversity of food plants, contemporary climate and energy, or habitat heterogeneity determine species richness patterns of avian frugivores across sub-Saharan Africa. Path models indicate that species richness of Ficus (their fruits being one of the major food resources for frugivores in the tropics) has the strongest direct effect on richness of avian frugivores, whereas the influences of variables related to water–energy and habitat heterogeneity are mainly indirect. The importance of Ficus richness for richness of avian frugivores diminishes with decreasing specialization of birds on fruit eating, but is retained when accounting for spatial autocorrelation. We suggest that a positive relationship between food plant and frugivore species richness could result from niche assembly mechanisms (e.g. coevolutionary adaptations to fruit size, fruit colour or vertical stratification of fruit presentation) or, alternatively, from stochastic speciation–extinction processes. In any case, the close relationship between species richness of Ficus and avian frugivores suggests that figs are keystone resources for animal consumers, even at continental scales. PMID:17251107

Kissling, W. Daniel; Rahbek, Carsten; Bohning-Gaese, Katrin

2007-01-01

364

Medicinal parasitic plants on diverse hosts with their usages and barcodes.  

PubMed

Medicinal properties of parasitic plants were investigated by means of ethnobotanical study in some areas of northeastern Thailand. Important traditional usages are: Scurrula atropurpurea nourishes blood, Dendrophthoe pentandra decreases high blood pressure, and Helixanthera parasitica treats liver disease. Their systematics were also determined. The research is based on findings obtained from 100 parasite-host pairs. Of these, eight parasitic species were recorded; they are members of two families, viz. family Loranthaceae, namely D. lanosa, D. pentandra, H. parasitica, Macrosolen brandisianus, M. cochinchinensis and S. atropurpurea, and family Viscaceae, namely Viscum articulatum and V. ovalifolium. In addition, each parasitic species is found on diverse hosts, indicating non-host-parasitic specificity. Species-specific tagging of all species studied was carried out using the rbcL and psbA-trnH chloroplast regions. These tag sequences are submitted to GenBank databases under accession numbers JN687563-JN687578. Genetic distances calculated from nucleotide variations in a couple of species of each genus, Dendrophthoe, Macrosolen, and Viscum, were 0.032, 0.067 and 0.036 in the rbcL region, and 0.269, 0.073 and 0.264 in the psbA-trnH spacer region, respectively. These variations will be used for further identification of incomplete plant parts or other forms such as capsule, powder, dried or chopped pieces. PMID:22864809

Kwanda, Nantiya; Noikotr, Kowit; Sudmoon, Runglawan; Tanee, Tawatchai; Chaveerach, Arunrat

2013-07-01

365

Assessment of the microbial diversity at the surface of Livarot cheese using culture-1 dependent and independent approaches2  

E-print Network

1 Assessment of the microbial diversity at the surface of Livarot cheese using culture-1 dependent2011 Author manuscript, published in "International Journal of Food Microbiology 133, 1-2 (2009) 31-37" DOI : 10.1016/j.ijfoodmicro.2009.04.020 #12;2 ABSTRACT11 12 The microbial diversity of the surface

Boyer, Edmond

366

Pinellas Plant final action plan: environmental, safety and health assessment of Pinellas Plant, Largo, Florida  

SciTech Connect

This document contains responses and planned actions and their estimated costs for addressing the findings presented in the Tiger Team Environment, Safety, and Health Compliance Assessment of the Pinellas Plant. The assessment presented 170 findings in three general categories: environment, safety and health, and management and organization.

Not Available

1990-12-03

367

Species diversity and population status of threatened plants in different landscape elements of the Rohtang Pass, western Himalaya  

Microsoft Academic Search

This paper highlights the quantitative estimates of plant species diversity and ecosystems of the Rohtang Pass, which is one\\u000a of the most preferred visiting spots by tourists in Himachal Pradesh (H.P.), India. In spite of high pressure of anthropogenic\\u000a activities, the Rohtang Pass still harbours a variety of flowering plants with economic value, including various medicinal\\u000a herbs. In order to

K. N. Singh; Gopichand; Amit Kumar; Brij Lal; N. P. Todaria

2008-01-01

368

7 CFR 319.40-11 - Plant pest risk assessment standards.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 2010-01-01 false Plant pest risk assessment standards. 319...of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...Unmanufactured Wood Articles § 319.40-11 Plant pest risk assessment...

2010-01-01

369

7 CFR 319.40-11 - Plant pest risk assessment standards.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 2013-01-01 false Plant pest risk assessment standards. 319...of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...Other Wood Articles § 319.40-11 Plant pest risk assessment...

