Science.gov

Sample records for assessing human risks

  1. Human factors and risk assessment

    SciTech Connect

    Al-Minhali, A.

    1996-11-01

    A case study was presented in the 1994 Abu Dhabi International Exhibition and Conference (ADIPEC, 94) which discussed the importance of investigating human factors in the design of a high integrity protection system (HIPS) to be installed on an offshore high pressure gas platform, (SPE reference ADSPE 80). This paper will follow up on the design changes, installation and operation of the HIPS with emphasis on practical implications as a result of improper integration of human factors in the system reliability and risk assessment studies.

  2. NASA Human System Risk Assessment Process

    NASA Technical Reports Server (NTRS)

    Francisco, D.; Romero, E.

    2016-01-01

    NASA utilizes an evidence based system to perform risk assessments for the human system for spaceflight missions. The center of this process is the multi-disciplinary Human System Risk Board (HSRB). The HSRB is chartered from the Chief Health and Medical Officer (OCHMO) at NASA Headquarters. The HSRB reviews all human system risks via an established comprehensive risk and configuration management plan based on a project management approach. The HSRB facilitates the integration of human research (terrestrial and spaceflight), medical operations, occupational surveillance, systems engineering and many other disciplines in a comprehensive review of human system risks. The HSRB considers all factors that influence human risk. These factors include pre-mission considerations such as screening criteria, training, age, sex, and physiological condition. In mission factors such as available countermeasures, mission duration and location and post mission factors such as time to return to baseline (reconditioning), post mission health screening, and available treatments. All of the factors influence the total risk assessment for each human risk. The HSRB performed a comprehensive review of all potential inflight medical conditions and events and over the course of several reviews consolidated the number of human system risks to 30, where the greatest emphasis is placed for investing program dollars for risk mitigation. The HSRB considers all available evidence from human research and, medical operations and occupational surveillance in assessing the risks for appropriate mitigation and future work. All applicable DRMs (low earth orbit for 6 and 12 months, deep space for 30 days and 1 year, a lunar mission for 1 year, and a planetary mission for 3 years) are considered as human system risks are modified by the hazards associated with space flight such as microgravity, exposure to radiation, distance from the earth, isolation and a closed environment. Each risk has a summary

  3. Moving Forward in Human Cancer Risk Assessment

    PubMed Central

    Paules, Richard S.; Aubrecht, Jiri; Corvi, Raffaella; Garthoff, Bernward; Kleinjans, Jos C.

    2011-01-01

    Background The current safety paradigm for assessing carcinogenic properties of drugs, cosmetics, industrial chemicals, and environmental exposures relies mainly on in vitro genotoxicity testing followed by 2-year rodent bioassays. This testing battery is extremely sensitive but has low specificity. Furthermore, rodent bioassays are associated with high costs, high animal burden, and limited predictive value for human risks. Objectives We provide a response to a growing appeal for a paradigm change in human cancer risk assessment. Methods To facilitate development of a road map for this needed paradigm change in carcinogenicity testing, a workshop titled “Genomics in Cancer Risk Assessment” brought together toxicologists from academia and industry and government regulators and risk assessors from the United States and the European Union. Participants discussed the state-of-the-art in developing alternative testing strategies for carcinogenicity, with emphasis on potential contributions from omics technologies. Results and Conclusions The goal of human risk assessment is to decide whether a given exposure to an agent is acceptable to human health and to provide risk management measures based on evaluating and predicting the effects of exposures on human health. Although exciting progress is being made using genomics approaches, a new paradigm that uses these methods and human material when possible would provide mechanistic insights that may inform new predictive approaches (e.g., in vitro assays) and facilitate the development of genomics-derived biomarkers. Regulators appear to be willing to accept such approaches where use is clearly defined, evidence is strong, and approaches are qualified for regulatory use. PMID:21147607

  4. NEUROBEHAVIORAL TESTING IN HUMAN RISK ASSESSMENT

    PubMed Central

    Rohlman, Diane S.; Lucchini, Roberto; Anger, W. Kent; Bellinger, David C.; van Thriel, Christoph

    2008-01-01

    Neurobehavioral tests are being increasingly used in human risk assessment and there is a strong need for guidance. The field of neurobehavioral toxicology has evolved from research which initially focused on using traditional neuropsychological tests to identify “abnormal cases” to include methods used to detect sub-clinical deficits, to further incorporate the use of neurosensory assessment, and to expand testing from occupational populations to vulnerable populations including older adults and children. Even as exposures in the workplace are reduced, they have been increasing in the environment and research on exposure has now expanded to cross the entire lifetime. These neurobehavioral methods are applied in research and the findings used for regulatory purposes to develop preventative action for exposed populations. This paper reflects a summary of the talks presented at the symposium presented at the 11th meeting of the International Neurotoxicology Association. PMID:18539229

  5. MULTIMEDIA HUMAN EXPOSURE AND RISK ASSESSMENT MODELING

    EPA Science Inventory

    Exposures and health risk comparisons from different sites may be used for allocating limited resources available for remedial action. It is important that comparisons between different sites use similar levels of site-specific data and/or screening level data. Risk assessment c...

  6. THE ROLE OF EXPOSURE ANALYSIS IN HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    This presentation will cover the basic methodologies used for assessing human exposures to environmental pollutants, and some of the scientific challenges involved in conducting exposure and risk assessments in support of regulatory evaluations.

  7. Assessing human health risk in the USDA forest service

    SciTech Connect

    Hamel, D.R.

    1990-12-31

    This paper identifies the kinds of risk assessments being done by or for the US Department of Agriculture (USDA) Forest Service. Summaries of data sources currently in use and the pesticide risk assessments completed by the agency or its contractors are discussed. An overview is provided of the agency`s standard operating procedures for the conduct of toxicological, ecological, environmental fate, and human health risk assessments.

  8. INCORPORATING HUMAN INTERINDIVIDUAL BIOTRANSFORMATION VARIANCE IN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    The protection of sensitive individuals within a population dictates that measures other than central tendencies be employed to estimate risk. The refinement of human health risk assessments for chemicals metabolized by the liver to reflect data on human variability can be accom...

  9. TOXICOPROTEOMICS AND ITS APPLICATION TO HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    Humans are exposed to a variety of environmental toxicants, and this together with a large number of interacting factors can contribute to an individual's risk for health. To understand the toxic mechanisms and/or modes of action for human health risk assessment, molecular charac...

  10. 76 FR 39399 - Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... AGENCY Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Notice of Availability... availability of EPA's preliminary human health risk assessment for the registration review of chlorpyrifos and... comprehensive preliminary human health risk assessment for all chlorpyrifos uses. After reviewing...

  11. 76 FR 52945 - Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Extension of Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... AGENCY Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Extension of Comment... availability of the chlorpyrifos registration review; preliminary human health risk assessment. This document... for the chlorpyrifos reregistration review, preliminary human health risk assessment, established...

  12. Clean Slate transportation and human health risk assessment

    SciTech Connect

    1997-02-01

    Public concern regarding activities involving radioactive material generally focuses on the human health risk associated with exposure to ionizing radiation. This report describes the results of a risk analysis conducted to evaluate risk for excavation, handling, and transport of soil contaminated with transuranics at the Clean Slate sites. Transportation risks were estimated for public transport routes from the Tonopah Test Range (TTR) to the Envirocore disposal facility or to the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for both radiological risk and risk due to traffic accidents. Human health risks were evaluated for occupational and radiation-related health effects to workers. This report was generated to respond to this public concern, to provide an evaluation of the risk, and to assess feasibility of transport of the contaminated soil for disposal.

  13. A 21st Century Roadmap for Human Health Risk Assessment

    EPA Science Inventory

    For decades human health risk assessment has depended primarily on animal testing to predict adverse effects in humans, but that paradigm has come under question because of calls for more accurate information, less use of animals, and more efficient use of resources. Moreover, t...

  14. Environmental Epigenetics: Potential Application in Human Health Risk Assessment

    EPA Science Inventory

    Although previous studies have shown a significant involvement of epigenetic dysregulation in human diseases, the applicability of epigenetic data in the current human health risk assessment paradigm is unclear. The goals of this study are to compare the relative sensitivities of...

  15. Human health risk assessment of heavy metals in urban stormwater.

    PubMed

    Ma, Yukun; Egodawatta, Prasanna; McGree, James; Liu, An; Goonetilleke, Ashantha

    2016-07-01

    Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150μm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas. PMID:27046140

  16. A 21st century roadmap for human health risk assessment.

    PubMed

    Pastoor, Timothy P; Bachman, Ammie N; Bell, David R; Cohen, Samuel M; Dellarco, Michael; Dewhurst, Ian C; Doe, John E; Doerrer, Nancy G; Embry, Michelle R; Hines, Ronald N; Moretto, Angelo; Phillips, Richard D; Rowlands, J Craig; Tanir, Jennifer Y; Wolf, Douglas C; Boobis, Alan R

    2014-08-01

    The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21) project was initiated to develop a scientific, transparent, and efficient approach to the evolving world of human health risk assessment, and involved over 120 participants from 12 countries, 15 government institutions, 20 universities, 2 non-governmental organizations, and 12 corporations. This paper provides a brief overview of the tiered RISK21 framework called the roadmap and risk visualization matrix, and articulates the core principles derived by RISK21 participants that guided its development. Subsequent papers describe the roadmap and matrix in greater detail. RISK21 principles include focusing on problem formulation, utilizing existing information, starting with exposure assessment (rather than toxicity), and using a tiered process for data development. Bringing estimates of exposure and toxicity together on a two-dimensional matrix provides a clear rendition of human safety and risk. The value of the roadmap is its capacity to chronicle the stepwise acquisition of scientific information and display it in a clear and concise fashion. Furthermore, the tiered approach and transparent display of information will contribute to greater efficiencies by calling for data only as needed (enough precision to make a decision), thus conserving animals and other resources. PMID:25070413

  17. Humans vs Hardware: The Unique World of NASA Human System Risk Assessment

    NASA Technical Reports Server (NTRS)

    Anton, W.; Havenhill, M.; Overton, Eric

    2016-01-01

    Understanding spaceflight risks to crew health and performance is a crucial aspect of preparing for exploration missions in the future. The research activities of the Human Research Program (HRP) provide substantial evidence to support most risk reduction work. The Human System Risk Board (HSRB), acting on behalf of the Office of Chief Health and Medical Officer (OCHMO), assesses these risks and assigns likelihood and consequence ratings to track progress. Unfortunately, many traditional approaches in risk assessment such as those used in the engineering aspects of spaceflight are difficult to apply to human system risks. This presentation discusses the unique aspects of risk assessment from the human system risk perspective and how these limitations are accommodated and addressed in order to ensure that reasonable inputs are provided to support the OCHMO's overall risk posture for manned exploration missions.

  18. Human milk biomonitoring data: interpretation and risk assessment issues.

    PubMed

    LaKind, Judy S; Brent, Robert L; Dourson, Michael L; Kacew, Sam; Koren, Gideon; Sonawane, Babasaheb; Tarzian, Anita J; Uhl, Kathleen

    2005-10-22

    Biomonitoring data can, under certain conditions, be used to describe potential risks to human health (for example, blood lead levels used to determine children's neurodevelopmental risk). At present, there are very few chemical exposures at low levels for which sufficient data exist to state with confidence the link between levels of environmental chemicals in a person's body and his or her risk of adverse health effects. Human milk biomonitoring presents additional complications. Human milk can be used to obtain information on both the levels of environmental chemicals in the mother and her infant's exposure to an environmental chemical. However, in terms of the health of the mother, there are little to no extant data that can be used to link levels of most environmental chemicals in human milk to a particular health outcome in the mother. This is because, traditionally, risks are estimated based on dose, rather than on levels of environmental chemicals in the body, and the relationship between dose and human tissue levels is complex. On the other hand, for the infant, some information on dose is available because the infant is exposed to environmental chemicals in milk as a "dose" from which risk estimates can be derived. However, the traditional risk assessment approach is not designed to consider the benefits to the infant associated with breastfeeding and is complicated by the relatively short-term exposures to the infant from breastfeeding. A further complexity derives from the addition of in utero exposures, which complicates interpretation of epidemiological research on health outcomes of breastfeeding infants. Thus, the concept of "risk assessment" as it applies to human milk biomonitoring is not straightforward, and methodologies for undertaking this type of assessment have not yet been fully developed. This article describes the deliberations of the panel convened for the Technical Workshop on Human Milk Surveillance and Biomonitoring for Environmental

  19. Biological surveys for ecological and human health risk assessments

    SciTech Connect

    Kathman, R.D.; Reagan, D.P.; Mayfield, J.C.

    1994-12-31

    In the past, human risk assessment was used almost exclusively to determine remedial measures at contaminated waste sites. Recently, however, ecological risk assessments have gained importance in evaluating risk not only to plants and animals, but also to humans through use of measures such as action levels of chemicals in fish tissue. Biological surveys were initiated to assess the mercury concentrations in finfish and shellfish in Lavaca Bay, Texas, part of which has been closed to fish and shellfish consumption since 1988 due to high levels of mercury in these organisms. Samples of particulate organic matter, cordgrass, invertebrates and fish were collected and analyzed for mercury concentrations. In conjunction with the biological surveys, an extensive sediment sampling program was conducted to map mercury concentrations in the sediment throughout the bay. A food web pathways model developed by personnel at National Marine Fisheries Service to assess mercury uptake by aquatic organisms in the bay has enabled the authors to concentrate on specific locations/habitats where mercury concentrations in sediment exceed a critical value. Biological data, along with stable isotope analyses, were used to validate the food web model. The conclusion is that mercury is continuing to enter the food web through the sediment-based food chain and not through the water column. These studies will be used to identify areas which need to be addressed for possible remedial measures, resulting in less uptake and bioaccumulation of mercury, and possible future removal of the fishing ban, thus establishing a direct linkage with human health concerns.

  20. Advancing human health risk assessment: integrating recent advisory committee recommendations.

    PubMed

    Dourson, Michael; Becker, Richard A; Haber, Lynne T; Pottenger, Lynn H; Bredfeldt, Tiffany; Fenner-Crisp, Penelope A

    2013-07-01

    Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose-response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose-response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches. PMID:23844697

  1. Advancing human health risk assessment: Integrating recent advisory committee recommendations

    PubMed Central

    Becker, Richard A.; Haber, Lynne T.; Pottenger, Lynn H.; Bredfeldt, Tiffany; Fenner-Crisp, Penelope A.

    2013-01-01

    Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose–response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose–response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches. PMID:23844697

  2. Flood hazard, vulnerability, and risk assessment for human life

    NASA Astrophysics Data System (ADS)

    Pan, T.; Chang, T.; Lai, J.; Hsieh, M.; Tan, Y.; Lin, Y.

    2011-12-01

    Flood risk assessment is an important issue for the countries suffering tropical cyclones and monsoon. Taiwan is located in the hot zone of typhoon tracks in the Western Pacific. There are three to five typhoons landing Taiwan every year. Typhoons and heavy rainfalls often cause inundation disaster rising with the increase of population and the development of social economy. The purpose of this study is to carry out the flood hazard, vulnerability and risk in term of human life. Based on the concept that flood risk is composed by flood hazard and vulnerability, a inundation simulation is performed to evaluate the factors of flood hazard for human life according to base flood (100-year return period). The flood depth, velocity and rising ratio are the three factors of flood hazards. Furthermore, the factors of flood vulnerability are identified in terms of human life that are classified into two main factors, residents and environment. The sub factors related to residents are the density of population and the density of vulnerable people including elders, youngers and disabled persons. The sub factors related to environment include the the number of building floors, the locations of buildings, the and distance to rescue center. The analytic hierarchy process (AHP) is adopted to determine the weights of these factors. The risk matrix is applied to show the risk from low to high based on the evaluation of flood hazards and vulnerabilities. The Tseng-Wen River watershed is selected as the case study because a serious flood was induced by Typhoon Morakot in 2009, which produced a record-breaking rainfall of 2.361mm in 48 hours in the last 50 years. The results of assessing the flood hazard, vulnerability and risk in term of human life could improve the emergency operation for flood disaster to prepare enough relief goods and materials during typhoon landing.

  3. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  4. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONG HUMAN HEALTH, ECOLOGICAL AND ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  5. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONG HUMAN HEALTH, ECOLOGICAL, AND ENVIRONMENTAL MONITORING

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  6. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONH HUMAN HEALTH, ECOLOGICAL AND ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  7. Characterization of Evidence for Human System Risk Assessment

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Van Baalen, M.; Rossi, M.; Riccio, G.; Romero, E.; Francisco, D.

    2016-01-01

    Understanding the kinds of evidence available and using the best evidence to answer a question is critical to evidenced-based decision-making, and it requires synthesis of evidence from a variety of sources. Categorization of human system risks in spaceflight, in particular, focuses on how well the integration and interpretation of all available evidence informs the risk statement that describes the relationship between spaceflight hazards and an outcome of interest. A mature understanding and categorization of these risks requires: 1) sufficient characterization of risk, 2) sufficient knowledge to determine an acceptable level of risk (i.e., a standard), 3) development of mitigations to meet the acceptable level of risk, and 4) identification of factors affecting generalizability of the evidence to different design reference missions. In the medical research community, evidence is often ranked by increasing confidence in findings gleaned from observational and experimental research (e.g., "levels of evidence"). However, an approach based solely on aspects of experimental design is problematic in assessing human system risks for spaceflight. For spaceflight, the unique challenges and opportunities include: (1) The independent variables in most evidence are the hazards of spaceflight, such as space radiation or low gravity, which cannot be entirely duplicated in terrestrial (Earth-based) analogs, (2) Evidence is drawn from multiple sources including medical and mission operations, Lifetime Surveillance of Astronaut Health (LSAH), spaceflight research (LSDA), and relevant environmental & terrestrial databases, (3) Risk metrics based primarily on LSAH data are typically derived from available prevalence or incidence data, which may limit rigorous interpretation, (4) The timeframe for obtaining adequate spaceflight sample size (n) is very long, given the small population, (5) Randomized controlled trials are unattainable in spaceflight, (6) Collection of personal and

  8. Mammalian toxicology overview and human risk assessment for sulfosulfuron.

    PubMed

    Healy, Charles E; Heydens, William F; Naylor, Mark W

    2004-06-01

    Sulfosulfuron is a low-use rate sulfonylurea herbicide. A review of the toxicity database for sulfosulfuron indicates that the molecule has a low order of acute toxicity. It is not genotoxic and is not a reproductive, developmental, or nervous system toxicant. There were no indications of endocrine disruption in any study performed with the molecule. The only findings considered to be an adverse effect in mammalian laboratory animals following prolonged subchronic or chronic exposure to sulfosulfuron were isolated to the urinary tract. These findings occurred in conjunction with findings of urolith formation following high-level chemical dosing, resulting in epithelial hyperplasia that, in a few cases, progressed to tumor formation. Mode-of-action information supports the conclusion that these tumors result from a non-genotoxic, threshold-based process that is well established and widely considered to be not relevant to humans. Based on its short-term, infrequent application pattern and very low use rate and crop residues, aggregate and cumulative risk assessments indicate that sulfosulfuron has substantial margins of exposure and does not represent a significant risk to human health. PMID:15135210

  9. Reproducibility and Transparency of Omics Research - Impacts on Human Health Risk Assessment

    EPA Science Inventory

    Omics technologies are becoming more widely used in toxicology, necessitating their consideration in human health hazard and risk assessment programs. Today, risk assessors in the United States Environmental Protection Agency’s Integrated Risk Information System (IRIS) Toxicologi...

  10. Human Health Risk Assessment Calculator. In: SMARTe20ll, EPA/600/C-10/007

    EPA Science Inventory

    This calculator is aimed at supporting a human health risk assessment. Risk scenarios can be built by combining various health effects, exposure pathways, exposure parameters, and analytes. Scenario risk are calculated for each exposure pathway and analyte combination. The out...

  11. Human health risk assessment from arsenic exposures in Bangladesh.

    PubMed

    Joseph, Tijo; Dubey, Brajesh; McBean, Edward A

    2015-09-15

    High arsenic exposures, prevalent through dietary and non-dietary sources in Bangladesh, present a major health risk to the public. A quantitative human health risk assessment is described as a result of arsenic exposure through food and water intake, tea intake, accidental soil ingestion, and chewing of betel quid, while people meet their desirable dietary intake requirements throughout their lifetime. In evaluating the contribution of each intake pathway to average daily arsenic intake, the results show that food and water intake combined, makes up approximately 98% of the daily arsenic intake with the balance contributed to by intake pathways such as tea consumption, soil ingestion, and quid consumption. Under an exposure scenario where arsenic concentration in water is at the WHO guideline (0.01 mg/L), food intake is the major arsenic intake pathway ranging from 67% to 80% of the average daily arsenic intake. However, the contribution from food drops to a range of 29% to 45% for an exposure scenario where arsenic in water is at the Bangladesh standard (0.05 mg/L). The lifetime excess risk of cancer occurrence from chronic arsenic exposure, considering a population of 160 million people, based on an exposure scenario with 85 million people at the WHO guideline value and 75 million people at the Bangladesh standard, and assuming that 35 million people are associated with a heavy activity level, is estimated as 1.15 million cases. PMID:26006052

  12. Significance of rat mammary tumors for human risk assessment.

    PubMed

    Russo, Jose

    2015-02-01

    We have previously indicated that the ideal animal tumor model should mimic the human disease. This means that the investigator should be able to ascertain the influence of host factors on the initiation of tumorigenesis, mimic the susceptibility of tumor response based on age and reproductive history, and determine the response of the tumors induced to chemotherapy. The utilization of experimental models of mammary carcinogenesis in risk assessment requires that the influence of ovarian, pituitary, and placental hormones, among others, as well as overall reproductive events are taken into consideration, since they are important modifiers of the susceptibility of the organ to neoplastic development. Several species, such as rodents, dogs, cats, and monkeys, have been evaluated for these purposes; however, none of them fulfills all the criteria specified previously. Rodents, however, are the most widely used models; therefore, this work will concentrate on discussing the rat rodent model of mammary carcinogenesis. PMID:25714400

  13. Human health and ecological risk assessment of soil-borne arsenic and lead: A site-specific risk assessment

    SciTech Connect

    Roy, M.; Epp, G.A.; Beukema, P.; Nieboer, E.

    1997-12-31

    Screening level site specific human health and ecological risk assessments (ERA) were conducted at a historical (1908--1921) smelting and refining site in the Niagara Region, Ontario in accordance with the recently released provincial and federal risk assessment guidelines. The purpose of the assessment was to evaluate the risk associated with elevated levels of arsenic and lead in surface soils, and to assess alternative remediation options, prior to property transfer. Future intended land use will be parkland and for the site to remain forested. The identification of potential receptors, exposure pathways, and end-points was conducted at the biological community-level. The ERA involved a toxic cue inventory of the core smelting and refining site, adjacent lands and a reference site. Development of remediation options was based on hazard assessment and the prediction of risks associated with arsenic contamination. An evaluation of remediation options and the selection of a preferred option are discussed.

  14. Human tissue monitoring and specimen banking: opportunities for exposure assessment, risk assessment, and epidemiologic research.

    PubMed

    Lee, L W; Griffith, J; Zenick, H; Hulka, B S

    1995-04-01

    A symposium on Human Tissue Monitoring and Specimen Banking: Opportunities for Exposure Assessment, Risk Assessment, and Epidemiologic Research was held from 30 March to 1 April 1993 in Research Triangle Park, North Carolina. There were 117 registered participants from 18 states and 5 foreign countries. The first 2 days featured 21 invited speakers from the U.S. Environmental Protection Agency, the Centers for Disease Control and Prevention, the National Institute of Environmental Health Sciences, various other government agencies, and universities in the United States, Canada, Germany, and Norway. The speakers provided a state-of-the-art overview of human exposure assessment techniques (especially applications of biological markers) and their relevance to human tissue specimen banking. Issues relevant to large-scale specimen banking were discussed, including program design, sample design, data collection, tissue collection, and ethical ramifications. The final group of presentations concerned practical experiences of major specimen banking and human tissue monitoring programs in the United States and Europe. The symposium addressed the utility and research opportunities afforded by specimen banking programs for future research needs in the areas of human exposure assessment, risk assessment, and environmental epidemiology. The third day of the symposium consisted of a small workshop convened to discuss and develop recommendations to the U.S. Environmental Protection Agency regarding applications and utility of large-scale specimen banking, biological monitoring, and biological markers for risk assessment activities. PMID:7635108

  15. An Evaluation of Transplacental Carcinogenesis for Human Health Risk Assessment

    EPA Science Inventory

    Risk assessments take into account the sensitivity of the postnatal period to carcinogens through the application of age-dependent adjustment factors (ADAFs) (Barton et al. 2005). The prenatal period is also recognized to be sensitive but is typically not included into risk asse...

  16. The human relevant potency threshold: reducing uncertainty by human calibration of cumulative risk assessments.

    PubMed

    Borgert, C J; Sargent, E V; Casella, G; Dietrich, D R; McCarty, L S; Golden, R J

    2012-03-01

    The 2008 National Research Council report "Phthalates and Cumulative Risk Assessment: Tasks Ahead," rejected the underlying premises of TEQ-like approaches - e.g., chemicals are true congeners; are metabolized and detoxified similarly; produce the same biological effects by the same mode of action; exhibit parallel dose response curves - instead asserting that cumulative risk assessment should apply dose addition (DA) to all chemicals that produce "common adverse outcomes" (CAOS). Published mixtures data and a human health risk assessment for phthalates and anti-androgens were evaluated to determine how firmly the DA-CAOS concept is supported and with what level of statistical certainty the results may be extrapolated to lower doses in humans. Underlying assumptions of the DA-CAOS concept were tested for accuracy and consistency against data for two human pharmaceuticals and its logical predictions were compared to human clinical and epidemiological experience. Those analyses revealed that DA-CAOS is scientifically untenable. Therefore, an alternative approach was developed - the Human-Relevant Potency-Threshold (HRPT) - that appears to fit the data better and avoids the contradictions inherent in the DA-CAOS concept. The proposed approach recommends application of independent action for phthalates and other chemicals with potential anti-androgenic properties at current human exposure levels. PMID:22057094

  17. Human Health Risk Assessment of Trichloroethylene from Industrial Complex A

    PubMed Central

    Sin, Saemi

    2012-01-01

    This study investigated the human health risks of trichloroethylene from Industrial Complex A. The excessive carcinogenic risks for central tendency exposure were 1.40 × 10?5 for male and female residents in the vicinity of Industrial Complex A. The excessive cancers risk for reasonable maximum exposure were 2.88 × 10?5 and 1.97 × 10?5 for males and females, respectively. These values indicate that there are potential cancer risks for exposure to these concentrations. The hazard index for central tendency exposure to trichloroethylene was 1.71 for male and female residents. The hazard indexes for reasonable maximum exposure were 3.27 and 2.41 for males and females, respectively. These values were over one, which is equivalent to the threshold value. This result showed that adverse cancer and non-cancer health effects may occur and that some risk management of trichloroethylene from Industrial Complex A was needed. PMID:24278607

  18. Evaluating uncertainty to strengthen epidemiologic data for use in human health risk assessments

    EPA Science Inventory

    Background: There is a recognized need to improve the application of epidemiologic data in human health risk assessment especially for understanding and characterizing risks from environmental and occupational exposures. While most epidemiologic studies result in uncertainty, tec...

  19. Risk Assessment: Evidence Base

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.

    2007-01-01

    Human systems PRA (Probabilistic Risk Assessment: a) Provides quantitative measures of probability, consequence, and uncertainty; and b) Communicates risk and informs decision-making. Human health risks rated highest in ISS PRA are based on 1997 assessment of clinical events in analog operational settings. Much work remains to analyze remaining human health risks identified in Bioastronautics Roadmap.

  20. A global human health risk assessment for Decamethylcyclopentasiloxane (D5).

    PubMed

    Franzen, Allison; Van Landingham, Cynthia; Greene, Tracy; Plotzke, Kathy; Gentry, Robinan

    2016-02-01

    Decamethylcyclopentasiloxane (D5) is a low-molecular-weight cyclic siloxane used primarily as an intermediate in the production of several widely-used industrial and consumer products and intentionally added to consumer products, personal products and some dry cleaning solvents. The global use requires consideration of consumer use information and risk assessment requirements from various sources and authoritative bodies. A global "harmonized" risk assessment was conducted to meet requirements for substance-specific risk assessments conducted by regulatory agencies such as USEPA's Integrated Risk Information System (IRIS), Health Canada and various independent scientific committees of the European Commission, as well as provide guidance for chemical safety assessments under REACH in Europe, and other relevant authoritative bodies. This risk assessment incorporates global exposure information combined with a Monte Carlo analysis to determine the most significant routes of exposure, utilization of a multi-species, multi-route physiologically based pharmacokinetic (PBPK) model to estimate internal dose metrics, benchmark modeling to determine a point of departure (POD), and a margin of safety (MOS) evaluation to compare the estimates of intake with the POD. Because of the specific pharmacokinetic behaviors of D5 including high lipophilicity, high volatility with low blood-to-air partition coefficients and extensive metabolic clearance that regulate tissue dose after exposure, the use of a PBPK model was essential to provide a comparison of a dose metric that reflects these processes. The characterization of the potential for adverse effects after exposure to D5 using a MOS approach based on an internal dose metric removes the subjective application of uncertainty factors that may be applied across various regulatory agencies and allows examination of the differences between internal dose metrics associated with exposure and those associated with adverse effects. PMID

  1. Addressing Human Variability in Next-Generation Human Health Risk Assessments of Environmental Chemicals

    PubMed Central

    Bois, Frederic Y.; Chiu, Weihsueh A.; Hattis, Dale; Rusyn, Ivan; Guyton, Kathryn Z.

    2012-01-01

    Background: Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Objective: Our goal was to explore how next-generation human health risk assessments may better characterize variability in the context of the conceptual framework for the source-to-outcome continuum. Methods: This review was informed by a National Research Council workshop titled “Biological Factors that Underlie Individual Susceptibility to Environmental Stressors and Their Implications for Decision-Making.” We considered current experimental and in silico approaches, and emerging data streams (such as genetically defined human cells lines, genetically diverse rodent models, human omic profiling, and genome-wide association studies) that are providing new types of information and models relevant for assessing interindividual variability for application to human health risk assessments of environmental chemicals. Discussion: One challenge for characterizing variability is the wide range of sources of inherent biological variability (e.g., genetic and epigenetic variants) among individuals. A second challenge is that each particular pair of health outcomes and chemical exposures involves combinations of these sources, which may be further compounded by extrinsic factors (e.g., diet, psychosocial stressors, other exogenous chemical exposures). A third challenge is that different decision contexts present distinct needs regarding the identification—and extent of characterization—of interindividual variability in the human population. Conclusions: Despite these inherent challenges, opportunities exist to incorporate evidence from emerging data streams for addressing interindividual variability in a range of decision-making contexts. PMID:23086705

  2. Depleted uranium human health risk assessment, Jefferson Proving Ground, Indiana

    SciTech Connect

    Ebinger, M.H.; Hansen, W.R.

    1994-04-29

    The risk to human health from fragments of depleted uranium (DU) at Jefferson Proving Ground (JPG) was estimated using two types of ecosystem pathway models. A steady-state, model of the JPG area was developed to examine the effects of DU in soils, water, and vegetation on deer that were hunted and consumed by humans. The RESRAD code was also used to estimate the effects of farming the impact area and consuming the products derived from the farm. The steady-state model showed that minimal doses to humans are expected from consumption of deer that inhabit the impact area. Median values for doses to humans range from about 1 mrem ({plus_minus}2.4) to 0.04 mrem ({plus_minus}0.13) and translate to less than 1 {times} 10{sup {minus}6} detriments (excess cancers) in the population. Monte Carlo simulation of the steady-state model was used to derive the probability distributions from which the median values were drawn. Sensitivity analyses of the steady-state model showed that the amount of DU in airborne dust and, therefore, the amount of DU on the vegetation surface, controlled the amount of DU ingested by deer and by humans. Human doses from the RESRAD estimates ranged from less than 1 mrem/y to about 6.5 mrem/y in a hunting scenario and subsistence fanning scenario, respectively. The human doses exceeded the 100 mrem/y dose limit when drinking water for the farming scenario was obtained from the on-site aquifer that was presumably contaminated with DU. The two farming scenarios were unrealistic land uses because the additional risk to humans due to unexploded ordnance in the impact area was not figured into the risk estimate. The doses estimated with RESRAD translated to less than 1 {times} 10{sup {minus}6} detriments to about 1 {times} 10{sup {minus}3} detriments. The higher risks were associated only with the farming scenario in which drinking water was obtained on-site.

  3. Human health risk assessment related to contaminated land: state of the art.

    PubMed

    Swartjes, F A

    2015-08-01

    Exposure of humans to contaminants from contaminated land may result in many types of health damage ranging from relatively innocent symptoms such as skin eruption or nausea, on up to cancer or even death. Human health protection is generally considered as a major protection target. State-of-the-art possibilities and limitations of human health risk assessment tools are described in this paper. Human health risk assessment includes two different activities, i.e. the exposure assessment and the hazard assessment. The combination of these is called the risk characterization, which results in an appraisal of the contaminated land. Exposure assessment covers a smart combination of calculations, using exposure models, and measurements in contact media and body liquids and tissue (biomonitoring). Regarding the time frame represented by exposure estimates, biomonitoring generally relates to exposure history, measurements in contact media to actual exposures, while exposure calculations enable a focus on exposure in future situations. The hazard assessment, which is different for contaminants with or without a threshold for effects, results in a critical exposure value. Good human health risk assessment practice accounts for tiered approaches and multiple lines of evidence. Specific attention is given here to phenomena such as the time factor in human health risk assessment, suitability for the local situation, background exposure, combined exposure and harmonization of human health risk assessment tools. PMID:25809961

  4. Waste area Grouping 2 Phase I task data report: Human health risk assessment

    SciTech Connect

    Purucker, S.T.; Douthat, D.M.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow- up information to the Phase 1 Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that could cause potential human health risk and ecological risk within WAG2 at ORNL. The purpose of this report is to present a summary of the human health risk assessment results based on the data collected for the WAG 2 Phase 1 RI. Estimates of risk are provided based on measured concentrations in the surface water, floodplain soil, and sediment of White Oak Creek, Melton Branch, and their tributaries. The human health risk assessment methodology used in this risk assessment is based on Risk Assessment Guidance for Superfund (RAGS). First, the data for the different media are elevated to determine usability for risk assessment. Second, through the process of selecting chemicals of potential concern (COPCs), contaminants to be considered in the risk assessment are identified for each assessment of exposure potential is performed, and exposure pathways are identified. Subsequently, exposure is estimated quantitatively, and the toxicity of each of the COPCs is determined. The results of these analyses are combined and summarized in a risk characterization.

  5. Electronic cigarettes: incorporating human factors engineering into risk assessments

    PubMed Central

    Yang, Ling; Rudy, Susan F; Cheng, James M; Durmowicz, Elizabeth L

    2014-01-01

    Objective A systematic review was conducted to evaluate the impact of human factors (HF) on the risks associated with electronic cigarettes (e-cigarettes) and to identify research gaps. HF is the evaluation of human interactions with products and includes the analysis of user, environment and product complexity. Consideration of HF may mitigate known and potential hazards from the use and misuse of a consumer product, including e-cigarettes. Methods Five databases were searched through January 2014 and publications relevant to HF were incorporated. Voluntary adverse event (AE) reports submitted to the US Food and Drug Administration (FDA) and the package labelling of 12 e-cigarette products were analysed. Results No studies specifically addressing the impact of HF on e-cigarette use risks were identified. Most e-cigarette users are smokers, but data on the user population are inconsistent. No articles focused specifically on e-cigarette use environments, storage conditions, product operational requirements, product complexities, user errors or misuse. Twelve published studies analysed e-cigarette labelling and concluded that labelling was inadequate or misleading. FDA labelling analysis revealed similar concerns described in the literature. AE reports related to design concerns are increasing and fatalities related to accidental exposure and misuse have occurred; however, no publications evaluating the relationship between AEs and HF were identified. Conclusions The HF impacting e-cigarette use and related hazards are inadequately characterised. Thorough analyses of user–product–environment interfaces, product complexities and AEs associated with typical and atypical use are needed to better incorporate HF engineering principles to inform and potentially reduce or mitigate the emerging hazards associated with e-cigarette products. PMID:24732164

  6. QUANTITATIVE TOXICOPROTEOMIC ANALYSIS OF CARCINOGEN-TREATED ANIMAL TISSUES AND HUMAN CELLS FOR HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    Humans are exposed to a variety of environmental toxicants, and this together with a large number of interacting factors can contribute to an individual's risk for health. To understand the toxic mechanisms and/or modes of action for human health risk assessment, molecular charac...

  7. Assessment of regional human health risks from lead contamination in Yunnan province, southwestern China.

    PubMed

    Lu, Lu; Cheng, Hongguang; Liu, Xuelian; Xie, Jing; Li, Qian; Zhou, Tan

    2015-01-01

    Identification and management the 'critical risk areas' where hotspot lead exposures are a potential risk to human health, become a major focus of public health efforts in China. But the knowledge of health risk assessment of lead pollution at regional and national scales is still limited in China. In this paper, under the guidance of 'sources-pathways-receptors' framework, regional human health risk assessment model for lead contamination was developed to calculate the population health risk in Yunnan province. And the cluster and AHP (analytic hierarchy process) analysis was taken to classify and calculate regional health risk and the decomposition of the regional health risk in the greatest health risk region, respectively. The results showed that Yunnan province can be divided into three areas. The highest health risk levels, located in northeastern Yunnan, including Kunming, Qujing, Zhaotong region. In those regions, lead is present at high levels in air, food, water and soil, and high population density which pose a high potential population risk to the public. The current study also reveals that most regional health risk was derived from the child receptors (age above 3 years) 4.3 times than the child receptors (age under 3 years), and ingestion of lead-contaminated rice was found to be the most significant contributor to the health risk (accounting for more than 49% health risk of total). This study can provide a framework for regional risk assessment in China and highlighted some indicators and uncertainties. PMID:25893826

  8. Assessment of Regional Human Health Risks from Lead Contamination in Yunnan Province, Southwestern China

    PubMed Central

    Lu, Lu; Cheng, Hongguang; Liu, Xuelian; Xie, Jing; Li, Qian; Zhou, Tan

    2015-01-01

    Identification and management the 'critical risk areas' where hotspot lead exposures are a potential risk to human health, become a major focus of public health efforts in China. But the knowledge of health risk assessment of lead pollution at regional and national scales is still limited in China. In this paper, under the guidance of 'sources-pathways-receptors' framework, regional human health risk assessment model for lead contamination was developed to calculate the population health risk in Yunnan province. And the cluster and AHP (analytic hierarchy process) analysis was taken to classify and calculate regional health risk and the decomposition of the regional health risk in the greatest health risk region, respectively. The results showed that Yunnan province can be divided into three areas. The highest health risk levels, located in northeastern Yunnan, including Kunming, Qujing, Zhaotong region. In those regions, lead is present at high levels in air, food, water and soil, and high population density which pose a high potential population risk to the public. The current study also reveals that most regional health risk was derived from the child receptors (age above 3 years) 4.3 times than the child receptors (age under 3years), and ingestion of lead-contaminated rice was found to be the most significant contributor to the health risk (accounting for more than 49 % health risk of total). This study can provide a framework for regional risk assessment in China and highlighted some indicators and uncertainties. PMID:25893826

  9. A Stochastic Approach To Human Health Risk Assessment Due To Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    de Barros, F. P.; Rubin, Y.

    2006-12-01

    We present a probabilistic framework to addressing adverse human health effects due to groundwater contamination. One of the main challenges in health risk assessment is in relating it to subsurface data acquisition and to improvement in our understanding of human physiological responses to contamination. In this paper we propose to investigate this problem through an approach that integrates flow, transport and human health risk models with hydrogeological characterization. A human health risk cumulative distribution function is analytically developed to account for both uncertainty and variability in hydrogeological as well as human physiological parameters. With our proposed approach, we investigate under which conditions the reduction of uncertainties from flow physics, human physiology and exposure related parameters might contribute to a better understanding of human health risk assessment. Results indicate that the human health risk cumulative distribution function is sensitive to physiological parameters at low risk values associated with longer travel times. The results show that the worth of hydrogeological characterization in human health risk is dependent on the residence time of the contaminant plume in the aquifer and on the exposure duration of the population to certain chemicals.

  10. Human health risk assessment: selected Internet and world wide web resources.

    PubMed

    Patterson, Jacqueline; Hakkinen, P J Bert; Wullenweber, Andrea E

    2002-04-25

    The world wide web (WWW) has become a valuable source of 24 hour-a-day access to information needed by human health risk assessors. Various web sites and other Internet resources provide information needed for human hazard identification, dose-response evaluation, exposure assessment, risk characterization, and risk management. Information on risk communication is also available. Substantial collections of information on multiple aspects of risk assessment are found in sites sponsored by RiskWorld, the (US) EPA's National Center for Environmental Assessment (NCEA), the (US) National Library of Medicine's TOXNET, the (US) Agency for Toxic Substances and Disease Registry (ATSDR), and the International Programme on Chemical Safety (IPCS). Also valuable are various web sites providing information on the physical and chemical properties of chemicals, the environmental fate and transport of chemicals, government regulations, and guidance and training for performing risk assessments. Several professional societies and other organizations have web sites addressing risk assessment issues and information, and there are Internet mailing lists for online help and for sharing information and perspectives. We classify selected web sites according to user needs and provide the reader with a collection of selected sites that can serve as entry points to risk assessment-related web resources. PMID:11955689

  11. RISK ASSESSMENT AND LIFE CYCLE IMPACT ASSESSMENT (LCIA) FOR HUMAN HEALTH CANCEROUS AND NONCANCEROUS EMISSIONS: INTEGRATED AND COMPLEMENTARY WITH CONSISTENCY WITHIN THE USEPA

    EPA Science Inventory

    The historical parallels, complementary roles, and potential for integration of human health risk assessment (RA) and Life-Cycle Impact Assessment (LCIA) are explored. Previous authors have considered the comparison of LCA and risk assessment recognizing the inherent differences ...

  12. APPLICATION OF A TIERED SURROGATE APPROACH TO IDENTIFY TOXICITY SURROGATES FOR HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    APPLICATION OF A TIERED SURROGATE APPROACH TO IDENTIFY TOXICITY SURROGATES FOR HUMAN HEALTH RISK ASSESSMENT. P.R. Dodmane1, L.E. Lizarraga1, J.P. Kaiser2, S.C. Wesselkamper2, Q.J. Zhao2. 1ORISE Participant, U.S. EPA, National Center for Environmental Assessment (NCEA), Cincinnati...

  13. Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas

    PubMed Central

    Hill, A. A.; Dewé, T.; Kosmider, R.; Von Dobschuetz, S.; Munoz, O.; Hanna, A.; Fusaro, A.; De Nardi, M.; Howard, W.; Stevens, K.; Kelly, L.; Havelaar, A.; Stärk, K.

    2015-01-01

    The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations, extremely difficult and uncertain. As a first step towards assessing zoonotic risk of influenza, we demonstrate a risk assessment framework to assess the relative likelihood of influenza A viruses, circulating in animal populations, making the species jump into humans. The intention is that such a risk assessment framework could assist decision-makers to compare multiple influenza viruses for zoonotic potential and hence to develop appropriate strain-specific control measures. It also provides a first step towards showing proof of principle for an eventual pandemic risk model. We show that the spatial and temporal epidemiology is as important in assessing the risk of an influenza A species jump as understanding the innate molecular capability of the virus. We also demonstrate data deficiencies that need to be addressed in order to consistently combine both epidemiological and molecular virology data into a risk assessment framework. PMID:26473042

  14. Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas.

    PubMed

    Hill, A A; Dewé, T; Kosmider, R; Von Dobschuetz, S; Munoz, O; Hanna, A; Fusaro, A; De Nardi, M; Howard, W; Stevens, K; Kelly, L; Havelaar, A; Stärk, K

    2015-09-01

    The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations, extremely difficult and uncertain. As a first step towards assessing zoonotic risk of influenza, we demonstrate a risk assessment framework to assess the relative likelihood of influenza A viruses, circulating in animal populations, making the species jump into humans. The intention is that such a risk assessment framework could assist decision-makers to compare multiple influenza viruses for zoonotic potential and hence to develop appropriate strain-specific control measures. It also provides a first step towards showing proof of principle for an eventual pandemic risk model. We show that the spatial and temporal epidemiology is as important in assessing the risk of an influenza A species jump as understanding the innate molecular capability of the virus. We also demonstrate data deficiencies that need to be addressed in order to consistently combine both epidemiological and molecular virology data into a risk assessment framework. PMID:26473042

  15. Integrating human and ecological risk assessment: application to the cyanobacterial harmful algal bloom problem.

    PubMed

    Orme-Zavaleta, Jennifer; Munns, Wayne R

    2008-01-01

    Environmental and public health policy continues to evolve in response to new and complex social, economic and environmental drivers. Globalization and centralization of commerce, evolving patterns of land use (e.g., urbanization, deforestation), and technological advances in such areas as manufacturing and development of genetically modified foods have created new and complex classes of stressors and risks (e.g., climate change, emergent and opportunist disease, sprawl, genomic change). In recognition of these changes, environmental risk assessment and its use are changing from stressor-endpoint specific assessments used in command and control types of decisions to an integrated approach for application in community-based decisions. As a result, the process of risk assessment and supporting risk analyses are evolving to characterize the human-environment relationship. Integrating risk paradigms combine the process of risk estimation for humans, biota, and natural resources into one assessment to improve the information used in environmental decisions (Suter et al. 2003b). A benefit to this approach includes a broader, system-wide evaluation that considers the interacting effects of stressors on humans and the environment, as well the interactions between these entities. To improve our understanding of the linkages within complex systems, risk assessors will need to rely on a suite of techniques for conducting rigorous analyses characterizing the exposure and effects relationships between stressors and biological receptors. Many of the analytical techniques routinely employed are narrowly focused and unable to address the complexities of an integrated assessment. In this paper, we describe an approach to integrated risk assessment, and discuss qualitative community modeling and Probabilistic Relational Modeling techniques that address these limitations and evaluate their potential for use in an integrated risk assessment of cyanobacteria. PMID:18461794

  16. USDOE study: Human health and ecological risk assessment for produced water discharges

    SciTech Connect

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.; Hamilton, L.D.

    1994-12-31

    Produced water generated during the production of oil and gas can contain high concentrations of radionuclides, organics and heavy metals. There are concerns about potential human health and ecological impacts from the discharge of these contaminants to the Gulf of Mexico. Data collected in the United States Department of Energy (USDOE) field study are being used in a series of human health and ecological risk assessments. These assessments will support scientifically-based regulation and risk management. This presentation: summarizes risk assessments performed for produced water discharges; describes how uncertainties in these assessments are guiding data collection efforts in the USDOE field study; and outlines ongoing risk assessment studies. In these studies, risk assessment is treated as an iterative process. An initial screening-level assessment is performed to identify important contaminants, transport and exposure pathways, and parameters. These intermediate results are used to guide data collection efforts and refinements to the analysis. At this stage in the analysis, risk is described in terms of probabilities; the uncertainties in each measured or modeled parameter are considered explicitly.

