These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Rapid Assessment of Plant Diversity Patterns: A Methodology for Landscapes  

Microsoft Academic Search

We present a rapid, cost-efficient methodology to link plantdiversity surveys from plots to landscapes using: (1) unbiasedsite selection based on remotely sensed information; (2) multi-scale field techniques to assess plant diversity; (3)mathematical models (species-area curves) to estimate thenumber of species in larger areas corrected for within-typeheterogeneity; and (4) mathematical techniques to estimatetotal species richness and patterns of plant diversity in

Thomas J. Stohlgren; Geneva W. Chong; Mohammed a. Kalkhan; Lisa D. Schell

1997-01-01

2

A Brief Review of Molecular Techniques to Assess Plant Diversity  

PubMed Central

Massive loss of valuable plant species in the past centuries and its adverse impact on environmental and socioeconomic values has triggered the conservation of plant resources. Appropriate identification and characterization of plant materials is essential for the successful conservation of plant resources and to ensure their sustainable use. Molecular tools developed in the past few years provide easy, less laborious means for assigning known and unknown plant taxa. These techniques answer many new evolutionary and taxonomic questions, which were not previously possible with only phenotypic methods. Molecular techniques such as DNA barcoding, random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), microsatellites and single nucleotide polymorphisms (SNP) have recently been used for plant diversity studies. Each technique has its own advantages and limitations. These techniques differ in their resolving power to detect genetic differences, type of data they generate and their applicability to particular taxonomic levels. This review presents a basic description of different molecular techniques that can be utilized for DNA fingerprinting and molecular diversity analysis of plant species. PMID:20559503

Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.; Bahkali, Ali H.; Sadoon, Mohammad Al; Shobrak, Mohammad

2010-01-01

3

A New Approach to Plant Diversity Assessment Combining HPLC Data, Simplex Mixture Design and Discriminant Analysis  

Microsoft Academic Search

The quantitative assessment of plant diversity and its monitoring with time represent a key environmental issue for management\\u000a and conservation of natural resources. Assessment of plant diversity could be based on chemical analyses of secondary metabolites\\u000a (e.g. flavonoids, terpenoids), because of the substantial quantitative and qualitative between-individual variability in such\\u000a compounds. At a geographical scale, the plant populations become widely

Nabil Semmar; Maurice Jay; Muhammad Farman; Maurice Roux

2008-01-01

4

PLANT DIVERSITY  

EPA Science Inventory

Habitat change statistics and species-area curves were used to estimate the effects of alternative future scenarios for agriculture on plant diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future s...

5

Biodiversity in riverbank techniques for erosion control: assessment of animal and plant species diversity along a natural gradient.  

E-print Network

: assessment of animal and plant species diversity along a naturality gradient. 7th SER European Conference and ecological succession processes. We compared plant species diversity and animal taxonomic diversity aboveBiodiversity in riverbank techniques for erosion control: assessment of animal and plant species

Paris-Sud XI, Université de

6

Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis.  

PubMed

Atmospheric nitrogen (N) deposition is a recognized threat to plant diversity in temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems, from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such as direct toxicity of nitrogen gases and aerosols, long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem- and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition, and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America, especially for the more sensitive ecosystem types, including several ecosystems of high conservation importance. The results of this assessment show that the vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe), and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted studies are required in low background areas, especially in the G200 ecoregions. PMID:20349829

Bobbink, R; Hicks, K; Galloway, J; Spranger, T; Alkemade, R; Ashmore, M; Bustamante, M; Cinderby, S; Davidson, E; Dentener, F; Emmett, B; Erisman, J-W; Fenn, M; Gilliam, F; Nordin, A; Pardo, L; De Vries, W

2010-01-01

7

Evolution & Diversity in Plants.  

ERIC Educational Resources Information Center

Summarizes recent findings that help in understanding how evolution has brought about the diversity of plant life that presently exists. Discusses basic concepts of evolution, diversity and classification, the three-line hypothesis of plant evolution, the origin of fungi, and the geologic time table. Included are 31 references. (CW)

Pearson, Lorentz C.

1988-01-01

8

Assessment of genetic diversity in seed plants based on a uniform ? criterion.  

PubMed

Despite substantial advances in genotyping techniques and massively accumulated data over the past half century, a uniform measurement of neutral genetic diversity derived by different molecular markers across a wide taxonomical range has not yet been formulated. We collected genetic diversity data on seed plants derived by AFLP, allozyme, ISSR, RAPD, SSR and nucleotide sequences, converted expected heterozygosity (He) to nucleotide diversity (?), and reassessed the relationship between plant genetic diversity and life history traits or extinction risk. We successfully established a uniform ? criterion and developed a comprehensive plant genetic diversity database. The mean population-level and species-level ? values across seed plants were 0.00374 (966 taxa, 155 families, 47 orders) and 0.00569 (728 taxa, 130 families, 46 orders), respectively. Significant differences were recovered for breeding system (p < 0.001) at the population level and geographic range (p = 0.023) at the species level. Selfing taxa had significantly lower ? values than outcrossing and mixed-mating taxa, whereas narrowly distributed taxa had significantly lower ? values than widely distributed taxa. Despite significant differences between the two extreme threat categories (critically endangered and least concern), the genetic diversity reduction on the way to extinction was difficult to detect in early stages. PMID:25470277

Ai, Bin; Kang, Ming; Huang, Hongwen

2014-01-01

9

and traditional rural homegardens in Zululand to (1) assess the useful-plant diversity, (2) determine the origin of the species  

E-print Network

of 149 useful plant species belonging to 72 plant families were recorded, comprising 91 medicinal, 32and traditional rural homegardens in Zululand to (1) assess the useful-plant diversity, (2) document the positions of plants in indigenous gar- dening systems. We conducted a survey of 40 muzis

10

Understanding plant reproductive diversity  

PubMed Central

Flowering plants display spectacular floral diversity and a bewildering array of reproductive adaptations that promote mating, particularly outbreeding. A striking feature of this diversity is that related species often differ in pollination and mating systems, and intraspecific variation in sexual traits is not unusual, especially among herbaceous plants. This variation provides opportunities for evolutionary biologists to link micro-evolutionary processes to the macro-evolutionary patterns that are evident within lineages. Here, I provide some personal reflections on recent progress in our understanding of the ecology and evolution of plant reproductive diversity. I begin with a brief historical sketch of the major developments in this field and then focus on three of the most significant evolutionary transitions in the reproductive biology of flowering plants: the pathway from outcrossing to predominant self-fertilization, the origin of separate sexes (females and males) from hermaphroditism and the shift from animal pollination to wind pollination. For each evolutionary transition, I consider what we have discovered and some of the problems that still remain unsolved. I conclude by discussing how new approaches might influence future research in plant reproductive biology. PMID:20008389

Barrett, Spencer C. H.

2010-01-01

11

Relationship between plant diversity andRelationship between plant diversity and AMF diversity in grassland ecosystems  

E-print Network

Relationship between plant diversity andRelationship between plant diversity and AMF diversity on composition of AMF community #12;Relationship between plant richness and AMF diversity complete;Relationship between plant richness and AMF diversity 18 AMF partial removal 10 12 14 16 hness of A 0

Bruns, Tom

12

Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives  

PubMed Central

The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers.

Govindaraj, M.; Vetriventhan, M.; Srinivasan, M.

2015-01-01

13

Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.  

PubMed

The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers. PMID:25874132

Govindaraj, M; Vetriventhan, M; Srinivasan, M

2015-01-01

14

Socioeconomics drive urban plant diversity  

Microsoft Academic Search

Spatial variation in plant diversity has been attributed to heterogeneity in resource availability for many ecosystems. However, urbanization has resulted in entire landscapes that are now occupied by plant communities wholly created by humans, in which diversity may reflect social, economic, and cultural influences in addition to those recognized by traditional ecological theory. Here we use data from a probability-based

Diane Hope; Corinna Gries; Weixing Zhu; William F. Fagan; Charles L. Redman; Nancy B. Grimm; Amy L. Nelson; Chris Martin; Ann Kinzig

2003-01-01

15

Resource availability controls fungal diversity across a plant diversity gradient  

E-print Network

LETTER Resource availability controls fungal diversity across a plant diversity gradient Mark P concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates

Weiblen, George D

16

Understory plant diversity assessment of Eucalyptus plantations over three vegetation types in Yunnan, China  

Microsoft Academic Search

Biodiversity in managed plantations has become an important issue for long-term sustainability of ecosystems. The environmental\\u000a effects of plantations comprised of fast-growing introduced trees have been vigorously debated. On one hand, monocultures\\u000a have been said to exhaust resources, resulting in decreased biodiversity. Conversely, it has been stated that monocultures\\u000a may favor regeneration of undergrowth plants from surrounding forests, increasing biodiversity.

Hua-Feng WangMaria; María Vanessa Lencinas; Cynthia Ross Friedman; Xiao-Ke Wang; Jiang-Xiao Qiu

2011-01-01

17

Socioeconomics drive urban plant diversity  

PubMed Central

Spatial variation in plant diversity has been attributed to heterogeneity in resource availability for many ecosystems. However, urbanization has resulted in entire landscapes that are now occupied by plant communities wholly created by humans, in which diversity may reflect social, economic, and cultural influences in addition to those recognized by traditional ecological theory. Here we use data from a probability-based survey to explore the variation in plant diversity across a large metropolitan area using spatial statistical analyses that incorporate biotic, abiotic, and human variables. Our prediction for the city was that land use, along with distance from urban center, would replace the dominantly geomorphic controls on spatial variation in plant diversity in the surrounding undeveloped Sonoran desert. However, in addition to elevation and current and former land use, family income and housing age best explained the observed variation in plant diversity across the city. We conclude that a functional relationship, which we term the “luxury effect,” may link human resource abundance (wealth) and plant diversity in urban ecosystems. This connection may be influenced by education, institutional control, and culture, and merits further study. PMID:12847293

Hope, Diane; Gries, Corinna; Zhu, Weixing; Fagan, William F.; Redman, Charles L.; Grimm, Nancy B.; Nelson, Amy L.; Martin, Chris; Kinzig, Ann

2003-01-01

18

Benefits of Conservation of Plant Genetic Diversity to Arthropod Diversity  

Microsoft Academic Search

We argue that the genetic diversity of a dominant plant is important to the associated dependent community because dependent species such as herbivores are restricted to a subset of genotypes in the host- plant population. For plants that function as habitat, we predicted that greater genetic diversity in the plant population would be associated with greater diversity in the dependent

RANDY K. BANGERT; RICHARD J. TUREK; GREGORY D. MARTINSEN; GINA M. WIMP; JOSEPH K. BAILEY; THOMAS G. WHITHAM

2005-01-01

19

COURSE INFORMATION Plant Diversity and Evolution  

E-print Network

COURSE INFORMATION Fall 2009 Plant Diversity and Evolution (11:704:411) and Advanced Plant: _______________________________________ by Lena Struwe #12;Syllabus Plant Diversity and Evolution (11:704:411) and Advanced Plant Systematics (16 is the study of plant diversity and plant evolution. You will learn: 1. How to discover, describe, and classify

Chen, Kuang-Yu

20

Microsatellite markers for assessing genetic diversity of the medicinal plant Paris polyphylla var. chinensis (Trilliaceae).  

PubMed

Paris polyphylla var. chinensis is a perennial herb with medicinal properties that is widely used in traditional Chinese medicine. However, this plant has been on the edge of extinction during the last few decades because of excessive deforestation based on the intense ethnopharmaceutical interest. We isolated 12 microsatellite loci from a (CT)(n)-enriched genomic library of P. polyphylla var. chinensis. The polymorphism at each locus was analyzed by screening 30 individuals from a natural population. The number of alleles ranged from 2 to 5. The observed and expected heterozygosities ranged from 0.000 to 0.467, with a mean of 0.247, and from 0.383 to 0.662 with a mean of 0.537, respectively. Six loci (Pp1, Pp3, Pp6, Pp7, Pp9, and Pp12) were found to significantly deviate from Hardy-Weinberg equilibrium. This may be due to the small population size, inbreeding or null alleles. Five of the pairwise comparisons (Pp1 and Pp4, Pp2 and Pp5, Pp2 and Pp9, Pp2 and Pp12, Pp11 and Pp12) exhibited significant linkage disequilibrium (P < 0.05). We conclude that these microsatellite markers will be useful for population genetic studies of P. polyphylla var. chinensis. PMID:22911581

Zheng, J Y; Wang, H; Chen, X X; Wang, P; Gao, P; Li, X N; Zhu, G P

2012-01-01

21

Facilitative plant interactions and climate simultaneously drive alpine plant diversity.  

PubMed

Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change. PMID:24238015

Cavieres, Lohengrin A; Brooker, Rob W; Butterfield, Bradley J; Cook, Bradley J; Kikvidze, Zaal; Lortie, Christopher J; Michalet, Richard; Pugnaire, Francisco I; Schöb, Christian; Xiao, Sa; Anthelme, Fabien; Björk, Robert G; Dickinson, Katharine J M; Cranston, Brittany H; Gavilán, Rosario; Gutiérrez-Girón, Alba; Kanka, Robert; Maalouf, Jean-Paul; Mark, Alan F; Noroozi, Jalil; Parajuli, Rabindra; Phoenix, Gareth K; Reid, Anya M; Ridenour, Wendy M; Rixen, Christian; Wipf, Sonja; Zhao, Liang; Escudero, Adrián; Zaitchik, Benjamin F; Lingua, Emanuele; Aschehoug, Erik T; Callaway, Ragan M

2014-02-01

22

Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050  

Microsoft Academic Search

The rapidly increasing atmospheric concentrations of greenhouse gases may lead to significant changes in regional and seasonal climate patterns. Such changes can strongly influence the diversity and distribution of species and, therefore, affect ecosystems and biodiversity. To assess these changes we developed a model, called euromove. The model uses climate data from 1990 to 2050 as compiled from the image

M. Bakkenes; J. R. M. Alkemade; F. Ihle; R. Leemans; J. B. Latour

2002-01-01

23

Plant Diversity in Paraguay  

NSDL National Science Digital Library

This Web site contains a database of Paraguayan plant specimens from the Natural History Museum herbarium in London, as well as all records of collections made during a biological inventory of the Mbaracay Forest Nature Reserve (a project funded by the UK government's Darwin Initiative). In addition to the database, which is searchable by taxonomy or geography via convenient dropdown menus, visitors will find detailed background information on the Darwin Initiative, the vegetation of Paraguay, and the Mbaracay Forest Nature Reserve. The site's attractive and well-designed interface is an added bonus.

2003-01-01

24

Plant diversity in mediterranean-climate regions  

Microsoft Academic Search

The high plant diversity of mediterranean-climate regions has attracted much attention over the past few years. This review discusses patterns and determinants of local, differential and regional plant diversity in all five regions. Local diversity shows great variation within and between regions and explanations for these patterns invoke a wide range of hypotheses. Patterns of regional diversity are the result

Richard M. Cowling; Philip W. Rundel; Byron B. Lamont; Mary Kalin Arroyo; Margarita Arianoutsou

1996-01-01

25

Aquatic Plant Diversity in Eutrophic Ecosystems  

Microsoft Academic Search

\\u000a The chapter contains studies conducted on the impact of eutrophication on aquatic plant diversity. It covers the concept of\\u000a eutrophication, its causes and effects on plant diversity within an aquatic ecosystem. A decrease in species diversity and\\u000a disappearance of aquatic plants were noted in most of the water bodies of the world as a result of eutrophication. The plant\\u000a diversity

Abid A. Ansari; Fareed A. Khan; Sarvajeet S. Gill; Jyoti Varshney

26

Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms  

Microsoft Academic Search

A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing\\u000a the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities\\u000a have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species\\u000a composition and diversity influence

George. A. Kowalchuk; Douwe S. Buma; Wietse de Boer; Peter G. L. Klinkhamer; Johannes A. van Veen

2002-01-01

27

Resource availability controls fungal diversity across a plant diversity gradient  

USGS Publications Warehouse

Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

2006-01-01

28

Diversity protects plant communities against generalist molluscan herbivores  

PubMed Central

Wildflower strips are used to increase natural enemies of crop pests and to conserve insect diversity on farmland. Mollusks, especially slugs, can affect the vegetation development in these strips considerably. Although recent theoretical work suggests that more diverse plant communities will exhibit greater resistance against herbivore pressure, empirical studies are scarce. We conducted a semi-natural experiment in wildflower strips, manipulating trophic structure (reduction in herbivorous mollusks and reduction in major predators) and plant diversity (2, 6, 12, 20 and 24 sown species). This design allowed us to assess the effect of plant diversity, biomass and composition on mollusks, and vice versa, the effect of mollusc abundance on vegetation. Seven species of mollusks were found in the strips, with the slugs Arion lusitanicus, Deroceras reticulatum and Deroceras panormitanum being most frequent. We found a negative relationship between plant diversity and mollusk abundance, which was due predominantly to a decrease in the agricultural pest species A. lusitanicus. These results are consistent with the hypothesis that plant diversity can reduce the impact of herbivores. However, plant identity also had an effect on mollusks, and accounted for a much larger fraction of the variation in mollusk communities than biodiversity effects. While overall plant diversity decreased during the 3 years of the study, in the final year the highest plant diversity was found in the plots where mollusk populations were experimentally reduced. We conclude that selective feeding by generalist herbivores leads to changes in plant community composition and hence reduced plant diversity. Our results highlight the importance of plant biodiversity as protection against generalist herbivores, which if abundant can in the long term negatively impact plant diversity, driving the system along a “low plant diversity – high mollusk abundance” trajectory. PMID:23145332

Fabian, Yvonne; Sandau, Nadine; Bruggisser, Odile T; Kehrli, Patrik; Aebi, Alexandre; Rohr, Rudolf P; Naisbit, Russell E; Bersier, Louis-Félix

2012-01-01

29

Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.  

PubMed

The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

2014-01-01

30

Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata  

PubMed Central

The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

2014-01-01

31

How does pedogenesis drive plant diversity?  

USGS Publications Warehouse

Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.

Laliberté, Etienne; Grace, James B.; Huston, Michael A.; Lambers, Hans; Teste, François P.; Turner, Benjamin L.; Wardle, David A.

2013-01-01

32

Rapid plant diversity assessment using a pixel nested plot design: A case study in Beaver Meadows, Rocky Mountain National Park, Colorado, USA  

USGS Publications Warehouse

Geospatial statistical modelling and thematic maps have recently emerged as effective tools for the management of natural areas at the landscape scale. Traditional methods for the collection of field data pertaining to questions of landscape were developed without consideration for the parameters of these applications. We introduce an alternative field sampling design based on smaller unbiased random plot and subplot locations called the pixel nested plot (PNP). We demonstrate the applicability of the PNP design of 15 m x 15 m to assess patterns of plant diversity and species richness across the landscape at Rocky Mountain National Park (RMNP), Colorado, USA in a time (cost)-efficient manner for field data collection. Our results produced comparable results to a previous study in the Beaver Meadow study (BMS) area within RMNP, where there was a demonstrated focus of plant diversity. Our study used the smaller PNP sampling design for field data collection which could be linked to geospatial information data and could be used for landscape-scale analyses and assessment applications. In 2003, we established 61 PNP in the eastern region of RMNP. We present a comparison between this approach using a sub-sample of 19 PNP from this data set and 20 of Modified Whittaker nested plots (MWNP) of 20 m x 50 m that were collected in the BMS area. The PNP captured 266 unique plant species while the MWNP captured 275 unique species. Based on a comparison of PNP and MWNP in the Beaver Meadows area, RMNP, the PNP required less time and area sampled to achieve a similar number of species sampled. Using the PNP approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and therefore cost-effective manner. ?? 2007 The Authors.

Kalkhan, M.A.; Stafford, E.J.; Stohlgren, T.J.

2007-01-01

33

Mutualistic rhizobia reduce plant diversity and alter community composition.  

PubMed

Mutualistic interactions can be just as important to community dynamics as antagonistic species interactions like competition and predation. Because of their large effects on both abiotic and biotic environmental variables, resource mutualisms, in particular, have the potential to influence plant communities. Moreover, the effects of resource mutualists such as nitrogen-fixing rhizobia on diversity and community composition may be more pronounced in nutrient-limited environments. I experimentally manipulated the presence of rhizobia across a nitrogen gradient in early assembling mesocosm communities with identical starting species composition to test how the classic mutualism between nitrogen-fixing rhizobia and their legume host influence diversity and community composition. After harvest, I assessed changes in ?-diversity, community composition, ?-diversity, and ecosystem properties such as inorganic nitrogen availability and productivity as a result of rhizobia and nitrogen availability. The presence of rhizobia decreased plant community diversity, increased community convergence (reduced ?-diversity), altered plant community composition, and increased total community productivity. These community-level effects resulted from rhizobia increasing the competitive dominance of their legume host Chamaecrista fasciculata. Moreover, different non-leguminous species responded both negatively and positively to the presence of rhizobia, indicating that rhizobia are driving both inhibitory and potentially facilitative effects in communities. These findings expand our understanding of plant communities by incorporating the effects of positive symbiotic interactions on plant diversity and composition. In particular, rhizobia that specialize on dominant plants may serve as keystone mutualists in terrestrial plant communities, reducing diversity by more than 40%. PMID:25245262

Keller, Kane R

2014-12-01

34

Herbivory enhances positive effects of plant genotypic diversity  

E-print Network

LETTER Herbivory enhances positive effects of plant genotypic diversity John D. Parker,1 * Juha Both plant diversity and vertebrate herbivores can impact plant fitness and ecosystem functioning, however their interactions have not been explicitly tested. We manipulated plant genotypic diversity

Agrawal, Anurag

35

Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.  

PubMed

Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species diversity and genetic diversity interact to influence community structure may be critically important for predicting the consequences of biodiversity loss. PMID:23858643

Crawford, Kerri M; Rudgers, Jennifer A

2013-05-01

36

The Choice of PCR Primers Has Great Impact on Assessments of Bacterial Community Diversity and Dynamics in a Wastewater Treatment Plant  

PubMed Central

Assessments of bacterial community diversity and dynamics are fundamental for the understanding of microbial ecology as well as biotechnological applications. We show that the choice of PCR primers has great impact on the results of analyses of diversity and dynamics using gene libraries and DNA fingerprinting. Two universal primer pairs targeting the 16S rRNA gene, 27F&1492R and 63F&M1387R, were compared and evaluated by analyzing the bacterial community in the activated sludge of a large-scale wastewater treatment plant. The two primer pairs targeted distinct parts of the bacterial community, none encompassing the other, both with similar richness. Had only one primer pair been used, very different conclusions had been drawn regarding dominant phylogenetic and putative functional groups. With 27F&1492R, Betaproteobacteria would have been determined to be the dominating taxa while 63F&M1387R would have described Alphaproteobacteria as the most common taxa. Microscopy and fluorescence in situ hybridization analysis showed that both Alphaproteobacteria and Betaproteobacteria were abundant in the activated sludge, confirming that the two primer pairs target two different fractions of the bacterial community. Furthermore, terminal restriction fragment polymorphism analyses of a series of four activated sludge samples showed that the two primer pairs would have resulted in different conclusions about community stability and the factors contributing to changes in community composition. In conclusion, different PCR primer pairs, although considered universal, target different ranges of bacteria and will thus show the diversity and dynamics of different fractions of the bacterial community in the analyzed sample. We also show that while a database search can serve as an indicator of how universal a primer pair is, an experimental assessment is necessary to evaluate the suitability for a specific environmental sample. PMID:24098498

Fredriksson, Nils Johan; Hermansson, Malte; Wilén, Britt-Marie

2013-01-01

37

Visiting insect diversity and visitation rates for seven globally-imperiled plant species in  

E-print Network

Visiting insect diversity and visitation rates for seven globally-imperiled plant species of Natural Resources, Colorado State University Ft. Collins, Colorado prepared for Native Plant Conservation......................................................................................................................................... 20 Rare plant inventory and assessments

38

Effects of herbivores on grassland plant diversity  

Microsoft Academic Search

The role of herbivores in controlling plant species richness is a critical issue in the conservation and management of grassland biodiversity. Numerous field experiments in grassland plant communities show that herbivores often, but not always, increase plant diversity. Recent work suggests that the mechanisms of these effects involve alteration of local colonization of species from regional species pools or local

Han Olff; Mark E. Ritchie

1998-01-01

39

Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients  

EPA Science Inventory

Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, Yaq...

40

Experimental Tests of the Dependence of Arthropod Diversity on Plant Diversity  

Microsoft Academic Search

Because a diversity of resources should support a di- versity of consumers, most models predict that increasing plant di- 1998) have found that increasing plant diversity increases versity increases animal diversity. We report results of a direct ex- arthropod herbivore diversity. However, these studies are perimental test of the dependence of animal diversity on plant confounded by changes in plant

Evan Siemann; David Tilman; John Haarstad; Mark Ritchie

1998-01-01

41

Experimental Tests of Effects of Plant Productivity and Diversity on Grassland Arthropod Diversity  

Microsoft Academic Search

Because the quantity, quality, and heterogeneity of resources should affect the diversity of consumers, plant productivity, plant composition, and plant diversity may influence the diversity of trophic levels higher up the food chain (''bottom-up'' control of diversity). Increasing plant productivity may increase herbivore diversity by: increasing the abundance of rare resources (''resource rarity hypothesis''), increasing herbivore abun- dance and local

Evan Siemann

1998-01-01

42

Plant-Microbe Interactions: Chemical Diversity in Plant Defense  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. The chemical diversity within the plant kingdom is likely to be a consequence of niche colonization and adaptive evolution. Plant-derived natural products have important functions in defense. They also have broader ecological roles and may in addition participate in plant growth and development.

Pawel Bednarek (Max-Planck-Institut für Züchtungsforschung; Department of Plant Microbe Interactions)

2009-05-08

43

Arbuscular mycorrhizal fungi respond to increasing plant diversity  

Microsoft Academic Search

The effect of plant diversity (1, 2, 8, or 16 species) on arbuscular mycorrhizal fungi (AMF) was assessed at the Cedar Creek Long-Term Ecological Research site at East Bethel, Minnesota, from 1997 to 1999. At each of the five samplings, AMF in 16-species plots produced from 30 to 150% more spores and from 40 to 70% greater spore volumes than

Rhoda L. Burrows; Francis L. Pfleger

2002-01-01

44

Mycorrhizal fungal identity and diversity relaxes plant-plant competition.  

PubMed

There is a great interest in ecology in understanding the role of soil microbial diversity for plant productivity and coexistence. Recent research has shown increases in species richness of mutualistic soil fungi, the arbuscular mycorrhizal fungi (AMF), to be related to increases in aboveground productivity of plant communities. However, the impact of AMF richness on plant-plant interactions has not been determined. Moreover, it is unknown whether species-rich AMF communities can act as insurance to maintain productivity in a fluctuating environment (e.g., upon changing soil conditions). We tested the impact of four different AMF taxa and of AMF diversity (no AMF, single AMF taxa, and all four together) on competitive interactions between the legume Trifolium pratense and the grass Lolium multiflorum grown under two different soil conditions of low and high sand content. We hypothesized that more diverse mutualistic interactions (e.g., when four AMF taxa are present) can ease competitive effects between plants, increase plant growth, and maintain plant productivity across different soil environments. We used quantitative PCR to verify that AMF taxa inoculated at the beginning of the experiment were still present at the end. The presence of AMF reduced the competitive inequality between the two plant species by reducing the growth suppression of the legume by the grass. High AMF richness enhanced the combined biomass production of the two plant species and the yield of the legume, particularly in the more productive soil with low sand content. In the less productive (high sand content) soil, the single most effective AMF had an equally beneficial effect on plant productivity as the mixture of four AMF. Since contributions of single AMF to plant productivity varied between both soils, higher AMF richness would be required to maintain plant productivity in heterogeneous environments. Overall this work shows that AMF diversity promotes plant productivity and that AMF diversity can act as insurance to sustain plant productivity under changing environmental conditions. PMID:21797158

Wagg, Cameron; Jansa, Jan; Stadler, Marina; Schmid, Bernhard; van der Heijden, Marcel G A

2011-06-01

45

Plant clonality: Biology and diversity  

Microsoft Academic Search

The current approaches to the study of clonal plants are reviewed. Most studies concentrate at the level of the ramet and\\u000a clonal fragment exploring the “microscopic” view of clonal plants, dealing with the translocation of resources, clonal integration,\\u000a plasticity of growth etc. The information gained, by this approach can be used in the understanding of higher levels of organization\\u000a within

TomᚠHerben; Toshihiko Hara; Chris Marshall; Lenka Soukupová

1994-01-01

46

Assessment of Species Diversity in the Montane Cordillera Ecozone  

NSDL National Science Digital Library

The Ecological Monitoring and Assessment Network has released this 1998 publication entitled "Assessment of species diversity in the Montane Cordillera Ecozone." Extending from the eastern Rocky Mountains in Alberta to the western slope of the Cascades in British Columbia, the Montane Cordillera Ecozone is Canada's sixth largest ecozone, covering "more than 49 million hectares." Diverse in topography and climate, the ecozone's landscape ranges "from alpine tundra to dense coniferous forests, grasslands, riparian woodlands, dry sagebrush and Canada's only true desert." The report covers environmental history, habitat types, and human use of the area, in addition to emphasizing species diversity (namely insects, mammals, fish, plants, fungi, birds, and amphibians and reptiles).

1999-01-01

47

Plant Diversity of Central French Guiana  

NSDL National Science Digital Library

From the New York Botanical Garden's Virtual Herbarium, this "specimen database of flowering plant collections is part of a larger project designed to document the fungal and plant diversity of central French Guiana." A greater goal of the project "is to provide the fungal and plant inventories needed for understanding the evolution and ecological relationships of the fungi, plants, and animals that inhabit this, one of the last tropical wilderness areas of the world." The website provides engines for basic searches as well as detailed searches with fields for Scientific Name (e.g. Family, Genus, Species), Collector/Number, Collector Location (e.g. Country, City, Province/State, County), Type Status, Substrate, and more. Site visitors can also locate specimen records by browsing a Families list and link to more information at the Fungal and Plant Diversity of Central French Guiana Homepage.

48

Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest  

PubMed Central

Biodiversity loss may alter ecosystem processes, such as herbivory, a key driver of ecological functions in species-rich (sub)tropical forests. However, the mechanisms underlying such biodiversity effects remain poorly explored, as mostly effects of species richness – a very basic biodiversity measure – have been studied. Here, we analyze to what extent the functional and phylogenetic diversity of woody plant communities affect herbivory along a diversity gradient in a subtropical forest.We assessed the relative effects of morphological and chemical leaf traits and of plant phylogenetic diversity on individual-level variation in herbivory of dominant woody plant species across 27 forest stands in south-east China.Individual-level variation in herbivory was best explained by multivariate, community-level diversity of leaf chemical traits, in combination with community-weighted means of single traits and species-specific phylodiversity measures. These findings deviate from those based solely on trait variation within individual species.Our results indicate a strong impact of generalist herbivores and highlight the need to assess food-web specialization to determine the direction of biodiversity effects. With increasing plant species loss, but particularly with the concomitant loss of functional and phylogenetic diversity in these forests, the impact of herbivores will probably decrease – with consequences for the herbivore-mediated regulation of ecosystem functions. PMID:24460549

Schuldt, Andreas; Assmann, Thorsten; Bruelheide, Helge; Durka, Walter; Eichenberg, David; Härdtle, Werner; Kröber, Wenzel; Michalski, Stefan G; Purschke, Oliver

2014-01-01

49

A hierarchical perspective of plant diversity  

USGS Publications Warehouse

Predictive models of plant diversity have typically focused on either a landscapea??s capacity for richness (equilibrium models), or on the processes that regulate competitive exclusion, and thus allow species to coexist (nonequilibrium models). Here, we review the concepts and purposes of a hierarchical, multiscale model of the controls of plant diversity that incorporates the equilibrium model of climatic favorability at macroscales, nonequilibrium models of competition at microscales, and a mixed model emphasizing environmental heterogeneity at mesoscales. We evaluate the conceptual model using published data from three spatially nested datasets: (1) a macroscale analysis of ecoregions in the continental and western U.S.; (2) a mesoscale study in California; and (3) a microscale study in the Siskiyou Mountains of Oregon and California. At the macroscale (areas from 3889 km2 to 638,300 km2), climate (actual evaporation) was a strong predictor of tree diversity (R2 = 0.80), as predicted by the conceptual model, but area was a better predictor for vascular plant diversity overall (R2 = 0.38), which suggests different types of plants differ in their sensitivity to climatic controls. At mesoscales (areas from 1111 km2 to 15,833 km2 ), climate was still an important predictor of richness (R2 = 0.52), but, as expected, topographic heterogeneity explained an important share of the variance (R2 = 0.19), showed positive correlations with diversity of trees, shrubs, and annual and perennial herbs, and was the primary predictor of shrub and annual plant species richness. At microscales (0.1 ha plots), spatial patterns of diversity showed a clear unimodal pattern along a climatea??driven productivity gradient and a negative relationship with soil fertility. The strong decline in understory and total diversity at the most productive sites suggests that competitive controls, as predicted, can override climatic controls at this scale. We conclude that this hierarchical, multiscale model provides a sound basis to understand and analyze plant species diversity. Specifically, future research should employ the principles in this paper to explore climatic controls on species richness of different life forms, better quantify environmental heterogeneity in landscapes, and analyze how these largea??scale factors interact with local nonequilibrium dynamics to maintain plant diversity.

Sarr, Daniel; Hibbs, D.E.; Huston, M.

2005-01-01

50

The Tight Link: Beetle and Plant Diversity  

NSDL National Science Digital Library

This week's In The News focuses on the evolutionary link between beetle (Coleoptera) and flowering plant (Angiosperm) diversity. In an article published in the July 24, 1998 issue of Science, Harvard University evolutionary entomologist Brian Farrell shed new light on insect-plant evolution when he revealed "a tight link between plant and beetle diversity." Farrell found that the incredible diversity of beetles--a whopping 330,000 species are estimated today--is linked to the rise of the angiosperms some 100,000,000 years ago. According to Farrell, although some beetles maintained their preference for older plant classes such as cycads and conifers, "well over 100,000 new species of beetles arose because of that move to angiosperms." The significance of these findings, says Farrell, "show how moving into a new environment, where there's no competition, can free you for an explosive, adaptive radiation." The nine resources provided offer insights and information on beetle and plant diversity, and several evolutionary resources as well.

Payne, Laura X.

1998-01-01

51

Woody Plant Diversity, Evolution, and Ecology in  

E-print Network

patterns differ in woody plants from tropical rain forests and savannas suggests a hypothesis that broad Tropical Forests R. Toby Pennington,1 Matt Lavin,2 and Ary Oliveira-Filho3 1 Tropical Diversity Section distribution of sea- sonally dry tropical forest (SDTF) has distinctively structured the evolution- ary history

Saleska, Scott

52

Global patterns and determinants of vascular plant diversity  

E-print Network

Global patterns and determinants of vascular plant diversity Holger Kreft* and Walter Jetz *Nees of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution of diversity, plants might be of particular relevance. Plants com- prise some 300,000 species, are key

Kreft, Holger

53

Plant Functional Diversity and Species Diversity in the Mongolian Steppe  

PubMed Central

Background The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. Methodology/Principal Findings In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity. Conclusions/Significance These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought. PMID:24116233

Liu, Guofang; Xie, Xiufang; Ye, Duo; Ye, Xuehua; Tuvshintogtokh, Indree; Mandakh, Bayart; Huang, Zhenying; Dong, Ming

2013-01-01

54

Plant species richness drives the density and diversity of Collembola in temperate grassland  

Microsoft Academic Search

Declining biodiversity is one of the most important aspects of anthropogenic global change phenomena, but the implications of plant species loss for soil decomposers are little understood. We used the experimental grassland community of the Jena Experiment to assess the response of density and diversity of Collembola to varying plant species richness, plant functional group richness and plant functional group

Alexander C. W. Sabais; Stefan Scheu; Nico Eisenhauer

2011-01-01

55

Impacts of salmon on riparian plant diversity.  