2013-01-01

370

7 CFR 319.40-11 - Plant pest risk assessment standards.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 2012-01-01 false Plant pest risk assessment standards. 319...of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...Unmanufactured Wood Articles § 319.40-11 Plant pest risk assessment...

2012-01-01

371

7 CFR 319.40-11 - Plant pest risk assessment standards.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 2011-01-01 false Plant pest risk assessment standards. 319...of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...Unmanufactured Wood Articles § 319.40-11 Plant pest risk assessment...

2011-01-01

372

Reliability of a Test Battery Designed for Quickly and Safely Assessing Diverse Indices of Neuromuscular Function  

NASA Technical Reports Server (NTRS)

Spaceflight affects nearly every physiological system. Spaceflight-induced alterations in physiological function translate to decrements in functional performance. Purpose: To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance. I. Quickly: Battery of tests can be completed in approx.30-40 min. II. Safely: a) No eccentric muscle actions or impact forces. b) Tests present little challenge to postural stability. III. Diverse indices: a) Strength: Excellent reliability (ICC = 0.99) b) Central activation: Very good reliability (ICC = 0.87) c) Power: Excellent reliability (ICC = 0.99) d) Endurance: Total work has excellent reliability (ICC = 0.99) e) Force steadiness: Poor reliability (ICC = 0.20 - 0.60) National

Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason, R.; Buxton, Roxanne E.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

2010-01-01

373

Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent  

PubMed Central

The release of untreated sewage introduces non-indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 sequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTP) in metropolitan Milwaukee. The sewage profiles included a discernable human fecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae genera. The fecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human fecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High-abundance sequences from taxonomic groups within the Beta- and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in fecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI – servicing residential plus a combined sewer system) and South Shore (SS – servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human fecal microbes and enrichment of specific microbes from the environment to form a unique population structure. PMID:19840106

McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M.L.

2009-01-01

374

Proteome Profiling for Assessing Diversity: Analysis of Individual Heads of Drosophila melanogaster Using LC-Ion Mobility-MS  

E-print Network

Proteome Profiling for Assessing Diversity: Analysis of Individual Heads of Drosophila melanogaster Received February 17, 2005 The proteomes of three heads of individual Drosophila melanogaster organisms significant role in determining unique features of individuals. Keywords: Drosophila melanogaster · ion

Clemmer, David E.

375

Martinez Refinery Completes Plant-Wide Energy Assessment  

SciTech Connect

This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

Not Available

2002-11-01

376

Plant species diversity and soil quality in harvested and grazed boreal aspen stands of northeastern British Columbia  

Microsoft Academic Search

Understory vegetation in aspen (Populus tremuloides Michx.) stands produces up to 50% of all forage on Crown land for domestic livestock grazing in the Peace River area of British Columbia (BC), Canada. The objective of this study was to determine the effects of clearcut harvesting and long-term cattle grazing on plant species diversity and soil quality in aspen cutblocks located

M Krzic; R. F Newman; K Broersma

2003-01-01

377

Effects of anthropogenic disturbance on plant diversity and community structure of a sacred grove in Meghalaya, northeast India  

Microsoft Academic Search

This study analyses the effects of anthropogenic disturbance on plant diversity and community attributes of a sacred grove (montane subtropical forest) at Swer in the East Khasi Hills district of Meghalaya in northeast India. The undisturbed, moderately disturbed and highly disturbed stands were identified within the sacred grove on the basis of canopy cover, light interception and tree (cbh =

B. P. Mishra; O. P. Tripathi; R. S. Tripathi; H. N. Pandey

2004-01-01

378

http://www.jstor.org Patterns of Plant Species Diversity in California: Relation to Weather and Topography  

E-print Network

http://www.jstor.org Patterns of Plant Species Diversity in California: Relation to Weather of Naturalists Stable URL: http://www.jstor.org/stable/2460443 Accessed: 03/06/2008 05:57 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor

Richerson, Peter J.