  17. Mining the potential interrelationships between human health and ecological risk assessments of metal-contaminated sites

    SciTech Connect

    Appling, J.W.

    1994-12-31

    Conservative approaches to human health or ecological risk assessment often result in evaluations that indicate a risk at metal concentrations near or below background levels. This presents a complex dilemma to regulators, responsible parties, and the public: How can risk be more realistically estimated so that the public is not unnecessarily alarmed into thinking normal exposures pose abnormal risk, and site remediation can be responsible yet cost-effective? One answer is using-ecological and human health studies together to improve the quality of both types of assessments. Mammalian herbivores and roving children are good spatial and temporal integrators of exposure; biomarkers or Monte Carlo-based models of exposure to herbivores can support realistic estimates of exposure to children. Reduced bioavailability of metals in soils at mining sites is well recognized for many metals and is amenable to study in ecological species; such studies reduce the overestimate of risk to humans through direct contact or exposure via the food chain. Recent and current human health studies of lead and arsenic bioavailability also support ecological assessments. Mixtures of metals pose special challenges because of the potential for antagonistic, additive, or synergistic effects with respect to bioavailability, absorption, distribution, excretion, toxic effects and nutritional or physiological essentiality. Combining results from pharmacokinetic, mechanistic, and environmental studies of mixtures enhances the predictive abilities of risk assessments.

  18. INTEGRATION OF HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    The WHO International Programme on Chemical Safety (IPCS), the Organization for Economic Cooperation and Development (OECD), and the U.S. Environmental Protection Agency (USEPA) have developed a collaborative partnership to foster integration of assessment approaches to evaluate ...

  19. GM Risk Assessment

    NASA Astrophysics Data System (ADS)

    Sparrow, Penny A. C.

    GM risk assessments play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of a GM risk assessment will be to ensure the safe handling and containment of the GMO; and to assess any potential impacts on the environment and human health. A risk assessment should answer all ‘what if’ scenarios, based on scientific evidence.

  20. Toxicology and risk assessment of coumarin: focus on human data.

    PubMed

    Abraham, Klaus; Wöhrlin, Friederike; Lindtner, Oliver; Heinemeyer, Gerhard; Lampen, Alfonso

    2010-02-01

    Coumarin is a secondary phytochemical with hepatotoxic and carcinogenic properties. For the carcinogenic effect, a genotoxic mechanism was considered possible, but was discounted by the European Food Safety Authority in 2004 based on new evidence. This allowed the derivation of a tolerable daily intake (TDI) for the first time, and a value of 0.1 mg/kg body weight was arrived at based on animal hepatotoxicity data. However, clinical data on hepatotoxicity from patients treated with coumarin as medicinal drug is also available. This data revealed a subgroup of the human population being more susceptible for the hepatotoxic effect than the animal species investigated. The cause of the high susceptibility is currently unknown; possible mechanisms are discussed. Using the human data, a TDI of 0.1 mg/kg body weight was derived, confirming that of the European Food Safety Authority. Nutritional exposure may be considerably, and is mainly due to use of cassia cinnamon, which is a popular spice especially, used for cookies and sweet dishes. To estimate exposure to coumarin during the Christmas season in Germany, a telephone survey was performed with more than 1000 randomly selected persons. Heavy consumers of cassia cinnamon may reach a daily coumarin intake corresponding to the TDI. PMID:20024932

  1. Analytic concepts for assessing risk as applied to human space flight

    SciTech Connect

    Garrick, B.J.

    1997-04-30

    Quantitative risk assessment (QRA) principles provide an effective framework for quantifying individual elements of risk, including the risk to astronauts and spacecraft of the radiation environment of space flight. The concept of QRA is based on a structured set of scenarios that could lead to different damage states initiated by either hardware failure, human error, or external events. In the context of a spacecraft risk assessment, radiation may be considered as an external event and analyzed in the same basic way as any other contributor to risk. It is possible to turn up the microscope on any particular contributor to risk and ask more detailed questions than might be necessary to simply assess safety. The methods of QRA allow for as much fine structure in the analysis as is desired. For the purpose of developing a basis for comprehensive risk management and considering the tendency to {open_quotes}fear anything nuclear,{close_quotes} radiation risk is a prime candidate for examination beyond that necessary to answer the basic question of risk. Thus, rather than considering only the customary damage states of fatalities or loss of a spacecraft, it is suggested that the full range of damage be analyzed to quantify radiation risk. Radiation dose levels in the form of a risk curve accomplish such a result. If the risk curve is the complementary cumulative distribution function, then it answers the extended question of what is the likelihood of receiving a specific dose of radiation or greater. Such results can be converted to specific health effects as desired. Knowing the full range of the radiation risk of a space mission and the contributors to that risk provides the information necessary to take risk management actions [operational, design, scheduling of missions around solar particle events (SPE), etc.] that clearly control radiation exposure.

  2. Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals?

    PubMed

    Evans, Richard M; Martin, Olwenn V; Faust, Michael; Kortenkamp, Andreas

    2016-02-01

    Current chemicals regulation operates almost exclusively on a chemical-by-chemical basis, however there is concern that this approach may not be sufficiently protective if two or more chemicals have the same toxic effect. Humans are indisputably exposed to more than one chemical at a time, for example to the multiple chemicals found in food, air and drinking water, and in household and consumer products, and in cosmetics. Assessment of cumulative risk to human health and/or the environment from multiple chemicals and routes can be done in a mixture risk assessment (MRA). Whilst there is a broad consensus on the basic science of mixture toxicology, the path to regulatory implementation of MRA within chemical risk assessment is less clear. In this discussion piece we pose an open question: should the scope of human MRA cross legislative remits or 'silos'? We define silos as, for instance, legislation that defines risk assessment practice for a subset of chemicals, usually on the basis of substance/product, media or process orientation. Currently any form of legal mandate for human MRA in the EU is limited to only a few pieces of legislation. We describe two lines of evidence, illustrated with selected examples, that are particularly pertinent to this question: 1) evidence that mixture effects have been shown for chemicals regulated in different silos and 2) evidence that humans are co-exposed to chemicals from different silos. We substantiate the position that, because there is no reason why chemicals allocated to specific regulatory silos would have non-overlapping risk profiles, then there is also no reason to expect that MRA limited only to chemicals within one silo can fully capture the risk that may be present to human consumers. Finally, we discuss possible options for implementation of MRA and we hope to prompt wider discussion of this issue. PMID:26573369

  3. The Use of Biomonitoring Data in Exposure and Human Health Risk Assessment: BENZENE CASE STUDY.

    EPA Science Inventory

    HESI Biomonitoring Technical Committee A framework of "Common Criteria" (i.e., a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment (Albertini et al., 2006). The data-rich chemical b...

  4. HUMAN EXPOSURE MODELING TO CHARACTERIZE SOURCE-TO-DOSE RELATIONSHIPS AND REDUCE UNCERTAINTY IN RISK ASSESSMENT

    EPA Science Inventory

    In 1998 EPA's Office of Research and Development (ORD) identified necessary research to strengthen the scientific foundation for human health risk assessment as one of its six high priority areas for long-term research support. In addition, ORD identified three strategic researc...

  5. Cumulative effects of anti-androgenic chemical mixtures and their relevance to human health risk assessment

    EPA Science Inventory

    Kembra L. Howdeshell and L. Earl Gray, Jr.Toxicological studies of defined chemical mixtures assist human health risk assessment by characterizing the joint action of chemicals. This presentation will review the effects of anti-androgenic chemical mixtures on reproductive tract d...

  6. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance

    EPA Science Inventory

    Objective: Here we present possible approaches and identify research needs to enable human health risk assessments that focus on the role the environment plays in antibiotic treatment failure of patients. Methods: The authors participated in a workshop sub-committee to define t...

  7. The Basics of Risk Assessment to Protect Human Health and the Environment

    EPA Science Inventory

    Risk assessment is the evaluation to determine the chance of harmful effects to human health or ecological systems resulting from exposure to an environmental stressor. A stressor is any physical, chemical, or biological entity that can induce an adverse response. Stressors may a...

  8. Application of Computational Toxicological Approaches in Supporting Human Health Risk Assessment, Project Summary

    EPA Science Inventory

    Summary

    This project has three parts. The first part focuses on developing a tiered strategy and applying computational toxicological approaches to support human health risk assessment by deriving a surrogate point-of-departure (e.g., NOAEL, LOAEL, etc.) using a test c...

  9. 78 FR 17201 - Pesticide Chemicals; Registration Review; Draft Human Health and Ecological Risk Assessments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...This notice announces the availability of EPA's draft human health and ecological risk assessments for the registration review of ancymidol, fosthiazate, lactofen, polybutene resins, quizalofop, and soap salts and opens a public comment period on these documents. Registration review is EPA's periodic review of pesticide registrations to ensure that each pesticide continues to satisfy the......

  10. The Stoplight Task: A Procedure for Assessing Risk Taking in Humans

    ERIC Educational Resources Information Center

    Reilly, Mark P.; Greenwald, Mark K.; Johanson, Chris-Ellyn

    2006-01-01

    The Stoplight Task, a procedure involving a computer analog of a stoplight, was evaluated for assessing risk taking in humans. Seventeen participants earned points later exchangeable for money by completing a response requirement before the red light appeared on a simulated traffic light. The green light signaled to start responding; it changed to…

  11. USING PROTEOMICS TO IMPROVE RISK ASSESSMENT OF HUMAN EXPOSURE TO ENVIRONMENTAL AGENTS

    EPA Science Inventory

    Using Proteomics to Improve Risk Assessment of Human Exposure to Environmental Agents.
    Authors: Witold M. Winnik
    Key Words (4): Proteomics, LC/MS, Western Blots, 1D and 2D gel electrophoresis, toxicity

    The goal of this project is to use proteomics for the character...

  12. Assessing the Risks to Human Health in Heterogeneous Aquifers under Uncertainty

    NASA Astrophysics Data System (ADS)

    de Barros, Felipe

    2015-04-01

    Reliable quantification of human health risk from toxic chemicals present in groundwater is a challenging task. The main difficulty relies on the fact that many of the components that constitute human health risk assessment are uncertain and requires interdisciplinary knowledge. Understanding the impact from each of these components in risk estimation can provide guidance for decision makers to manage contaminated sites and best allocate resources towards minimal prediction uncertainty. This presentation will focus on the impact of aquifer heterogeneity in human health risk. Spatial heterogeneity of the hydrogeological properties can lead to the formation of preferential flow channels which control the plume spreading rates and travel time statistics, both which are critical in assessing the risk level. By making use of an integrated hydrogeological-health stochastic framework, the significance of characteristic length scales (e.g. characterizing flow, transport and sampling devices) in both controlling the uncertainty of health risk and determining data needs is highlighted. Through a series of examples, we show how fundamental knowledge on the main physical mechanisms affecting solute pathways are necessary to understand the human health response to varying drivers.

  13. Cancer risk assessment: Optimizing human health through linear dose-response models.

    PubMed

    Calabrese, Edward J; Shamoun, Dima Yazji; Hanekamp, Jaap C

    2015-07-01

    This paper proposes that generic cancer risk assessments be based on the integration of the Linear Non-Threshold (LNT) and hormetic dose-responses since optimal hormetic beneficial responses are estimated to occur at the dose associated with a 10(-4) risk level based on the use of a LNT model as applied to animal cancer studies. The adoption of the 10(-4) risk estimate provides a theoretical and practical integration of two competing risk assessment models whose predictions cannot be validated in human population studies or with standard chronic animal bioassay data. This model-integration reveals both substantial protection of the population from cancer effects (i.e. functional utility of the LNT model) while offering the possibility of significant reductions in cancer incidence should the hormetic dose-response model predictions be correct. The dose yielding the 10(-4) cancer risk therefore yields the optimized toxicologically based "regulatory sweet spot". PMID:25916915

  14. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  15. Evaluating Uncertainty to Strengthen Epidemiologic Data for Use in Human Health Risk Assessments

    PubMed Central

    Burns, Carol J.; Wright, J. Michael; Bateson, Thomas F.; Burstyn, Igor; Goldstein, Daniel A.; Klaunig, James E.; Luben, Thomas J.; Mihlan, Gary; Ritter, Leonard; Schnatter, A. Robert; Symons, J. Morel; Don Yi, Kun

    2014-01-01

    Background: There is a recognized need to improve the application of epidemiologic data in human health risk assessment especially for understanding and characterizing risks from environmental and occupational exposures. Although there is uncertainty associated with the results of most epidemiologic studies, techniques exist to characterize uncertainty that can be applied to improve weight-of-evidence evaluations and risk characterization efforts. Methods: This report derives from a Health and Environmental Sciences Institute (HESI) workshop held in Research Triangle Park, North Carolina, to discuss the utility of using epidemiologic data in risk assessments, including the use of advanced analytic methods to address sources of uncertainty. Epidemiologists, toxicologists, and risk assessors from academia, government, and industry convened to discuss uncertainty, exposure assessment, and application of analytic methods to address these challenges. Synthesis: Several recommendations emerged to help improve the utility of epidemiologic data in risk assessment. For example, improved characterization of uncertainty is needed to allow risk assessors to quantitatively assess potential sources of bias. Data are needed to facilitate this quantitative analysis, and interdisciplinary approaches will help ensure that sufficient information is collected for a thorough uncertainty evaluation. Advanced analytic methods and tools such as directed acyclic graphs (DAGs) and Bayesian statistical techniques can provide important insights and support interpretation of epidemiologic data. Conclusions: The discussions and recommendations from this workshop demonstrate that there are practical steps that the scientific community can adopt to strengthen epidemiologic data for decision making. Citation: Burns CJ, Wright JM, Pierson JB, Bateson TF, Burstyn I, Goldstein DA, Klaunig JE, Luben TJ, Mihlan G, Ritter L, Schnatter AR, Symons JM, Yi KD. 2014. Evaluating uncertainty to strengthen

  16. Priority setting for risk assessment-The benefit of human experience

    SciTech Connect

    Alonzo, Cristina . E-mail: aloncris@adinet.com.uy; Laborde, Amalia

    2005-09-01

    The chemical risk assessment process plays an essential role in the potential human health risk evaluation. Setting priorities for this purpose is critical for better use of the available human and material resources. It has been generally accepted that all new chemicals require safety evaluation before manufacture and sale. This is a difficult task due to the large number of chemicals directly consumed by man, as well as those that are widely used. At present, more than 50% of chemicals do not have the minimum data requirements for risk assessment. Production and release volumes are well-established prioritization criteria, although volume itself does not directly reflect the likelihood of human exposure. This quantitative approach applied in setting priorities may be influenced by human experience. Human data provided by epidemiological investigations have been accepted as the most credible evidence for human toxicity although analytical studies are expensive and require long-term follow up. Unfortunately, some epidemiological studies continue to have difficulties with exposure documentation, controlling bias and confounding, and are not able to provide predictions of risk until humans are exposed. Clinical toxicology services and Poison Centres around the world accumulate a great amount of toxicological-related information that may contribute to the evidence-based medicine and research and so collaborate with all the risk assessment disciplines. The information obtained from these services and centers has the potential to prioritize existing chemical assessment processes or to influence scheduling of classes of chemicals. Prioritization process may be improved by evaluating Poisons Centres statistics about frequency of cases, severity of effects, detection of unusual circumstances of exposure, as well as vulnerable sub-populations. International efforts for the harmonization of these data offer a useful tool to take advantage of this global information. Case

  17. GM Risk Assessment.

    PubMed

    Sparrow, Penny A C

    2009-01-01

    GM risk assessments play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of a GM risk assessment will be to ensure the safe handling and containment of the GMO; and to assess any potential impacts on the environment and human health. A risk assessment should answer all 'what if' scenarios, based on scientific evidence. This chapter sets out to provide researchers with helpful guidance notes on producing their own GM risk assessment. While reference will be made to UK and EU regulations, the underlying principles and points to consider are generic to most countries. PMID:19009454

  18. Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals.

    PubMed

    Bourdon-Lacombe, Julie A; Moffat, Ivy D; Deveau, Michelle; Husain, Mainul; Auerbach, Scott; Krewski, Daniel; Thomas, Russell S; Bushel, Pierre R; Williams, Andrew; Yauk, Carole L

    2015-07-01

    Toxicogenomics promises to be an important part of future human health risk assessment of environmental chemicals. The application of gene expression profiles (e.g., for hazard identification, chemical prioritization, chemical grouping, mode of action discovery, and quantitative analysis of response) is growing in the literature, but their use in formal risk assessment by regulatory agencies is relatively infrequent. Although additional validations for specific applications are required, gene expression data can be of immediate use for increasing confidence in chemical evaluations. We believe that a primary reason for the current lack of integration is the limited practical guidance available for risk assessment specialists with limited experience in genomics. The present manuscript provides basic information on gene expression profiling, along with guidance on evaluating the quality of genomic experiments and data, and interpretation of results presented in the form of heat maps, pathway analyses and other common approaches. Moreover, potential ways to integrate information from gene expression experiments into current risk assessment are presented using published studies as examples. The primary objective of this work is to facilitate integration of gene expression data into human health risk assessments of environmental chemicals. PMID:25944780

  19. A tiered assessment framework to evaluate human health risk of contaminated sediment.

    PubMed

    Greenfield, Ben K; Melwani, Aroon R; Bay, Steven M

    2015-07-01

    For sediment contaminated with bioaccumulative pollutants (e.g., PCBs and organochorine pesticides), human consumption of seafood that contain bioaccumulated sediment-derived contaminants is a well-established exposure pathway. Historically, regulation and management of this bioaccumulation pathway has focused on site-specific risk assessment. The state of California (United States) is supporting the development of a consistent and quantitative sediment assessment framework to aid in interpreting a narrative objective to protect human health. The conceptual basis of this framework focuses on 2 key questions: 1) do observed pollutant concentrations in seafood from a given site pose unacceptable health risks to human consumers? and 2) is sediment contamination at a site a significant contributor to seafood contamination? The first question is evaluated by interpreting seafood tissue concentrations at the site, based on health risk calculations. The second question is evaluated by interpreting site-specific sediment chemistry data using a food web bioaccumulation model. The assessment framework includes 3 tiers (screening assessment, site assessment, and refined site assessment), which enables the assessment to match variations in data availability, site complexity, and study objectives. The second and third tiers use a stochastic simulation approach, incorporating information on variability and uncertainty of key parameters, such as seafood contaminant concentration and consumption rate by humans. The framework incorporates site-specific values for sensitive parameters and statewide values for difficult to obtain or less sensitive parameters. The proposed approach advances risk assessment policy by incorporating local data into a consistent region-wide problem formulation, applying best available science in a streamlined fashion. PMID:25641876

  20. Monte Carlo Simulation of Spacecraft Particle Detectors to Assess the True Human Risk

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.

    2002-01-01

    Particle detectors (DOSTEL, CPDS, and TEPC) measure the energy deposition spectrum inside earth orbiting - manned spacecraft (shuttle, space station). These instruments attempt to emulate the deposition of energy in human tissue to evaluate the health risk. However, the measurements are often difficult to relate to tissue equivalent because nuclear fragmentation (internuclear cascade/evaporation), energy-loss straggling, heavy ions, spacecraft shielding and detector geometry/orientation, and coincidence thresholds significantly affect the measured spectrum. 'A le have developed a high fidelity Monte Carlo model addressing each of these effects that significantly improves interpretation of these instruments and the resulting assessment of radiation risk to humans.

  1. A Human-Health Risk Assessment for West Nile Virus and Insecticides Used in Mosquito Management

    PubMed Central

    Peterson, Robert K.D.; Macedo, Paula A.; Davis, Ryan S.

    2006-01-01

    West Nile virus (WNV) has been a major public health concern in North America since 1999, when the first outbreak in the Western Hemisphere occurred in New York City. As a result of this ongoing disease outbreak, management of mosquitoes that vector WNV throughout the United States and Canada has necessitated using insecticides in areas where they traditionally have not been used or have been used less frequently. This has resulted in concerns by the public about the risks from insecticide use. The objective of this study was to use reasonable worst-case risk assessment methodologies to evaluate human-health risks for WNV and the insecticides most commonly used to control adult mosquitoes. We evaluated documented health effects from WNV infection and determined potential population risks based on reported frequencies. We determined potential acute (1-day) and subchronic (90-day) multiroute residential exposures from each insecticide for several human subgroups during a WNV disease outbreak scenario. We then compared potential insecticide exposures to toxicologic and regulatory effect levels. Risk quotients (RQs, the ratio of exposure to toxicologic effect) were < 1.0 for all subgroups. Acute RQs ranged from 0.0004 to 0.4726, and subchronic RQs ranged from 0.00014 to 0.2074. Results from our risk assessment and the current weight of scientific evidence indicate that human-health risks from residential exposure to mosquito insecticides are low and are not likely to exceed levels of concern. Further, our results indicate that, based on human-health criteria, the risks from WNV exceed the risks from exposure to mosquito insecticides. PMID:16507459

  2. Quantitative Risk Assessment of Human Trichinellosis Caused by Consumption of Pork Meat Sausages in Argentina.

    PubMed

    Sequeira, G J; Zbrun, M V; Soto, L P; Astesana, D M; Blajman, J E; Rosmini, M R; Frizzo, L S; Signorini, M L

    2016-03-01

    In Argentina, there are three known species of genus Trichinella; however, Trichinella spiralis is most commonly associated with domestic pigs and it is recognized as the main cause of human trichinellosis by the consumption of products made with raw or insufficiently cooked pork meat. In some areas of Argentina, this disease is endemic and it is thus necessary to develop a more effective programme of prevention and control. Here, we developed a quantitative risk assessment of human trichinellosis following pork meat sausage consumption, which may be used to identify the stages with greater impact on the probability of acquiring the disease. The quantitative model was designed to describe the conditions in which the meat is produced, processed, transported, stored, sold and consumed in Argentina. The model predicted a risk of human trichinellosis of 4.88 × 10(-6) and an estimated annual number of trichinellosis cases of 109. The risk of human trichinellosis was sensitive to the number of Trichinella larvae that effectively survived the storage period (r = 0.89), the average probability of infection (PPinf ) (r = 0.44) and the storage time (Storage) (r = 0.08). This model allowed assessing the impact of different factors influencing the risk of acquiring trichinellosis. The model may thus help to select possible strategies to reduce the risk in the chain of by-products of pork production. PMID:26227185

  3. Rethinking risk assessment for emerging technology first-in-human trials.

    PubMed

    Genske, Anna; Engel-Glatter, Sabrina

    2016-03-01

    Recent progress in synthetic biology (SynBio) has enabled the development of novel therapeutic opportunities for the treatment of human disease. In the near future, first-in-human trials (FIH) will be indicated. FIH trials mark a key milestone in the translation of medical SynBio applications into clinical practice. Fostered by uncertainty of possible adverse events for trial participants, a variety of ethical concerns emerge with regards to SynBio FIH trials, including 'risk' minimization. These concerns are associated with any FIH trial, however, due to the novelty of the approach, they become more pronounced for medical applications of emerging technologies (emTech) like SynBio. To minimize potential harm for trial participants, scholars, guidelines, regulations and policy makers alike suggest using 'risk assessment' as evaluation tool for such trials. Conversely, in the context of emTech FIH trials, we believe it to be at least questionable to contextualize uncertainty of potential adverse events as 'risk' and apply traditional risk assessment methods. Hence, this issue needs to be discussed to enable alterations of the evaluation process before the translational phase of SynBio applications begins. In this paper, we will take the opportunity to start the debate and highlight how a misunderstanding of the concept of risk, and the possibilities and limitations of risk assessment, respectively, might impair decision-making by the relevant regulatory authorities and research ethics committees, and discuss possible solutions to tackle the issue. PMID:26276449

  4. Human health risk assessment of triclosan in land-applied biosolids.

    PubMed

    Verslycke, Tim; Mayfield, David B; Tabony, Jade A; Capdevielle, Marie; Slezak, Brian

    2016-09-01

    Triclosan (5-chloro-2-[2,4-dichlorophenoxy]-phenol) is an antimicrobial agent found in a variety of pharmaceutical and personal care products. Numerous studies have examined the occurrence and environmental fate of triclosan in wastewater, biosolids, biosolids-amended soils, and plants and organisms exposed to biosolid-amended soils. Triclosan has a propensity to adhere to organic carbon in biosolids and biosolid-amended soils. Land application of biosolids containing triclosan has the potential to contribute to multiple direct and indirect human health exposure pathways. To estimate exposures and human health risks from biosolid-borne triclosan, a risk assessment was conducted in general accordance with the methodology incorporated into the US Environmental Protection Agency's Part 503 biosolids rule. Human health exposures to biosolid-borne triclosan were estimated on the basis of published empirical data or modeled using upper-end environmental partitioning estimates. Similarly, a range of published triclosan human health toxicity values was evaluated. Margins of safety were estimated for 10 direct and indirect exposure pathways, both individually and combined. The present risk assessment found large margins of safety (>1000 to >100 000) for potential exposures to all pathways, even under the most conservative exposure and toxicity assumptions considered. The human health exposures and risks from biosolid-borne triclosan are concluded to be de minimis. Environ Toxicol Chem 2016;35:2358-2367. © 2016 SETAC. PMID:27552397

  5. Human variability in hepatic and renal elimination: implications for risk assessment.

    PubMed

    Dorne, J L C M

    2007-01-01

    Hepatic metabolism and renal excretion constitute the main routes of xenobiotic elimination in humans. Improving human risk assessment for threshold contaminants requires the incorporation of quantitative data related to their elimination (toxicokinetics) and potential toxic effects (toxicodynamics). This type of data provides a scientific basis to replace the standard uncertainty factor (UF = 10) allowing for the consideration of human variability in toxicokinetics and toxicodynamics. This review focuses on recent research efforts aiming to incorporate human variability in hepatic and renal elimination (toxicokinetics) into the risk assessment process. A therapeutic drug database was developed to quantify pathway-related variability in human phase I and phase II hepatic metabolism as well as renal excretion in subgroups of the population (healthy adults, neonates and the elderly), using data on compounds cleared primarily through each route (> 60% dose). For each subgroup of the population and elimination route, pathway-related UFs were then derived to cover 95-99% of each subgroup. Overall, the default toxicokinetic UFs would not cover neonates, the elderly for most elimination routes and any subgroup of the population for compounds metabolized via polymorphic isozymes (such as CYP2C19 and CYP2D6). These pathway-related UFs allow the incorporation of in vivo metabolism and toxicokinetic data in the risk assessment process and provide a flexible intermediate option between the default UF and chemical-specific adjustment factors (CSAFs) derived from physiologically based pharmacokinetic models. Implications of human variability in hepatic metabolism and renal excretion for chemical risk assessment are discussed. PMID:17497760

  6. Assessing risks for integrated water resource management: coping with uncertainty and the human factor

    NASA Astrophysics Data System (ADS)

    Polo, M. J.; Aguilar, C.; Millares, A.; Herrero, J.; Gómez-Beas, R.; Contreras, E.; Losada, M. A.

    2014-09-01

    Risk assessment for water resource planning must deal with the uncertainty associated with excess/scarcity situations and their costs. The projected actions for increasing water security usually involve an indirect "call-effect": the territory occupation/water use is increased following the achieved protection. In this work, flood and water demand in a mountainous semi-arid watershed in southern Spain are assessed by means of the stochastic simulation of extremes, when this human factor is/is not considered. The results show how not including this call-effect induced an underestimation of flood risk after protecting the floodplain of between 35 and 78 % in a 35-year planning horizon. Similarly, the pursued water availability of a new reservoir resulted in a 10-year scarcity risk increase up to 38 % when the trend of expanding the irrigated area was included in the simulations. These results highlight the need for including this interaction in the decision-making assessment.

  7. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    PubMed Central

    Straub, Jürg Oliver

    2013-01-01

    An environmental risk assessment (ERA) for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP), comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs) are compared with measured environmental concentrations (MECs) from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs) were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC) and risk graphs, there is no significant risk to surface waters. PMID:27029296

  8. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance

    PubMed Central

    Amézquita, Alejandro; Backhaus, Thomas; Borriello, Peter; Brandt, Kristian K.; Collignon, Peter; Coors, Anja; Finley, Rita; Gaze, William H.; Heberer, Thomas; Lawrence, John R.; Larsson, D.G. Joakim; McEwen, Scott A.; Ryan, James J.; Schönfeld, Jens; Silley, Peter; Snape, Jason R.; Van den Eede, Christel; Topp, Edward

    2013-01-01

    Background: Only recently has the environment been clearly implicated in the risk of antibiotic resistance to clinical outcome, but to date there have been few documented approaches to formally assess these risks. Objective: We examined possible approaches and sought to identify research needs to enable human health risk assessments (HHRA) that focus on the role of the environment in the failure of antibiotic treatment caused by antibiotic-resistant pathogens. Methods: The authors participated in a workshop held 4–8 March 2012 in Québec, Canada, to define the scope and objectives of an environmental assessment of antibiotic-resistance risks to human health. We focused on key elements of environmental-resistance-development “hot spots,” exposure assessment (unrelated to food), and dose response to characterize risks that may improve antibiotic-resistance management options. Discussion: Various novel aspects to traditional risk assessments were identified to enable an assessment of environmental antibiotic resistance. These include a) accounting for an added selective pressure on the environmental resistome that, over time, allows for development of antibiotic-resistant bacteria (ARB); b) identifying and describing rates of horizontal gene transfer (HGT) in the relevant environmental “hot spot” compartments; and c) modifying traditional dose–response approaches to address doses of ARB for various health outcomes and pathways. Conclusions: We propose that environmental aspects of antibiotic-resistance development be included in the processes of any HHRA addressing ARB. Because of limited available data, a multicriteria decision analysis approach would be a useful way to undertake an HHRA of environmental antibiotic resistance that informs risk managers. Citation: Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DG, McEwen SA, Ryan JJ, Schönfeld J, Silley P, Snape JR

  9. Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China

    PubMed Central

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan

    2013-01-01

    Background: Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. Objectives: We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. Methods: We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. Results: We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median–maximum, nanograms per liter: 24.4–564), metronidazole (1.8–19.3), salicylic acid (16.6–41.2), clofibric acid (1.2–3.3), carbamazepine (1.3–6.7), and dimetridazole (6.9–14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Conclusion: Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere. PMID:23665928

  10. Human and animal health risk assessments of chemicals in the food chain: Comparative aspects and future perspectives

    SciTech Connect

    Dorne, J.L.C.M.; Fink-Gremmels, J.

    2013-08-01

    Chemicals from anthropogenic and natural origins enter animal feed, human food and water either as undesirable contaminants or as part of the components of a diet. Over the last five decades, considerable efforts and progress to develop methodologies to protect humans and animals against potential risks associated with exposure to such potentially toxic chemicals have been made. This special issue presents relevant methodological developments and examples of risk assessments of undesirable substances in the food chain integrating the animal health and the human health perspective and refers to recent Opinions of the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). This introductory review aims to give a comparative account of the risk assessment steps used in human health and animal health risk assessments for chemicals in the food chain and provides a critical view of the data gaps and future perspectives for this cross-disciplinary field. - Highlights: ► Principles of human and animal health risk assessment. ► Data gaps for each step of animal health risk assessment. ► Implications of animal risk assessment on human risk assessment. ► Future perspectives on chemical risk assessment.

  11. Risk assessment of oil and gas well drilling activities in Iran - a case study: human factors.

    PubMed

    Amir-Heidari, Payam; Farahani, Hadi; Ebrahemzadih, Mehrzad

    2015-01-01

    Oil and gas well drilling activities are associated with numerous hazards which have the potential to cause injury or harm for people, property and the environment. These hazards are also a threat for the reputation of drilling companies. To prevent accidents and undesired events in drilling operations it is essential to identify, evaluate, assess and control the attendant risks. In this work, a structured methodology is proposed for risk assessment of drilling activities. A case study is performed to identify, analyze and assess the risks arising from human factors in one of the on shore drilling sites in southern Iran. A total of 17 major hazards were identified and analyzed using the proposed methodology. The results showed that the residual risks of 100% of these hazards were in the acceptable or transitional zone, and their levels were expected to be lowered further by proper controls. This structured methodology may also be used in other drilling sites and companies for assessing the risks. PMID:26333832

  12. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans

    SciTech Connect

    Kuempel, E.D.; Tran, C.L.; Castranova, V.; Bailer, A.J.

    2006-09-15

    Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and internal dose. Another approach is lung dosimetry modeling, which provides a biologically-based, mechanistic method to extrapolate doses from animals to humans. However, current mass-based lung dosimetry models may not fully account for differences in the clearance and translocation of nanoparticles. In this article, key steps in quantitative risk assessment are illustrated, using dose-response data in rats chronically exposed to either fine or ultrafine titanium dioxide (TiO{sub 2}), carbon black (CB), or diesel exhaust particulate (DEP). The rat-based estimates of the working lifetime airborne concentrations associated with 0.1% excess risk of lung cancer are approximately 0.07 to 0.3 mg/m{sup 3} for ultrafine TiO{sub 2}, CB, or DEP, and 0.7 to 1.3 mg/m{sup 3} for fine TiO{sub 2}. Comparison of observed versus model-predicted lung burdens in rats shows that the dosimetry models predict reasonably well the retained mass lung burdens of fine or ultrafine poorly soluble particles in rats exposed by chronic inhalation. Additional model validation is needed for nanoparticles of varying characteristics, as well as extension of these models to include particle translocation to organs beyond the lungs. Such analyses would provide improved prediction of nanoparticle dose for risk assessment.

  13. Metal uptake by homegrown vegetables - the relative importance in human health risk assessments at contaminated sites.

    PubMed

    Augustsson, Anna L M; Uddh-Söderberg, Terese E; Hogmalm, K Johan; Filipsson, Monika E M

    2015-04-01

    Risk assessments of contaminated land often involve the use of generic bioconcentration factors (BCFs), which express contaminant concentrations in edible plant parts as a function of the concentration in soil, in order to assess the risks associated with consumption of homegrown vegetables. This study aimed to quantify variability in BCFs and evaluate the implications of this variability for human exposure assessments, focusing on cadmium (Cd) and lead (Pb) in lettuce and potatoes sampled around 22 contaminated glassworks sites. In addition, risks associated with measured Cd and Pb concentrations in soil and vegetable samples were characterized and a probabilistic exposure assessment was conducted to estimate the likelihood of local residents exceeding tolerable daily intakes. The results show that concentrations in vegetables were only moderately elevated despite high concentrations in soil, and most samples complied with applicable foodstuff legislation. Still, the daily intake of Cd (but not Pb) was assessed to exceed toxicological thresholds for about a fifth of the study population. Bioconcentration factors were found to vary more than indicated by previous studies, but decreasing BCFs with increasing metal concentrations in the soil can explain why the calculated exposure is only moderately affected by the choice of BCF value when generic soil guideline values are exceeded and the risk may be unacceptable. PMID:25723126

  14. Physicologically Based Toxicokinetic Models of Tebuconazole and Application in Human Risk Assessment.

    PubMed

    Jónsdóttir, Svava Ósk; Reffstrup, Trine Klein; Petersen, Annette; Nielsen, Elsa

    2016-05-16

    A series of physiologically based toxicokinetic (PBTK) models for tebuconazole were developed in four species, rat, rabbit, rhesus monkey, and human. The developed models were analyzed with respect to the application of the models in higher tier human risk assessment, and the prospect of using such models in risk assessment of cumulative and aggregate exposure is discussed. Relatively simple and biologically sound models were developed using available experimental data as parameters for describing the physiology of the species, as well as the absorption, distribution, metabolism, and elimination (ADME) of tebuconazole. The developed models were validated on in vivo half-life data for rabbit with good results, and on plasma and tissue concentration-time course data of tebuconazole after i.v. administration in rabbit. In most cases, the predicted concentration levels were seen to be within a factor of 2 compared to the experimental data, which is the threshold set for the use of PBTK simulation results in risk assessment. An exception to this was seen for one of the target organs, namely, the liver, for which tebuconazole concentration was significantly underestimated, a trend also seen in model simulations for the liver after other nonoral exposure scenarios. Possible reasons for this are discussed in the article. Realistic dietary and dermal exposure scenarios were derived based on available exposure estimates, and the human version of the PBTK model was used to simulate the internal levels of tebuconazole and metabolites in the human body for these scenarios. By a variant of the models where the R(-)- and S(+)-enantiomers were treated as two components in a binary mixture, it was illustrated that the inhibition between the two tebuconazole enantiomers did not affect the simulation results for these realistic exposure scenarios. The developed models have potential as an important tool in risk assessment. PMID:26977527

  15. Comparative pathophysiology, toxicology, and human cancer risk assessment of pharmaceutical-induced hibernoma

    SciTech Connect

    Radi, Zaher; Bartholomew, Phillip; Elwell, Michael; Vogel, W. Mark

    2013-12-15

    In humans, hibernoma is a very rare, benign neoplasm of brown adipose tissue (BAT) that typically occurs at subcutaneous locations and is successfully treated by surgical excision. No single cause has been accepted to explain these very rare human tumors. In contrast, spontaneous hibernoma in rats is rare, often malignant, usually occurs in the thoracic or abdominal cavity, and metastases are common. In recent years, there has been an increased incidence of spontaneous hibernomas in rat carcinogenicity studies, but overall the occurrence remains relatively low and highly variable across studies. There have only been four reported examples of pharmaceutical-induced hibernoma in rat carcinogenicity studies. These include phentolamine, an alpha-adrenergic antagonist; varenicline, a nicotine partial agonist; tofacitinib, a Janus kinase (JAK) inhibitor; and hydromorphone, an opiod analgesic. Potential non-genotoxic mechanisms that may contribute to the pathogenesis of BAT activation/proliferation and/or subsequent hibernoma development in rats include: (1) physiological stimuli, (2) sympathetic stimulation, (3) peroxisome proliferator-activated receptor (PPAR) agonism, and/or (4) interference or inhibition of JAK/Signal Transducer and Activator of Transcription (JAK/STAT) signaling. The evaluation of an apparent increase of hibernoma in rats from 2-year carcinogenicity studies of novel pharmaceutical therapeutics and its relevance to human safety risk assessment is complex. One should consider: the genotoxicity of the test article, dose/exposure and safety margins, and pathophysiologic and morphologic differences and similarities of hibernoma between rats and humans. Hibernomas observed to date in carcinogenicity studies of pharmaceutical agents do not appear to be relevant for human risk at therapeutic dosages. - Highlights: • Highly variable incidence of spontaneous hibernoma in carcinogenicity studies • Recent increase in the spontaneous incidence of hibernomas

  16. Integration of modeling components into ecological and human health risk assessments

    SciTech Connect

    Chernoff, H.; Tomchuk, D.

    1995-12-31

    The Hudson River is an important recreational and ecological resource in New York State. From 1957 to 1975 between 209,000 and 1.3 million pounds of polychlorinated biphenyls (PCBs) were discharged into the Hudson River from two electrical capacitor manufacturing facilities. Many PCBs discharged to the river adhered to the sediment in the Upper River. Aquatic organisms have been exposed to PCBs in the sediment through ingestion or direct contact with sediment. PCBs in the sediment can enter the water column via particulate resuspension and dissolved PCB diffusion from sediment pore water to the overlying water column, providing additional exposure pathways. Multiple exposure pathways can increase the body burden of organisms living in contaminated areas. Ecological and human health risk assessments are being performed as part of a reassessment effort to determine the need and extent of remediation, required for contaminated sediments in the Upper River. Hydrodynamic, water quality and food-chain models based upon and calibrated to recent and historical data collection efforts are integrated into the risk assessments to provide estimates of total PCBs, Aroclors and selected congener concentrations at specific locations in the river under current and future scenarios. The results of both the ecological and human health risk assessments will assist in defining PCB concentrations that pose risks to the biological communities of the Hudson River.

  17. Deoxynivalenol: signaling pathways and human exposure risk assessment--an update.

    PubMed

    Wang, Zhonghong; Wu, Qinghua; Kuča, Kamil; Dohnal, Vlastimil; Tian, Zhihong

    2014-11-01

    Deoxynivalenol (DON) is a group B trichothecene and a common contaminant of crops worldwide. This toxin is known to cause a spectrum of diseases in animals and humans such as vomiting and gastroenteritis. Importantly, DON could inhibit the synthesis of protein and nucleonic acid and induce cell apoptosis in eukaryote cells. The transduction of signaling pathways is involved in the underlying mechanism of the cytotoxicity of DON. Mitogen-activated protein kinase and Janus kinase/signal transducer and activator of transcription seem to be two important signaling pathways and induce the inflammatory response by modulating the binding activates of specific transcription factors. This review mainly discussed the toxic mechanism of DON from the vantage point of signaling pathways and also assessed the profiles of DON and its metabolites in humans. Importantly, we conducted a human exposure risk assessment of DON from cereals, cereal-based foods, vegetables, water, and animal-derived foods in different countries. Some regular patterns of DON occurrence in these countries are suggested based on an analysis of global contamination with DON. This review should provide further insight for the toxic mechanism study of DON and human exposure risk assessment, thereby facilitating mycotoxin control strategies. PMID:25199684

  18. An overview of the evolution of human reliability analysis in the context of probabilistic risk assessment.

    SciTech Connect

    Bley, Dennis C.; Lois, Erasmia; Kolaczkowski, Alan M.; Forester, John Alan; Wreathall, John; Cooper, Susan E.

    2009-01-01

    Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAs). The purpose of this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the importance of human errors in complex human-technical systems, examines why humans contribute to accidents and unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has become increasingly more important to understand and model the more cognitive aspects of human performance and to address the broader range of factors that have been shown to influence human performance in complex domains. The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their likelihood.

  19. Chronic and acute risk assessment of human exposed to novaluron-bifenthrin mixture in cabbage.

    PubMed

    Shi, Kaiwei; Li, Li; Li, Wei; Yuan, Longfei; Liu, Fengmao

    2016-09-01

    Based on the dissipation and residual level in cabbage determined by gas chromatography coupled with an electron capture detector (GC-ECD), chronic and acute risk assessments of the novaluron and bifenthrin were investigated. At different spiked levels, mean recoveries were between 81 and 108 % with relative standard deviations (RSDs) from 1.1 to 6.8 %. The limit of quantification (LOQ) was 0.01 mg kg(-1), and good linearity with correlation coefficient (>0.9997) were obtained. The half-lives of novaluron and bifenthrin in cabbage were in the range of 3.2~10 days. Based on the consumption data in China, the risk quotients (RQs) of novaluron and bifenthrin were all below 100 %. The chronic and acute risk of novaluron in cabbage was relatively low, while bifenthrin exerts higher acute risk to humans than chronic risk. The obtained results indicated that the use of novaluron-bifenthrin mixture does not seem to pose any chronic or acute risk to humans even if cabbages are consumed at high application dosages and short preharvest interval (PHI). PMID:27550439

  20. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment

    PubMed Central

    McHale, Cliona M.; Zhang, Luoping; Smith, Martyn T.

    2012-01-01

    Benzene causes acute myeloid leukemia and probably other hematological malignancies. As benzene also causes hematotoxicity even in workers exposed to levels below the US permissible occupational exposure limit of 1 part per million, further assessment of the health risks associated with its exposure, particularly at low levels, is needed. Here, we describe the probable mechanism by which benzene induces leukemia involving the targeting of critical genes and pathways through the induction of genetic, chromosomal or epigenetic abnormalities and genomic instability, in a hematopoietic stem cell (HSC); stromal cell dysregulation; apoptosis of HSCs and stromal cells and altered proliferation and differentiation of HSCs. These effects modulated by benzene-induced oxidative stress, aryl hydrocarbon receptor dysregulation and reduced immunosurveillance, lead to the generation of leukemic stem cells and subsequent clonal evolution to leukemia. A mode of action (MOA) approach to the risk assessment of benzene was recently proposed. This approach is limited, however, by the challenges of defining a simple stochastic MOA of benzene-induced leukemogenesis and of identifying relevant and quantifiable parameters associated with potential key events. An alternative risk assessment approach is the application of toxicogenomics and systems biology in human populations, animals and in vitro models of the HSC stem cell niche, exposed to a range of levels of benzene. These approaches will inform our understanding of the mechanisms of benzene toxicity and identify additional biomarkers of exposure, early effect and susceptibility useful for risk assessment. PMID:22166497

  1. Probabilistic Human Health Risk Assessment of Chemical Mixtures: Hydro-Toxicological Interactions and Controlling Factors

    NASA Astrophysics Data System (ADS)

    Henri, C.; Fernandez-Garcia, D.; de Barros, F.

    2014-12-01

    Improper disposals of hazardous wastes in most industrial countries give rise to severe groundwater contamination problems that can lead to adverse health effects in humans. Therefore risk assessment methods play an important role in population protection by (1) quantifying the impact on human health of an aquifer contamination and (2) aiding the decision making process of to better manage our groundwater resources. Many reactive components such as chlorinated solvent or nitrate potentially experience attenuation processes under common geochemical conditions. Based on this, monitored natural attenuation has become nowadays an attractive remediation solution. However, in some cases, intermediate degradation products can constitute noxious chemical compounds before reaching a harmless chemical form. In these cases, the joint effect of advection-dispersion transport and the species-dependent kinetic reactions and toxicity will dictate the relative importance of the degradation byproducts to the total risk. This renders the interpretation of risk a non-trivial task. In this presentation, we quantify, through a probabilistic framework, the human health risk posed by a chemical mixture in a heterogeneous aquifer. This work focuses on a Perchloroethylene contamination problem followed by the first-order production/biodegradation of its daughter species Trichloroethylene, Dichloroethylene and Vinyl Chlorine that is known to be highly toxic. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme. A comparative description of human health risk metrics as a function of aquifer heterogeneity and contaminant injection mode is provided by means of a spatial characterization of the lower-order statistical moments and empirical probability density functions of both individual and total risks. Interestingly, we show that the human health risk of a chemical mixture is mainly controlled by a modified Damköhler number that express the joint effect

  2. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 5. Human health risk assessment (HHRA): Evaluation of potential risks from multipathway exposure to emissions. Draft report

    SciTech Connect

    1995-11-01

    The Human Health Risk Assessment (HHRA) portion of the WTI Risk Assessment involves the integration of information about the facility with site-specific data for the surrounding region and population to characterize the potential human health risks due to emissions from the facility. The estimation of human health risks is comprised of the following general steps: (1) identification of substances of potential concern; (2) estimation of the nature and magnitude of chemical releases from the WTI facility; (3) prediction of the atmospheric transport of the emitted contaminants; (4) determination of the types of adverse effects associated with exposure to the substances of potential concern (referred to as hazard identification), and the relationship between the level of exposure and the severity of any health effect (referred to as dose-response assessment); (5) estimation of the magnitude of exposure (referred to as exposure assessment); and (6) characterization of the health risks associated with exposure (referred to as risk characterization).

  3. A quantitative methodology to assess the risks to human health from CO 2 leakage into groundwater

    NASA Astrophysics Data System (ADS)

    Siirila, Erica R.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.; McCray, John E.