PubMed

The study of natural gradients in nutrient subsidies between ecosystems allows for predictions of how changes in one system can affect biodiversity in another. We performed a large-scale empirical test of the role of Pacific salmon (Oncorhynchus spp.) in structuring riparian plant communities. A comparison of 50 watersheds in the remote Great Bear Rainforest of British Columbia's central coast in Canada shows that salmon influence nutrient loading to plants,shifting plant communities toward nutrient-rich species, which in turn decreases plant diversity.These effects are mediated by interactions between salmon density and the physical characteristics of watersheds. Predicting how salmon affect terrestrial ecosystems is central to conservation plans that aim to better integrate ecosystem values into resource management. PMID:21442794

Hocking, Morgan D; Reynolds, John D

2011-03-25

56

LETTER Plant diversity controls arthropod biomass and temporal stability  

E-print Network

LETTER Plant diversity controls arthropod biomass and temporal stability Elizabeth T. Borer,* Eric extent, consumers, relationships among plant and consumer diversity, productiv- ity, and temporal in a long-term experiment manipulating plant diversity and enumerating the arthropod community response. We

Minnesota, University of

57

Patterns and regulation of mycorrhizal plant and fungal diversity  

Microsoft Academic Search

The diversity of mycorrhizal fungi does not follow patterns of plant diversity, and the type of mycorrhiza may regulate plant species diversity. For instance, coniferous forests of northern latitudes may have more than 1000 species of ectomycorrhizal (EM) fungi where only a few ectomycorrhizal plant species dominate, but there are fewer than 25 species of arbuscular mycorrhizal (AM) fungi in

Edith B. Allen; Michael F. Allen; Dot J. Helm; James M. Trappe; Randy Molina; Emmanuel Rincon

1995-01-01

58

ORIGINAL PAPER Plant genotypic diversity and environmental stress interact  

E-print Network

ORIGINAL PAPER Plant genotypic diversity and environmental stress interact to negatively affect positive relationships between plant diversity and arthropod communities, but the interactive effects of plant genetic diversity and environ- mental stress on arthropods are not well documented. In this study

Pfrender, Michael

59

BioS 433 Plant Diversity and Conservation Spring 2004  

E-print Network

BioS 433 ­ Plant Diversity and Conservation Spring 2004 Instructors Roberta J. Mason-Gamer Jun Wen of conservation biology, and combine it with an appreciation of the diversity of plants around us. We will combine January 21 Characterizing Plant Diversity: What is Phylogeny and Why Do We Care? PS Ch. 1, 2 January 26

Mason-Gamer, Roberta J.

60

Plant species loss decreases arthropod diversity and shifts trophic structure  

E-print Network

LETTER Plant species loss decreases arthropod diversity and shifts trophic structure Nick M. Haddad 94720 3140, USA *Correspondence: E-mail: nick_haddad@ncsu.edu Abstract Plant diversity is predicted plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical

Haddad, Nick

61

Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities  

E-print Network

Plant monocultures produce more antagonistic soil Streptomyces communities than high Streptomyces Antagonism Diversity Antibiosis Resource diversity a b s t r a c t Plantesoil feedbacks bacteria, the Streptomyces possess particularly strong antagonistic activities and inhibit diverse plant

Weiblen, George D

62

Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity  

PubMed Central

Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context. PMID:25400642

Muller, Jonathon N.; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L.

2014-01-01

63

Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide.  

PubMed

Aboveground-belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m(2) plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity. PMID:25430889

Prober, Suzanne M; Leff, Jonathan W; Bates, Scott T; Borer, Elizabeth T; Firn, Jennifer; Harpole, W Stanley; Lind, Eric M; Seabloom, Eric W; Adler, Peter B; Bakker, Jonathan D; Cleland, Elsa E; DeCrappeo, Nicole M; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; MacDougall, Andrew S; McCulley, Rebecca L; Mitchell, Charles E; Risch, Anita C; Schuetz, Martin; Stevens, Carly J; Williams, Ryan J; Fierer, Noah

2015-01-01

64

Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide  

USGS Publications Warehouse

Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

Prober, Suzanne M.; Leff, Jonathan W.; Bates, Scott T.; Borer, Elizabeth T.; Firn, Jennifer; Harpole, W. Stanley; Lind, Eric M.; Seabloom, Eric W.; Adler, Peter B.; Bakker, Jonathan D.; Cleland, Elsa E.; DeCrappeo, Nicole; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S.; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.; Williams, Ryan J.; Fierer, Noah

2015-01-01

65

Assessing genetic structure, diversity of bacterial aerosol from aeration system in an oxidation ditch wastewater treatment plant by culture methods and bio-molecular tools.  

PubMed

Airborne bacteria emissions from oxidation ditch with rotating aeration brushes were investigated in a municipal wastewater treatment plant in Beijing, China. Microbial samples were collected at different distances from the rotating brushes, different heights above the water surface, and different operation state over a 3-month period (April, May, and June) in order to estimate the seasonal variation and site-related distribution characteristics of the microorganisms present. The concentration of bacterial aerosol was analyzed by culture methods, while their dominant species, genetic structure and diversity were assayed using bio-molecular tools. Results showed that total microbial concentrations were highest in June and lowest in April. The mechanical rotation caused remarkable variation in concentration and diversity of culturable airborne bacteria before and after the rotating brushes. The highest concentration was observed near the rotating brushes (931 ± 129-3,952 ± 730 CFU/m(3)), with concentration decreasing as distance and height increased. Bacterial community polymerase chain reaction and denaturing gradient gel electrophoresis indicated that diversity decreased gradually with increasing height above the water surface but remained relatively constant at the same height. All dominant bacteria identified by DNA sequence analysis belonged to Firmicutes. Pathogenic species such as Moraxella nonliquefaciens and Flavobacterium odoratum were isolated from the bioaerosols. Due to the serious health risks involved, exposure of sewage workers to airborne microorganisms caused by brush aerators should be monitored and controlled. PMID:22402990

Li, Lin; Han, Yunping; Liu, Junxin

2013-01-01

66

Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms.  

PubMed

A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species composition and diversity influence the community composition of micro-organisms in the soil. We examined this relationship in fields subjected to different above-ground biodiversity treatments and in field experiments designed to examine the influence of plant species on soil-borne microbial communities. Culture-independent strategies were applied to examine the role of wild or native plant species composition on bacterial diversity and community structure in bulk soil and in the rhizosphere. In comparing the influence of Cynoglossum officinale (hound's tongue) and Cirsium vulgare (spear thistle) on soil-borne bacterial communities, detectable differences in microbial community structure were confined to the rhizosphere. The colonisation of the rhizosphere of both plants was highly reproducible, and maintained throughout the growing season. In a separate experiment, effects of plant diversity on bacterial community profiles were also only observed for the rhizosphere. Rhizosphere soil from experimental plots with lower macrophyte diversity showed lower diversity, and bacterial diversity was generally lower in the rhizosphere than in bulk soil. These results demonstrate that the level of coupling between above-ground macrophyte communities and below-ground microbial communities is related to the tightness of the interactions involved. Although plant species composition and community structure appear to have little discernible effect on microbial communities inhabiting bulk soil, clear and reproducible changes in microbial community structure and diversity are observed in the rhizosphere. PMID:12448746

Kowalchuk, George A; Buma, Douwe S; de Boer, Wietse; Klinkhamer, Peter G L; van Veen, Johannes A

2002-08-01

67

Pasture Condition Score Indicators: Controls on Plant and Forage Diversity  

Technology Transfer Automated Retrieval System (TEKTRAN)

The USDA-NRCS Pasture Condition Score (PCS) system was developed for evaluating pastures and making management recommendations. Four of the ten rating criteria relate to plant species diversity and composition: percent desirable plants, plant cover, plant diversity, and percent legume. Baseline data...

68

Diverse pollinator communities enhance plant reproductive success  

PubMed Central

Understanding the functional consequences of biodiversity loss is a major goal of ecology. Animal-mediated pollination is an essential ecosystem function and service provided to mankind. However, little is known how pollinator diversity could affect pollination services. Using a substitutive design, we experimentally manipulated functional group (FG) and species richness of pollinator communities to investigate their consequences on the reproductive success of an obligate out-crossing model plant species, Raphanus sativus. Both fruit and seed set increased with pollinator FG richness. Furthermore, seed set increased with species richness in pollinator communities composed of a single FG. However, in multiple-FG communities, highest species richness resulted in slightly reduced pollination services compared with intermediate species richness. Our analysis indicates that the presence of social bees, which showed roughly four times higher visitation rates than solitary bees or hoverflies, was an important factor contributing to the positive pollinator diversity–pollination service relationship, in particular, for fruit set. Visitation rate at different daytimes, and less so among flower heights, varied among social bees, solitary bees and hoverflies, indicating a niche complementarity among these pollinator groups. Our study demonstrates enhanced pollination services of diverse pollinator communities at the plant population level and suggests that both the niche complementarity and the presence of specific taxa in a pollinator community drive this positive relationship. PMID:23034701

Albrecht, Matthias; Schmid, Bernhard; Hautier, Yann; Müller, Christine B.

2012-01-01

69

Phylogenetic Exploration of Medicinal Plant Diversity MedPlant PhD Fellowship  

E-print Network

MedPlant Phylogenetic Exploration of Medicinal Plant Diversity MedPlant PhD Fellowship Incense Phylogenetic Exploration of Medicinal Plant Diversity, MedPlant (www.MedPlant.eu). Project description Burning of incense plants for purification and the use of smoke for medicinal purposes are ancient practices in many

Zürich, Universität

70

An experimental test of the effect of plant functional group diversity on arthropod diversity  

Microsoft Academic Search

Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect

Amy J. Symstad; Evan Siemann; John Haarstad

2000-01-01

71

Herbivory enhances positive effects of plant genotypic diversity.  

PubMed

Both plant diversity and vertebrate herbivores can impact plant fitness and ecosystem functioning, however their interactions have not been explicitly tested. We manipulated plant genotypic diversity of the native plant Oenothera biennis and monitored its survivorship and lifetime fitness with and without one of its major vertebrate consumers, white-tailed deer Odocoileus virginianus. Intense but unmanipulated herbivory by meadow voles Microtus pennsylvanicus killed over 70% of nearly 4000 experimental plants. However, plants grown in genotypically diverse patches suffered fewer vole attacks and had higher survival and reproductive output than plants in monoculture. Moreover, positive effects of genotypic diversity were enhanced by the presence of deer, indicating a non-additive interaction between diversity and trophic-level complexity. Genetic selection analyses showed that the selective value of ecologically important traits depended on plant diversity and exposure to deer, demonstrating that community complexity can promote fitness through multiple ecologically and evolutionarily important feedbacks. PMID:20298460

Parker, John D; Salminen, Juha-Pekka; Agrawal, Anurag A

2010-05-01

72

Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness  

E-print Network

LETTER Additive and interactive effects of plant genotypic diversity on arthropod communities@botany.utoronto.ca Abstract Recent research suggests that genetic diversity in plant populations can shape the diversity species of naturally colonizing arthropods. Genetically diverse plant patches had 18% more arthropod

Agrawal, Anurag

73

Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese  

E-print Network

Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity for Environmental Research, Halle 06120, Germany Abstract Microbial diversity is generally far higher than plant diversity, but the relationship between microbial diversity and plant diversity remains enigmatic. To shed

Bruns, Tom

74

Assessing Nutritional Diversity of Cropping Systems in African Villages  

PubMed Central

Background In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD), has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. Methods and Findings Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. Conclusion This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are generated and strategies for future research are suggested calling for integration of agriculture, ecology, nutrition, and socio-economics. PMID:21698127

DeClerck, Fabrice; Diru, Willy; Fanzo, Jessica; Gaynor, Kaitlyn; Lambrecht, Isabel; Mudiope, Joseph; Mutuo, Patrick K.; Nkhoma, Phelire; Siriri, David; Sullivan, Clare; Palm, Cheryl A.

2011-01-01

75

Species interaction mechanisms maintain grassland plant species diversity  

Technology Transfer Automated Retrieval System (TEKTRAN)

Theory has outpaced empirical research in pursuit of identifying mechanisms maintaining species diversity. Here we demonstrate how data from diversity-ecosystem functioning experiments can be used to test maintenance of diversity theory. We predict that grassland plant diversity can be maintained by...

76

Vive la différence: plant functional diversity matters to ecosystem processes  

Microsoft Academic Search

The links between plant diversity and ecosystem functioning remain highly controversial. There is a growing consensus, however, that functional diversity, or the value and range of species traits, rather than species numbers per se, strongly determines ecosystem functioning. Despite its importance, and the fact that species diversity is often an inadequate surrogate, functional diversity has been studied in relatively few

Sandra D??az; Marcelo Cabido

2001-01-01

77

OIKOS 103: 4558, 2003 Plant species diversity, plant biomass and responses of the soil  

E-print Network

OIKOS 103: 45­58, 2003 Plant species diversity, plant biomass and responses of the soil community species diversity, plant biomass and responses of the soil community on abandoned land across Europe plant diversity was altered by sowing seed mixtures of mid-successional grassland species with two

Leps, Jan "Suspa"

78

Climate-driven diversity dynamics in plants and plant-feeding Tommi Nyman,1,2*  

E-print Network

REVIEW AND SYNTHESES Climate-driven diversity dynamics in plants and plant-feeding insects Tommi climate determines the distribution, abundance and diversity of plant clades and, hence, indirectly positive and negative responses of insect diversity are lagged in relation to host-plant availability

Wahlberg, Niklas

79

Environmental correlates of plant diversity in Korean temperate forests  

NASA Astrophysics Data System (ADS)

Mountainous areas of the Korean Peninsula are among the biodiversity hotspots of the world's temperate forests. Understanding patterns in spatial distribution of their species richness requires explicit consideration of different environmental drivers and their effects on functionally differing components. In this study, we assess the impact of both geographical and soil variables on the fine-scale (400 m2) pattern of plant diversity using field data from six national parks, spanning a 1300 m altitudinal gradient. Species richness and the slopes of species-area curves were calculated separately for the tree, shrub and herb layer and used as response variables in regression tree analyses. A cluster analysis distinguished three dominant forest communities with specific patterns in the diversity-environment relationship. The most widespread middle-altitude oak forests had the highest tree richness but the lowest richness of herbaceous plants due to a dense bamboo understory. Total richness was positively associated with soil reaction and negatively associated with soluble phosphorus and solar radiation (site dryness). Tree richness was associated mainly with soil factors, although trees are frequently assumed to be controlled mainly by factors with large-scale impact. A U-shaped relationship was found between herbaceous plant richness and altitude, caused by a distribution pattern of dwarf bamboo in understory. No correlation between the degree of canopy openness and herb layer richness was detected. Slopes of the species-area curves indicated the various origins of forest communities. Variable diversity-environment responses in different layers and communities reinforce the necessity of context-dependent differentiation for the assessment of impacts of climate and land-use changes in these diverse but intensively exploited regions.

?erný, Tomáš; Doležal, Ji?í; Jane?ek, Št?pán; Šr?tek, Miroslav; Valachovi?, Milan; Pet?ík, Petr; Altman, Jan; Bartoš, Michael; Song, Jong-Suk

2013-02-01

80

NEWS AND VIEWS Host plant richness explains diversity of  

E-print Network

NEWS AND VIEWS REPLY Host plant richness explains diversity of ectomycorrhizal fungi: Response-analysis still confirms a positive effect of plant richness on EM fungal diversity in Gutianshan, temperate). We demonstrated positive relationships between host plant richness and ectomycorrhizal (EM) fungal

Bruns, Tom

81

Macroevolution and the biological diversity of plants and herbivores  

E-print Network

Macroevolution and the biological diversity of plants and herbivores Douglas J. Futuymaa,1 generated the spectacular diversity of flowering plants (>300,000 species) and insect herbivores (likely >1) Terrestrial biodiversity is dominated by plants and the herbivores that consume them, and they are one

Agrawal, Anurag

82

Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities  

PubMed Central

Pollination is exclusively or mainly animal mediated for 70% to 90% of angiosperm species. Thus, pollinators provide an essential ecosystem service to humankind. However, the impact of human-induced biodiversity loss on the functioning of plant–pollinator interactions has not been tested experimentally. To understand how plant communities respond to diversity changes in their pollinating fauna, we manipulated the functional diversity of both plants and pollinators under natural conditions. Increasing the functional diversity of both plants and pollinators led to the recruitment of more diverse plant communities. After two years the plant communities pollinated by the most functionally diverse pollinator assemblage contained about 50% more plant species than did plant communities pollinated by less-diverse pollinator assemblages. Moreover, the positive effect of functional diversity was explained by a complementarity between functional groups of pollinators and plants. Thus, the functional diversity of pollination networks may be critical to ecosystem sustainability. PMID:16332160

Dajoz, Isabelle; Meriguet, Jacques; Loreau, Michel

2006-01-01

83

Grazing effects on plant functional group diversity in Mediterranean shrublands  

Microsoft Academic Search

Grazing is one of the prevalent human activities that even today are taking place inside protected areas with direct or indirect\\u000a effects on ecosystems. In this study we analyzed the effects of grazing on plant species diversity, plant functional group\\u000a (PFG) diversity and community composition of shrublands. We analyzed plant diversity data from 582 sampling plots located\\u000a in 66 protected

Alexandra D. Papanikolaou; Nikolaos M. Fyllas; Antonios D. Mazaris; Panayiotis G. Dimitrakopoulos; Athanasios S. Kallimanis; John D. Pantis

84

PLANT DIVERSITY OF WESTERN CHITWAN FLORISTIC APPROACH  

PubMed Central

This paper identifies and documents the plant biodiversity of western Chitwan, Nepal. Specifically, our attention was focussed on the plants of forests, grasslands and common lands based on our “Reciprocal Relation of Population and Environment Study Project” conducted during January-April 1996. This species-diversity of trees, shrubs and herbaceous flora was recorded from 117, 117, and 1049 sampling quadrats of 10×10, 3×3 and 1×1 m2, respectively. The flora of our study plots contains 236 species that belong to 191 genera and 66 families. Of 236 species of plants, 119, 113, 59, 35 and 119 species were recorded from Tikauli forest, National Park forest, forests along the Narayani river, grasslands of National Park and common lands of the western Chitwan, respectively. Dicotyledons represent 184 (77.97%) species of the total flora species followed by monocotyledons (46 spp., 19.49%) and ferns (6 spp., 2.54%), respectively. The five largest families are Leguminosae (38 spp.), Poaceae (27 spp.), Asteraceae (22 spp.), Rubiaceae (10 spp.), and Scrophulariaceae (9 spp.). Hedyotis, Grewia and Lindernia, each with 4 spp., are the most speciose genera in the flora. PMID:22899874

Dangol, D. R.; Shivakoti, G. P.

2012-01-01

85

Effects of a hydropower plant on Coleopteran diversity and abundance in the Udzungwa Mountains, Tanzania  

Microsoft Academic Search

The effects of river flow diversion on biodiversity were assessed using Coleoptera as an indicator group in three habitats of the Kihansi Gorge (Udzungwa Mountains, Tanzania), before and after commissioning of a hydropower plant. Data collected using sweep netting and pitfall traps showed that the effect of diversion of the river flow was site-specific, affecting particularly the spray habitat. Rarefaction

Innocent J. E. Zilihona; Jari Niemelä; Matti Nummelin

2004-01-01

86

Plant genotypic diversity and environmental stress interact to negatively affect arthropod community diversity  

Microsoft Academic Search

Many studies have found positive relationships between plant diversity and arthropod communities, but the interactive effects\\u000a of plant genetic diversity and environmental stress on arthropods are not well documented. In this study, we investigated\\u000a the consequences of plant genotypic diversity, watering treatment, and its interaction for the ground-dwelling arthropod community\\u000a in an experimental common garden of quaking aspen (Populus tremuloides

Megan K. Kanaga; Leigh C. Latta; Karen E. Mock; Ronald J. Ryel; Richard L. Lindroth; Michael E. Pfrender

2009-01-01

87

Plant diversity increases soil microbial activity and soil carbon storage.  

PubMed

Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon. PMID:25848862

Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

2015-01-01

88

Exotic plant species invade hot spots of native plant diversity  

USGS Publications Warehouse

Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and biodiversity), are invasible in many landscapes; and (2) this pattern may be more closely related to the degree resources are available in native plant communities, independent of species richness. Exotic plant invasions in rare habitats and distinctive plant communities pose a significant challenge to land managers and conservation biologists.

Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

1999-01-01

89

PLANT FUNCTIONAL GROUP DIVERSITY AS A MECHANISM FOR INVASION RESISTANCE  

Technology Transfer Automated Retrieval System (TEKTRAN)

A commonly cited mechanism for invasion resistance is that diverse plant assemblages use resources more completely through maximum niche occupation. Our research investigates the ability of plant functional groups in resisting invasion by a nonindigenous species, Centaurea maculosa (spotted knapwee...

90

Conserving plant genetic diversity for dependent animal communities  

Microsoft Academic Search

While population genetic diversity has broad application in species conservation, no studies have examined the community-level consequences of this diversity. We show that population genetic diversity (generated by interspecific hybridization) in a dominant riparian tree affects an arthropod community composed of 207 species. In an experimental garden, plant cross type structured the arthropod community of individual trees, and among stands

Gina Marie Wimp; William P. Young; Scott A. Woolbright; Gregory D. Martinsen; Paul Keim; Thomas G. Whitham

2004-01-01

91

Multiple Actin Isotypes in Plants: Diverse Genes for Diverse Roles?  

PubMed Central

Plant actins are encoded by a gene family. Despite the crucial significance of the actin cytoskeleton for plant structure and function, the importance of individual actin isotypes and their specific roles in various plant tissues or even single cells is rather poorly understood. This review summarizes our current knowledge about the plant actin gene family including its evolution, gene and protein structure, and the expression profiles and regulation. Based on this background information, we review mutant and complementation analyses in Arabidopsis to draw an emerging picture of overlapping and specific roles of plant actin isotypes. Finally, we examine hypotheses explaining the mechanisms of isotype-specific functions. PMID:23091476

Šlajcherová, Kate?ina; Fišerová, Jind?iška; Fischer, Lukáš; Schwarzerová, Kate?ina

2012-01-01

92

Predicting the Landscape-Scale Distribution of Alien Plants and Their Threat to Plant Diversity  

Microsoft Academic Search

Invasive alien organisms pose a major threat to global biodiversity. The Cape Peninsula, South Africa, provides a case study of the threat of alien plants to native plant diversity. We sought to identify where alien plants would invade the landscape and what their threat to plant diversity could be. This information is needed to develop a strategy for managing these

Steven I. Higgins; David M. Richardson; Richard M. Cowling; Terry H. Trinder-Smith

1999-01-01

93

Genetic diversity assessment of summer squash landraces using molecular markers.  

PubMed

Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash. PMID:23666102

Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

2013-07-01

94

Plant species richness drives the density and diversity of Collembola in temperate grassland  

NASA Astrophysics Data System (ADS)

Declining biodiversity is one of the most important aspects of anthropogenic global change phenomena, but the implications of plant species loss for soil decomposers are little understood. We used the experimental grassland community of the Jena Experiment to assess the response of density and diversity of Collembola to varying plant species richness, plant functional group richness and plant functional group identity. We sampled the experimental plots in spring and autumn four years after establishment of the experimental plant communities. Collembola density and diversity significantly increased with plant species and plant functional group richness highlighting the importance of the singular hypothesis for soil invertebrates. Generally, grasses and legumes beneficially affected Collembola density and diversity, whereas effects of small herbs usually were detrimental. These impacts were largely consistent in spring and autumn. By contrast, in the presence of small herbs the density of hemiedaphic Collembola and the diversity of Isotomidae increased in spring whereas they decreased in autumn. Beneficial impacts of plant diversity as well as those of grasses and legumes were likely due to increased root and microbial biomass, and elevated quantity and quality of plant residues serving as food resources for Collembola. By contrast, beneficial impacts of small herbs in spring probably reflect differences in microclimatic conditions, and detrimental effects in autumn likely were due to low quantity and quality of resources. The results point to an intimate relationship between plants and the diversity of belowground biota, even at small spatial scales, contrasting the findings of previous studies. The pronounced response of soil animals in the present study was presumably due to the fact that plant communities had established over several years. As decomposer invertebrates significantly impact plant performance, changes in soil biota density and diversity are likely to have major feedbacks on plant community productivity and composition.

Sabais, Alexander C. W.; Scheu, Stefan; Eisenhauer, Nico

2011-05-01

95

Assessment of genetic diversity of sweet potato in Puerto Rico.  

PubMed

Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

2014-01-01

96

Assessment of Genetic Diversity of Sweet Potato in Puerto Rico  

PubMed Central

Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E.; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

2014-01-01

97

Power Plant Water Intake Assessment.  

ERIC Educational Resources Information Center

In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

Zeitoun, Ibrahim H.; And Others

1980-01-01

98

Phanerozoic land-plant diversity in north america.  

PubMed

A strong correlation exists between the outcrop area of nonmarine rocks deposited during a given geologic period and the observed vascular plant diversity for the same period; however, diversity residuals characteristic of certain periods may have underlying biological causes. Within-flora diversity changes through time indicate that stepwise increases in community species packing have accompanied major tracheophyte evolutionary innovations. Total and within-flora data suggest that the track of North American land-plant diversity has been similar in nature, but not in timing, to that inferred for marine invertebrates. PMID:17739300

Knoll, A H; Niklas, K J; Tiffney, B H

1979-12-21

99

Pathogens and insect herbivores drive rainforest plant diversity and composition.  

PubMed

Tropical forests are important reservoirs of biodiversity, but the processes that maintain this diversity remain poorly understood. The Janzen-Connell hypothesis suggests that specialized natural enemies such as insect herbivores and fungal pathogens maintain high diversity by elevating mortality when plant species occur at high density (negative density dependence; NDD). NDD has been detected widely in tropical forests, but the prediction that NDD caused by insects and pathogens has a community-wide role in maintaining tropical plant diversity remains untested. We show experimentally that changes in plant diversity and species composition are caused by fungal pathogens and insect herbivores. Effective plant species richness increased across the seed-to-seedling transition, corresponding to large changes in species composition. Treating seeds and young seedlings with fungicides significantly reduced the diversity of the seedling assemblage, consistent with the Janzen-Connell hypothesis. Although suppressing insect herbivores using insecticides did not alter species diversity, it greatly increased seedling recruitment and caused a marked shift in seedling species composition. Overall, seedling recruitment was significantly reduced at high conspecific seed densities and this NDD was greatest for the species that were most abundant as seeds. Suppressing fungi reduced the negative effects of density on recruitment, confirming that the diversity-enhancing effect of fungi is mediated by NDD. Our study provides an overall test of the Janzen-Connell hypothesis and demonstrates the crucial role that insects and pathogens have both in structuring tropical plant communities and in maintaining their remarkable diversity. PMID:24463522

Bagchi, Robert; Gallery, Rachel E; Gripenberg, Sofia; Gurr, Sarah J; Narayan, Lakshmi; Addis, Claire E; Freckleton, Robert P; Lewis, Owen T

2014-02-01

100

Positive interactions between herbivores and plant diversity shape forest regeneration.  

PubMed

The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity. PMID:24718763

Cook-Patton, Susan C; LaForgia, Marina; Parker, John D

2014-05-22

101

B Plant hazards assessment  

SciTech Connect

This document establishes the technical basis in support of Emergency Planning Activities for B Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific , Emergency Action Levels and the Emergency Planning Zone is demonstrated.

Broz, R.E.

1994-09-23

102

Plant molecular diversity and applications to genomics  

Microsoft Academic Search

Surveys of nucleotide diversity are beginning to show how genomes have been shaped by evolution. Nucleotide diversity is also being used to discover the function of genes through the mapping of quantitative trait loci (QTL) in structured populations, the positional cloning of strong QTL, and association mapping.

Edward S Buckler; Jeffry M Thornsberry

2002-01-01

103

Legume species differ in the responses of their functional traits to plant diversity.  

PubMed

Plants can respond to environmental impacts by variation in functional traits, thereby increasing their performance relative to neighbors. We hypothesized that trait adjustment should also occur in response to influences of the biotic environment, in particular different plant diversity of the community. We used 12 legume species as a model and assessed their variation in morphological, physiological, life-history and performance traits in experimental grasslands of different plant species (1, 2, 4, 8, 16 and 60) and functional group (1-4) numbers. Mean trait values and their variation in response to plant diversity varied among legume species and from trait to trait. The tall-growing Onobrychis viciifolia showed little trait variation in response to increasing plant diversity, whereas the species with shorter statures responded in apparently adaptive ways. The formation of longer shoots with elongated internodes, increased biomass allocation to supporting tissue at the cost of leaf mass, reduced branching, higher specific leaf areas and lower foliar ?(13)C values indicated increasing efforts for light acquisition in more diverse communities. Although leaf nitrogen concentrations and shoot biomass:nitrogen ratios were not affected by increasing plant diversity, foliar ?(15)N values of most legumes decreased and the application of the (15)N natural abundance method suggested that they became more reliant on symbiotic N(2) fixation. Some species formed fewer inflorescences and delayed flowering with increasing community diversity. The observed variation in functional traits generally indicated strategies of legumes to optimize light and nutrient capturing, but they were largely species-dependent and only partly attributable to increasing canopy height and community biomass with increasing plant diversity. Thus, the analysis of individual plant species and their adjustment to growth conditions in communities of increasing plant diversity is essential to get a deeper insight into the mechanisms behind biodiversity-ecosystem functioning relationships. PMID:20680645

Roscher, Christiane; Schmid, Bernhard; Buchmann, Nina; Weigelt, Alexandra; Schulze, Ernst-Detlef

2011-02-01

104

Soil microbes drive the classic plant diversity­ productivity pattern  

E-print Network

Ecosystem productivity commonly increases asymptotically with plant species diversity, and determining the mechanisms responsible for this well-known pattern is essential to predict potential changes in ecosystem productivity with ongoing species...

Schnitzer, Stefan A.; Klironomos, John N.; HilleRisLambers, Jannek; Kinkel, Linda L.; Reich, Peter B.; Xiao, Kun; Rillig, Matthias C.; Sikes, Benjamin A.; Callaway, Ragan M.; Mangan, Scott A.; van Nes, Egbert H.; Scheffer, Marten

2011-02-01

105

Plant diversity and arthropod communities: Implications for temperate agroforestry  

Microsoft Academic Search

Polyculture in crop agroecosystems has been examined in numerous studies with the aim of reducing pest populations by increasing\\u000a diversity among insect populations over those found in traditional monoculture. Resource concentration and enemies hypotheses\\u000a predict decreased pest populations in more diverse plant communities. Although results have been mixed, insect diversity has\\u000a been generally increased in polyculture over traditional monoculture. Maintaining

W. T. Stamps; M. J. Linit

1997-01-01

106

Detection and Diversity Assessment of Xylella fastidiosa in Field-Collected Plant and Insect Samples by Using 16S rRNA and gyrB Sequences  

PubMed Central

The causal agent of diseases in many economically important plants is attributed to the xylem-limited bacterium Xylella fastidiosa. The detection of this plant pathogen has been hampered due to its difficult isolation and slow growth on plates. Nearly complete nucleotide sequences of the 16S rRNA gene and partial sequences of the gyrB gene were determined for 18 strains of X. fastidiosa isolated from different plant hosts. A phylogenetic analysis, based on gyrB, grouped strains in three clusters; grape-isolated strains formed one cluster, citrus-coffee strains formed another cluster, and a third cluster resulted from all other strains. Primer pairs designed for the 16S rRNA and gyrB genes were extensively searched in databases to verify their in silico specificity. Primer pairs were certified with 30 target and 36 nontarget pure cultures of microorganisms, confirming 100% specificity. A multiplex PCR protocol was developed and its sensitivity tested. Sequencing of PCR products confirmed the validity of the multiplex PCR. Xylella fastidiosa was detected in field-collected plants, disease vector insects, and nonsymptomatic but infected plants. Specific detection of X. fastidiosa may facilitate the understanding of its ecological significance and prevention of spread of the disease. PMID:12839807

Rodrigues, Jorge L. M.; Silva-Stenico, M. E.; Gomes, J. E.; Lopes, J. R. S.; Tsai, S. M.

2003-01-01

107

Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.  

PubMed

Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning. PMID:25226237

Ebeling, Anne; Meyer, Sebastian T; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W

2014-01-01

108

Personality Assessment in a Diverse Urban Sample  

PubMed Central

The present research examined the data quality and replicability of the Revised NEO Personality Inventory (NEO-PI-R) factor structure in a sample that varied in ethnicity, socioeconomic status, and literacy. Participants (N=546), drawn from the Healthy Aging in Neighborhoods of Diversity across the Life Span study, were African American (58%) and White (42%) urban dwellers living above (49%) and below (51%) 125% of the federal poverty line. The NEO-PI-R, administered via telephone, was evaluated for data quality (percent valid, acquiescence, internal consistency), congruence with the normative factor structure, and readability. All indices of data quality and factor congruence were excellent in the full sample. Literacy was the most consistent predictor of data quality. A slightly worse structure was found for the Openness to Experience and Extraversion factors among lower SES African American and White participants. The overall index of factor congruence, however, supports replication of the normative structure well beyond chance levels even among those with lower literacy. Despite the challenges of low literacy, the present findings indicate that personality traits can be assessed reliably in socioeconomically diverse populations that include those living in poverty. PMID:23815114

Sutin, Angelina R.; Costa, Paul T.; Evans, Michele K.; Zonderman, Alan B.

2013-01-01

109

Plant Chitinases: Genetic Diversity and Physiological Roles  

Microsoft Academic Search

Chitinase proteins are widely distributed across diverse biological systems. Chitinases hydrolyze chitin, chitosan, lipochitooligosaccharides, peptidoglycan, arabinogalactan and glycoproteins containing N-acetylglucosamine. Analyses of genome-wide sequence and microarray expression profilings show that chitinase genes are represented by large families and the individual member genes are expressed in diverse conditions. Chitinase proteins are members in the group of the pathogenesis-related proteins that are

Anita Grover

2012-01-01

110

Plant genotypic diversity reduces the rate of consumer resource utilization  

PubMed Central

While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore—the Japanese beetle (Popillia japonica)—increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore. PMID:23658201

McArt, Scott H.; Thaler, Jennifer S.

2013-01-01

111

Severe plant invasions can increase mycorrhizal fungal abundance and diversity  

PubMed Central

Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

2013-01-01

112

Severe plant invasions can increase mycorrhizal fungal abundance and diversity.  

PubMed

Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)--but not cheatgrass (Bromus tectorum)--support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

2013-07-01

113

Environmental filtering explains variation in plant diversity along resource gradients.  

PubMed

The mechanisms that shape plant diversity along resource gradients remain unresolved because competing theories have been evaluated in isolation. By testing multiple theories simultaneously across a >2-million-year dune chronosequence in an Australian biodiversity hotspot, we show that variation in plant diversity is not explained by local resource heterogeneity, resource partitioning, nutrient stoichiometry, or soil fertility along this strong resource gradient. Rather, our results suggest that diversity is determined by environmental filtering from the regional flora, driven by soil acidification during long-term pedogenesis. This finding challenges the prevailing view that resource competition controls local plant diversity along resource gradients, and instead reflects processes shaping species pools over evolutionary time scales. PMID:25258078

Laliberté, Etienne; Zemunik, Graham; Turner, Benjamin L

2014-09-26

114

Evolution of sexThe evolution of plant sexual diversity  

Microsoft Academic Search

Charles Darwin recognized that flowering plants have an unrivalled diversity of sexual systems. Determining the ecological and genetic factors that govern sexual diversification in plants is today a central problem in evolutionary biology. The integration of phylogenetic, ecological and population-genetic studies have provided new insights into the selective mechanisms that are responsible for major evolutionary transitions between reproductive modes.

Spencer C. H. Barrett

2002-01-01

115

LETTER Diversity of plant evolutionary lineages promotes arthropod Russell Dinnage,1  

E-print Network

LETTER Diversity of plant evolutionary lineages promotes arthropod diversity Russell Dinnage,1 communities. Drawing on 11 years of data from a long-term plant diversity experi- ment, we show that evolutionary history of plant communities ­ measured as phylogenetic diversity ­ strongly predicts diversity

Haddad, Nick

116

High plant diversity in Eocene South America: Evidence from Patagonia  

USGS Publications Warehouse

Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude ???47??S, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

Wilf, P.; Cuneo, N.R.; Johnson, K.R.; Hicks, J.F.; Wing, S.L.; Obradovich, J.D.

2003-01-01

117

Increasing land-use intensity decreases floral colour diversity of plant communities in temperate grasslands.  