379

Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions  

Microsoft Academic Search

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of

Joyce E. Loper; Karl A. Hassan; Dmitri V. Mavrodi; Edward W. Davis; Chee Kent Lim; Brenda T. Shaffer; Liam D. H. Elbourne; Virginia O. Stockwell; Sierra L. Hartney; Katy Breakwell; Marcella D. Henkels; Sasha G. Tetu; Lorena I. Rangel; Teresa A. Kidarsa; Neil L. Wilson; Judith E. van de Mortel; Chunxu Song; Rachel Blumhagen; Diana Radune; Jessica B. Hostetler; Lauren M. Brinkac; A. Scott Durkin; Daniel A. Kluepfel; W. Patrick Wechter; Anne J. Anderson; Young Cheol Kim; Leland S. Pierson; Elizabeth A. Pierson; Steven E. Lindow; Donald Y. Kobayashi; Jos M. Raaijmakers; David M. Weller; Linda S. Thomashow; Andrew E. Allen; Ian T. Paulsen

2012-01-01

380

The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity  

E-print Network

The response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O. Paul, MN 55108 USA Abstract We measured soil CO2 ¯ux over 19 sampling periods that spanned two growing three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N

Minnesota, University of

381

Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition  

E-print Network

Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition examined the responses of soil food webs (soil microorganisms, nematodes, microarthropods) to 13-y was a strong driver of the structure and functioning of soil food webs through several bottom-up (resource

Minnesota, University of

382

Comparison of Richness and Diversity of Plants in an Old Growth Forest and a Young Replanted Forest  

Microsoft Academic Search

In 2008 at the HJ Andrews LTER Forest using two different methods, a line intersect, and meter squared plots, we collected data to determine whether an old growth forest or 47 year old re-growth of a clearcut area has a higher richness and\\/or diversity of plant species. The two methods were used to gather data to determine the frequency or

Jeff Mabry

383

Field Study of Plant Diversity: Extending the Whole-Class Knowledge Base through Open-Ended Learning  

ERIC Educational Resources Information Center

Students following a pre-Certificate year in biology (the preliminary year of a 4-year BSc programme) learnt about plant diversity through integrated field and classroom studies carried out in an afforested area of north-east England. The students identified, listed and made interpretive drawings of their own choice of the specimens they had…

Goulder, Raymond; Scott, Graham W.

2009-01-01

384

Assessing the diversity of arbuscular mycorrhizal fungi in semiarid shrublands dominated by Artemisia tridentata ssp. wyomingensis.  

PubMed

Variation in the abiotic environment and host plant preferences can affect the composition of arbuscular mycorrhizal (AMF) assemblages. This study analyzed the AMF taxa present in soil and seedlings of Artemisia tridentata ssp. wyomingensis collected from sagebrush steppe communities in southwestern Idaho, USA. Our aims were to determine the AMF diversity within and among these communities and the extent to which preferential AMF-plant associations develop during seedling establishment. Mycorrhizae were identified using molecular methods following DNA extraction from field and pot culture samples. The extracted DNA was amplified using Glomeromycota specific primers, and identification of AMF was based on phylogenetic analysis of sequences from the large subunit-D2 rDNA region. The phylogenetic analyses revealed seven phylotypes, two within the Claroideoglomeraceae and five within the Glomeraceae. Four phylotypes clustered with known species including Claroideoglomus claroideum, Rhizophagus irregularis, Glomus microaggregatum, and Funneliformis mosseae. The other three phylotypes were similar to several published sequences not included in the phylogenetic analysis, but all of these were from uncultured and unnamed glomeromycetes. Pairwise distance analysis revealed some phylotypes with high genetic variation. The most diverse was the phylotype that included R. irregularis, which contained sequences showing pairwise differences up to 12 %. Most of the diversity in AMF sequences occurred within sites. The smaller genetic differentiation detected among sites was correlated with differences in soil texture. In addition, multiplication in pot cultures led to differentiation of AMF communities. Comparison of sequences obtained from the soil with those from A. tridentata roots revealed no significant differences between the AMF present in these samples. Overall, the sites sampled were dominated by cosmopolitan AMF taxa, and young seedlings of A. tridentata ssp. wyomingensis were colonized in relation to the abundance of these taxa in the soil. PMID:24249492

Carter, Keith A; Smith, James F; White, Merlin M; Serpe, Marcelo D

2014-05-01

385

Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies ?  