    2012-02-01

    Leakage of CO 2 and associated gases into overlying aquifers as a result of geologic carbon capture and sequestration may have adverse impacts on aquifer drinking-water quality. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Here we present a quantitative risk assessment framework to predict potential human health risk from CO 2 leakage into drinking water aquifers. This framework incorporates the potential release of CO 2 into the drinking water aquifer; mobilization of metals due to a decrease in pH; transport of these metals down gradient to municipal receptors; distributions of contaminated groundwater to multiple households; and exposure and health risk to individuals using this water for household purposes. Additionally, this framework is stochastic, incorporates detailed variations in geological and geostatistical parameters and discriminates between uncertain and variable parameters using a two-stage, or nested, Monte Carlo approach. This approach is demonstrated using example simulations with hypothetical, yet realistic, aquifer characteristics and leakage scenarios. These example simulations show a greater risk for arsenic than for lead for both cancer and non-cancer endpoints, an unexpected finding. Higher background groundwater gradients also yield higher risk. The overall risk and the associated uncertainty are sensitive to the extent of aquifer stratification and the degree of local-scale dispersion. These results all highlight the importance of hydrologic modeling in risk assessment. A linear relationship between carcinogenic and noncarcinogenic risk was found for arsenic and suggests action levels for carcinogenic risk will be exceeded in exposure

  4. Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis.

    PubMed

    Péry, A R R; Schüürmann, G; Ciffroy, P; Faust, M; Backhaus, T; Aicher, L; Mombelli, E; Tebby, C; Cronin, M T D; Tissot, S; Andres, S; Brignon, J M; Frewer, L; Georgiou, S; Mattas, K; Vergnaud, J C; Peijnenburg, W; Capri, E; Marchis, A; Wilks, M F

    2013-07-01

    For more than a decade, the integration of human and environmental risk assessment (RA) has become an attractive vision. At the same time, existing European regulations of chemical substances such as REACH (EC Regulation No. 1907/2006), the Plant Protection Products Regulation (EC regulation 1107/2009) and Biocide Regulation (EC Regulation 528/2012) continue to ask for sector-specific RAs, each of which have their individual information requirements regarding exposure and hazard data, and also use different methodologies for the ultimate risk quantification. In response to this difference between the vision for integration and the current scientific and regulatory practice, the present paper outlines five medium-term opportunities for integrating human and environmental RA, followed by detailed discussions of the associated major components and their state of the art. Current hazard assessment approaches are analyzed in terms of data availability and quality, and covering non-test tools, the integrated testing strategy (ITS) approach, the adverse outcome pathway (AOP) concept, methods for assessing uncertainty, and the issue of explicitly treating mixture toxicity. With respect to exposure, opportunities for integrating exposure assessment are discussed, taking into account the uncertainty, standardization and validation of exposure modeling as well as the availability of exposure data. A further focus is on ways to complement RA by a socio-economic assessment (SEA) in order to better inform about risk management options. In this way, the present analysis, developed as part of the EU FP7 project HEROIC, may contribute to paving the way for integrating, where useful and possible, human and environmental RA in a manner suitable for its coupling with SEA. PMID:23624004

  5. Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm.

    PubMed

    Muñoz, Ivan; Martínez Bueno, María J; Agüera, Ana; Fernández-Alba, Amadeo R

    2010-05-01

    In this work the risk posed to seawater organisms, predators and humans is assessed, as a consequence of exposure to 12 organic micro-pollutants, namely metronidazole, trimethoprim, erythromycin, simazine, flumequine, carbaryl, atrazine, diuron, terbutryn, irgarol, diphenyl sulphone (DPS) and 2-thiocyanomethylthiobenzothiazole (TCMTB). The risk assessment study is based on a 1-year monitoring study at a Spanish marine fish farm, involving passive sampling techniques. The results showed that the risk threshold for irgarol concerning seawater organisms is exceeded. On the other hand, the risk to predators and especially humans through consumption of fish is very low, due to the low bioconcentration potential of the substances assessed. PMID:19932535

  6. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    SciTech Connect

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  7. Emission and Dispersion of Bioaerosols from Dairy Manure Application Sites: Human Health Risk Assessment.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Holsen, Thomas M; Grimberg, Stefan J; Ramler, Ivan P

    2015-08-18

    In this study, we report the human health risk of gastrointestinal infection associated with inhalation exposure to airborne zoonotic pathogens emitted following application of dairy cattle manure to land. Inverse dispersion modeling with the USEPA's AERMOD dispersion model was used to determine bioaerosol emission rates based on edge-of-field bioaerosol and source material samples analyzed by real-time quantitative polymerase chain reaction (qPCR). Bioaerosol emissions and transport simulated with AERMOD, previously reported viable manure pathogen contents, relevant exposure pathways, and pathogen-specific dose-response relationships were then used to estimate potential downwind risks with a quantitative microbial risk assessment (QMRA) approach. Median 8-h infection risks decreased exponentially with distance from a median of 1:2700 at edge-of-field to 1:13 000 at 100 m and 1:200 000 at 1000 m; peak risks were considerably greater (1:33, 1:170, and 1:2500, respectively). These results indicate that bioaerosols emitted from manure application sites following manure application may present significant public health risks to downwind receptors. Manure management practices should consider improved controls for bioaerosols in order to reduce the risk of disease transmission. PMID:26158489

  8. Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors

    PubMed Central

    Habert, René; Muczynski, Vincent; Grisin, Tiphany; Moison, Delphine; Messiaen, Sébastien; Frydman, René; Benachi, Alexandra; Delbes, Géraldine; Lambrot, Romain; Lehraiki, Abdelali; N'Tumba-Byn, Thierry; Guerquin, Marie-Justine; Levacher, Christine; Rouiller-Fabre, Virginie; Livera, Gabriel

    2014-01-01

    Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk. PMID:24497529

  9. Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors.

    PubMed

    Habert, René; Muczynski, Vincent; Grisin, Tiphany; Moison, Delphine; Messiaen, Sébastien; Frydman, René; Benachi, Alexandra; Delbes, Géraldine; Lambrot, Romain; Lehraiki, Abdelali; N'tumba-Byn, Thierry; Guerquin, Marie-Justine; Levacher, Christine; Rouiller-Fabre, Virginie; Livera, Gabriel

    2014-01-01

    Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk. PMID:24497529

  10. An assessment of the risk significance of human errors in selected PSAs and operating events

    SciTech Connect

    Palla, R.L. Jr.; El-Bassioni, A. . Office of Nuclear Reactor Regulation); Higgins, J. )

    1991-01-01

    Sensitivity studies based on Probabilistic Safety Assessments (PSAs) for a pressurized water reactor and a boiling water reactor are described. In each case human errors modeled in the PSAs were categorized according to such factors as error type, location, timing, and plant personnel involved. Sensitivity studies were then conducted by varying the error rates in each category and evaluating the corresponding change in total core damage frequency and accident sequence frequency. Insights obtained are discussed and reasons for differences in risk sensitivity between plants are explored. A separate investigation into the role of human error in risk-important operating events is also described. This investigation involved the analysis of data from the USNRC Accident Sequence Precursor program to determine the effect of operator-initiated events on accident precursor trends, and to determine whether improved training can be correlated to current trends. The findings of this study are also presented. 5 refs., 15 figs., 1 tab.

  11. Toxicovigilance: A new approach for the hazard identification and risk assessment of toxicants in human beings

    SciTech Connect

    Descotes, Jacques . E-mail: jacques-georges.descotes@chu-lyon.fr; Testud, Francois

    2005-09-01

    The concept of toxicovigilance encompasses the active detection, validation and follow-up of clinical adverse events related to toxic exposures in human beings. Poison centers are key players in this function as poisoning statistics are essential to define the cause, incidence and severity of poisonings occurring in the general population. In addition, the systematic search for unexpected shifts in the recorded causes of poisonings, e.g., following the introduction of a new product, or change in the formulation or recommended use of an old product, allows for a rapid detection of potential adverse health consequences and the implementation of preventive or corrective measures. However, toxicovigilance is genuinely a medical and not only a statistical approach of human toxicity issues. In contrast to epidemiology, toxicovigilance is based on the in-depth medical assessment of acute or chronic intoxications on an individual basis, which requires detailed information that poison centers can rarely obtain via emergency telephone calls and that epidemiologists cannot collect or process. Validation of this medical information must primarily be based on toxicological expertise to help identify causal links between otherwise unexplained pathological conditions and documented toxic exposures. Thus, toxicovigilance can contribute to hazard identification and risk assessment by providing medically validated data which are often overlooked in the process of risk assessment. So far, very few structured toxicovigilance systems have been set up and hopefully national and international initiatives will bridge this gap in our knowledge of the toxicity of many chemicals and commercial products in human beings.

  12. Vehicle Shield Optimization and Risk Assessment for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Nounu, Hatem N.; Kim, Myung-Hee; Cucinotta, Francis A.

    2011-01-01

    As the focus of future human space missions shifts to destinations beyond low Earth orbit such as Near Earth Objects (NEO), the moon, or Mars, risks associated with extended stay in hostile radiation environment need to be well understood and assessed. Since future spacecrafts designs and shapes are evolving continuous assessments of shielding and radiation risks are needed. In this study, we use a predictive software capability that calculates risks to humans inside a spacecraft prototype that builds on previous designs. The software uses CAD software Pro/Engineer and Fishbowl tool kit to quantify radiation shielding provided by the spacecraft geometry by calculating the areal density seen at a certain point, dose point, inside the spacecraft. Shielding results are used by NASA-developed software, BRYNTRN, to quantify organ doses received in a human body located in the vehicle in case of solar particle event (SPE) during such prolonged space missions. Organ doses are used to quantify risks on astronauts health and life using NASA Space Cancer Model. The software can also locate shielding weak points-hotspots-on the spacecraft s outer surface. This capability is used to reinforce weak areas in the design. Results of shielding optimization and risk calculation on an exploration vehicle design for missions of 6 months and 30 months are provided in this study. Vehicle capsule is made of aluminum shell that includes main cabin and airlock. The capsule contains 5 sets of racks that surround working and living areas. Water shelter is provided in the main cabin of the vehicle to enhance shielding in case of SPE.

  13. Human Risk Assessment and Its Application to Nanotechnology: A Challenge for Assessors

    NASA Astrophysics Data System (ADS)

    Emond, C.; Britos, T. N.

    2015-05-01

    Scientific literature suggests that exposure to nanoparticles (NPs) might be associated with adverse health effects. A well-developed human risk assessment (HRA) that applies to NPs has never been established and optimized-until now. Furthermore, no government regulations are in place that establish what is considered to be an adequate and secure level of exposure and supported by a strong scientific approach for nanotechnology. It is important to implement the HRA to ensure that workers producing NPs, users of NPs and the general population are protected from deleterious issues related to NPs. In this work, a methodology is described based on the HRA. An effort is required during synthesis before the commercialization phase to evaluate the results of a systematic and rigorous assessment because this could significantly reduce the health risks of those exposed to NPs, including workers and the population.

  14. Assessment of the long-term risks of inadvertent human intrusion

    SciTech Connect

    Wuschke, D.M. )

    1993-01-01

    Canada has conducted an extensive research program on the safe disposal of nuclear fuel wastes. The program has focused on the concept of disposal of spent fuel in durable containers in an engineered facility, or vault, 500 to 1000 m deep in intrusive igneous rock in the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada's regulatory agency, the Atomic Energy Control Board (AECB). These criteria are expressed in terms of risk, where risk is defined as the sum over all significant scenarios of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This paper describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility and the results of its application to a conceptual design of such a facility.

  15. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals.

    PubMed

    Terry, Claire; Hays, Sean; McCoy, Alene T; McFadden, Lisa G; Aggarwal, Manoj; Rasoulpour, Reza J; Juberg, Daland R

    2016-03-01

    A strategic and comprehensive program in which toxicokinetic (TK) measurements are made for all agrochemicals undergoing toxicity testing (both new compounds and compounds already registered for use) is described. This approach provides the data to more accurately assess the toxicokinetics of agrochemicals and their metabolites in laboratory animals and humans. Having this knowledge provides the ability to conduct more insightful toxicity studies, refine and interpret exposure assessments and reduce uncertainty in risk assessments. By developing a better understanding of TK across species, including humans via in vitro metabolism studies, any differences across species in TK can be identified early and the most relevant species can be selected for toxicity tests. It also provides the ability to identify any non-linearities in TK as a function of dose, which in turn can be used to identify a kinetically derived maximum dose (KMD) and avoid dosing inappropriately outside of the kinetic linear range. Measuring TK in key life stages also helps to identify changes in ADME parameters from in utero to adults. A robust TK database can also be used to set internal concentration based "Reference Concentrations" and Biomonitoring Equivalents (BE), and support selection of Chemical Specific Adjustment Factors (CSAF). All of these factors support the reduction of uncertainty throughout the entire risk assessment process. This paper outlines how a TK research strategy can be integrated into new agrochemical toxicity testing programs, together with a proposed Framework for future use. PMID:26472101

  16. Human Health and Ecological Risk Assessment Work Plan Mud Pit Release Sites, Amchitka Island, Alaska

    SciTech Connect

    DOE /NV

    2001-03-12

    This Work Plan describes the approach that will be used to conduct human health and ecological risk assessments for Amchitka Island, Alaska, which was utilized as an underground nuclear test site between 1965 and 1971. During this period, the U.S. Atomic Energy Commission (now the U.S. Department of Energy) conducted two nuclear tests (known as Long Shot and Milrow) and assisted the U.S. Department of Defense with a third test (known as Cannikin). Amchitka Island is approximately 42 miles long and located 1,340 miles west-southwest of Anchorage, Alaska, in the western end of the Aleutian Island archipelago in a group of islands known as the Rat Islands. Historically including deep drilling operations required large volumes of drilling mud, a considerable amount of which was left on the island in exposed mud pits after testing was completed. Therefore, there is a need for drilling mud pit remediation and risk assessment of historical mud pit releases. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the constituents in soil, surface water, and sediment at these former testing sites. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate what further remedial action is required to achieve permanent closure of these three sites that will protect both human health and the environment. Suspected compounds of potential ecological concern for investigative analysis at these sites include diesel-range organics, polyaromatic hydrocarbons, polychlorinated biphenyls, volatile organic compounds, and chromium. The results of these characterizations and risk assessments will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-sit e

  17. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment

    SciTech Connect

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L.

    2015-07-15

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10{sup −6}) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. - Highlights: • We determined in skin-contact clothes the concentrations of a number of metals. • Dermal contact exposure and health risks for adults and for 1-year-old children were assessed. • Carcinogenic risks were considered as acceptable (<10{sup −6}). • For non-carcinogenic risks, only Sb exceeded a 10% of the HQ for dermal contact with clothes.

  18. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water. PMID:25514858

  19. Potential human health risks from metals and As via Odontesthes bonariensis consumption and ecological risk assessments in a eutrophic lake.

    PubMed

    Monferran, Magdalena V; Garnero, Paola Lorena; Wunderlin, Daniel A; Angeles Bistoni, María de Los

    2016-07-01

    The concentration of Al, Cr, Fe, Mn, Ni, Cu, Zn, Hg, Sr, Mo, Ag, Cd, Pb and As was analyzed in water, sediment, and muscle of Odontesthes bonariensis from the eutrophic San Roque Lake (Córdoba-Argentina). The monitoring campaign was performed during the wet, dry and intermediate season. The concentration of Cr, Fe, Pb, Zn, Al and Cd in water exceeded the limits considered as hazardous for aquatic life. The highest metal concentrations were observed in sediment, intermediate concentrations, in fish muscle, and the lowest in water, with the exception of Cr, Zn, As and Hg, which were the highest in fish muscle. Potential ecological risk analysis of heavy metal concentrations in sediment indicated that the San Roque Lake posed a low ecological risk in all sampling periods. The target hazard quotients (THQs) and carcinogenic risk (CR) for individual metals showed that As in muscle was particularly hazardous, posing a potential risk for fishermen and the general population during all sampling periods. Hg poses a potential risk for fishermen only in the intermediate season. It is important to highlight that none of these two elements exceeded the limits considered as hazardous for aquatic life in water and sediment. This result proves the importance of performing measurements of contaminants, in both abiotic and biotic compartments, to assess the quality of food resources. These results suggest that the consumption of this fish species from this reservoir is not completely safe for human health. PMID:27060257

  20. Novel Threat-risk Index Using Probabilistic Risk Assessment and Human Reliability Analysis - Final Report

    SciTech Connect

    George A. Beitel

    2004-02-01

    In support of a national need to improve the current state-of-the-art in alerting decision makers to the risk of terrorist attack, a quantitative approach employing scientific and engineering concepts to develop a threat-risk index was undertaken at the Idaho National Engineering and Environmental Laboratory (INEEL). As a result of this effort, a set of models has been successfully integrated into a single comprehensive model known as Quantitative Threat-Risk Index Model (QTRIM), with the capability of computing a quantitative threat-risk index on a system level, as well as for the major components of the system. Such a threat-risk index could provide a quantitative variant or basis for either prioritizing security upgrades or updating the current qualitative national color-coded terrorist threat alert.

  1. Human health risk assessment of nitrosamines and nitramines for potential application in CO2 capture.

    PubMed

    Ravnum, S; Rundén-Pran, E; Fjellsbø, L M; Dusinska, M

    2014-07-01

    Emission and accumulation of carbon dioxide (CO2) in the atmosphere exert an environmental and climate change challenge. An attempt to deal with this challenge is made at Mongstad by application of amines for CO2 capture and storage (CO2 capture Mongstad (CCM) project). As part of the CO2 capture process, nitrosamines and nitramines may be emitted. Toxicological testing of nitrosamines and nitramines indicate a genotoxic potential of these substances. Here we present a risk characterization and assessment for five nitrosamines (N-Nitrosodi-methylamine (NDMA) N-Nitrosodi-ethylamine (NDEA), N-Nitroso-morpholine (NNM), N-Nitroso-piperidine (NPIP), and Dinitroso-piperazine (DNP)) and two nitramines (N-Methyl-nitramine (NTMA), Dimethyl-nitramine (NDTMA)), which are potentially emitted from the CO2 capture plant (CCP). Human health risk assessment of genotoxic non-threshold substances is a heavily debated topic, and no consensus methodology exists internationally. Extrapolation modeling from high-dose animal exposures to low-dose human exposures can be crucial for the final risk calculation. In the work presented here, different extrapolation models are discussed, and suggestions on applications are given. Then, preferred methods for calculating derived minimal effect level (DMEL) are presented with the selected nitrosamines and nitramines. PMID:24747397

  2. Establishing the importance of human health risk assessment for metals and metalloids in urban environments.

    PubMed

    Peña-Fernández, A; González-Muñoz, M J; Lobo-Bedmar, M C

    2014-11-01

    Rapid development, industrialisation, and urbanisation have resulted in serious contamination of soil by metals and metalloids from anthropogenic sources in many areas of the world, either directly or indirectly. Exponential urban and economic development has resulted in human populations settling in urban areas and as a result being exposed to these pollutants. Depending on the nature of the contaminant, contaminated urban soils can have a deleterious effect on the health of exposed populations and may require decontamination, recovery, remediation and restoration. Therefore, human health risk assessments in urban environments are very important. In the case of Spain, there are few studies regarding risk assessment of trace elements in urban soils, and those that exist have been derived mainly from areas potentially exposed to industrial contamination or in the vicinity of point pollution. The present study analysed Al, As, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Ti, Tl, V and Zn soil concentrations in and around the city of Alcalá de Henares (35 km NE of Madrid). Soil samples were collected in public parks and recreation areas within the city and in an industrial area on the periphery of the city. From these results, an assessment of the health risk for the population was performed following the methodology described by the US EPA (1989). In general, it was observed that there could be a potential increased risk of developing cancer over a lifetime from exposure to arsenic (As) through ingestion of the soils studied (oral intake), as well as an increased risk of cancer due to inhalation of chromium (Cr) present in re-suspended soils from the industrial area. Our group has previously reported (Granero and Domingo, 2002; Peña-Fernández et al., 2003) that there was an increased risk of developing cancer following exposure to As in the same soils in a previous study. Therefore, it is necessary to reduce the levels of contaminants in these soils, especially As and Cr

  3. Application of data fusion in human health risk assessment for hydrocarbon mixtures on contaminated sites.

    PubMed

    Dyck, Roberta; Islam, M Shafiqul; Zargar, Amin; Mohapatra, Asish; Sadiq, Rehan

    2013-11-16

    The exposure and toxicological data used in human health risk assessment are obtained from diverse and heterogeneous sources. Complex mixtures found on contaminated sites can pose a significant challenge to effectively assess the toxicity potential of the combined chemical exposure and to manage the associated risks. A data fusion framework has been proposed to integrate data from disparate sources to estimate potential risk for various public health issues. To demonstrate the effectiveness of the proposed data fusion framework, an illustrative example for a hydrocarbon mixture is presented. The Joint Directors of Laboratories Data Fusion architecture was selected as the data fusion architecture and Dempster-Shafer Theory (DST) was chosen as the technique for data fusion. For neurotoxicity response analysis, neurotoxic metabolites toxicological data were fused with predictive toxicological data and then probability-boxes (p-boxes) were developed to represent the toxicity of each compound. The neurotoxic response was given a rating of "low", "medium" or "high". These responses were then weighted by the percent composition in the illustrative F1 hydrocarbon mixture. The resulting p-boxes were fused according to DST's mixture rule of combination. The fused p-boxes were fused again with toxicity data for n-hexane. The case study for F1 hydrocarbons illustrates how data fusion can help in the assessment of the health effects for complex mixtures with limited available data. PMID:23219588

  4. Quantitative Microbial Risk Assessment in Occupational Settings Applied to the Airborne Human Adenovirus Infection.

    PubMed

    Carducci, Annalaura; Donzelli, Gabriele; Cioni, Lorenzo; Verani, Marco

    2016-01-01

    Quantitative Microbial Risk Assessment (QMRA) methodology, which has already been applied to drinking water and food safety, may also be applied to risk assessment and management at the workplace. The present study developed a preliminary QMRA model to assess microbial risk that is associated with inhaling bioaerosols that are contaminated with human adenovirus (HAdV). This model has been applied to air contamination data from different occupational settings, including wastewater systems, solid waste landfills, and toilets in healthcare settings and offices, with different exposure times. Virological monitoring showed the presence of HAdVs in all the evaluated settings, thus confirming that HAdV is widespread, but with different average concentrations of the virus. The QMRA results, based on these concentrations, showed that toilets had the highest probability of viral infection, followed by wastewater treatment plants and municipal solid waste landfills. Our QMRA approach in occupational settings is novel, and certain caveats should be considered. Nonetheless, we believe it is worthy of further discussions and investigations. PMID:27447658

  5. Quantitative Microbial Risk Assessment in Occupational Settings Applied to the Airborne Human Adenovirus Infection

    PubMed Central

    Carducci, Annalaura; Donzelli, Gabriele; Cioni, Lorenzo; Verani, Marco

    2016-01-01

    Quantitative Microbial Risk Assessment (QMRA) methodology, which has already been applied to drinking water and food safety, may also be applied to risk assessment and management at the workplace. The present study developed a preliminary QMRA model to assess microbial risk that is associated with inhaling bioaerosols that are contaminated with human adenovirus (HAdV). This model has been applied to air contamination data from different occupational settings, including wastewater systems, solid waste landfills, and toilets in healthcare settings and offices, with different exposure times. Virological monitoring showed the presence of HAdVs in all the evaluated settings, thus confirming that HAdV is widespread, but with different average concentrations of the virus. The QMRA results, based on these concentrations, showed that toilets had the highest probability of viral infection, followed by wastewater treatment plants and municipal solid waste landfills. Our QMRA approach in occupational settings is novel, and certain caveats should be considered. Nonetheless, we believe it is worthy of further discussions and investigations. PMID:27447658

  6. Identification of potentially hazardous human gene products in GMO risk assessment.

    PubMed

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here. PMID:18384725

  7. Human health risk assessment in restoring safe and productive use of abandoned contaminated sites.

    PubMed

    Wcisło, Eleonora; Bronder, Joachim; Bubak, Anicenta; Rodríguez-Valdés, Eduardo; Gallego, José Luis R

    2016-09-01

    In Europe soil contamination has been recognized as a serious problem. The needs to remediate contaminated sites are not questionable, although the remediation actions are often hindered by their very high financial costs. On the other hand, the abandoned contaminated sites may have the potential for redevelopment and creating conditions appropriate for their productive reuse bringing social, economic and environmental benefits. The main concern associated with the contaminated sites is their potential adverse health impact. Therefore, in the process of contaminated site redevelopment the risk assessment and the subsequent risk management decisions will play a crucial role. The main objective of this study was to illustrate the role of the human health risk assessment (HRA) in supporting site remediation and reuse decisions. To exemplify the significance of the HRA process in this field the Nitrastur site, located in Asturias, Spain was used. Risks resulting from soil contamination with arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), mercury (Hg), zinc (Zn) and lead (Pb) were assessed under three potential future land use patterns: industrial, residential and recreational. The results of the study indicated that soil at the Nitrastur site might pose non-cancer and cancer risks to potential future receptors - industrial workers, residents and recreational users. Arsenic and lead are the main substances responsible for the health risk and the primary drivers of remedial decisions at the site. The highest total cancer risks were observed under the residential scenario, followed in descending order by the recreational and industrial ones. The remedial maps illustrate in which areas remediation activities are required, depending on a given land use pattern. The obtained results may be used to develop, analyse, compare and select the remedial options within the intended land use pattern. They may also be used to support the decisions concerning the

  8. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.

    PubMed

    de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale

    2015-04-01

    A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants. PMID:25453834

  9. A quantitative methodology to assess the risks to human health from CO2 leakage into groundwater

    NASA Astrophysics Data System (ADS)

    Siirila, E.; Sitchler, A.; Maxwell, R. M.; McCray, J. E.

    2010-12-01

    Leakage of CO2 and associated gases into overlying aquifers as a result of geologic carbon capture and sequestration may have adverse impacts on aquifer drinking-water quality. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Here we present a quantitative risk assessment framework to predict potential human health risk from CO2 leakage into drinking water aquifers. This framework incorporates the potential release of CO2 into the drinking water aquifer; mobilization of metals due to a decrease in pH; transport of these metals down gradient to municipal receptors; distributions of contaminated groundwater to multiple households; and exposure and health risk to individuals using this water for household purposes. Additionally, this framework is stochastic, incorporates detailed variations in geological and geostatistical parameters and discriminates between uncertain and variable parameters using a two-stage, or nested, Monte Carlo approach. This approach is demonstrated using example simulations with hypothetical, yet realistic, aquifer characteristics and leakage scenarios. These example simulations show a greater risk for arsenic than for lead for both cancer and non-cancer endpoints, an unexpected finding given greater toxicity of lead at lower doses than arsenic. It was also found that higher background groundwater gradients also yield higher risk. The overall risk and the associated uncertainty are sensitive to the extent of aquifer stratification and the degree of local-scale dispersion. These results all highlight the importance of hydrologic modeling in risk assessment. A linear relationship between carcinogenic and noncarcinogenic risk was found for arsenic and

  10. Dioxin risk assessment: mechanisms of action and possible toxicity in human health.

    PubMed

    Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Karlen, David J; Razavizadeh, Bi Bi Marzieh; Abouzari-Lotf, Ebrahim

    2015-12-01

    Dioxin-like compounds (DLCs) have been classified by the World Health Organization (WHO) as one of the most persistent toxic chemical substances in the environment, and they are associated with several occupational activities and industrial accidents around the world. Since the end of the 1970s, these toxic chemicals have been banned because of their human toxicity potential, long half-life, wide dispersion, and they bioaccumulate in the food web. This review serves as a primer for environmental health professionals to provide guidance on short-term risk assessment of dioxin and to identify key findings for health and exposure assessment based on policies of different agencies. It also presents possible health effects of dioxins, mechanisms of action, toxic equivalency factors (TEFs), and dose-response characterization. Key studies related to toxicity values of dioxin-like compounds and their possible human health risk were identified through PubMed and supplemented with relevant studies characterized by reviewing the reference lists in the review articles and primary literature. Existing data decreases the scope of analyses and models in relevant studies to a manageable size by focusing on the set of important studies related to the perspective of developing toxicity values of DLCs. PMID:26514567

  11. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks.

    PubMed

    Warila, J; Batterman, S; Passino-Reader, D R

    2001-02-01

    Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 micrograms/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation efficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in toxicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (> 200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions. PMID:11351445

  12. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks

    USGS Publications Warehouse

    Warila, James; Batterman, Stuart; Passino-Reader, Dora R.

    2001-01-01

    Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 Iμg/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation eficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in txicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (>200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions.

  13. Assessing Human Health Risk to Endocrine Disrupting Chemicals: a Focus on Prenatal Exposures and Oxidative Stress

    PubMed Central

    Neier, Kari; Marchlewicz, Elizabeth H.; Dolinoy, Dana C.; Padmanabhan, Vasantha

    2016-01-01

    Understanding the health risk posed by endocrine disrupting chemicals (EDCs) is a challenge that is receiving intense attention. The following study criteria should be considered to facilitate risk assessment for exposure to EDCs: 1) characterization of target health outcomes and their mediators, 2) study of exposures in the context of critical periods of development, 3) accurate estimates of human exposures and use of human-relevant exposures in animal studies, and 4) cross-species comparisons. In this commentary, we discuss the importance and relevance of each of these criteria in studying the effects of prenatal exposure to EDCs. Our discussion focuses on oxidative stress as a mediator of EDC-related health effects due to its association with both EDC exposure and health outcomes. Our recent study (Veiga-Lopez et al. 2015)1 addressed each of the four outlined criteria and demonstrated that prenatal bisphenol-A exposure is associated with oxidative stress, a risk factor for developing diabetes and cardiovascular diseases in adulthood. PMID:27231701

  14. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment.

    PubMed

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2015-07-01

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10(-6)) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. PMID:25889781

  15. Environmental risk assessment

    SciTech Connect

    MacDonell, M.M.

    1997-10-01

    This paper presents a current overview of the basic elements of environmental risk assessment within the basic four-step process of hazard identification, exposure assessment, toxicity assessment, and risk characterization. These general steps have been applied to assess both human and ecological risks from environmental exposures. Approaches used to identify hazards and exposures are being refined, including the use of optimized field sampling and more representative, rather than conservative,upper-bound estimates. In addition, toxicity data are being reviewed more rigorously as US and European harmonization initiatives gain strength, and the classification of chemicals has become more qualitative to more flexibly accommodate new dose-response information as it is developed. Finally, more emphasis is being placed on noncancer end points, and human and ecological risks are being weighed against each other more explicitly at the risk characterization phase. Recent advances in risk-based decision making reflect the increased transparency of the overall process, with more explicit incorporation of multiple trade-offs. The end result is a more comprehensive life-cycle evaluation of the risks associated with environmental exposures at contaminated sites.

  16. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants.

    PubMed

    Valcke, Mathieu; Krishnan, Kannan

    2014-03-01

    A default uncertainty factor of 3.16 (√10) is applied to account for interindividual variability in toxicokinetics when performing non-cancer risk assessments. Using relevant human data for specific chemicals, as WHO/IPCS suggests, it is possible to evaluate, and replace when appropriate, this default factor by quantifying chemical-specific adjustment factors for interindividual variability in toxicokinetics (also referred to as the human kinetic adjustment factor, HKAF). The HKAF has been determined based on the distributions of pharmacokinetic parameters (e.g., half-life, area under the curve, maximum blood concentration) in relevant populations. This article focuses on the current state of knowledge of the use of physiologically based algorithms and models in characterizing the HKAF for environmental contaminants. The recent modeling efforts on the computation of HKAF as a function of the characteristics of the population, chemical and its mode of action (dose metrics), as well as exposure scenario of relevance to the assessment are reviewed here. The results of these studies, taken together, suggest the HKAF varies as a function of the sensitive subpopulation and dose metrics of interest, exposure conditions considered (route, duration, and intensity), metabolic pathways involved and theoretical model underlying its computation. The HKAF seldom exceeded the default value of 3.16, except in very young children (i.e., <≈ 3 months) and when the parent compound is the toxic moiety. Overall, from a public health perspective, the current state of knowledge generally suggest that the default uncertainty factor is sufficient to account for human variability in non-cancer risk assessments of environmental contaminants. PMID:24038072

  17. The use of biomonitoring data in exposure and human health risk assessment: benzene case study

    PubMed Central

    Angerer, Juergen; Boogaard, Peter J.; Hughes, Michael F.; O’Lone, Raegan B.; Robison, Steven H.; Robert Schnatter, A.

    2013-01-01

    A framework of “Common Criteria” (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m3), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10−5 excess cancer risk (2.9 µg/m3). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects. PMID:23346981

  18. Human health risk assessment of groundwater in Hetao Plain (Inner Mongolia Autonomous Region, China).

    PubMed

    Zhang, Yilong; Ma, Rong; Li, Zhenghong

    2014-08-01

    Groundwater quality significantly affects public health. In order to better understand groundwater suitability, a total of 887 shallow groundwater samples were collected from the Hetao Plain (HP), Inner Mongolia, China; the maximum and minimum health guideline values of each element were established in this work. Subsequently, the desirability functions (DFs) theory was employed to evaluate the human health risk of groundwater. The results indicate that 780 of the samples were unsuitable for drinking purposes due to the iron, total dissolved solids (TDS), arsenic, strontium, fluoride, and manganese concentrations present, all of which exceeded their maximum guideline value (MaGV). Only 107 samples were suitable for drinking use; however, these samples also have adverse effects on human health to some extent, due to the extremely lower concentrations of nutrient elements and existence of non-nutrient elements. Based on the observed results, groundwater that is unsuitable for drinking use must undergo bacteriological treatment prior to consumption. It was necessary for residents in the western, central, and northeastern parts of the study area are required to be supplied with certain nutrient elements, such as iron, iodine, molybdenum, manganese, and lithium. According to the human health risk assessment of groundwater, the general public can safely and reasonably consume the groundwater for drinking, agriculture irrigation, and industrial purposes. PMID:24705813

  19. Human health risk assessment of heavy metals in a replaced urban industrial area of Qingdao, China.

    PubMed

    Xu, Zhongshuo; Li, Jinjun; Pan, Yuying; Chai, Xiaoli

    2016-04-01

    The aim of this study was risk characterization of a replaced urban industrial land located north of Qingdao, in relation to heavy metals values. Soil concentrations of Cd, Pb, Cu, Ni, Cr, and Zn were analyzed. It was observed that the components of Cd, Pb, Cu, Ni, Cr, and Zn are about 2.22, 8.07, 4.70, 6.81, 2.65, and 3.0-folds, respectively, when compared with the local natural background values in Qingdao. The spatial distribution of heavy metals indicated that these hotspots for Cr and Zn located in the southwestern part, Ni and Cd in the middle of the south area, Pb in the northwest, and Cu in the middle of the east area. The values of pollution index and Nemerow integrated pollution index revealed that 100 % of soil samples were moderately or heavily contaminated by six heavy metals. From these results, human health risk assessment for sensitive population was performed according to two different land uses. For non-carcinogenic risk, the direct oral ingestion appeared to be the main exposure pathway followed by dermal and inhalation absorption. The HI values of Pb and Cr characterized for children were larger than 1, while HI values of each metal for adults in two scenarios were lower than 1. Besides, carcinogenic risk from inhalation exposure to Cr for children and adults in two scenarios all exceeded the safety limit. PMID:26984566

  20. Coastal erosion risk assessment using natural and human factors in different scales.

    NASA Astrophysics Data System (ADS)

    Alexandrakis, George; Kampanis, Nikolaos

    2015-04-01

    Climate change, including sea-level rise and increasing storms, raise the threats of coastal erosion. Mitigating and adapting to coastal erosion risks in areas of human interest, like urban areas, culture heritage sites, and areas of economic interest, present a major challenge for society. In this context, decision making needs to be based in reliable risk assessment that includes environmental, social and economic factors. By integrating coastal hazard and risk assessments maps into coastal management plans, risks in areas of interest can be reduced. To address this, the vulnerability of the coast to sea level rise and associated erosion, in terms of expected land loss and socioeconomic importance need to be identified. A holistic risk assessment based in environmental, socioeconomic and economics approach can provide managers information how to mitigate the impact of coastal erosion and plan protection measures. Such an approach needs to consider social, economic and environmental factors, which interactions can be better assessed when distributed and analysed along the geographical space. In this work, estimations of climate change impact to coastline are based on a combination of environmental and economic data analysed in a GIS database. The risk assessment is implemented through the estimation of the vulnerability and exposure variables of the coast in two scales. The larger scale estimates the vulnerability in a regional level, with the use environmental factors with the use of CVI. The exposure variable is estimated by the use of socioeconomic factors. Subsequently, a smaller scale focuses on highly vulnerable beaches with high social and economic value. The vulnerability assessment of the natural processes to the environmental characteristics of the beach is estimated with the use of the Beach Vulnerability Index. As exposure variable, the value of beach width that is capitalized in revenues is implemented through a hedonic pricing model. In this

  1. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    EPA Science Inventory

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be ap...

  2. Promoting Service User Inclusion in Risk Assessment and Management: A Pilot Project Developing a Human Rights-Based Approach

    ERIC Educational Resources Information Center

    Greenhill, Beth; Whitehead, Richard

    2011-01-01

    Recent reports highlight the extent to which many people with learning disabilities are not afforded access to their basic human rights. In addition, traditional approaches to risk management often focus on professional assessments of risks and challenging behaviour and exclude service user perspectives. In this paper, we outline what we believe…

  3. Risk assessment

    SciTech Connect

    Wray, T.K.

    1993-01-01

    The chance of developing cancer from exposure to chemicals in the environment is calculated based on statistical evidence, but the task is a complex one that stirs much debate. There are as many as 2,000 substances that various groups have labeled as suspect, probable or definite human carcinogens. Only 23 substances, including aflatoxin, asbestos, vinyl chloride and benzene, have been proven through human epidemiological studies to increase cancer rates. The remainder received their carcinogenic classification based on animal studies. Animal testing usually involves feeding rats or mice extremely high doses of a substance, often the maximum amount they can tolerate without dying directly from toxicity. This approach ensures maximum sensitivity to potential carcinogenic effects and minimizes the number of lab animals required for such studies. Exposing them to levels similar to what humans experience would require millions of test animals. With few exceptions, no one denies trace exposure levels exist for most chemicals, below which no toxic effects occur in any individual. However, statistical evidence from human epidemiological studies is inadequate to detect small increases in mortality. Although animal studies are more sensitive to carcinogenic effects because of the high doses involved, they are inadequate to explain what occurs at much lower doses common in the real world. Human epidemiological studies, for example, show no evidence of increased cancer from many products containing minute quantities of substances known to cause cancer in lab animals.

  4. Risk assessment of human health from exposure to the discharged ballast water after full-scale electrolysis treatment.

    PubMed

    Zhang, Nahui; Wang, Yidan; Xue, Junzeng; Yuan, Lin; Wang, Qiong; Liu, Liang; Wu, Huixian; Hu, Kefeng

    2016-06-01

    The presence of disinfection by-products (DBPs) releasing from ballast water management systems (BWMS) can cause a possible adverse effects on humans. The objectives of this study were to compute the Derived No Effect Levels (DNELs) for different exposure scenarios and to compare these levels with the exposure levels from the measured DBPs in treated ballast water. The risk assessment showed that when using animal toxicity data, all the DNELs values were approximately 10(3)-10(12) times higher than the exposure levels of occupational and general public exposure scenarios, indicating the level of risk was low (risk characterization ratios (RCRs) < 1). However, when using human data, the RCRs were higher than 1 for dichlorobromomethane and trichloromethane, indicating that the risk of adverse effects on human were significant. This implies that there are apparent discrepancies between risk characterization from animal and human data, which may affect the overall results. We therefore recommend that when appropriate, human data should be used in risk assessment as much as possible, although human data are very limited. Moreover, more appropriate assessment factors can be considered to be employed in estimating the DNELs for human when the animal data is selected as the dose descriptors. PMID:26997144

  5. Parameters for Pesticide QSAR and PBPK/PD Models to inform Human Risk Assessments

    EPA Science Inventory

    Physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) modeling has emerged as an important computational approach supporting quantitative risk assessment of agrochemicals. However, before complete regulatory acceptance of this tool, an assessment of assets and liabi...

  6. Human Mitochondrial DNA and Endogenous Bacterial Surrogates for Risk Assessment of Graywater Reuse

    EPA Science Inventory

    Previous graywater risk assessment studies have focused on fecal contamination, yet the low density of fecal indicators may not provide the most useful approach to assess pathogen removal during graywater treatment. In this study, we employed high throughput bacterial sequencing ...

  7. Risk assessment of the amnesic shellfish poison, domoic acid, on animals and humans.

    PubMed

    Kumar, K Prem; Kumar, Sreeletha Prem; Nair, G Achuthan

    2009-05-01

    Risk assessment of the amnesic shellfish poison, domoic acid, a potent neurotoxin, is evaluated based on its current knowledge and its harmful effects, and is presented under four headings, viz., (1) hazard identification, (2) dose response assessment, (3) exposure assessment and (4) risk characterization. Domoic acid binds the glutamate receptor site of the central nervous system (CNS) of humans and causes depolarization of neurons and an increase in cellularcalcium. In nature, domoic acid is produced by the algae, Pseudonitzschia spp. and they enter into the body of shellfish through their consumption. This toxin is reported to cause gastroenteritis, renal insufficiency confusion and memory loss in humans, since it affects the hippocampus of the brain. In rats, intraperitonial and oral administration of domoic acid result in scratching, tremor and convulsions, and in monkeys, the toxic symptoms like mastication, salivation, projectile vomiting, weakness, teeth grinding and lethargy are apparent. The no-observed-adverse-effect-level (NOAEL) in animals reveals that pure toxin is more effective than those isolated from shellfish. Based on LD50 values, it is found that intraperitonial administration of this toxin in animals is 31 fold more effective than oral administration. Low levels of domoic acid (0.20-0.75 ppm) show no toxic symptoms in non-human primates, but clinical effects are apparent in them and in humans, at a concentration of 1.0 ppm. The tolerable daily intake (TDI) of domoic acid for humans is calculated as 0.075 ppm, whereas for razor clams and crabs, the TDI are 19.4 and 31.5 ppm respectively. The hazard quotient (HQ) is found to be 2. Being an irreversible neurotoxin, domoic acid has severe public health implications. Death occurs in those above 68 years old. In order to ensure adequate protection to public health, the concentration of domoic acid in shellfish and shellfish parts at point of sale shall not exceed the current permissible limit of 20

  8. Quantitative human health risk assessment for 1,3-butadiene based upon ovarian effects in rodents.

    PubMed

    Kirman, C R; Grant, R L

    2012-03-01

    A case study was prepared for noncancer risk assessment of 1,3-butadiene (BD) based upon the ovarian atrophy effects in rodents with specific consideration of the guidelines described by NAS (2009). Ovarian toxicity has been identified in the past as a sensitive endpoint for BD, and serves as the basis for noncancer risk assessment by regulatory agencies. A meta-analysis was conducted in which the available dose-response data from rats and mice were normalized using an internal dose estimate (DEB in blood) that is causally related to ovarian toxicity. A time-to-response (multistage-Weibull) model was used to simultaneously fit the pooled rodent data sets with exposure durations ranging from 13 to 105weeks. Human variation in ovarian follicle count was assumed to reflect variation in sensitivity to the adverse effects associated with follicle depletion (i.e., premature menopause). Information on follicle count in women was used in two ways: (1) the window of susceptibility (from birth to menopause) was defined as 49.6years for women born with an average follicle count, 38.7years for women born with a low follicle count, and 60.0years for women born with a high follicle count; and (2) follicle count was assumed to reflect human susceptibility due to toxicodynamic factors. The multistage-Weibull model was used to predict dose-response curves for three scenarios (average, low, and high follicle counts at birth to generate reference concentration values ranging from 0.2 to 20ppm). This case study illustrates how information on mode of action can be used to guide key decisions in the dose-response assessment with respect to identifying a dose measure, low-dose extrapolation method, background exposure, and sensitive subpopulations. PMID:22100993

  9. WORKSHOP PROCEEDINGS: APPROACHES FOR IMPROVING THE ASSESSMENT OF HUMAN GENETIC RISK--HUMAN BIOMONITORING

    EPA Science Inventory

    Federal laws require a consideration of adverse health effects, including mutagenicity, in arriving at regulatory decisions on chemical substances. Certain laws require balancing the consequences of these risks with the benefits provided by the use of chemical substances. This re...

  10. Ozone Risk Assessment Utilities

    Energy Science and Technology Software Center (ESTSC)

    1999-08-10

    ORAMUS is a user-friendly, menu-driven software system that calculates and displays user-selected risk estimates for health effects attributable to short-term exposure to tropospheric ozone. Inputs to the risk assessment are estimates of exposure to ozone and exposure-response relationships to produce overall risk estimates in the form of probability distributions. Three fundamental models are included: headcount risk, benchmark risk, and hospital admissions. Exposure-response relationships are based on results of controlled human exposure studies. Exposure estimates aremore » based on the EPA''s probabilistic national ambient air quality standards (NAAQS) exposure model, pNEM/Osub3, which simulates air quality associated with attainment of alternative NAAQS. Using ORAMUS, risk results for 27 air quality scenarios, air quality in 9 urban areas, 33 health endpoints, and 4 chronic health endpoints can be calculated.« less

  11. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure.

    PubMed

    Bourdon, Julie A; Williams, Andrew; Kuo, Byron; Moffat, Ivy; White, Paul A; Halappanavar, Sabina; Vogel, Ulla; Wallin, Håkan; Yauk, Carole L

    2013-01-01

    New approaches are urgently needed to evaluate potential hazards posed by exposure to nanomaterials. Gene expression profiling provides information on potential modes of action and human relevance, and tools have recently become available for pathway-based quantitative risk assessment. The objective of this study was to use toxicogenomics in the context of human health risk assessment. We explore the utility of toxicogenomics in risk assessment, using published gene expression data from C57BL/6 mice exposed to 18, 54 and 162 μg Printex 90 carbon black nanoparticles (CBNP). Analysis of CBNP-perturbed pathways, networks and transcription factors revealed concomitant changes in predicted phenotypes (e.g., pulmonary inflammation and genotoxicity), that correlated with dose and time. Benchmark doses (BMDs) for apical endpoints were comparable to minimum BMDs for relevant pathway-specific expression changes. Comparison to inflammatory lung disease models (i.e., allergic airway inflammation, bacterial infection and tissue injury and fibrosis) and human disease profiles revealed that induced gene expression changes in Printex 90 exposed mice were similar to those typical for pulmonary injury and fibrosis. Very similar fibrotic pathways were perturbed in CBNP-exposed mice and human fibrosis disease models. Our synthesis demonstrates how toxicogenomic profiles may be used in human health risk assessment of nanoparticles and constitutes an important step forward in the ultimate recognition of toxicogenomic endpoints in human health risk. As our knowledge of molecular pathways, dose-response characteristics and relevance to human disease continues to grow, we anticipate that toxicogenomics will become increasingly useful in assessing chemical toxicities and in human health risk assessment. PMID:23146762

  12. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  13. 77 FR 44613 - Notice of Availability of the External Review Draft of Framework for Human Health Risk Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...The U.S. Environmental Protection Agency (EPA) Office of the Science Advisor (OSA) announces a 60-day public comment period for the external review draft of ``A Framework for Human Health Risk Assessment to Inform Decision Making.'' This document was developed as part of an agencywide program by the EPA Risk Assessment Forum. The EPA is releasing this draft document solely for the purpose of......