PubMed

To preserve biodiversity and ecosystem functions in a globally changing world it is crucial to understand the effect of land use on ecosystem processes such as pollination. Floral colouration is known to be central in plant-pollinator interactions. To date, it is still unknown whether land use affects the colouration of flowering plant communities. To assess the effect of land use on the diversity and composition of flower colours in temperate grasslands, we collected data on the number of flowering plant species, blossom cover and flower reflectance spectra from 69 plant communities in two German regions, Schwäbische Alb (SA) and Hainich-Dün (HD). We analysed reflectance data of flower colours as they are perceived by honeybees and studied floral colour diversity based upon spectral loci of each flowering plant species in the Maxwell triangle. Before the first mowing, flower colour diversity decreased with increasing land-use intensity in SA, accompanied by a shift of mean flower colours of communities towards an increasing proportion of white blossom cover in both regions. By changing colour characteristics of grasslands, we suggest that increasing land-use intensity can affect the flower visitor fauna in terms of visitor behaviour and diversity. These changes may in turn influence plant reproduction in grassland plant communities. Our results indicate that land use is likely to affect communication processes between plants and flower visitors by altering flower colour traits. PMID:23568710

Binkenstein, Julia; Renoult, Julien P; Schaefer, H Martin

2013-10-01

118

Native plant diversity increases herbivory to non-natives.  

PubMed

There is often an inverse relationship between the diversity of a plant community and the invasibility of that community by non-native plants. Native herbivores that colonize novel plants may contribute to diversity-invasibility relationships by limiting the relative success of non-native plants. Here, we show that, in large collections of non-native oak trees at sites across the USA, non-native oaks introduced to regions with greater oak species richness accumulated greater leaf damage than in regions with low oak richness. Underlying this trend was the ability of herbivores to exploit non-native plants that were close relatives to their native host. In diverse oak communities, non-native trees were on average more closely related to native trees and received greater leaf damage than those in depauperate oak communities. Because insect herbivores colonize non-native plants that are similar to their native hosts, in communities with greater native plant diversity, non-natives experience greater herbivory. PMID:25232143

Pearse, Ian S; Hipp, Andrew L

2014-11-01

119

Biology 2004: Diversity II Microorganisms and Plants  

E-print Network

concentration, which lead to further diversification of the organisms living at the time. Plants also form as an image bank of microbial eukaryotes. These resources will serve as an important complement to (but

Adl, Sina

120

Assessment of molecular diversity and population structure of the Ethiopian sorghum [Sorghum bicolor L. (Moench)] germplasm collection maintained by the USDA-ARS National Plant Germplasm System using SSR markers  

Technology Transfer Automated Retrieval System (TEKTRAN)

The genetic diversity and population structure present in the Ethiopian sorghum collection maintained at the USDA-ARS National Plant Germplasm System (NPGS) has not been studied. In addition, 83% of the accessions in the Ethiopian collection lack passport information which has constrained their eval...

121

Earthworm and belowground competition effects on plant productivity in a plant diversity gradient.  

PubMed

Diversity is one major factor driving plant productivity in temperate grasslands. Although decomposers like earthworms are known to affect plant productivity, interacting effects of plant diversity and earthworms on plant productivity have been neglected in field studies. We investigated in the field the effects of earthworms on plant productivity, their interaction with plant species and functional group richness, and their effects on belowground plant competition. In the framework of the Jena Experiment we determined plant community productivity (in 2004 and 2007) and performance of two phytometer plant species [Centaurea jacea (herb) and Lolium perenne (grass); in 2007 and 2008] in a plant species (from one to 16) and functional group richness gradient (from one to four). We sampled earthworm subplots and subplots with decreased earthworm density and reduced aboveground competition of phytometer plants by removing the shoot biomass of the resident plant community. Earthworms increased total plant community productivity (+11%), legume shoot biomass (+35%) and shoot biomass of the phytometer C. jacea (+21%). Further, phytometer performance decreased, i.e. belowground competition increased, with increasing plant species and functional group richness. Although single plant functional groups benefited from higher earthworm numbers, the effects did not vary with plant species and functional group richness. The present study indicates that earthworms indeed affect the productivity of semi-natural grasslands irrespective of the diversity of the plant community. Belowground competition increased with increasing plant species diversity. However, belowground competition was modified by earthworms as reflected by increased productivity of the phytometer C. jacea. Moreover, particularly legumes benefited from earthworm presence. Considering also previous studies, we suggest that earthworms and legumes form a loose mutualistic relationship affecting essential ecosystem functions in temperate grasslands, in particular decomposition and plant productivity. Further, earthworms likely alter competitive interactions among plants and the structure of plant communities by beneficially affecting certain plant functional groups. PMID:19526252

Eisenhauer, Nico; Milcu, Alexandru; Nitschke, Norma; Sabais, Alexander C W; Scherber, Christoph; Scheu, Stefan

2009-08-01

122

Putting the Plants Back into Plant Ecology: Six Pragmatic Models for Understanding and Conserving Plant Diversity  

PubMed Central

• Background There is a compelling need to protect natural plant communities and restore them in degraded landscapes. Activities must be guided by sound scientific principles, practical conservation tools, and clear priorities. With perhaps one-third of the world's flora facing extinction, scientists and conservation managers will need to work rapidly and collaboratively, recognizing each other's strengths and limitations. As a guide to assist managers in maintaining plant diversity, six pragmatic models are introduced that are already available. Although theoretical models continue to receive far more space and headlines in scientific journals, more managers need to understand that pragmatic, rather than theoretical, models have the most promise for yielding results that can be applied immediately to plant communities. • Six Pragmatic Models For each model, key citations and an array of examples are provided, with particular emphasis on wetlands, since ‘wet and wild’ was my assigned theme for the Botanical Society of America in 2003. My own work may seem rather prominent, but the application and refinement of these models has been a theme for me and my many students over decades. The following models are reviewed: (1) species–area: larger areas usually contain more species; (2) species–biomass: plant diversity is maximized at intermediate levels of biomass; (3) centrifugal organization: multiple intersecting environmental gradients maintain regional landscape biodiversity; (4) species–frequency: a few species are frequent while most are infrequent; (5) competitive hierarchies: in the absence of constraints, large canopy-forming species dominate patches of landscape, reducing biological diversity; and (6) intermediate disturbance: perturbations such as water level fluctuations, fire and grazing are essential for maintaining plant diversity. • Conclusions The good news is that managers faced with protecting or restoring landscapes already have this arsenal of tools at their disposal. The bad news is that far too few of these models are appreciated. PMID:15944176

KEDDY, PAUL

2005-01-01

123

Changes in microbial heterotrophic diversity along five plant successional sequences  

Microsoft Academic Search

Little is known about the changes in microbial diversity associated with ecosystem development. We measured microbial heterotrophic evenness (a component of diversity) and other soil\\/humus properties (including basal respiration, substrate-induced respiration, pH, total C, N and P) at different stages in the development of five different ecosystems, with plant assemblages being used to define the phase in the successional sequence.

L. A Schipper; B. P Degens; G. P Sparling; L. C Duncan

2001-01-01

124

Herbivores and nutrients control grassland plant diversity via light limitation  

USGS Publications Warehouse

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen I.; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

2014-01-01

125

Analysis of plant diversity with retrotransposon-based molecular markers  

PubMed Central

Retrotransposons are both major generators of genetic diversity and tools for detecting the genomic changes associated with their activity because they create large and stable insertions in the genome. After the demonstration that retrotransposons are ubiquitous, active and abundant in plant genomes, various marker systems were developed to exploit polymorphisms in retrotransposon insertion patterns. These have found applications ranging from the mapping of genes responsible for particular traits and the management of backcrossing programs to analysis of population structure and diversity of wild species. This review provides an insight into the spectrum of retrotransposon-based marker systems developed for plant species and evaluates the contributions of retrotransposon markers to the analysis of population diversity in plants. PMID:20683483

Kalendar, R; Flavell, A J; Ellis, T H N; Sjakste, T; Moisy, C; Schulman, A H

2011-01-01

126

Herbivores and nutrients control grassland plant diversity via light limitation.  

PubMed

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light. PMID:24670649

Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H

2014-04-24

127

Exotic Plant Species Invade Hot Spots of Native Plant Diversity  

Microsoft Academic Search

Some theories and experimental studies suggest that areas of low plant spe- cies richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in

Thomas J. Stohlgren; Dan Binkley; Geneva W. Chong; Mohammed A. Kalkhan; Lisa D. Schell; Kelly A. Bull; Yuka Otsuki; Gregory Newman; Michael Bashkin; Yowhan Son

1999-01-01

128

Nematicide impacts on nematodes and feedbacks on plant productivity in a plant diversity gradient  

NASA Astrophysics Data System (ADS)

A major issue in current ecological research is the effect of biodiversity on ecosystem functioning. Although several studies reported a positive diversity - productivity relationship, the role of soil animals has been largely neglected. Nematodes are among the most widespread and important herbivores causing substantial yield losses in agriculture; however, impacts of nematodes on the diversity - productivity relationship in semi-natural plant communities have not been investigated until today. In the framework of the Jena Experiment (Thuringia, Germany) we established control and nematicide treated subplots to manipulate nematode densities on plots varying in plant species (1-16) and functional group richness (1-4). We explored the interacting effects of nematicide application and plant diversity on the main trophic groups of nematodes and on aboveground plant productivity. Nematicide application reduced the number of nematodes significantly, particularly that of plant feeders and predators. The negative impact of nematicide application on plant and bacterial feeders depended however on the diversity of the plant community. Total plant shoot biomass tended to decrease in the presence of ambient nematode densities. In detail, nematode effects varied however with plant functional group identity by reducing only the shoot biomass of herbs significantly but not that of legumes. Furthermore, the shoot biomass of grasses tended to decrease in the presence of ambient nematode densities. In contrast to total shoot biomass, nematodes decreased grass shoot biomass only in high diverse but not in low diverse plant communities. Thus, the present study for the first time highlights that nematodes likely modify the community structure und functions of semi-natural plant communities by altering the competition between plant functional groups and by attenuating the diversity - productivity relationship.

Eisenhauer, Nico; Ackermann, Michael; Gass, Svenja; Klier, Matthias; Migunova, Varvara; Nitschke, Norma; Ruess, Liliane; Sabais, Alexander C. W.; Weisser, Wolfgang W.; Scheu, Stefan

2010-09-01

129

Plant-plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies  

PubMed Central

Previous syntheses on the effects of environmental conditions on the outcome of plant-plant interactions summarize results from pairwise studies. However, the upscaling to the community-level of such studies is problematic because of the existence of multiple species assemblages and species-specific responses to both the environmental conditions and the presence of neighbors. We conducted the first global synthesis of community-level studies from harsh environments, which included data from 71 alpine and 137 dryland communities. Here we: i) test how important are facilitative interactions as a driver of community structure, ii) evaluate whether the frequency of positive plant-plant interactions across differing environmental conditions and habitats is predictable, and iii) assess whether thresholds in the response of plant-plant interactions to environmental gradients exists between “moderate” and “extreme” stress levels. We also used those community-level studies performed across gradients of at least three points to evaluate how the average environmental conditions, the length of the gradient studied, and the number of points sampled across such gradient affect the form and strength of the facilitation-environment relationship. Over 25% of the species present were more spatially associated to nurse plants than expected by chance in both alpine and dryland areas, illustrating the high importance of positive plant-plant interactions for the maintenance of plant diversity. Facilitative interactions were more frequent, and more related to environmental conditions, in alpine than in dryland areas, perhaps because drylands are generally characterized by a larger variety of environmental stress factors and plant functional traits. The frequency of facilitative interactions in alpine communities peaked at 1000 mm of annual rainfall, and globally decreased with elevation. The frequency of positive interactions in dryland communities decreased globally with water scarcity or temperature annual range. Positive facilitation-drought stress relationships are more likely in shorter regional gradients, but these relationships are obscured in regions with a greater species turnover or with complex environmental gradients. By showing the different climatic drivers and behaviors of plant-plant interactions in dryland and alpine areas, our results will improve predictions regarding the effect of facilitation on the assembly of plant communities and their response to changes in environmental conditions.

Soliveres, Santiago; Maestre, Fernando T.

2015-01-01

130

Additive Partitioning of Diversity Reveals No Scale-dependent Impacts of Large Ungulates on the Structure of Tundra Plant Communities  

Microsoft Academic Search

Large herbivores can change ecosystem functioning by impacting plant diversity. However, although such impacts are expected\\u000a to be scale-dependent in ecosystems with wide-roaming ungulates, scaling issues rarely enter empirical assessments. We here\\u000a test the hypothesis that the impact of increased reindeer abundance on plant diversity in alpine tundra is scale-dependent.\\u000a Based on potentially high productivity of the focal habitat units

V. T. Ravolainen; N. G. Yoccoz; K. A. Bråthen; R. A. Ims; M. Iversen; V. T. González

2010-01-01

131

DNA diversity in Hawaiian endemic plant Schiedea globosa  

Microsoft Academic Search

This is the first report of a study devoted to the population genetics of speciation in the endemic Hawaiian plant genus Schiedea (Caryophyllaceae). Here, we report the estimates of DNA sequence diversity and divergence in a newly isolated nuclear gene from Maui and Oahu Schiedea globosa populations. Overall, the species-wide average heterozygosity per silent site is ?=0.3%. The silent DNA

D A Filatov; S Burke

2004-01-01

132

PLANT SPECIES DIVERSITY, ECOSYSTEM FUNCTION, AND PASTURE MANAGEMENT  

Technology Transfer Automated Retrieval System (TEKTRAN)

Grassland farmers face new challenges in pasture management including improving sustainability, reducing inputs of fertilizers and pesticides, and protecting soil resources. Managing plant diversity within and among pastures may be one tool to aid producers in meeting these new challenges. Pasture e...

133

Grazing Intensity Does Not Affect Plant Diversity in Shortgrass Steppe  

Technology Transfer Automated Retrieval System (TEKTRAN)

Responses of livestock gain and forage production to grazing intensity in shortgrass steppe are well-established, but effects on basal cover and plant diversity are less so. A long-term grazing intensity study was initiated on shortgrass steppe at the Central Plains Experimental Range (USDA-Agricult...

134

PLANT DIVERSITY OF THE CAPE REGION OF SOUTHERN AFRICA  

Microsoft Academic Search

ABSTRACT Comprising a land area of ca. 90,000 km,, less than one twentieth (5%) the land area of the southern African subcontinent, the Cape Floristic Region (CFR) is, for its size, one of the world’s richest areas of plant species diversity. A new synoptic flora for the Region has made possible an accurate reassessment of the flora, which has an

Peter Goldblatt; John C. Manning

135

THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY  

EPA Science Inventory

Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

136

Genetic diversity and distinctiveness in Scottish alpine plants  

Microsoft Academic Search

Background: Many alpine plants are rare in Scotland. Their persistence depends on their ability to withstand habitat fragmentation and loss due to changes in land use, increased grazing pressure, and climate change.Aims: We use a phylogeographic approach to address the origin and genetic diversity of Scottish populations, which is relevant for their future management and protection.Methods: We review phylogeographic studies

Kristine B. Westergaard; Inger G. Alsos; Dorothee Ehrich; Pernille B. Eidesen; Peter M. Hollingsworth; Christian Brochmann

2008-01-01

137

Effects of elevated CO2 , nitrogen deposition, and decreased species diversity on foliar fungal plant disease  

E-print Network

of the plant community in one year of a factorial grassland experiment. Decreased plant diversity had the broadest effect, increasing pathogen load across the plant community. Decreased diversity increased foliar fungal disease. Decreased plant diversity further magnified the increase in C3 grass pathogen load

Crews, Stephen

138

Arctic plant diversity in the Early Eocene greenhouse  

PubMed Central

For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610

Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard

2012-01-01

139

FIRE AND GRAZING IMPACTS ON PLANT DIVERSITY AND ALIEN PLANT INVASIONS IN THE SOUTHERN SIERRA NEVADA  

Microsoft Academic Search

Patterns of native and alien plant diversity in response to disturbance were examined along an elevational gradient in blue oak savanna, chaparral, and coniferous forests. Total species richness, alien species richness, and alien cover declined with ele- vation, at scales from 1 to 1000 m2. We found no support for the hypothesis that community diversity inhibits alien invasion. At the

Jon E. Keeley; Daniel Lubin; C. J. Fotheringham

2003-01-01

140

Understanding local and regional plant diversity: species pools, species saturation, and the multi-scalar effects of plant productivity  

E-print Network

Understanding local and regional plant diversity: species pools, species saturation, and the multi ABSTRACT Joel M. Gramling: Understanding local and regional plant diversity: species pools, species) The different patterns of plant species diversity that occur at local to regional scales are examined across

Peet, Robert K.

141

Plant diversity, herbivory and resistance of a plant community to invasion in Mediterranean annual communities  

Microsoft Academic Search

Several components of the diversity of plant communities, such as species richness, species composition, number of functional groups and functional composition, have been shown to directly affect the performance of exotic species. Exotics can also be affected by herbivores of the native plant community. However, these two possible mechanisms limiting invasion have never been investigated together. The aim of this

Anne-Hélène Prieur-Richard; Sandra Lavorel; Yan B. Linhart; Anabelle Dos Santos

2002-01-01

142

Plant Genotypic Diversity Predicts Community Structure and Governs an Ecosystem Process  

Microsoft Academic Search

Theory predicts, and recent empirical studies have shown, that the diversity of plant species determines the diversity of associated herbivores and mediates ecosystem processes, such as aboveground net primary productivity (ANPP). However, an often-overlooked component of plant diversity, namely population genotypic diversity, may also have wide-ranging effects on community structure and ecosystem processes. We showed experimentally that increasing population genotypic

Gregory M. Crutsinger; Michael D. Collins; James A. Fordyce; Zachariah Gompert; Chris C. Nice; Nathan J. Sanders

2006-01-01

143

Using a diverse seed mix to establish native plants on a Sonoran Desert burn  

Microsoft Academic Search

Revegetating burns is a major challenge facing resource managers in the low- and unpredictable-precipitation deserts of the southwestern US. We monitored the effectiveness of using a diverse, 28-species seed mix for establishing native plants on a 1.5-ha (3.7-ac) burn in the northern Sonoran Desert. Our objective was to compare species performances, which we assessed by measuring species frequencies and cover

2009-01-01

144

Using Plant Functional Traits to Explain Diversity–Productivity Relationships  

PubMed Central

Background The different hypotheses proposed to explain positive species richness–productivity relationships, i.e. selection effect and complementarity effect, imply that plant functional characteristics are at the core of a mechanistic understanding of biodiversity effects. Methodology/Principal Findings We used two community-wide measures of plant functional composition, (1) community-weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to predict biomass production and measures of biodiversity effects in experimental grasslands (Jena Experiment) with different species richness (2, 4, 8, 16 and 60) and different functional group number and composition (1 to 4; legumes, grasses, small herbs, tall herbs) four years after establishment. Functional trait composition had a larger predictive power for community biomass and measures of biodiversitity effects (40–82% of explained variation) than species richness per se (<1–13% of explained variation). CWM explained a larger amount of variation in community biomass (80%) and net biodiversity effects (70%) than FDQ (36 and 38% of explained variation respectively). FDQ explained similar proportions of variation in complementarity effects (24%, positive relationship) and selection effects (28%, negative relationship) as CWM (27% of explained variation for both complementarity and selection effects), but for all response variables the combination of CWM and FDQ led to significant model improvement compared to a separate consideration of different components of functional trait composition. Effects of FDQ were mainly attributable to diversity in nutrient acquisition and life-history strategies. The large spectrum of traits contributing to positive effects of CWM on biomass production and net biodiversity effects indicated that effects of dominant species were associated with different trait combinations. Conclusions/Significance Our results suggest that the identification of relevant traits and the relative impacts of functional identity of dominant species and functional diversity are essential for a mechanistic understanding of the role of plant diversity for ecosystem processes such as aboveground biomass production. PMID:22623961

Roscher, Christiane; Schumacher, Jens; Gubsch, Marlén; Lipowsky, Annett; Weigelt, Alexandra; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef

2012-01-01

145

United in Diversity: Mechanosensitive Ion Channels in Plants.  

PubMed

Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MSion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. Expected final online publication date for the Annual Review of Plant Biology Volume 66 is April 29, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates. PMID:25494462

Hamilton, Eric S; Schlegel, Angela M; Haswell, Elizabeth S

2014-12-01

146

The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.  

PubMed

Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome. PMID:24391634

Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

2013-01-01

147

Vole disturbances and plant diversity in a grassland metacommunity.  

PubMed

We studied the disturbance associated with prairie vole burrows and its effects on grassland plant diversity at the patch (1 m(2)) and metacommunity (>5 ha) scales. We expected vole burrows to increase patch-scale plant species diversity by locally reducing competition for resources or creating niche opportunities that increase the presence of fugitive species. At the metacommunity scale, we expected burrows to increase resource heterogeneity and have a community composition distinct from the matrix. We measured resource variables and plant community composition in 30 paired plots representing disturbed burrows and undisturbed matrix patches in a cool-season grassland. Vole disturbance affected the mean values of nine resource variables measured and contributed more to resource heterogeneity in the metacommunity than matrix plots. Disturbance increased local plant species richness, metacommunity evenness, and the presence and abundance of fugitive species. To learn more about the contribution of burrow and matrix habitats to metacommunity diversity, we compared community similarity among burrow and matrix plots. Using Sorenson's similarity index, which considers only presence-absence data, we found no difference in community similarity among burrows and matrix plots. Using a proportional similarity index, which considers both presence-absence and relative abundance data, we found low community similarity among burrows. Burrows appeared to shift the identity of dominant species away from the species dominant in the matrix. They also allowed subordinate species to persist in higher abundances. The patterns we observed are consistent with several diversity-maintaining mechanisms, including a successional mosaic and alternative successional trajectories. We also found evidence that prairie voles may be ecosystem engineers. PMID:17440750

Questad, Erin J; Foster, Bryan L

2007-08-01

148

Soil fungal pathogens and the relationship between plant diversity and productivity  

E-print Network

LETTER Soil fungal pathogens and the relationship between plant diversity and productivity John L community productivity often increases with increasing plant diversity. Most frequently, resource- based whether suppression of plant productivity by soil fungal pathogens might also drive a positive diversity

Cleveland, Cory

149

Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands  

Microsoft Academic Search

We studied the effects of plant diversity on abundance of invertebrate herbivores, parasitoids and predators in two grassland communities (one in Switzerland and one in Sweden) in which plant species richness and functional diversity have been experimentally manipulated. Among herbivores, the abundance of only the most sessile and specialised groups (leafhoppers and wingless aphids) was affected by plant diversity. At

Julia Koricheva; Christa P. H. Mulder; Bernhard Schmid; Jasmin Joshi; Kerstin Huss-Danell

2000-01-01

150

Plant diversity and the stability of foodwebs Nick M. Haddad,1  

E-print Network

LETTER Plant diversity and the stability of foodwebs Nick M. Haddad,1 * Gregory M. Crutsinger,2 monocultures led Charles Elton to propose, a half-century ago, that higher plant diversity stabilized animal in a long-term experimental manipulation of grassland plant species diversity. Over the course of a decade

Haddad, Nick

151

Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants  

E-print Network

Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants plants are actually functionally diverse, and whether this diversity is linked to ecological'Architecture des Plantes, CIRAD ­ TA A51 / PS2 Boulevard de la Lironde, F-34398 Montpellier cedex 5, France; 2 INRA

Forterre, Yoël

152

The UC Davis Center for Plant Diversity Presents Volunteer Sunday Afternoons 2012-2013  

E-print Network

The UC Davis Center for Plant Diversity Presents Volunteer Sunday Afternoons 2012-2013 October 28 Come to the Center for Plant Diversity one Sunday afternoon this fall/winter. Parking is free, the Center for Plant Diversity may be a good place for you to volunteer a few hours. We have many different

Ferrara, Katherine W.

153

The UC Davis Center for Plant Diversity Presents Volunteer Sunday Afternoons 2013-2014  

E-print Network

The UC Davis Center for Plant Diversity Presents Volunteer Sunday Afternoons 2013-2014 October 27 Come to the Center for Plant Diversity one Sunday afternoon this fall/winter. Parking is free, the Center for Plant Diversity may be a good place for you to volunteer a few hours. We have many different

Schladow, S. Geoffrey

154

Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity  

E-print Network

Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity Gregory genotypes m(2 and measured both host-plant and arthropod responses to genotypic diversity throughout of the arthropod community, we detected consistent positive responses of arthropod diversity to host- plant

Fordyce, James

155

Herbivores and nutrients control grassland plant diversity via light limitation.  

SciTech Connect

Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

Borer, Elizabeth T. [Department of Ecology, Evolution, and Behavior, University of Minnesota; et al, et al

2014-01-01

156

Does native invertebrate diversity reflect native plant diversity? A case study from New Zealand and implications for conservation  

Microsoft Academic Search

An underlying assumption of ecological surveys which use rapid inventory techniques is that native invertebrate diversity will be reflected by native plant diversity. This supposition was tested by collecting Coleoptera from seven different habitats, which varied in the proportions of native and introduced plant species found within them. Pitfall traps were used to collect the beetles from a catchment on

Philippa N. Crisp; K. J. M. Dickinson; G. W. Gibbs

1998-01-01

157

Macroevolution and the biological diversity of plants and herbivores  

PubMed Central

Terrestrial biodiversity is dominated by plants and the herbivores that consume them, and they are one of the major conduits of energy flow up to higher trophic levels. Here, we address the processes that have generated the spectacular diversity of flowering plants (>300,000 species) and insect herbivores (likely >1 million species). Long-standing macroevolutionary hypotheses have postulated that reciprocal evolution of adaptations and subsequent bursts of speciation have given rise to much of this biodiversity. We critically evaluate various predictions based on this coevolutionary theory. Phylogenetic reconstruction of ancestral states has revealed evidence for escalation in the potency or variety of plant lineages' chemical defenses; however, escalation of defense has been moderated by tradeoffs and alternative strategies (e.g., tolerance or defense by biotic agents). There is still surprisingly scant evidence that novel defense traits reduce herbivory and that such evolutionary novelty spurs diversification. Consistent with the coevolutionary hypothesis, there is some evidence that diversification of herbivores has lagged behind, but has nevertheless been temporally correlated with that of their host-plant clades, indicating colonization and radiation of insects on diversifying plants. However, there is still limited support for the role of host-plant shifts in insect diversification. Finally, a frontier area of research, and a general conclusion of our review, is that community ecology and the long-term evolutionary history of plant and insect diversification are inexorably intertwined. PMID:19815508

Futuyma, Douglas J.; Agrawal, Anurag A.

2009-01-01

158

Maintenance of genetic diversity through plant-herbivore interactions  

PubMed Central

Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to address this hypothesis. Population genomic studies of Arabidopsis thaliana and its relatives suggest spatial variation in herbivory maintains adaptive genetic variation controlling defense phenotypes, both within and among populations. Conversely, inter-species variation in plant defenses promotes adaptive genetic variation in herbivores. Emerging genomic model herbivores of Arabidopsis could illuminate how genetic variation in herbivores and plants interact simultaneously. PMID:23834766

Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.

2013-01-01

159

Nova Acta Leopoldina NF 92, Nr. 342, 6183 (2005) Global Centers of Vascular Plant Diversity  

E-print Network

Nova Acta Leopoldina NF 92, Nr. 342, 61­83 (2005) Global Centers of Vascular Plant Diversity) With 2 Figures and 1 Table Abstract The diversity of vascular plants is very unevenly distributed across.2 % of all vascular plant species. A world map of vascular plant richness is presented based

Kreft, Holger

2005-01-01

160

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-print Network

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California power plants and other industrial facilities that withdraw cooling water from surface water bodies regulated under Section 316(b), steam electric power plants represent the largest cooling water volumes

161

Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal  

NASA Astrophysics Data System (ADS)

Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.

Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís

2010-03-01

162

Plant traits mediate consumer and nutrient control on plant community productivity and diversity.  

PubMed

The interactive effects of consumers and nutrients on terrestrial plant communities, and the role of plant functional traits in mediating these responses, are poorly known. We carried out a six-year full-factorial field experiment using mammalian herbivore exclusion and fertilization in two habitat types (fertile and infertile alpine tundra heaths) that differed in plant functional traits related to resource acquisition and palatability. Infertile habitats were dominated by species with traits indicative of a slow-growing strategy: high C:N ratio, low specific leaf area, and high condensed tannins. We found that herbivory counteracted the effect of fertilization on biomass, and that this response differed between the two habitats and was correlated with plant functional traits. Live biomass dominated the treatment responses in infertile habitats, whereas litter accumulation dominated the treatment responses in fertile habitats and was strongly negatively associated with resident community tannin concentration. Species richness declined under herbivore exclusion and fertilization in fertile habitats, where litter accumulation was greatest. Community means of plant C:N ratio predicted treatment effects on diversity: fertilization decreased and herbivory increased dominance in communities originally dominated by plants with high C:N, while fertilization increased and herbivory diminished dominance in communities where low C:N species were abundant. Our results highlight the close interdependence between consumer effects, soil nutrients, and plant functional traits and suggest that plant traits may provide an improved understanding of how consumers and nutrients influence plant community productivity and diversity. PMID:23431600

Eskelinen, Anu; Harrison, Susan; Tuomi, Maria

2012-12-01

163

Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family.  

PubMed

Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications. PMID:24912659

Soltani, Jalal; Moghaddam, Mahdieh S Hosseyni

2014-09-01

164

Assessment of Genetic Diversity of Sweet Potato in Puerto Rico  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

165

Assessment of a Diversity Assignment in a PR Principles Course  

ERIC Educational Resources Information Center

This study assesses an assignment for incorporating diversity into the principles of public relations course. The assignment is tailored to the challenges of using an active learning approach in a large lecture class. For the assignment, students write a goal, objectives, strategies, an identification of tactics, and evaluation plans for either…

Gallicano, Tiffany Derville; Stansberry, Kathleen

2012-01-01

166

Diversity, classification and function of the plant protein kinase superfamily  

PubMed Central

Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

Lehti-Shiu, Melissa D.; Shiu, Shin-Han

2012-01-01

167

How generalist herbivores exploit belowground plant diversity in temperate grasslands.  

PubMed

Belowground herbivores impact plant performance, thereby inducing changes in plant community composition, which potentially leads to cascading effects onto higher trophic levels and ecosystem processes and productivity. Among soil-living insects, external root-chewing generalist herbivores have the strongest impact on plants. However, the lack of knowledge on their feeding behaviour under field conditions considerably hampers achieving a comprehensive understanding of how they affect plant communities. Here, we address this gap of knowledge by investigating the feeding behaviour of Agriotes click beetle larvae, which are common generalist external root-chewers in temperate grassland soils. Utilizing diagnostic multiplex PCR to assess the larval diet, we examined the seasonal patterns in feeding activity, putative preferences for specific plant taxa, and whether species identity and larval instar affect food choices of the herbivores. Contrary to our hypothesis, most of the larvae were feeding-active throughout the entire vegetation period, indicating that the grassland plants are subjected to constant belowground feeding pressure. Feeding was selective, with members of Plantaginaceae and Asteraceae being preferred; Apiaceae were avoided. Poaceae, although assumed to be most preferred, had an intermediate position. The food preferences exhibited seasonal changes, indicating a fluctuation in plant traits important for wireworm feeding choice. Species- and instar-specific differences in dietary choice of the Agriotes larvae were small, suggesting that species and larval instars occupy the same trophic niche. According to the current findings, the food choice of these larvae is primarily driven by plant identity, exhibiting seasonal changes. This needs to be considered when analysing soil herbivore-plant interactions. PMID:24188592

Wallinger, Corinna; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Juen, Anita; Traugott, Michael

2014-08-01

168

How generalist herbivores exploit belowground plant diversity in temperate grasslands  

PubMed Central

Belowground herbivores impact plant performance, thereby inducing changes in plant community composition, which potentially leads to cascading effects onto higher trophic levels and ecosystem processes and productivity. Among soil-living insects, external root-chewing generalist herbivores have the strongest impact on plants. However, the lack of knowledge on their feeding behaviour under field conditions considerably hampers achieving a comprehensive understanding of how they affect plant communities. Here, we address this gap of knowledge by investigating the feeding behaviour of Agriotes click beetle larvae, which are common generalist external root-chewers in temperate grassland soils. Utilizing diagnostic multiplex PCR to assess the larval diet, we examined the seasonal patterns in feeding activity, putative preferences for specific plant taxa, and whether species identity and larval instar affect food choices of the herbivores. Contrary to our hypothesis, most of the larvae were feeding-active throughout the entire vegetation period, indicating that the grassland plants are subjected to constant belowground feeding pressure. Feeding was selective, with members of Plantaginaceae and Asteraceae being preferred; Apiaceae were avoided. Poaceae, although assumed to be most preferred, had an intermediate position. The food preferences exhibited seasonal changes, indicating a fluctuation in plant traits important for wireworm feeding choice. Species- and instar-specific differences in dietary choice of the Agriotes larvae were small, suggesting that species and larval instars occupy the same trophic niche. According to the current findings, the food choice of these larvae is primarily driven by plant identity, exhibiting seasonal changes. This needs to be considered when analysing soil herbivore–plant interactions. PMID:24188592

Wallinger, Corinna; Staudacher, Karin; Schallhart, Nikolaus; Mitterrutzner, Evi; Steiner, Eva-Maria; Juen, Anita; Traugott, Michael

2014-01-01

169

Root diversity in alpine plants: root length, tensile strength and plant age  

NASA Astrophysics Data System (ADS)

A high diversity of plant species and functional groups is hypothesised to increase the diversity of root types and their subsequent effects for soil stability. However, even basic data on root characteristics of alpine plants are very scarce. Therefore, we determined important root characteristics of 13 plant species from different functional groups, i.e. grasses, herbs and shrubs. We excavated the whole root systems of 62 plants from a machine-graded ski slope at 2625 m a.s.l. and analysed the rooting depth, the horizontal root extension, root length and diameter. Single roots of plant species were tested for tensile strength. The age of herbs and shrubs was determined by growth-ring analysis. Root characteristics varied considerably between both plant species and functional groups. The rooting depth of different species ranged from 7.2 ± 0.97 cm to 20.5 ± 2.33 cm, but was significantly larger in the herb Geum reptans (70.8 ± 10.75 cm). The woody species Salix breviserrata reached the highest horizontal root extensions (96.8 ± 25.5 cm). Most plants had their longest roots in fine diameter classes (0.5

Pohl, M.; Stroude, R.; Körner, C.; Buttler, A.; Rixen, C.

2009-04-01

170

Article original tude de l'effet de diverses espces de plantes  

E-print Network

Article original Étude de l'effet de diverses espèces de plantes des prairies permanentes sur l, rapide et répétable a été mise au point pour estimer le potentiel de diverses espèces de plantes des constituants pariétaux sous l'action de la cellulase. La détermination de l'IANP pour de nombreuses plantes des

Paris-Sud XI, Université de

171

UC Davis Center For Plant Diversity And The Davis Botanical Society  

E-print Network

UC Davis Center For Plant Diversity And The Davis Botanical Society Invite you to: A Celebration Center for Plant Diversity, 1026 Sciences Laboratory Building, UC Davis Campus WHY: Winter quarter with an interest in plants WHAT: light refreshments and good company with a display relating to the history

Ferrara, Katherine W.

172

Genomic diversity of Pseudomonas spp. isolated from aerial or root surfaces of plants  

Technology Transfer Automated Retrieval System (TEKTRAN)

Among the diverse strains of Pseudomonas fluorescens and Pseudomonas chlororaphis inhabiting plant surfaces are those that protect plants from infection by pathogens. To explore the diversity of these bacteria, we derived genomic sequences of seven strains that suppress plant disease. Along with t...

173

Floral colour diversity in plant communities, bee colour space and a null model  

PubMed Central

Evolutionary biologists have long hypothesized that the diversity of flower colours we see is in part a strategy to promote memorization by pollinators, pollinator constancy, and therefore, a directed and efficient pollen transfer between plants. However, this hypothesis has never been tested against a biologically realistic null model, nor were colours assessed in the way pollinators see them. Our intent here is to fill these gaps. Throughout one year, we sampled floral species compositions at five ecologically distinct sites near Berlin, Germany. Bee-subjective colours were quantified for all 168 species. A model of colour vision was used to predict how similar the colours of sympatric and simultaneously blooming flowers were for bees. We then compared flower colour differences in the real habitats with those of random plant communities. We did not find pronounced deviations from chance when we considered common plants. When we examined rare plants, however, we found significant divergence in two of the five plant communities. At one site, similarly coloured species were found to be more frequent than expected, and at the other two locations, flower colours were indistinguishable from a random distribution. These results fit theoretical considerations that rare plants are under stronger selective pressure to secure pollination than common plants. Our study illustrates the power of linking such distinct biological traditions as community ecology and the neuroethology of bee vision.