PubMed Central

The restricted neutralization breadth of vaccine-elicited antibodies is a major limitation of current human immunodeficiency virus-1 (HIV-1) candidate vaccines. In order to permit the efficient identification of vaccines with enhanced capacity for eliciting cross-reactive neutralizing antibodies (NAbs) and to assess the overall breadth and potency of vaccine-elicited NAb reactivity, we assembled a panel of 109 molecularly cloned HIV-1 Env pseudoviruses representing a broad range of genetic and geographic diversity. Viral isolates from all major circulating genetic subtypes were included, as were viruses derived shortly after transmission and during the early and chronic stages of infection. We assembled a panel of genetically diverse HIV-1-positive (HIV-1+) plasma pools to assess the neutralization sensitivities of the entire virus panel. When the viruses were rank ordered according to the average sensitivity to neutralization by the HIV-1+ plasmas, a continuum of average sensitivity was observed. Clustering analysis of the patterns of sensitivity defined four subgroups of viruses: those having very high (tier 1A), above-average (tier 1B), moderate (tier 2), or low (tier 3) sensitivity to antibody-mediated neutralization. We also investigated potential associations between characteristics of the viral isolates (clade, stage of infection, and source of virus) and sensitivity to NAb. In particular, higher levels of NAb activity were observed when the virus and plasma pool were matched in clade. These data provide the first systematic assessment of the overall neutralization sensitivities of a genetically and geographically diverse panel of circulating HIV-1 strains. These reference viruses can facilitate the systematic characterization of NAb responses elicited by candidate vaccine immunogens. PMID:19939925

Seaman, Michael S.; Janes, Holly; Hawkins, Natalie; Grandpre, Lauren E.; Devoy, Colleen; Giri, Ayush; Coffey, Rory T.; Harris, Linda; Wood, Blake; Daniels, Marcus G.; Bhattacharya, Tanmoy; Lapedes, Alan; Polonis, Victoria R.; McCutchan, Francine E.; Gilbert, Peter B.; Self, Steve G.; Korber, Bette T.; Montefiori, David C.; Mascola, John R.

2010-01-01

386

Sampling Plant Diversity and Rarity at Landscape Scales: Importance of Sampling Time in Species Detectability  

PubMed Central

Documenting and estimating species richness at regional or landscape scales has been a major emphasis for conservation efforts, as well as for the development and testing of evolutionary and ecological theory. Rarely, however, are sampling efforts assessed on how they affect detection and estimates of species richness and rarity. In this study, vascular plant richness was sampled in 356 quarter hectare time-unlimited survey plots in the boreal region of northeast Alberta. These surveys consisted of 15,856 observations of 499 vascular plant species (97 considered to be regionally rare) collected by 12 observers over a 2 year period. Average survey time for each quarter-hectare plot was 82 minutes, ranging from 20 to 194 minutes, with a positive relationship between total survey time and total plant richness. When survey time was limited to a 20-minute search, as in other Alberta biodiversity methods, 61 species were missed. Extending the survey time to 60 minutes, reduced the number of missed species to 20, while a 90-minute cut-off time resulted in the loss of 8 species. When surveys were separated by habitat type, 60 minutes of search effort sampled nearly 90% of total observed richness for all habitats. Relative to rare species, time-unlimited surveys had ?65% higher rare plant detections post-20 minutes than during the first 20 minutes of the survey. Although exhaustive sampling was attempted, observer bias was noted among observers when a subsample of plots was re-surveyed by different observers. Our findings suggest that sampling time, combined with sample size and observer effects, should be considered in landscape-scale plant biodiversity surveys. PMID:24740179

Zhang, Jian; Nielsen, Scott E.; Grainger, Tess N.; Kohler, Monica; Chipchar, Tim; Farr, Daniel R.

2014-01-01

387

Assessment of control rooms of nuclear power plants  

NASA Astrophysics Data System (ADS)

The NUREG 0700 recommendations were assessed for implementation in the control rooms of Finnish nuclear power plants. Direct conclusions drawn from the American situation are misleading, because of differences in, for example, procurement of instruments or personnel training. If the review is limited to control room details, the NRC program (checklist) is successful. It can also be used during planning to observe small discrepancies.

Norros, L.; Ranta, J.; Wahlstroem, B.

1983-05-01

388

Assessing Plants for Phytoremediation of Arsenic-Contaminated Soils  

E-print Network

24 Assessing Plants for Phytoremediation of Arsenic-Contaminated Soils Nandita Singh and Lena Q. Ma. Phytoremediation is potentially a cost-effective and environmentally benign method of extracting pollutants from soils. Key Words: Arsenic (As); hyperaccumulation; phytoremediation; Pteris vittata. 1. Introduction

Ma, Lena

389

Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China.  

PubMed

Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha(-1) yr(-1), and 100 kg N ha(-1) yr(-1). Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition. PMID:21122959

Lu, Xiankai; Mo, Jiangming; Gilliam, Frank S; Yu, Guirui; Zhang, Wei; Fang, Yunting; Huang, Juan

2011-10-01

</