  14. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  15. Pesticide Residues in Bovine Milk in Punjab, India: Spatial Variation and Risk Assessment to Human Health.

    PubMed

    Bedi, J S; Gill, J P S; Aulakh, R S; Kaur, Prabhjit

    2015-08-01

    In the present study, gas chromatographic analysis of pesticide residues in bovine milk (n = 312) from Punjab, India, showed chlorpyrifos, DDT, and γ-HCH as the predominant contaminants. In addition, the presence of β-endosulfan, endosulfan suphate, cypermethrin, cyhalothrin, fenvalerate, deltamethrin, malathion, profenofos, and ethion was reported in milk samples. In this study, it was observed that 12 milk samples exceeded the maximum residue limits (MRLs) for γ-HCH (lindane), 18 for DDT and chlorpyrifos, and 1 sample each for endosulfan, cypermethrin, and profenophos. In India, DDT is still permitted for a malaria control program, which may be the plausible reason for its occurrence in milk samples. The spatial variation for presence of pesticide residues in milk indicated greater levels in cotton-growing areas of Punjab. At current levels of pesticide residues in bovine milk, the human health risk assessment in terms of noncancer and cancer hazard was calculated based on both lower-bound [LB (mean residue levels)] and upper-bound [UP (95th percentile level)] limits. It was noticed that cancer and noncancer risk were within United States Environmental Protection Agency prescribed limits for both adults and children at the LB, but children were being exposed to greater risk for DDT and HCH at the 95th-percentile UB level. PMID:26008642

  16. GM risk assessment.

    PubMed

    Sparrow, P A C

    2010-03-01

    GM risk assessments (GMRAs) play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of each GMRA will be able to ensure the safe handling and containment of the GMO; and to asses any potential impacts on the environment and human health. A risk assessment should answer all "what if" scenarios, based on scientific evidence. This article sets out to provide researchers with helpful guidance notes on producing their own GMRA. While reference is made to UK and EU regulations, the underlying principles and points to consider are generic to most countries. PMID:20087690

  17. Towards a non-animal risk assessment for anti-androgenic effects in humans.

    PubMed

    Dent, Matthew P; Carmichael, Paul L; Jones, Kevin C; Martin, Francis L

    2015-10-01

    Toxicology testing is undergoing a transformation from a system based on high-dose studies in laboratory animals to one founded primarily on in vitro methods that evaluate changes in normal cellular signalling pathways using human-relevant cells or tissues. We review the tools and approaches that could be used to develop a non-animal safety assessment for anti-androgenic effects in humans, with a focus on the molecular initiating events (MIEs) that human disorders indicate critical for normal functioning of the hypothalamus-pituitary-testicular (HPT) axis. In vitro test systems exist which can be used to characterize the effects of test chemicals on some MIEs such as androgen receptor antagonism, inhibition of steroidogenic enzymes or 5α-reductase inhibition. When used alongside information describing the pharmacokinetics of a specific chemical exposure, these could be used to inform a pathways-based safety assessment. However, some parts of the HPT axis such as events occurring in the hypothalamus or pituitary are not well represented by accepted in vitro methods. In vitro tools to characterize perturbations in these events need to be developed before a fully integrated model of the HPT axis can be described. Knowledge gaps also exist which prevent us from using in vitro data to predict the type and severity of in vivo effect(s) that could arise from a given level of in vitro anti-androgenic activity. This means that more work is needed to reliably link an MIE with an adverse outcome. However, especially for chemicals with low anti-androgenic activity, human exposure data can be used to put in vitro mode of action data into context for risk-based safety decision-making. PMID:26115536

  18. Epidemiologic approaches to assessing human cancer risk from consuming aquatic food resources from chemically contaminated water.

    PubMed Central

    Ozonoff, D; Longnecker, M P

    1991-01-01

    Epidemiologic approaches to assessing human cancer risk from consuming fish from contaminated waters must confront the problems of long latency and rarity of the end point (cancer). The latency problem makes determination of diet history more difficult, while the low frequency of cancer as an end point reduces the statistical power of the study. These factors are discussed in relation to the study designs most commonly employed in epidemiology. It is suggested that the use of biomarkers for persistent chemicals may be useful to mitigate the difficulty of determining exposure, while the use of more prevalent and timely end points, such as carcinogen-DNA adducts or oncogene proteins, may make the latency and rarity problems more tractable. PMID:2050052

  19. A model for assessing the risk of human trafficking on a local level

    NASA Astrophysics Data System (ADS)

    Colegrove, Amanda

    Human trafficking is a human rights violation that is difficult to quantify. Models for estimating the number of victims of trafficking presented by previous researchers depend on inconsistent, poor quality data. As an intermediate step to help current efforts by nonprofits to combat human trafficking, this project presents a model that is not dependent on quantitative data specific to human trafficking, but rather profiles the risk of human trafficking at the local level through causative factors. Businesses, indicated by the literature, were weighted based on the presence of characteristics that increase the likelihood of trafficking in persons. The mean risk was calculated by census tract to reveal the multiplicity of risk levels in both rural and urban settings. Results indicate that labor trafficking may be a more diffuse problem in Missouri than sex trafficking. Additionally, spatial patterns of risk remained largely the same regardless of adjustments made to the model.

  20. Human health risk assessment of pharmaceuticals in water: an uncertainty analysis for meprobamate, carbamazepine, and phenytoin.

    PubMed

    Kumar, Arun; Xagoraraki, Irene

    2010-01-01

    This study presents a step-wise development of a quantitative pharmaceutical risk assessment (QPhRA, hereafter) framework, including Monte Carlo uncertainty analysis for meprobamate, carbamazepine, and phenytoin during (1) accidental exposures of stream water and fish consumption and (2) direct ingestion of finished drinking water for children and adults. Average hazard quotients of these pharmaceuticals (i.e., the ratio of values of chronic daily intake to acceptable daily intake) were found to lie between 1x10(-10) and 3x10(-5) and 99 th percentile values of hazard quotients were found to be less than 1x10(-4) for both sub-populations, indicating no potential risks of adverse effects due to pharmaceuticals exposures. In addition, pharmaceutical concentrations were also observed to be lower than their respective calculated acceptable daily intake-equivalent drinking water levels, indicating no potential human health risks. To the authors' knowledge, for the first time in QPhRA studies, this study has attempted to characterize and quantify effects of factors, such as considerations for sensitive sub-populations using subpopulation-specific toxic endpoints and use of pharmaceutical concentrations in stream and finished drinking waters on risk estimates. Acceptable daily intake was observed to be the primary contributor (>93% variance contribution) in the overall uncertainties of estimates of hazard quotients, followed by fish consumptions and pharmaceutical concentrations in water. Further research efforts are required to standardize use of acceptable daily intake values to reduce large variability in estimation of hazard quotients. PMID:20152876

  1. Human Health Risk Assessment due to Global Warming – A Case Study of the Gulf Countries

    PubMed Central

    Husain, Tahir; Chaudhary, Junaid Rafi

    2008-01-01

    Accelerated global warming is predicted by the Intergovernmental Panel on Climatic Change (IPCC) due to increasing anthropogenic greenhouse gas emissions. The climate changes are anticipated to have a long-term impact on human health, marine and terrestrial ecosystems, water resources and vegetation. Due to rising sea levels, low lying coastal regions will be flooded, farmlands will be threatened and scarcity of fresh water resources will be aggravated. This will in turn cause increased human suffering in different parts of the world. Spread of disease vectors will contribute towards high mortality, along with the heat related deaths. Arid and hot climatic regions will face devastating effects risking survival of the fragile plant species, wild animals, and other desert ecosystems. The paper presents future changes in temperature, precipitation and humidity and their direct and indirect potential impacts on human health in the coastal regions of the Gulf countries including Yemen, Oman, United Arab Emirates, Qatar, and Bahrain. The analysis is based on the long-term changes in the values of temperature, precipitation and humidity as predicted by the global climatic simulation models under different scenarios of GHG emission levels. Monthly data on temperature, precipitation, and humidity were retrieved from IPCC databases for longitude 41.25°E to 61.875°E and latitude 9.278°N to 27.833°N. Using an average of 1970 to 2000 values as baseline, the changes in the humidity, temperature and precipitation were predicted for the period 2020 to 2050 and 2070 to 2099. Based on epidemiological studies on various diseases associated with the change in temperature, humidity and precipitation in arid and hot regions, empirical models were developed to assess human health risk in the Gulf region to predict elevated levels of diseases and mortality rates under different emission scenarios as developed by the IPCC. The preliminary assessment indicates increased mortality rates

  2. Human health risk assessment due to global warming--a case study of the Gulf countries.

    PubMed

    Husain, Tahir; Chaudhary, Junaid Rafi

    2008-12-01

    Accelerated global warming is predicted by the Intergovernmental Panel on Climatic Change (IPCC) due to increasing anthropogenic greenhouse gas emissions. The climate changes are anticipated to have a long-term impact on human health, marine and terrestrial ecosystems, water resources and vegetation. Due to rising sea levels, low lying coastal regions will be flooded, farmlands will be threatened and scarcity of fresh water resources will be aggravated. This will in turn cause increased human suffering in different parts of the world. Spread of disease vectors will contribute towards high mortality, along with the heat related deaths. Arid and hot climatic regions will face devastating effects risking survival of the fragile plant species, wild animals, and other desert ecosystems. The paper presents future changes in temperature, precipitation and humidity and their direct and indirect potential impacts on human health in the coastal regions of the Gulf countries including Yemen, Oman, United Arab Emirates, Qatar, and Bahrain. The analysis is based on the long-term changes in the values of temperature, precipitation and humidity as predicted by the global climatic simulation models under different scenarios of GHG emission levels. Monthly data on temperature, precipitation, and humidity were retrieved from IPCC databases for longitude 41.25 degrees E to 61.875 degrees E and latitude 9.278 degrees N to 27.833 degrees N. Using an average of 1970 to 2000 values as baseline, the changes in the humidity, temperature and precipitation were predicted for the period 2020 to 2050 and 2070 to 2099. Based on epidemiological studies on various diseases associated with the change in temperature, humidity and precipitation in arid and hot regions, empirical models were developed to assess human health risk in the Gulf region to predict elevated levels of diseases and mortality rates under different emission scenarios as developed by the IPCC.The preliminary assessment indicates

  3. The EPA's Human Exposure Research Program for Assessing Cumulative Risk in Communities

    EPA Science Inventory

    Communities are faced with challenges in identifying and prioritizing environmental issues, taking actions to reduce their exposures, and determining their effectiveness for reducing human health risks. Additional challenges include determining what scientific tools are available...

  4. Human health risk assessment of heavy metals in cosmetics in Nigeria.

    PubMed

    Nduka, John K; Odiba; Orisakwe, Orish E; Ukaebgu, Linda D; Sokaibe, Chinwetuto; Udowelle, Nnaemeka A

    2015-01-01

    Forty two different cosmetics were purchased from supermarkets and cosmetic shops within Unitsha Main Market and Eke-Awka markets in Anambra, Nigeria. Of the cosmetics, 16% were locally manufactured in Nigeria while 83.33% were imported into Nigeria. The cosmetics were ashed before digestion and filtration. The filtrates were assayed for lead, cadmium, manganese, nickel, chromium, mercury, and arsenic with atomic absorption spectrophotometry at 205 Å. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential human health risk of heavy metals in cosmetics. About 61.91% of the cosmetic samples contained lead with concentration in the range of 0.10-42.12 mg/kg. Cadmium levels of the cosmetics ranged from 0.01 to 1.32 mg/kg, manganese from 0.02 to 67.65 mg/kg, nickel from 0.05 to 17.34 mg/kg, chromium from 0.11 to 9.81 mg/kg, mercury from 0.003 to 0.07 mg/kg, and arsenic from 0.002 to 0.005 mg/kg. Although the target hazard quotients and the hazard indices suggest a measure of safety, cosmetics may add to the body burden of potential toxic metals after chronic exposure. PMID:26665979

  5. Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons.

    PubMed

    Qu, Changsheng; Li, Bing; Wu, Haisuo; Wang, Shui; Giesy, John P

    2015-06-01

    To assess aggregate exposure to polycyclic aromatic hydrocarbons (PAHs) via several environmental media and pathways, a probabilistic framework for multi-pathway health risk assessment that integrates PAHs potency equivalence factors, risk estimation modeling, and Monte Carlo simulation was applied to a case study in Nanjing, which is an important industrial city in China. Incremental lifetime risk of additional cancers posed by exposure to 16 USEPA priority PAHs in air, water, soil, and fish was assessed. Risks to three age groups, infants, children, and adults, through various exposure pathways, including oral ingestion, dermal absorption, and inhalation, were estimated. Results of the analysis of risk indicated that B[a]P, B[b]F, and BA were the predominant PAHs pollutants in Nanjing. Risk of additional cancer for local adults was on average 2.62 × 10(-5). The risks were primarily due to ingestion of fish and inhalation, which contributed 99 % of the total risks. By contrast, risk to infants was essentially negligible. Results of a sensitivity analysis indicated that the input variables of concentration of PAHs in fish (C f), the body weight (BW), and the ingestion rate of fish (IRf) were the major influences on estimates of risks. PMID:25571860

  6. Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment

    EPA Science Inventory

    This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organoph...

  7. RISK ASSESSMENT AND RISK MANAGEMENT

    EPA Science Inventory

    Risk assessment of mixtures of environmental pollutants has become a subject of increasing public and regulatory concern. ypically, assessment of mixtures has been based on aggregating the risks associated with the individual constituents of the mixture. his approach does not con...

  8. Site specific risk assessment of an energy-from-waste thermal treatment facility in Durham Region, Ontario, Canada. Part A: Human health risk assessment.

    PubMed

    Ollson, Christopher A; Knopper, Loren D; Whitfield Aslund, Melissa L; Jayasinghe, Ruwan

    2014-01-01

    The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. This paper presents the results of a comprehensive human health risk assessment for this facility. This assessment was based on extensive sampling of baseline environmental conditions (e.g., collection and analysis of air, soil, water, and biota samples) as well as detailed site specific modeling to predict facility-related emissions of 87 identified contaminants of potential concern. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and for the maximum design capacity (400,000 tonnes per year). For the 140,000 tonnes per year scenario, this assessment indicated that facility-related emissions are unlikely to cause adverse health risks to local residents, farmers, or other receptors (e.g., recreational users). For the 400,000 tonnes per year scenarios, slightly elevated risks were noted with respect to inhalation (hydrogen chloride) and infant consumption of breast milk (dioxins and furans), but only during predicted 'upset conditions' (i.e. facility start-up, shutdown, and loss of air pollution control) that represent unusual and/or transient occurrences. However, current provincial regulations require that additional environmental screening would be mandatory prior to expansion of the facility beyond the initial approved capacity (140,000 tonnes per year). Therefore, the potential risks due to upset conditions for the 400,000 tonnes per year scenario should be more closely investigated if future expansion is pursued. PMID:23911923

  9. Biomarkers of benzene exposure and their interpretation for human health risk assessment

    EPA Science Inventory

    Human biomarkers of exposure such as parent or metabolite concentrations in blood or urine are often reported without any context to the sources of exposure or the implications for human risk. The Biomonitoring Technical Committee of the International Life Sciences Institute/Huma...

  10. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century.

    PubMed

    Mortensen, Holly M; Euling, Susan Y

    2013-09-15

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment. PMID:21291902

  11. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    SciTech Connect

    Mortensen, Holly M.; Euling, Susan Y.

    2013-09-15

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.

  12. IMPLICATIONS OF GLOBAL CLIMATE CHANGE FOR THE ASSESSMENT AND MANAGEMENT OF HUMAN HEALTH RISKS OF CHEMICALS IN THE NATURAL ENVIRONMENT

    PubMed Central

    Balbus, John M; Boxall, Alistair BA; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren

    2013-01-01

    Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Environ. Toxicol. Chem. 2013;32:62–78. © 2012 SETAC PMID:23147420

  13. Interim response action basin F liquid incineration project final draft human health risk assessment. Volume 1. Final draft report

    SciTech Connect

    1991-07-01

    This document is a comprehensive, multiple exposure pathway, human health risk assessment prepared for the proposed Basin F Liquid Incineration Project. The submerged quench incinerator will treat Basin F liquid and hydrazine rinse water. The objective of the risk assessment is to establish chemical emission limits which are protective of human health. Average and maximum lifetime daily intakes were calculated for adults, children, and infants in four maximum exposure scenarios under base case and sensitivity case emissions condition. It was concluded that the incineration facility poses neither carcinogenic nor noncarcinogenic risk to any sensitive population. The assessment is divided into: (1) Incineration facility description; (2) Description of surrounding area; (3) Process of pollutant identification and selection; and (4) Determination of emission rates from incineration facility.

  14. Risk assessment of human exposure to cypermethrin during treatment of mandarin fields.

    PubMed

    Choi, H; Moon, J K; Liu, K H; Park, H W; Ihm, Y B; Park, B S; Kim, J H

    2006-04-01

    The potential dermal and respiratory exposure assessment and risk assessment for applicator were performed with cypermethrin EC. The pesticide was applied on a mandarin field using a power sprayer. Gloves were used for the hand exposure assessment, mask for face, and dermal patches for the other parts of the body. Personal air monitor equipped with a XAD-2 resin was used for the respiratory exposure assessment. During the application of cypermethrin in the field, the rate of potential dermal exposure ranged from 28.1 to 58.8 mg/h. The major exposure parts were upper-arms (22.1-24.6%) and legs (thigh and shin, 28.3-29.2%) for females and thigh (21.0-46.9%) and hand (14.9-19.3%) for males. Females were exposed more than males. No exposure was detected from the respiratory monitoring. For risk assessment, the potential dermal exposure (PDE), the absorbable quantity of exposure (AQE), and the margin of safety (MOS) were calculated. Among those four risk assessments, MOS was < 1 in only trial I, which indicated any possibility of risk. However, in the others, the possibility of risk was little. Moreover, the safe work time ranged from 3.61 h to 9.69 h. PMID:16502205

  15. Risk: assessment, acceptability and management

    SciTech Connect

    Not Available

    1981-01-01

    Risk assessment, particularly of risks to the public health resulting from government and industry decisions, is discussed. Cost/benefit analysis as applied to such situations as human deaths and the contracting of cancer by humans is discussed. The role of government regulations and standards is discussed.

  16. Human health risk assessment from exposure to trihalomethanes in Canadian cities.

    PubMed

    Chowdhury, Shakhawat; Hall, Kevin

    2010-07-01

    Lifetime exposure to trihalomethanes (THMs) through ingestion, inhalation and dermal contacts may pose risks to human health. Current approaches may under predict THMs exposure by using THMs in cold water during showering and bathing. Warming of chlorinated water during showering may increase THMs formation through reactions between organics and residual chlorine, which can increase human health risks. In this study, THMs concentrations in shower water were estimated using THMs rate increase model. Using cold water THMs, exposure through ingestion was estimated, while THMs exposure during showering was estimated using THMs in warm water. Human health cancer risks and additional expenses for 20 most populated Canadian cities from exposure to THMs were estimated. Inhalation and dermal contact during showering contributed 30% to 50% of total cancer risks, while risks from inhalation and dermal contacts were comparable for all cities. Overall cancer risks were estimated between 7.2 x 10(-6) and 6.4 x 10(-5) for these cities. Cancer incidents were estimated highest for Montreal (94/year) followed by Toronto (53/year), which may require additional medical expenses of 18.8 and 10.7 million dollars/year for Montreal and Toronto respectively. Cancer risks from exposure to THMs can be controlled by reducing THMs in water supply and varying shower stall volume, shower duration and air exchange rate in shower stall. PMID:20434775

  17. CONTROLLED DIESEL EXPOSURES: INTER-PHASING HUMAN AND ANIMAL STUDIES AND THEIR USE IN THE RISK ASSESSMENT

    EPA Science Inventory

    Controlled diesel exposures: Inter-phasing human and animal studies and their use in the risk assessment process.
    Michael C. Madden, US EPA.

    Particulate matter (PM) has been reported to be associated with health effects (e.g., premature deaths, hospitalizations, lung ...

  18. 76 FR 30705 - Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... the public and an independent, external panel of scientific experts (73 FR 54400). Dated: May 18, 2011... AGENCY Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids... Pathogens in Land-Applied Biosolids'' EPA/600/R-08/035F, which was prepared by the National Center...

  19. SUMMARY OF THE U.S. EPA COLLOQUIA ON A FRAMEWORK FOR HUMAN HEALTH RISK ASSESSMENT (VOLUME 1, 1997)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has recognized the need to develop a framework for human health risk assessment that puts a perspective on the approaches in practice throughout the Agency. The framework will be a communication piece that will lay out the scientific...

  20. SUMMARY OF THE U.S. EPA COLLOQUIUM ON A FRAMEWORK FOR HUMAN HEALTH RISK ASSESSMENT (VOLUME 2, 1998)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has recognized the need to develop a framework for human health risk assessment that puts a perspective on the approaches in practice throughout the Agency. The framework will be a communication piece that will lay out the scientific...

  1. DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROOVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    EPA Science Inventory

    DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    Jeffry D. Schroeter, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Ted B. Martonen, ETD, NHEERL, USEPA, RTP, NC 27711; Do...

  2. Risk assessment of coccidostatics during feed cross-contamination: animal and human health aspects.

    PubMed

    Dorne, J L C M; Fernández-Cruz, M L; Bertelsen, U; Renshaw, D W; Peltonen, K; Anadon, A; Feil, A; Sanders, P; Wester, P; Fink-Gremmels, J

    2013-08-01

    Coccidiosis, an intestinal plasmodium infection, is a major infectious disease in poultry and rabbits. Eleven different coccidiostats are licensed in the EU for the prevention of coccidiosis in these animal species. According to their chemical nature and main biological activity, these compounds can be grouped as ionophoric (monensin, lasalocid sodium, salinomycin, narasin, maduramicin and semduramicin) or non-ionophoric (robenidine, decoquinate, nicarbazin, diclazuril, and halofuginone) substances. Coccidiostats are used as feed additives, mixed upon request into the compounded feed. During the technical process of commercial feed production, cross-contamination of feed batches can result in the exposure of non-target animals and induce adverse health effects in these animals due to a specific sensitivity of mammalian species as compared to poultry. Residue formation in edible tissues of non-target species may result in unexpected human exposure through the consumption of animal products. This review presents recent risk assessments performed by the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). The health risk to non-target species that would result from the consumption of cross-contaminated feed with coccidostats at levels of 2, 5 or 10% was found to be negligible for most animal species with the exception of salinomycin and monensin in horses because of the particular sensitivity for which toxicity may occur when cross-contamination exceeds 2% and 5% respectively. Kinetic data and tissue analyses showed that residues of coccidiostats may occur in the liver and eggs in some cases. However, the level of residues of each coccidiostat in edible animal tissues remained sufficiently low that the aggregate exposure of consumers would not exceed the established acceptable daily intake (ADI) of each coccidiostat. It could be concluded that technical cross-contamination of animal feeds would not be expected to

  3. Risk assessment of coccidostatics during feed cross-contamination: Animal and human health aspects

    SciTech Connect

    Dorne, J.L.C.M.; Fernández-Cruz, M.L.; Bertelsen, U.; Renshaw, D.W.; Peltonen, K.; Anadon, A.; Feil, A.; Sanders, P.; Wester, P.; Fink-Gremmels, J.

    2013-08-01

    Coccidiosis, an intestinal plasmodium infection, is a major infectious disease in poultry and rabbits. Eleven different coccidiostats are licensed in the EU for the prevention of coccidiosis in these animal species. According to their chemical nature and main biological activity, these compounds can be grouped as ionophoric (monensin, lasalocid sodium, salinomycin, narasin, maduramicin and semduramicin) or non-ionophoric (robenidine, decoquinate, nicarbazin, diclazuril, and halofuginone) substances. Coccidiostats are used as feed additives, mixed upon request into the compounded feed. During the technical process of commercial feed production, cross-contamination of feed batches can result in the exposure of non-target animals and induce adverse health effects in these animals due to a specific sensitivity of mammalian species as compared to poultry. Residue formation in edible tissues of non-target species may result in unexpected human exposure through the consumption of animal products. This review presents recent risk assessments performed by the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). The health risk to non-target species that would result from the consumption of cross-contaminated feed with coccidostats at levels of 2, 5 or 10% was found to be negligible for most animal species with the exception of salinomycin and monensin in horses because of the particular sensitivity for which toxicity may occur when cross-contamination exceeds 2% and 5% respectively. Kinetic data and tissue analyses showed that residues of coccidiostats may occur in the liver and eggs in some cases. However, the level of residues of each coccidiostat in edible animal tissues remained sufficiently low that the aggregate exposure of consumers would not exceed the established acceptable daily intake (ADI) of each coccidiostat. It could be concluded that technical cross-contamination of animal feeds would not be expected to

  4. Application of quantitative uncertainty analysis for human health risk assessment at Rocky Flats

    SciTech Connect

    Duncan, F.L.W.; Gordon, J.W. ); Smith, D. ); Singh, S.P. )

    1993-01-01

    The characterization of uncertainty is an important component of the risk assessment process. According to the U.S. Environmental Protection Agency's (EPA's) [open quotes]Guidance on Risk Characterization for Risk Managers and Risk Assessors,[close quotes] point estimates of risk [open quotes]do not fully convey the range of information considered and used in developing the assessment.[close quotes] Furthermore, the guidance states that the Monte Carlo simulation may be used to estimate descriptive risk percentiles. To provide information about the uncertainties associated with the reasonable maximum exposure (RME) estimate and the relation of the RME to other percentiles of the risk distribution for Operable Unit 1 (OU-1) at Rocky Flats, uncertainties were identified and quantitatively evaluated. Monte Carlo simulation is a technique that can be used to provide a probability function of estimated risk using random values of exposure factors and toxicity values in an exposure scenario. The Monte Carlo simulation involves assigning a joint probability distribution to the input variables (i.e., exposure factors) of an exposure scenario. Next, a large number of independent samples from the assigned joint distribution are taken and the corresponding outputs calculated. Methods of statistical inference are used to estimate, from the output sample, some parameters of the output distribution, such as percentiles and the expected value.

  5. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes.

    PubMed

    Oorts, Marlies; Baze, Audrey; Bachellier, Philippe; Heyd, Bruno; Zacharias, Thomas; Annaert, Pieter; Richert, Lysiane

    2016-08-01

    Drug-induced cholestasis (DIC) is recognized as one of the prime mechanisms for DILI. Hence, earlier detection of drug candidates with cholestatic signature is crucial. Recently, we introduced an in vitro model for DIC and evaluated its performance with several cholestatic drugs. We presently expand on the validation of this model by 14 training compounds (TCs) of the EU-EFPIA IMI project MIP-DILI. Several batches of human hepatocytes in sandwich-culture were qualified for DIC assessment by verifying the bile acid-dependent increase in sensitivity to the toxic effects of cyclosporin A. The cholestatic potential of the TCs was expressed by determining the drug-induced cholestasis index (DICI). A safety margin (SM) was calculated as the ratio of the lowest TC concentration with a DICI≤0.80 to the Cmax,total. Nefazodone, bosentan, perhexiline and troglitazone were flagged for cholestasis (SM<30). The hepatotoxic (but non-cholestatic) compounds, amiodarone, diclofenac, fialuridine and ximelagatran, and all non-hepatotoxic compounds were cleared as "safe" for DIC. Tolcapone and paracetamol yielded DICI-based SM values equal to or higher than those based on cytotoxicity, thus excluding DIC as a DILI mechanism. This hepatocyte-based in vitro assay provides a unique tool for early and reliable identification of drug candidates with cholestasis risk. PMID:27046439

  6. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils.

    PubMed

    Nabulo, G; Young, S D; Black, C R

    2010-10-15

    Fifteen tropical leafy vegetable types were sampled from farmers' gardens situated on nine contaminated sites used to grow vegetables for commercial or subsistence consumption in and around Kampala City, Uganda. Trace metal concentrations in soils were highly variable and originated from irrigation with wastewater, effluent discharge from industry and dumping of solid waste. Metal concentrations in the edible shoots of vegetables also differed greatly between, and within, sites. Gynandropsis gynandra consistently accumulated the highest Cd, Pb and Cu concentrations, while Amaranthus dubius accumulated the highest Zn concentration. Cadmium uptake from soils with contrasting sources and severity of contamination was consistently lowest in Cucurbita maxima and Vigna unguiculata, suggesting these species were most able to restrict Cd uptake from contaminated soil. Concentrations of Pb and Cr were consistently greater in unwashed, than in washed, vegetables, in marked contrast to Cd, Ni and Zn. The risk to human health, expressed as a 'hazard quotient' (HQ(M)), was generally greatest for Cd, followed successively by Pb, Zn, Ni and Cu. Nevertheless, it was apparent that urban cultivation of leafy vegetables could be safely pursued on most sites, subject to site-specific assessment of soil metal burden, judicious choice of vegetable types and adoption of washing in clean water prior to cooking. PMID:20739044

  7. Assessment of the human health risks posed by exposure to chromium-contaminated soils

    SciTech Connect

    Sheehan, P.J.; Meyer, D.M.; Sauer, M.M.; Paustenbach, D.J. )

    1991-02-01

    Millions of tons of chromite-ore processing residue have been used as fill in various locations in northern New Jersey and elsewhere in the United States. The primary toxicants in the residue are trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)). The hazard posed by Cr(III) is negligible due to its low acute and chronic toxicity. In contrast, Cr(VI) is a human carcinogen following inhalation of high concentrations. It can also cause allergic contact dermatitis. This evaluation addresses a residential site where the arithmetic mean (x) and geometric mean (gm) concentrations of Cr(III) in soil were 2879 and 1212 mg/kg (ppm). The mean concentrations of Cr(VI) were 180 and 4 mg/kg, respectively. The uptake (absorbed dose) of Cr(III) via soil ingestion, consumption of homegrown vegetables, and ingestion of inspired particles was determined. The uptake of Cr(VI) via dermal absorption from contact with surface soil and building wall surfaces, as well as inhalation, was also evaluated. The techniques used in this assessment are applicable for evaluating the human health risks posed by any residential site having contaminated soil. The potential for both sensitized and unsensitized persons to develop allergic contact dermatitis due to exposure to soil contaminated at these levels was found to be negligible. The estimated average daily dose (ADD) via ingestion and dermal absorption for the maximally exposed individual (MEI) was about 1500- and 40-fold below the EPA reference dose (RfD) for Cr(III) and Cr(VI), respectively. It was shown that for residential sites, the most important route of exposure to Cr(III) was incidental soil ingestion. Although not relevant to these sites specifically, if garden vegetables could be successfully grown in these soils, then they would probably be the predominant source of uptake of Cr(III). 163 refs.

  8. Fumonisin contamination of food: progress in development of biomarkers to better assess human health risks.

    PubMed

    Turner, P C; Nikiema, P; Wild, C P

    1999-07-15

    Fumonisins, fungal toxins produced by Fusarium moniliforme, contaminate maize based foods and feeds throughout the world. They cause liver and kidney toxicity in animals in addition to leukoencephalomalacia in horses and pulmonary edema in pigs. Fumonisin B(1) is carcinogenic in rats and mice. Ecological studies have linked consumption of fumonisin contaminated maize with oesophageal cancer in human populations in South Africa and China. This review discusses the potential health risks for people exposed to the fumonisins, and describes how mechanistic studies of toxicity in animal models have allowed the development of putative biomarkers of fumonisin exposure at the individual level. The requirements for an applicable biomarker include sample availability as well as a high specificity and sensitivity for the exposure of interest. Most environmental toxic insults involve complex exposures both to other toxins and to infections; these confounding factors need to be considered in assessing both the validity of the biomarker and the exposure-disease associations. Fumonisins can be detected in the urine of animals in feeding studies but the sensitivity of the current methodology means only highly exposed people could be monitored. Mechanistic studies indicate that ceramide synthase, an enzyme involved in sphingolipid synthesis, is one cellular target for fumonisin toxicity and carcinogenicity, and this disruption to sphingolipid metabolism increases the ratio of two sphingoid precursors, sphinganine and sphingosine. The altered ratio has been observed in tissues, serum and urine for a number of animal models suggesting it as a good candidate marker of fumonisin exposure. Despite development of analytical methods to measure this biomarker there have been no studies to date correlating it to fumonisin intake in people. Given the toxic effects of fumonisins in animals and the widespread human exposure, which has been calculated to reach 440 micrograms kg(-1) body weight

  9. ASSESSMENT OF RISKS TO HUMAN REPRODUCTION AND TO DEVELOPMENT OF THE HUMAN CONCEPTUS FROM EXPOSURE TO ENVIRONMENTAL SUBSTANCES

    EPA Science Inventory

    The Offices of Health Research and of Health and Environmental Assessment within the Office of Research and Development sponsored a conference to produce a technical document on the current status of risk assessment methodologies for teratogenic and other reproductive effects. Th...

  10. Pharmacology-based toxicity assessment: towards quantitative risk prediction in humans.

    PubMed

    Sahota, Tarjinder; Danhof, Meindert; Della Pasqua, Oscar

    2016-05-01

    Despite ongoing efforts to better understand the mechanisms underlying safety and toxicity, ~30% of the attrition in drug discovery and development is still due to safety concerns. Changes in current practice regarding the assessment of safety and toxicity are required to reduce late stage attrition and enable effective development of novel medicines. This review focuses on the implications of empirical evidence generation for the evaluation of safety and toxicity during drug development. A shift in paradigm is needed to (i) ensure that pharmacological concepts are incorporated into the evaluation of safety and toxicity; (ii) facilitate the integration of historical evidence and thereby the translation of findings across species as well as between in vitro and in vivo experiments and (iii) promote the use of experimental protocols tailored to address specific safety and toxicity questions. Based on historical examples, we highlight the challenges for the early characterisation of the safety profile of a new molecule and discuss how model-based methodologies can be applied for the design and analysis of experimental protocols. Issues relative to the scientific rationale are categorised and presented as a hierarchical tree describing the decision-making process. Focus is given to four different areas, namely, optimisation, translation, analytical construct and decision criteria. From a methodological perspective, the relevance of quantitative methods for estimation and extrapolation of risk from toxicology and safety pharmacology experimental protocols, such as points of departure and potency, is discussed in light of advancements in population and Bayesian modelling techniques (e.g. non-linear mixed effects modelling). Their use in the evaluation of pharmacokinetics (PK) and pharmacokinetic-pharmacodynamic relationships (PKPD) has enabled great insight into the dose rationale for medicines in humans, both in terms of efficacy and adverse events. Comparable benefits

  11. Lessons learned: Needs for improving human health risk assessment at USDOE Sites

    SciTech Connect

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.; Daniels, J.I.; Layton, D.W.; Anspaugh, L.R.

    1993-09-01

    Realistic health risk assessments were performed in a pilot study of three U.S. Department of Energy (USDOE) sites. These assessments, covering a broad spectrum of data and methods, were used to identify needs for improving future health risk assessments at USDOE sites. Topics receiving specific recommendations for additional research include: choice of distributions for Monte Carlo simulation; estimation of risk reduction; analysis of the U.S. Department of Agriculture Database on food and nutrient intakes; investigations on effects of food processing on contaminant levels; background food and environmental concentrations of contaminants; method for handling exposures to groundwater plumes, methods for analyzing less than lifetime exposure to carcinogens; and improvement of bioaccumulation factors.

  12. Exploration Health Risks: Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer; Charles, John; Hayes, Judith; Wren, Kiley

    2006-01-01

    Maintenance of human health on long-duration exploration missions is a primary challenge to mission designers. Indeed, human health risks are currently the largest risk contributors to the risks of evacuation or loss of the crew on long-duration International Space Station missions. We describe a quantitative assessment of the relative probabilities of occurrence of the individual risks to human safety and efficiency during space flight to augment qualitative assessments used in this field to date. Quantitative probabilistic risk assessments will allow program managers to focus resources on those human health risks most likely to occur with undesirable consequences. Truly quantitative assessments are common, even expected, in the engineering and actuarial spheres, but that capability is just emerging in some arenas of life sciences research, such as identifying and minimize the hazards to astronauts during future space exploration missions. Our expectation is that these results can be used to inform NASA mission design trade studies in the near future with the objective of preventing the higher among the human health risks. We identify and discuss statistical techniques to provide this risk quantification based on relevant sets of astronaut biomedical data from short and long duration space flights as well as relevant analog populations. We outline critical assumptions made in the calculations and discuss the rationale for these. Our efforts to date have focussed on quantifying the probabilities of medical risks that are qualitatively perceived as relatively high risks of radiation sickness, cardiac dysrhythmias, medically significant renal stone formation due to increased calcium mobilization, decompression sickness as a result of EVA (extravehicular activity), and bone fracture due to loss of bone mineral density. We present these quantitative probabilities in order-of-magnitude comparison format so that relative risk can be gauged. We address the effects of

  13. Human health-risk assessment for municipal-sludge disposal: benefits of alternative regulatory options. Draft report

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses numerical criteria for the reuse and disposal of municipal sewage sludge and evaluates reductions in human health risks or benefits derived from controlling sludge-disposal practices. Quantitative aggregate risk estimates are projected for 31 contaminants for each of the key sludge-management practices: incineration; monofilling; land application (food chain and non-food chain); and distribution and marketing. The study utilizes state-of-the-art fate, transport, and exposure methodologies in predicting environmental concentrations. The analysis evaluates a number of human-exposure routes including dietary, drinking water, and inhalation pathways. The analysis couples this information with national and local populations exposed along with the Agency's most recent health-effects data in assessing risks. A methodology for quantitatively assessing non-carcinogenic effects from exposure to lead is introduced.

  14. Heart Attack Risk Assessment

    MedlinePlus

    ... Pressure Tools & Resources Stroke More Heart Attack Risk Assessment Updated:May 31,2016 We're sorry, but ... Can You Recognize a Heart Attack? Quiz Risk Assessment Patient Information Sheets: Heart Attack Heart Attack Personal ...

  15. Teaching Risk Assessment.

    ERIC Educational Resources Information Center

    Oravec, Jo Ann

    2000-01-01

    Risk management training cannot prevent hazards, but can help students learn to deal with them more efficiently. A risk-assessment and risk-communication approach to dealing with computer problems can be applied in the business classroom. (JOW)

  16. Assessment of risks to human reproduction and to development of the human conceptus from exposure to environmental substances

    SciTech Connect

    Galbraith, W.M.; Voytek, P.; Ryon, M.G.

    1982-02-01

    The Offices of Health Research and of Health and Environmental Assessment within the Office of Research and Development sponsored a conference to produce a technical document on the current status of risk assessment methodologies for teratogenic and other reproductive effects. The conference brought together scientists knowledgeable in reproductive biology and teratology to discuss techniques and concepts pertinent to developing risk assessment methodologies. The document is divided into three main subject areas: assessment of toxicity to female reproduction, assessment of toxicity to male reproduction, and assessment of toxicity to the conceptus. There are three supplemental parts: pharmacokinetics and epidemiologic considerations, which are common to all toxicological assessments, and a special section on the behavioral aspects of sexual development. The specific areas addressed are the potential adverse effects on the female and male reproductive systems as well as adverse effects on the developing conceptus. A broad range of problems and effects are discussed, including infertility, early resorption of the conceptus, and possible behavioral disorders producted by subtle changes in the biochemical environment of the fetus. Suggestions are given for improvement in standard toxicological protocols for evaluation of reproductive risks, identifies new concepts and procedures that can be immediately applicable, and designates those that need further expansion and development through research. Included is a discussion on the predictive ability of the tests in estimating risk.

  17. Chapter 6: Ecotoxicology, Environmental Risk Assessment & Potential Impact on Human Health

    EPA Science Inventory

    This chapter examines potential risks posed by pharmaceuticals present in the aquatic environment to humans and aquatic life. We begin by describing the mechanisms by which pharmaceuticals enter the vertebrate body, produce effects and leave the body. Then we describe theoretical...

  18. Balancing risk: Ethical issues in risk assessment

    SciTech Connect

    Longstreth, J.D.

    1992-06-01

    The last five decades have seen an explosive growth of information, accompanied by the development of a strong environmental movement. These two factors have been critical contributors to the development of the scientific discipline that has come to be called risk analysis or risk assessment. In this context, risk assessment can be described as an analytic approach used to organize large amounts of information from diverse disciplines so as to evaluate the possible impacts of pollution on human health and the environment. Early efforts in this field focused on the protection of human health. More recently, however, it has been realized that humans and their environment are intimately linked and that environmental impacts must also be evaluated. At some point, it seems likely that the joint goals of protecting human health and the environment may come into conflict. This essay reviews current developments in the assessment of risks both to humans and the environment in order to expose similarities and differences with the ultimate aim of opening a dialogue between scientists in the different disciplines so that evaluation strategies can be designed which will enable decision makers to make trade-offs between human health and environmental risk is an informed and egalitarian way.

  19. Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado

    SciTech Connect

    Daniels Jeffrey I.,Chapman Jenny B.

    2012-01-01

    The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

  20. Schedule Risk Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Greg

    2003-01-01

    Schedule risk assessments determine the likelihood of finishing on time. Each task in a schedule has a varying degree of probability of being finished on time. A schedule risk assessment quantifies these probabilities by assigning values to each task. This viewgraph presentation contains a flow chart for conducting a schedule risk assessment, and profiles applicable several methods of data analysis.

  1. Application of Toxicogenomics in Decision Making in Ecological and Human Health Risk Assessment

    EPA Science Inventory

    Uncertainties in risk assessment arise from sparse or inadequate data including gaps in our understanding of mode of action, the exposure-dose-response pathway, cross-species toxicokinetic and toxicodynamic information, and/or exposure data. There is an expectation that toxicogen...

  2. XENOBIOTIC METABOLISM RESEARCH AND ITS APPLICATION TO HUMAN AND ECOLOGICAL EXPOSURE AND RISK ASSESSMENT

    EPA Science Inventory

    A major uncertainty in risk assessment is determining the exposure of a target organism to a chemical stressor, and a confounding factor is the transformation of the chemical to a toxic metabolite inside the target organism. Physiologically-based pharmacokinetic (PBPK) models are...

  3. Characterizing Uncertainty in Epidemiological Studies for use in Human Health Risk Assessment

    EPA Science Inventory

    Characterization of scientific uncertainty can provide risk assessments with a level of confidence regarding decisions, whichallows for evaluation of the degree that uncertainty plays in the analysis of consequences of specific policies.To the best of our knowledge, there are no ...

  4. Quantitative microbial risk assessment of human illness from exposure to marine beach sand.

    PubMed

    Shibata, Tomoyuki; Solo-Gabriele, Helena M

    2012-03-01

    Currently no U.S. federal guideline is available for assessing risk of illness from sand at recreational sites. The objectives of this study were to compute a reference level guideline for pathogens in beach sand and to compare these reference levels with measurements from a beach impacted by nonpoint sources of contamination. Reference levels were computed using quantitative microbial risk assessment (QMRA) coupled with Monte Carlo simulations. In order to reach an equivalent level of risk of illness as set by the U.S. EPA for marine water exposure (1.9 × 10(-2)), levels would need to be at least about 10 oocysts/g (about 1 oocyst/g for a pica child) for Cryptosporidium, about 5 MPN/g (about 1 MPN/g for pica) for enterovirus, and less than 10(6) CFU/g for S. aureus. Pathogen levels measured in sand at a nonpoint source recreational beach were lower than the reference levels. More research is needed in evaluating risk from yeast and helminth exposures as well as in identifying acceptable levels of risk for skin infections associated with sand exposures. PMID:22296573

  5. Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in The Netherlands.

    PubMed Central

    Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C

    1999-01-01

    A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions. Images Figure 1 Figure 2 Figure 3 PMID:9872714

  6. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    PubMed

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential. PMID:25058416

  7. A GIS-based human health risk assessment for urban green space planning--an example from Grugliasco (Italy).

    PubMed

    Poggio, Laura; Vrscaj, Borut

    2009-11-15

    The need to develop approaches for risk-based management of soil contamination, as well as the integration of the assessment of the human health risk (HHR) due to the soil contamination in the urban planning procedures has been the subject of recent attention of scientific literature and policy makers. The spatial analysis of environmental data offers multiple advantages for studying soil contamination and HHR assessment, facilitating the decision making process. The aim of this study was to explore the possibilities and benefits of spatial implementation of a quantitative HHR assessment methodology for a planning case in a typical urban environment where the soil is contaminated. The study area is located in the city of Grugliasco a part of the Turin (Italy) metropolitan area. The soils data were derived from a site specific soil survey and the land-use data from secondary sources. In the first step the soil contamination data were geo-statistically analysed and a spatial soil contamination data risk modelling procedure designed. In order to spatially assess the HHR computer routines were developed using GIS raster tools. The risk was evaluated for several different land uses for the planned naturalistic park area. The HHR assessment indicated that the contamination of soils with heavy metals in the area is not sufficient to induce considerable health problems due to typical human behaviour within the variety of urban land uses. An exception is the possibility of direct ingestion of contaminated soil which commonly occurs in playgrounds. The HHR evaluation in a planning case in the Grugliasco Municipality confirms the suitability of the selected planning option. The construction of the naturalistic park presents one solution for reducing the impacts of soil contamination on the health of citizens. The spatial HHR evaluation using GIS techniques is a diagnostic procedure for assessing the impacts of urban soil contamination, with which one can verify planning

  8. Assessing the distribution and human health risk of organochlorine pesticide residues in sediments from selected rivers.

    PubMed

    Ogbeide, Ozekeke; Tongo, Isioma; Ezemonye, Lawrence

    2016-02-01

    Sediment samples from major agricultural producing areas in Edo state Nigeria were analysed for α-HCH, γ-HCH, β-HCH and ∑DDT with the aim of elucidating contamination profiles, distribution characteristics, carcinogenic and non-carcinogenic risk of these compounds in these regions. Analysis was done using a gas chromatography (GC) equipped with electron capture detector (ECD), while health risk assessment was carried out using the Incremental Lifetime Cancer Risk (ILCR) and the chronic daily intake (CDI). Results showed varying concentrations of α-HCH, γ-HCH, β-HCH and ∑DDT pesticides in sediment samples with hexachlorocyclohexane (∑HCHs) (4.6 µg/g/dw) being the dominant contaminants as it was widely detected in all samples and stations. Source identification revealed that the current levels of HCHs and DDT in sediments were attributed to both historical use and fresh usage of these pesticides. Risk estimates using ILCR and CDI showed that the risk of cancer and non-cancer effects was highest when exposure route was through ingestion. Furthermore, model projections highlights children as high risk population groups for non-dietary exposure to OCPs. These findings suggests the need for increased monitoring programmes, with a wider scope for both currently used pesticides and legacy/banned pesticides. PMID:26476770

  9. Human and ecological risk assessment of a crop protection chemical: a case study with the azole fungicide epoxiconazole.