Gumbert, A.; Kunze, J.; Chittka, L.

1999-01-01

174

Diversity and use of ethno-medicinal plants in the region of Swat, North Pakistan  

PubMed Central

Background Due to its diverse geographical and habitat conditions, northern Pakistan harbors a wealth of medicinal plants. The plants and their traditional use are part of the natural and cultural heritage of the region. This study was carried out to document which medicinal plant species and which plant parts are used in the region of Swat, which syndrome categories are particularly concerned, and which habitat spectrum is frequented by collectors. Finally, we assessed to which extent medicinal plants are vulnerable due to collection and habitat destruction. Methods An ethnobotanical survey was undertaken in the Miandam area of Swat, North Pakistan. Data were collected through field assessment as well as from traditional healers and locals by means of personal interviews and semi-structured questionnaires. Results A total of 106 ethno-medicinal plant species belonging to 54 plant families were recorded. The most common growth forms were perennial (43%) and short-lived herbs (23%), shrubs (16%), and trees (15%). Most frequently used plant parts were leaves (24%), fruits (18%) and subterranean parts (15%). A considerable proportion of the ethno-medicinal plant species and remedies concerns gastro-intestinal disorders. The remedies were mostly prepared in the form of decoction or powder and were mainly taken orally. Eighty out of 106 ethno-medicinal plants were indigenous. Almost 50% of the plants occurred in synanthropic vegetation while slightly more than 50% were found in semi-natural, though extensively grazed, woodland and grassland vegetation. Three species (Aconitum violaceum, Colchicum luteum, Jasminum humile) must be considered vulnerable due to excessive collection. Woodlands are the main source for non-synanthropic indigenous medicinal plants. The latter include many range-restricted taxa and plants of which rhizomes and other subterranean parts are dug out for further processing as medicine. Conclusion Medicinal plants are still widely used for treatment in the area of Swat. Some species of woodlands seem to be adapted to wood-pasture, but vulnerable to overcollecting, and in particular to deforestation. It is suggested to implement local small-scaled agroforestry systems to cultivate vulnerable and commercially valuable ethno-medicinal woodland plants under local self-government responsibility. PMID:23587127

2013-01-01

175

Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions.  

PubMed

Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations. PMID:18376564

Lau, Jennifer A; Strengbom, Joachim; Stone, Laurie R; Reich, Peter B; Tiffin, Peter

2008-01-01

176

Does plant diversity benefit agroecosystems? A synthetic review.  

PubMed

Predictive theory on how plant diversity promotes herbivore suppression through movement patterns, host associations, and predation promises a potential alternative to pesticide-intensive monoculture crop production. We used meta-analysis on 552 experiments in 45 articles published over the last 10 years to test if plant diversification schemes reduce herbivores and/or increase the natural enemies of herbivores as predicted by associational resistance hypotheses, the enemies hypothesis, and attraction and repellency model applications in agriculture. We found extensive support for these models with intercropping schemes, inclusion of flowering plants, and use of plants that repel herbivores or attract them away from the crop. Overall, herbivore suppression, enemy enhancement, and crop damage suppression effects were significantly stronger on diversified crops than on crops with none or fewer associated plant species. However, a relatively small, but significantly negative, mean effect size for crop yield indicated that pest-suppressive diversification schemes interfered with production, in part because of reducing densities of the main crop by replacing it with intercrops or non-crop plants. This first use of meta-analysis to evaluate the effects of diversification schemes, a potentially more powerful tool than tallies of significant positive and negative outcomes (vote-counting), revealed stronger overall effects on all parameters measured compared to previous reviews. Our analysis of the same articles used in a recent review facilitates comparisons of vote-counting and meta-analysis, and shows that pronounced results of the meta-analysis are not well explained by a reduction in articles that met its stricter criteria. Rather, compared to outcome counts, effect sizes were rarely neutral (equal to zero), and a mean effect size value for mixed outcomes could be calculated. Problematic statistical properties of vote-counting were avoided with meta-analysis, thus providing a more precise test of the hypotheses. The unambiguous and encouraging results from this meta-analysis of previous research should motivate ecologists to conduct more mechanistic experiments to improve the odds of designing effective crop diversification schemes for improved pest regulation and enhanced crop yield. PMID:21516884

Letourneau, Deborah K; Armbrecht, Inge; Rivera, Beatriz Salguero; Lerma, James Montoya; Carmona, Elizabeth Jiménez; Daza, Martha Constanza; Escobar, Selene; Galindo, Victor; Gutiérrez, Catalina; López, Sebastián Duque; Mejía, Jessica López; Rangel, Aleyda Maritza Acosta; Rangel, Janine Herrera; Rivera, Leonardo; Saavedra, Carlos Arturo; Torres, Alba Marina; Trujillo, Aldemar Reyes

2011-01-01

177

vol. 179, no. 3 the american naturalist march 2012 Insects on Plants: Explaining the Paradox of Low Diversity  

E-print Network

species pools. Herbivore diversity increases as a power function of plant diversity, and the rate scale dependent, as the importance of specialized guilds increases with plant diversity. Specialized they are also poorly known taxonomically) than in the temperate zone, which has lower plant diversity. Keywords

Weiblen, George D

178

Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland  

PubMed Central

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

2014-01-01

179

Plant and Soil Responses to High and Low Diversity Grassland Restoration Practices  

NASA Astrophysics Data System (ADS)

The USDA's Conservation Reserve Program (CRP) has predominantly used only a few species of dominant prairie grasses (CP2 practice) to reduce soil erosion, but recently has offered a higher diversity planting practice (CP25) to increase grassland habitat quality. We quantified plant community composition in CP25 and CP2 plantings restored for 4 or 8 years and compared belowground properties and processes among restorations and continuously cultivated soils in southeastern Nebraska, USA. Relative to cultivated soils, restoration increased soil microbial biomass ( P = 0.033), specifically fungi ( P < 0.001), and restored soils exhibited higher rates of carbon (C) mineralization ( P = 0.010). High and low diversity plantings had equally diverse plant communities; however, CP25 plantings had greater frequency of cool-season (C3) grasses ( P = 0.007). Older (8 year) high diversity restorations contained lower microbial biomass ( P = 0.026), arbuscular mycorrhizal fungi (AMF) biomass ( P = 0.003), and C mineralization rates ( P = 0.028) relative to 8 year low diversity restorations; older plantings had greater root biomass than 4 year plantings in all restorations ( P = 0.001). Low diversity 8 year plantings contained wider root C:N ratios, and higher soil microbial biomass, microbial community richness, AMF biomass, and C mineralization rate relative to 4 year restorations ( P < 0.050). Net N mineralization and nitrification rates were lower in 8 year than 4 year high diversity plantings ( P = 0.005). We attributed changes in soil C and N pools and fluxes to increased AMF associated with C4 grasses in low diversity plantings. Thus, reduced recovery of AMF in high diversity plantings restricted restoration of belowground microbial diversity and microbially-mediated soil processes over time.

Bach, Elizabeth M.; Baer, Sara G.; Six, Johan

2012-02-01

180

CO2, nitrogen, and diversity differentially affect seed production of prairie plants.  

PubMed

Plant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, U.S.A. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses: We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we caution against relying on them for predictive purposes without a mechanistic understanding of how resource availability and biotic interactions affect seed production. PMID:19694130

HilleRisLambers, J; Harpole, W S; Schnitzer, S; Tilman, D; Reich, P B

2009-07-01

181

PATTERNS AND MECHANISMS OF PLANT DIVERSITY IN FORESTED ECOSYSTEMS: IMPLICATIONS FOR FOREST MANAGEMENT'%2  

Microsoft Academic Search

The objectives of this paper are to (1) review existing diversity models, (2) identify principles that explain patterns of plant species diversity, (3) discuss implications for forest management, and (4) identify research needs. Many current theories cast distur- bance as the key player in maintaining species diversity by preventing competitive dom- inance of one or a few species. Equilibrium and

MARK R. ROBERTS

182

NEUTRONICS ANALYSIS OF A SELF-COOLED BLANKET FOR A LASER FUSION PLANT WITH MAGNETIC DIVERSION  

E-print Network

NEUTRONICS ANALYSIS OF A SELF-COOLED BLANKET FOR A LASER FUSION PLANT WITH MAGNETIC DIVERSION M with the magnetic diversion system. Neutronics issues related to tritium breeding adequacy particularly armor survival.1 A parallel effort is underway to explore the option of using magnetic diversion

Raffray, A. René

183

PLANT SPECIES DIVERSITY IN NATIVE AND RESTORED TALLGRASS PRAIRIES: PATTERNS AND CONTROLS  

Technology Transfer Automated Retrieval System (TEKTRAN)

One goal of ecological restoration is to restore diversity of native vegetation, but mechanisms responsible for diversity in targeted communities often are poorly understood. We measured diversity (Simpson's index, 1/D) of plant species and functional groups of species in replicated 0.5-m2 plots wi...

184

COMMUNITY AND ECOSYSTEM ECOLOGY Diversity Cascades in Alfalfa Fields: From Plant Quality to  

E-print Network

of arthropods involved. KEY WORDS diversity cascades, alfalfa, arthropods, saponins, chemical defense TrophicCOMMUNITY AND ECOSYSTEM ECOLOGY Diversity Cascades in Alfalfa Fields: From Plant Quality to Agroecosystem Diversity CLARK V. PEARSON, TARA J. MASSAD, AND LEE A. DYER1 Tulane University, 400 Lindy Boggs

Dyer, Lee

185

Plant diversity and identity effects on predatory nematodes and their prey.  

PubMed

There is considerable evidence that both plant diversity and plant identity can influence the level of predation and predator abundance aboveground. However, how the level of predation in the soil and the abundance of predatory soil fauna are related to plant diversity and identity remains largely unknown. In a biodiversity field experiment, we examined the effects of plant diversity and identity on the infectivity of entomopathogenic nematodes (EPNs, Heterorhabditis and Steinernema spp.), which prey on soil arthropods, and abundance of carnivorous non-EPNs, which are predators of other nematode groups. To obtain a comprehensive view of the potential prey/food availability, we also quantified the abundance of soil insects and nonpredatory nematodes and the root biomass in the experimental plots. We used structural equation modeling (SEM) to investigate possible pathways by which plant diversity and identity may affect EPN infectivity and the abundance of carnivorous non-EPNs. Heterorhabditis spp. infectivity and the abundance of carnivorous non-EPNs were not directly related to plant diversity or the proportion of legumes, grasses and forbs in the plant community. However, Steinernema spp. infectivity was higher in monocultures of Festuca rubra and Trifolium pratense than in monocultures of the other six plant species. SEM revealed that legumes positively affected Steinernema infectivity, whereas plant diversity indirectly affected the infectivity of HeterorhabditisEPNs via effects on the abundance of soil insects. The abundance of prey (soil insects and root-feeding, bacterivorous, and fungivorous nematodes) increased with higher plant diversity. The abundance of prey nematodes was also positively affected by legumes. These plant community effects could not be explained by changes in root biomass. Our results show that plant diversity and identity effects on belowground biota (particularly soil nematode community) can differ between organisms that belong to the same feeding guild and that generalizations about plant diversity effects on soil organisms should be made with great caution. PMID:25750711

Kostenko, Olga; Duyts, Henk; Grootemaat, Saskia; De Deyn, Gerlinde B; Bezemer, T Martijn

2015-02-01

186

Pollinating Flies (Diptera): A major contribution to plant diversity and agricultural production  

E-print Network

are present in almost all habitats and biomes and for many medicinal, food and ornamental plants, pollinating, Agrobiodiversity, Pollination, Flower Flies, Bio-Control, medicinal plants, ornamental plants AUTHORS' ADDRESSESPollinating Flies (Diptera): A major contribution to plant diversity and agricultural production

Mathis, Wayne N.

187

EFB 435/635 Flowering Plants: Diversity, Evolution, & Systematics Fall 2013 8/26/13 Page 1 of 6  

E-print Network

EFB 435/635 Flowering Plants: Diversity, Evolution, & Systematics Fall 2013 8/26/13 Page 1 of 6 skills that will further students' appreciation of the diversity and evolution of flowering plants and reproduction, evolution of plant diversity, origins and phylogeny of flowering plants, introductory molecular

Hui, Bowen

188

PLANT-ANIMAL INTERACTIONS -ORIGINAL PAPER Geographic patterns in fruit colour diversity: do leaves constrain  

E-print Network

, New Zealand e-mail: kevin.burns@vuw.ac.nz E. Cazetta Á M. Galetti Plant Phenology and Seed DispersalPLANT-ANIMAL INTERACTIONS - ORIGINAL PAPER Geographic patterns in fruit colour diversity: do leaves 2008 Ó Springer-Verlag 2008 Abstract We tested for geographic patterns in fruit colour diversity. Fruit

Schaefer, Martin

189

PLB 300 -DIVERSITY OF PLANTS, ALGAE, AND FUNGI Lecturer: Dr. Sedonia Sipes, Associate Professor  

E-print Network

the history and diversity of land plants, algae, and fungi; the latter two are branches of the tree of life is on evolution, ecology, symbiotic relationships, life cycles, and adaptive morphology. Science process skillsPLB 300 - DIVERSITY OF PLANTS, ALGAE, AND FUNGI FALL 2014 Lecturer: Dr. Sedonia Sipes, Associate

Nickrent, Daniel L.

190

Are herbage yield and yield stability affected by plant species diversity in sown pasture mixtures?  

Technology Transfer Automated Retrieval System (TEKTRAN)

A tenet of plant biodiversity theory in grasslands is that increased diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production as a result of increased plant species diversity would be beneficial. In this study, I combined ...

191

Biological Diversity of the Guiana Shield: Georeferencing Plants of the Guiana Shield  

E-print Network

Biological Diversity of the Guiana Shield: Georeferencing Plants of the Guiana Shield Eduardo To document, understand, and conserve the biological diversity of the shield area. #12;#12;What does & in Host Country) #12;#12;Georeferencing Plants of the Guiana Shield · The Smithsonian NMNH has conducted

Mathis, Wayne N.

192

Clonal diversity and structure of the invasive aquatic plant Eichhornia crassipes in China  

Microsoft Academic Search

The information on diversity and spatial distribution of clones of an invasive clonal plant is crucial for the understanding of its clonal structure and invasive history. In this paper, random amplified polymorphic DNA (RAPD) markers were used to explore the clonal diversity and clonal structure of Eichhornia crassipes (Mart.) Solms in natural populations, and their possible effects on the plant

Ming X. Ren; Quan G. Zhang

2007-01-01

193

Assessment of bacterial diversity during composting of agricultural byproducts  

PubMed Central

Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost. These bacteria can be used as potential compost inoculants for accelerating composting process. PMID:23651653

2013-01-01

194

Invertebrate herbivory increases along an experimental gradient of grassland plant diversity.  

PubMed

Plant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness. We investigated foliar herbivory rates and consumed leaf biomass along an experimental grassland plant diversity gradient in year eight after establishment. The gradient ranged from one to 60 plant species and manipulated also functional group richness (from one to four functional groups-legumes, grasses, small herbs, and tall herbs) and plant community composition. Measurements in monocultures of each plant species showed that functional groups differed in the quantity and quality of herbivory damage they experienced, with legumes being more damaged than grasses or non-legume herbs. In mixed plant communities, herbivory increased with plant diversity and the presence of two key plant functional groups in mixtures had a positive (legumes) and a negative (grasses) effect on levels of herbivory. Further, plant community biomass had a strong positive impact on consumed leaf biomass, but little effect on herbivory rates. Our results contribute detailed data from a well-established biodiversity experiment to a growing body of evidence suggesting that an increase of herbivory with increasing plant diversity is the rule rather than an exception. Considering documented effects of herbivory on other ecosystem functions and the increase of herbivory with plant diversity, levels of herbivory damage might not only be a result, but also a trigger within the diversity-productivity relationship. PMID:23907703

Loranger, Hannah; Weisser, Wolfgang W; Ebeling, Anne; Eggers, Till; De Luca, Enrica; Loranger, Jessy; Roscher, Christiane; Meyer, Sebastian T

2014-01-01

195

Island phytophagy: explaining the remarkable diversity of plant-feeding insects  

PubMed Central

Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa. PMID:22553094

Joy, Jeffrey B.; Crespi, Bernard J.

2012-01-01

196

Invasive plant erodes local song diversity in a migratory passerine.  

PubMed

Exotic plant invasions threaten ecosystems globally, but we still know little about the specific consequences for animals. Invasive plants can alter the quality of breeding habitat for songbirds, thereby impacting important demographic traits such as dispersal, philopatry, and age structure. These demographic effects may in turn alter song-learning conditions to affect song structure and diversity. We studied Chipping Sparrows (Spizella passerina) breeding in six savannas that were either dominated by native vegetation or invaded by spotted knapweed (Centaurea stoebe), an exotic forb known to diminish food resources and reproductive success. Here, we report that the prevalence of older birds was relatively low in knapweed-invaded habitat, where recruitment of yearlings compensated for diminished site fidelity to sustain territory abundance. In both habitat types, yearling males tended to adopt songs similar to their neighbors and match the songs of older birds rather than introducing new song types, a pattern seen in many songbird species. As a consequence, in invaded habitat where age structure was skewed away from older birds serving as potential song models, yearlings converged on fewer song types. Similarity of songs among individuals was significantly higher and the overall number of song types averaged nearly 20% lower in invaded relative to native habitat. Degradation of habitat quality generally impacts site fidelity and age ratios in migratory songbirds and hence may commonly alter song-learning conditions. Associated shifts in song attributes known to influence reproductive success could in turn enforce demographic declines driven by habitat degradation. Local song structure may serve as an important indicator of habitat quality and population status for songbirds. PMID:24669738

Ortega, Yvette K; Benson, Aubree; Greene, Erick

2014-02-01

197

Assessing natural resource use by forest-reliant communities in Madagascar using functional diversity and functional redundancy metrics.  

PubMed

Biodiversity plays an integral role in the livelihoods of subsistence-based forest-dwelling communities and as a consequence it is increasingly important to develop quantitative approaches that capture not only changes in taxonomic diversity, but also variation in natural resources and provisioning services. We apply a functional diversity metric originally developed for addressing questions in community ecology to assess utilitarian diversity of 56 forest plots in Madagascar. The use categories for utilitarian plants were determined using expert knowledge and household questionnaires. We used a null model approach to examine the utilitarian (functional) diversity and utilitarian redundancy present within ecological communities. Additionally, variables that might influence fluctuations in utilitarian diversity and redundancy--specifically number of felled trees, number of trails, basal area, canopy height, elevation, distance from village--were analyzed using Generalized Linear Models (GLMs). Eighteen of the 56 plots showed utilitarian diversity values significantly higher than expected. This result indicates that these habitats exhibited a low degree of utilitarian redundancy and were therefore comprised of plants with relatively distinct utilitarian properties. One implication of this finding is that minor losses in species richness may result in reductions in utilitarian diversity and redundancy, which may limit local residents' ability to switch between alternative choices. The GLM analysis showed that the most predictive model included basal area, canopy height and distance from village, which suggests that variation in utilitarian redundancy may be a result of local residents harvesting resources from the protected area. Our approach permits an assessment of the diversity of provisioning services available to local communities, offering unique insights that would not be possible using traditional taxonomic diversity measures. These analyses introduce another tool available to conservation biologists for assessing how future losses in biodiversity will lead to a reduction in natural resources and provisioning services from forests. PMID:21909413

Brown, Kerry A; Flynn, Dan F B; Abram, Nicola K; Ingram, J Carter; Johnson, Steig E; Wright, Patricia

2011-01-01

198

Ground layer plant species turnover and beta diversity in southern-European old-growth forests.  

PubMed

Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155

Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

2014-01-01

199

Ground Layer Plant Species Turnover and Beta Diversity in Southern-European Old-Growth Forests  

PubMed Central

Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests. PMID:24748155

Sabatini, Francesco Maria; Burrascano, Sabina; Tuomisto, Hanna; Blasi, Carlo

2014-01-01

200

Biological diversity assessment: A technical report used in amending the Rocky Mountain Regional Guide  

SciTech Connect

The Rocky Mountain Region's biological diversity assessment addresses the following: (1) The major elements and concerns of the issue of biodiversity; (2) Historical and present biological diversity within the Rocky Mountain Region; (3) Ecosystem management and how it applies to biological diversity; and (4) Recommendations that could be applied during the revision of forest plans to address biological diversity.

Mullen, L.D.; Johnston, B.; Beels, P.; Houston, K.; Stewart, L.

1992-05-01

201

Differential effects of plant diversity on functional trait variation of grass species  

PubMed Central

Background and Aims Functional trait differences and trait adjustment in response to influences of the biotic environment could reflect niche partitioning among species. In this study, we tested how variation in above-ground plant traits, chosen as indicators for light and nitrogen acquisition and use, differs among taxonomically closely related species (Poaceae) to assess their potential for niche segregation at increasing plant diversity. Methods Traits of 12 grass species were measured in experimental grasslands (Jena Experiment) of varying species richness (from 1 to 60) and presence of particular functional groups (grasses, legumes, tall herbs and small herbs). Key Results Grass species increased shoot and leaf length, investment into supporting tissue (stem mass fraction) and specific leaf area as well as reduced foliar ?13C values with increasing species richness, indicating higher efforts for light acquisition. These species-richness effects could in part be explained by a higher probability of legume presence in more diverse communities. Leaf nitrogen concentrations increased and biomas s : N ratios in shoots decreased when grasses grew with legumes, indicating an improved nitrogen nutrition. Foliar ?15N values of grasses decreased when growing with legumes suggesting the use of depleted legume-derived N, while decreasing ?15N values with increasing species richness indicated a shift in the uptake of different N sources. However, efforts to optimize light and nitrogen acquisition by plastic adjustment of traits in response to species richness and legume presence, varied significantly among grass species. It was possible to show further that trait adjustment of grass species increased niche segregation in more diverse plant communities but that complementarity through niche separation may differ between light and nutrient acquisition. Conclusions The results suggest that even among closely related species such as grasses different strategies are used to cope with neighbours. This lack in redundancy in turn may facilitate complementary resource use and coexistence. PMID:21068024

Gubsch, Marlén; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef; Lipowsky, Annett; Roscher, Christiane

2011-01-01

202

Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity.  

PubMed

Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. PMID:18975009

Stein, Claudia; Rissmann, Cornelia; Hempel, Stefan; Renker, Carsten; Buscot, François; Prati, Daniel; Auge, Harald

2009-02-01

203

Disparate effects of plant genotypic diversity on foliage and litter arthropod communities  

SciTech Connect

Intraspecific diversity within plant species is increasingly recognized as an important influence on the structure of associated arthropod communities, though whether there are congruent responses of above- and belowground communities to intraspecific diversity remains unclear. In this study, we compare the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak influence on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, including herbivore and predator trophic levels. In contrast, there were minimal effects of genotypic diversity in litter on microarthropods. Our study illustrates that incorporating both above- and belowground perspective into community genetics studies leads to very different conclusions about the importance of intraspecific diversity, than when considering aboveground responses in isolation.

Crutsinger, Greg [University of Tennessee, Knoxville (UTK); Reynolds, Nicholas [University of Tennessee, Knoxville (UTK); Classen, Aimee T [ORNL; Sanders, Dr. Nathan James [University of Tennessee, Knoxville (UTK)

2008-01-01

204

MSU Departmental Assessment Plan 2009-2010 Department: Plant Sciences and Plant Pathology  

E-print Network

) (horticulture, landscape design, plant biology, crop science and plant biotechnology) each have separateMSU Departmental Assessment Plan 2009-2010 Department: Plant Sciences and Plant Pathology by Department #12;Assessment and Outcomes Progress 2008-2009--Department of Plant Sciences and Plant Pathology

Maxwell, Bruce D.

205

Plant Wide Assessment for SIFCO Industries, Inc.  

SciTech Connect

Sifco Industries carreid out a plant wide energy assessment under a collaborative program with the U.S. Department of Energy during October 2004 to September 2005. During the year, personnel from EIS, E3M, DPS, BuyCastings.Com, and Sifco plant facilities and maintenance personnel, as a team collected energy use, construction, process, equipment and operational information about the plant. Based on this information, the team identified 13 energy savings opportunities. Near term savings opportunities have a total potential savings of about $1,329,000 per year and a combined simple payback of about 11 months. Implementation of these recommendations would reduce CO2 emissions by about 16,000,000 pounds per year, which would reduce overall plant CO2 emissions by about 45%. These totals do not include another $830,000 per year in potential savings with an estimated 9-month payback, from converting the forging hammers from steam to compressed air.

Kelly Kissock, Arvind Thekdi et. al.

2005-07-06

206

Global Analysis of Proline-Rich Tandem Repeat Proteins Reveals Broad Phylogenetic Diversity in Plant Secretomes  

PubMed Central

Cell walls, constructed by precisely choreographed changes in the plant secretome, play critical roles in plant cell physiology and development. Along with structural polysaccharides, secreted proline-rich Tandem Repeat Proteins (TRPs) are important for cell wall function, yet the evolutionary diversity of these structural TRPs remains virtually unexplored. Using a systems-level computational approach to analyze taxonomically diverse plant sequence data, we identified 31 distinct Pro-rich TRP classes targeted for secretion. This analysis expands upon the known phylogenetic diversity of extensins, the most widely studied class of wall structural proteins, and demonstrates that extensins evolved before plant vascularization. Our results also show that most Pro-rich TRP classes have unexpectedly restricted evolutionary distributions, revealing considerable differences in plant secretome signatures that define unexplored diversity. PMID:21829715

Newman, Aaron M.; Cooper, James B.

2011-01-01

207

Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa  

Microsoft Academic Search

Interactions between plants and soil microbes are important determinants of both above- and belowground community composition, and ultimately ecosystem function. As exotic plants continue to invade and modify native plant communities, there has been increasing interest in determining the influence of exotic invasives on native soil microbial communities. Here, using highly sensitive molecular techniques, we examine fungal abundance and diversity

Amanda K Broz; Daniel K Manter; Jorge M Vivanco

2007-01-01

208

Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size  

E-print Network

LETTER Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore *Correspondence: E-mail: l.bakker@nioo.knaw.nl Abstract Mammalian herbivores can have pronounced effects on plant and herbivores of different body size on plant species richness across a 10-fold productivity gradient using a 7

Minnesota, University of

209

PLANT DIVERSITY, SOIL MICROBIAL COMMUNITIES, AND ECOSYSTEM FUNCTION: ARE THERE ANY LINKS?  

Microsoft Academic Search

A current debate in ecology centers on the extent to which ecosystem function depends on biodiversity. Here, we provide evidence from a long-term field manipulation of plant diversity that soil microbial communities, and the key ecosystem processes that they mediate, are significantly altered by plant species richness. After seven years of plant growth, we determined the composition and function of

Donald R. Zak; William E. Holmes; David C. White; Aaron D. Peacock; David Tilman

2003-01-01

210

Influence des hautes tempratures des racines sur la croissance de plants de diverses varits de melon  

E-print Network

Influence des hautes températures des racines sur la croissance de plants de diverses variétés de melon (Cucumis melo L.). Aspects particuliers concernant la nutrition de la plante Georgette RISSER'Amélioration des Plantes maraîchères, Domaine Saint-Maurice. *LN.R.A., Station d'Agronomie, Domaine Saint

Paris-Sud XI, Université de

211

Patterns of plant species diversity during succession under different disturbance regimes  

Microsoft Academic Search

I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches

Julie Sloan Denslow

1980-01-01

212

Modelling vascular plant diversity at the landscape scale using systematic samples  

E-print Network

ORIGINAL ARTICLE Modelling vascular plant diversity at the landscape scale using systematic samples-scale species richness patterns at large spatial extents by linking a systematic sample of vascular plants Europe. Methods Vascular plant species data were collected along transects of 2500-m length within 1-km2

213

Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species  

PubMed Central

Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses. PMID:25141305

Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A.

2014-01-01

214

Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.  

PubMed

Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses. PMID:25141305

Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

2014-01-01

215

Bottom-up effects of host-plant species diversity and top-down effects of ants  

E-print Network

Bottom-up effects of host-plant species diversity and top-down effects of ants interactively, Galicia, Spain While plant diversity is well known to increase primary productivity, whether these bottom whether pine tree species diversity, aphid-tending ants and their interaction determined plant performance

Mooney, Kailen A.

216

ReproducedfromCropScience.PublishedbyCropScienceSocietyofAmerica.Allcopyrightsreserved. Plant Species Diversity and Management of Temperate Forage and  

E-print Network

in current agriculture. Some research re- information on the potential benefits of increased plant diversity sults indicate that increased plant species diversity in- comes from studies of synthesized grasslands of temperate forage and grazing lands. Plant species diversity and resistance to weed invasions

Minnesota, University of

217

Effects of different site preparation treatments on species diversity, composition and plant traits in Pinus halepensis woodlands.  

E-print Network

1 Effects of different site preparation treatments on species diversity, composition and plant, yet studies on the effects of silvicultural treatments on plant diversity are scarce. Our experiment. Plant diversity, measured by the species richness or Shannon's index, increased in the non

Paris-Sud XI, Université de

218

Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?  

PubMed Central

Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weevi?s capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weevi?s foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

2014-01-01

219

Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?  

PubMed

Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weevi?s capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weevi?s foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts. PMID:24416354

Wäschke, Nicole; Hardge, Kristin; Hancock, Christine; Hilker, Monika; Obermaier, Elisabeth; Meiners, Torsten

2014-01-01

220

Native plant diversity resists invasion at both low and high resource levels.  

PubMed

Human modification of the environment is causing both loss of species and changes in resource availability. While studies have examined how species loss at the local level can influence invasion resistance, interactions between species loss and other components of environmental change remain poorly studied. In particular, the manner in which native diversity interacts with resource availability to influence invasion resistance is not well understood. We created experimental plant assemblages that varied in native species (1-16 species) and/or functional richness (defined by rooting morphology and phenology; one to five functional groups). We crossed these diversity treatments with resource (water) addition to determine their interactive effects on invasion resistance to spotted knapweed (Centaurea maculosa), a potent exotic invader in the intermountain West of the United States. We also determined how native diversity and resource addition influenced plant-available soil nitrogen, soil moisture, and light. Assemblages with lower species and functional diversity were more heavily invaded than assemblages with greater species and functional diversity. In uninvaded assemblages, experimental addition of water increased soil moisture and plant-available nitrogen and decreased light availability. The availability of these resources generally declined with increasing native plant diversity. Although water addition increased susceptibility to invasion, it did not fundamentally change the negative relationship between diversity and invasibility. Thus, native diversity provided strong invasion resistance even under high resource availability. These results suggest that the effects of local diversity can remain robust despite enhanced resource levels that are predicted under scenarios of global change. PMID:18027767

Maron, John; Marler, Marilyn

2007-10-01

221

Plant diversity partitioning in Mediterranean croplands: effects of farming intensity, field edge, and landscape context.  

PubMed

Farmland biodiversity is affected by factors acting at various spatial scales. However, most studies to date have focused on the field or farm scales that only account for local (alpha) diversity, and these may underestimate the contribution of other diversity components (beta diversity) to total (gamma) farmland diversity. In this work, we aimed to identify the most suitable management options and the scale at which they should be implemented to maximize benefits for diversity. We used a multi-scale additive partitioning approach, with data on plant diversity from 640 plots in 32 cereal crop fields from three agricultural regions of central Spain that differed in landscape configuration. We analyzed the relative contribution to overall plant diversity of different diversity components at various spatial scales and how these diversity components responded to a set of local (application of agri-environment schemes [AES] and position within the field) and landscape (field size and landscape connectivity and composition) factors. Differences in species composition among regions and then among fields within regions contributed most to overall plant diversity. Positive edge effects were found on all diversity components at both the field- and regional scales, whereas application of AES benefited all diversity components only at the field scale. Landscape factors had strong influences on plant diversity, especially length of seminatural boundaries, which increased species richness at both the field and the regional scales. In addition, positive effects of percentage of nonproductive land-uses in the landscape were found on all diversity components at the regional scale. Results showed that components that contributed most to overall plant diversity were not benefited by current AES. We conclude that agri-environmental policies should incorporate and prioritize measures aimed at the maintenance of seminatural boundaries and patches of nonproductive habitats within agricultural landscapes, through landscape planning, cross-compliance, or high nature-value farmland programs. These options will help to conserve overall plant diversity at regional scales, as well as the spillover of plant species from such seminatural elements into crops, especially in Mediterranean areas that still harbor extensive farming and relatively complex landscapes. PMID:22645825

Concepción, Elena D; Fernández-González, Federico; Díaz, Mario

2012-04-01

222

Habitat fragmentation, tree diversity, and plant invasion interact to structure forest caterpillar communities.  

PubMed

Habitat fragmentation and invasive species are two of the most prominent threats to terrestrial ecosystems. Few studies have examined how these factors interact to influence the diversity of natural communities, particularly primary consumers. Here, we examined the effects of forest fragmentation and invasion of exotic honeysuckle (Lonicera maackii, Caprifoliaceae) on the abundance and diversity of the dominant forest herbivores: woody plant-feeding Lepidoptera. We systematically surveyed understory caterpillars along transects in 19 forest fragments over multiple years in southwestern Ohio and evaluated how fragment area, isolation, tree diversity, invasion by honeysuckle and interactions among these factors influence species richness, diversity and abundance. We found strong seasonal variation in caterpillar communities, which responded differently to fragmentation and invasion. Abundance and richness increased with fragment area, but these effects were mitigated by high levels of honeysuckle, tree diversity, landscape forest cover, and large recent changes in area. Honeysuckle infestation was generally associated with decreased caterpillar abundance and diversity, but these effects were strongly dependent on other fragment traits. Effects of honeysuckle on abundance were moderated when fragment area, landscape forest cover and tree diversity were high. In contrast, negative effects of honeysuckle invasion on caterpillar diversity were most pronounced in fragments with high tree diversity and large recent increases in area. Our results illustrate the complex interdependencies of habitat fragmentation, plant diversity and plant invasion in their effects on primary consumers and emphasize the need to consider these processes in concert to understand the consequences of anthropogenic habitat change for biodiversity. PMID:25015121

Stireman, John O; Devlin, Hilary; Doyle, Annie L

2014-09-01

223

Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity  

PubMed Central

Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420

Bartlett, Madelaine E.; Whipple, Clinton J.

2013-01-01

224

Forest species diversity reduces disease risk in a generalist plant pathogen invasion  

USGS Publications Warehouse

Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

2011-01-01

225

Ecological effects of roads on the plant diversity of coastal wetland in the Yellow River Delta.  

PubMed

The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of ? T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0-20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing ?-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

Li, Yunzhao; Yu, Junbao; Ning, Kai; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

2014-01-01

226

Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta  

PubMed Central

The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of ?T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20?m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing ?-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20?m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

2014-01-01

227

Disentangling direct and indirect effects of experimental grassland management and plant functional-group manipulation on plant and leafhopper diversity  

PubMed Central

Background Plant biodiversity can affect trophic interactions in many ways, including direct bottom-up effects on insects, but is negatively affected by agricultural intensification. Grassland intensification promotes plant productivity, resulting in changes in plant community composition, and impacts on higher trophic levels. Here, we use a novel grassland management experiment combining manipulations of cutting and fertilization with experimental changes in plant functional group composition (independent of management effects) to disentangle the direct and indirect effects of agricultural management on insect herbivore diversity and abundance. We used leafhoppers as model organisms as they are a key insect taxon in grasslands and react rapidly to management changes. Leafhoppers were sampled between May and September 2010 using standardized sweep netting and pan traps. Results Plant diversity, functional group composition and management regime in grasslands affected leafhopper species richness and abundance. Higher cutting frequencies directly led to decreasing leafhopper species richness, presumably due to the higher disturbance frequency and the reduction in food-resource heterogeneity. In contrast, fertilizer application had only a small indirect negative effect via enhanced aboveground plant biomass, reduced plant diversity and changes in functional group composition. The manipulated increase in grass cover had contrasting direct and indirect effects on leafhopper species richness: grass cover directly increased leafhopper species richness, but negatively affected plant diversity, which in turn was positively related to leafhopper species richness. In conclusion, insect diversity is driven in complex direct and indirect ways by grassland management, including changes in functional group composition. Conclusions The availability of preferred food sources and the frequency of disturbance are important direct and indirect drivers of leafhopper species richness, interacting in complex ways with plant diversity and food resource heterogeneity. PMID:24438134

2014-01-01

228

Decline in exotic tree density facilitates increased plant diversity: the experience from Melaleuca quinquenervia invaded wetlands  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Australian tree Melaleuca quinquenervia (melaleuca) formed dense monocultural forests several decades after invading Florida and the Caribbean islands. These dominant forests have displaced native vegetation in sensitive wetland systems. We hypothesized that native plant diversity would increa...