    PubMed

    Chambers, Janice E; Greim, Helmut; Kendall, Ronald J; Segner, Helmut; Sharpe, Richard M; Van Der Kraak, Glen

    2014-02-01

    Conventional risk assessments for crop protection chemicals compare the potential for causing toxicity (hazard identification) to anticipated exposure. New regulatory approaches have been proposed that would exclude exposure assessment and just focus on hazard identification based on endocrine disruption. This review comprises a critical analysis of hazard, focusing on the relative sensitivity of endocrine and non-endocrine endpoints, using a class of crop protection chemicals, the azole fungicides. These were selected because they are widely used on important crops (e.g. grains) and thereby can contact target and non-target plants and enter the food chain of humans and wildlife. Inhibition of lanosterol 14α-demethylase (CYP51) mediates the antifungal effect. Inhibition of other CYPs, such as aromatase (CYP19), can lead to numerous toxicological effects, which are also evident from high dose human exposures to therapeutic azoles. Because of its widespread use and substantial database, epoxiconazole was selected as a representative azole fungicide. Our critical analysis concluded that anticipated human exposure to epoxiconazole would yield a margin of safety of at least three orders of magnitude for reproductive effects observed in laboratory rodent studies that are postulated to be endocrine-driven (i.e. fetal resorptions). The most sensitive ecological species is the aquatic plant Lemna (duckweed), for which the margin of safety is less protective than for human health. For humans and wildlife, endocrine disruption is not the most sensitive endpoint. It is concluded that conventional risk assessment, considering anticipated exposure levels, will be protective of both human and ecological health. Although the toxic mechanisms of other azole compounds may be similar, large differences in potency will require a case-by-case risk assessment. PMID:24274332

  10. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment.

    PubMed

    Li, Hai-Ling; Song, Wei-Wei; Zhang, Zi-Feng; Ma, Wan-Li; Gao, Chong-Jing; Li, Jia; Huo, Chun-Yan; Mohammed, Mohammed O A; Liu, Li-Yan; Kannan, Kurunthachalam; Li, Yi-Fan

    2016-09-15

    Phthalates are widely used chemicals in household products, which severely affect human health. However, there were limited studies emphasized on young adults' exposure to phthalates in dormitories. In this study, seven phthalates were extracted from indoor dust that collected in university dormitories in Harbin, Shenyang, and Baoding, in the north of China. Dust samples were also collected in houses in Harbin for comparison. The total concentrations of phthalates in dormitory dust in Harbin and Shenyang samples were significantly higher than those in Baoding samples. The total geometric mean concentration of phthalates in dormitory dust in Harbin was lower than in house dust. Di-(2-ethylhexyl) phthalate (DEHP) was the most abundant phthalate in both dormitory and house dust. The daily intakes of the total phthalates, carcinogenic risk (CR) of DEHP, hazard index (HI) of di-isobutyl phthalate (DiBP), dibutyl phthalate (DBP), and DEHP were estimated, the median values for all students in dormitories were lower than adults who live in the houses. Monte Carlo simulation was applied to predict the human exposure risk of phthalates. HI of DiBP, DBP, and DEHP was predicted according to the reference doses (RfD) provided by the United States Environmental Protection Agency (U.S.EPA) and the reference doses for anti-androgenicity (RfD AA) developed by Kortenkamp and Faust. The results indicated that the risks of some students had exceeded the limitation, however, the measured results were not exceeded the limitation. Risk quotients (RQ) of DEHP were predicted based on China specific No Significant Risk Level (NSRL) and Maximum Allowable Dose Level (MADL). The predicted results of CR and RQ of DEHP suggested that DEHP could pose a health risk through intake of indoor dust. PMID:27186877

  11. Data Mining of Historical Human Data to Assess the Risk of Injury due to Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Wells, Jesica; Somers, Jeffrey T.; Newby, N.; Gernhardt, Michael

    2014-01-01

    The NASA Occupant Protection Group is charged with ensuring crewmembers are protected during all dynamic phases of spaceflight. Previous work with outside experts has led to the development of a definition of acceptable risk (DAR) for space capsule vehicles. The DAR defines allowable probability rates for various categories of injuries. An important question is how to validate these probabilities for a given vehicle. One approach is to impact test human volunteers under projected nominal landing loads. The main drawback is the large number of subject tests required to attain a reasonable level of confidence that the injury probability rates would meet those outlined in the DAR. An alternative is to mine existing databases containing human responses to impact. Testing an anthropomorphic test device (ATD) at the same human-exposure levels could yield a range of ATD responses that would meet DAR. As one aspect of future vehicle validation, the ATD could be tested in the vehicle's seat and suit configuration at nominal landing loads and compared with the ATD responses supported by the human data set. This approach could reduce the number of human-volunteer tests NASA would need to conduct to validate that a vehicle meets occupant protection standards. METHODS: The U.S. Air Force has recorded hundreds of human responses to frontal, lateral, and spinal impacts at many acceleration levels and pulse durations. All of this data are stored on the Collaborative Biomechanics Data Network (CBDN), which is maintained by the Wright Patterson Air Force Base (WPAFB). The test device for human occupant restraint (THOR) ATD was impact tested on WPAFB's horizontal impulse accelerator (HIA) matching human-volunteer exposures on the HIA to 5 frontal and 3 spinal loading conditions. No human injuries occurred as a result of these impact conditions. Peak THOR response variables for neck axial tension and compression, and thoracic-spine axial compression were collected. Maximal chest

  12. Improving pandemic influenza risk assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessing the pandemic risk posed by specific non-human influenza A viruses remains a complex challenge. As influenza virus genome sequencing becomes cheaper, faster and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk asses...

  13. Assessing risks to humans from invasive Burmese pythons in Everglades National Park, Florida, USA

    USGS Publications Warehouse

    Reed, Robert N.; Snow, Ray W.

    2014-01-01

    Invasive Burmese pythons (Python molurus bivittatus) are now established across a large area of southern Florida, USA, including all of Everglades National Park (NP). The presence of these large-bodied snakes in the continental United States has attracted intense media attention, including regular reference to the possibility of these snakes preying on humans. Over the course of a decade (2003–2012), we solicited reports of apparently unprovoked strikes directed at humans in Everglades NP. We summarize the circumstances surrounding each of the 5 reported incidents, which occurred between 2006 and 2012. All strikes were directed toward biologists moving through flooded wetlands; 2 strikes resulted in minor injury and none resulted in constriction. We consider most of these strikes to be cases of “mistaken identity,” in which the python initiated a strike at a potential prey item but aborted its predatory behavior prior to constriction and ingestion. No strikes are known to have been directed at park visitors despite visitation rates averaging over one million per year during this period. We conclude that while risks to humans should not be completely discounted, the relative risk of a human being killed by a python in Everglades NP appears to be extremely low.

  14. Strategic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Derleth, Jason; Lobia, Marcus

    2009-01-01

    This slide presentation provides an overview of the attempt to develop and demonstrate a methodology for the comparative assessment of risks across the entire portfolio of NASA projects and assets. It includes information about strategic risk identification, normalizing strategic risks, calculation of relative risk score, and implementation options.

  15. Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction.

    PubMed

    Shi, Peng; Xiao, Jun; Wang, Yafeng; Chen, Liding

    2014-03-01

    The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management. PMID:24590049

  16. Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction

    PubMed Central

    Shi, Peng; Xiao, Jun; Wang, Yafeng; Chen, Liding

    2014-01-01

    The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management. PMID:24590049

  17. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    SciTech Connect

    Chiu, Weihsueh A.; Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P.

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  18. Risk Assessment Overview

    NASA Technical Reports Server (NTRS)

    Prassinos, Peter G.; Lyver, John W., IV; Bui, Chinh T.

    2011-01-01

    Risk assessment is used in many industries to identify and manage risks. Initially developed for use on aeronautical and nuclear systems, risk assessment has been applied to transportation, chemical, computer, financial, and security systems among others. It is used to gain an understanding of the weaknesses or vulnerabilities in a system so modification can be made to increase operability, efficiency, and safety and to reduce failure and down-time. Risk assessment results are primary inputs to risk-informed decision making; where risk information including uncertainty is used along with other pertinent information to assist management in the decision-making process. Therefore, to be useful, a risk assessment must be directed at specific objectives. As the world embraces the globalization of trade and manufacturing, understanding the associated risk become important to decision making. Applying risk assessment techniques to a global system of development, manufacturing, and transportation can provide insight into how the system can fail, the likelihood of system failure and the consequences of system failure. The risk assessment can identify those elements that contribute most to risk and identify measures to prevent and mitigate failures, disruptions, and damaging outcomes. In addition, risk associated with public and environment impact can be identified. The risk insights gained can be applied to making decisions concerning suitable development and manufacturing locations, supply chains, and transportation strategies. While risk assessment has been mostly applied to mechanical and electrical systems, the concepts and techniques can be applied across other systems and activities. This paper provides a basic overview of the development of a risk assessment.

  19. Challenges for In vitro to in Vivo Extrapolation of Nanomaterial Dosimetry for Human Risk Assessment

    SciTech Connect

    Smith, Jordan N.

    2013-11-01

    The proliferation in types and uses of nanomaterials in consumer products has led to rapid application of conventional in vitro approaches for hazard identification. Unfortunately, assumptions pertaining to experimental design and interpretation for studies with chemicals are not generally appropriate for nanomaterials. The fate of nanomaterials in cell culture media, cellular dose to nanomaterials, cellular dose to nanomaterial byproducts, and intracellular fate of nanomaterials at the target site of toxicity all must be considered in order to accurately extrapolate in vitro results to reliable predictions of human risk.

  20. ECOLOGICAL RISK ASSESSMENT WORKSHOP

    EPA Science Inventory

    As ecological risk assessment evolves, it is moving beyond focus on single species toward addressing multiple species and their interactions, and from assessing effects of simple chemical toxicity to the cumulative impacts of multiple interacting chemical, physical, and biologica...

  1. Diabetic foot risk assessment.

    PubMed

    Woodbury, M Gail

    2016-05-01

    Diabetes is a serious chronic disease that results in foot complications for many people world-wide. In 2014, the World Health Organization estimated the global prevalence of diabetes in adults to be 9%. To ascertain the risk that an individual patient might develop a diabetic foot ulcer that could lead to an amputation, clinicians are strongly encouraged to perform a risk assessment. Monteiro-Soares and Dinis-Ribeiro have presented a new DIAbetic FOot Risk Assessment with the acronym DIAFORA. It is different from other risk assessments in that it predicts the risk of developing both diabetic foot ulcers and amputation specifically. The risk variables were derived by regression analysis based on a data set of 293 patients from a high-risk setting, a Hospital Diabetic Foot Clinic, who had diabetes and a diabetic foot ulcers. Clear descriptions of the risk variables are provided as well as sensitivity, specificity, positive and negative predictive values for the risk categories. As an added benefit, likelihood ratios are provided that will help clinicians determine the risk of amputation for individual patients. Having a risk assessment form is important for clinician use and examples exist. A question is raised about the effectiveness of risk assessment and how effectiveness might be determined. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26825436

  2. Consideration of soil properties in assessment of human health risk from exposure to arsenic-enriched soils.

    PubMed

    Datta, Rupali; Sarkar, Dibyendu

    2005-01-01

    Encroachment of residential development on agricultural lands in the United States where arsenical pesticides were extensively used prior to the 1990s has increased the potential for human exposure to arsenic (As), a group A carcinogen. Soil ingestion by children is a critical issue in assessing health risks from exposure to As-enriched soils. In the absence of a universal "soil model" on As bioavailability, many baseline risk assessment studies use the assumption that all (100%) As present in soil is bioavailable. However, As exists in many geochemical forms as dictated by soil chemical properties. Because As bioavailability is a function of soil speciation, using total soil arsenic values potentially overestimates human health risk, thereby increasing site cleanup expenses. A laboratory incubation study was conducted to estimate in vitro As bioavailability as a function of soil properties in four chemically variant soil types contaminated with sodium arsenite pesticide. Results demonstrate that As speciation in certain soils translates to significant lowering of As bioavailability and hence potential cancer risk. PMID:16637147

  3. Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds

    EPA Science Inventory

    The Risk Assessment Forum (RAF) Human Health TEFs document describes EPA’s updated approach for evaluating the human health risks from exposures to environmental media containing dioxin-like compounds. It recommends the use of consensus TEF values for 2,3,7,8-tetrachlorodibenzo-...

  4. Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment.

    PubMed

    Knaak, James B; Dary, Curtis C; Zhang, Xiaofei; Gerlach, Robert W; Tornero-Velez, R; Chang, Daniel T; Goldsmith, Rocky; Blancato, Jerry N

    2012-01-01

    In this review we have examined the status of parameters required by pyrethroid QSAR-PBPK/PD models for assessing health risks. In lieu of the chemical,biological, biochemical, and toxicological information developed on the pyrethroids since 1968, the finding of suitable parameters for QSAR and PBPK/PD model development was a monumental task. The most useful information obtained came from rat toxicokinetic studies (i.e., absorption, distribution, and excretion), metabolism studies with 14C-cyclopropane- and alcohol-labeled pyrethroids, the use of known chiral isomers in the metabolism studies and their relation to commercial products. In this review we identify the individual chiralisomers that have been used in published studies and the chiral HPLC columns available for separating them. Chiral HPLC columns are necessary for isomer identification and for developing kinetic values (Vm,, and Kin) for pyrethroid hydroxylation. Early investigators synthesized analytical standards for key pyrethroid metabolites, and these were used to confirm the identity of urinary etabolites, by using TLC. These analytical standards no longer exist, and muste resynthesized if further studies on the kinetics of the metabolism of pyrethroids are to be undertaken.In an attempt to circumvent the availability of analytical standards, several CYP450 studies were carried out using the substrate depletion method. This approach does not provide information on the products formed downstream, and may be of limited use in developing human environmental exposure PBPK/PD models that require extensive urinary metabolite data. Hydrolytic standards (i.e., alcohols and acids) were available to investigators who studied the carboxylesterase-catalyzed hydrolysis of several pyrethroid insecticides. The data generated in these studies are suitable for use in developing human exposure PBPK/PD models.Tissue:blood partition coefficients were developed for the parent pyrethroids and their metabolites, by using

  5. Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco.

    PubMed

    Nouri, Mohamed; Haddioui, Abdelmajid

    2016-01-01

    The goal of this paper is to investigate metal pollution in food chain and assess the resulting health risks to native citizens in Ait Ammar village. The results showed that cadmium (Cd), lead (Pb), and copper (Cu) concentrations in animal organs were above the metal concentration safety limit. Nevertheless, soils and plants from mining area were contaminated with iron (Fe), chromium (Cr), zinc (Zn), and Cr, Cu, Zn respectively. Cd concentrations in almost animal organs were higher than the acceptable daily upper limit, suggesting human consumption of this livestock meat and offal may pose a health risk. The estimated intake of Pb and Cd for Ait Ammar population could be a cause of concern because it exceeded the Provisional Tolerable Weekly Intake (PTWI) proposed by Joint Expert Committee on Food Additives (JECFA) in this area. Thus, conducting regular periodic studies to assess the dietary intake of mentioned elements are recommended. PMID:26631396

  6. Cadmium and lead in seafood from the Aratu Bay, Brazil and the human health risk assessment.

    PubMed

    da Araújo, Cecilia Freitas Silva; Lopes, Mariângela Vieira; Vasquez, Mirian Rocha; Porcino, Thiago Santos; Ribeiro, Amanda Santos Vaz; Rodrigues, Juliana Lima Gomes; Oliveira, Sérgio Soares do Prado; Menezes-Filho, José Antonio

    2016-04-01

    This study aimed to evaluate cadmium (Cd) and lead (Pb) levels in seafood and perform a risk assessment based on individual food consumption frequency of inhabitants of the Aratu Bay, Brazil. From December 2013 to November 2014, ready-to-market seafood, including fish [pititinga (Lile piquitinga) and small green eel (Gobionellus oceanicus)], mollusks [mussel (Mytella guyanensis) and oyster (Crassostrea rhizophorae)], and crustaceans [white shrimp (Litopenaeus schmitti) and blue crab (Callinectes exasperatus)], were purchased bimonthly from a local artisanal shellfish harvester. Metal levels were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Based on the volunteer' seafood consumption, estimates of the non-carcinogenic target hazard quotients (THQs) were calculated. The annual concentrations (μg/g, w/w) of Cd were 0.007 (±0.001) in crustaceans, 0.001 (±0.0003) in fish, and 0.446 (±0.034) in mollusks. Lead levels were risk; however, 9.1 % presented THQs between ≥1 and <9.9. These data are important to inform the community of the imminent exposure risk through communication strategies, with the purpose of minimizing exposure and, consequently, the health effects associated with it. PMID:27034241

  7. Bioaccessibility of metals and human health risk assessment in community urban gardens.

    PubMed

    Izquierdo, M; De Miguel, E; Ortega, M F; Mingot, J

    2015-09-01

    Pseudo-total (i.e. aqua regia extractable) and gastric-bioaccessible (i.e. glycine+HCl extractable) concentrations of Ca, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in a total of 48 samples collected from six community urban gardens of different characteristics in the city of Madrid (Spain). Calcium carbonate appears to be the soil property that determines the bioaccessibility of a majority of those elements, and the lack of influence of organic matter, pH and texture can be explained by their low levels in the samples (organic matter) or their narrow range of variation (pH and texture). A conservative risk assessment with bioaccessible concentrations in two scenarios, i.e. adult urban farmers and children playing in urban gardens, revealed acceptable levels of risk, but with large differences between urban gardens depending on their history of land use and their proximity to busy areas in the city center. Only in a worst-case scenario in which children who use urban gardens as recreational areas also eat the produce grown in them would the risk exceed the limits of acceptability. PMID:25966050

  8. Cadmium and lead in seafood from the Aratu Bay, Brazil and the human health risk assessment.

    PubMed

    Silva da Araújo, Cecilia Freitas; Lopes, Mariângela Vieira; Vaz Ribeiro, Mirian Rocha; Porcino, Thiago Santos; Vaz Ribeiro, Amanda Santos; Rodrigues, Juliana Lima Gomes; do Prado Oliveira, Sérgio Soares; Menezes-Filho, José Antonio

    2016-04-01

    This study aimed to evaluate cadmium (Cd) and lead (Pb) levels in seafood and perform a risk assessment based on individual food consumption frequency of inhabitants of the Aratu Bay, Brazil. From December 2013 to November 2014, ready-to-market seafood, including fish [pititinga (Lile piquitinga) and small green eel (Gobionellus oceanicus)], mollusks [mussel (Mytella guyanensis) and oyster (Crassostrea rhizophorae)], and crustaceans [white shrimp (Litopenaeus schmitti) and blue crab (Callinectes exasperatus)], were purchased bimonthly from a local artisanal shellfish harvester. Metal levels were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Based on the volunteer’ seafood consumption, estimates of the non-carcinogenic target hazard quotients (THQs) were calculated. The annual concentrations (μg/g, w/w) of Cd were 0.007 (±0.001) in crustaceans, 0.001 (±0.0003) in fish, and 0.446 (±0.034) in mollusks. Lead levels were risk; however, 9.1 % presented THQs between ≥1 and <9.9. These data are important to inform the community of the imminent exposure risk through communication strategies, with the purpose of minimizing exposure and, consequently, the health effects associated with it. PMID:27359001

  9. Improving pandemic influenza risk assessment

    PubMed Central

    Russell, Colin A; Kasson, Peter M; Donis, Ruben O; Riley, Steven; Dunbar, John; Rambaut, Andrew; Asher, Jason; Burke, Stephen; Davis, C Todd; Garten, Rebecca J; Gnanakaran, Sandrasegaram; Hay, Simon I; Herfst, Sander; Lewis, Nicola S; Lloyd-Smith, James O; Macken, Catherine A; Maurer-Stroh, Sebastian; Neuhaus, Elizabeth; Parrish, Colin R; Pepin, Kim M; Shepard, Samuel S; Smith, David L; Suarez, David L; Trock, Susan C; Widdowson, Marc-Alain; George, Dylan B; Lipsitch, Marc; Bloom, Jesse D

    2014-01-01

    Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response. DOI: http://dx.doi.org/10.7554/eLife.03883.001 PMID:25321142

  10. Improving pandemic influenza risk assessment.

    PubMed

    Russell, Colin A; Kasson, Peter M; Donis, Ruben O; Riley, Steven; Dunbar, John; Rambaut, Andrew; Asher, Jason; Burke, Stephen; Davis, C Todd; Garten, Rebecca J; Gnanakaran, Sandrasegaram; Hay, Simon I; Herfst, Sander; Lewis, Nicola S; Lloyd-Smith, James O; Macken, Catherine A; Maurer-Stroh, Sebastian; Neuhaus, Elizabeth; Parrish, Colin R; Pepin, Kim M; Shepard, Samuel S; Smith, David L; Suarez, David L; Trock, Susan C; Widdowson, Marc-Alain; George, Dylan B; Lipsitch, Marc; Bloom, Jesse D

    2014-01-01

    Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response. PMID:25321142

  11. Cancer Risk Assessment Primer.

    ERIC Educational Resources Information Center

    Aidala, Jim

    1985-01-01

    Describes the scientific basis of cancer risk assessment, outlining the dominant controversies surrounding the use of different methods for identifying carcinogens (short-term tests, animal bioassays, and epidemiological studies). Points out that risk assessment is as much an art as it is a science. (DH)

  12. Metal uptake by homegrown vegetables – The relative importance in human health risk assessments at contaminated sites

    SciTech Connect

    Augustsson, Anna L.M.; Uddh-Söderberg, Terese E.; Hogmalm, K. Johan; Filipsson, Monika E.M.

    2015-04-15

    Risk assessments of contaminated land often involve the use of generic bioconcentration factors (BCFs), which express contaminant concentrations in edible plant parts as a function of the concentration in soil, in order to assess the risks associated with consumption of homegrown vegetables. This study aimed to quantify variability in BCFs and evaluate the implications of this variability for human exposure assessments, focusing on cadmium (Cd) and lead (Pb) in lettuce and potatoes sampled around 22 contaminated glassworks sites. In addition, risks associated with measured Cd and Pb concentrations in soil and vegetable samples were characterized and a probabilistic exposure assessment was conducted to estimate the likelihood of local residents exceeding tolerable daily intakes. The results show that concentrations in vegetables were only moderately elevated despite high concentrations in soil, and most samples complied with applicable foodstuff legislation. Still, the daily intake of Cd (but not Pb) was assessed to exceed toxicological thresholds for about a fifth of the study population. Bioconcentration factors were found to vary more than indicated by previous studies, but decreasing BCFs with increasing metal concentrations in the soil can explain why the calculated exposure is only moderately affected by the choice of BCF value when generic soil guideline values are exceeded and the risk may be unacceptable. - Highlights: • Uptake of Cd and Pb by lettuce and potatoes increased with soil contamination. • Consumption of homegrown vegetables may lead to a daily Cd intake above TDIs. • The variability in the calculated BCFs is high when compared to previous studies. • Exposure assessments are most sensitive to the choice of BCFs at low contamination.

  13. Fukushima nuclear accident: preliminary assessment of the risks to non-human biota.

    PubMed

    Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi; Garba, Nuraddeen Nasiru; Saleh, Muneer Aziz; Gabdo, Hamman Tukur; Liman, Muhammad Sanusi

    2015-02-01

    This study assesses the 'radio-ecological' impacts of Fukushima nuclear accident on non-human biota using the ERICA Tool, which adopts an internationally verified methodology. The paper estimates the impacts of the accident on terrestrial and marine biota based on the environmental data reported in literature for Japan, China, South Korea and the USA. Discernible impacts have been detected in the marine biota around Fukushima Daiichi nuclear power plant. This study confirms that the Fukushima accident had caused heavier damage to marine bionts compared with terrestrial flora and fauna, in Japan. PMID:24827576

  14. Computer Security Risk Assessment

    Energy Science and Technology Software Center (ESTSC)

    1992-02-11

    LAVA/CS (LAVA for Computer Security) is an application of the Los Alamos Vulnerability Assessment (LAVA) methodology specific to computer and information security. The software serves as a generic tool for identifying vulnerabilities in computer and information security safeguards systems. Although it does not perform a full risk assessment, the results from its analysis may provide valuable insights into security problems. LAVA/CS assumes that the system is exposed to both natural and environmental hazards and tomore » deliberate malevolent actions by either insiders or outsiders. The user in the process of answering the LAVA/CS questionnaire identifies missing safeguards in 34 areas ranging from password management to personnel security and internal audit practices. Specific safeguards protecting a generic set of assets (or targets) from a generic set of threats (or adversaries) are considered. There are four generic assets: the facility, the organization''s environment; the hardware, all computer-related hardware; the software, the information in machine-readable form stored both on-line or on transportable media; and the documents and displays, the information in human-readable form stored as hard-copy materials (manuals, reports, listings in full-size or microform), film, and screen displays. Two generic threats are considered: natural and environmental hazards, storms, fires, power abnormalities, water and accidental maintenance damage; and on-site human threats, both intentional and accidental acts attributable to a perpetrator on the facility''s premises.« less

  15. ECO 201: Overview of Ecological Risk Assessment

    EPA Science Inventory

    The objectives of this course is to provide participants with knowledge about the fundamentals of ecological risk assessment. A brief history of how ecological risk assessment has evolved over time and how it is both similar to and different from human health risk assessment wil...

  16. Hazardous waste transportation risk assessment for the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement -- human health endpoints

    SciTech Connect

    Hartmann, H.M.; Policastro, A.J.; Lazaro, M.A.

    1994-03-01

    In this presentation, a quantitative methodology for assessing the risk associated with the transportation of hazardous waste (HW) is proposed. The focus is on identifying air concentrations of HW that correspond to specific human health endpoints.

  17. Quantitative risk assessment of human salmonellosis and listeriosis related to the consumption of raw milk in Italy.

    PubMed

    Giacometti, Federica; Bonilauri, Paolo; Albonetti, Sabrina; Amatiste, Simonetta; Arrigoni, Norma; Bianchi, Manila; Bertasi, Barbara; Bilei, Stefano; Bolzoni, Giuseppe; Cascone, Giuseppe; Comin, Damiano; Daminelli, Paolo; Decastelli, Lucia; Merialdi, Giuseppe; Mioni, Renzo; Peli, Angelo; Petruzzelli, Annalisa; Tonucci, Franco; Bonerba, Elisabetta; Serraino, Andrea

    2015-01-01

    Two quantitative risk assessment (RA) models were developed to describe the risk of salmonellosis and listeriosis linked to consumption of raw milk sold in vending machines in Italy. Exposure assessment considered the official microbiological records monitoring raw milk samples from vending machines performed by the regional veterinary authorities from 2008 to 2011, microbial growth during storage, destruction experiments, consumption frequency of raw milk, serving size, and consumption preference. Two separate RA models were developed: one for the consumption of boiled milk and the other for the consumption of raw milk. The RA models predicted no human listeriosis cases per year either in the best or worst storage conditions and with or without boiling raw milk, whereas the annual estimated cases of salmonellosis depend on the dose-response relationships used in the model, the milk storage conditions, and consumer behavior in relation to boiling raw milk or not. For example, the estimated salmonellosis cases ranged from no expected cases, assuming that the entire population boiled milk before consumption, to a maximum of 980,128 cases, assuming that the entire population drank raw milk without boiling, in the worst milk storage conditions, and with the lowest dose-response model. The findings of this study clearly show how consumer behavior could affect the probability and number of salmonellosis cases and in general, the risk of illness. Hence, the proposed RA models emphasize yet again that boiling milk before drinking is a simple yet effective tool to protect consumers against the risk of illness inherent in the consumption of raw milk. The models may also offer risk managers a useful tool to identify or implement appropriate measures to control the risk of acquiring foodborne pathogens. Quantification of the risks associated with raw milk consumption is necessary from a public health perspective. PMID:25581173

  18. Use of biological markers and pharmacokinetics in human health risk assessment.

    PubMed Central

    Hattis, D

    1991-01-01

    There are two reasons to connect discussions of biological markers and pharmacokinetics. First, both tend to open up the black box between exposure and effect. Doing this promises more complete scientific understanding than simple input-output analysis, the possibility of better mechanism-based projection of risk beyond the range of possible direct observations, and the possibility of greater sensitivity of analysis, in some cases going from the organism to the cell as the unit of analysis. Second, pharmacokinetic (or similar pharmacodynamic) analysis will often be essential for appropriate interpretation of biological marker information. One needs some sort of dynamic model of the generation and loss of the marker in relation to exposure in order to use a biological marker, either to form a better measure of dosage (either accumulated past dose, or biologically relevant dose), or to make an improved prediction of effect. (For example, the use of a blood cadmium level alone to predict kidney effects might be inferior to predictions based on aggregate past accumulation of cadmium in the kidney, based on the past history of cadmium blood levels x time). Several examples will be discussed of the use of biomarkers and pharmacokinetics in risk assessments for both carcinogenesis and other effects. PMID:2050066

  19. Man-made mineral fibers (MMMF): Human exposures and health risk assessment

    SciTech Connect

    Lippmann, M. )

    1990-01-01

    Man-made mineral fibers (MMMF) are made by spraying or extruding molten glass, furnace slag, or mineral rock. Health concerns are based on the morphological and toxicological similarities between MMF and asbestos, and the well-documented evidence that asbestos fibers can cause lung fibrosis (asbestosis), bronchial cancer, and mesothelioma in humans. Epidemiological evidence for human disease from inhalation exposures to fibrous glass is largely negative. Some positive associations have been reported from slag and rockwools. Most of the toxicological evidence for MMMF toxicity in laboratory animals is based on nonphysiological exposures such as intratracheal instillation or intraperitoneal injection of fiber suspensions. The risks for lung fibrosis, lung cancer, and mesothelioma for industrial exposures to most fibrous glass products are either low or negligible for a variety of reasons. First, most commercial fibrous glass products have mean fiber diameters of {approximately} 7.5 {mu}m, which results in mean aerodynamic diameters > 22 {mu}m. Thus, most glass fibers, even if dispersed into the air, do not penetrate into the lung to any great extent. Second, the small fraction of smaller diameter fibers which do penetrate into the lungs are not persistent within the lungs for most fibrous glass products, due to mechanical breakage into shorter lengths and dissolution. Dissolution is most rapid for the smaller diameters capable of producing mesothelioma. The greater hazards for slag and rockwools, in comparison to conventional fibrous glass, appear to be related to their smaller diameters and greater durability within the lungs.

  20. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans.

    PubMed

    Dorne, J L C M; Renwick, A G

    2005-07-01

    The derivation of safe levels of exposure in humans for compounds that are assumed to cause threshold toxicity has relied on the application of a 100-fold uncertainty factor to a measure for the threshold, such as the no observed adverse effect level (NOAEL) or the benchmark dose (BMD). This 100-fold safety factor consists of the product of two 10-fold factors allowing for human variability and interspecies differences. The International Programme on Chemical Safety has suggested the subdivision of these 10-fold factors to allow for variability in toxicokinetics and toxicodynamics. This subdivision allows the replacement of the default uncertainty factors with a chemical-specific adjustment factor (CSAF) when suitable data are available. This short review describes potential options to refine safety factors used in risk assessment, with particular emphasis on pathway-related uncertainty factors associated with variability in kinetics. These pathway-related factors were derived from a database that quantified interspecies differences and human variability in phase I metabolism, phase II metabolism, and renal excretion. This approach allows metabolism and pharmacokinetic data in healthy adults and subgroups of the population to be incorporated in the risk-assessment process and constitutes an intermediate approach between simple default factors and chemical-specific adjustment factors. PMID:15800035

  1. Myeloid leukemia risk assessment and dynamics of the granulocytopoietic system in acutely and continuously irradiated humans: modeling approach.

    PubMed

    Smirnova, O A

    2015-05-01

    A dynamic modeling approach to the risk assessment of radiogenic myeloid leukemia is proposed. A basic tool of this approach is a biologically motivated mathematical model of the granulocytopoietic system, which is capable of predicting the dynamics of blood granulocytes and bone marrow granulocytopoietic cells in acutely and chronically irradiated humans. The performed modeling studies revealed that the dose dependence of the scaled maximal concentration of bone marrow granulocytopoietic cells with radiation-induced changes, which make a cell premalignant, and the dose dependence of the scaled integral of the concentration of these cells over the period of the response of the granulocytopoietic system to acute irradiation conform to the dose dependence of excess relative risk for myeloid leukemia among atomic bomb survivors in a wide range of doses and in a range of comparatively low doses, respectively. Additionally, the dose dependence of the scaled integral of the concentration of these cells over the period of the response of the granulocytopoietic system to continuous irradiation with the dose rate and durations, which were used in brachytherapy, conforms to the dose dependence of excess relative risk for leukemia among the respective groups of exposed patients. These modeling findings demonstrate the potential to use the proposed modeling approach for predicting the excess relative risk for myeloid leukemia among humans exposed to various radiation regimes. Obviously, this is especially important in the assessment of the risks for radiogenic myeloid leukemia among people residing in contaminated areas after an accident or explosion of a radiological device, among astronauts on long-term space missions, as well as among patients treated with radiotherapy. PMID:25811147

  2. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report.

    PubMed

    2000-01-01

    On 23-24 March 1998, the International Life Sciences Institute (ILSI) Risk Science Institute convened a workshop entitled "Relevance of the Rat Lung Response to Particle Overload for Human Risk Assessment." The workshop addressed the numerous study reports of lung tumors in rats resulting from chronic inhalation exposures to poorly soluble, nonfibrous particles of low acute toxicity and not directly genotoxic. These poorly soluble particles, indicated by the acronym PSPs (e.g., carbon black, coal dust, diesel soot, nonasbestiform talc, and titanium dioxide), elicit tumors in rats when deposition overwhelms the clearance mechanisms of the lung resulting in a condition referred to as "overload." These PSPs have been shown not to induce tumors in mice and hamsters, and the available data in humans are consistently negative. The objectives were twofold: (1) to provide guidance for risk assessment on the interpretation of neoplastic and nonneoplastic responses of the rat lung to PSPs; and (2) to identify important data gaps in our understanding of the lung responses of rats and other species to PSPs. Utilizing the five critical reviews of relevant literature that follow herein and the combined expertise and experience of the 30 workshop participants, a number of questions were addressed. The consensus views of the workshop participants are presented in this report. Because it is still not known with certainty whether high lung burdens of PSPs can lead to lung cancer in humans via mechanisms similar to those of the rat, in the absence of mechanistic data to the contrary it must be assumed that the rat model can identify potential carcinogenic hazards to humans. Since the apparent responsiveness of the rat model at overload is dependent on coexistent chronic active inflammation and cell proliferation, at lower lung doses where chronic active inflammation and cell proliferation are not present, no lung cancer hazard is anticipated. PMID:10715616

  3. Use of human in vitro skin models for accurate and ethical risk assessment: metabolic considerations.

    PubMed

    Hewitt, Nicola J; Edwards, Robert J; Fritsche, Ellen; Goebel, Carsten; Aeby, Pierre; Scheel, Julia; Reisinger, Kerstin; Ouédraogo, Gladys; Duche, Daniel; Eilstein, Joan; Latil, Alain; Kenny, Julia; Moore, Claire; Kuehnl, Jochen; Barroso, Joao; Fautz, Rolf; Pfuhler, Stefan

    2013-06-01

    Several human skin models employing primary cells and immortalized cell lines used as monocultures or combined to produce reconstituted 3D skin constructs have been developed. Furthermore, these models have been included in European genotoxicity and sensitization/irritation assay validation projects. In order to help interpret data, Cosmetics Europe (formerly COLIPA) facilitated research projects that measured a variety of defined phase I and II enzyme activities and created a complete proteomic profile of xenobiotic metabolizing enzymes (XMEs) in native human skin and compared them with data obtained from a number of in vitro models of human skin. Here, we have summarized our findings on the current knowledge of the metabolic capacity of native human skin and in vitro models and made an overall assessment of the metabolic capacity from gene expression, proteomic expression, and substrate metabolism data. The known low expression and function of phase I enzymes in native whole skin were reflected in the in vitro models. Some XMEs in whole skin were not detected in in vitro models and vice versa, and some major hepatic XMEs such as cytochrome P450-monooxygenases were absent or measured only at very low levels in the skin. Conversely, despite varying mRNA and protein levels of phase II enzymes, functional activity of glutathione S-transferases, N-acetyltransferase 1, and UDP-glucuronosyltransferases were all readily measurable in whole skin and in vitro skin models at activity levels similar to those measured in the liver. These projects have enabled a better understanding of the contribution of XMEs to toxicity endpoints. PMID:23539547

  4. Landslide risk assessment

    USGS Publications Warehouse

    Lessing, P.; Messina, C.P.; Fonner, R.F.

    1983-01-01

    Landslide risk can be assessed by evaluating geological conditions associated with past events. A sample of 2,4 16 slides from urban areas in West Virginia, each with 12 associated geological factors, has been analyzed using SAS computer methods. In addition, selected data have been normalized to account for areal distribution of rock formations, soil series, and slope percents. Final calculations yield landslide risk assessments of 1.50=high risk. The simplicity of the method provides for a rapid, initial assessment prior to financial investment. However, it does not replace on-site investigations, nor excuse poor construction. ?? 1983 Springer-Verlag New York Inc.

  5. The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans.

    PubMed

    Blaauboer, Bas J; Boekelheide, Kim; Clewell, Harvey J; Daneshian, Mardas; Dingemans, Milou M L; Goldberg, Alan M; Heneweer, Marjoke; Jaworska, Joanna; Kramer, Nynke I; Leist, Marcel; Seibert, Hasso; Testai, Emanuela; Vandebriel, Rob J; Yager, James D; Zurlo, Joanne

    2012-01-01

    The role that in vitro systems can play in toxicological risk assessment is determined by the appropriateness of the chosen methods, with respect to the way in which in vitro data can be extrapolated to the in vivo situation. This report presents the results of a workshop aimed at better defining the use of in vitro-derived biomarkers of toxicity (BoT) and determining the place these data can have in human risk assessment. As a result, a conceptual framework is presented for the incorporation of in vitro-derived toxicity data into the risk assessment process. The selection of BoT takes into account that they need to distinguish adverse and adaptive changes in cells. The framework defines the place of in vitro systems in the context of data on exposure, structural and physico-chemical properties, and toxicodynamic and biokinetic modeling. It outlines the determination of a proper point-of-departure (PoD) for in vitro-in vivo extrapolation, allowing implementation in risk assessment procedures. A BoT will need to take into account both the dynamics and the kinetics of the compound in the in vitro systems. For the implementation of the proposed framework it will be necessary to collect and collate data from existing literature and new in vitro test systems, as well as to categorize biomarkers of toxicity and their relation to pathways-of-toxicity. Moreover, data selection and integration need to be driven by their usefulness in a quantitative in vitro-in vivo extrapolation (QIVIVE). PMID:23138511

  6. Public Risk Assessment Program

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin

    2010-01-01

    The Public Entry Risk Assessment (PERA) program addresses risk to the public from shuttle or other spacecraft re-entry trajectories. Managing public risk to acceptable levels is a major component of safe spacecraft operation. PERA is given scenario inputs of vehicle trajectory, probability of failure along that trajectory, the resulting debris characteristics, and field size and distribution, and returns risk metrics that quantify the individual and collective risk posed by that scenario. Due to the large volume of data required to perform such a risk analysis, PERA was designed to streamline the analysis process by using innovative mathematical analysis of the risk assessment equations. Real-time analysis in the event of a shuttle contingency operation, such as damage to the Orbiter, is possible because PERA allows for a change to the probability of failure models, therefore providing a much quicker estimation of public risk. PERA also provides the ability to generate movie files showing how the entry risk changes as the entry develops. PERA was designed to streamline the computation of the enormous amounts of data needed for this type of risk assessment by using an average distribution of debris on the ground, rather than pinpointing the impact point of every piece of debris. This has reduced the amount of computational time significantly without reducing the accuracy of the results. PERA was written in MATLAB; a compiled version can run from a DOS or UNIX prompt.

  7. GAR Global Risk Assessment

    NASA Astrophysics Data System (ADS)

    Maskrey, Andrew; Safaie, Sahar

    2015-04-01

    Disaster risk management strategies, policies and actions need to be based on evidence of current disaster loss and risk patterns, past trends and future projections, and underlying risk factors. Faced with competing demands for resources, at any level it is only possible to priorities a range of disaster risk management strategies and investments with adequate understanding of realised losses, current and future risk levels and impacts on economic growth and social wellbeing as well as cost and impact of the strategy. The mapping and understanding of the global risk landscape has been greatly enhanced by the latest iteration of the GAR Global Risk Assessment and the objective of this submission is to present the GAR global risk assessment which contributed to Global Assessment Report (GAR) 2015. This initiative which has been led by UNISDR, was conducted by a consortium of technical institutions from around the world and has covered earthquake, cyclone, riverine flood, and tsunami probabilistic risk for all countries of the world. In addition, the risks associated with volcanic ash in the Asia-Pacific region, drought in various countries in sub-Saharan Africa and climate change in a number of countries have been calculated. The presentation will share thee results as well as the experience including the challenges faced in technical elements as well as the process and recommendations for the future of such endeavour.

  8. Schedule Risk Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Grego

    2004-01-01

    Schedule Risk Assessment (SRA) determines the probability of finishing on or before a given point in time. This viewgraph presentation introduces the prerequisites, probability distribution curves, special conditions, calculations, and results analysis for SRA.

  9. An exploration of spatial human health risk assessment of soil toxic metals under different land uses using sequential indicator simulation.

    PubMed

    Huang, Jin-Hui; Liu, Wen-Chu; Zeng, Guang-Ming; Li, Fei; Huang, Xiao-Long; Gu, Yan-Ling; Shi, Li-Xiu; Shi, Ya-Hui; Wan, Jia

    2016-07-01

    A modified method was proposed which integrates the spatial patterns of toxic metals simulated by sequential indicator simulation, different exposure models and local current land uses extracted by remote-sensing software into a dose-response model for human health risk assessment of toxic metals. A total of 156 soil samples with a various land uses containing farm land (F1-F25), forest land (W1-W12) and residential land (U1-U15) were collected in a grid pattern throughout Xiandao District (XDD), Hunan Province, China. The total Cr and Pb in topsoil were analyzed. Compared with Hunan soil background values, the elevated concentrations of Cr were mainly located in the east of XDD, and the elevated concentrations of Pb were scattered in the areas around F1, F6, F8, F13, F14, U5, U14, W2 and W11. For non-carcinogenic effects, the hazard index (HI) of Cr and Pb overall the XDD did not exceed the accepted level to adults. While to children, Cr and Pb exhibited HI higher than the accepted level around some areas. The assessment results indicated Cr and Pb should be regarded as the priority pollutants of concern in XDD. The first priority areas of concern were identified in region A with a high probability (>0.95) of risk in excess of the accepted level for Cr and Pb. The areas with probability of risk between 0.85 and 0.95 in region A were identified to be the secondary priority areas for Cr and Pb. The modified method was proved useful due to its improvement on previous studies and calculating a more realistic human health risk, thus reducing the probability of excessive environmental management. PMID:27045920

  10. Schedule Risk Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Greg

    2003-01-01

    Schedule Risk Assessment needs to determine the probability of finishing on or before a given point in time. Task in a schedule should reflect the "most likely" duration for each task. IN reality, each task is different and has a varying degree of probability of finishing within or after the duration specified. Schedule risk assessment attempt to quantify these probabilities by assigning values to each task. Bridges the gap between CPM scheduling and the project's need to know the likelihood of "when".

  11. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets.

    PubMed

    Greatorex, Zoe F; Olson, Sarah H; Singhalath, Sinpakone; Silithammavong, Soubanh; Khammavong, Kongsy; Fine, Amanda E; Weisman, Wendy; Douangngeun, Bounlom; Theppangna, Watthana; Keatts, Lucy; Gilbert, Martin; Karesh, William B; Hansel, Troy; Zimicki, Susan; O'Rourke, Kathleen; Joly, Damien O; Mazet, Jonna A K

    2016-01-01

    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity. PMID:27008628

  12. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets

    PubMed Central

    Singhalath, Sinpakone; Silithammavong, Soubanh; Khammavong, Kongsy; Fine, Amanda E.; Weisman, Wendy; Douangngeun, Bounlom; Theppangna, Watthana; Keatts, Lucy; Gilbert, Martin; Karesh, William B.; Hansel, Troy; Zimicki, Susan; O’Rourke, Kathleen; Joly, Damien O.; Mazet, Jonna A. K.

    2016-01-01

    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity. PMID:27008628

  13. Acceptability of human risk.

    PubMed Central

    Kasperson, R E

    1983-01-01

    This paper has three objectives: to explore the nature of the problem implicit in the term "risk acceptability," to examine the possible contributions of scientific information to risk standard-setting, and to argue that societal response is best guided by considerations of process rather than formal methods of analysis. Most technological risks are not accepted but are imposed. There is also little reason to expect consensus among individuals on their tolerance of risk. Moreover, debates about risk levels are often at base debates over the adequacy of the institutions which manage the risks. Scientific information can contribute three broad types of analyses to risk-setting deliberations: contextual analysis, equity assessment, and public preference analysis. More effective risk-setting decisions will involve attention to the process used, particularly in regard to the requirements of procedural justice and democratic responsibility. PMID:6418541

  14. Anthropic Risk Assessment on Biodiversity

    NASA Astrophysics Data System (ADS)

    Piragnolo, M.; Pirotti, F.; Vettore, A.; Salogni, G.

    2013-01-01

    This paper presents a methodology for risk assessment of anthropic activities on habitats and species. The method has been developed for Veneto Region, in order to simplify and improve the quality of EIA procedure (VINCA). Habitats and species, animals and plants, are protected by European Directive 92/43/EEC and 2009/147/EC but they are subject at hazard due to pollution produced by human activities. Biodiversity risks may conduct to deterioration and disturbance in ecological niches, with consequence of loss of biodiversity. Ecological risk assessment applied on Natura 2000 network, is needed to best practice of management and monitoring of environment and natural resources. Threats, pressure and activities, stress and indicators may be managed by geodatabase and analysed using GIS technology. The method used is the classic risk assessment in ecological context, and it defines the natural hazard as influence, element of risk as interference and vulnerability. Also it defines a new parameter called pressure. It uses risk matrix for the risk analysis on spatial and temporal scale. The methodology is qualitative and applies the precautionary principle in environmental assessment. The final product is a matrix which excludes the risk and could find application in the development of a territorial information system.

  15. Toxicologic Pathology Analysis for Translational Neuroscience: Improving Human Risk Assessment Using Optimized Animal Data.

    PubMed

    Sharma, Alok K; Morrison, James P; Rao, Deepa B; Pardo, Ingrid D; Garman, Robert H; Bolon, Brad

    2016-07-01

    A half-day American College of Toxicology continuing education course presented key issues often confronted by translational neuroscientists when predicting human risk from animal-derived toxicologic pathology data. Two talks correlated discrete structures with major functions in brains of rodents and nonrodents. The third lecture provided practical advice to obtain highly homologous rodent brain sections for quantitative morphometry in developmental neurotoxicity testing. The last presentation discussed demographic influences (eg, species, strain, sex, age), physiological attributes (eg, body composition, brain vascularity, pharmacokinetic/pharmacodynamic patterns, etc), and husbandry parameters (eg, group housing) recognized to impact the actions of neuroactive chemicals. Speakers described common cases of real-world challenges to animal data interpretation encountered when designing studies or extrapolating biological responses across species. The efficiency of translational neuroscience efforts will likely be enhanced as new methods (eg, high-resolution non-invasive imaging) improve our capability to cross-connect subtle anatomic and/or biochemical lesions with functional changes over time. PMID:27012643

  16. Estimating exposure and dose to characterize health risks: the role of human tissue monitoring in exposure assessment.