229

High plant diversity in Oregon tidal wetlands and multiple threats to its persistence  

EPA Science Inventory

Tidal wetlands in the Pacific Northwest occur in coastal estuaries differing widely in size, relative freshwater inputs, and degree of watershed development. To better understand patterns of plant diversity in tidal wetlands across the region and potential climate change effects ...

230

Genetic diversity in populations of plants with different breeding and dispersal strategies in a free-flowing boreal river system.  

PubMed

We have studied the genetic diversity of three plant species: Angelica archangelica (Apiacieae), Bistorta vivipara (Polygonaceae) and Viscaria alpina (Caryophyllaceae) along the free-flowing Vindel River in northern Sweden. The plants differ in reproductive strategy. A archangelica and V. alpina are insect pollinated outbreeders while B. vivipara reproduces with apomixis through bulbils. The seeds of A. archangelica may float for over a year, while the propagules (seeds and bulbils, respectively) of V. alpina and B. vivipara float for less than two days. Genetic diversity was assessed using starch gel electrophoresis. The clonal diversity of B. vivipara measured by Simpson's index (D) ranged between 0.78 and 0.99. Only a few clones were shared between localities. The average percentages polymorphic loci and mean He based on polymorphic loci for V. alpina over all localities were 23.1 and 0.15, respectively. Wright's F-statistics showed a significant overall deficit of heterozygotes. The diversity of A. archangelica was found to increase downstream. Genetic diversity of each species is sufficiently high to be used in studies on hydrochory. Dispersal appears to be related to the floating ability of progagules. PMID:12035618

Lundqvist, E; Andersson, E

2001-01-01

231

Plant Diversity and Invasives in Blue Oak Savannas of the Southern Sierra Nevada1  

E-print Network

Plant Diversity and Invasives in Blue Oak Savannas of the Southern Sierra Nevada1 Jon E. Keeley2 Abstract Blue oak savannas were found to be substantially more diverse at all scales from localized point of the understory flora in these blue oak savannas, comprising three- fourths of the species at the smallest scale

Standiford, Richard B.

232

Genomic Diversity of Biocontrol Strains of Pseudomonas spp. Isolated from Aerial or Root Surfaces of Plants  

Technology Transfer Automated Retrieval System (TEKTRAN)

The striking ecological, metabolic, and biochemical diversity of Pseudomonas has intrigued microbiologists for many decades. To explore the genomic diversity of biocontrol strains of Pseudomonas spp., we derived high quality draft sequences of seven strains known to suppress plant disease. The str...

233

Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands  

Microsoft Academic Search

Increasing plant diversity has long been hypothesized to negatively affect levels of invertebrate herbivory due to a lower number of specialist insect herbivores in more diverse sites, but studies of natural systems have been rare. We used a planned comparison to study herbivory in a set of 19 semi-natural montane grasslands managed as hay meadows. Herbivory was measured in transects

Sybille B. Unsicker; Nadine Baer; Ansgar Kahmen; Markus Wagner; Nina Buchmann; Wolfgang W. Weisser

2006-01-01

234

Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients  

USGS Publications Warehouse

1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen I.

2013-01-01

235

Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra  

Microsoft Academic Search

Ecologists have long been intrigued by the ways co-occurring species divide limiting resources. Such resource partitioning, or niche differentiation, may promote species diversity by reducing competition. Although resource partitioning is an important determinant of species diversity and composition in animal communities, its importance in structuring plant communities has been difficult to resolve. This is due mainly to difficulties in studying

Robert B. McKane; Loretta C. Johnson; Gaius R. Shaver; Knute J. Nadelhoffer; Edward B. Rastetter; Brian Fry; Anne E. Giblin; Knut Kielland; Bonnie L. Kwiatkowski; James A. Laundre; Georgia Murray

2002-01-01

236

Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments.  

PubMed

Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P = 0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root. PMID:23878810

Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Cherif, Ameur; Abou-Hadid, Ayman; El-Bahairy, Usama; Borin, Sara; Sorlini, Claudia; Daffonchio, Daniele

2013-01-01

237

Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Doethideomycetes Fungi  

SciTech Connect

The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabien; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

2012-03-13

238

Pathways of nutrient loading and impacts on plant diversity in a New York peatland  

USGS Publications Warehouse

Nutrient loading is a subtle, yet serious threat to the preservation of high diversity wetlands such as peatlands. Pathways of nutrient loading and impacts on plant diversity in a small peatland in New York State, USA were determined by collecting and analyzing a suite of hydrogeological, hydro-chemical, soil, and vegetation data. Piezometer clusters within an intensive network constituted hydro-chemical sampling points and focal points for randomly selected vegetation quadrats and soil-coring locations. Hydrogeological data and nutrient analyses showed that P and K loading occurred chiefly by means of overland flow from an adjacent farm field, whereas N loading occurred predominantly through ground-water flow from the farm field. Redundancy analysis and polynomial regression showed that nutrients, particularly total P in peat, total K in peat, extractable NH4-N, and NO3-N flux in ground water, were strongly negatively correlated with plant diversity measures at the site. No other environmental variables except vegetation measures associated with eutrophication demonstrated such a strong relationship with plant diversity. Nitrate loading over 4 mg m -2 day-1 was associated with low plant diversity, and Ca fluxes between 80 and 130 mg m-2 day-1 were associated with high plant diversity. Areas in the site with particularly low vascular plant and bryophyte species richness and Shannon-Wiener diversity (H') occurred adjacent to the farm field and near a hillside spring. High H' and species richness of vascular plants and bryophytes occurred in areas that were further removed from agriculture, contained no highly dominant vegetation, and were situated directly along the ground-water flow paths of springs. These areas were characterized by relatively constant water levels and consistent, yet moderate fluxes of base cations and nutrients. Overall, this study demonstrates that knowledge of site hydrogeology is crucial for determining potential pathways of nutrient loading and for developing relationships between nutrient inflows and wetland plant diversity. ?? 2002, The Society of Wetland Scientists.

Drexler, J.Z.; Bedford, B.L.

2002-01-01

239

Global patterns of plant diversity and floristic knowledge  

E-print Network

@uni-bonn.de ABSTRACT Aims We present the first global map of vascular plant species richness by ecoregion and compare documents and pinpoint geographical gaps in our understanding of the global vascular plant flora. Finally studied than those poor in vascular plants. Similarly, only in a few biomes did we find significant

Kreft, Holger

240

Environmental assessment of HYGAS Pilot Plant streams  

SciTech Connect

The US Department of Energy has commissioned an environmental assessment program to obtain experimental data from the HYGAS Pilot Plant. An important objective of this program is the development of predictive methods to extend the environmental data base to larger-scale demonstration and commercial HYGAS coal gasification plants. This report discusses the systems which have been specifically established for sampling, analysis, and data evaluation to define the fate of compounds of environmental interest generated during pilot plant operation. The pilot plant units of interest include the pretreater and gasifier reactors which are considered scalable to larger plants. Sampling methods used in the program include scheduled, routine grab samples, composited grab samples, on-line composited liquids and solid samples, and on-line gas analysis for selected sulfur species. This paper also discusses the development and use of a high-pressure, high-temperature, sampling system to collect organic and inorganic species from the HYGAS gasifier. Even though the reactor sampling system adopted is very man-power intensive, it greatly reduces the number of samples required and results in a higher overall sampling efficiency. In addition, the on-line sampling train provides immediate capture and stabilization of reactive and volatile species, eliminates process unit lag times, avoids quench tower inefficiencies for many species, and allows rapid monitoring of differences in pollutant production with changing process conditions.

Anastasia, L.J.; Evans, R.J.; Bossart, S.J.; Karst, R.H.; Biljetina, R.

1980-01-01

241

?-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.  

PubMed

Two main theories have attempted to explain variation in plant species composition (?-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of ?-diversity. In this study, we first explored how ?- and ?-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on ?-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that ?-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. ?-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced ?-diversity across functional groups, but showed a low influence on ?-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both ?- and ?-diversity patterns and correlates that are not apparent when focusing on overall woody plant diversity, and that have important implications for ecological theory and biodiversity conservation. PMID:24040014

López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

2013-01-01

242

Host-plants shape insect diversity: phylogeny, origin, and species diversity of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne).  

PubMed

Herbivorous insects and the plants on which they specialize, represent the most abundant terrestrial life on earth, yet their inter-specific interactions in promoting species diversification remains unclear. This study utilizes the discreet geologic attributes of Hawai'i and one of the most diverse endemic herbivore radiations, the leafhoppers (Hemiptera: Cicadellidae: Nesophrosyne), as a model system to understand the role of host-plant use in insect diversification. A comprehensive phylogeny is reconstructed to examine the origins, species diversification, and host-plant use of the native Hawaiian leafhoppers. Results support a monophyletic Nesophrosyne, originating from the Western Pacific basin, with a sister-group relationship to the genus Orosius. Nesophrosyne is characterized by high levels of endemicity according to individual islands, volcanoes, and geologic features. Clades demonstrate extensive morphologically cryptic diversity among allopatric species, utilizing widespread host-plant lineages. Nesophrosyne species are host-plant specific, demonstrating four dominant patterns of specialization that shape species diversification: (1) diversification through host switching; (2) specialization on widespread hosts with allopatric speciation; (3) repeated, independent shifts to the same hosts; and, (4) absence or low abundance on some host. Finally, evidence suggests competing herbivore radiations limit ecological opportunity for diversifying insect herbivores. Results provide evolutionary insights into the mechanisms that drive and shape this biodiversity. PMID:22884527

Bennett, Gordon M; O'Grady, Patrick M

2012-11-01

243

Diversity of use and local knowledge of wild edible plant resources in Nepal  

PubMed Central

Background Wild edible plants (WEP) provide staple and supplement foods, as well as cash income to local communities, thus favouring food security. However, WEP are largely ignored in land use planning and implementation, economic development, and biodiversity conservation. Moreover, WEP-related traditional knowledge is rapidly eroding. Therefore, we designed this study to fulfill a part of the knowledge gap by providing data on diversity, traditional knowledge, economic potential, and conservation value of WEP from Nepal. Methods The information was collected through focus group discussions and key informant interviews. Percentage of general utility of the plants among the study communities was evaluated using the Chi-square (?2) test of homogeneity. High priority species were identified after consultation with the local stakeholders followed by scoring based on defined criteria. Pairwise ranking was used to assess ethnoecological knowledge to identify the threats to WEP. Results We documented 81 species belonging to Angiosperms (74), Pteridophytes (5), and Fungi (2). Most of the species were used as fruits (44 species) followed by vegetables (36). Almost half of the species (47%) were also used for purposes other than food. From the species with market value (37% of the total), 10 were identified as high priority species. Pairwise ranking revealed that WEP are threatened mostly by habitat destruction, land-use change and over-harvesting. Some of these plants are crop wild relatives and could thus be used for crop improvement. Interestingly, our study also revealed that young people who spend most of the time in the forest as herdsmen are particularly knowledgeable of wild fruit plants. Conclusion We provide empirical evidence from a relatively large area of Nepal about diversity and status of WEP, as well as methodological insights about the proper knowledge holders to consult. Regarding the unique and important knowledge they have on WEP, young people should be included when recruiting participants to ethnobotanical studies or to any type of consultation about WEP. The habit of using wild edible plants is still alive and is a traditional culinary practice that demonstrates rich traditional knowledge of local people. WEP were found to be important for livelihood as well as showing great potential for crop improvement. Priority species should be promoted for income generation activities through sustainable collection and trade. Communities should engage in minimizing the threats to these valuable resources. PMID:22546349

2012-01-01

244

STATUS OF PLANT DIVERSITY AT KUFRI (SOONE VALLEY) PUNJAB, PAKISTAN AND PREVAILING THREATS THEREIN  

Microsoft Academic Search

To examine the species composition in the Soone Valley, Punjab, Pakistan, the Kufri site was selected on the basis of some ecological attributes i.e., topography, soil type and the nature of prevailing disturbances. Data regarding the composition of plant diversity revealed that among the woody leguminous plants Acacia modesta was the most commonly occurring species. Propsopis juliflora occurred very commonly

KAFEEL AHMAD; ZAFAR IQBAL KHAN; MUHAMMAD ASHRAF; MUMTAZ HUSSAIN; MUHAMMAD IBRAHIM; EHSAN ELAHI VALEEM

2008-01-01

245

Strategies to Enhance Plant Structure and Diversity in Crested Wheatgrass Seedings  

Microsoft Academic Search

Crested wheatgrass (Agropyron cristatum sensu amplo (L.) Gaertn.) is an introduced, caespitose grass that has been seeded on millions of acres of Western rangelands. In some areas, crested wheatgrass seedings overlap with critical sage-grouse (Centrocercus urophasianus; C. minimus) habitat, raising the question of how plant diversity might be restored in these closed plant communities. A three-step process is described to

Mike Pellant; Cindy R. Lysne

2005-01-01

246

IMPLICATIONS ON ECOSYSTEM SERVICES The impact of selective logging on Forest structure, Plant Diversity  

E-print Network

IMPLICATIONS ON ECOSYSTEM SERVICES The impact of selective logging on Forest structure, Plant Diversity and above-ground biomass of African tropical forests Gatti Cazzolla R.* , Castaldi S.§ , Lindsell, United Kingdom. Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom

Paparella, Francesco

247

THE NATIONAL PLANT GERMPLASM SYSTEM'S SUNFLOWER COLLECTION: GENETIC DIVERSITY FOR DEVELOPING COUNTRIES  

Technology Transfer Automated Retrieval System (TEKTRAN)

The United States' National Plant Germplasm System's (NPGS) sunflower collection is curated at the North Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa (USA). The NPGS sunflower collection is a diverse assemblage of 3787 accessions (1624 cultivated Helianthus annuus accessions, ...

248

Resource Abundance and Insect Herbivore Diversity on Woody Fabaceous Desert Plants  

Microsoft Academic Search

This study addresses four hypotheses that may account for differences in the number of insect herbivore species among plant species. These hypotheses are based on the assumption that insect diversity is a function of the number, quantity, and distribution of plant resources used by herbivores. The study investigated predictions that herbivore species richness will increase as a function of increasing

EVELYN SODRE DE ALCKMIN; PETER WILFRID; NEIL STANLEY COBB

2000-01-01

249

Soil fertility increases with plant species diversity in a long-term biodiversity experiment.  

PubMed

Most explanations for the positive effect of plant species diversity on productivity have focused on the efficiency of resource use, implicitly assuming that resource supply is constant. To test this assumption, we grew seedlings of Echinacea purpurea in soil collected beneath 10-year-old, experimental plant communities containing one, two, four, eight, or 16 native grassland species. The results of this greenhouse bioassay challenge the assumption of constant resource supply; we found that bioassay seedlings grown in soil collected from experimental communities containing 16 plant species produced 70% more biomass than seedlings grown in soil collected beneath monocultures. This increase was likely attributable to greater soil N availability, which had increased in higher diversity communities over the 10-year-duration of the experiment. In a distinction akin to the selection/complementarity partition commonly made in studies of diversity and productivity, we further determined whether the additive effects of functional groups or the interactive effects of functional groups explained the increase in fertility with diversity. The increase in bioassay seedling biomass with diversity was largely explained by a concomitant increase in N-fixer, C4 grass, forb, and C3 grass biomass with diversity, suggesting that the additive effects of these four functional groups at higher diversity contributed to enhance N availability and retention. Nevertheless, diversity still explained a significant amount of the residual variation in bioassay seedling biomass after functional group biomass was included in a multiple regression, suggesting that interactions also increased fertility in diverse communities. Our results suggest a mechanism, the fertility effect, by which increased plant species diversity may increase community productivity over time by increasing the supply of nutrients via both greater inputs and greater retention. PMID:18690478

Dybzinski, Ray; Fargione, Joseph E; Zak, Donald R; Fornara, Dario; Tilman, David

2008-11-01

250

Plant Diversity in Live Fences and Pastures, Two Examples from the Mexican Humid Tropics  

NASA Astrophysics Data System (ADS)

This study analyzes the potential uses of live fences and pastures as reservoirs of plant diversity for two regions with different management histories, Los Tuxtlas (LT) and Uxpanapa (UX), Veracruz, México. We studied two habitats, live fences and pastures, analyzed their species richness, diversity, structure and plant composition and classified species according to plant regeneration modes (light-demanding and shade tolerant), seed dispersal syndrome and their local uses. We recorded 62 species of trees at LT and 48 at UX. Live fences were more diverse than pastures in both regions. The LT site showed to analyze the relationship a higher diversity of plants in regeneration stages than the one at UX. However, UX had higher diversity of adult plants in the pastures than LT. Composition and structure of live fences were different between regions, as well as within live fences and pastures, 53 % of species were light-demanding and 40 % were shade tolerant; 70 % of the species were dispersed by birds. Differences between sites are associated with the modifications in live fences structure, which changed according to managerial practices and the use of local species; this may influence plant regeneration modes as well as the visits of avian dispersal agents. In LT, all species found in live fences were useful to humans, whereas in UX, less than half were used by the local population. Our results underline the importance of live fences and isolated trees in pasture habitats as potential sites to host native and useful species from tropical rain forests in livestock landscapes.

Ruiz-Guerra, Betsabé; Rosas, Noé Velázquez; López-Acosta, Juan Carlos

2014-09-01

251

Rapid assessments of amphibian diversity James R. Vonesh, Joseph C. Mitchell, Kim Howell, and  

E-print Network

15 Rapid assessments of amphibian diversity James R. Vonesh, Joseph C. Mitchell, Kim Howell, and Andrew J. Crawford 15.1 Background: rapid assessment of amphibian diversity More than 6400 amphibian (AmphibiaWeb 2008). Many of these species are threatened or declining and more than 150 may have recently

Crawford, Andrew J.

252

To Form a More Perfect Union: Campus Diversity Initiatives. Understanding the Difference Diversity Makes: Assessing Campus Diversity Initiatives Series.  

ERIC Educational Resources Information Center

This monograph, the first in a series of three, on campus diversity issues is the result of a collaboration of scholars and evaluators who consulted on five campus diversity initiatives. It uses research findings that chart college and university efforts to move from the rhetoric of inclusion to the practice of equity, arguing that the current…

Musil, Caryn McTighe; Garcia, Mildred; Hudgins, Cynthia A.; Nettles, Michael T.; Sedlacek, William E.; Smith, Daryl G.

253

Hidden diversity of endophytic fungi in an invasive plant  

Microsoft Academic Search

Fungal endophytes are important in plant ecology and common in plants. We attempted to test cointroduction and host-jumping hypotheses on a community basis by comparing endophytes isolated from invasive spotted knapweed ( Centaurea stoebe , Aster- aceae) in its native and invaded ranges. Of 92 combined, sequence-based haplotypes representing eight classes of Fungi, 78 oc- curred in only one of

Alexey Shipunov; George Newcombe; Anil K. H. Raghavendra; Cort L. Anderson

2008-01-01

254

Appraisal of plant diversity effect of the rebuilding and extension project of National Highway 209 Duchuan to Chunshu section  

NASA Astrophysics Data System (ADS)

Plant diversity evaluation of highway construction of nature reserve is one important task in a construction project. I analyze and appraisal the plant diversity problems caused by the rebuilding and extension project of No.209 national highway Duchuan to Chunshuya section from plant species diversity, plant composition characteristics, vegetation type's diversity and national rare and endangered plants in the construction region. The highway reconstruction through the Savage Valley Nature Reserve basically causes no destructive effects on plant diversity, but there are still some negative effects. In this paper, I put forward scientific, reasonable and feasible measures and methods to the plant diversity protection by combining with the natural environment characteristics of the highway construction region.

Shi, Youhui; Zhang, Qipeng; Li, Haiyan; Dai, Yan

2011-02-01

255

Effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China  

PubMed Central

This study evaluated the effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Poplar plantations resulted in a higher species number and Shannon's diversity. Species compositions were different between areas with poplar and reed populations: a lower ratio of hygrophytes but a higher ratio of mesophytes, and a higher ratio of heliophytes but a lower ratio of neutrophilous or shade plants in poplar areas compared to reed areas. Poplar plantations supported a higher ratio of ligneous plants in the entire Dongting Lake area, but there was no difference in the monitored plots. Unlike reedy areas, poplar plantations had higher light availability but lower soil water content during the growing seasons. These data suggest that young poplar plantations generally increased species richness and plant diversity, but significantly changed species composition due to the reduced soil water and increased light availability. PMID:25208975

Li, Youzhi; Chen, Xinsheng; Xie, Yonghong; Li, Xu; Li, Feng; Hou, Zhiyong

2014-01-01

256

Plant Diversity and Multifunctional Management of Grassland Agriculture  

Technology Transfer Automated Retrieval System (TEKTRAN)

Managing for multiple ecosystem functions and services requires greater ecosystem diversity and complexity. Complex ecosystems, such as forage and grazing lands, may provide multiple benefits and require multiple species. In this paper, I provide a brief perspective from our research conducted in th...

257

Plant sphingolipids: structural diversity, biosynthesis, first genes and functions  

Microsoft Academic Search

In mammals and Saccharomyces cerevisiae, sphingolipids have been a subject of intensive research triggered by the interest in their structural diversity and in mammalian pathophysiology as well as in the availability of yeast mutants and suppressor strains. More recently, sphingolipids have attracted additional interest, because they are emerging as an important class of messenger molecules linked to many different cellular

Petra Sperling; Ernst Heinz

2003-01-01

258

PLANT GENETIC DETERMINANTS OF ARTHROPOD COMMUNITY STRUCTURE AND DIVERSITY  

Microsoft Academic Search

To test the hypothesis that genes have extended phenotypes on the community, we quantified how genetic differences among cottonwoods affect the diversity, abundance, and composition of the dependent arthropod com- munity. Over two years, five major patterns were observed in both field and common-garden studies that focused on two species of cottonwoods and their naturally occurring F1 and backcross hybrids

Gina M. Wimp; Gregory D. Martinsen; Kevin D. Floate; Randy K. Bangert; Thomas G. Whitham

2005-01-01

259

Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities.  

PubMed

Invasive plants have been shown to negatively affect the diversity of plant communities. However, little is known about the effect of invasive plants on the diversity at other trophic levels. In this study, we examine the per capita effects of two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), on moth diversity in wetland communities at 20 sites in the Pacific Northwest, USA. Prior studies document that increasing abundance of these two plant species decreases the diversity of plant communities. We predicted that this reduction in plant diversity would result in reduced herbivore diversity. Four measurements were used to quantify diversity: species richness (S), community evenness (J), Brillouin's index (H) and Simpson's index (D). We identified 162 plant species and 156 moth species across the 20 wetland sites. The number of moth species was positively correlated with the number of plant species. In addition, invasive plant abundance was negatively correlated with species richness of the moth community (linear relationship), and the effect was similar for both invasive plant species. However, no relationship was found between invasive plant abundance and the three other measures of moth diversity (J, H, D) which included moth abundance in their calculation. We conclude that species richness within, and among, trophic levels is adversely affected by these two invasive wetland plant species. PMID:18947450

Schooler, S S; McEvoy, P B; Hammond, P; Coombs, E M

2009-06-01

260

Effect of Two Plant Species, Flax (Linum usitatissinumL.) and Tomato (Lycopersicon esculentumMill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads  

Microsoft Academic Search

Suppression of soilborne disease byfluorescent pseudomonads may be inconsistent. Inefficient root coloni- zationbytheintroducedbacteriaisoftenresponsibleforthisinconsistency.Tobetterunderstandthebacterial traits involved in root colonization, the effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations was assessed. Fluorescent pseudo- monads were isolated from an uncultivated soil and from rhizosphere, rhizoplane, and root tissue offlax and tomato

PHILIPPE LEMANCEAU; THERESE CORBERAND; LOUIS GARDAN; XAVIER LATOUR; GISELE LAGUERRE; JEAN-MARC BOEUFGRAS

1995-01-01

261

Non-native plants add to the British flora without negative consequences for native diversity.  

PubMed

Plants are commonly listed as invasive species, presuming that they cause harm at both global and regional scales. Approximately 40% of all species listed as invasive within Britain are plants. However, invasive plants are rarely linked to the national or global extinction of native plant species. The possible explanation is that competitive exclusion takes place slowly and that invasive plants will eventually eliminate native species (the "time-to-exclusion hypothesis"). Using the extensive British Countryside Survey Data, we find that changes to plant occurrence and cover between 1990 and 2007 at 479 British sites do not differ between native and non-native plant species. More than 80% of the plant species that are widespread enough to be sampled are native species; hence, total cover changes have been dominated by native species (total cover increases by native species are more than nine times greater than those by non-native species). This implies that factors other than plant "invasions" are the key drivers of vegetation change. We also find that the diversity of native species is increasing in locations where the diversity of non-native species is increasing, suggesting that high diversities of native and non-native plant species are compatible with one another. We reject the time-to-exclusion hypothesis as the reason why extinctions have not been observed and suggest that non-native plant species are not a threat to floral diversity in Britain. Further research is needed in island-like environments, but we question whether it is appropriate that more than three-quarters of taxa listed globally as invasive species are plants. PMID:25831537

Thomas, Chris D; Palmer, G

2015-04-01

262

Photosynthetic diversity meets biodiversity: the C4 plant example.  

PubMed

Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere. PMID:25264020

Sage, Rowan F; Stata, Matt

2015-01-01

263

Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas  

USGS Publications Warehouse

A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. ?? 2011 The Author(s).

Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E.; Prins, H.H.T.

2012-01-01

264

Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory  

PubMed Central

Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale. PMID:23825795

2013-01-01

265

Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests.  

PubMed

Airborne lidar is a remote-sensing tool of increasing importance in ecological and conservation research due to its ability to characterize three-dimensional vegetation structure. If different aspects of plant species diversity and composition can be related to vegetation structure, landscape-level assessments of plant communities may be possible. We examined this possibility for Mediterranean oak forests in southern Portugal, which are rich in biological diversity but also threatened. We compared data from a discrete, first-and-last return lidar data set collected for 31 plots of cork oak (Quercus suber) and Algerian oak (Quercus canariensis) forest with field data to test whether lidar can be used to predict the vertical structure of vegetation, diversity of plant species, and community type. Lidar- and field-measured structural data were significantly correlated (up to r= 0.85). Diversity of forest species was significantly associated with lidar-measured vegetation height (R(2) = 0.50, p < 0.001). Clustering and ordination of the species data pointed to the presence of 2 main forest classes that could be discriminated with an accuracy of 89% on the basis of lidar data. Lidar can be applied widely for mapping of habitat and assessments of habitat condition (e.g., in support of the European Species and Habitats Directive [92/43/EEC]). However, particular attention needs to be paid to issues of survey design: density of lidar points and geospatial accuracy of ground-truthing and its timing relative to acquisition of lidar data. PMID:22731687

Simonson, William D; Allen, Harriet D; Coomes, David A

2012-10-01

266

High Plant Diversity in Eocene South America: Evidence from  

E-print Network

quantitative sampling of a middle-latitude flora, we present evidence for extraordinary plant di- versity of Geosciences, Pennsylvania State Uni- versity, University Park, PA 16802, USA. 2 Museum of Paleontology

Lyons, S. Kathleen

267

Herbivores and nutrients control grassland plant diversity via light limitation  

Technology Transfer Automated Retrieval System (TEKTRAN)

Human alterations to nutrient cycles and herbivore communities are dramatically altering global biodiversity. Theory predicts these changes to be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive excl...

268

vol. 165, no. 6 the american naturalist june 2005 Eocene Plant Diversity at Laguna del Hunco and  

E-print Network

vol. 165, no. 6 the american naturalist june 2005 Eocene Plant Diversity at Laguna del Hunco and Ri. Most notably, Neotropical plant diversity exceeds other tropical regions by factors of two to three Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 Submitted October 1, 2004

Wilf, Peter

269

High-sensitivity measurement of diverse vascular plant-derived biomarkers in high-altitude ice cores  

E-print Network

High-sensitivity measurement of diverse vascular plant-derived biomarkers in high-altitude ice of diverse vascular plant- derived biomarkers in high-altitude ice cores, Geophys. Res. Lett., 36, L13501-volatile organic compounds derived from burned and fresh vascular plant sources and preserved in high- altitude ice

Howat, Ian M.

270

MSU Departmental Assessment Plan Department: Plant Sciences and Plant Pathology  

E-print Network

/Majors/Options Offered by Department List here Plant Sciences major Crop Science option Plant Biology option (Environmental Horticultural Science, Landscape Design, Plant Biology, Crop Science, and Biotechnology--Plant been made in the Plant Biology and Crop Science options, but the major issue that was discussed is how

Maxwell, Bruce D.

271

Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm  

Technology Transfer Automated Retrieval System (TEKTRAN)

This research was conducted to elucidate phenotypic and biochemical diversity in 60 coriander (Coriandrum sativum L.) accessions maintained at the North Central Regional Plant Introduction Station and examine relationships between amplified fragment length polymorphisms (AFLP) and patterns of phenot...

272

Evolutionary Relationships and Functional Diversity of Plant Sulfate Transporters  

PubMed Central

Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1–SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae. PMID:22629272

Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J.; Shiu, Shin-Han

2011-01-01

273

Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness  

PubMed Central

The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus). We found that plant biomass (a measurement of ecosystem function) sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass. PMID:24688865

Schweitzer, Jennifer A.; Bailey, Joseph K.

2014-01-01

274

Emerging roles for diverse intramembrane proteases in plant biology.  

PubMed

Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has made its impact on plant biology as well. Although this field within plant research is still in its infancy, some interesting observations have started to emerge. Gene encoding orthologs of rhomboid proteases, site-2 proteases (S2P), presenilin/?-secretases, and signal peptide peptidases are found in plant genomes and some of these gene products were identified in different plant cell membranes. The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development. An S2P was also implicated in the response to ER stress through cleavage of ER-membrane bZIP transcription factors, allowing their migration to the nucleus and activation of the transcription of BiP chaperones. Other membrane-bound transcription factors of the NAC and PHD families were also demonstrated to undergo RIP and relocalization to the nucleus. These and other new data are expected to shed more light on the roles of intramembrane proteases in plant biology in the future. This article is part of a Special Issue entitled: Intramembrane Proteases. PMID:24099011

Adam, Zach

2013-12-01

275

Assessment Matters in Higher Education: Choosing and Using Diverse Approaches.  

ERIC Educational Resources Information Center

This book presents 16 papers on assessment in higher education grouped into four sections on: first, systems approaches to assessment; second, the effectiveness of innovative assessment; third, assessing practice; and fourth, autonomous assessment. The included papers are: (1) "Institutional Strategies for Assessment" (Sally Brown); (2)…

Brown, Sally, Ed.; Glasner, Angela, Ed.

276

Additive partitioning of plant species diversity in an agricultural mosaic landscape  

Microsoft Academic Search

In this paper, we quantify the effects of habitat variability and habitat heterogeneity based on the partitioning of landscape species diversity into additive components and link them to patch-specific diversity. The approach is illustrated with a case study from central Switzerland, where we recorded the presence of vascular plant species in a stratified random sample of 1'280 quadrats of 1 m2

Helene H. Wagner; Otto Wildi; Klaus C. Ewald

2000-01-01

277

Diversity of heterotrimeric G-protein ? subunits in plants  

PubMed Central

Background Heterotrimeric G-proteins, consisting of three subunits G?, G? and G? are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, G? subunits were shown to provide functional selectivity to G-proteins. Three unconventional G? subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional G? subunits and taxonomical distribution has not been yet demonstrated. Results After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known G? subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX). According to their C-terminal structures we classified the plant G? subunits into three distinct types. Type A consists of G? subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant G? subunits. Conclusion Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those G? subunits lacking isoprenylation motifs to anchor the G?? dimer to the plasma membrane and propose a new flexible nomenclature for plant G? subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of G? research in Arabidopsis and its generalization to other plant species. PMID:23113884

2012-01-01

278

Biosynthesis of Plant Volatiles: Nature's Diversity and Ingenuity  

NSDL National Science Digital Library

Plant volatiles (PVs) are lipophilic molecules with high vapor pressure that serve various ecological roles. The synthesis of PVs involves the removal of hydrophilic moieties and oxidation/hydroxylation, reduction, methylation, and acylation reactions. Some PV biosynthetic enzymes produce multiple products from a single substrate or act on multiple substrates. Genes for PV biosynthesis evolve by duplication of genes that direct other aspects of plant metabolism; these duplicated genes then diverge from each other over time. Changes in the preferred substrate or resultant product of PV enzymes may occur through minimal changes of critical residues. Convergent evolution is often responsible for the ability of distally related species to synthesize the same volatile.

Eran Pichersky (University of Michigan; Department of Molecular, Cellular and Developmental Biology)

2006-02-10

279

Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada  

USGS Publications Warehouse

Patterns of native and alien plant diversity in response to disturbance were examined along an elevational gradient in blue oak savanna, chaparral, and coniferous forests. Total species richness, alien species richness, and alien cover declined with elevation, at scales from 1 to 1000 m2. We found no support for the hypothesis that community diversity inhibits alien invasion. At the 1-m2 point scale, where we would expect competitive interactions between the largely herbaceous flora to be most intense, alien species richness as well as alien cover increased with increasing native species richness in all communities. This suggests that aliens are limited not by the number of native competitors, but by resources that affect establishment of both natives and aliens. Blue oak savannas were heavily dominated by alien species and consistently had more alien than native species at the 1-m 2 scale. All of these aliens are annuals, and it is widely thought that they have displaced native bunchgrasses. If true, this means that aliens have greatly increased species richness. Alternatively, there is a rich regional flora of native annual forbs that could have dominated these grasslands prior to displacement by alien grasses. On our sites, livestock grazing increased the number of alien species and alien cover only slightly over that of sites free of livestock grazing for more than a century, indicating some level of permanency to this invasion. In chaparral, both diversity and aliens increased markedly several years after fire. Invasive species are rare in undisturbed shrublands, and alien propagules fail to survive the natural crown fires in these ecosystems. Thus, aliens necessarily must colonize after fire and, as a consequence, time since fire is an important determinant of invasive presence. Blue oak savannas are an important propagule source for alien species because they maintain permanent populations of all alien species encountered in postfire chaparral, and because the vegetation mosaic in this region places them in proximity to chaparral. The speed at which alien propagules reach a burned site and the speed at which the shrublands return to their former closed-canopy condition determine alien invasion. Frequent burning of this vegetation alters the balance in favor of alien invasion. In the higher-elevation coniferous forests, species diversity was a function of fire severity and time since fire. High-intensity fires create gaps that decrease canopy coverage and increase light levels and nutrients for an ephemeral successional flora. Few species have persistent seed banks, so the time since fire is an important determinant of colonization success. There was a highly significant interaction between fire severity and time since fire for understory cover, species richness, and alien richness and cover. Understory was sparse in the first year after fire, particularly in low-severity burns, and increased substantially several years after fire, particularly on high-severity burns. Both fire severity and time since fire affected alien species richness and dominance. Coniferous forests had about one-third as many alien species as the foothill oak savannas, and fewer than half of the species were shared between these communities. Unburned coniferous forests were largely free of alien species, whereas some burned sites had a significant alien presence, which presents a challenge for fire restoration of these forests.

Keeley, J.E.; Lubin, D.; Fotheringham, C.J.

2003-01-01

280

Assessment of diversity in Harpagophytum with RAPD and ISSR markers provides evidence of introgression.  

PubMed

The genus Harpagophytum has two species: H. procumbens which is an important medicinal plant in southern Africa, and H. zeyheri. Genetic diversity in 96 samples, obtained by germinating seeds collected from Botswana, was assessed using six inter-simple sequence repeat (ISSR) and 10 random amplified polymorphic DNA (RAPD) primers. These DNA markers yielded a total of 138 polymorphic bands. Polymorphism information content (PIC) ranged from 0.06 to 0.39 for ISSR primers, and from 0.09 to 0.43 for RAPD primers. Jaccard's similarity coefficients were highest when seedlings derived from the same fruit capsule were compared, while seedlings from different fruits on the same plant had intermediate values. The lowest values were recorded among seedlings from different plants. These results were consistent with an outcrossing breeding system in Harpagophytum. Analysis of molecular variance revealed significant differentiation (P<0.01) between taxonomic units within Harpagophytum. About 39% of the variability occurred between the two species, H. procumbens and H. zeyheri. Plants with an intermediate morphology, i.e. putative hybrids (PH), showed 21% differentiation when compared with H. procumbens ssp. procumbens (PP), and 19% when compared with H. procumbens ssp. transvaalense (PT) or with H. zeyheri (ZZ). In addition, a deviating variant of PT was identified, here termed 'procumbens new variety' (PN). PN showed only 9% differentiation when compared with PT, 22% when compared with PP or with PH, and 41% when compared with ZZ. Considerable differentiation between the two Harpagophytum species was revealed also by a cluster analysis. Introgression was, however, suggested by the intermediate position of the putative hybrid plants in a principal component analysis while inter-specific gene flow was shown by a Bayesian genetic structure analysis. PMID:25363276

Muzila, Mbaki; Werlemark, Gun; Ortiz, Rodomiro; Sehic, Jasna; Fatih, Moneim; Setshogo, Moffat; Mpoloka, Wata; Nybom, Hilde

2014-10-01

281

MORPHOLOGICAL AND PHYSIOLOGICAL INTERACTIONS IN DIVERSE PLANT COMMUNITIES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Morphological and physiological interactions among plants in multi-species forage mixtures affect responses to environmental stresses. White clover growing under drought stress in a five-species mixture which included a deep-rooted forb had greater transpiration rates and higher leaf water potential...

282

Genetic diversity, plant adaptation regions, and gene pools of switchgrass  

Technology Transfer Automated Retrieval System (TEKTRAN)

Switchgrass is a perennial grass native to the North American tallgrass prairie and broadly adapted to the central and eastern USA. Movement of plant materials throughout this region creates the potential of contaminating local gene pools with genes that are not native to a locale. The objective o...

283

A developmental switch sufficient for flower initiation in diverse plants  

Microsoft Academic Search

We have generated transgenic plants in which the flower-meristem-identity gene LEAFY of Arabidopsis is constitutively expressed. LEAFY is sufficient to determine floral fate in lateral shoot meristems of both Arabidopsis and the heterologous species aspen, with the consequence that flower development is induced precociously. Our results also suggest a new level of regulation during flower development, as indicated by the

Detlef Weigel; Ove Nilsson

1995-01-01

284

INCREASING NATIVE PLANT DIVERSITY IN CRESTED WHEATGRASS STANDS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Crested wheatgrass was introduced to North America to improve degraded rangelands and has proven to be a successful revegetation species due to its ease of establishment, strong competitive ability, and grazing tolerance. However, crested wheatgrass may form monotypic stands with low plant diversit...

285

Linking herbivore experience, varied diets, and plant biochemical diversity  

Microsoft Academic Search

We contend diets and habitats that allow animals to select among alternatives enable individuals to better meet needs for nutrients and to better cope with toxins. All plants contain toxins, and the amount of toxin an animal can ingest depends on the kinds and amounts of nutrients and toxins in the forages on offer. Nutrients and toxins both cause animals

F. D. Provenza; J. J. Villalba; L. E. Dziba; S. B. Atwood; R. E Banner

2003-01-01

286

Climate change threats to plant diversity in Europe  

Microsoft Academic Search

Climate change has already triggered species distribution shifts in many parts of the world. Increasing impacts are expected for the future, yet few studies have aimed for a general understanding of the regional basis for species vulnerability. We projected late 21st century distributions for 1,350 European plants species under seven climate change scenarios. Application of the International Union for Conservation

Wilfried Thuiller; Sandra Lavorel; Miguel B. Araújo; Martin T. Sykes; I. Colin Prentice

2005-01-01

287

The “Hidden Diversity” of Medicinal Plants in Northeastern Brazil: Diagnosis and Prospects for Conservation and Biological Prospecting  

PubMed Central

Increases in ethnobotanical studies and knowledge in recent decades have led to a greater and more accurate interpretation of the overall patterns related to the use of medicinal plants, allowing for a clear identification of some ecological and cultural phenomena. “Hidden diversity” of medicinal plants refers in the present study to the existence of several species of medicinal plants known by the same vernacular name in a given region. Although this phenomenon has previously been observed in a localized and sporadic manner, its full dimensions have not yet been established. In the present study, we sought to assess the hidden diversity of medicinal plants in northeastern Brazil based on the ethnospecies catalogued by local studies. The results indicate that there are an average of at least 2.78 different species per cataloged ethnospecies in the region. Phylogenetic proximity and its attendant morphological similarity favor the interchangeable use of these species, resulting in serious ecological and sanitary implications as well as a wide range of options for conservation and bioprospecting. PMID:24228056

Cavalcanti, Deyvson Rodrigues; Albuquerque, Ulysses Paulino

2013-01-01

288

Dominant species, rather than diversity, regulates temporal stability of plant communities.  

PubMed

A growing body of empirical evidence suggests that the temporal stability of communities typically increases with diversity. The counterview to this is that dominant species, rather than diversity itself, might regulate temporal stability. However, empirical studies that have explicitly examined the relative importance of diversity and dominant species in maintaining community stability have yielded few clear-cut patterns. Here, using a long-term data set, we examined the relative importance of changes in diversity components and dominance hierarchy following the removal of a dominant C4 grass, Bouteloua gracilis, in stabilizing plant communities. We also examined the relationships between the variables of diversity and dominance hierarchy and the statistical components of temporal stability. We found a significant negative relationship between temporal stability and species richness, number of rare species, and relative abundance of rare species, whereas a significant positive relationship existed between temporal stability and relative abundance of the dominant species. Variances and covariances summed over all species significantly increased with increasing species richness, whereas they significantly decreased with increasing relative abundance of dominant species. We showed that temporal stability in a shortgrass steppe plant community was controlled by dominant species rather than by diversity itself. The generality of diversity-stability relationships might be restricted by the dynamics of dominant species, especially when they have characteristics that contribute to stability in highly stochastic systems. A clear implication is that dominance hierarchies and their changes might be among the most important ecological components to consider in managing communities to maintain ecosystem functioning. PMID:21279386

Sasaki, Takehiro; Lauenroth, William K

2011-07-01

289

Relationships between Plant Diversity and the Abundance and ?-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem  

PubMed Central

A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and ?-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle ?-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid ?-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

2013-01-01

290

Relationships between arthropod richness, evenness, and diversity are altered by complementarity among plant genotypes.  

PubMed

Biodiversity is quantified via richness (e.g., the number of species), evenness (the relative abundance distribution of those species), or proportional diversity (a combination of richness and evenness, such as the Shannon index, H'). While empirical studies show no consistent relationship between these aspects of biodiversity within communities, the mechanisms leading to inconsistent relationships have received little attention. Here, using common evening primrose (Oenothera biennis) and its associated arthropod community, we show that relationships between arthropod richness, evenness, and proportional diversity are altered by plant genotypic richness. Arthropod richness increased with O. biennis genotypic richness due to an abundance-driven accumulation of species in response to greater plant biomass. Arthropod evenness and proportional diversity decreased with plant genotypic richness due to a nonadditive increase in abundance of a dominant arthropod, the generalist florivore/omnivore Plagiognathas politus (Miridae). The greater quantity of flowers and buds produced in polycultures-which resulted from positive complementarity among O. biennis genotypes-increased the abundance of this dominant insect. Using choice bioassays, we show that floral quality did not change in plant genotypic mixtures. These results elucidate mechanisms for how plant genotypic richness can modify relationships between arthropod richness, evenness, and proportional diversity. More broadly, our results suggest that trophic interactions may be a previously underappreciated factor controlling relationships between these different aspects of biodiversity. PMID:22002039

McArt, Scott H; Cook-Patton, Susan C; Thaler, Jennifer S

2012-04-01

291

Plant species diversity and composition of wetlands within an upland forest.  

PubMed

Though often overlooked, small wetlands in an upland matrix can support diverse plant communities that increase both local and regional species richness. Here we characterize the full range of wetland vegetation within an upland forest landscape and compare the diversity and composition of different wetland plant communities. In an old-growth forest reserve in southern Quebec, Canada, we sampled wet habitats including lakeshores, permanent and seasonal ponds, swamps, glades, and streamsides. We used clustering, indicator species analysis, and nonmetric multidimensional scaling ordination to identify and compare vegetation types. The wetlands contained 280 species of vascular plants, 45% of the reserve's flora, in only 1.1% of its area. Local diversity averaged 24 ± 0.7 species per 7 m(2), much higher than in the surrounding upland forests. Plant communities sorted into five types, whose strongest indicator species were Osmunda regalis, Glyceria striata, O. cinnamomea, Deparia acrostichoides, and Matteuccia struthiopteris, respectively. Both local species richness and compositional variation among sites differed among the vegetation types. By combining species representative of the region's major wetlands with species from the upland forest matrix, the plant assemblages of these wetlands make disproportionately important contributions to landscape-level diversity. PMID:21632326

Flinn, Kathryn M; Lechowicz, Martin J; Waterway, Marcia J

2008-10-01

292

Composition and Diversity of Soil Microbial Communities Following Vegetation Change from Grassland to Woodland: An Assessment Using Molecular Methods  

E-print Network

of the bacterial diversity indices and the age of the woody plant stands (data not shown). 6.We hypothesize substrates resulting from lower plant species diversity in wooded areas. Figure 1. Principal componentComposition and Diversity of Soil Microbial Communities Following Vegetation Change from Grassland

293

Genetic and Phenotypic Diversity of Plant Growth Promoting Bacilli  

Microsoft Academic Search

\\u000a Bacilli are aerobic or facultatively anaerobic, Gram-positive or variable, endospore-forming bacteria that exhibit resistance\\u000a to environmental stress and produce peptide antibiotics, peptide signal molecules, and extracellular enzymes. Bacillus and Paenibacillus genera include the best knowing nitrogen-fixing species. Another characteristic of bacilli is their great potential in producing\\u000a substances that promote direct plant growth by the production of phytohormones (mainly indolic

Anelise Beneduzi; Luciane M. P. Passaglia

294

Rapid compositional change and significant loss of plant species diversity among Triassic-Jurassic palynofloras in East Greenland  

NASA Astrophysics Data System (ADS)

The Triassic-Jurassic (Tr-J; 200Ma) transition coincides with the eruption of massive flood basalts associated with the opening of the Atlantic Ocean. This is thought to have lead to a fourfold increase in palaeoatmospheric carbon dioxide, a consequent rise in global temperatures of between 3 and 6 degrees Celsius, and a rise in atmospheric pollutants such as sulphur dioxide. Recent work has employed either plant macrofossils (mostly leaves) or sporomorphs (pollen and spores) to reconstruct the response of terrestrial vegetation to this episode of major environmental change. Investigations of the macrofossil record at Astartekloft in East Greenland indicate a rapid loss of plant diversity in the Late Rhaetian, culminating in an 80% species turnover at the Tr-J boundary interval. However, evidence for such catastrophic diversity loss is conspicuously absent from the sporomorph record. This fossil group indicates that the Tr-J boundary interval in central and northwest Europe is characterized by compositional change and a transient shift from gymnosperm forests to fern-dominated vegetation. In order to address this uncertainty regarding Tr-J vegetation change according to macrofossils versus sporomorphs, we present an analysis of sporomorph diversity and compositional change across the Tr-J at Astartekloft, East Greenland. Sporomorph diversity was estimated using individual and sample-based rarefaction techniques, and compositional differences between sporomorph samples were assessed using non-metric multidimensional scaling. These analyses reveal that sporomorph assemblages from the Tr-J boundary interval at Astartekloft are between 23 and 27% less taxonomically diverse than other Triassic assemblages, and that this interval is characterized by a dramatic shift in the composition of the standing vegetation. These results are statistically significant and are also unrelated to changes in the environment of deposition. These results indicate that the magnitude of plant diversity loss across the Tr-J in East Greenland is apparently greater in the macrofossil record than the sporomorph record. Comparison of these results with taphonomic work on the representation of different groups of plants in macrofossil and sporomorph records at Astartekloft is used to understand this discrepancy.

Mander, Luke; Kürschner, Wolfram; McElwain, Jennifer

2010-05-01

295

Contrasting responses of plant and insect diversity to variation in grazing intensity  

Microsoft Academic Search

The effects of grazing intensity on plant and insect diversity were examined in four different types of grassland (intensively and extensively cattle-grazed pastures, short-term and long-term ungrazed grassland; 24 study sites). Vegetation complexity (plant species richness, vegetation height, vegetation heterogeneity) was significantly higher on ungrazed grasslands compared to pastures but did not differ between intensively and extensively grazed pastures. However,

Andreas Kruess; Teja Tscharntke

2002-01-01

296

Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis  

Microsoft Academic Search

Among plant secondary metabolites, terpenoids are the most abundant and structurally diverse group. In addition to their important\\u000a roles in pollinator attraction and direct and indirect plant defense, terpenoids are also commercially valuable due to their\\u000a broad applications in the cosmetic, food, and pharmaceutical industries. Because of their functional versatility and wide\\u000a distribution, great efforts have been made to decipher

Fengnian Yu; Ryutaro Utsumi

2009-01-01

297

Assessing invasive plant infestation in freshwater wetlands  

NASA Astrophysics Data System (ADS)

Recent shifts in wetland ecosystem management goals have directed efforts toward measuring ecological integrity, rather than only using physical and chemical measures of ecosystems as health indicators. Invasive species pose one of the largest threats to wetlands integrity. Resource managers can benefit from improved methods for identifying invasive plant species, assessing infestation, and monitoring control measures. The utilization of advanced remote sensing tools for species-level mapping has been increasing and techniques need to be explored for identifying species of interest and characterizing infestation. The overarching goal of this research was to develop monitoring technologies to map invasive plants and quantify wetland infestation. The first field-level objective was to characterize absorption and reflectance features and assess processing techniques for separating wetland species. The second field-level objective was to evaluate the abilities of a shape filter to identify wetland invasive plant species. The first landscape-level objective was to classify hyperspectral imagery in order to identify invasives of interest. The second landscape-level objective was to quantify infestation within the study area. Field-level hyperspectral data (350-2500nm) were collected for twenty-two wetland plant species in a wetland located in the lower Muskegon River watershed in Michigan, USA. The Jeffries-Matusita distance measure, continuum removal, and a shape-filter were applied to hyperspectral species reflectance data to characterize spectral features. Generally, continuum removal decreased separation distance for the invasive species of interest. Using the shape-filter, Lythrum salicaria, Phragmites australis, and Typha latifolia possessed maximum separation (distinguished from other species) at the near-infrared edge (700nm) and water absorption region (1350nm), the near-infrared down slope (1000 and 1100nm), and the visible/chlorophyll absorption region (500nm) and near-infrared edge (650nm), respectively. Airborne hyperspectral imagery was classified using a two-step approach in order to obtain an optimal map (overall accuracy ˜ 70%). Information in the near-infrared enabled relatively accurate classification for Phragmites australis using the Spectral Angle Mapper algorithm and image-derived training, while Typha latifolia signatures possessed high spectral overlap and required ISODATA clustering techniques. Landscape pattern metrics relate infestation to disturbances and hydrological controls. The highest levels of infestation and infestation patterns coincide with the most substantial levels of hydrological modifications indicating human disturbances are correlated with Typha and Phragmites percentages in the landscape. Overall the approach was successful and increased the level of information ultimately desired by decision makers. The rapidly advancing field of wetland remote sensing science can obtain more meaningful information from hyperspectral imagery; however, the data are challenging to work with and only the most precisely calibrated datasets will provide utility. Combining these data with traditional wetland assessment techniques can substantially advanced goals of preserving and restoring wetland ecosystem integrity.

Torbick, Nathan M.

298

Microsatellite-based analysis of the genetic structure and diversity of Aleurocanthus spiniferus (Hemiptera: Aleyrodidae) from tea plants in China.  

PubMed

Although Aleurocanthus spiniferus (Quaintance) (Hemiptera: Aleyrodidae) is a well known insect pest of tea plants, little information is available about its genetic structure and diversity. The present study used microsatellite markers to assess the genetic structure and diversity of this species on tea plants in China. For this purpose, 193 individuals from ten natural populations were analyzed using ten microsatellite markers. Our results indicated that the average number of alleles (A) across populations was 35.6, and all observed heterozygosities (HO) were greater than 0.7, indicating an excess of heterozygosity and a relatively high level of genetic diversity among populations, and the number of private alleles per population ranged from 3 to 26. Pairwise FST analysis suggested that the number of genetic differentiation events was moderate (0.05

Tang, Xiao-Tian; Tao, Huan-Huan; Du, Yu-Zhou

2015-04-10

299

Size, age and composition: characteristics of plant taxa as diversity predictors of gall-midges (Diptera: Cecidomyiidae).  

PubMed

Many hypotheses have been proposed to explain the diversity of gall-midge insects (Diptera: Cecidomyiidae), some of them taking into account plant diversity. This study aims to test the importance of size, age and composition of host plant taxa in the diversity of Cecidomyiidae. For this we used inventories data on the diversity of galling and host plants in Brazil. We found that Asterales, Myrtales and Malpighiales, were the most important orders, with 34, 33 and 25, gall morphotypes, respectively. The most representative host families were Asteraceae (34 morphotypes), Myrtaceae (23) and Fabaceae (22). In general, the order size and the plant family were good predictors of the galling diversity, but not the taxon age. The most diverse host genera for gall-midges were Mikania, Eugenia and Styrax, with 15, 13 and nine galler species, respectively. The size of plant genera showed no significant relationship with the richness of Cecidomyiidae, contrary to the prediction of the plant taxon size hypothesis. The plant genera with the greatest diversity of galling insects are not necessarily those with the greatest number of species. These results indicate that some plant taxa have a high intrinsic richness of galling insects, suggesting that the plant species composition may be equally or more important for the diversity of gall-midges than the size or age of the host taxon. PMID:22208077

Araújo, Walter S

2011-12-01

300

Ethical and Professional Issues in Career Assessment With Diverse Racial and Ethnic Groups  

Microsoft Academic Search

This article examines the recent contributions in the vocational psychology and counseling psychology literature in the areas of multicultural and career assessment. The foundational skills that are essential for culturally competent assessment are presented, and a process model for culturally appropriate vocational assessment with ethnically diverse individuals is presented. The components in the model include culturally encompassing information gathering, culturally

Lisa Y. Flores; Lisa B. Spanierman; Ezemenari M. Obasi

2003-01-01

301

Plant diversity in live fences and pastures, two examples from the Mexican humid tropics.  

PubMed

This study analyzes the potential uses of live fences and pastures as reservoirs of plant diversity for two regions with different management histories, Los Tuxtlas (LT) and Uxpanapa (UX), Veracruz, México. We studied two habitats, live fences and pastures, analyzed their species richness, diversity, structure and plant composition and classified species according to plant regeneration modes (light-demanding and shade tolerant), seed dispersal syndrome and their local uses. We recorded 62 species of trees at LT and 48 at UX. Live fences were more diverse than pastures in both regions. The LT site showed to analyze the relationship a higher diversity of plants in regeneration stages than the one at UX. However, UX had higher diversity of adult plants in the pastures than LT. Composition and structure of live fences were different between regions, as well as within live fences and pastures, 53 % of species were light-demanding and 40 % were shade tolerant; 70 % of the species were dispersed by birds. Differences between sites are associated with the modifications in live fences structure, which changed according to managerial practices and the use of local species; this may influence plant regeneration modes as well as the visits of avian dispersal agents. In LT, all species found in live fences were useful to humans, whereas in UX, less than half were used by the local population. Our results underline the importance of live fences and isolated trees in pasture habitats as potential sites to host native and useful species from tropical rain forests in livestock landscapes. PMID:24981271

Ruiz-Guerra, Betsabé; Rosas, Noé Velázquez; López-Acosta, Juan Carlos

2014-09-01

302

Changing Attitudes over Time: Assessing the Effectiveness of a Workplace Diversity Course  

ERIC Educational Resources Information Center

Diversity is increasing within the United States, and higher education will likely play a key role in preparing people to function in this new environment. This study assessed the effectiveness of a semester-long psychology workplace diversity course at changing student levels of ethnocentrism and attitudes regarding gender roles; the disabled;…

Probst, Tahira M.

2003-01-01

303

Plant diversity and conservation status of Himalayan Region Poonch Valley Azad Kashmir (Pakistan).  

PubMed

The plant diversity of Himalayan region has been reduced to greater extent due to environmental degradation and human exploitation. Anthropogenic disturbance was the major factor responsible for fragmentation of forest vegetation into small patches. Little research has been conducted in the Himalayan region of Poonch Valley of North eastern Pakistan with reference to plants biodiversity and its conservation. The present research was carried out to provide a checklist of vegetation for biodiversity conservation. A total of 430 vascular and 5 nonvascular plant species with 5 species of Bryophytes (5 families), 13 species of Pteridophytes (6 families), 4 species of Gymnosperms (1 family) and 413 species of angiosperms (95 families) were enumerated from the Poonch valley Azad Kashmir. The genera were classified into three categories according to the number of species. 25 plant communities with phytosociological parameters and diversity indices were reported. Present study revealed that there were 145 threatened, 30 endangered, 68 vulnerable and 47 rare species. It is recorded that extensive grazing, uprooting of plants and soil slope erosion intensify the environmental problems. Since there is maximum exploitation of vegetation, the valley showed a decline in plant diversity. The study was also indicated that the main threats to the biodiversity are expansion of settlement and army installations in the forest area of the valley. For sustainable use In-situ and Ex-situ conservation, controlled harvesting and afforestation may be the solution. Moreover, forest area should be declared prohibited for settlements and army installations. PMID:25176378

Khan, Muhammad Azam; Khan, Mir Ajab; Hussain, Mazhar; Mujtaba, Ghulam

2014-09-01

304

Plant–soil feedbacks provide an additional explanation for diversity–productivity relationships  

PubMed Central

Plant–soil feedbacks (PSFs) have gained attention for their role in plant community dynamics, but their role in productivity has been overlooked. We developed and tested a biomass-specific, multi-species model to examine the role of PSFs in diversity–productivity relationships. The model predicts a negative relationship between PSFs and overyielding: plants with negative PSFs grow more in communities than in monoculture (i.e. overyield), and plants with positive PSFs grow less in communities than in monoculture (i.e. underyield). This effect is predicted to increase with diversity and saturate at low species richness because the proportion of ‘self-cultivated’ soils rapidly decreases as species are added to a community. Results in a set of glasshouse experiments supported model predictions. We found that PSFs measured in one experiment were negatively correlated with overyielding in three-species plant communities measured in a separate experiment. Furthermore, when parametrized with our experimental PSF data, our model successfully predicted species-level overyielding and underyielding. The model was less effective at predicting community-level overyielding and underyielding, although this appeared to reflect large differences between communities with or without nitrogen-fixing plants. Results provide conceptual and experimental support for the role of PSFs in diversity–productivity relationships. PMID:22496190

Kulmatiski, Andrew; Beard, Karen H.; Heavilin, Justin

2012-01-01

305

The Carnivorous Pale Pitcher Plant Harbors Diverse, Distinct, and Time-Dependent Bacterial Communities? †  

PubMed Central

The ability of American carnivorous pitcher plants (Sarracenia) to digest insect prey is facilitated by microbial associations. Knowledge of the details surrounding this interaction has been limited by our capability to characterize bacterial diversity in this system. To describe microbial diversity within and between pitchers of one species, Sarracenia alata, and to explore how these communities change over time as pitchers accumulate and digest insect prey, we collected and analyzed environmental sequence tag (454 pyrosequencing) and genomic fingerprint (automated ribosomal intergenic spacer analysis and terminal restriction fragment length polymorphism) data. Microbial richness associated with pitcher plant fluid is high; more than 1,000 unique phylogroups were identified across at least seven phyla and 50 families. We documented an increase in bacterial diversity and abundance with time and observed repeated changes in bacterial community composition. Pitchers from different plants harbored significantly more similar bacterial communities at a given time point than communities coming from the same genetic host over time. The microbial communities in pitcher plant fluid also differ significantly from those present in the surrounding soil. These findings indicate that the bacteria associated with pitcher plant leaves are far from random assemblages and represent an important step toward understanding this unique plant-microbe interaction. PMID:20097807

Koopman, Margaret M.; Fuselier, Danielle M.; Hird, Sarah; Carstens, Bryan C.

2010-01-01

306

Hidden diversity of endophytic fungi in an invasive plant.  

PubMed

Fungal endophytes are important in plant ecology and common in plants. We attempted to test cointroduction and host-jumping hypotheses on a community basis by comparing endophytes isolated from invasive spotted knapweed (Centaurea stoebe, Asteraceae) in its native and invaded ranges. Of 92 combined, sequence-based haplotypes representing eight classes of Fungi, 78 occurred in only one of the two ranges. In the native range of C. stoebe, one haplotype of Alternaria alternata was clearly dominant, whereas in the invaded range, no haplotype was dominant. Many haplotypes were closely related to one another and novel. For example, six putative, new species of Botrytis were discovered as endophytes of C. stoebe, which has never been reported to have Botrytis spp.. Apparent differences between the two communities of endophytes were significant according to an analysis of similarity, but phylogenetic community structure did not differ significantly between the ranges. Both host-jumping and cointroduction of fungal endophytes likely took place during the spotted knapweed invasion. PMID:21632429

Shipunov, Alexey; Newcombe, George; Raghavendra, Anil K H; Anderson, Cort L

2008-09-01

307

Patterns, determinants and models of woody plant diversity in China  

PubMed Central

What determines large-scale patterns of species richness remains one of the most controversial issues in ecology. Using the distribution maps of 11 405 woody species in China, we compared the effects of habitat heterogeneity, human activities and different aspects of climate, particularly environmental energy, water–energy dynamics and winter frost, and explored how biogeographic affinities (tropical versus temperate) influence richness–climate relationships. We found that the species richness of trees, shrubs, lianas and all woody plants strongly correlated with each other, and more strongly correlated with the species richness of tropical affinity than with that of temperate affinity. The mean temperature of the coldest quarter was the strongest predictor of species richness, and its explanatory power for species richness was significantly higher for tropical affinity than for temperate affinity. These results suggest that the patterns of woody species richness mainly result from the increasing intensity of frost filtering for tropical species from the equator/lowlands towards the poles/highlands, and hence support the freezing-tolerance hypothesis. A model based on these results was developed, which explained 76–85% of species richness variation in China, and reasonably predicted the species richness of woody plants in North America and the Northern Hemisphere. PMID:21147804

Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao; Lin, Xin

2011-01-01

308

Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico  

USGS Publications Warehouse

Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

2009-01-01

309

Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants.  

PubMed

The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1? gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

Demers, Jill E; Gugino, Beth K; Jiménez-Gasco, María Del Mar

2015-01-01

310

Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.  

PubMed

Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading. PMID:24649649

Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

2014-01-01

311

Distribution and diversity of exotic plant species in montane to alpine areas of Kosciuszko National Park  

Microsoft Academic Search

Diversity and distribution of exotic plant taxa in Kosciuszko National Park in south-eastern Australia were reviewed based on 1103 records of exotics from 18 vegetation surveys conducted between 1986 and 2004. 154 taxa from 23 families were recorded in the alpine to montane zones, with eleven taxa in the alpine, 128 taxa in the subalpine and 69 taxa in the

Roxana Bear; Wendy Hill; Catherine M. Pickering

312

Increasing plant diversity does not influence productivity: empirical evidence and potential mechanisms  

Microsoft Academic Search

The relationship between species diversity and ecosystem functions has generated considerable debate among ecologists. Ecosystem functions (e.g. productivity, nutrient retention) are often positively correlated with species richness in experimental plant assemblages, but little or no correlation exists in natural communities. We examined the effects ofspecies richness on productivity and available soil nitrate by experimentally manipulating richness using random draws from

N. C. Kenkel; D. A. Peltzer; D. Balutal; D. Pirie

2000-01-01

313

Pollinating flies (Diptera): A major contribution to plant diversity and agricultural production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Diptera are one of the three largest and most diverse animal groups of the world. As an often neglected, but important group of pollinators, they play a significant role in agrobiodiversity and biodiversity of plants everywhere. Flies are present in almost all habitats and biomes and for many food p...

314

Identification of boreal forest stands with high herbaceous plant diversity using airborne laser scanning  

Microsoft Academic Search

Boreal forest stands with high herbaceous plant species diversity have been found to be one of the main habitats for many endangered species, but the locations and sizes of these herb-rich forest stands are not well known in many areas. Better identification of the stands could improve both their conservation and management. A new approach is proposed here for locating

Mikko Vehmas; Kalle Eerikäinen; Jussi Peuhkurinen; Petteri Packalén; Matti Maltamo

2009-01-01

315

Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae  

Technology Transfer Automated Retrieval System (TEKTRAN)

During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive ap...

316

Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi  

Technology Transfer Automated Retrieval System (TEKTRAN)

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here for the first time we compare the sequenced genomes of 18 Dothideomycetes to analyze their evolution, genome organization, a...

317

Diversity of Marine Plants. Man and the Gulf of Mexico Series.  

ERIC Educational Resources Information Center

"Man and the Gulf of Mexico" (MGM) is a marine science curriculum series developed to meet the needs of 10th through 12th grade students in Mississippi and Alabama schools. This MGM unit on the diversity of marine plants is divided into 12 sections. The first section introduces the unit by providing objectives and activities on why people classify…

Irby, Bobby N., Comp.; And Others

318

Suppression of Gene Silencing: A General Strategy Used by Diverse DNA and RNA Viruses of Plants  

Microsoft Academic Search

In transgenic and nontransgenic plants, viruses are both initiators and targets of a defense mechanism that is similar to posttranscriptional gene silencing (PTGS). Recently, it was found that potyviruses and cucumoviruses encode pathogenicity determinants that suppress this defense mechanism. Here, we test diverse virus types for the ability to suppress PTGS. Nicotiana benthamiana exhibiting PTGS of a green fluorescent protein

Olivier Voinnet; Yvonne M. Pinto; David C. Baulcombe

1999-01-01

319

LETTER doi:10.1038/nature10282 High plant diversity is needed to maintain ecosystem  

E-print Network

LETTER doi:10.1038/nature10282 High plant diversity is needed to maintain ecosystem services Forest , and there is consensus that this can decrease ecosystem functioning and services2­7 . It remains unclear, though, whether few8 or many9 of the species in an ecosystem are needed to sustain the provisioning of ecosystem

Minnesota, University of

320

Plant Diversity: Effects of Grazing System and Stocking Rate in Northern Mixed-Grass Prairie  

Technology Transfer Automated Retrieval System (TEKTRAN)

Effects of grazing system, stocking rate, and grazing system X stocking rate interactions, on plant diversity are poorly understood in rangelands. A grazing system (season-long and short-duration rotational grazing) X stocking rate (light: 16 steers•80 ha-1, moderate: 4 steers•12 ha-1 and heavy: 4 s...

321

Natural enemies thin melaleuca-canopy and help increase plant diversity in the melaleuca stands.  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Australian tree Melaleuca quinquenervia (Cav.) S.T. Blake (melaleuca) formed dense monocultural forests several decades after invading Florida and the Caribbean islands. These dominant forests have displaced native vegetation in sensitive wetland systems. We assumed that native plant diversity...

322

PLANT SPECIES DIVERSITY IN NATURAL AND MANAGED FORESTS OF THE PACIFIC NORTHWEST1,2  

Microsoft Academic Search

With the exception of the tropics, nowhere has the relationship between resource management and conservation of biological diversity been more controversial than in the Pacific Northwest region of the United States. Widespread loss and fragmentation of old-growth ecosystems have stimulated critical review and revision of existing forest management policies. However, studies of the consequences of forest management for plant species

CHARLES B. HALPERN; THOMAS A. SPIES

1995-01-01

323

Plant succession in perennial grass strips and effects on the diversity of leafhoppers (Homoptera, Auchenorrhyncha)  

Microsoft Academic Search

The biodiversity of agroecosystems may be enhanced by increasing species richness and structural diversity of vegetation by creating perennial strips. Aims of the study were (1) to describe the plant succession of perennial strips in northern conditions; (2) to clarify the difference in insect fauna between cereal fields and perennial strips; (3) to determine the effect of succession on leafhoppers

Erja Huusela-Veistola; Arja Vasarainen

2000-01-01

324

agronomie: plants genetics and breeding Diversity of luteoviruses infecting faba bean  

E-print Network

agronomie: plants genetics and breeding Diversity of luteoviruses infecting faba bean (Vicia faba L surveying faba bean (Vicia faba L) for viruses in Morocco, members of the luteovirus group were found to be economically important. In order to further identify them, a number of faba bean samples showing symp- toms

Paris-Sud XI, Université de

325

Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact  

Microsoft Academic Search

In many respects, the ecology of members of the Botryosphaeriaceae compare to general patterns observed for the collective of endophytes of woody plants. These include high levels of diversity, horizontal transmission a spatial structure and a continuum of levels of host affinity from specific to very broad. Some members of the Botryosphaeriaceae are, however, among the most aggressive pathogens in

Bernard Slippers; Michael J. Wingfield

2007-01-01

326

Exotic plant traits lead to functional diversity decline in novel ecosystems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Exotic species have become common and even dominant in some grasslands forming novel ecosystems because the species in them have no common evolutionary history. Recent work on these novel ecosystems suggest that exotic species contribute to diversity declines. In order to identify the plant traits...

327

Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany.  

PubMed

Cities are hotspots of plant species richness, harboring more species than their rural surroundings, at least over large enough scales. However, species richness does not necessarily cover all aspects of biodiversity such as phylogenetic relationships. Ignoring these relationships, our understanding of how species assemblages develop and change in a changing environment remains incomplete. Given the high vascular plant species richness of urbanized areas in Germany, we asked whether these also have a higher phylogenetic diversity than rural areas, and whether phylogenetic diversity patterns differ systematically between species groups characterized by specific functional traits. Calculating the average phylogenetic distinctness of the total German flora and accounting for spatial autocorrelation, we show that phylogenetic diversity of urban areas does not reflect their high species richness. Hence, high urban species richness is mainly due to more closely related species that are functionally similar and able to deal with urbanization. This diminished phylogenetic information might decrease the flora's capacity to respond to environmental changes. PMID:18616547

Knapp, Sonja; Kühn, Ingolf; Schweiger, Oliver; Klotz, Stefan

2008-10-01

328

agronomie: plant genetics and breeding Early assessment of adult plant reaction of wheat  

E-print Network

agronomie: plant genetics and breeding Early assessment of adult plant reaction of wheat (Triticum Pavoine G Doussinault Station d'amélioration des plantes, Inra, domaine de La Motte, BP 29, F-35650 Le leading to the early prediction of adult plant reaction to powdery mildew infection at a seedling stage

Paris-Sud XI, Université de

329

How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands  

USGS Publications Warehouse

We used multiscale plots to sample vascular plant diversity and soil characteristics in and adjacent to 26 long-term grazing exclosure sites in Colorado, Wyoming, Montana, and South Dakota, USA. The exclosures were 7-60 yr old (31.2 ?? 2.5 yr, mean ?? 1 SE). Plots were also randomly placed in the broader landscape in open rangeland in the same vegetation type at each site to assess spatial variation in grazed landscapes. Consistent sampling in the nine National Parks, Wildlife Refuges, and other management units yielded data from 78 1000-m2 plots and 780 1-m2 subplots. We hypothesized that native species richness would be lower in the exclosures than in grazed sites, due to competitive exclusion in the absence of grazing. We also hypothesized that grazed sites would have higher native and exotic species richness compared to ungrazed areas, due to disturbance (i.e., the intermediate-disturbance hypothesis) and the conventional wisdom that grazing may accelerate weed invasion. Both hypotheses were soundly rejected. Although native species richness in 1-m2 subplots was significantly higher (P < 0.05) in grazed sites, we found nearly identical native or exotic species richness in 1000-m2 plots in exclosures (31.5 ?? 2.5 native and 3.1 ?? 0.5 exotic species), adjacent grazed plots (32.6 ?? 2.8 native and 3.2 ?? 0.6 exotic species), and randomly selected grazed plots (31.6 ?? 2.9 native and 3.2 ?? 0.6 exotic species). We found no significant differences in species diversity (Hill's diversity indices, N1 and N2), evenness (Hill's ratio of evenness, E5), cover of various life-forms (grasses, forbs, and shrubs), soil texture, or soil percentage of N and C between grazed and ungrazed sites at the 1000-m2 plot scale. The species lists of the long-ungrazed and adjacent grazed plots overlapped just 57.9 ?? 2.8%. This difference in species composition is commonly attributed solely to the difference in grazing regimes. However, the species lists between pairs of grazed plots (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

1999-01-01

330

Assessing the Effect of Disturbances on Ectomycorrhiza Diversity  

PubMed Central

Ectomycorrhiza (ECM) communities can be described on a species level or on a larger scale at an ecosystem level. Here we show that the species level approach of successional processes in ECM communities is not appropriate for understanding the diversity patterns of ECM communities at contaminated sites. An ecosystem based approach improves predictability since different biotic and abiotic factors are included. However, it still does not take into account the hierarchical structure of the ecosystem. We suggest that diversity patterns of ECMs communities in forests can best be investigated at three levels. This hypothetical approach for investigation can be tested at sites of secondary succession in areas contaminated with metals. Once the diversity patterns are appropriately described by a hierarchical ecosystem approach, to the species level is used to explain these patterns by populational and ecotoxicological mechanisms. PMID:19440391

Iordache, Virgil; Gherghel, Felicia; Kothe, Erika

2009-01-01

331

Plant community diversity and native plant abundance decline with increasing abundance of an exotic annual grass  

Microsoft Academic Search

Exotic plants are generally considered a serious problem in wildlands around the globe. However, some argue that the impacts\\u000a of exotic plants have been exaggerated and that biodiversity and other important plant community characteristics are commonly\\u000a improved with invasion. Thus, disagreement exists among ecologists as to the relationship of exotic plants with biodiversity\\u000a and native plant communities. A better understanding

Kirk W. Davies

332

Historical agriculture alters the effects of fire on understory plant beta diversity.  