    PubMed Central

    Sexton, K; Callahan, M A; Bryan, E F

    1995-01-01

    Exposure assessment is an integral part of health risk characterization. Exposure assessments typically address three critical aspects of exposure: the number of people exposed to the environmental toxicant, at specific concentrations, for the time period of interest; the resulting dose; and the relative contribution of important sources and pathways to exposure/dose. Because historically both "point-of-contact" measurements and information about dose and related pharmacokinetic processes have been lacking, exposure assessments have had to rely on construction of "scenarios" to estimate exposure and dose. This could change, however, as advances in development of biologic markers of exposure and dose make it possible to measure and interpret toxicant concentrations in accessible human tissues. The increasing availability of "biomarkers," coupled with improvements in pharmacokinetic understanding, present opportunities to estimate ("reconstruct") exposure from measurements of dose and knowledge of intake and uptake parameters. Human tissue monitoring, however, is not a substitute for more traditional methods of measuring exposure, but rather a complementary approach. A combination of exposure measurements and dose measurements provides the most credible scientific basis for exposure assessment. PMID:7635107

  17. Topics in cancer risk assessment.

    PubMed Central

    Olin, S S; Neumann, D A; Foran, J A; Scarano, G J

    1997-01-01

    The estimation of carcinogenic risks from exposure to chemicals has become an integral part of the regulatory process in the United States within the past decade. With it have come considerable controversy and debate over the scientific merits and shortcomings of the methods and their impact on risk management decisions. In this paper we highlight selected topics of current interest in the debate. As an indication of the level of public concern, we note the major recent reports on risk assessment from the National Academy of Sciences and the U.S Environmental Protection Agency's proposed substantial revisions to its Guidelines for Carcinogen Risk Assessment. We identify and briefly frame several key scientific issues in cancer risk assessment, including the growing recognition of the importance of understanding the mode of action of carcinogenesis in experimental animals and in humans, the methodologies and challenges in quantitative extrapolation of cancer risks, and the question of how to assess and account for human variability in susceptibility to carcinogens. In addition, we discuss initiatives in progress that may fundamentally alter the carcinogenesis testing paradigm. PMID:9114281

  18. Bioaccumulation of heavy metals in oysters from the southern coast of Korea: assessment of potential risk to human health.

    PubMed

    Mok, Jong Soo; Yoo, Hyun Duk; Kim, Poong Ho; Yoon, Ho Dong; Park, Young Cheol; Lee, Tae Seek; Kwon, Ji Young; Son, Kwang Tae; Lee, Hee Jung; Ha, Kwang Soo; Shim, Kil Bo; Kim, Ji Hoe

    2015-06-01

    From 2009 to 2013, 80 oyster and 16 seawater samples were collected from the southern coast of Korea, including designated shellfish growing areas for export. The concentrations and bioaccumulation of heavy metals were determined, and a potential risk assessment was conducted to evaluate their hazards towards human consumption. The cadmium (Cd) concentration in oysters was the highest of three hazardous metals, including Cd, lead (Pb), and mercury (Hg), however, below the standards set by various countries. The metal bioaccumulation ratio in oysters was relatively high for zinc and Cd but low for Hg, Pb, arsenic, and chromium. The estimated dietary intakes of all heavy metals for oysters accounted for 0.02%-17.75% of provisional tolerable daily intake. The hazard index for all samples was far <1.0, which indicates that the oysters do not pose an appreciable hazard to humans for the metal pollutants of study. PMID:25863478

  19. Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review.

    PubMed

    Dorne, J L C M; Walton, K; Renwick, A G

    2005-02-01

    This review provides an account of recent developments arising from a database that defined human variability in phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferases, glucuronidation, glycine conjugation, sulphation) and renal excretion. This database was used to derive pathway-related uncertainty factors for chemical risk assessment that allow for human variability in toxicokinetics. Probe substrates for each pathway of elimination were selected on the basis that oral absorption was >95% and that the metabolic route was the primary route of elimination of the compound (60-100% of a dose). Intravenous data were used for compounds for which absorption was variable. Human variability in kinetics was quantified for each compound from published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and other subgroups of the population using parameters relating to chronic exposure (metabolic and total clearances, area under the plasma concentration-time curve (AUC)) and acute exposure (Cmax) (data not presented here). The pathway-related uncertainty factors were calculated to cover 95%, 97.5% and 99% of the population of healthy adults and of each subgroup. Pathway-related uncertainty factors allow metabolism data to be incorporated into the derivation of health-based guidance values. They constitute an intermediate approach between the general kinetic default factors (3.16) and a chemical-specific adjustment factor. Applications of pathway-related uncertainty factors for chemical risk assessment and future refinements of the approach are discussed. A knowledge-based framework to predict human variability in kinetics for xenobiotics showing a threshold dose below which toxic effects are not observed, is proposed to move away from default assumptions. PMID:15621332

  20. Assessing habitat risk from human activities to inform coastal and marine spatial planning: a demonstration in Belize

    NASA Astrophysics Data System (ADS)

    Arkema, Katie K.; Verutes, Gregory; Bernhardt, Joanna R.; Clarke, Chantalle; Rosado, Samir; Canto, Maritza; Wood, Spencer A.; Ruckelshaus, Mary; Rosenthal, Amy; McField, Melanie; de Zegher, Joann

    2014-11-01

    Integrated coastal and ocean management requires transparent and accessible approaches for understanding the influence of human activities on marine environments. Here we introduce a model for assessing the combined risk to habitats from multiple ocean uses. We apply the model to coral reefs, mangrove forests and seagrass beds in Belize to inform the design of the country’s first Integrated Coastal Zone Management (ICZM) Plan. Based on extensive stakeholder engagement, review of existing legislation and data collected from diverse sources, we map the current distribution of coastal and ocean activities and develop three scenarios for zoning these activities in the future. We then estimate ecosystem risk under the current and three future scenarios. Current levels of risk vary spatially among the nine coastal planning regions in Belize. Empirical tests of the model are strong—three-quarters of the measured data for coral reef health lie within the 95% confidence interval of interpolated model data and 79% of the predicted mangrove occurrences are associated with observed responses. The future scenario that harmonizes conservation and development goals results in a 20% reduction in the area of high-risk habitat compared to the current scenario, while increasing the extent of several ocean uses. Our results are a component of the ICZM Plan for Belize that will undergo review by the national legislature in 2015. This application of our model to marine spatial planning in Belize illustrates an approach that can be used broadly by coastal and ocean planners to assess risk to habitats under current and future management scenarios.

  1. Dietary exposure and human risk assessment of phthalate esters based on total diet study in Cambodia.

    PubMed

    Cheng, Zhang; Li, Han-Han; Wang, Hong-Sheng; Zhu, Xue-Mei; Sthiannopkao, Suthipong; Kim, Kyoung-Woong; Yasin, Mohamed Salleh Mohamed; Hashim, Jamal Hisham; Wong, Ming-Hung

    2016-10-01

    Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of human to phthalates are limited. In this study, to assess the daily intakes of phthalate esters and the possible adverse health impacts, different food samples were collected from three areas of Cambodia, one of the poorest countries in the world. The ∑phthalate ester concentrations in Kampong Cham, Kratie and Kandal provinces ranged from 0.05 to 2.34 (median 0.88) μgg(-1), 0.19-1.65 (median 0.86) μgg(-1) and 0.24-3.05 (median 0.59) μgg(-1) wet weight (ww), respectively. Di-2-Ethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP) were the predominant compounds among all foodstuffs. The estimated daily intake (EDI) of phthalate esters for the general population in Kampong Cham, Kratie and Kandal was 34.3, 35.6 and 35.8μgkg(-1) bw d(-1), respectively. The dietary daily intake of DEHP, benzylbutyl phthalate (BBP) and di-n-butyl phthalate (DBP) in Kampong Cham, Kratie and Kandal were below the tolerable daily intakes (TDI) imposed by the European Food Safety Authority (EFSA) and reference doses (RfD) imposed by The United States Environmental Protection Agency (USEPA). Rice contributed the greatest quantity of DEHP to the daily intake in Cambodia so may deserve further exploration. To our knowledge, this is the first study to investigate the occurrence and the daily intakes of phthalate esters in Cambodia. PMID:27372065

  2. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    PubMed

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  3. Assessment of carcinogenic risk from personal exposure to benzo(a)pyrene in the Total Human Environmental Exposure Study (THEES)

    SciTech Connect

    Butler, J.P.; Post, G.B.; Lioy, P.J.; Waldman, J.M.; Greenberg, A. )

    1993-07-01

    The Total Human Environmental Exposure Study (THEES) was an investigation of multimedia exposure to the ubiquitous environmental carcinogen, benzo(a)pyrene (BaP). The three-phase study was conducted in Phillipsburg, New Jersey and involved the participation of 14-15 individuals (8-10 homes) during each 14-day monitoring period. Microenvironmental sampling of air, food, water and soil indicated that environmental exposure to BaP was primarily through air and food. Exposure and risk estimates were, therefore, based on the results of personal monitoring of breathing zone air and prepared food samples. Based on a comparison of the range and magnitude of inhalation and dietary BaP exposures, food ingestion was clearly the predominant exposure to pathway. The relative contributions of other potential sources of community exposure to BaP (e.g., soil and drinking water ingestion) were also assessed. The excess cancer risk estimates for food ingestion were consistently greater than those for personal air, reflecting both the predominantly higher BaP exposures through the diet and the higher carcinogenic potency value for oral exposure. Overall, the total lifetime risk from personal exposure to BaP for nonsmokers in the community was estimated at 10(-5). In identifying risk reduction options, it is important to account for the observation that personal activities, lifestyle, and diet strongly influenced individual exposures to BaP.

  4. Mercury contamination in alligators (Melanosuchus niger) from Mamirauá Reservoir (Brazilian Amazon) and human health risk assessment.

    PubMed

    Correia, Jozélia; Cesar, Ricardo; Marsico, Eliane; Diniz, George Tadeu Nunes; Zorro, Mauricio Camargo; Castilhos, Zuleica

    2014-12-01

    Mercury (Hg) concentrations in muscles of wild alligators (Melanosuchus niger) from the Mamirauá Reservoir (a reference area in the Brazilian Amazon) and the human health risks associated with its consumption were assessed. The mean Hg concentration in alligator muscles was 0.407 ± 0.114 μg/g (N = 61). Close to 5 % of the muscle samples showed Hg levels above the World Health Organization guideline for fish consumption (0.5 μg/g). A positive and significant relationship was observed between Hg concentrations in muscle and the age of the specimens. The dose-response approach suggests that close to 27.4 years is required for half of the exposed specimens to attain 0.5 μg/g. The hazard quotient (HQ) is a risk indicator which defines the ratio of exposure level and a toxicological reference dose. HQ resulted above the unity for all the specimens when the ingestion rate for riverine communities (200 g of muscle per day) is considered, indicating the existence of hazard. When the ingestion rate for market consumers (28.57 g/day) is considered, the risks are much lower (mean HQ = 0.55), suggesting that such group is not at risk. The establishment of local and regional ingestion rates for riverine populations and market consumers is extremely recommended. PMID:25017870

  5. Bio Risk Assessment Tool

    SciTech Connect

    Pohl, Phillip

    2004-07-22

    The Biosecurity Risk Assessment Tool (BRAT) is a new type of computer application for the screening-level assessment of risk to dairy operations. BRAT for Dairies is designed to be intuitive and easy to use. Users enter basic data-property address, feed management, employee population, and so on - into the interface. Using these data and rules found in an expert system. BRAT for Dairies consults appropriate sections of its database. The expert system determines the risk implications of the basic data, e.g. diseases are closely tied to pen location with respect to the outside world, When the analysis is complete, BRAT for Dairies evaluates and allocates the risk for each hazard, ranks the risks, and displays the results graphically.

  6. Spatiotemporal Clustering Analysis and Risk Assessments of Human Cutaneous Anthrax in China, 2005–2012

    PubMed Central

    Qian, Quan; Haque, Ubydul; Soares Magalhaes, Ricardo J.; Li, Shen-Long; Tong, Shi-Lu; Li, Cheng-Yi; Sun, Hai-Long; Sun, Yan-Song

    2015-01-01

    Objective To investigate the epidemic characteristics of human cutaneous anthrax (CA) in China, detect the spatiotemporal clusters at the county level for preemptive public health interventions, and evaluate the differences in the epidemiological characteristics within and outside clusters. Methods CA cases reported during 2005–2012 from the national surveillance system were evaluated at the county level using space-time scan statistic. Comparative analysis of the epidemic characteristics within and outside identified clusters was performed using using the χ2 test or Kruskal-Wallis test. Results The group of 30–39 years had the highest incidence of CA, and the fatality rate increased with age, with persons ≥70 years showing a fatality rate of 4.04%. Seasonality analysis showed that most of CA cases occurred between May/June and September/October of each year. The primary spatiotemporal cluster contained 19 counties from June 2006 to May 2010, and it was mainly located straddling the borders of Sichuan, Gansu, and Qinghai provinces. In these high-risk areas, CA cases were predominantly found among younger, local, males, shepherds, who were living on agriculture and stockbreeding and characterized with high morbidity, low mortality and a shorter period from illness onset to diagnosis. Conclusion CA was geographically and persistently clustered in the Southwestern China during 2005–2012, with notable differences in the epidemic characteristics within and outside spatiotemporal clusters; this demonstrates the necessity for CA interventions such as enhanced surveillance, health education, mandatory and standard decontamination or disinfection procedures to be geographically targeted to the areas identified in this study. PMID:26208355

  7. Human exposure and risk assessment of cadmium for residents of abandoned metal mine areas in Korea.

    PubMed

    Yang, Jiyeon; Kim, Eung-Cheol; Shin, Dong-Chun; Jo, Seong-Joon; Lim, Young-Wook

    2015-04-01

    The objective of this study is to find the Cd levels in agricultural crops compared to soil, to evaluate the relationship between daily intake dose through the multimedia/multi-pathway of human exposure and biomarker levels of the residents in mine vicinity area. We collected and cited the data of four out of ten health impact assessments for the residents of abandoned mine areas undertaken by the Korea Ministry of Environment in 2008. The Cd levels in soil were significantly decreased by the separation distance from the mines. The Cd levels in blood were significantly different between residents in mine areas and in comparative areas, but urinary Cd levels did not differ. The Cd levels in blood were related to the age; the separation distance from mine to residence; the daily intake dose via ingestion of drinking water, crops, and surface soil; and inhalation of ambient air of Cd, but urinary Cd levels were not relevant with various sociodemographic characteristics and exposure factors. The average hazard quotient (HQ) value of Cd in the mining site was below 1.0, but the maximum HQ was closed to 1.0. The results indicated that the ingestion of Cd-contaminated soil and agricultural crops by local inhabitants could pose potential adverse health effects to long-term residents consuming rice grown near to the mining areas. PMID:25255774

  8. Microbiological Quantitative Risk Assessment

    NASA Astrophysics Data System (ADS)

    Dominguez, Silvia; Schaffner, Donald W.

    The meat and poultry industry faces ongoing challenges due to the natural association of pathogens of concern (e.g., Salmonella, Campylobacter jejuni, Escherichia coli O157:H7) with a variety of domesticated food animals. In addition, pathogens such as Listeria monocytogenes pose a significant cross-contamination risk during further meat and poultry processing, distribution, and storage. Furthermore, the meat and poultry industries are constantly changing with the addition of new products, use of new raw materials, and targeting of new consumer populations, each of which may give rise to potential new risks. National and international regulations are increasingly using a “risk-based” approach to food safety (where the regulatory focus is driven by the magnitude of the risk), so risk assessment is becoming a valuable tool to systematically organize and evaluate the potential public health risk posed by food processing operations.

  9. Assessment of risky injection practices associated with hepatitis B, hepatitis C, and human immunodeficiency virus and using the blood-borne virus transmission risk assessment questionnaire.

    PubMed

    Reynolds, Grace L; Fisher, Dennis G; Napper, Lucy E

    2012-01-01

    Risky injection practices among injection drug users (IDUs) contribute to the spread of blood-borne infections such as human immunodeficiency virus, hepatitis B, and hepatitis C. The Blood-borne Virus Transmission Risk Assessment Questionnaire (BBV-TRAQ). was developed in Australia to determine risk behaviors for specific infections. Blood testing for human immunodeficiency virus, hepatitis B, and hepatitis C was performed on all participants, and data on blood tests were linked to questionnaires. The BBV-TRAQ was administered to 242 current and former injection drug users in Long Beach, California, and the Long Beach data were compared with the original Australian data. In the comparison of the mean scores on the three subscales and total scores on the BBV-TRAQ between the samples, means for all three subscales and the total BBV-TRAQ score were significantly different, with Long Beach scores consistently lower than the Australian sample. The injecting and sexual risk subscales were significantly different across levels of AIDS risk perception for all three types of injectors; however, the other skin penetration practices subscale had no significant association with AIDS risk perception for any of the injection drug user groups. Despite recent efforts to educate injectors about the risks associated with practices captured by the other skin penetration practices subscale, such as tattooing and sharing razors, this subscale does not have an association with AIDS risk perception. injection drug users in Australia may have better access to health care, giving their self-report of infection greater validity than the California sample. PMID:22356671

  10. Bio Risk Assessment Tool

    Energy Science and Technology Software Center (ESTSC)

    2004-07-22

    The Biosecurity Risk Assessment Tool (BRAT) is a new type of computer application for the screening-level assessment of risk to dairy operations. BRAT for Dairies is designed to be intuitive and easy to use. Users enter basic data-property address, feed management, employee population, and so on - into the interface. Using these data and rules found in an expert system. BRAT for Dairies consults appropriate sections of its database. The expert system determines the riskmore » implications of the basic data, e.g. diseases are closely tied to pen location with respect to the outside world, When the analysis is complete, BRAT for Dairies evaluates and allocates the risk for each hazard, ranks the risks, and displays the results graphically.« less

  11. Contamination of fish in UK fresh water systems: risk assessment for human consumption.

    PubMed

    Rose, Martin; Fernandes, Alwyn; Mortimer, David; Baskaran, Christina

    2015-03-01

    There is growing evidence that more people in the UK are consuming fish taken from inland waterways. This may be partly due to the increased numbers of migrants from Eastern Europe where this is part of traditional culture and partly because of a desire to try new foods encouraged by celebrity chefs. Fish can bioaccumulate environmental contaminants and so could contribute a significant amount to dietary exposure to these chemicals. This study examined the changing habits of anglers and consumers and characterised a range of existing and emerging contaminants in freshwater fish species with a view to determining current levels of occurrence and possible risk from consumption. The project was conducted in two stages. The first stage included (a) a study that identified freshwater systems that are contaminated either by anthropogenic activity or as a result of the geology of the area; and (b) socioeconomic research to assess the consumption habits of the public, particularly anglers, with respect to fish and shellfish from unmanaged inland waterways. Based on the outcome from the first stage, specific rivers and other inland waterways were chosen for investigation, along with the range of contaminants to be included in the analytical programme. Predicted contamination levels and prevalence of anglers were among the factors taken into consideration. The second stage of the project involved sampling and analysis of fish taken from selected locations on the chosen waterways. A range of fish species from a variety of inland water habitats were obtained. These were analysed for the following contaminants: heavy metals, chlorinated dioxins (PCDD/Fs), polybrominated biphenyls (PBBs), polychlorinated biphenyls (PCBs), brominated dioxins (PBDD/Fs), polychlorinated naphthalenes (PCNs), polybrominated diphenylethers (PBDEs), OC pesticides, organotin compounds and organo-fluorine compounds. Legal limits for contaminants apply only to food traded commercially, but some samples

  12. Assessment of potential health risk for inhabitants living near a former lead smelter. Part 2: site-specific human health risk assessment of Cd and Pb contamination in kitchen gardens.

    PubMed

    Pelfrêne, Aurélie; Douay, Francis; Richard, Antoine; Roussel, Hélène; Girondelot, Bertrand

    2013-04-01

    Metal contamination of urban soils and homegrown products has caused major concern. In Part 1, we investigated the long-term effects of a former smelter on the degree of kitchen garden-soil contamination and the quality of the homegrown vegetables from these gardens. The results showed that the soils retained a high level of contamination and that a large proportion of the vegetables produced did not comply with the legislation on the levels of metals allowed for human consumption. The present study aims to assess the associated potential health risk to local inhabitants through consumption of homegrown vegetables and ingestion of soil particles using a land use-based approach. For lead (Pb), the standard hazard quotient (HQ)-based risk assessment method was used to determine the HQ. For cadmium (Cd), the approach consisted of calculating the HQs and then deriving site-specific assessment criteria (SSAC) using the SNIFFER method. The results suggested that the exposure pathways considered should not engender any form of deleterious health effects for adults. For children, Pb was the main concern and induced a relatively high health risk through soil particle ingestion, and most total soil Cd concentrations exceeded the derived SSAC, in particular, through consumption of vegetables. The metal bioaccessibility in soils was incorporated into the methods to establish more realistic risk assessment measures. This study proposes an approach to integrate different human health risk assessment methods. Further investigations should complete the assessment to improve risk determination, e.g., the determination of metal bioaccessibility in vegetables. PMID:22791114

  13. Human biomonitoring of phthalate exposure in Austrian children and adults and cumulative risk assessment.

    PubMed

    Hartmann, Christina; Uhl, Maria; Weiss, Stefan; Koch, Holger M; Scharf, Sigrid; König, Jürgen

    2015-07-01

    children. The execution of a cumulative risk assessment based on Hazard Indices showed cause for concern mainly for children, as well as in rare cases for adults. Although phthalate exposure seems to have decreased in previous years, the wide distribution and existing exceedances of acceptable levels indicate that phthalate exposure should be further monitored in order to identify exposure sources and enable appropriate minimisation measures. PMID:25959523

  14. Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México.

    PubMed

    Martínez-Acuña, Mónica I; Mercado-Reyes, Marisa; Alegría-Torres, Jorge A; Mejía-Saavedra, José J

    2016-08-01

    Zacatecas state is located in the central area of Mexico, where the underground water contains elevated quantities of natural arsenic and fluoride. In order to estimate health risk associated with human exposure to these pollutants, tap water samples from the southern-central region of the state were analyzed. Ninety percent of the samples exceeded the levels of arsenic established by the World Health Organization (WHO) of 0.01 mg/L and 43 % exceeded the limit established by the NOM-127-SSA1(1) of 0.025 mg/L. Forty-three percent of the samples had fluoride levels above the Mexican regulation limit of 1.5 mg/L (NOM-127-SSA1). We used WHO and EPA's health risk assessment method, we estimated 80 % of the inhabitants of sites studied could be exposed to arsenic levels higher than those recommended by EPA and the WHO, 22 % could be exposed to fluoride levels higher than those recommended by EPA, and 16 % of the local population may be in risk of suffering dental fluorosis. PMID:27444184

  15. Northwest Climate Risk Assessment

    NASA Astrophysics Data System (ADS)

    Mote, P.; Dalton, M. M.; Snover, A. K.

    2012-12-01

    As part of the US National Climate Assessment, the Northwest region undertook a process of climate risk assessment. This process included an expert evaluation of previously identified impacts, their likelihoods, and consequences, and engaged experts from both academia and natural resource management practice (federal, tribal, state, local, private, and non-profit) in a workshop setting. An important input was a list of 11 risks compiled by state agencies in Oregon and similar adaptation efforts in Washington. By considering jointly the likelihoods, consequences, and adaptive capacity, participants arrived at an approximately ranked list of risks which was further assessed and prioritized through a series of risk scoring exercises to arrive at the top three climate risks facing the Northwest: 1) changes in amount and timing of streamflow related to snowmelt, causing far-reaching ecological and socioeconomic consequences; 2) coastal erosion and inundation, and changing ocean acidity, combined with low adaptive capacity in the coastal zone to create large risks; and 3) the combined effects of wildfire, insect outbreaks, and diseases will cause large areas of forest mortality and long-term transformation of forest landscapes.

  16. Human health risk assessment simulations in a distributed environment for shuttle launch

    NASA Astrophysics Data System (ADS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-09-01

    During the launch of a rocket under prevailing weather conditions, commanders at Cape Canaveral Air Force station evaluate the possibility of whether wind blown toxic emissions might reach civilian and military personnel in the near by area. In our model, we focused mainly on Hydrogen chloride (HCL), Nitrogen oxides (NOx) and Nitric acid (HNO3), which are non-carcinogenic chemicals as per United States Environmental Protection Agency (USEPA) classification. We have used the hazard quotient model to estimate the number of people at risk. It is based on the number of people with exposure above a reference exposure level that is unlikely to cause adverse health effects. The risk to the exposed population is calculated by multiplying the individual risk and the number in exposed population. The risk values are compared against the acceptable risk values and GO or NO-go situation is decided based on risk values for the Shuttle launch. The entire model is simulated over the web and different scenarios can be generated which allows management to choose an optimum decision.

  17. Human Health Risk Assessment Simulations in a Distributed Environment for Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    During the launch of a rocket under prevailing weather conditions, commanders at Cape Canaveral Air Force station evaluate the possibility of whether wind blown toxic emissions might reach civilian and military personnel in the near by area. In our model, we focused mainly on Hydrogen chloride (HCL), Nitrogen oxides (NOx) and Nitric acid (HNO3), which are non-carcinogenic chemicals as per United States Environmental Protection Agency (USEPA) classification. We have used the hazard quotient model to estimate the number of people at risk. It is based on the number of people with exposure above a reference exposure level that is unlikely to cause adverse health effects. The risk to the exposed population is calculated by multiplying the individual risk and the number in exposed population. The risk values are compared against the acceptable risk values and GO or NO-go situation is decided based on risk values for the Shuttle launch. The entire model is simulated over the web and different scenaria can be generated which allows management to choose an optimum decision.

  18. Biosafety Risk Assessment Model

    SciTech Connect

    2011-05-27

    Software tool based on a structured methodology for conducting laboratory biosafety risk assessments by biosafety experts. Software is based upon an MCDA scheme and uses peer reviewed criteria and weights. The software was developed upon Microsoft’s .net framework. The methodology defines likelihood and consequence of a laboratory exposure for thirteen unique scenarios and provides numerical relative risks for each of the relevant thirteen. The software produces 2-d graphs reflecting the relative risk and a sensitivity analysis which highlights the overall importance of each factor. The software works as a set of questions with absolute scales and uses a weighted additive model to calculate the likelihood and consequence.

  19. Evaluation of relative effect potencies (REPs) for dioxin-like compounds to derive systemic or human-specific TEFs to improve human risk assessment.

    PubMed

    van Ede, Karin I; van Duursen, Majorie B M; van den Berg, Martin

    2016-06-01

    Toxic equivalency factors (TEFs) are generally applied for estimating human risk of dioxins and dioxin-like compounds using systemic (e.g., blood) levels, even though these TEFs are established based on intake doses in rodent studies. This review shows that systemic relative effect potencies (REPs) can deviate substantially from intake REPs, but are similar to in vitro-derived REPs. Interestingly, the in vitro REPs for 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) and 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF) are up to one order of magnitude higher than their in vivo REPs and WHO-TEFs, based on oral intake. In addition, clear species-differences in in vitro REPs were apparent for some congeners. Especially the human-derived REP for polychlorinated biphenyl 126 is one to two orders of magnitude lower than rodent REPs and its current WHO-TEF. Next, suggested adapted systemic or human-specific TEFs for these congeners were applied to calculate changes in systemic TEQ concentrations in studies from the USA, Germany and Japan and compared with either the JECFA TDI or USEPA RfD of TCDD. Overall, the effect of such TEF changes for these three congeners on total TEQ roughly balances each other out in the general population. However, results may be different for situations in which a specific group of congeners dominates. For those congeners that show a distinct deviation between either intake and systemic REPs or between rodent- and human-based in vitro REPs, we propose that especially REPs derived from human-based in vitro models are weighted more heavily in establishing systemic or human-specific TEF values to improve human health risk assessment. PMID:27161441

  20. Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds: Human health and ecological risk assessments

    SciTech Connect

    Ebinger, M.H.; Beckman, R.J.; Myers, O.B.; Kennedy, P.L.; Clements, W.; Bestgen, H.T.

    1996-09-01

    The purpose of this study was to evaluate the immediate and long-term consequences of depleted uranium (DU) in the environment at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) for the Test and Evaluation Command (TECOM) of the US Army. Specifically, we examined the potential for adverse radiological and toxicological effects to humans and ecosystems caused by exposure to DU at both installations. We developed contaminant transport models of aquatic and terrestrial ecosystems at APG and terrestrial ecosystems at YPG to assess potential adverse effects from DU exposure. Sensitivity and uncertainty analyses of the initial models showed the portions of the models that most influenced predicted DU concentrations, and the results of the sensitivity analyses were fundamental tools in designing field sampling campaigns at both installations. Results of uranium (U) isotope analyses of field samples provided data to evaluate the source of U in the environment and the toxicological and radiological doses to different ecosystem components and to humans. Probabilistic doses were estimated from the field data, and DU was identified in several components of the food chain at APG and YPG. Dose estimates from APG data indicated that U or DU uptake was insufficient to cause adverse toxicological or radiological effects. Dose estimates from YPG data indicated that U or DU uptake is insufficient to cause radiological effects in ecosystem components or in humans, but toxicological effects in small mammals (e.g., kangaroo rats and pocket mice) may occur from U or DU ingestion. The results of this study were used to modify environmental radiation monitoring plans at APG and YPG to ensure collection of adequate data for ongoing ecological and human health risk assessments.

  1. Microbial Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Mena, K. D.; Nickerson, C.A.; Pierson, D. L.

    2009-01-01

    Historically, microbiological spaceflight requirements have been established in a subjective manner based upon expert opinion of both environmental and clinical monitoring results and the incidence of disease. The limited amount of data, especially from long-duration missions, has created very conservative requirements based primarily on the concentration of microorganisms. Periodic reevaluations of new data from later missions have allowed some relaxation of these stringent requirements. However, the requirements remain very conservative and subjective in nature, and the risk of crew illness due to infectious microorganisms is not well defined. The use of modeling techniques for microbial risk has been applied in the food and potable water industries and has exceptional potential for spaceflight applications. From a productivity standpoint, this type of modeling can (1) decrease unnecessary costs and resource usage and (2) prevent inadequate or inappropriate data for health assessment. In addition, a quantitative model has several advantages for risk management and communication. By identifying the variable components of the model and the knowledge associated with each component, this type of modeling can: (1) Systematically identify and close knowledge gaps, (2) Systematically identify acceptable and unacceptable risks, (3) Improve communication with stakeholders as to the reasons for resource use, and (4) Facilitate external scientific approval of the NASA requirements. The modeling of microbial risk involves the evaluation of several key factors including hazard identification, crew exposure assessment, dose-response assessment, and risk characterization. Many of these factors are similar to conditions found on Earth; however, the spaceflight environment is very specialized as the inhabitants live in a small, semi-closed environment that is often dependent on regenerative life support systems. To further complicate modeling efforts, microbial dose

  2. Potential for Incorporation of Genetic Polymorphism Data in Human Health Risk Assessment

    EPA Science Inventory

    This overview summarizes several EPA assessment publications evaluating the potential impact of genetic polymorphisms in ten metabolizing enzymes on the variability in enzyme function across ethnically diverse populations.

  3. Essential and toxic heavy metals in cereals and agricultural products marketed in Kermanshah, Iran, and human health risk assessment.

    PubMed

    Pirsaheb, Meghdad; Fattahi, Nazir; Sharafi, Kiomars; Khamotian, Razieh; Atafar, Zahra

    2016-01-01

    Levels of some essential and toxic heavy metals such as lead, cadmium, chromium, nickel, zinc and copper in cereals and agricultural products obtained from the markets in Kermanshah city, west Iran, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The average concentrations for lead and cadmium in some cereals were higher than the maximum levels set by the Codex Alimentarius. A potential human health risk assessment was conducted by calculating estimated weekly intake (EWI) of the metals from eating cereals and comparison of these values with provisional tolerable weekly intake (PTWI) values. In combination with recent cereal consumption data, the EWIs of heavy metals were calculated for the Kermanshah population. EWI data for the studied metals through cereal consumption were lower than the PTWI values. Cr, Ni, Zn and Cu levels in all samples analysed were within the ranges reported for similar cereals from various parts of the world. PMID:26465977

  4. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana.

    PubMed

    Bempah, Crentsil Kofi; Ewusi, Anthony

    2016-05-01

    Gold mining has increased the prevalence and occurrence of heavy metals contamination at the Earth's surface and is causing major concern due to the potential risk involved. This study investigated the impact of gold mine on heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Fe, Mn, and Zn) pollution and evaluated the potential health risks to local residents via consumption of polluted groundwater, agricultural soils, and vegetable crops grown at three community farms surrounding the mine at Obuasi municipality of Ghana. The results showed levels of As, Cd, Cr, Hg, Fe, and Mn higher than the allowable drinking water standards. The vegetable samples analyzed showed high accumulation of As and Ni above the normal value. Bioaccumulation factors of heavy metals were significantly higher for vegetables grown in the Sanso soils. Estimated average daily intake and hazard quotient for As in drinking water as well as As, Pb, and Hg in vegetable samples exceeded permissible limit. Unacceptable non-cancer health risk levels were found in vegetable samples analyzed for As, Pb, and Hg. An unacceptable cancer risk was found via drinking of groundwater, in consumption of vegetables, and in soil. The hazard index for vegetables was higher than 1, indicating very high health risk to heavy metals contamination through consumption of vegetables grown around the sampling sites. The results recommend the need for regular monitoring of groundwater and food crops to protect consumers' health. PMID:27037696

  5. Formaldehyde risk assessment

    EPA Science Inventory

    We would like to comment on the paper by Crump et al. (2008), ‘Sensitivity analysis of biologically motivated model for formaldehyde-induced respiratory cancer in humans’. We are authors of the formaldehyde cancer risk assessment described in Conolly et al. (2003, 2004) that is t...

  6. Risk assessment of human health for geogenic chromium and nickel in soils derived from serpentines

    NASA Astrophysics Data System (ADS)

    Hseu, Zeng-Yei; Lai, Yun-Jie

    2016-04-01

    Concentrations of Cr and Ni are extremely high in serpentine soils compared to soils from the other parent materials. Three serpentine sites in Taiwan were selected to determine health risk of Cr and Ni as cumulative carcinogenic and non-carcinogenic risks via the multiple routes of ingestion, dermal contact, inhalation, and diet on adults and children. The mean levels of Cr and Ni were higher than the soil control standards of heavy metals in Taiwan (250 and 200 mg/kg of Cr and Ni). For adults and children, the total dose of chronic daily intake (mg/kg/d) was the highest for Ni, followed in descending order by Cr(III) and Cr(VI) at all sites. Regardless inhabitant age, the total carcinogenic risk was much lower than 1.0E-6. However, the hazard index (HI) of non-carcinogenic risk exceeded 1.0 for adults at all sites, which was mainly contributed in Ni by eating rice.

  7. Toxicity Testing in the 21st Century: Implications for Human Health Risk Assessment

    EPA Science Inventory

    The risk analysis perspective by Daniel Krewski and colleagues lays out the long-term vision and strategic plan developed by a National Research Council committee (1), sponsored by the U.S. Environmental Protection Agency (EPA) with support from the U.S. National Toxicology Progr...

  8. RELEVANCE OF VISUAL EFFECTS OF VOLATILE ORGANIC COMPOUNDS TO HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    Traditional measures of neurotoxicity have included assessment of sensory, cognitive, and motor function. Visual system function and the neurobiological substrates are well characterized across species. Dysfunction in the visual system may be specific or may be surrogate for mor...

  9. Toxicologic Pathology: The Basic Building Block of Risk Assessment

    EPA Science Inventory

    Human health risk assessment is a critical factor in many risk management decisions. Evaluation of human health risk requires research the provides information that appropriately characterizes potential hazards from exposure. Pathology endpoints are the central response around ...

  10. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment

    PubMed Central

    Jean, Aurélie; Nyein, Michelle K.; Zheng, James Q.; Moore, David F.; Joannopoulos, John D.; Radovitzky, Raúl

    2014-01-01

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans. PMID:25267617

  11. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.

    PubMed

    Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl

    2014-10-28

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans. PMID:25267617

  12. Risk Assessment in Criminal Sentencing.

    PubMed

    Monahan, John; Skeem, Jennifer L

    2016-03-28

    The past several years have seen a surge of interest in using risk assessment in criminal sentencing, both to reduce recidivism by incapacitating or treating high-risk offenders and to reduce prison populations by diverting low-risk offenders from prison. We begin by sketching jurisprudential theories of sentencing, distinguishing those that rely on risk assessment from those that preclude it. We then characterize and illustrate the varying roles that risk assessment may play in the sentencing process. We clarify questions regarding the various meanings of "risk" in sentencing and the appropriate time to assess the risk of convicted offenders. We conclude by addressing four principal problems confronting risk assessment in sentencing: conflating risk and blame, barring individual inferences based on group data, failing adequately to distinguish risk assessment from risk reduction, and ignoring whether, and if so, how, the use of risk assessment in sentencing affects racial and economic disparities in imprisonment. PMID:26666966

  13. Influence of environmental chemicals on epigenetic programming and its applicability in human health risk assessment.

    EPA Science Inventory

    The field of epigenetics is rapidly evolving in response to the growing concern that heritable changes in gene expression may be involved in chemically-mediated adverse health outcomes, such as cancer. Although human and animal studies have shown a strong involvement of epigeneti...

  14. UNCERTAINTY AND SENSITIVITY ANALYSES FOR INTEGRATED HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT OF HAZARDOUS WASTE DISPOSAL

    EPA Science Inventory

    While there is a high potential for exposure of humans and ecosystems to chemicals released from hazardous waste sites, the degree to which this potential is realized is often uncertain. Conceptually divided among parameter, model, and modeler uncertainties imparted during simula...

  15. Implications of gender differences for human health risk assessment and toxicology

    EPA Science Inventory

    This paper from The Human Health working group of SGOMSEC 16 examines a broad range of issues on gender effects in toxicology. Gender differences in toxicology begin at the gamete and embryo stage, continuing through development and maturation and into old age. Sex influences exp...

  16. Risk management frameworks for human health and environmental risks.

    PubMed

    Jardine, Cindy; Hrudey, Steve; Shortreed, John; Craig, Lorraine; Krewski, Daniel; Furgal, Chris; McColl, Stephen

    2003-01-01

    A comprehensive analytical review of the risk assessment, risk management, and risk communication approaches currently being undertaken by key national, provincial/state, territorial, and international agencies was conducted. The information acquired for review was used to identify the differences, commonalities, strengths, and weaknesses among the various approaches, and to identify elements that should be included in an effective, current, and comprehensive approach applicable to environmental, human health and occupational health risks. More than 80 agencies, organizations, and advisory councils, encompassing more than 100 risk documents, were examined during the period from February 2000 until November 2002. An overview was made of the most important general frameworks for risk assessment, risk management, and risk communication for human health and ecological risk, and for occupational health risk. In addition, frameworks for specific applications were reviewed and summarized, including those for (1)contaminated sites; (2) northern contaminants; (3) priority substances; (4) standards development; (5) food safety; (6) medical devices; (7) prescription drug use; (8) emergency response; (9) transportation; (10) risk communication. Twelve frameworks were selected for more extensive review on the basis of representation of the areas of human health, ecological, and occupational health risk; relevance to Canadian risk management needs; representation of comprehensive and well-defined approaches; generalizability with their risk areas; representation of "state of the art" in Canada, the United States, and/or internationally; and extent of usage of potential usage within Canada. These 12 frameworks were: 1. Framework for Environmental Health Risk Management (US Presidential/Congressional Commission on Risk Assessment and Risk Management, 1997). 2. Health Risk Determination: The Challenge of Health Protection (Health and Welfare Canada, 1990). 3. Health Canada Decision

  17. Risk Assessment System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    FEAT, a software system for evaluating risks, was developed by Lockheed and later enhanced under NASA funding. FEAT uses directed graph - or digraph - models to provide information on cause and effect if a set of failure events occurs. James Miller, the program designer at Lockheed, formed DiGraphics, Inc. to market the software that has evolved from FEAT. The Diquest Analyzer, the company's flagship product, assists product designers in identifying the redundancies and weaknesses of a system. The software has applications in the chemical industry for risk assessment, design evaluation, and change management. Additional markets have been found in operations monitoring diagnostics and training of new personnel.

  18. Assessing the Relative Risk of Aerocapture Using Probabalistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Percy, Thomas K.; Bright, Ellanee; Torres, Abel O.

    2005-01-01

    A recent study performed for the Aerocapture Technology Area in the In-Space Propulsion Technology Projects Office at the Marshall Space Flight Center investigated the relative risk of various capture techniques for Mars missions. Aerocapture has been proposed as a possible capture technique for future Mars missions but has been perceived by many in the community as a higher risk option as compared to aerobraking and propulsive capture. By performing a probabilistic risk assessment on aerocapture, aerobraking and propulsive capture, a comparison was made to uncover the projected relative risks of these three maneuvers. For mission planners, this knowledge will allow them to decide if the mass savings provided by aerocapture warrant any incremental risk exposure. The study focuses on a Mars Sample Return mission currently under investigation at the Jet Propulsion Laboratory (JPL). In each case (propulsive, aerobraking and aerocapture), the Earth return vehicle is inserted into Martian orbit by one of the three techniques being investigated. A baseline spacecraft was established through initial sizing exercises performed by JPL's Team X. While Team X design results provided the baseline and common thread between the spacecraft, in each case the Team X results were supplemented by historical data as needed. Propulsion, thermal protection, guidance, navigation and control, software, solar arrays, navigation and targeting and atmospheric prediction were investigated. A qualitative assessment of human reliability was also included. Results show that different risk drivers contribute significantly to each capture technique. For aerocapture, the significant drivers include propulsion system failures and atmospheric prediction errors. Software and guidance hardware contribute the most to aerobraking risk. Propulsive capture risk is mainly driven by anomalous solar array degradation and propulsion system failures. While each subsystem contributes differently to the risk of

  19. Environmental contaminant concentrations in Canada goose (Branta canadensis) muscle: probabilistic risk assessment for human consumers.

    PubMed

    Horak, Katherine; Chipman, Richard; Murphy, Lisa; Johnston, John

    2014-09-01

    The issue of food insecurity affects millions of people in the United States every year. Often these people rely on soup kitchens, food banks, and shelters for proper meals, and these organizations often depend on donations to meet needs. One of the most limited food resources is meat. To help alleviate this problem, the U.S. Department of Agriculture Wildlife Services donates more than 60 tons of wild game (deer, moose, feral hogs, goats, geese, and ducks) to a variety of charitable organizations each year. Although commercially produced meat routinely undergoes screening for contaminants, potential exposure to environmental contaminants from eating wild game is not well characterized. In this study, the concentration of 17 contaminants of concern in the breast meat of wild geese was examined. These concentrations were then used in a probabilistic model to estimate potential risk associated with consumption of this meat. Based on model predictions, more than 99 % of all adults were below exposure limits for all of the compounds tested. For all consumer age classes modeled, consumption of wild goose meat may expose a small fraction of these populations to levels of lead higher than the recommended exposure limits. Similarly, mercury exposure was predicted to be higher than the recommended limits when the meat was served as steaks. This information about concentrations of contaminants of concern in goose meat and potential exposures associated with meat consumption based on probabilistic models will enable others to make informed decisions about the risks associated with the consumption of wild meat. PMID:25198860

  20. Methods to identify and characterize developmental neurotoxicity for human health risk assessment. II: neuropathology.

    PubMed Central

    Garman, R H; Fix, A S; Jortner, B S; Jensen, K F; Hardisty, J F; Claudio, L; Ferenc, S

    2001-01-01

    Neuropathologic assessment of chemically induced developmental alterations in the nervous system for regulatory purposes is a multifactorial, complex process. This calls for careful qualitative and quantitative morphologic study of numerous brains at several developmental stages in rats. Quantitative evaluation may include such basic methods as determination of brain weight and dimensions as well as the progressively more complex approaches of linear, areal, or stereologic measurement of brain sections. Histologic evaluation employs routine stains (such as hematoxylin and eosin), which can be complemented by a variety of special and immunohistochemical procedures. These brain studies are augmented by morphologic assessment of selected peripheral nervous system structures. Studies of this nature require a high level of technical skill as well as special training on the part of the pathologist. The pathologist should have knowledge of normal microscopic neuroanatomy/neuronal circuitry and an understanding of basic principles of developmental neurobiology, such as familiarity with the patterns of physiologic or programmed cell de PMID:11250809

  1. Future research needs associated with the assessment of potential human health risks from exposure to toxic ambient air pollutants.

    PubMed Central

    Möller, L; Schuetzle, D; Autrup, H

    1994-01-01

    This paper presents key conclusions and future research needs from a Workshop on the Risk Assessment of Urban Air, Emissions, Exposure, Risk Identification, and Quantification, which was held in Stockholm during June 1992 by 41 participants from 13 countries. Research is recommended in the areas of identification and quantification of toxics in source emissions and ambient air, atmospheric transport and chemistry, exposure level assessment, the development of improved in vitro bioassays, biomarker development, the development of more accurate epidemiological methodologies, and risk quantification techniques. Studies are described that will be necessary to assess and reduce the level of uncertainties associated with each step of the risk assessment process. International collaborative research efforts between industry and government organizations are recommended as the most effective way to carry out this research. PMID:7529703

  2. Methods to identify and characterize developmental neurotoxicity for human health risk assessment. I: behavioral effects.

    PubMed Central

    Cory-Slechta, D A; Crofton, K M; Foran, J A; Ross, J F; Sheets, L P; Weiss, B; Mileson, B

    2001-01-01

    Alterations in nervous system function after exposure to a developmental neurotoxicant may be identified and characterized using neurobehavioral methods. A number of methods can evaluate alterations in sensory, motor, and cognitive functions in laboratory animals exposed to toxicants during nervous system development. Fundamental issues underlying proper use and interpretation of these methods include a) consideration of the scientific goal in experimental design, b) selection of an appropriate animal model, c) expertise of the investigator, d) adequate statistical analysis, and e) proper data interpretation. Strengths and weaknesses of the assessment methods include sensitivity, selectivity, practicality, and variability. Research could improve current behavioral methods by providing a better understanding of the relationship between alterations in motor function and changes in the underlying structure of these systems. Research is also needed to develop simple and sensitive assays for use in screening assessments of sensory and cognitive function. Assessment methods are being developed to examine other nervous system functions, including social behavior, autonomic processes, and biologic rhythms. Social behaviors are modified by many classes of developmental neurotoxicants and hormonally active compounds that may act either through neuroendocrine mechanisms or by directly influencing brain morphology or neurochemistry. Autonomic and thermoregulatory functions have been the province of physiologists and neurobiologists rather than toxicologists, but this may change as developmental neurotoxicology progresses and toxicologists apply techniques developed by other disciplines to examine changes in function after toxicant exposure. PMID:11250808

  3. Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia.