PubMed

Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on plant diversity. We address this contingency by evaluating how beta diversity (the spatial variability of species composition), an important component of regional biodiversity, is shaped by interactions between historical agriculture and prescribed fire, two prominent disturbances that are often coincident in terrestrial ecosystems. At three study locations spanning 450 km in the southeastern United States, we surveyed longleaf pine woodland understory plant communities across 232 remnant and post-agricultural sites with differing prescribed fire regimes. Our results demonstrate that agricultural legacies are a strong predictor of beta diversity, but the direction of this land-use effect differed among the three study locations. Further, although beta diversity increased with prescribed fire frequency at each study location, this effect was influenced by agricultural land-use history, such that positive fire effects were only documented among sites that lacked a history of agriculture at two of our three study locations. Our study not only highlights the role of historical agriculture in shaping beta diversity in a fire-maintained ecosystem but also illustrates how this effect can be contingent upon fire regime and geographic location. We suggest that interactions among historical and contemporary land-use activities may help to explain dissimilarities in plant communities among sites in human-dominated landscapes. PMID:25411111

Mattingly, W Brett; Orrock, John L; Collins, Cathy D; Brudvig, Lars A; Damschen, Ellen I; Veldman, Joseph W; Walker, Joan L

2015-02-01

333

Receding water line and interspecific competition determines plant community composition and diversity in wetlands in beijing.  

PubMed

Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity. The results of this study could aid in improving the understanding of community composition, diversity, and its successional trends in degraded wetlands. PMID:25848799

Wang, Zhengjun; Gong, Huili; Zhang, Jing

2015-01-01

334

Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing  

PubMed Central

Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity. The results of this study could aid in improving the understanding of community composition, diversity, and its successional trends in degraded wetlands. PMID:25848799

Wang, Zhengjun; Gong, Huili; Zhang, Jing

2015-01-01

335

An assessment of European pig diversity using molecular markers: Partitioning of diversity among breeds  

Microsoft Academic Search

Genetic diversity within and between breeds (and lines) of pigs was investigated. The sample comprised 68 European domestic\\u000a breeds (and lines), including 29 local breeds, 18 varieties of major international breeds, namely Duroc, Hampshire, Landrace, Large White and Piétrain, and 21 commercial lines either purebred or synthetic, to which the Chinese Meishan and a sample of European wild pig were

Louis Ollivier; Lawrence Alderson; Gustavo C. Gandini; Jean-Louis Foulley; Chris S. Haley; Ruth Joosten; Annemieke P. Rattink; Barbara Harlizius; Martien A. M. Groenen; Yves Amigues; Marie-Yvonne Boscher; Geraldine Russell; Andy Law; Roberta Davoli; Vincenzo Russo; Donato Matassino; Céline Désautés; Erling Fimland; Meena Bagga; Juan-Vicente Delgado; Jose L. Vega-Pla; Amparo M. Martinez; Antonio M. Ramos; Peter Glodek; Johann-Nikolaus Meyer; Graham S. Plastow; Kenneth W. Siggens; Alan L. Archibald; Denis Milan; Magali San Cristobal; Guillaume Laval; Keith Hammond; Ricardo Cardellino; Claude Chevalet

2005-01-01

336

A resource-based conceptual model of plant diversity that reassesses causality in the1 productivitydiversity relationship2  

E-print Network

on studies from various parts of the world, encompassing both terrestrial15 and non-terrestrial ecosystems1 A resource-based conceptual model of plant diversity that reassesses causality in the1 variation translates into species richness patterns, by outlining a11 conceptual model of plant diversity

Nottingham, University of

337

The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities  

PubMed Central

Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities. PMID:23765101

Lee, Yong-Jin; van Nostrand, Joy D; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; Carter, Michelle Q; He, Zhili; Wu, Liyou; Yang, Fang; Xu, Jian; Zhou, Jizhong

2013-01-01

338

The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities.  

PubMed

Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities. PMID:23765101

Lee, Yong-Jin; van Nostrand, Joy D; Tu, Qichao; Lu, Zhenmei; Cheng, Lei; Yuan, Tong; Deng, Ye; Carter, Michelle Q; He, Zhili; Wu, Liyou; Yang, Fang; Xu, Jian; Zhou, Jizhong

2013-10-01

339

Woody plant phylogenetic diversity mediates bottom-up control of arthropod biomass in species-rich forests.  

PubMed

Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom-up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top-down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests. PMID:25004869

Schuldt, Andreas; Baruffol, Martin; Bruelheide, Helge; Chen, Simon; Chi, Xiulian; Wall, Marcus; Assmann, Thorsten

2014-09-01

340

ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS  

E-print Network

ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS: THE STARLITE STUDY Farrokh plants. The research also has aimed at identifying both the trade-offs that lead to the optimal regime of operation for a tokamak power plant and the critical plasma physics and technology issues. During

California at San Diego, University of

341

Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.  

PubMed

Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity. PMID:21508605

Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

2011-05-01

342

Employment equity, affirmative action and managing diversity: assessing the differences  

Microsoft Academic Search

Affirmative action in the USA, and employment equity in Canada, are policy frameworks that have developed through the use of legislation, regulation and decisions by courts and administrative tribunals, as mechanisms for addressing discrimination in employment. Managing diversity, in contrast, is a voluntary initiative by corporate decision makers, at the level of the firm, in response to the growth of

Carol Agócs; Catherine Burr

1996-01-01

343

Growth and Diversity in Doctoral Education: Assessing the Australian Experience  

ERIC Educational Resources Information Center

The major growth of doctoral education in recent decades has attracted attention from policy makers and researchers. In this article we explore the growth of doctoral education in Australia, its impact on diversity in respect of the doctoral population, shifts in disciplinary strengths, institutional concentration and award programs. We conclude…

Pearson, Margot; Evans, Terry; Macauley, Peter

2008-01-01

344

Invasive plants have scale-dependent effects on diversity by altering species-area relationships.  

PubMed

Although invasive plant species often reduce diversity, they rarely cause plant extinctions. We surveyed paired invaded and uninvaded plant communities from three biomes. We reconcile the discrepancy in diversity loss from invaders by showing that invaded communities have lower local richness but steeper species accumulation with area than that of uninvaded communities, leading to proportionately fewer species loss at broader spatial scales. We show that invaders drive scale-dependent biodiversity loss through strong neutral sampling effects on the number of individuals in a community. We also show that nonneutral species extirpations are due to a proportionately larger effect of invaders on common species, suggesting that rare species are buffered against extinction. Our study provides a synthetic perspective on the threat of invasions to biodiversity loss across spatial scales. PMID:23329045

Powell, Kristin I; Chase, Jonathan M; Knight, Tiffany M

2013-01-18

345

Predators indirectly reduce the prevalence of an insect-vectored plant pathogen independent of predator diversity.  

PubMed

A widely cited benefit of predator diversity is greater suppression of insect herbivores, with corresponding increases in plant biomass. In the context of a vector-borne pathogen system, predator species richness may also influence plant disease risk via the direct effects of predators on the abundance and behavior of herbivores that also act as pathogen vectors. Using an assemblage of generalist insect predators, we examined the relationship between predator species richness and the prevalence of the aphid-vectored cereal yellow dwarf virus in wheat. We found that increasing predator richness enhanced suppression of the vector population and that pathogen prevalence was reduced when predators were present, but the reduction in prevalence was independent of predator species richness. To determine the mechanism(s) by which predator species richness contributes to vector suppression, but not pathogen prevalence, we evaluated vector movement and host plant occupancy in response to predator treatments. We found that pathogen prevalence was unrelated to vector suppression because host plant occupancy by vectors did not vary as a function of vector abundance. However, the presence of predators reduced pathogen prevalence because predators stimulated greater plant-to-plant movement by vectors, which likely diminished vector feeding time and reduced the transmission efficiency of this persistent pathogen. We conclude that community structure (i.e., the presence of predators), but not predator diversity, is a potential factor influencing local plant infection by this insect-vectored pathogen. PMID:25561170

Long, Elizabeth Y; Finke, Deborah L

2015-04-01

346

A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.  

NASA Astrophysics Data System (ADS)

The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

2012-04-01

347

Learning to Assess Science in Linguistically Diverse Classrooms: Tracking Growth in Secondary Science Preservice Teachers' Assessment Expertise  

ERIC Educational Resources Information Center

Although studies have documented teachers' growth in assessing science resulting from professional development or science methods courses, little attention has been given to growth while being prepared to assess a linguistically diverse student population. In this study, the growth of 11 secondary science preservice teachers is documented by…

Lyon, Edward G.

2013-01-01

348

Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa.  

PubMed

Interactions between plants and soil microbes are important determinants of both above- and belowground community composition, and ultimately ecosystem function. As exotic plants continue to invade and modify native plant communities, there has been increasing interest in determining the influence of exotic invasives on native soil microbial communities. Here, using highly sensitive molecular techniques, we examine fungal abundance and diversity in the soil surrounding a particularly aggressive invasive plant species in North America, Centaurea maculosa Lam. In mixed stands, we show that this invasive weed can alter the native fungal community composition within its own rhizosphere and that of neighboring native plants. At higher densities, the effect of C. maculosa on native soil fungal communities was even greater. Our results demonstrate that this invasive weed can have significant effects not only on visible aboveground biodiversity but also on the native soil microbial community that extends beyond its rhizosphere. PMID:18059499

Broz, Amanda K; Manter, Daniel K; Vivanco, Jorge M

2007-12-01

349

Paramagnetic cellulose DNA isolation improves DNA yield and quality among diverse plant taxa1  

PubMed Central

• Premise of the study: The chemical diversity of land plants ensures that no single DNA isolation method results in high yield and purity with little effort for all species. Here we evaluate a new technique originally developed for forensic science, based on MagnaCel paramagnetic cellulose particles (PMC), to determine its efficacy in extracting DNA from 25 plant species representing 21 families and 15 orders. • Methods and Results: Yield and purity of DNA isolated by PMC, DNeasy Plant Mini Kit (silica column), and cetyltrimethylammonium bromide (CTAB) methods were compared among four individuals for each of 25 plant species. PMC gave a twofold advantage in average yield, and the relative advantage of the PMC method was greatest for samples with the lowest DNA yields. PMC also produced more consistent sample purity based on absorbance ratios at 260:280 and 260:230 nm. • Conclusions: PMC technology is a promising alternative for plant DNA isolation. PMID:25309836

Moeller, Jackson R.; Moehn, Nicholas R.; Waller, Donald M.; Givnish, Thomas J.

2014-01-01

350

Plant community diversity and native plant abundance decline with increasing abundance of an exotic annual grass  

Technology Transfer Automated Retrieval System (TEKTRAN)

Exotic plants are generally considered a serious problem in wildlands around the globe. However, some argue that the impacts of exotic plants have been exaggerated and that biodiversity and other important plant community characteristics are commonly improved with invasion. Thus, disagreement exis...

351

Mechanisms for increased soil C storage with increasing temporal and spatial plant diversity in Agroecosystems  

NASA Astrophysics Data System (ADS)

Generally, there are positive relationships between plant species diversity and net primary production and other key ecosystem functions. However, the effects of aboveground diversity on soil microbial communities and ecosystem processes they mediate, such as soil C sequestration, remain unclear. In this study, we used an 11-y cropping diversity study where increases in diversity have increased crop yields. At the experimental site, temporal diversity is altered using combinations of annual crop rotations, while spatial diversity is altered using cover crop species. We used five treatments ranging in diversity from one to five species consisting of continuous corn with no cover crop or one cover crop and corn-soy-wheat rotations with no cover, one cover or two cover crop species. We collected soils from four replicate plots of each treatment and measured the distribution of mega- (>2 mm), macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates. Within each aggregate size class, we also measured total soil C and N, permanganate oxidizable C (POXC), extracellular enzyme activities (EEA), and microbial community structure with phospholipid fatty acid (PLFA) analysis. We use these data to address the impacts of both rotational and cover crop diversity on soil physical structure, associated microbial community structure and activity and soil C storage. As spatial diversity increased, we found concurrent increases in mega-aggregate abundance as well as increasing soil C in the mega- and micro-aggregates but not macro-aggregates. The proportion of total soil C in each aggregate size class that is relatively labile (POXC) was highest in the micro-aggregates, as was enzyme activity associated with labile C acquisition across all levels of diversity. Enzyme activity associated with more recalcitrant forms of soil C was highest in the mega-aggregate class, also across all diversity levels; however, the ratio of labile to recalcitrant EEA increased with increasing diversity in the mega- and micro-aggregates. In addition, soil N increased with diversity such that microbial C:N EEA simultaneously decreased in mega-aggregates. We also found that cropping diversity has created distinctive soil microbial communities, highlighted by variation in the abundance of gram positive bacteria and Actinomycetes. Further research will help us determine how these changes in community structure with increasing diversity are related to concomitant changes in aggregation and enzyme activities. We suggest that the additional organic matter inputs from cover crops in the high diversity treatments have increased aggregation processes and C pools. While microbial activity has also increased in association with this increased C availability, the activity of recalcitrant and N-acquiring enzymes has declined, suggesting an overall decrease in SOM mineralization with possible increased SOM stabilization. The addition of crop species in rotation (temporal diversity) had minimal influence on any of the measured parameters. We thus conclude that spatial diversity is a more important driver of soil structure and microbial activity, likely due to the high quality organic matter inputs derived from the leguminous cover crops; however, spatial diversity alone did not lead to the same level of C storage potential as mixtures of temporal and spatial diversity.

Tiemann, L. K.; Grandy, S.; Marin-Spiotta, E.; Atkinson, E. E.

2012-12-01

352

Assessing phenotypic, biochemical, and molecular diversity in coriander ( Coriandrum sativum L.) germplasm  

Microsoft Academic Search

Our goals for this research were to elucidate phenotypic and biochemical diversity in coriander (Coriandrum sativum L.) populations maintained at the North Central Regional Plant Introduction Station in Ames, IA, and examine relationships\\u000a between amplified fragment length polymorphism (AFLP) markers and patterns of phenotypic and biochemical diversity. Phenotypic\\u000a and biochemical traits were evaluated, and analyses of variance and mean comparisons

Pedro A. López; Mark P. Widrlechner; Philipp W. Simon; Satish Rai; Terri D. Boylston; Terry A. Isbell; Theodore B. Bailey; Candice A. Gardner; Lester A. Wilson

2008-01-01

353

Bottom-up effects of host-plant species diversity and top-down effects of ants interactively increase plant performance  

PubMed Central

While plant diversity is well known to increase primary productivity, whether these bottom-up effects are enhanced by reciprocal top-down effects from the third trophic level is unknown. We studied whether pine tree species diversity, aphid-tending ants and their interaction determined plant performance and arthropod community structure. Plant diversity had a positive effect on aphids, but only in the presence of mutualistic ants, leading to a threefold greater number of both groups in the tri-specific cultures than in monocultures. Plant diversity increased ant abundance not only by increasing aphid number, but also by increasing ant recruitment per aphid. The positive effect of diversity on ants in turn cascaded down to increase plant performance; diversity increased plant growth (but not biomass), and this effect was stronger in the presence of ants. Consequently, bottom-up effects of diversity within the same genus and guild of plants, and top-down effects from the third trophic level (predatory ants), interactively increased plant performance. PMID:22951745

Moreira, Xoaquín; Mooney, Kailen A.; Zas, Rafael; Sampedro, Luis

2012-01-01

354

Bottom-up effects of host-plant species diversity and top-down effects of ants interactively increase plant performance.  

PubMed

While plant diversity is well known to increase primary productivity, whether these bottom-up effects are enhanced by reciprocal top-down effects from the third trophic level is unknown. We studied whether pine tree species diversity, aphid-tending ants and their interaction determined plant performance and arthropod community structure. Plant diversity had a positive effect on aphids, but only in the presence of mutualistic ants, leading to a threefold greater number of both groups in the tri-specific cultures than in monocultures. Plant diversity increased ant abundance not only by increasing aphid number, but also by increasing ant recruitment per aphid. The positive effect of diversity on ants in turn cascaded down to increase plant performance; diversity increased plant growth (but not biomass), and this effect was stronger in the presence of ants. Consequently, bottom-up effects of diversity within the same genus and guild of plants, and top-down effects from the third trophic level (predatory ants), interactively increased plant performance. PMID:22951745

Moreira, Xoaquín; Mooney, Kailen A; Zas, Rafael; Sampedro, Luis

2012-11-01

355

Grazer exclusion alters plant spatial organization at multiple scales, increasing diversity  

PubMed Central

Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai-Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter- and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m2), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra- and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter- and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter- and intraspecific aggregation produces local spatial patterns that scale-up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing. PMID:24223294

Zhang, Hui; Gilbert, Benjamin; Wang, Wenbin; Liu, Junjie; Zhou, Shurong

2013-01-01

356

Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps  

PubMed Central

Climate and land cover changes are important drivers of the plant species distributions and diversity patterns in mountainous regions. Although the need for a multifaceted view of diversity based on taxonomic, functional and phylogenetic dimensions is now commonly recognized, there are no complete risk assessments concerning their expected changes. In this paper, we used a range of species distribution models in an ensemble-forecasting framework together with regional climate and land cover projections by 2080 to analyze the potential threat for more than 2,500 plant species at high resolution (2.5 km × 2.5 km) in the French Alps. We also decomposed taxonomic, functional and phylogenetic diversity facets into ? and ? components and analyzed their expected changes by 2080. Overall, plant species threats from climate and land cover changes in the French Alps were expected to vary depending on the species’ preferred altitudinal vegetation zone, rarity, and conservation status. Indeed, rare species and species of conservation concern were the ones projected to experience less severe change, and also the ones being the most efficiently preserved by the current network of protected areas. Conversely, the three facets of plant diversity were also projected to experience drastic spatial re-shuffling by 2080. In general, the mean ?-diversity of the three facets was projected to increase to the detriment of regional ?-diversity, although the latter was projected to remain high at the montane-alpine transition zones. Our results show that, due to a high-altitude distribution, the current protection network is efficient for rare species, and species predicted to migrate upward. Although our modeling framework may not capture all possible mechanisms of species range shifts, our work illustrates that a comprehensive risk assessment on an entire floristic region combined with functional and phylogenetic information can help delimitate future scenarios of biodiversity and better design its protection. PMID:25722539

Thuiller, Wilfried; Guéguen, Maya; Georges, Damien; Bonet, Richard; Chalmandrier, Loïc; Garraud, Luc; Renaud, Julien; Roquet, Cristina; Van Es, Jérémie; Zimmermann, Niklaus E.; Lavergne, Sébastien

2014-01-01

357

Plot shape effects on plant species diversity measurements  

USGS Publications Warehouse

Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies? Location: Grasslands, shrublands and forests in the Mediterranean-climate region of California, USA. Methods: We compared three 0.1-ha sampling designs that differed in the shape and dispersion of 1-m2 and 100-m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400-m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire. Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1-or 100-m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self-similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale. Conclusions: At the 0.1-ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean-climate vegetation types studied here, the primary reason that 1:4 rectangles do not sample greater species richness than squares is because species turnover varies along complex environmental gradients that are both parallel and perpendicular to the long axis of rectangular plots. Reports in the literature of much greater species richness recorded for highly elongated rectangular strips than for squares of the same area are not likely to be fair comparisons because of the dramatically different periphery/area ratio, which includes a much greater proportion of species that are using both above and below-ground niche space outside the sample area. ?? IAVS; Opulus Press Uppsala.

Keeley, J.E.; Fotheringham, C.J.

2005-01-01

358

Microbial diversity and complexity in hypersaline environments: A preliminary assessment  

Microsoft Academic Search

  The microbial communities in solar salterns and a soda lake have been characterized using two techniques: BIOLOG, to estimate\\u000a the metabolic potential, and amplicon length heterogeneity analysis, to estimate the molecular diversity of these communities.\\u000a Both techniques demonstrated that the halophilic Bacteria and halophilic Archaea populations in the Eilat, Israel saltern\\u000a are dynamic communities with extensive metabolic potentials and changing

CD Litchfield; PM Gillevet

2002-01-01

359

Assessment of genetic diversity in Azadirachta indica using AFLP markers  

Microsoft Academic Search

Genetic diversity was estimated in 37 neem accessions from different eco-geographic regions of India and four exotic lines\\u000a from Thailand using AFLP markers. Seven AFLP selective primer combinations generated a total of 422 amplification products.\\u000a The average number of scorable fragments was 60 per experiment, and a high degree (69.8%) of polymorphism was obtained per\\u000a assay with values ranging from

A. Singh; M. S. Negi; J. Rajagopal; S. Bhatia; U. K. Tomar; P. S. Srivastava; M. Lakshmikumaran

1999-01-01

360

In silico identification of conserved microRNAs in large number of diverse plant species  

PubMed Central

Background MicroRNAs (miRNAs) are recently discovered small non-coding RNAs that play pivotal roles in gene expression, specifically at the post-transcriptional level in plants and animals. Identification of miRNAs in large number of diverse plant species is important to understand the evolution of miRNAs and miRNA-targeted gene regulations. Now-a-days, publicly available databases play a central role in the in-silico biology. Because, at least ~21 miRNA families are conserved in higher plants, a homology based search using these databases can help identify orthologs or paralogs in plants. Results We searched all publicly available nucleotide databases of genome survey sequences (GSS), high-throughput genomics sequences (HTGS), expressed sequenced tags (ESTs) and nonredundant (NR) nucleotides and identified 682 miRNAs in 155 diverse plant species. We found more than 15 conserved miRNA families in 11 plant species, 10 to14 families in 10 plant species and 5 to 9 families in 29 plant species. Nineteen conserved miRNA families were identified in important model legumes such as Medicago, Lotus and soybean. Five miRNA families – miR319, miR156/157, miR169, miR165/166 and miR394 – were found in 51, 45, 41, 40 and 40 diverse plant species, respectively. miR403 homologs were found in 16 dicots, whereas miR437 and miR444 homologs, as well as the miR396d/e variant of the miR396 family, were found only in monocots, thus providing large-scale authenticity for the dicot- and monocot-specific miRNAs. Furthermore, we provide computational and/or experimental evidence for the conservation of 6 newly found Arabidopsis miRNA homologs (miR158, miR391, miR824, miR825, miR827 and miR840) and 2 small RNAs (small-85 and small-87) in Brassica spp. Conclusion Using all publicly available nucleotide databases, 682 miRNAs were identified in 155 diverse plant species. By combining the expression analysis with the computational approach, we found that 6 miRNAs and 2 small RNAs that have been identified only in Arabidopsis thus far, are also conserved in Brassica spp. These findings will be useful for tracing the evolution of small RNAs by examining their expression in common ancestors of the Arabidopsis-Brassica lineage. PMID:18416839

Sunkar, Ramanjulu; Jagadeeswaran, Guru

2008-01-01

361

Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities  

PubMed Central

Plant communities and their ecosystem functions are expected to be more resilient to future habitat fragmentation and deterioration if the species comprising the communities have a wide range of dispersal and persistence strategies. However, the extent to which the diversity of dispersal and persistence traits in plant communities is determined by the current and historical characteristics of sites and their surrounding landscape has yet to be explored. Using quantitative information on long-distance seed dispersal potential by wind and animals (dispersal in space) and on species' persistence/longevity (dispersal in time), we (i) compared levels of dispersal and persistence trait diversity (functional richness, FRic, and functional divergence, FDiv) in seminatural grassland plant communities with those expected by chance, and (ii) quantified the extent to which trait diversity was explained by current and historical landscape structure and local management history – taking into account spatial and phylogenetic autocorrel. Null model analysis revealed that more grassland communities than expected had a level of trait diversity that was lower or higher than predicted, given the level of species richness. Both the range (FRic) and divergence (FDiv) of dispersal and persistence trait values increased with grassland age. FDiv was mainly explained by the interaction between current grazing intensity and the amount of grassland habitat in the surrounding landscape in 1938. Synthesis. The study suggests that the variability of dispersal and persistence traits in grassland plant communities is driven by deterministic assembly processes, with both history and current management (and their interactions), playing a major role as determinants of trait diversity. While a long continuity of grazing management is likely to have promoted the diversity of dispersal and persistence traits in present-day grasslands, communities in sites that are well grazed at the present day, and were also surrounded by large amounts of grassland in the past, showed the highest diversity of dispersal and persistence strategies. Our results indicate that the historical context of a site within a landscape will influence the extent to which current grazing management is able to maintain a diversity of dispersal and persistence strategies and buffer communities (and their associated functions) against continuing habitat fragmentation. PMID:25506086

Purschke, Oliver; Sykes, Martin T; Poschlod, Peter; Michalski, Stefan G; Römermann, Christine; Durka, Walter; Kühn, Ingolf; Prentice, Honor C

2014-01-01

362

Impact of invasive plants on the species richness, diversity and composition of invaded communities  

Microsoft Academic Search

Summary 1. Much attention has been paid to negative effects of alien species on resident communities but studies that quantify community-level effects of a number of invasive plants are scarce. We address this issue by assessing the impact of 13 species invasive in the Czech Republic on a wide range of plant communities. 2. Vegetation in invaded and uninvaded plots

Martin Hejda; Petr Pyšek; Vojt?ch Jarošík

2009-01-01

363

Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya.  

PubMed

Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya Medicinal plants collected in Himalayan forests play a vital role in the livelihoods of regional rural societies and are also increasingly recognized at the international level. However, these forests are being heavily transformed by logging. Here we ask how forest transformation influences the diversity and composition of medicinal plants in northwestern Pakistan, where we studied old-growth forests, forests degraded by logging, and regrowth forests. First, an approximate map indicating these forest types was established and then 15 study plots per forest type were randomly selected. We found a total of 59 medicinal plant species consisting of herbs and ferns, most of which occurred in the old-growth forest. Species number was lowest in forest degraded by logging and intermediate in regrowth forest. The most valuable economic species, including six Himalayan endemics, occurred almost exclusively in old-growth forest. Species composition and abundance of forest degraded by logging differed markedly from that of old-growth forest, while regrowth forest was more similar to old-growth forest. The density of medicinal plants positively correlated with tree canopy cover in old-growth forest and negatively in degraded forest, which indicates that species adapted to open conditions dominate in logged forest. Thus, old-growth forests are important as refuge for vulnerable endemics. Forest degraded by logging has the lowest diversity of relatively common medicinal plants. Forest regrowth may foster the reappearance of certain medicinal species valuable to local livelihoods and as such promote acceptance of forest expansion and medicinal plants conservation in the region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12231-012-9213-4) contains supplementary material, which is available to authorized users. PMID:23293378

Adnan, Muhammad; Hölscher, Dirk

2012-12-01

364

Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial community structure  

Microsoft Academic Search

It is unclear whether certain plant species and plant diversity could reduce the impacts of multiple heavy metal pollution\\u000a on soil microbial structure and soil enzyme activities. Random amplified polymorphic DNA (RAPD) was used to analyze the genetic\\u000a diversity and microbial similarity in planted and unplanted soil under combined cadmium (Cd) and lead (Pb) pollution. A metal\\u000a hyperaccumulator, Brassica juncea,

Yang Gao; Chiyuan Miao; Jun Xia; Liang Mao; Yafeng Wang; Pei Zhou

365

The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms  

NASA Astrophysics Data System (ADS)

Previous studies have shown that plant diversity can improve the wastewater purification efficiency of constructed wetlands (CWs), but its effect on the nitrous oxide (N2O) emission in CWs has been unknown. To investigate the effect of plant diversity on the N2O emission, we established four plant species richness levels (each level containing 1, 2, 3 and 4 species, respectively) by using 96 hydroponic microcosms. Results showed that plant species richness enhanced the N2O emission, ranging from 27.1 to 115.4 ?g N2O m-2 d-1, and improved nitrate removal (P < 0.001). The presence of Phalaris arundinacea within a given plant community increased the N2O emission (P < 0.001). The presence of Rumex japonicas had no influence on the N2O emissions (P > 0.05), but improved nitrogen removal (P < 0.001). Hence, our study highlights the importance of both plant species richness and species identity in mediating the N2O emission and nitrogen removal in CWs.

Sun, Hongying; Zhang, Chongbang; Song, Changchun; Chang, Scott X.; Gu, Baojing; Chen, Zhengxin; Peng, Changhui; Chang, Jie; Ge, Ying

2013-10-01

366

Terrestrial water and carbon fluxes across climatic gradients: does plant diversity matter?  

NASA Astrophysics Data System (ADS)

Vegetation diversity in many land-surface, ecohydrological, and dynamic vegetation models is crudely represented using a discrete classification of a handful of "plant types" (named Plant Functional Types; PFTs). The parameterization of PFTs typically reflects mean properties of observed plant functional traits over broad categories (e.g., temperate broadleaf deciduous forest) ignoring most of the inter- and intra-specific trait variability. In the present study, taking advantage of well-established plant-trait cross-correlations described by the Leaf Economics Spectrum, we generated coordinated hypothetical species across a continuous spectrum of leaf traits, rather than using pre-defined categories. The behavior of these proxy species is then tested using a mechanistic ecohydrological model (T&C) that operates as a filter of their performance. Simulations are carried out for a range of climates representative of different elevations and wetness conditions in Switzerland. Using this framework the following questions are addressed: (i) how sensitive are the carbon and water dynamics to species diversity? and (ii) which is the correlation between plant physiological traits, plant performance and observed trait distribution across climatic gradients?

Pappas, Christoforos; Fatichi, Simone; Burlando, Paolo

2014-05-01

367

Lead exposure and blood pressure among workers in diverse industrial plants in Kenya.  

PubMed

The study evaluated airborne exposures and blood lead (BPb) levels in 233 production workers at six diverse industrial plants in Kenya. Blood and personal breathing zone air samples were collected and analyzed for lead (Pb) using atomic absorption spectroscopy. Blood pressure (BP) levels were measured using a standard mercury sphygmomanometer. The results indicated mean airborne Pb levels ± standard deviation (SD) as follows: 183.2 ± 53.6 ?g/m(3) in battery recycling, 133.5 ± 39.6 ?g/m(3) in battery manufacturing, 126.2 ± 39.9 ?g/m(3) in scrap metal welding, 76.3 ± 33.2 ?g/m(3) in paint manufacturing, 27.3 ± 12.1 ?g/m(3) in a leather manufacturing, and 5.5 ± 3.6 ?g/m(3) in a pharmaceutical plant. The mean airborne Pb levels exceeded the U.S. Occupational Safety and Health Administration (OSHA) 8-hr time-weighted average (TWA) permissible exposure limit (PEL) for Pb of 50 ?g/m(3) in the battery manufacturing, battery recycling, welding, and paint manufacturing plants. Similarly, mean BPb concentrations exceeded the American Conference of Governmental Industrial Hygienists (ACGIH®) biological exposure index (BEI) for Pb of 30 ?g/dl. A significant positive association was observed between BPb and breathing zone air Pb (R(2) = 0.73, P < 0.001). Approximately 30% of the production workers (N = 233) were in the hypertensive range with an average systolic and diastolic blood pressure (BP) of 134.7 ± 12.7 mmHg and 86.4 ± 8.9 mmHg, respectively. In the multivariate regression analysis, age, duration of work, airborne Pb and BPb levels were significantly associated (P < 0.05) with a change in BP. We recommend improved engineering controls, work practices, and personal hygiene to reduce Pb exposures. In addition, workers should undergo comprehensive medical surveillance to include BPb and BP testing, and airborne Pb assessments in all industries with significant lead exposures. PMID:24690073

Were, Faridah H; Moturi, M Charles; Gottesfeld, P; Wafula, Godfrey A; Kamau, Geoffrey N; Shiundu, Paul M

2014-01-01

368

Diversity of Woodland Communities and Plant Species along an Altitudinal Gradient in the Guancen Mountains, China  

PubMed Central

Study on plant diversity is the base of woodland conservation. The Guancen Mountains are the northern end of Luliang mountain range in North China. Fifty-three quadrats of 10?m × 20?m of woodland communities were randomly established along an altitudinal gradient. Data for species composition and environmental variables were measured and recorded in each quadrat. To investigate the variation of woodland communities, a Two-Way Indicator Species Analysis (TWINSPAN) and a Canonical Correspondence Analysis (CCA) were conducted, while species diversity indices were used to analyse the relationships between species diversity and environmental variables in this study. The results showed that there were eight communities of woodland vegetation; each of them had their own characteristics in composition, structure, and environment. The variation of woodland communities was significantly related to elevation and also related to slope, slope aspect, and litter thickness. The cumulative percentage variance of species-environment relation for the first three CCA axes was 93.5%. Elevation was revealed as the factor which most influenced community distribution and species diversity. Species diversity was negatively correlated with elevation, slope aspect, and litter thickness, but positively with slope. Species richness and heterogeneity increased first and then decreased but evenness decreased significantly with increasing elevation. Species diversity was correlated with slope, slope aspect, and litter thickness. PMID:22566768

Meng, Dongping; Zhang, Jin-Tun; Li, Min

2012-01-01

369

Progress Towards an Interdisciplinary Science of Plant Phenology: Building Predictions Across Space, Time and Species Diversity  

NASA Technical Reports Server (NTRS)

Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan

2013-01-01

370

Portfolios for Prior Learning Assessment: Caught between Diversity and Standardization  

ERIC Educational Resources Information Center

In recent years, procedures have been established in Flanders for "Prior Learning Assessment" (PLA) outside the formal learning circuit, of which the portfolio is a regular component. In order to maximize the possibilities of acknowledgement of prior learning assessment, the Flemish government is looking for a set of common criteria and principles…

Sweygers, Annelies; Soetewey, Kim; Meeus, Wil; Struyf, Elke; Pieters, Bert

2009-01-01

371

KIPS: An Evidence-Based Tool for Assessing Parenting Strengths and Needs in Diverse Families  

ERIC Educational Resources Information Center

The movement toward evidence-based practices has stimulated greater interest in assessing parenting outcomes. The purpose of these studies was to further validate the Keys to Interactive Parenting Scale (KIPS), a structured observational assessment of parenting quality, with 397 diverse families. Factor analysis demonstrated that the 12 KIPS items…

Comfort, Marilee; Gordon, Philip R.; Naples, Denise

2011-01-01

372

The Prediction of Plant Functional Diversity in Water-Limited Ecosystems  

NASA Astrophysics Data System (ADS)

This modeling study explores the relationships between seasonal precipitation patterns, physiological and morphological plant adaptations and plant functional diversity in arid and semi-arid ecosystems. At the basis of the study is a hydraulic soil-plant model that simulates photosynthetic carbon gain under water-limited conditions. Soil in the model is structured into two layers, with spring-summer precipitation assumed to recharge only the shallow soil layer and fall-winter precipitation recharging the deeper soil layer. Plants in the model are characterized primarily through the allocation of total biomass between roots and shoots and the allocation of root biomass between the two soil layers. Photosynthetic carbon gain is linked to plant water uptake through a photosynthesis model for C3 plants. Inherent in this model is a tradeoff between the capacity for water uptake from the shallow and the deeper soil layers, thus the use of warm-season and cold-season derived precipitation. Traits that facilitate the uptake of shallow soil moisture include a low root/shoot ratio and a predominantly shallow root system, while traits that facilitate the uptake of deeper soil moisture include a higher root/shoot ratio and a predominantly deep root system. Based on this tradeoff, we derived phenotypes that are optimally adapted to specific precipitation regimes, though maximizing plant carbon gain over a period of time. The result is an array of reasonably realistic "plant functional types", defined by the precipitation condition that selected them. We further show that diverse arrays of plant functional types, competing for soil moisture, form stable communities, but that seasonal precipitation distribution determines which functional type(s) become dominant.