    PubMed

    Nakazawa, Koyomi; Nagafuchi, Osamu; Kawakami, Tomonori; Inoue, Takanobu; Yokota, Kuriko; Serikawa, Yuka; Cyio, Basir; Elvince, Rosana

    2016-02-01

    Emissions of elemental mercury, Hg(0), from artisanal small-scale gold mining activities accounted for 37% of total global Hg(0) emissions in 2010. People who live near gold-mining areas may be exposed to high concentrations of Hg(0). Here, we assessed the human health risk due to Hg(0) exposure among residents of Palu city (Central Sulawesi Province, Indonesia). The area around the city has more than 60t of gold reserves, and the nearby Poboya area is the most active gold-mining site in Indonesia. Owing to its geography, the city experiences alternating land and sea breezes. Sampling was done over a period of 3 years (from 2010 Aug. to 2012 Dec.) intermittently with a passive sampler for Hg(0), a portable handheld mercury analyzer, and a mercury analyzer in four areas of the city and in the Poboya gold-processing area, as well as wind speeds and directions in one area of the city. The 24-h average concentration, wind speed, and wind direction data show that the ambient air in both the gold-processing area and the city was always covered by high concentration of mercury vapor. The Hg(0) concentration in the city was higher at night than in the daytime, owing to the effect of land breezes. These results indicate that the inhabitants of the city were always exposed to high concentrations of Hg(0). The average daytime point-sample Hg(0) concentrations in the city, as measured with a handheld mercury analyzer over 3 days in July 2011, ranged from 2096 to 3299ngm(-3). In comparison, the average daytime Hg(0) concentration in the Poboya gold-processing area was 12,782ngm(-3). All of these concentrations are substantially higher than the World Health Organization air-quality guideline for annual average Hg exposure (1000ngm(-3)). We used the point-sample concentrations to calculate hazard quotient ratios by means of a probabilistic risk assessment method. The results indicated that 93% of the sample population overall was at risk (hazard quotient ratio ≥1 and cut off at

  4. Toxic elements in groundwater of Lagos and Ogun States, Southwest, Nigeria and their human health risk assessment.

    PubMed

    Ayedun, H; Gbadebo, A M; Idowu, O A; Arowolo, T A

    2015-06-01

    A good quality drinking water is essential for human survival. However, a large percentage of the populations in most developing countries (Nigeria inclusive) do not have access to potable water. This study was therefore conducted to assess the extent of risk arising from consumption of toxic elements in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. Twelve toxic elements concentrations (As, Mn, Cd, Cr, Pb, Ni, Al, Ti, V, Hg, Li, and Sn) were determined from 170 groundwater samples using inductively coupled plasma-mass spectrometry, and the physicochemical parameters were determined using standard methods. The pH results revealed that most of the water samples were slightly acidic. Of the twelve toxic elements, only Mn, Cd, Pb, Ni, and Al have concentrations higher than the WHO recommended limit in drinking water. The average dose of Mn and Al consumed daily from groundwater by an adult in Lagos state is 3.4 and 23.2 (μg/kg body weight), respectively. Similarly, an adult in Ogun State consumed an average daily dose of 6.09 and 25 (μg/kg body weight) Mn and Al, respectively. A greater threat was posed to children and infants. The order for risk of cancer in groundwater from Lagos State was Pb > Cr > As > Cd while the order in Ogun State groundwater was Cr > Cd > As > Pb. The relative high concentrations of Mn, Al, and Pb obtained in this study can be attributed to industrial and anthropogenic activities in the study area. Treatment of groundwater before consumption is recommended to avoid possible adverse cumulative effect. Improved waste disposal methods and regular monitoring of toxic elements in groundwater of the study area should be adopted to safeguard human health. PMID:25971518

  5. Methylmercury risk assessment issues

    SciTech Connect

    Lipfert, F.W.; Saroff, L.

    1996-07-01

    This paper reviews the general background of health risks associated with mercury (Hg), primarily methylmercury (MeHg), with a view towards application to advanced technologies that could reduce any contributions from coal combustion. The need for accurate assessment of such risks is discussed, since Hg is now widely dispersed in the environment and cannot easily be eliminated. The primary pathway of MeHg intake is through eating contaminated fish. The issues of concern include identification of critical health outcomes (various neurological indices) and their confounding factors, accurate assessment of MeHg intake rates, and appropriate use of dose-response functions. Ultimately, such information will be used to evaluate alternative coal combustion systems.

  6. Biosafety Risk Assessment Model

    Energy Science and Technology Software Center (ESTSC)

    2011-05-27

    Software tool based on a structured methodology for conducting laboratory biosafety risk assessments by biosafety experts. Software is based upon an MCDA scheme and uses peer reviewed criteria and weights. The software was developed upon Microsoft’s .net framework. The methodology defines likelihood and consequence of a laboratory exposure for thirteen unique scenarios and provides numerical relative risks for each of the relevant thirteen. The software produces 2-d graphs reflecting the relative risk and a sensitivitymore » analysis which highlights the overall importance of each factor. The software works as a set of questions with absolute scales and uses a weighted additive model to calculate the likelihood and consequence.« less

  7. Pesticide residues in human breast milk: risk assessment for infants from Punjab, India.

    PubMed

    Bedi, J S; Gill, J P S; Aulakh, R S; Kaur, P; Sharma, A; Pooni, P A

    2013-10-01

    Punjab state in India is an agrarian society, where agriculture is the lifeline of farming community. To keep pace with increasing demands of food for growing population the indiscriminate use of pesticides has led to the contamination of environment and food commodities in this region. Analysis of human breast milk samples (n=53) for pesticide residues revealed the presence of β-, γ-HCH, p,p' DDD, p,p' DDE, p,p' DDT and endrin with mean concentration of 97.9, 101.7, 239.8, 1574.1, 100.3 and 90.7 ng g(-1) lipid wt., respectively. In addition, occurrence of β-endosulfan, endosulfan sulphate, cypermethrin and chlorpyrifos in this study have also been reported for the first time in human breast milk in Punjab, India. With increase in parity, HCH and DDT residue burden in donor's milk decreased. Although levels of HCH and DDT residues in breast milk samples have decreased significantly, yet estimated daily intake values for DDT are higher than the FAO/WHO permissible tolerable daily intake values for few infants. PMID:23850662

  8. Bridging Functional and Structural Cardiotoxicity Assays Using Human Embryonic Stem Cell-Derived Cardiomyocytes for a More Comprehensive Risk Assessment.

    PubMed

    Clements, Mike; Millar, Val; Williams, Angela S; Kalinka, Sian

    2015-11-01

    More relevant and reliable preclinical cardiotoxicity tests are required to improve drug safety and reduce the cost of drug development. Current in vitro testing strategies predominantly take the form of functional assays to predict the potential for drug-induced ECG abnormalities in vivo. Cardiotoxicity can also be structural in nature, so a full and efficient assessment of cardiac liabilities for new chemical entities should account for both these phenomena. As well as providing a more appropriate nonclinical model for in vitro cardiotoxicity testing, human stem cell-derived cardiomyocytes offer an integrated system to study drug impact on cardiomyocyte structure as well as function. Employing human embryonic stem cell-derived cardiacmyocytes (hESC-CMs) on 3 assay platforms with complementary insights into cardiac biology (multielectrode array assay, electrophysiology; impedance assay, cell movement/beating; and high content analysis assay, subcellular structure) we profiled a panel of 13 drugs with well characterized cardiac liabilities (Amiodarone, Aspirin, Astemizole, Axitinib, AZT, Bepridil, Doxorubicin, E-4031, Mexiletine, Rosiglitazone, Sunitinib, Sibutramine, and Verapamil). Our data show good correlations with previous studies and reported clinical observations. Using multiparameter phenotypic profiling techniques we demonstrate the dynamic relationship that exists between functional and structural toxicity, and the benefits of this more holistic approach to risk assessment. We conclude by showing for the first time how the advent of transparent MEA plate technology enables functional and structural cardiotoxic responses to be recorded from the same cell population. This approach more directly links changes in morphology of the hESC-CMs with recorded electrophysiology signatures, offering even greater insight into the wide range of potential drug impacts on cardiac physiology, with a throughput that is more amenable to early drug discovery. PMID:26259608

  9. Ecological risk assessment framework -- the NAS perspective

    SciTech Connect

    Barnthouse, L.W.

    1993-06-01

    A Workshop on Ecological Risk Assessment was held on February 26--March 1, 1991, at Airlie House, Warrenton, Virginia. In addition to presentation and discussion of the case study papers, the workshop included breakout sessions to discuss conceptual and technical aspects of ecological risk assessment. A general consensus emerged that an ecological version of the 1983 framework is desirable and feasible. The committee concluded that the 1983 human health framework could be expanded to accomodate both human health and ecological risk assessment. For general applicability to ecological assessments, the 1983 scheme requires augmentation to address some of the interfaces between science and management, primarily because of the need to focus on appropriate questions relevant to applicable environmental law and policy under different circumstances. Specifically, the scheme needs modification to address (1) the influence of legal and regulatory considerations on the initial stages of ecological risk assessment and (2) the importance of characterizing ecological risks in terms that are intelligible to risk managers. The committee`s opinion is that these augmentations are as important for human health risk assessment as they are for ecological risk assessment. This paper briefly describes the framework recommended by the Committee and compares it to EPA`s recently-published Framework for Ecological Risk Assessment.

  10. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    NASA Technical Reports Server (NTRS)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  11. Ultraviolet Radiation: Human Exposure and Health Risks.

    ERIC Educational Resources Information Center

    Tenkate, Thomas D.

    1998-01-01

    Provides an overview of human exposure to ultraviolet radiation and associated health effects as well as risk estimates for acute and chronic conditions resulting from such exposure. Demonstrates substantial reductions in health risk that can be achieved through preventive actions. Also includes a risk assessment model for skin cancer. Contains 36…

  12. Human health risk assessment, congener specific analysis and spatial distribution pattern of organochlorine pesticides (OCPs) through rice crop from selected districts of Punjab Province, Pakistan.

    PubMed

    Mumtaz, Mehvish; Qadir, Abdul; Mahmood, Adeel; Mehmood, Andleeb; Malik, Riffat Naseem; Li, Jun; Yousaf, Zubaida; Jamil, Nadia; Shaikh, Irfan Ahmed; Ali, Habib; Zhang, Gan

    2015-04-01

    To evaluate the screening level risk assessment of OCPs in rice (Oryza sativa L.) straw (n=20) and rice grains (n=20), samples were collected from different districts of Punjab Province, Pakistan. ∑OCPs' levels (ng g(-1)) in rice straw and grains ranged from 3.63 to 39.40, 2.72 to 49.89, respectively. DDTs were found predominant over the other detected OCP isomers followed by HCH and heptachlor. Results of one way ANOVA reflected no significant difference for OCPs' levels among sampling sites, except heptachlor for rice grains. ∑OCPs' concentration in rice straw samples was exceeding the minimal residual levels (MRLs) (Australian and Japanese). Results of dietary intake and risk assessment suggested that rice straw is not safe for animals to consume as fodder. Human health was suggested to have some carcinogenic risks by consumption of rice grains, however, no considerable hazardous risk (non-carcinogenic) to human health was found. PMID:25553549

  13. Description of Spreadsheet Calculations for Populating Data Tables of the Ecological Risk Assessment (Appendix B of the Human Health and Ecological Risk Assessment Document) for the Explosives Waste Treatment Facility (EWTF) at Site 300

    SciTech Connect

    Daniels, J

    2007-10-01

    This ecological risk assessment (ERA) is a supplement to the human health risk assessment (HRA) for the Explosive Waste Treatment Facility (EWTF). The EWTF is located near the center of Site 300 in a small, isolated canyon (see Figures 2 through 6 in the text). The ERA described in detail in Appendix B was prepared in accordance with guidance on currently accepted practice provided by the Human and Ecological Risk Division (HERD) at the Department of Toxic Substances Control (DSTC) of the State of California Environmental Protection Agency (CalEPA) in Sacramento, California. The technical basis for this ERA is an analysis that involves a series of screening calculations to assess each of 21 contaminants of potential ecological concern (CPECs) for its potential to produce an adverse ecological impact in particular wildlife species, including vegetation, considered representative receptors of ecological interest (RREI) in the trophic levels of the food network at Site 300. This series of screening calculations is designed to illustrate whether CPECs identified as being of possible consequence in the most conservative screening calculation actually may be of lesser or no significance when more information is considered in subsequent screening calculations.

  14. Uptake and depuration of PCB-153 in edible shrimp Palaemonetes varians and human health risk assessment.

    PubMed

    Grilo, T F; Cardoso, P G; Pato, P; Duarte, A C; Pardal, M A

    2014-03-01

    A medium-term mesocosm exposure study was conducted to elucidate bioaccumulation and depuration of polychlorinated biphenyl congener 153 (PCB-153) in edible shrimp Palaemonetes varians. Over the 15-day exposure period, shrimp under different exposure concentrations exhibited a significant increase in PCB-153 concentration compared with control organisms. Distinct bioaccumulation patterns and uptake rates were observed depending on the exposure concentrations. For low PCB-153 exposure levels (0.25μgL(-1)), accumulation followed a saturation model, reaching an apparent steady state after fifteen days exposure. For intermediate (2.5μgL(-1)) and high PCB-153 levels (25μgL(-1)), accumulation was faster and linear. In addition, the bioaccumulation rate was not proportional to PCB-153 concentration, and the bioaccumulation was higher at intermediate exposure concentrations. Regarding the depuration phase, P. varians lost up to 30% of PCB-153 after 72h and levels continued slowly to decrease until the end of the 30-d experimental period. However, PCB-153 levels in shrimp did not reach background values, and those exposed to moderate and high PCB-153 concentrations presented contamination levels much higher than the regulatory limit for human food consumption (75ngg(-1) ww for Σ6 PCB). PMID:24507133

  15. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA.

    PubMed

    Hussar, Erika; Richards, Sean; Lin, Zhi-Qing; Dixon, Robert P; Johnson, Kevin A

    2012-11-01

    South Chattanooga has been home to foundries, coke furnaces, chemical, wood preserving, tanning and textile plants for over 100 years. Most of the industries were in place before any significant development of residential property in the area. During the 1950s and 1960s, however, the government purchased inexpensive property and constructed public housing projects in South Chattanooga. Many neighborhoods that surround the Chattanooga Creek were previous dumping grounds for industry. Polycyclic aromatic hydrocarbons (PAHs) comprised the largest component of the dumping and airborne industrial emissions. To address the human exposure to these PAHs, a broad study of South Chattanooga soil contaminant concentrations was conducted on 20 sites across the city. Sixteen priority pollutant PAHs were quantified at two depths (0-10cm and 10-20cm) and compared against reference site soils, as well as to soils from industrially-impacted areas in Germany, China, and the US. From these data, the probability that people would encounter levels exceeding EPA Residential Preliminary Remediation Goals (PRG) was calculated. Results indicate that South Chattanooga soils have relatively high concentrations of total PAHs, specifically Benzo[a]pyrene (B[a]P). These high concentrations of B[a]P were somewhat ubiquitous in South Chattanooga. Indeed, there is a high probability (88%) of encountering soil in South Chattanooga that exceeds the EPA PRG for B[a]P. However, there is a low probability (15%) of encountering a site with ∑PAHs exceeding EPA PRG guidelines. PMID:23243323

  16. Carcinogenicity and mode of action evaluation for alpha-hexachlorocyclohexane: Implications for human health risk assessment.

    PubMed

    Bradley, Ann E; Shoenfelt, Joanna L; Durda, Judi L

    2016-04-01

    Alpha-hexachlorocyclohexane (alpha-HCH) is one of eight structural isomers that have been used worldwide as insecticides. Although no longer produced or used agriculturally in the United States, exposure to HCH isomers is of continuing concern due to legacy usage and persistence in the environment. The U.S. Environmental Protection Agency (EPA) classifies alpha-HCH as a probable human carcinogen and provides a slope factor of 6.3 (mg/kg-day)(-1) for the compound, based on hepatic nodules and hepatocellular carcinomas observed in male mice and derived using a default linear approach for modeling carcinogens. EPA's evaluation, last updated in 1993, does not consider more recently available guidance that allows for the incorporation of mode of action (MOA) for determining a compound's dose-response. Contrary to the linear approach assumed by EPA, the available data indicate that alpha-HCH exhibits carcinogenicity via an MOA that yields a nonlinear, threshold dose-response. In our analysis, we conducted an MOA evaluation and dose-response analysis for alpha-HCH-induced liver carcinogenesis. We concluded that alpha-HCH causes liver tumors in rats and mice through an MOA involving increased promotion of cell growth, or mitogenesis. Based on these findings, we developed a threshold, cancer-based, reference dose (RfD) for alpha-HCH. PMID:26713892

  17. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA

    PubMed Central

    Hussar, Erika; Richards, Sean; Lin, Zhi-Qing; Dixon, Robert P.; Johnson, Kevin A.

    2012-01-01

    South Chattanooga has been home to foundries, coke furnaces, chemical, wood preserving, tanning and textile plants for over 100 years. Most of the industries were in place before any significant development of residential property in the area. During the 1950s and 1960s, however, the government purchased inexpensive property and constructed public housing projects in South Chattanooga. Many neighborhoods that surround the Chattanooga Creek were previous dumping grounds for industry. Polycyclic aromatic hydrocarbons (PAHs) comprised the largest component of the dumping and airborne industrial emissions. To address the human exposure to these PAHs, a broad study of South Chattanooga soil contaminant concentrations was conducted on 20 sites across the city. Sixteen priority pollutant PAHs were quantified at two depths (0-10cm and 10-20cm) and compared against reference site soils, as well as to soils from industrially-impacted areas in Germany, China, and the US. From these data, the probability that people would encounter levels exceeding EPA Residential Preliminary Remediation Goals (PRG) was calculated. Results indicate that South Chattanooga soils have relatively high concentrations of total PAHs, specifically Benzo[a]pyrene (B[a]P). These high concentrations of B[a]P were somewhat ubiquitous in South Chattanooga. Indeed, there is a high probability (88%) of encountering soil in South Chattanooga that exceeds the EPA PRG for B[a]P. However, there is a low probability (15%) of encountering a site with ∑PAHs exceeding EPA PRG guidelines. PMID:23243323

  18. Risk assessment of shellfish toxins.

    PubMed

    Munday, Rex; Reeve, John

    2013-11-01

    Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved. PMID:24226039

  19. Risk Assessment of Shellfish Toxins

    PubMed Central

    Munday, Rex; Reeve, John

    2013-01-01

    Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved. PMID:24226039

  20. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment.

    PubMed

    Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; Tornisielo, Valdemar Luiz; Vilca, Franz Zirena; Bittencourt-Oliveira, Maria do Carmo

    2016-10-01

    Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants. PMID:27267723

  1. Detection of dioxin-like compounds with a human cell line biomarker to assess risk

    SciTech Connect

    Anderson, J.W.; Bothner, K.

    1996-12-31

    A reporter gene system (RGS) assay, derived from a human liver cancer cell line, has been developed such that induction of the CYP1A1 gene and the combined firefly plasmid results in the production of the luminescent enzyme, luciferase. The assay consists of exposure of the cells to solvent controls, reference toxicants (TCDD), and organic extracts (dichloromethane) of water, tissue, or soil, for 6 to 18 hours, with the subsequent measurement of luminescence. Induction of this test system by such compounds as dioxins, furans, coplanar PCB congeners, and 4- to 6-ring polycyclic aromatic hydrocarbons (PAHs) infers these xenobiotics are present at levels that are potentially toxic, carcinogenic, or mutagenic to organisms. Test results show significant RGS induction from concentrations of inducer compounds, that if present in a typical 40 g sample, would be (in ng/g or ppb): 0.008 for Dioxin; 6.2--2,000 for a range of coplanar PCB congeners; 6.2--7,500 for specific PAHs; and 250 for a mixture of PAHs. Comparisons between the EPA Toxic Equivalent Factors (TEFs) and those generated from P450 RGS testing differ considerably. The TEFs for PCBs are significantly lower than those estimated by EPA. Some of the PAHs tested exhibit higher TEFs than the coplanar PCBs. RGS responses show a strong correlation with detailed chemical analyses of dioxins, furans, and PAHs of the same environmental samples. The RGS responses to dioxins and furans more closely compare with the total of all analytes than the TEQ values, produced after application of TEFs. Results presented will show that screening a wide area for the presence of the above chemicals is a cost-effective approach to rapidly determine the most appropriate samples to receive complete chemical characterization.

  2. Uncertainty in Mixtures and Cumulative Risk Assessment

    EPA Science Inventory

    Humans and environmental species are rarely exposed to single chemicals. These chemicals typically affect multiple tissues through multiple modes of action, which may depend on the dose. Mixtures risk assessment may employ dose response information from the mixture of interest,...

  3. TOXICOLOGICAL BASIS FOR DRINKING WATER RISK ASSESSMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is charged with protecting human health and the environment. Environmental protection decisions are often guided by risk assessments that are used to develop regulatory policy and other related guidance. Historically, in environmen...

  4. Risk assessment handbook

    SciTech Connect

    Farmer, F.G.; Jones, J.L.; Hunt, R.N.; Roush, M.L.; Wierman, T.E.

    1990-09-01

    The Probabilistic Risk Assessment Unit at EG G Idaho has developed this handbook to provide guidance to a facility manager exploring the potential benefit to be gained by performance of a risk assessment properly scoped to meet local needs. This document is designed to help the manager control the resources expended commensurate with the risks being managed and to assure that the products can be used programmatically to support future needs in order to derive maximum beneflt from the resources expended. We present a logical and functional mapping scheme between several discrete phases of project definition to ensure that a potential customer, working with an analyst, is able to define the areas of interest and that appropriate methods are employed in the analysis. In addition the handbook is written to provide a high-level perspective for the analyst. Previously, the needed information was either scattered or existed only in the minds of experienced analysts. By compiling this information and exploring the breadth of knowledge which exists within the members of the PRA Unit, the functional relationships between the customers' needs and the product have been established.

  5. Risk assessment handbook

    SciTech Connect

    Farmer, F.G.; Jones, J.L.; Hunt, R.N.; Roush, M.L.; Wierman, T.E.

    1990-09-01

    The Probabilistic Risk Assessment Unit at EG&G Idaho has developed this handbook to provide guidance to a facility manager exploring the potential benefit to be gained by performance of a risk assessment properly scoped to meet local needs. This document is designed to help the manager control the resources expended commensurate with the risks being managed and to assure that the products can be used programmatically to support future needs in order to derive maximum beneflt from the resources expended. We present a logical and functional mapping scheme between several discrete phases of project definition to ensure that a potential customer, working with an analyst, is able to define the areas of interest and that appropriate methods are employed in the analysis. In addition the handbook is written to provide a high-level perspective for the analyst. Previously, the needed information was either scattered or existed only in the minds of experienced analysts. By compiling this information and exploring the breadth of knowledge which exists within the members of the PRA Unit, the functional relationships between the customers` needs and the product have been established.

  6. Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia.

    PubMed

    Cheng, Wan Hee; Yap, Chee Kong

    2015-09-01

    Samples of mangrove snails Nerita lineata and surface sediments were collected from nine geographical sampling sites in Peninsular Malaysia to determine the concentrations of eight metals. For the soft tissues, the ranges of metal concentrations (μg g(-1) dry weight (dw)) were 3.49-9.02 for As, 0.69-6.25 for Cd, 6.33-25.82 for Cu, 0.71-6.53 for Cr, 221-1285 for Fe, 1.03-50.47 for Pb, and 102.7-130.7 for Zn while Hg as 4.00-64.0 μg kg(-1) dw(-1). For sediments, the ranges were 21.81-59.49 for As, 1.11-2.00 for Cd, 5.59-28.71 for Cu, 18.93-62.91 for Cr, 12973-48916 for Fe, 25.36-172.57 for Pb, and 29.35-130.34 for Zn while for Hg as 2.66-312 μg kg(-1) dw(-1). To determine the ecological risks on the surface habitat sediments, sediment quality guidelines (SQGs), the geochemical indices, and potential ecological risk index (PERI) were used. Based on the SQGs, all the metals investigated were most unlikely to cause any adverse effects. Based on geoaccumulation index and enrichment factor, the sediments were also not polluted by the studied metals. The PERI values based on As, Cd, Cu, Cr, Hg, Pb and Zn in this study were found as 'low ecological risk'. In order to assess the potential health risks, the estimated daily intakes (EDI) of snails were found to be all lower than the RfD guidelines for all metals, except for Pb in some sites investigated. Furthermore, the calculated target hazard quotients (THQ) were found to be less than 1. However, the calculated total target hazard quotients (TTHQ) from all sites were found to be more than 1 for high level consumers except KPPuteh. Therefore, moderate amount of intake is advisable to avoid human health risks to the consumers. PMID:25950409

  7. Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion.

    PubMed

    de Gruijl, F R; Van der Leun, J C

    1994-10-01

    The wavelength dependency of carcinogenesis is an important factor in risk assessments pertaining to sources of ultraviolet radiation, the most important of which is the sun. This wavelength dependency cannot be measured directly in humans, but it has been measured in hairless mice, and represented in an action spectrum. An estimate of the action spectrum for humans can be produced by correcting for differences in epidermal transmission between mice and humans. This carcinogenic action spectrum for humans resembles the action spectrum for ultraviolet-induced erythema (sunburn), and results in small adjustments of earlier estimates of the effects of a stratospheric ozone depletion on skin cancer incidences. PMID:8083043

  8. Seasonal surveillance of airborne PCDD/Fs, PCBs and PCNs using passive samplers to assess human health risks.

    PubMed

    Vilavert, Lolita; Nadal, Martí; Schuhmacher, Marta; Domingo, José Luis

    2014-01-01

    This study aimed at determining the air concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) near a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain) by means of passive air sampling. Seasonal trends in airborne levels were also assessed by comparing the results of 6-month surveys conducted between spring of 2010 and autumn of 2011. These data were used to estimate exposure for the population living nearby and to evaluate the non-carcinogenic and carcinogenic risks associated to inhalation of those persistent organic pollutants (POPs). No seasonal differences were noted in POP concentrations among the sampling campaigns. The highest levels of PCDD/Fs were found in the 3rd campaign, while significantly lower levels of PCNs were found in the 4th survey. The concentrations of PCDD/F and PCB congeners, as well as those of PCN homologues, did not change significantly with time, which indicates that the MSWI does not have an important influence on the surrounding environment. The levels of POPs near the facility are at the lower part of the range, when compared with data from the scientific literature. Consequently, the current levels of POPs in ambient air around the MSWI are associated to a low human exposure to PCDD/Fs, PCBs and PCNs, which means a lack of additional health risks for the local population. In addition, passive samplers have been confirmed to be a good tool for local environmental monitoring, as well as a good method to study seasonal trends in POP concentrations in air. PMID:23973539

  9. Neurotoxicity may be an overlooked consequence of benzo[a]pyrene exposure that is relevant to human health risk assessment.

    PubMed

    Chepelev, Nikolai L; Moffat, Ivy D; Bowers, Wayne J; Yauk, Carole L

    2015-01-01

    Benzo[a]pyrene (BaP) is a well-studied environmental compound that requires metabolic activation to have a carcinogenic effect. The neurotoxicity of BaP has received considerably less attention than its carcinogenicity. Environmental exposure to BaP correlates with impaired learning and memory in adults, and poor neurodevelopment in children. We carried out a comprehensive literature review to examine the neurotoxicity of BaP. The data were used to identify potential point of departure (POD) values for cancer and neurotoxicity endpoints using benchmark dose (BMD) modelling to compare the utility of both endpoints in the risk assessment of BaP. The POD for neurotoxicity in rodents, based on a standard behavioural test (Morris water maze), was 0.025 mg BaP/kg-bw-day compared to 0.54 mg BaP/kg-bw-day for rodent forestomach carcinogenicity, suggesting that neurotoxic endpoints are more sensitive than cancer endpoints for health risks associated with BaP exposure. Using the limited number of published studies on this topic, we propose a preliminary mode of action (MOA) to explain BaP-induced neurotoxicity in rodents. The MOA includes: (1) BaP binding to the aryl hydrocarbon receptor (AHR); (2) AHR-dependent modulation of the transcription of N-methyl-d-aspartate glutamate receptor (NMDAR) subunits; (3) NMDAR-mediated loss of neuronal activity and decreased long-term potentiation; and (4) compromised learning and memory. More data are needed to explore the proposed neurotoxic MOA. In addition, we consider alternative MOAs, including the hypothesis that BaP-mediated DNA damage may lead to either carcinogenicity or neurotoxicity, depending on the tissue. Our proposed MOA is intended to serve as a basis for hypothesis testing in future studies. We emphasise that further studies are needed to validate the proposed MOA, to evaluate its human relevance, and to explore other potential mechanisms of BaP neurotoxicity. PMID:26041267

  10. Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon.

    PubMed

    Castilhos, Zuleica; Rodrigues-Filho, Saulo; Cesar, Ricardo; Rodrigues, Ana Paula; Villas-Bôas, Roberto; de Jesus, Iracina; Lima, Marcelo; Faial, Kleber; Miranda, Antônio; Brabo, Edilson; Beinhoff, Christian; Santos, Elisabeth

    2015-08-01

    Mercury (Hg) contamination is an issue of concern in the Amazon region due to potential health effects associated with Hg exposure in artisanal gold mining areas. The study presents a human health risk assessment associated with Hg vapor inhalation and MeHg-contaminated fish ingestion, as well as Hg determination in urine, blood, and hair, of human populations (about 325 miners and 321 non-miners) from two gold mining areas in the Brazilian Amazon (São Chico and Creporizinho, Pará State). In São Chico and Creporizinho, 73 fish specimens of 13 freshwater species, and 161 specimens of 11 species, were collected for total Hg determination, respectively. The hazard quotient (HQ) is a risk indicator which defines the ratio of the exposure level and the toxicological reference dose and was applied to determine the threat of MeHg exposure. The mean Hg concentrations in fish from São Chico and Creporizinho were 0.83 ± 0.43 and 0.36 ± 0.33 μg/g, respectively. More than 60 and 22 % of fish collected in São Chico and Creporizinho, respectively, were above the Hg limit (0.5 μg/g) recommended by WHO for human consumption. For all sampling sites, HQ resulted from 1.5 to 28.5, except for the reference area. In Creporizinho, the values of HQ are close to 2 for most sites, whereas in São Chico, there is a hot spot of MeHg contamination in fish (A2-São Chico Reservoir) with the highest risk level (HQ = 28) associated with its human consumption. Mean Hg concentrations in urine, blood, and hair samples indicated that the miners group (in São Chico: urine = 17.37 μg/L; blood = 27.74 μg/L; hair = 4.50 μg/g and in Creporizinho: urine = 13.75 μg/L; blood = 25.23 μg/L; hair: 4.58 μg/g) was more exposed to mercury compared to non-miners (in São Chico: urine = 5.73 μg/L; blood = 16.50 μg/L; hair = 3.16 μg/g and in Creporizinho: urine = 3.91 μg/L; blood = 21.04 μg/L, hair = 1.88 μg/g). These high Hg levels (found

  11. Global ozone and air quality: a multi-model assessment of risks to human health and crops

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Gauss, M.; van Dingenen, R.; Dentener, F. J.; Emberson, L.; Fiore, A. M.; Schultz, M. G.; Stevenson, D. S.; Ashmore, M. R.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Butler, T.; Drevet, J.; Eskes, H.; Hauglustaine, D. A.; Isaksen, I. S. A.; Horowitz, L. W.; Krol, M.; Lamarque, J. F.; Lawrence, M. G.; van Noije, T.; Pyle, J.; Rast, S.; Rodriguez, J.; Savage, N.; Strahan, S.; Sudo, K.; Szopa, S.; Wild, O.

    2008-02-01

    Within ACCENT, a European Network of Excellence, eighteen atmospheric models from the U.S., Europe, and Japan calculated present (2000) and future (2030) concentrations of ozone at the Earth's surface with hourly temporal resolution. Comparison of model results with surface ozone measurements in 14 world regions indicates that levels and seasonality of surface ozone in North America and Europe are characterized well by global models, with annual average biases typically within 5-10 nmol/mol. However, comparison with rather sparse observations over some regions suggest that most models overestimate annual ozone by 15-20 nmol/mol in some locations. Two scenarios from the International Institute for Applied Systems Analysis (IIASA) and one from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) have been implemented in the models. This study focuses on changes in near-surface ozone and their effects on human health and vegetation. Different indices and air quality standards are used to characterise air quality. We show that often the calculated changes in the different indices are closely inter-related. Indices using lower thresholds are more consistent between the models, and are recommended for global model analysis. Our analysis indicates that currently about two-thirds of the regions considered do not meet health air quality standards, whereas only 2-4 regions remain below the threshold. Calculated air quality exceedances show moderate deterioration by 2030 if current emissions legislation is followed and slight improvements if current emissions reduction technology is used optimally. For the "business as usual" scenario severe air quality problems are predicted. We show that model simulations of air quality indices are particularly sensitive to how well ozone is represented, and improved accuracy is needed for future projections. Additional measurements are needed to allow a more quantitative assessment of the risks to

  12. Assessing the risk of human granulocytic anaplasmosis and lyme borreliosis after a tick bite in Bavaria, Germany.

    PubMed

    von Wissmann, Beatrix; Hautmann, Wolfgang; Sing, Andreas; Hizo-Teufel, Cecilia; Fingerle, Volker

    2015-10-01

    To date, only isolated incidences of human granulocytic anaplasmosis (HGA) have been reported in Europe. However, entomological studies in Bavaria, Germany showed a prevalence of Anaplasma phagocytophilum of between 2 and 9.5% in the tick vector Ixodes ricinus. In this study we assessed the risk of pathogenic A. phagocytophilum infection after a tick bite in Bavaria. The seroprevalence of anti-Borrelia burgdorferi sensu lato (s.l.) antibodies was investigated as an indicator of past exposure, seroconversion as actual exposure of participants to ticks. Patients with a tick bite in the preceding four weeks were recruited by participating doctors. Questionnaires on demographics, tick exposure and clinical signs were completed by patients and doctors, respectively. Two blood samples, taken at an interval of two weeks, were tested for antibodies against A. phagocytophilum and B. burgdorferi s.l. One of 107 recruited patients showed serological evidence of an acute infection of A. phagocytophilum but had no clinical signs. Four out of six patients with serological evidence of an acute B. burgdorferi s.l. infection, presented with erythema migrans. A seroprevalence of 7.5% for A. phagocytophilum and 13.1% for B. burgdorferi s.l. was detected. The comparatively high seroprevalence of B. burdorferi s.l. and A. phagocytophilum antibodies indicate frequent past exposure of participants to ticks. The finding of one acute infection of A. phagocytophilum in the absence of clinical signs, supports entomological evidence that the strains of A. phagocytophilum predominantly present in the Bavarian tick population may cause transient infections but are of low pathogenicity in humans. PMID:26338146

  13. Assessing potential health risks to fish and humans using mercury concentrations in inland fish from across western Canada and the United States.

    PubMed

    Lepak, Jesse M; Hooten, Mevin B; Eagles-Smith, Collin A; Tate, Michael T; Lutz, Michelle A; Ackerman, Joshua T; Willacker, James J; Jackson, Allyson K; Evers, David C; Wiener, James G; Pritz, Colleen Flanagan; Davis, Jay

    2016-11-15

    Fish represent high quality protein and nutrient sources, but Hg contamination is ubiquitous in aquatic ecosystems and can pose health risks to fish and their consumers. Potential health risks posed to fish and humans by Hg contamination in fish were assessed in western Canada and the United States. A large compilation of inland fish Hg concentrations was evaluated in terms of potential health risk to the fish themselves, health risk to predatory fish that consume Hg contaminated fish, and to humans that consume Hg contaminated fish. The probability that a fish collected from a given location would exceed a Hg concentration benchmark relevant to a health risk was calculated. These exceedance probabilities and their associated uncertainties were characterized for fish of multiple size classes at multiple health-relevant benchmarks. The approach was novel and allowed for the assessment of the potential for deleterious health effects in fish and humans associated with Hg contamination in fish across this broad study area. Exceedance probabilities were relatively common at low Hg concentration benchmarks, particularly for fish in larger size classes. Specifically, median exceedances for the largest size classes of fish evaluated at the lowest Hg concentration benchmarks were 0.73 (potential health risks to fish themselves), 0.90 (potential health risk to predatory fish that consume Hg contaminated fish), and 0.97 (potential for restricted fish consumption by humans), but diminished to essentially zero at the highest benchmarks and smallest fish size classes. Exceedances of benchmarks are likely to have deleterious health effects on fish and limit recommended amounts of fish humans consume in western Canada and the United States. Results presented here are not intended to subvert or replace local fish Hg data or consumption advice, but provide a basis for identifying areas of potential health risk and developing more focused future research and monitoring efforts. PMID

  14. Assessing potential health risks to fish and humans using mercury concentrations in inland fish from across western Canada and the United States

    USGS Publications Warehouse

    Lepak, Jesse M; Hooten, Mevin B.; Eagles-Smith, Collin A.; Tate, Michael T.; Lutz, Michelle A.; Ackerman, Joshua T.; Willacker, James J.; Jackson, Allyson K.; Evers, David C.; Wiener, James G.; Pritz, Colleen Flanagan; Davis, Jay

    2016-01-01

    Fish represent high quality protein and nutrient sources, but Hg contamination is ubiquitous in aquatic ecosystems and can pose health risks to fish and their consumers. Potential health risks posed to fish and humans by Hg contamination in fish were assessed in western Canada and the United States. A large compilation of inland fish Hg concentrations was evaluated in terms of potential health risk to the fish themselves, health risk to predatory fish that consume Hg contaminated fish, and to humans that consume Hg contaminated fish. The probability that a fish collected from a given location would exceed a Hg concentration benchmark relevant to a health risk was calculated. These exceedance probabilities and their associated uncertainties were characterized for fish of multiple size classes at multiple health-relevant benchmarks. The approach was novel and allowed for the assessment of the potential for deleterious health effects in fish and humans associated with Hg contamination in fish across this broad study area. Exceedance probabilities were relatively common at low Hg concentration benchmarks, particularly for fish in larger size classes. Specifically, median exceedances for the largest size classes of fish evaluated at the lowest Hg concentration benchmarks were 0.73 (potential health risks to fish themselves), 0.90 (potential health risk to predatory fish that consume Hg contaminated fish), and 0.97 (potential for restricted fish consumption by humans), but diminished to essentially zero at the highest benchmarks and smallest fish size classes. Exceedances of benchmarks are likely to have deleterious health effects on fish and limit recommended amounts of fish humans consume in western Canada and the United States. Results presented here are not intended to subvert or replace local fish Hg data or consumption advice, but provide a basis for identifying areas of potential health risk and developing more focused future research and monitoring efforts.

  15. Probabilistic human health risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk statistics, hot spots, and preferential channels

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernández-Garcia, Daniel; Barros, Felipe P. J.

    2015-06-01

    The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and the need to develop and employ models that can predict the impact of groundwater contamination on human health risk under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases. However, natural attenuation can lead to the production of daughter species of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health depends on the interplay between the complex structure of the geological media and the toxicity of each pollutant byproduct. This work addresses human health risk for chemical mixtures resulting from the sequential degradation of a contaminant (such as a chlorinated solvent) under uncertainty through high-resolution three-dimensional numerical simulations. We systematically investigate the interaction between aquifer heterogeneity, flow connectivity, contaminant injection model, and chemical toxicity in the probabilistic characterization of health risk. We illustrate how chemical-specific travel times control the regime of the expected risk and its corresponding uncertainties. Results indicate conditions where preferential flow paths can favor the reduction of the overall risk of the chemical mixture. The overall human risk response to aquifer connectivity is shown to be nontrivial for multispecies transport. This nontriviality is a result of the interaction between aquifer heterogeneity and chemical toxicity. To quantify the joint effect of connectivity and toxicity in health risk, we propose a toxicity-based Damköhler number. Furthermore, we provide a statistical characterization in terms of low-order moments and the probability density function of the individual and total risks.

  16. Metabolism, variability and risk assessment.

    PubMed

    Dorne, J L C M

    2010-02-01

    improve the risk assessment of chemical mixtures were explored (1) harmonization of the use of uncertainty factors for human and ecological risk assessment using mechanistic descriptors (2) use of toxicokinetics interaction data to derive UFs for chemical mixtures. The use of toxicokinetics data in risk assessment are discussed together with future approaches including sound statistical approaches to optimise predictability of models and recombinant technology/toxicokinetics assays to identify metabolic routes for chemicals and screen mixtures of environmental health importance. PMID:19932147

  17. Risk Assessment: Implications for Biologic Education.

    ERIC Educational Resources Information Center

    Ost, David H.

    1995-01-01

    Discusses risk assessment, including risk assessment as a modeling process, models and social values, political decision making, the public, and risk assessment techniques in the biology classroom. (MKR)

  18. EVALUATION AND INTERPRETATION OF NEURODEVELOPMENTAL ENDPOINTS FOR HUMAN HEALTH RISK ASSESSMENT -- POSITIVE CONTROL STUDIES, NORMAL VARIABILITY AND STATISTICAL ISSUES.

    EPA Science Inventory

    ILSI Research Foundation/Risk Science Institute convened an expert working group to assess the lessons learned from the implementation of the EPA Developmental Neurotoxicity (DNT) Guideline and provide guidance for future use. The group prepared manuscripts in five areas: public ...

  19. A PERSPECTIVE ON THE RISK ASSESSMENT PROCESS FOR ENDOCRINE-DISRUPTIVE EFFECTS ON WILDLIFE AND HUMAN HEALTH

    EPA Science Inventory

    The topic of endocrine disrupting chemicals (EDCs) presents significant issues to the risk assessment process. . . We have a working definition of an EDC, that provides a starting point for considering what chemicals are of concern. We also have an understanding of the important ...

  20. Defense Programs Transportation Risk Assessment

    SciTech Connect

    Clauss, D.B.

    1994-08-01

    This paper provides an overview of the methodology used in a probabilistic transportation risk assessment conducted to assess the probabilities and consequences of inadvertent dispersal of radioactive materials arising from severe transportation accidents. The model was developed for the Defense Program Transportation Risk Assessment (DPTRA) study. The analysis incorporates several enhancements relative to previous risk assessments of hazardous materials transportation including newly-developed statistics on the frequencies and severities of tractor semitrailer accidents and detailed route characterization using the 1990 Census data.

  1. Site-Dependent Reference Point Microindentation Complements Clinical Measures for Improved Fracture Risk Assessment at the Human Femoral Neck.

    PubMed

    Jenkins, Thomas; Coutts, Louise V; D'Angelo, Stefania; Dunlop, Douglas G; Oreffo, Richard O C; Cooper, Cyrus; Harvey, Nicholas C; Thurner, Phillipp J

    2016-01-01

    In contrast to traditional approaches to fracture risk assessment using clinical risk factors and bone mineral density (BMD), a new technique, reference point microindentation (RPI), permits direct assessment of bone quality; in vivo tibial RPI measurements appear to discriminate patients with a fragility fracture from controls. However, it is unclear how this relates to the site of the most clinically devastating fracture, the femoral neck, and whether RPI provides information complementary to that from existing assessments. Femoral neck samples were collected at surgery after low-trauma hip fracture (n = 46; 17 male; aged 83 [interquartile range 77-87] years) and compared, using RPI (Biodent Hfc), with 16 cadaveric control samples, free from bone disease (7 male; aged 65 [IQR 61-74] years). A subset of fracture patients returned for dual-energy X-ray absorptiometry (DXA) assessment (Hologic Discovery) and, for the controls, a micro-computed tomography setup (HMX, Nikon) was used to replicate DXA scans. The indentation depth was greater in femoral neck samples from osteoporotic fracture patients than controls (p < 0.001), which persisted with adjustment for age, sex, body mass index (BMI), and height (p < 0.001) but was site-dependent, being less pronounced in the inferomedial region. RPI demonstrated good discrimination between fracture and controls using receiver-operating characteristic (ROC) analyses (area under the curve [AUC] = 0.79 to 0.89), and a model combining RPI to clinical risk factors or BMD performed better than the individual components (AUC = 0.88 to 0.99). In conclusion, RPI at the femoral neck discriminated fracture cases from controls independent of BMD and traditional risk factors but dependent on location. The clinical RPI device may, therefore, supplement risk assessment and requires testing in prospective cohorts and comparison between the clinically accessible tibia and the femoral neck. © 2015 American Society for Bone and Mineral

  2. La Conchita Landslide Risk Assessment

    NASA Astrophysics Data System (ADS)

    Kropp, A.; Johnson, L.; Magnusen, W.; Hitchcock, C. S.

    2009-12-01

    Following the disastrous landslide in La Conchita in 2005 that resulted in ten deaths, the State of California selected our team to prepare a risk assessment for a committee of key stakeholders. The stakeholders represented the State of California, Ventura County, members of the La Conchita community, the railroad, and the upslope ranch owner (where the slide originated); a group with widely varying views and interests. Our team was charged with characterizing the major hazards, developing a series of mitigation concepts, evaluating the benefits and costs of mitigation, and gathering stakeholder input throughout the process. Two unique elements of the study were the methodologies utilized for the consequence assessment and for the decision-making framework. La Conchita is exposed to multiple slope hazards, each with differing geographical distributions, as well as depth and velocity characteristics. Three consequence matrices were developed so that the potential financial losses, structural vulnerabilities, and human safety exposure could be evaluated. The matrices utilized semi-quantitative loss evaluations (both financial and life safety) based on a generalized understanding of likely vulnerability and hazard characteristics. The model provided a quantitative estimate of cumulative losses over a 50-year period, including losses of life based on FEMA evaluation criteria. Conceptual mitigation options and loss estimates were developed to provide a range of risk management solutions that were feasible from a cost-benefit standpoint. A decision tree approach was adopted to focus on fundamental risk management questions rather than on specific outcomes since the committee did not have a consensus view on the preferred solution. These questions included: 1. Over what time period can risks be tolerated before implementation of decisions? 2. Whose responsibility is it to identify a workable risk management solution? 3. Who will own the project? The decision tree

  3. Risk Factor Assessment Branch (RFAB)

    Cancer.gov

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  4. Assessment of Industry-Induced Urban Human Health Risks Related to Benzo[a]pyrene based on a Multimedia Fugacity Model: Case Study of Nanjing, China

    PubMed Central

    Xu, Linyu; Song, Huimin; Wang, Yan; Yin, Hao

    2015-01-01

    Large amounts of organic pollutants emitted from industries have accumulated and caused serious human health risks, especially in urban areas with rapid industrialization. This paper focused on the carcinogen benzo[a]pyrene (BaP) from industrial effluent and gaseous emissions, and established a multi-pathway exposure model based on a Level IV multimedia fugacity model to analyze the human health risks in a city that has undergone rapid industrialization. In this study, GIS tools combined with land-use data was introduced to analyze smaller spatial scales so as to enhance the spatial resolution of the results. An uncertainty analysis using a Monte Carlo simulation was also conducted to illustrate the rationale of the probabilistic assessment mode rather than deterministic assessment. Finally, the results of the case study in Nanjing, China indicated the annual average human cancer risk induced by local industrial emissions during 2002–2008 (lowest at 1.99×10–6 in 2008 and highest at 3.34×10–6 in 2004), which was lower than the USEPA prescriptive level (1×10–6–1×10–4) but cannot be neglected in the long term.The study results could not only instruct the BaP health risk management but also help future health risk prediction and control. PMID:26035663

  5. Assessment of Industry-Induced Urban Human Health Risks Related to Benzo[a]pyrenebased on a Multimedia Fugacity Model: Case Study of Nanjing, China.