Schwinning, S.; Ehleringer, J. R.

2001-12-01

373

Genetic Structure, Diversity and Long Term Viability of a Medicinal Plant, Nothapodytes nimmoniana Graham. (Icacinaceae), in Protected and Non-Protected Areas in the Western Ghats Biodiversity Hotspot  

PubMed Central

Background and Question The harvesting of medicinal plants from wild sources is escalating in many parts of the world, compromising the long-term survival of natural populations of medicinally important plants and sustainability of sources of raw material to meet pharmaceutical industry needs. Although protected areas are considered to play a central role in conservation of plant genetic resources, the effectiveness of protected areas for maintaining medicinal plant populations subject to intense harvesting pressure remain largely unknown. We conducted genetic and demographic studies of Nothapodytes nimmoniana Graham, one of the extensively harvested medicinal plant species in the Western Ghats biodiversity hotspot, India to assess the effectiveness of protected areas in long-term maintenance of economically important plant species. Methodology/Principal Findings The analysis of adults and seedlings of N. nimmoniana in four protected and four non-protected areas using 7 nuclear microsatellite loci revealed that populations that are distributed within protected areas are subject to lower levels of harvesting and maintain higher genetic diversity (He?=?0.816, Ho?=?0.607, A?=?18.857) than populations in adjoining non-protected areas (He?=?0.781, Ho?=?0.511, A?=?15.571). Furthermore, seedlings in protected areas had significantly higher observed heterozygosity (Ho?=?0.630) and private alleles as compared to seedlings in adjoining non-protected areas (Ho?=?0.426). Most populations revealed signatures of recent genetic bottleneck. The prediction of long-term maintenance of genetic diversity using BOTTLESIM indicated that current population sizes of the species are not sufficient to maintain 90% of present genetic diversity for next 100 years. Conclusions/Significance Overall, these results highlight the need for establishing more protected areas encompassing a large number of adult plants in the Western Ghats to conserve genetic diversity of economically and medicinally important plant species. PMID:25493426

Shivaprakash, K. Nagaraju; Ramesha, B. Thimmappa; Uma Shaanker, Ramanan; Dayanandan, Selvadurai; Ravikanth, Gudasalamani

2014-01-01

374

Quality assessment of plant transpiration water  

NASA Technical Reports Server (NTRS)

It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

1990-01-01

375

[Effects of artificial Ulmus pumila forest on plant diversity of temperate grassland in Inner Mongolia].  

PubMed

Based on field survey, the effects of artificial Ulmus pumila forest on the species diversity of temperate grassland in Siziwang Banner of Inner Mongolia were studied. The results showed that U. pumila forest had obvious effects on the species diversity of grassland. With increasing density of U. pumila, the Patrick's richness, Pielou's evenness and Shannon-Wiener index of grass species under the forest had a decreasing trend, and were higher nearby the forest than far from the forest. The habitat inside the forest was favorable to Silene jenisseensis, while that nearby the forest was favorable to Heteropappus altaicus, Pocockia ruthenia, Potentilla bifurca, Leymus secalinus and Cleistogenes squarrosa, suggesting that to blindly exclude forestation on grassland could be less scientific, while properly afforesting U. pumila on the sides with relatively abundant soil moisture should be available to the conservation of plant diversity in temperate grassland regions. PMID:18808008

Yang, Hong-Xiao; Wang, Xue-Quan; Yang, Wen-Bin; Lu, Qi

2008-06-01

376

Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.  

PubMed

This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. PMID:23073370

Stefanowicz, Anna M; Kapusta, Pawe?; Szarek-?ukaszewska, Gra?yna; Grodzi?ska, Krystyna; Nikli?ska, Maria; Vogt, Rolf D

2012-11-15

377

Assessment of genetic diversity among selected raspberry cultivars  

Technology Transfer Automated Retrieval System (TEKTRAN)

Genetic markers, Random Amplification of Polymorphic DNA (RAPD), were developed for screening raspberry for cold/heat tolerance. Growing raspberries in southern United States is a challenging task as they are high chill-loving plants. Cultivation of raspberry in Florida is significantly hampered du...

378

An index of plant community integrity: development of the methodology for assessing prairie wetland plant communities  

Microsoft Academic Search

We developed an Index of Plant Community Integrity (IPCI) for quantitatively assessing the quality of seasonal wetland plant communities. In 1998 and 1999, we sampled the plant communities of 46 seasonal wetlands in the Prairie Pothole Region (PPR) of central North Dakota, USA. We selected wetlands that represented a range of disturbance from well-managed native rangeland to heavily disturbed cropland.

Edward S. DeKeyser; Donald R. Kirby; Michael J. Ell

2003-01-01

379

Host-plant genotypic diversity mediates the distribution of an ecosystem engineer.  

PubMed

Ecosystem engineers affect ecological communities by physically modifying the environment. Understanding the factors determining the distribution of engineers offers a powerful predictive tool for community ecology. In this study, we examine whether the goldenrod bunch gall midge (Rhopalomyia solidaginis) functions as an ecosystem engineer in an old-field ecosystem by altering the composition of arthropod species associated with a dominant host plant, Solidago altissima. We also examine the suite of factors that could affect the distribution and abundance of this ecosystem engineer. The presence of bunch galls increased species richness and altered the structure of associated arthropod communities. The best predictors of gall abundance were host-plant genotype and plot-level genotypic diversity. We found positive, nonadditive effects of genotypic diversity on gall abundance. Our results indicate that incorporating a genetic component in studies of ecosystem engineers can help predict their distribution and abundance, and ultimately their effects on biodiversity. PMID:17824442

Crawford, Kerri M; Crutsinger, Gregory M; Sanders, Nathan J

2007-08-01

380

Dissecting Tropical Plant Diversity with Forest Plots and a Molecular Toolkit  

NSDL National Science Digital Library

Tropical rainforests are the most biologically diverse of terrestrial biomes. Despite the ecological importance and economic potential of tropical trees, a large fraction of tropical forest tree species lack scientific names, and hundreds of woody plant species in the most intensively studied forest plots remain unidentified. DNA diagnostic tools, including plastid â??DNA barcodesâ? and multilocus genomic markers, can be applied to tropical forest dynamics plots to facilitate taxonomic discovery. Such genetic surveys, as outlined in this article, require expanded herbarium infrastructure and linkages in field ecology, population genetics, and bioinformatics. The fusion of traditional botany and molecular methods will provide baseline data for understanding both the origin and maintenance of tropical plant diversity.

Christopher Dick (University of Michigan; Department of Ecology and Evolutionary Biology)

2009-10-01

381

American Journal of Plant Sciences, 2014, 5, 103-111 Published Online January 2014 (http://www.scirp.org/journal/ajps)  

E-print Network

-Mycorrhizal Fungi in Response to Grassland Plant Diversity R. L. Burrows Plant Science Department, South Dakota, with complex in- teractions between plants and AMF. Our study assessed the impact of plant diversity of native with plant diversity than with plant cover. Spore density was also greater in higher diversity plots. Lower

Weiblen, George D

382

Natural Products from Plant-associated Microorganisms: Distribution, Structural Diversity, Bioactivity, and Implications of Their Occurrence?  

PubMed Central

A growing body of evidence suggests that plant-associated microorganisms, especially endophytic and rhizosphere bacteria and fungi, represent a huge and largely untapped resource of natural products with chemical structures that have been optimized by evolution for biological and ecological relevance. A diverse array of bioactive small molecule natural products has been encountered in these microorganisms. The structures of over 230 metabolites isolated and characterized from over 70 plant-associated microbial strains during the past four years are presented with information on their hosts, culture conditions, and biological activities. Some significant biological and ecological implications of their occurrence are also reviewed. PMID:16562864

Gunatilaka, A. A. Leslie

2012-01-01

383

Diversity of plant–animal interactions: Possibilities for a new plant defense indicator value?  

Microsoft Academic Search

The interactions between herbivores and plants are of general interest in ecology. Even though the extensive research carried out during the last decades has culminated in many theories, additional studies are necessary to validate these findings. In particular, the hypotheses dealing with the complex interrelations of plant defense mechanisms and herbivores continue to be debated.In this paper, we develop a

Fabian Borchard; Hans-Joachim Berger; Margret Bunzel-Drüke; Thomas Fartmann

2011-01-01

384

Photon yield of O 2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins  

Microsoft Academic Search

Photon yields of oxygen evolution at saturating CO2 were determined for 44 species of vascular plants, representing widely diverse taxa, habitats, life forms and growth conditions. The photonyield values on the basis of absorbed light (fa) were remarkably constant among plants possessing the same pathway of photosynthetic CO2 fixation, provided the plants had not been subjected to environmental stress. The

Olle Björkman; Barbara Demmig

1987-01-01

385

Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands  

USGS Publications Warehouse

Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity. ?? Society for Range Management.

Symstad, A.J.; Jonas, J.L.

2011-01-01

386

Local Plant Diversity Patterns and Evolutionary History at the Regional Scale  

Microsoft Academic Search

The effect of evolutionary history on local-scale diversity patterns has often been suggested, but not shown. I explored whether widely described local-scale relationships between plant species richness and soil pH are related to evolutionary history. I expected positive relationships to occur between richness and pH if the pool of species that is suited for high pH soil is larger than

Meelis Partel

2002-01-01

387

Plant Community Composition More Predictive than Diversity of Carbon Cycling in Freshwater Wetlands  

Microsoft Academic Search

Changes in the world’s species composition and the loss of biodiversity have prompted a closer investigation of the importance\\u000a of biodiversity and community composition to ecosystem functioning. However, few studies have explored this relationship outside\\u000a of controlled experiments. Here, we examined the relationship between plant diversity, primary production, and methane efflux\\u000a in freshwater wetlands in an across-site field study and

Rachel Schultz; Sarah Andrews; Lindsay O’Reilly; Virginie Bouchard; Serita Frey

388

An explanation for conflicting records of Triassic-Jurassic plant diversity.  

PubMed

Macrofossils (mostly leaves) and sporomorphs (pollen and spores) preserve conflicting records of plant biodiversity during the end-Permian (P-Tr), Triassic-Jurassic (Tr-J), and end-Cretaceous (K-T) mass extinctions. Estimates of diversity loss based on macrofossils are typically much higher than estimates of diversity loss based on sporomorphs. Macrofossils from the Tr-J of East Greenland indicate that standing species richness declined by as much as 85% in the Late Triassic, whereas sporomorph records from the same region, and from elsewhere in Europe, reveal little evidence of such catastrophic diversity loss. To understand this major discrepancy, we have used a new high-resolution dataset of sporomorph assemblages from Astartekløft, East Greenland, to directly compare the macrofossil and sporomorph records of Tr-J plant biodiversity. Our results show that sporomorph assemblages from the Tr-J boundary interval are 10-12% less taxonomically diverse than sporomorph assemblages from the Late Triassic, and that vegetation composition changed rapidly in the boundary interval as a result of emigration and/or extirpation of taxa rather than immigration and/or origination of taxa. An analysis of the representation of different plant groups in the macrofossil and sporomorph records at Astartekløft reveals that reproductively specialized plants, including cycads, bennettites and the seed-fern Lepidopteris are almost absent from the sporomorph record. These results provide a means of reconciling the macrofossil and sporomorph records of Tr-J vegetation change, and may help to understand vegetation change during the P-Tr and K-T mass extinctions and around the Paleocene-Eocene Thermal Maximum. PMID:20713737

Mander, Luke; Kürschner, Wolfram M; McElwain, Jennifer C

2010-08-31

389

An explanation for conflicting records of Triassic–Jurassic plant diversity  

PubMed Central

Macrofossils (mostly leaves) and sporomorphs (pollen and spores) preserve conflicting records of plant biodiversity during the end-Permian (P-Tr), Triassic–Jurassic (Tr-J), and end-Cretaceous (K-T) mass extinctions. Estimates of diversity loss based on macrofossils are typically much higher than estimates of diversity loss based on sporomorphs. Macrofossils from the Tr-J of East Greenland indicate that standing species richness declined by as much as 85% in the Late Triassic, whereas sporomorph records from the same region, and from elsewhere in Europe, reveal little evidence of such catastrophic diversity loss. To understand this major discrepancy, we have used a new high-resolution dataset of sporomorph assemblages from Astartekløft, East Greenland, to directly compare the macrofossil and sporomorph records of Tr-J plant biodiversity. Our results show that sporomorph assemblages from the Tr-J boundary interval are 10–12% less taxonomically diverse than sporomorph assemblages from the Late Triassic, and that vegetation composition changed rapidly in the boundary interval as a result of emigration and/or extirpation of taxa rather than immigration and/or origination of taxa. An analysis of the representation of different plant groups in the macrofossil and sporomorph records at Astartekløft reveals that reproductively specialized plants, including cycads, bennettites and the seed-fern Lepidopteris are almost absent from the sporomorph record. These results provide a means of reconciling the macrofossil and sporomorph records of Tr-J vegetation change, and may help to understand vegetation change during the P-Tr and K-T mass extinctions and around the Paleocene–Eocene Thermal Maximum. PMID:20713737

Mander, Luke; Kürschner, Wolfram M.; McElwain, Jennifer C.

2010-01-01

390

Abstract--Genetic diversity in plant materials used for reveg-etation of disturbed sites is important to allow natural selection  

E-print Network

267 Abstract--Genetic diversity in plant materials used for reveg- etation of disturbed sites for uniform products to deter the use of diverse material, as is the case with culti- vated plants in a variety of environments. Genetically diverse seed sources can be self-adapting, where those plants most

391

Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of amaryllidaceae  

PubMed Central

Background During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong. Conclusions Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE) and binding to the serotonin reuptake transporter (SERT) are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities. PMID:22978363

2012-01-01

392

Diversity of fungi associated with hair roots of ericaceous plants is affected by land use.  

PubMed

Culture-independent molecular studies have provided new insights into the diversity of fungi associating with ericaceous plant roots. However, there is little understanding of the distribution of these fungi across landscapes, or the effects of environmental heterogeneity on ericoid mycorrhizal (ERM) fungal diversity and distribution. Terminal-restriction fragment length polymorphism and selective sequence analyses of the internal transcribed spacer regions of rDNA were used to infer fungal diversity of bait Vaccinium macrocarpon grown in soils from nine peatland sites in Ireland, representing three different land uses (bog, rough grazing and forest plantation) and the fungal communities of field-collected Calluna vulgaris for five of these nine sites. A diverse range of potential ERM fungi were found, and the sampling approach significantly affected the diversity of the fungal community. Despite significant site groupings of the fungal communities associated with V. macrocarpon and C. vulgaris, fungal communities were significantly dissimilar between sites with different land uses. Soil nitrogen content significantly explained 52% of the variation in the V. macrocarpon fungal communities. Evidence suggests that environmental heterogeneity has a role in shaping ERM fungal community composition at the landscape scale. PMID:24741702

Hazard, Christina; Gosling, Paul; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

2014-03-01

393

More diverse plant communities have higher functioning over time due to turnover in complementary dominant species  

PubMed Central

More diverse communities have been shown to have higher and more temporally stable ecosystem functioning than less diverse ones, suggesting they should also have a consistently higher level of functioning over time. Diverse communities could maintain consistently high function because the species driving function change over time (functional turnover) or because they are more likely to contain key species with temporally stable functioning. Across 7 y in a large biodiversity experiment, we show that more diverse plant communities had consistently higher productivity, that is, a higher level of functioning over time. We identify the mechanism for this as turnover in the species driving biomass production; this was substantial, and species that were rare in some years became dominant and drove function in other years. Such high turnover allowed functionally more diverse communities to maintain high biomass over time and was associated with higher levels of complementarity effects in these communities. In contrast, turnover in communities composed of functionally similar species did not promote high biomass production over time. Thus, turnover in species promotes consistently high ecosystem function when it sustains functionally complementary interactions between species. Our results strongly reinforce the argument for conservation of high biodiversity. PMID:21949392

Allan, Eric; Weisser, Wolfgang; Weigelt, Alexandra; Roscher, Christiane; Fischer, Markus; Hillebrand, Helmut

2011-01-01

394

Roles of mesophyll conductance and plant functional diversities in tropical photosynthesis  

NASA Astrophysics Data System (ADS)

Tropical photosynthesis dominates global terrestrial gross primary production (GPP) and will likely play a defining role in determining how global GPP will respond to climate change. Yet, our current understanding of biological, ecological, edaphic and environmental controls on tropical photosynthesis is poor. The overly simplistic schemes that current Earth System Models use to simulate tropical photosynthesis cannot capture the functional diversities associated with high species diversities in the tropics. New approaches that explicitly represent the functional diversities of tropical photosynthesis in Earth System Models are needed in order to realistically model responses of tropical photosynthesis to increased atmospheric CO2 concentrations and associated climate changes. To establish a basis for such approaches, we conducted intensive field measurements of leaf photosynthesis at three forest sites along a strong rainfall gradient in Panama in 2012-2013. The three sites are Parque Natural Metropolitano, Gamboa, and Parque Nacional San Lorenzo. The Parque Natural Metropolitano receives an annual precipitation of less than 1800mm and Parque Nacional San Lorenzo over 3300 mm with Gamboa in between. The three sites differ in species diversity with Parque Nacional San Lorenzo having the highest species diversity and Parque Nacional San Lorenzo the lowest. At the three contrasting sites, we measured A/Ci curves, leaf traits and leaf nutrient (N and P) contents of about 100 species. We determined mesophyll conductance with the LeafWeb approach. From these measurements, we developed practical but realistic parameterizations of functional diversities of tropical plant species at the three sites and implemented these parameterizations in the latest version of the Community Land Model. We found that mesophyll conductance is key to representing functional diversities of tropical forest species. Without it, responses of tropical photosynthesis to increased atmospheric CO2 concentrations may be underestimated. Interactive effects of mesophyll conductance, nutrient limitations, CO2 concentrations and climate change will be discussed in the context of new parameterizations enabled with our intensive measurements in Panama.

Gu, L.

2013-12-01

395

Life-cycle assessment of wastewater treatment plants  

E-print Network

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01

396

Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae)  

PubMed Central

Background and Aims Mycorrhizal associations are essential to the plant kingdom. The largest flowering plant family, the Orchidaceae, relies on mycorrhizal fungi for germination, growth and survival. Evidence suggests varying degrees of fungal-host specificity based on a single fungal isolate from a single plant. This paper shows for the first time the diversity of endophytes colonizing in a single plant over consecutive years and the functional significance of this diversity. Methods Stem-collars of Caladenia formosa were collected in different seasons and years. Mycorrhizal fungi isolated were tested for their efficacy to induce leafing and genetically determined using ITS-RFLP and sequencing. Results Multiple mycorrhizal fungi were repeatedly isolated from a single collar that displayed varying effectiveness in germination percentages and adult leaf length. Additional factors contributed to the isolation of effective mycorrhizal fungi; fungal collection season, year of collection and individual isolates. Surface sterilization only improved the number of isolated mycorrhizal fungi. Dual inoculation did not increase germination. All 59 mycorrhizal fungi effective in germinating seed belonged to one clearly defined ITS (internal transcribed spacer) clade and clustered close to Sebacina vermifera (79–89 % homology). Isolates resulting in the greatest germination were not necessarily those resulting in the greatest survival and growth 1 year after germination. Conclusion Single orchid plants contained multiple mycorrhizal fungal strains of one species that had diverse functional differences. These results suggest that our current knowledge of fungal–host specificity may be incomplete due to experimental and analytical limitations. It also suggests that the long-term effectiveness of a mycorrhizal fungus or fungi could only be found by germination and longer-term growth tests rather than genetically. PMID:19561011

Huynh, Tien T.; Thomson, Richard; Mclean, Cassandra B.; Lawrie, Ann C.

2009-01-01

397

Self-Assessment and Dialogue as Tools for Appreciating Diversity  

ERIC Educational Resources Information Center

As social work educators continue to examine methods and techniques to provide meaningful knowledge about racism and discrimination, the role of self-assessment and dialogue should also be explored. This teaching note presents a tool for students and educators to use in considering literature discrimination and increasing awareness of…

O'Neal, Gwenelle S.

2012-01-01

398

Coastal plants : chemical sensitivities and risk assessments  

EPA Science Inventory

The ability of plant-dominated ecosystems to improve water quality and provide habitat for biodiversity are important ecological services. These services are impacted by natural and anthropogenic stressors which includes contaminant toxicity. Scientific information describing the...

399

Chloroplast DNA diversity is low in a wild plant, Lupinus texensis.  

PubMed Central

Chloroplast DNA diversity was measured in an annual flowering plant, Lupinus texensis. Individual plants were collected from 21 local populations throughout the range of the species in Texas. Chloroplast DNA was isolated separately from each plant and digested with seven restriction enzymes. The most common form of the 150-kilobase-pair genome was cut at 134 sites, so that about 0.5% of the base pairs in the genome were sampled. Of the 100 plants examined, 88 had identical restriction fragment patterns. Three variant forms were found in different local populations. Two, represented in single plants, differed from wild type in the presence or absence of single restriction sites. The third variant was fixed in one of the local populations; it had lost a restriction site and also had a deletion of approximately equal to 100 base pairs. The data suggest that chloroplast DNA in this plant is much less polymorphic than mitochondrial DNA from animals and is probably less polymorphic than nuclear genes in the same plant or in animals. Images PMID:2995994

Banks, J A; Birky, C W

1985-01-01

400

How Do Earthworms, Soil Texture and Plant Composition Affect Infiltration along an Experimental Plant Diversity Gradient in Grassland?  

PubMed Central

Background Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. Methodology/Principal Findings We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Conclusions/Significance Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications. PMID:24918943

Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W.; Schumacher, Jens; Hildebrandt, Anke

2014-01-01

401

ENVIRONMENTAL ASSESSMENT OF COKE BY-PRODUCT RECOVERY PLANTS  

EPA Science Inventory

The report gives results of an initial screening study, initiating a multimedia environmental assessment of coke by-product recovery plants in the U.S. The study included both the gathering and analysis of existing data and sampling and analysis at one plant based on EPA's Indust...

402

Development and Initial Psychometric Assessment of the Plant Attitude Questionnaire  

ERIC Educational Resources Information Center

Plants are integral parts of ecosystems which determine life on Earth. People's attitudes toward them are however, largely overlooked. Here we present initial psychometric assessment of self-constructed Plant Attitude Scale (PAS) that was administered to a sample of 310 Slovakian students living in rural areas aged 10-15 years. The final version…

Fancovicova, Jana; Prokop, Pavol

2010-01-01

403

Comparative safety assessment of plant-derived foods.  

PubMed

The second generation of genetically modified (GM) plants that are moving towards the market are characterized by modifications that may be more complex and traits that more often are to the benefit of the consumer. These developments will have implications for the safety assessment of the resulting plant products. In part of the cases the same crop plant can, however, also be obtained by 'conventional' breeding strategies. The breeder will decide on a case-by-case basis what will be the best strategy to reach the set target and whether genetic modification will form part of this strategy. This article discusses important aspects of the safety assessment of complex products derived from newly bred plant varieties obtained by different breeding strategies. On the basis of this overview, we conclude that the current process of the safety evaluation of GM versus conventionally bred plants is not well balanced. GM varieties are elaborately assessed, yet at the same time other crop plants resulting from conventional breeding strategies may warrant further food safety assessment for the benefit of the consumer. We propose to develop a general screening frame for all newly developed plant varieties to select varieties that cannot, on the basis of scientific criteria, be considered as safe as plant varieties that are already on the market. PMID:17983697

Kok, E J; Keijer, J; Kleter, G A; Kuiper, H A

2008-02-01

404

Disentangling the roles of plant diversity and precipitation in structuring microbial community composition and function in a tropical rain forest  

NASA Astrophysics Data System (ADS)

Shifting frequency and intensity of precipitation events is expected to impact soil fungi through a variety of complex feedbacks, although the general patterns and mechanisms are not fully understood. Precipitation and plant diversity often covary, and disentangling the relative contribution of each is important for predicting changes in global C and N fluxes. In order to test the relative contributions of plant diversity and precipitation in shaping fungal community structure and function, soil samples (0-10cm) from six established 1-ha plots across a natural precipitation gradient on the isthmus of Panama were collected. These plots co-vary in mean annual precipitation and plant diversity. Fungal DNA was sequenced using general fungal primers for the 18S region and 454 pyrosequencing. We found that total fungal taxa significantly increased with increasing mean annual precipitation, but not with plant diversity. Activity for some extracellular enzymes increased, whereas as others decreased with mean annual precipitation, indicating that the effect of shifting precipitation on nutrient transformations may be process-specific. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in nylon, 2 mm screen litter bags with 1, 25, and 50 species of plant leaf litter. After six months, we found a significant effect of plant litter diversity on decomposition rate, but only after the increase from one to 25 species of leaf litter. Total fungal taxa as determined by 454 sequencing and extracellular enzyme activity did not track plant species richness, suggesting that precipitation may be a more important factor than plant diversity in structuring soil fungi in tropical rain forests.

McGuire, Krista; Treseder, Kathleen; Fierer, Noah; Turner, Benjamin

2010-05-01

405

Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity.  

PubMed

Although Glycosyl-Inositol-Phospho-Ceramides (GIPCs) are the main sphingolipids of plant tissues, they remain poorly characterized in term of structures. This lack of information, notably with regard to polar heads, currently hampers the understanding of GIPC functions in biological systems. This situation prompted us to undertake a large scale-analysis of plant GIPCs: 23 plant species chosen in various phylogenetic groups were surveyed for their total GIPC content. GIPCs were extracted and their polar heads were characterized by negative ion MALDI and ESI mass spectrometry. Our data shed light on an unexpected broad diversity of GIPC distributions within Plantae, and the occurrence of yet-unreported GIPC structures in green and red algae. In monocots, GIPCs with three saccharides were apparently found to be major, whereas a series with two saccharides was dominant in Eudicots within a few notable exceptions. In plant cell cultures, GIPC polar heads appeared to bear a higher number of glycan units than in the tissue from which they originate. Perspectives are discussed in term of GIPC metabolism diversity and function of these lipids. PMID:23993446

Cacas, Jean-Luc; Buré, Corinne; Furt, Fabienne; Maalouf, Jean-Paul; Badoc, Alain; Cluzet, Stéphanie; Schmitter, Jean-Marie; Antajan, Elvire; Mongrand, Sébastien

2013-12-01

406

Prevalence, distribution, and diversity of Escherichia coli in plants manufacturing goat milk powder in Shaanxi, China.  

PubMed

The aim of the study was to investigate the prevalence, distribution, and diversity of Escherichia coli in goat-milk-powder plants in Shaanxi, China. Three plants manufacturing goat milk powder in Shaanxi province were visited once for sampling during 2012 and 2013. Samples were taken for isolation of E. coli. Isolates were characterized by antimicrobial susceptibility testing and detection of virulence genes. All isolates were further examined by pulsed-field gel electrophoresis analysis. In total, 53 E. coli strains were isolated from 32 positive samples out of 534 samples. Among E. coli isolates, resistance was most frequently observed to trimethoprim-sulfamethoxazole (75.5%), whereas all isolates were sensitive to gatifloxacin, kanamycin, amikacin, and amoxicillin-clavulanate. The 6 virulence genes of pathogenic E. coli were not detected. Pulsed-field gel electrophoresis results showed that E. coli strains in plants were genetically diverse and milk storage tank could be an important contamination source. This study could provide useful information for plants manufacturing goat milk powder to establish proper management practices that help minimize the chance of microbial contamination. PMID:25682141

Xi, Meili; Feng, Yuqing; Li, Qiong; Yang, Qinnan; Zhang, Baigang; Li, Guanghui; Shi, Chao; Xia, Xiaodong

2015-04-01

407

Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system  

E-print Network

food web in which we manipulated the diversity of host plant species (Medicago sativa, Trifolium pratense and Vicia faba) and natural enemy species (Harmonia axyridis, Coleomegilla maculata and Nabis sp

Stachowicz, Jay

408

Chemical diversity of microbial volatiles and their potential for plant growth and productivity  

PubMed Central

Microbial volatile organic compounds (MVOCs) are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity, and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides, and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs by describing microbial–plants and microbial–microbial interactions. Furthermore, we discuss MVOCs role in inducing phenotypic plant responses and their potential physiological effects on crops. Finally, we analyze potential and actual limitations for MVOC use and deployment in field conditions as a sustainable strategy for improving productivity and reducing pesticide use.

Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Maffei, Massimo E.

2015-01-01

409

Diverse plant and animal genetic records from Holocene and Pleistocene sediments.  

PubMed

Genetic analyses of permafrost and temperate sediments reveal that plant and animal DNA may be preserved for long periods, even in the absence of obvious macrofossils. In Siberia, five permafrost cores ranging from 400,000 to 10,000 years old contained at least 19 different plant taxa, including the oldest authenticated ancient DNA sequences known, and megafaunal sequences including mammoth, bison, and horse. The genetic data record a number of dramatic changes in the taxonomic diversity and composition of Beringian vegetation and fauna. Temperate cave sediments in New Zealand also yielded DNA sequences of extinct biota, including two species of ratite moa, and 29 plant taxa characteristic of the prehuman environment. Therefore, many sedimentary deposits may contain unique, and widespread, genetic records of paleoenvironments. PMID:12702808

Willerslev, Eske; Hansen, Anders J; Binladen, Jonas; Brand, Tina B; Gilbert, M Thomas P; Shapiro, Beth; Bunce, Michael; Wiuf, Carsten; Gilichinsky, David A; Cooper, Alan

2003-05-01

410

Discovery of structurally diverse and bioactive compounds from plant resources in China  

PubMed Central

This review describes the major discoveries of structurally diverse and/or biologically significant compounds from plant resources in China, mainly from the traditional Chinese medicines (TCMs) since the establishment of our research group in 1999. In the past decade, a large array of biologically significant and novel structures has been identified from plant resources (or TCM) in our laboratory. The structural modification of several biologically important compounds led to more than 400 derivatives, some of which exhibited significantly improved activities and provided opportunities to elucidate the structure-activity relationship of the related compound class. These findings are important for drug discovery and help us understand the biological basis for the traditional applications of these plants in TCM. PMID:22941284

Yang, Sheng-ping; Yue, Jian-min

2012-01-01

411

Environmental risk assessment for plant pests: a procedure to evaluate their impacts on ecosystem services.  

PubMed

The current methods to assess the environmental impacts of plant pests differ in their approaches and there is a lack of the standardized procedures necessary to provide accurate and consistent results, demonstrating the complexity of developing a commonly accepted scheme for this purpose. By including both the structural and functional components of the environment threatened by invasive alien species (IAS), in particular plant pests, we propose an environmental risk assessment scheme that addresses this complexity. Structural components are investigated by evaluating the impacts of the plant pest on genetic, species and landscape diversity. Functional components are evaluated by estimating how plant pests modify ecosystem services in order to determine the extent to which an IAS changes the functional traits that influence ecosystem services. A scenario study at a defined spatial and temporal resolution is then used to explore how an IAS, as an exogenous driving force, may trigger modifications in the target environment. The method presented here provides a standardized approach to generate comparable and reproducible results for environmental risk assessment as a component of Pest Risk Analysis. The method enables the assessment of overall environmental risk which integrates the impacts on different components of the environment and their probabilities of occurrence. The application of the proposed scheme is illustrated by evaluating the environmental impacts of the invasive citrus long-horn beetle, Anoplophora chinensis. PMID:24051446

Gilioli, G; Schrader, G; Baker, R H A; Ceglarska, E; Kertész, V K; Lövei, G; Navajas, M; Rossi, V; Tramontini, S; van Lenteren, J C

2014-01-15

412

Risk management tools and the case study Brassica napus: evaluating possible effects of genetically modified plants on soil microbial diversity.  

PubMed

The cultivation of GMPs in Europe raises many questions about the environmental risks, in particular about their ecological impact on non-target organisms and on soil properties. The aim of a multidisciplinary group engaged in a LIFE+project (MAN-GMP-ITA) was to validate and improve an existing environmental risk assessment (ERA) methodology on GMPs within the European legislative framework on GMOs. Given the impossibility of evaluating GMO impact directly, as GMPs are banned in Italy, GMPs have not been used at any stage of the project. The project thus specifically focused on the conditions for the implementation of ERA in different areas of Italy, with an emphasis on some sensitive and protected areas located in the North, Centre, and South of the country, in order to lay the necessary baseline for evaluating the possible effects of a GMP on soil communities. Our sub-group carried out soil analyses in order to obtain soil health and fertility indicators to be used as baselines in the ERA model. Using various methods of chemical, biochemical, functional and genetic analysis, our study assessed the changes in diversity and functionality of bacterial populations, and arbuscular mycorrhizal fungi. The results show that plant identity and growth, soil characteristics, and field site climatic parameters are key factors in contributing to variation in microbial community structure and diversity, thus validating our methodological approach. Our project has come to the conclusion that the uneven composition and biological-agronomical quality of soils need to be taken into consideration in a risk analysis within the framework of ERA for the release of genetically modified plants. PMID:25014185

Canfora, Loredana; Sbrana, Cristiana; Avio, Luciano; Felici, Barbara; Scatà, Maria Carmela; Neri, Ulderico; Benedetti, Anna

2014-09-15

413

Congruence and Diversity of Butterfly-Host Plant Associations at Higher Taxonomic Levels  

PubMed Central

We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages. PMID:23717448

Ferrer-Paris, José R.; Sánchez-Mercado, Ada; Viloria, Ángel L.; Donaldson, John

2013-01-01

414

High plant species diversity indirectly mitigates CO 2- and N-induced effects on grasshopper growth  

NASA Astrophysics Data System (ADS)

We examined how elevated atmospheric [CO 2] and higher rate of nitrogen (N) input may influence grasshopper growth by changing food plant quality and how such effects may be modified by species diversity of the plant community. We reared grasshopper nymphs ( Melanoplus femurrubrum) on Poa pratensis from field-grown monocultures or polycultures (16 species) that were subjected to either ambient or elevated levels of CO 2 and N. Grasshopper growth rate was higher on P. pratensis leaves grown in monocultures than in polycultures, higher on P. pratensis grown under elevated than under ambient [CO 2], and higher on P. pratensis grown under elevated than under ambient [N]. The higher growth rate observed on P. pratensis exposed to elevated [CO 2] was, however, less pronounced for polyculture- than monoculture-grown P. pratensis. Growth rate of the grasshoppers was positively correlated with leaf [N], [C], and concentration of soluble carbohydrates + lipids. Concentration of non-structural carbohydrates + lipids was higher in leaves grown under elevated than under ambient [CO 2], and the difference between P. pratensis grown under ambient and elevated [CO 2] was greater for monoculture- than polyculture-grown P. pratensis. In addition, leaf N concentration was higher in P. pratensis grown in monocultures than in polycultures, suggesting that plant species richness, indirectly, may influence insect performance by changed nutritional value of the plants. Because we found interactive effects between all factors included ([CO 2], [N], and plant species diversity), our results suggest that these parameters may influence plant-insect interactions in a complex way that is not predictable from the sum of single factor manipulations.

Strengbom, Joachim; Reich, Peter B.; Ritchie, Mark E.

2008-09-01

415

Old and new challenges in using species diversity for assessing biodiversity  

PubMed Central

Although the maintenance of diversity of living systems is critical for ecosystem functioning, the accelerating pace of global change is threatening its preservation. Standardized methods for biodiversity