    PubMed

    Xu, Linyu; Song, Huimin; Wang, Yan; Yin, Hao

    2015-06-01

    Large amounts of organic pollutants emitted from industries have accumulated and caused serious human health risks, especially in urban areas with rapid industrialization. This paper focused on the carcinogen benzo[a]pyrene (BaP) from industrial effluent and gaseous emissions, and established a multi-pathway exposure model based on a Level IV multimedia fugacity model to analyze the human health risks in a city that has undergone rapid industrialization. In this study, GIS tools combined with land-use data was introduced to analyze smaller spatial scales so as to enhance the spatial resolution of the results. An uncertainty analysis using a Monte Carlo simulation was also conducted to illustrate the rationale of the probabilistic assessment mode rather than deterministic assessment. Finally, the results of the case study in Nanjing, China indicated the annual average human cancer risk induced by local industrial emissions during 2002-2008 (lowest at 1.99x10(-6) in 2008 and highest at 3.34x10(-6) in 2004), which was lower than the USEPA prescriptive level (1x10(-6)-1x10(-4)) but cannot be neglected in the long term. The study results could not only instruct the BaP health risk management but also help future health risk prediction and control. PMID:26035663

  6. NANOTECHNOLOGY RISK ASSESSMENT CASE STUDY WORKSHOPS

    EPA Science Inventory

    Nanotechnology is expected to present both benefits and risks to human health and the environment. The assessment of risks related to nanotechnology requires information on the potential for exposure to, and adverse effects of, nanomaterials and their by-products. To help ensure...

  7. FRAMEWORK FOR INORGANIC METALS RISK ASSESSMENT

    EPA Science Inventory

    The EPA has prepared a framework to guide risk assessors in assessing human and ecological risks of inorganic metals. Metals and metal compounds have properties not generally encountered with organic chemicals. For example, metals are neither created nor destroyed by biological a...

  8. Risks, risk assessment and risk competence in toxicology

    PubMed Central

    Stahlmann, Ralf; Horvath, Aniko

    2015-01-01

    Understanding the toxic effects of xenobiotics requires sound knowledge of physiology and biochemistry. The often described lack of understanding pharmacology/toxicology is therefore primarily caused by the general absence of the necessary fundamental knowledge. Since toxic effects depend on exposure (or dosage) assessing the risks arising from toxic substances also requires quantitative reasoning. Typically public discussions nearly always neglect quantitative aspects and laypersons tend to disregard dose-effect-relationships. One of the main reasons for such disregard is the fact that exposures often occur at extremely low concentrations that can only be perceived intellectually but not by the human senses. However, thresholds in the low exposure range are often scientifically disputed. At the same time, ignorance towards known dangers is wide-spread. Thus, enhancing the risk competence of laypersons will have to be initially restricted to increasing the awareness of existing problems. PMID:26195922

  9. Integrating Risk Context into Risk Assessments: The Risk Context Scale

    ERIC Educational Resources Information Center

    Kroner, Daryl G.; Gray, Andrew L.; Goodrich, Ben

    2013-01-01

    The context in which offenders are released is an important component of conducting risk assessments. A sample of 257 supervised male parolees were followed in the community ("M" = 870 days) after an initial risk assessment. Drawing on community-based information, the purpose of this study was to evaluate the recently developed Risk Context Scale.…

  10. EXPOSURE ASSESSMENT: INPUT INTO RISK ASSESSMENT

    EPA Science Inventory

    The validity of a risk assessment can be no better than that of the exposure assessment upon which it is based. he general paucity of relevant exposure data, combined with the limited appreciation by most risk assessors of the critical dimensions and metrics of exposure, often le...

  11. Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh.

    PubMed

    Ahmed, Md Kawser; Baki, Mohammad Abdul; Islam, Md Saiful; Kundu, Goutam Kumar; Habibullah-Al-Mamun, Md; Sarkar, Santosh Kumar; Hossain, Md Muzammel

    2015-10-01

    Although fish, crustacean, and shellfish are significant sources of protein, they are currently affected by rapid industrialization, resulting in increased concentrations of heavy metals. Accumulation of heavy metals (V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, and Pb) and associated human health risk were investigated in three fish species, namely Ailia coila, Gagata youssoufi, and Mastacembelus pancalus; one crustacean (prawn), Macrobrachium rosenbergii; and one Gastropoda, Indoplanorbis exustus, collected from the Buriganga River, Bangladesh. Samples were collected from the professional fishermen. Cu was the most accumulated metal in M. rosenbergii. Ni, As, Ag, and Sb were in relatively lower concentrations, whereas relatively higher accumulation of Cr, Mn, Zn, and Se were recorded. Mn, Zn, and Pb were present in higher concentrations than the guidelines of various authorities. There were significant differences in metal accumulation among different fish, prawn, or shellfish species. Target hazard quotient (THQ) and target cancer risk (TR) were calculated to estimate the non-carcinogenic and carcinogenic health risks, respectively. The THQ for individual heavy metals were below 1 suggesting no potential health risk. But combined impact, estimated by hazard index (HI), suggested health risk for M. pancalus consumption. Although consumption of fish at current accumulation level is safe but continuous and excess consumption for a life time of more than 70 years has probability of target cancer risk. PMID:26044144

  12. Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk.

    PubMed Central

    Mauderly, J L

    1997-01-01

    Rats and other rodents are exposed by inhalation to identify agents that might present hazards for lung cancer in humans exposed by inhalation. In some cases, the results are used in attempts to develop quantitative estimates of human lung cancer risk. This report reviews evidence for the usefulness of the rat for evaluation of lung cancer hazards from inhaled particles. With the exception of nickel sulfate, particulate agents thought to be human lung carcinogens cause lung tumors in rats exposed by inhalation. The rat is more sensitive to carcinogenesis from nonfibrous particles than mice or Syrian hamsters, which have both produced false negatives. However, rats differ from mice and nonhuman primates in both the pattern of particle retention in the lung and alveolar epithelial hyperplastic responses to chronic particle exposure. Present evidence warrants caution in extrapolation from the lung tumor response of rats to inhaled particles to human lung cancer hazard, and there is considerable uncertainty in estimating unit risks for humans from rat data. It seems appropriate to continue using rats in inhalation carcinogenesis assays of inhaled particles, but the upper limit of exposure concentrations must be set carefully to avoid false-positive results. A positive finding in both rats and mice would give greater confidence that an agent presents a carcinogenic hazard to man, and both rats and mice should be used if the agent is a gas or vapor. There is little justification for including Syrian hamsters in assays of the intrapulmonary carcinogenicity of inhaled agents. PMID:9400748

  13. Potential human health risk assessment of trace metals via the consumption of marine fish in Persian Gulf.

    PubMed

    Naji, Abolfazl; Khan, Farhan R; Hashemi, Seyed Hassan

    2016-08-15

    This study was carried out to evaluate the concentration of trace metals (Cd, Cu, Ni, Pb and Zn) in the muscle of four fish species from the Persian Gulf. Trace metals were analyzed using atomic absorption spectroscopy and consumption rates advisory for minimizing chronic systemic effects in children and adults were estimated. The metals concentrations in analyzed fish samples were lower than legal limits. Cadmium target hazard quotient values suggested that the threshold to avoid the potential risk for children health is an exposure level lower than 3 meals per week. Hazard index values based on four metals (not including Pb) for the child age class were higher than those of the adult age class, suggesting that children may suffer from a higher health risk. This study provides information about the consumption limits of certain metals, in particular Cd, necessary for minimizing potential health risks resulting from human consumption. PMID:27193506

  14. Information needs for risk assessment

    SciTech Connect

    DeRosa, C.T.; Choudhury, H.; Schoeny, R.S.

    1990-12-31

    Risk assessment can be thought of as a conceptual approach to bridge the gap between the available data and the ultimate goal of characterizing the risk or hazard associated with a particular environmental problem. To lend consistency to and to promote quality in the process, the US Environmental Protection Agency (EPA) published Guidelines for Risk Assessment of Carcinogenicity, Developmental Toxicity, Germ Cell Mutagenicity and Exposure Assessment, and Risk Assessment of Chemical Mixtures. The guidelines provide a framework for organizing the information, evaluating data, and for carrying out the risk assessment in a scientifically plausible manner. In the absence of sufficient scientific information or when abundant data are available, the guidelines provide alternative methodologies that can be employed in the risk assessment. 4 refs., 3 figs., 2 tabs.

  15. Risk assessment of carcinogens in food

    SciTech Connect

    Barlow, Susan

    2010-03-01

    Approaches for the risk assessment of carcinogens in food have evolved as scientific knowledge has advanced. Early methods allowed little more than hazard identification and an indication of carcinogenic potency. Evaluation of the modes of action of carcinogens and their broad division into genotoxic and epigenetic (non-genotoxic, non-DNA reactive) carcinogens have played an increasing role in determining the approach followed and provide possibilities for more detailed risk characterisation, including provision of quantitative estimates of risk. Reliance on experimental animal data for the majority of risk assessments and the fact that human exposures to dietary carcinogens are often orders of magnitude below doses used in experimental studies has provided a fertile ground for discussion and diverging views on the most appropriate way to offer risk assessment advice. Approaches used by national and international bodies differ, with some offering numerical estimates of potential risks to human health, while others express considerable reservations about the validity of quantitative approaches requiring extrapolation of dose-response data below the observed range and instead offer qualitative advice. Recognising that qualitative advice alone does not provide risk managers with information on which to prioritise the need for risk management actions, a 'margin of exposure' approach for substances that are both genotoxic and carcinogenic has been developed, which is now being used by the World Health Organization and the European Food Safety Authority. This review describes the evolution of risk assessment advice on carcinogens and discusses examples of ways in which carcinogens in food have been assessed in Europe.

  16. Probabilistic Risk Assessment: A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Probabilistic risk analysis is an integration of failure modes and effects analysis (FMEA), fault tree analysis and other techniques to assess the potential for failure and to find ways to reduce risk. This bibliography references 160 documents in the NASA STI Database that contain the major concepts, probabilistic risk assessment, risk and probability theory, in the basic index or major subject terms, An abstract is included with most citations, followed by the applicable subject terms.

  17. Prediction of the bioaccumulation of PAHs in surface sediments of Bohai Sea, China and quantitative assessment of the related toxicity and health risk to humans.

    PubMed

    Li, Jiafu; Dong, Han; Xu, Xiang; Han, Bin; Li, Xianguo; Zhu, Chenjian; Han, Chen; Liu, Shaopeng; Yang, Dandan; Xu, Qian; Zhang, Dahai

    2016-03-15

    Assessing the health risk of PAHs in sediments was quite difficult because sediment occurred in sea floor, and it was very hard to contact with them directly for humans. This study was attempted to reveal the relationship between concentrations of PAHs in surface sediments and health risk of seafood consumers. The transfer (bioaccumulation) of PAHs from surface sediment into benthic organisms was predicted. Source contributions to PAHs and related toxicity and health risks (from intake of PAHs-contaminated benthic organisms) were studied based on PMF model and Monte Carlo simulation, respectively. Total concentrations of PAHs (TPAHs) ranged from 149.40 to 1211.97 ng g(-1) in sediments of Bohai Sea (BS), China. Petroleum and vehicular emission, coal combustion and coke oven constituted 40.0%, 32.2% and 27.8% of PAHs, respectively, but contributed 53.0%, 22.8% and 24.2% of toxicity posed by PAHs in sediment. For children, teens and adults, the 95th percentile carcinogenic and non-carcinogenic risks were below the threshold values of 10(-6) and 1.0, respectively, suggesting no potential health risk. Sensitivity analysis suggested that exposure duration (ED) and PAH concentrations (CS) were the two most sensitive parameters in risk assessment. The results provided a method to evaluate the quality of sediments and the potential health risk related to PAHs in marine sediments. PMID:26856644

  18. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis.

    PubMed

    Liu, Xingmei; Song, Qiujin; Tang, Yu; Li, Wanlu; Xu, Jianming; Wu, Jianjun; Wang, Fan; Brookes, Philip Charles

    2013-10-01

    Vegetable fields near villages in China are suffering increasing heavy metal damages from various pollution sources including agriculture, traffic, mining and Chinese typical local private family-sized industry. 268 vegetable samples which included rape, celery, cabbages, carrots, asparagus lettuces, cowpeas, tomatoes and cayenne pepper and their corresponding soils in three economically developed areas of Zhejiang Province, China were collected, and the concentrations of five heavy metals (Pb, Cd, Cr, Hg and As) in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency (US EPA) were employed to explore the potential health hazards of heavy metals in soils growing vegetables. Results showed that heavy metal contaminations in investigated vegetables and corresponding soils were significant. Pollution levels varied with metals and vegetable types. The highest mean soil concentrations of heavy metals were 70.36 mg kg(-1) Pb, 47.49 mg kg(-1) Cr, 13.51 mg kg(-1) As, 0.73 mg kg(-1) for Cd and 0.67 mg kg(-1) Hg, respectively, while the metal concentrations in vegetables and corresponding soils were poorly correlated. The health risk assessment results indicated that diet dominated the exposure pathways, so heavy metals in soil samples might cause potential harm through food-chain transfer. The total non-cancer and cancer risk results indicated that the investigated arable fields near industrial and waste mining sites were unsuitable for growing leaf and root vegetables in view of the risk of elevated intakes of heavy metals adversely affecting food safety for local residents. Chromium and Pb were the primary heavy metals posing non-cancer risks while Cd caused the greatest cancer risk. It was concluded that more effective controls should be focused on Cd and Cr to reduce pollution in this study area. PMID:23831799

  19. [Forensic assessment of violence risk].

    PubMed

    Pujol Robinat, Amadeo; Mohíno Justes, Susana; Gómez-Durán, Esperanza L

    2014-03-01

    Over the last 20 years there have been steps forward in the field of scientific research on prediction and handling different violent behaviors. In this work we go over the classic concept of "criminal dangerousness" and the more current of "violence risk assessment". We analyze the evolution of such assessment from the practice of non-structured clinical expert opinion to current actuarial methods and structured clinical expert opinion. Next we approach the problem of assessing physical violence risk analyzing the HCR-20 (Assessing Risk for Violence) and we also review the classic and complex subject of the relation between mental disease and violence. One of the most problematic types of violence, difficult to assess and predict, is sexual violence. We study the different actuarial and sexual violence risk prediction instruments and in the end we advise an integral approach to the problem. We also go through partner violence risk assessment, describing the most frequently used scales, especially SARA (Spouse Assault Risk Assessment) and EPV-R. Finally we give practical advice on risk assessment, emphasizing the importance of having maximum information about the case, carrying out a clinical examination, psychopathologic exploration and the application of one of the described risk assessment scales. We'll have to express an opinion about the dangerousness/risk of future violence from the subject and some recommendations on the conduct to follow and the most advisable treatment. PMID:24913749

  20. Concentrations and patterns of organochlorines (OCs) in various fish species from the Indus River, Pakistan: A human health risk assessment.

    PubMed

    Robinson, Timmer; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-01-15

    The present study was conducted to reveal the concentrations and patterns of organochlorines [i.e., organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs)] in freshwater fish species collected from four ecologically important sites of the Indus River i.e., Taunsa (TAU), Rahim Yar Khan (RYK), Guddu (GUD) and Sukkur (SUK). In the fish muscle tissues, concentrations of 15 OCPs (∑15OCPs) and 29 PCBs (∑29PCBs) varied between 1.93-61.9 and 0.81-44.2 ng/g wet weight (ww), respectively. Overall, the rank order of OCs was DDTs>PCBs>hexachlorocyclohexanes (HCHs)>chlordanes (CHLs). The patterns of PCBs showed maximum contribution of tri-CBs (59%). Ratios of individual HCH and DDT analytes contributing to the summed values indicated both recent and past use of these chemicals in the region, depending upon fish species. To assess the associated health risks, carcinogenic and non-carcinogenic risks were calculated through hazard ratios (HRs). For carcinogenic risk, HR was >1 at both 50th and 95th percentile concentrations, suggesting that the daily exposure to OCPs and PCBs yields a lifetime cancer risk of 1 in a million. HR for non-cancerous risk was <1 at both the percentiles, signifying no adverse effect by OCs exposure in native population. PMID:26476063

  1. Systems Toxicology: The Future of Risk Assessment

    PubMed Central

    Sauer, John Michael; Hartung, Thomas; Leist, Marcel; Knudsen, Thomas B.; Hoeng, Julia; Hayes, A. Wallace

    2016-01-01

    Risk assessment, in the context of public health, is the process of quantifying the probability of a harmful effect to individuals or populations from human activities. With increasing public health concern regarding the potential risks associated with chemical exposure, there is a need for more predictive and accurate approaches to risk assessment. Developing such an approach requires a mechanistic understanding of the process by which xenobiotic substances perturb biological systems and lead to toxicity. Supplementing the shortfalls of traditional risk assessment with mechanistic biological data has been widely discussed but not routinely implemented in the evaluation of chemical exposure. These mechanistic approaches to risk assessment have been generally referred to as systems toxicology. This Symposium Overview article summarizes 4 talks presented at the 35th Annual Meeting of the American College of Toxicology. PMID:25804424

  2. Human health risk assessment of multiple contaminants due to consumption of animal-based foods available in the markets of Shanghai, China.

    PubMed

    Lei, Bingli; Zhang, Kaiqiong; An, Jing; Zhang, Xinyu; Yu, Yingxin

    2015-03-01

    To assess the health risks due to food consumption, the human daily intake and uptake of organochlorine pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons, and toxic trace elements (mercury, chromium, cadmium, lead, and arsenic) were estimated based on the animal-based foods collected from markets in Shanghai, China. The estimated daily intake and uptake considering the contaminant bioaccessibility via single food consumption were 9.4-399 and 4.2-282 ng/kg body weight/day for adults, and 10.8-458 and 4.8-323 ng/kg body weight/day for children, respectively. These values were 0.2-104 and 0.05-58.1, and 0.2-119 and 0.06-66.6 ng/kg body weight/day via multiple food consumption for adults and children, respectively. According to the United States Environmental Protection Agency risk assessment method, the non-cancer and cancer health risks posed by the contaminants were estimated using the hazard quotient and the lifetime cancer risk method, respectively. The results showed that the combined hazard quotient values for multiple contaminants via single or multiple food consumption were below 1, suggesting that the residents in Shanghai would not experience a significant non-cancer health risk. Among the contaminants investigated, the potential non-cancer risk of methylmercury was highest. However, the combined cancer risk posed by multiple contaminants in most foods exceeded the accepted risk level of 10(-6), and inorganic arsenic was the main contributor. The risks caused by polybrominated diphenyl ethers for cancer and non-cancer effects were negligible. The cancer risk of inorganic arsenic is a matter of concern in animal-based foods from Shanghai markets. PMID:25315930

  3. Health effects of risk-assessment categories

    SciTech Connect

    Kramer, C.F.; Rybicka, K.; Knutson, A.; Morris, S.C.

    1983-10-01

    Environmental and occupational health effects associated with exposures to various chemicals are a subject of increasing concern. One recently developed methodology for assessing the health impacts of various chemical compounds involves the classification of similar chemicals into risk-assessment categories (RACs). This report reviews documented human health effects for a broad range of pollutants, classified by RACs. It complements other studies that have estimated human health effects by RAC based on analysis and extrapolation of data from animal research.

  4. Risk assessment Barter Island radar installation, Alaska

    SciTech Connect

    1995-05-05

    This document contains the baseline human health risk assessment and the ecological risk assessment (ERA) for the Barter Island Distant Early Warning (DEW) Line radar installation. Fourteen sites at the Barter Island radar installation underwent remedial investigations (RIS) during the summer of 1993. The presence of chemical contamination in the soil, sediments, and surface water at the installation was evaluated and reported in the Barter Island Remedial Investigation/Feasibility Study (RI/FS) United States Air Force 1994a. The analytical data reported in the RI/FS form the basis for the human health and ecological risk assessment. The primary contaminants of concern at the 14 sites are diesel and gasoline from past spills and/or leaks. The general location of the Barter Island radar installation is shown in Figure 1-1. The 14 sites investigated and the types of samples collected at each site are presented in Table 1-1. The purpose of the risk assessment is to evaluate the human and ecological health risks that may be associated with chemicals released to the environment at the 14 sites investigated during the RIs. The risk assessment characterizes the probability that measured concentrations of hazardous chemical substances will cause adverse effects in humans or the environment in the absence of remediation. The risk assessment will be used to determine if remediation (site cleanup) is necessary and also to rank sites for remedial action. Additionally, it will be used as a model for the risk assessment to be performed at the other DEW Line installations (Bullen Point, Oliktok Point, Point Lonely, Barrow Point, Wainwright, and Point Lay) and the Cape Lisburne radar installation. pg18. JMD.

  5. Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area.

    PubMed

    Rout, Tofan Kumar; Masto, R E; Ram, L C; George, Joshy; Padhy, Pratap Kumar

    2013-06-01

    Jharia (India) a coal mining town has been affected by the consequences of mining and associated activities. Samples of outdoor fallen dust were collected at different locations of Jharia covering four different zones: commercial, petrol pump, high traffic, and residential areas. The dust samples were analysed for different trace elements (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, and Zn). The highest concentration of the elements in the dust samples are Mn (658 mg/kg), Zn (163.6 mg/kg), Cr (75.4 mg/kg), Pb (67.8 mg/kg), Ni (66 mg/kg), Cu (56.8 mg/kg), Co (16.9 mg/kg), As (4.1 mg/kg), and Cd (0.78 mg/kg). The concentration of selenium was below detection limit. Except Cd, contents of all the other elements in the dust samples were significantly lower in the residential area. High amount of Ni (145 mg/kg) and Pb (102 mg/kg) was observed in the high traffic and petrol pump areas, respectively. The exposure risk assessment strategies are helpful in predicting the potential health risk of the trace elements in the street dust. Selected receptors for risk assessment were infants, toddlers, children, teens, and adults. The calculated hazard quotient (HQ) for lifetime exposure was <1.0 for all the elements studied, indicating no risks from these elements for adults Among the receptors, toddlers were found to be more vulnerable, with HQ for Co, Cr, and Pb > 0.1. The finding predicts potential health risk to toddlers and children. PMID:23129348

  6. Alpha 2u-globulin nephropathy: review of the cellular and molecular mechanisms involved and their implications for human risk assessment.

    PubMed Central

    Swenberg, J A

    1993-01-01

    This paper reviews what is known about the induction of alpha 2u-globulin nephropathy and carcinogenesis. This unique male-rat-specific disease is associated with exposure to an ever-increasing number of chemicals. The processes leading to nephropathy and renal cancer are among the best-understood mechanisms for nongenotoxic chemicals and strongly support that it is a male-rat-specific process that is not relevant for human risk assessment. Nevertheless, the data available for individual chemicals vary greatly. This necessitates a case-by-case analysis of the available data when determining the relevance for humans of this chemically induced renal disease in male rats. PMID:7517351

  7. Using the risk-disturbance hypothesis to assess the relative effects of human disturbance and predation risk on foraging American Oystercatchers

    USGS Publications Warehouse

    Peters, K.A.; Otis, D.L.

    2005-01-01

    The risk-disturbance hypothesis asserts that animals perceive human disturbance similar to nonlethal predation stimuli, and exhibit comparable responses in the form of optimization tradeoffs. However, few studies have examined how natural predation risk factors interact with human-disturbance stimuli to elicit such responses. We observed American Oystercatcher (Haematopus palliatus) vigilance behavior from September-December 2002 on the Cape Romain National Wildlife Refuge, South Carolina. A set of models was constructed based on 340 focal-animal samples and models revealed relationships between vigilance behavior, predator density, and boat activity. Oystercatchers increased vigilance in response to aerial predators, particularly late in the season when predator species composition was dominated by Northern Harriers (Circus cyaneus). At a broader temporal scale, oystercatchers exhibited the highest vigilance rates during simultaneous peaks in boating disturbance and Osprey (Pandion haliaetus) activity. Due to this temporal overlap of stimuli, it is difficult to interpret what may have been driving the observed increased in vigilance. Foraging rates appeared to be primarily driven by habitat and tidal stage indicating that time lost to vigilance did not effectively reduce intake. Taken together, these findings provide some support for the risk-disturbance hypothesis, underscore the sensitivity of disturbance studies to temporal scale, and draw attention to the potential confounding effects of natural predation risk. ?? The Cooper Ornithological Society 2005.

  8. Topographical Risk Assessment

    Energy Science and Technology Software Center (ESTSC)

    2002-09-24

    TRA was developed as a computer tool for the DOE Office of River Protection (ORP) that will provides the capability to visualize and rapidly understand information about the risks associated with the River protection Project (RPP). Previously, technical and programmatic risk management within ORP had relied heavily on risk lists and other techniques that presented risk information but did not place it in perspective of the overall project. This made it difficult for ORP seniormore » management to understand the risk information presented, prioritize their activities, and provide direction to ORP staff and contractors about how to manage specific risk events. The TRA visualization tool, provides the appropriate context and perspective that allows senior management to effectively manage risks. Basically, the TRA overlays information about risks associated with specific activities and their magnitudes on top of the project baseline schedule. this provides senior management with information about the magnitudes of specific risk events as well as their timing, and allows them to focus their attention and resources on the risks that merit attention and possible further action. The TRA tool can also be used to display other types of information associated with scheduled activities, such as cost to date, technical performance, schedule performance, etc. Additionally, the base of the 3-dimensional representation can be changed to other types of graphics, such as maps, process flow diagrams, etc., which allows the display of other types of informatio, such as hazards, health and safety risks, and system availability.« less

  9. A methodology of the assessment of environmental and human health risks from amine emissions from post combustion CO2 capture technology

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Manzoor, Saba; Simperler, Alexandra

    2015-04-01

    Post combustion CO2 capture (PCCC) technology in power plants using amines as solvent for CO2 capture, is one of the reduction technologies employed to combat escalating levels of CO2 in the atmosphere. However, amine solvents used for capturing CO2 produce negative emissions such as, nitrosamines and nitramines, which are suspected to be potent carcinogens. It is therefore essential to assess the atmospheric fate of these amine emissions in the atmosphere by studying their atmospheric chemistry, dispersion and transport pathways away from the source and deposition in the environment, so as to be able to assess accurately the risk posed to human health and the natural environment. An important knowledge gap until recently has been the consideration of the atmospheric chemistry of these amine emissions simultaneously with dispersion and deposition studies so as to perform reliable human health and environmental risk assessments. The authors have developed a methodology to assess the distribution of such emissions away from a post-combustion facility by studying the atmospheric chemistry of monoethanolamine, the most commonly used solvent for CO2 capture, and those of the resulting degradation amines, methylamine and dimethylamine. This was coupled with dispersion modeling calculations (Manzoor, et al., 2014; Manzoor et al,2015). Rate coefficients describing the entire atmospheric chemistry schemes of the amines studied were evaluated employing quantum chemical theoretical and kinetic modeling calculations. These coefficients were used to solve the advection-dispersion-chemical equation using an atmospheric dispersion model, ADMS 5. This methodology is applicable to any size of a power plant and at any geographical location. In this paper, the humman health risk assessment is integrated in the modelling study. The methodology is demonstrated on a case study on the UK's largest capture pilot plant, Ferrybridge CCPilot 100+, to estimate the dispersion, chemical

  10. RISK ASSESSMENT FOR BENEFITS ANALYSIS

    EPA Science Inventory

    Among the important types of information considered in decision making at the U.S. Environmental Protection Agency (EPA) are the outputs of risk assessments and benefit-cost analyses. Risk assessments present estimates of the adverse consequences of exposure to environmental poll...

  11. Cancer Risk Prediction and Assessment

    Cancer.gov

    Cancer prediction models provide an important approach to assessing risk and prognosis by identifying individuals at high risk, facilitating the design and planning of clinical cancer trials, fostering the development of benefit-risk indices, and enabling estimates of the population burden and cost of cancer.

  12. CONFOUNDERS IN INTERPRETING PATHOLOGY FOR SAFETY AND RISK ASSESSMENT

    EPA Science Inventory

    The contribution of pathology assessment to toxicity assessment is invaluable but often not clearly understood. Pathology endpoints are the central response around which human health risk assessment is frequently determined; therefore, it is important that the general toxicology ...

  13. Risk-Assessment Computer Program

    NASA Technical Reports Server (NTRS)

    Dias, William C.; Mittman, David S.

    1993-01-01

    RISK D/C is prototype computer program assisting in attempts to do program risk modeling for Space Exploration Initiative (SEI) architectures proposed in Synthesis Group Report. Risk assessment performed with respect to risk events, probabilities, and severities of potential results. Enables ranking, with respect to effectiveness, of risk-mitigation strategies proposed for exploration program architecture. Allows for fact that risk assessment in early phases of planning subjective. Although specific to SEI in present form, also used as software framework for development of risk-assessment programs for other specific uses. Developed for Macintosh(TM) series computer. Requires HyperCard(TM) 2.0 or later, as well as 2 Mb of random-access memory and System 6.0.8 or later.

  14. Risk Assessment/Management Tool

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    RAMTool performs the following: • A tool to perform facility and programmatic risk assessments, produce risk registers, develop risk management plans (RMPs), link risks to improvement/risk-reduction projects, and actively manage risks • Ability to conduct risk assessments. Ease of determination of probability and consequence based on industry standard risk matrices. Complies with site risk management performance document. Provides multiple outputs/report for required risk forms. Conduct quick risk data analysis. • Performs/calculates a facility risk factormore » (RF) and a programmatic RF. Supports project and initiative prioritization and funding in order to make solid decisions on risk reduction. Assigns responsibility and accountability at a risk owner (RO) level. Monitors and tracks progress toward completing mitigation strategies. Ability to import massive amounts of data at the push of a button. Integrates development of a Risk Management Plan (RMP) Built for ease-of-use – design, built, and used by technical/management personnel. Can be customized (functions and/or reports) for further analysis« less

  15. Risk Assessment/Management Tool

    SciTech Connect

    Carlos Castillo, Jerel Nelson

    2010-12-31

    RAMTool performs the following: • A tool to perform facility and programmatic risk assessments, produce risk registers, develop risk management plans (RMPs), link risks to improvement/risk-reduction projects, and actively manage risks • Ability to conduct risk assessments. Ease of determination of probability and consequence based on industry standard risk matrices. Complies with site risk management performance document. Provides multiple outputs/report for required risk forms. Conduct quick risk data analysis. • Performs/calculates a facility risk factor (RF) and a programmatic RF. Supports project and initiative prioritization and funding in order to make solid decisions on risk reduction. Assigns responsibility and accountability at a risk owner (RO) level. Monitors and tracks progress toward completing mitigation strategies. Ability to import massive amounts of data at the push of a button. Integrates development of a Risk Management Plan (RMP) Built for ease-of-use – design, built, and used by technical/management personnel. Can be customized (functions and/or reports) for further analysis

  16. A tiered approach for the human health risk assessment for consumption of vegetables from with cadmium-contaminated land in urban areas.

    PubMed

    Swartjes, Frank A; Versluijs, Kees W; Otte, Piet F

    2013-10-01

    Consumption of vegetables that are grown in urban areas takes place worldwide. In developing countries, vegetables are traditionally grown in urban areas for cheap food supply. In developing and developed countries, urban gardening is gaining momentum. A problem that arises with urban gardening is the presence of contaminants in soil, which can be taken up by vegetables. In this study, a scientifically-based and practical procedure has been developed for assessing the human health risks from the consumption of vegetables from cadmium-contaminated land. Starting from a contaminated site, the procedure follows a tiered approach which is laid out as follows. In Tier 0, the plausibility of growing vegetables is investigated. In Tier 1 soil concentrations are compared with the human health-based Critical soil concentration. Tier 2 offers the possibility for a detailed site-specific human health risk assessment in which calculated exposure is compared to the toxicological reference dose. In Tier 3, vegetable concentrations are measured and tested following a standardized measurement protocol. To underpin the derivation of the Critical soil concentrations and to develop a tool for site-specific assessment the determination of the representative concentration in vegetables has been evaluated for a range of vegetables. The core of the procedure is based on Freundlich-type plant-soil relations, with the total soil concentration and the soil properties as variables. When a significant plant-soil relation is lacking for a specific vegetable a geometric mean of BioConcentrationFactors (BCF) is used, which is normalized according to soil properties. Subsequently, a 'conservative' vegetable-group-consumption-rate-weighted BioConcentrationFactor is calculated as basis for the Critical soil concentration (Tier 1). The tool to perform site-specific human health risk assessment (Tier 2) includes the calculation of a 'realistic worst case' site-specific vegetable

  17. Risk Assessment and Integration Team (RAIT) Portfolio Risk Analysis Strategy

    NASA Technical Reports Server (NTRS)

    Edwards, Michelle

    2010-01-01

    Impact at management level: Qualitative assessment of risk criticality in conjunction with risk consequence, likelihood, and severity enable development of an "investment policy" towards managing a portfolio of risks. Impact at research level: Quantitative risk assessments enable researchers to develop risk mitigation strategies with meaningful risk reduction results. Quantitative assessment approach provides useful risk mitigation information.

  18. An integrated framework for health and ecological risk assessment

    SciTech Connect

    Suter, Glenn W. . E-mail: suter.glenn@epa.gov; Vermeire, Theo; Munns, Wayne R.; Sekizawa, Jun

    2005-09-01

    The worldHealth Organization's (WHO's) International Program for Chemical Safety has developed a framework for performing risk assessments that integrate the assessment of risks to human health and risks to nonhuman organisms and ecosystems. The WHO's framework recognizes that stakeholders and risk managers have their own processes that are parallel to the scientific process of risk assessment and may interact with the risk assessment at various points, depending on the context. Integration of health and ecology provides consistent expressions of assessment results, incorporates the interdependence of humans and the environment, uses sentinel organisms, and improves the efficiency and quality of assessments relative to independent human health and ecological risk assessments. The advantage of the framework to toxicologists lies in the opportunity to use understanding of toxicokinetics and toxicodynamics to inform the integrated assessment of all exposed species.

  19. Risk assessment of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shipelin, V. A.; Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanoparticles of metallic silver (Ag) are among the most widely used products of nanotechnology. Nanosized colloidal silver (NCS) is presented in many kinds of production as solutions of particles with diameter less than 100 nm. NCS is used in a variety of fields, including food supplements, medicines, cosmetics, packaging materials, disinfectants, water filters, and many others. Problems of toxicity and related safety of NCS for humans and environmental systems are recently overestimated basing on data of numerous toxicological studies in vitro and in vivo. The article discusses the results of current studies in recent years and the data of author's own experiments on studying the safety of NCS, that allows to move on to risk assessment of this nanomaterial presented in consumer products and environmental samples.

  20. Assessing health risks of synthetic vitreous fibers: an integrative approach.

    PubMed

    McClellan, R O

    1994-12-01

    This paper reviews a tiered approach to acquiring information from multiple experimental systems to understand and assess the potential human health risks of exposure to airborne synthetic fibers. The approach is grounded in the now widely accepted research-risk assessment-risk management paradigm. It involves the acquisition of information that will provide mechanistic linkages within the exposure-dose-response paradigm. It advocates the use of the inhalation route of exposure for developing relevant information for assessing human health risks and calls attention to serious problems encountered using nonphysiologic routes of administration to assess human health risks. PMID:7724844

  1. Assessing risks to ecosystem quality

    SciTech Connect

    Barnthouse, L.W.

    1995-12-31

    Ecosystems are not organisms. Because ecosystems do not reproduce, grow old or sick, and die, the term ecosystem health is somewhat misleading and perhaps should not be used. A more useful concept is ``ecosystem quality,`` which denotes a set of desirable ecosystem characteristics defined in terms of species composition, productivity, size/condition of specific populations, or other measurable properties. The desired quality of an ecosystem may be pristine, as in a nature preserve, or highly altered by man, as in a managed forest or navigational waterway. ``Sustainable development`` implies that human activities that influence ecosystem quality should be managed so that high-quality ecosystems are maintained for future generations. In sustainability-based environmental management, the focus is on maintaining or improving ecosystem quality, not on restricting discharges or requiring particular waste treatment technologies. This approach requires management of chemical impacts to be integrated with management of other sources of stress such as erosion, eutrophication, and direct human exploitation. Environmental scientists must (1) work with decision makers and the public to define ecosystem quality goals, (2) develop corresponding measures of ecosystem quality, (3) diagnose causes for departures from desired states, and (4) recommend appropriate restoration actions, if necessary. Environmental toxicology and chemical risk assessment are necessary for implementing the above framework, but they are clearly not sufficient. This paper reviews the state-of-the science relevant to sustaining the quality of aquatic ecosystems. Using the specific example of a reservoir in eastern Tennessee, the paper attempts to define roles for ecotoxicology and risk assessment in each step of the management process.

  2. Ecosystem services as assessment endpoints for ecological risk assessment.

    PubMed

    Munns, Wayne R; Rea, Anne W; Suter, Glenn W; Martin, Lawrence; Blake-Hedges, Lynne; Crk, Tanja; Davis, Christine; Ferreira, Gina; Jordan, Steve; Mahoney, Michele; Barron, Mace G

    2016-07-01

    Ecosystem services are defined as the outputs of ecological processes that contribute to human welfare or have the potential to do so in the future. Those outputs include food and drinking water, clean air and water, and pollinated crops. The need to protect the services provided by natural systems has been recognized previously, but ecosystem services have not been formally incorporated into ecological risk assessment practice in a general way in the United States. Endpoints used conventionally in ecological risk assessment, derived directly from the state of the ecosystem (e.g., biophysical structure and processes), and endpoints based on ecosystem services serve different purposes. Conventional endpoints are ecologically important and susceptible entities and attributes that are protected under US laws and regulations. Ecosystem service endpoints are a conceptual and analytical step beyond conventional endpoints and are intended to complement conventional endpoints by linking and extending endpoints to goods and services with more obvious benefit to humans. Conventional endpoints can be related to ecosystem services even when the latter are not considered explicitly during problem formulation. To advance the use of ecosystem service endpoints in ecological risk assessment, the US Environmental Protection Agency's Risk Assessment Forum has added generic endpoints based on ecosystem services (ES-GEAE) to the original 2003 set of generic ecological assessment endpoints (GEAEs). Like conventional GEAEs, ES-GEAEs are defined by an entity and an attribute. Also like conventional GEAEs, ES-GEAEs are broadly described and will need to be made specific when applied to individual assessments. Adoption of ecosystem services as a type of assessment endpoint is intended to improve the value of risk assessment to environmental decision making, linking ecological risk to human well-being, and providing an improved means of communicating those risks. Integr Environ Assess Manag

  3. A tiered approach for the human health risk assessment for consumption of vegetables from with cadmium-contaminated land in urban areas

    SciTech Connect

    Swartjes, Frank A. Versluijs, Kees W.; Otte, Piet F.

    2013-10-15

    Consumption of vegetables that are grown in urban areas takes place worldwide. In developing countries, vegetables are traditionally grown in urban areas for cheap food supply. In developing and developed countries, urban gardening is gaining momentum. A problem that arises with urban gardening is the presence of contaminants in soil, which can be taken up by vegetables. In this study, a scientifically-based and practical procedure has been developed for assessing the human health risks from the consumption of vegetables from cadmium-contaminated land. Starting from a contaminated site, the procedure follows a tiered approach which is laid out as follows. In Tier 0, the plausibility of growing vegetables is investigated. In Tier 1 soil concentrations are compared with the human health-based Critical soil concentration. Tier 2 offers the possibility for a detailed site-specific human health risk assessment in which calculated exposure is compared to the toxicological reference dose. In Tier 3, vegetable concentrations are measured and tested following a standardized measurement protocol. To underpin the derivation of the Critical soil concentrations and to develop a tool for site-specific assessment the determination of the representative concentration in vegetables has been evaluated for a range of vegetables. The core of the procedure is based on Freundlich-type plant–soil relations, with the total soil concentration and the soil properties as variables. When a significant plant–soil relation is lacking for a specific vegetable a geometric mean of BioConcentrationFactors (BCF) is used, which is normalized according to soil properties. Subsequently, a ‘conservative’ vegetable-group-consumption-rate-weighted BioConcentrationFactor is calculated as basis for the Critical soil concentration (Tier 1). The tool to perform site-specific human health risk assessment (Tier 2) includes the calculation of a ‘realistic worst case’ site-specific vegetable

  4. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility.

    PubMed

    Kirby, R Jason; Qi, Feng; Phatak, Sharangdhar; Smith, Layton H; Malany, Siobhan

    2016-08-15

    Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicity library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. PMID:27343406

  5. A risk assessment-driven quantitative comparison of gene expression profiles in PBMCs and white adipose tissue of humans and rats after isoflavone supplementation.

    PubMed

    van der Velpen, Vera; van 't Veer, Pieter; Islam, M Ariful; Ter Braak, C J F; van Leeuwen, F X Rolaf; Afman, Lydia A; Hollman, Peter C; Schouten, Evert G; Geelen, Anouk

    2016-09-01

    Quantitative insight into species differences in risk assessment is expected to reduce uncertainty and variability related to extrapolation from animals to humans. This paper explores quantification and comparison of gene expression data between tissues and species from intervention studies with isoflavones. Gene expression data from peripheral blood mononuclear cells (PBMCs) and white adipose tissue (WAT) after 8wk isoflavone interventions in postmenopausal women and ovariectomized F344 rats were used. A multivariate model was applied to quantify gene expression effects, which showed 3-5-fold larger effect sizes in rats compared to humans. For estrogen responsive genes, a 5-fold greater effect size was found in rats than in humans. For these genes, intertissue correlations (r = 0.23 in humans, r = 0.22 in rats) and interspecies correlation in WAT (r = 0.31) were statistically significant. Effect sizes, intertissue and interspecies correlations for some groups of genes within energy metabolism, inflammation and cell cycle processes were significant, but weak. Quantification of gene expression data reveals differences between rats and women in effect magnitude after isoflavone supplementation. For risk assessment, quantification of gene expression data and subsequent calculation of intertissue and interspecies correlations within biological pathways will further strengthen knowledge on comparability between tissues and species. PMID:27424125

  6. Assessment of radiological risk for marine biota and human consumers of seafood in the coast of Qingdao, China.

    PubMed

    Yang, Baolu; Ha, Yiming; Jin, Jing

    2015-09-01

    This paper reports the levels of (226)Ra, (232)Th, (40)K and (137)Cs in the edible parts of 11 different marine species collected from the Qingdao coast of China. The activities of (226)Ra, (232)Th and (40)K ranged from 0.08±0.03 to 1.65±0.60 Bq kg(-1) w.w., 0.09±0.02 to 1.44±0.10 Bq kg(-1) w.w., 26.89±1.25 to 219.25±5.61 Bq kg(-1) w.w., respectively. Artificial (137)Cs was undetectable or close to the detection limit in the biota sampled. To link radioactivity to possible impact on health, we calculated radiation doses to both the marine biota and human beings. We showed that doses in all cases were dominated by naturally occurring (40)K and that (137)Cs doses were negligible compared with (40)K-derived doses. The total doses to marine biota ranged between 16.55 and 62.41 nGy h(-1) among different biota species, which were below the benchmark level of aquatic organism. The committed effective dose to humans through seafood consumption varied from 10.55 to 36.17 μSv y(-1), and the associated lifetime cancer risks ranged from 5.93E-05 to 9.49E-05 for different age and gender groups. Both the dose and cancer risk to humans were at the acceptable range. Despite the significant amount of radionuclides released as a result of the Fukushima accident, their impact on the seafood in Qingdao coast appears to be negligible based on our measurements of concentrations of radionuclide activity and internal dose estimates. PMID:25985213

  7. Distribution of heavy metals in muscles and internal organs of Korean cephalopods and crustaceans: risk assessment for human health.

    PubMed

    Mok, Jong Soo; Kwon, Ji Young; Son, Kwang Tae; Choi, Woo Seok; Shim, Kil Bo; Lee, Tae Seek; Kim, Ji Hoe

    2014-12-01

    Samples of seven species of cephalopods and crustaceans were collected from major fish markets on the Korean coast and analyzed for mercury (Hg) using a direct Hg analyzer and for the metals cadmium (Cd), lead (Pb), chromium, silver, nickel, copper, and zinc using inductively coupled plasma mass spectrometry. The distributions of heavy metals in muscles, internal organs, and whole tissues were determined, and a risk assessment was conducted to provide information concerning consumer safety. The heavy metals accumulated to higher levels (P < 0.05) in internal organs than in muscles for all species. The mean concentrations of Cd, which had the highest concentrations of the three hazardous metals (Cd, Pb, and Hg), in all internal organs (except those of blue crab) exceeded the regulatory limits set by Korea and the European Union. The Cd concentrations in all whole tissues of squid and octopus (relatively large cephalopods), red snow crab, and snow crab exceeded the European Union limits. The estimated dietary intake of Cd, Pb, and Hg for each part of all species accounted for 1.73 to 130.57%, 0.03 to 0.39%, and 0.93 to 1.67%, respectively, of the provisional tolerable daily intake adopted by the Joint Food and Agriculture Organization and World Health Organization Expert Committee on Food Additives; the highest values were found in internal organs. The hazard index (HI) is recognized as a reasonable parameter for assessing the risk of heavy metal consumption associated with contaminated food. Because of the high HI (>1.0) of the internal organs of cephalopods and the maximum HI for whole tissue of 0.424, consumers eating internal organs or whole tissues of cephalopods could be at risk of high heavy metal exposure. Therefore, the internal organs of relatively large cephalopods and crabs (except blue crab) are unfit for consumption. However, consumption of flesh after removing internal organs is a suitable approach for decreasing exposure to harmful metals. PMID

  8. REGIONAL SCALE COMPARATIVE RISK ASSESSMENT

    EPA Science Inventory

    Regional Vulnerability Assessment (ReVA) is an approach to regional-scale ecological risk assessment that is currently under development by EPA's Office of Research and Development. The pilot assessment will be done for the mid-Atlantic region and builds on data collected for th...

  9. Use of the RISK21 roadmap and matrix: human health risk assessment of the use of a pyrethroid in bed netting

    PubMed Central

    Doe, John E.; Lander, Deborah R.; Doerrer, Nancy G.; Heard, Nina; Hines, Ronald N.; Lowit, Anna B.; Pastoor, Timothy; Phillips, Richard D.; Sargent, Dana; Sherman, James H.; Young Tanir, Jennifer; Embry, Michelle R.

    2016-01-01

    Abstract The HESI-coordinated RISK21 roadmap and matrix are tools that provide a transparent method to compare exposure and toxicity information and assess whether additional refinement is required to obtain the necessary precision level for a decision regarding safety. A case study of the use of a pyrethroid, “pseudomethrin,” in bed netting to control malaria is presented to demonstrate the application of the roadmap and matrix. The evaluation began with a problem formulation step. The first assessment utilized existing information pertaining to the use and the class of chemistry. At each stage of the step-wise approach, the precision of the toxicity and exposure estimates were refined as necessary by obtaining key data which enabled a decision on safety to be made efficiently and with confidence. The evaluation demonstrated the concept of using existing information within the RISK21 matrix to drive the generation of additional data using a value-of-information approach. The use of the matrix highlighted whether exposure or toxicity required further investigation and emphasized the need to address the default uncertainty factor of 100 at the highest tier of the evaluation. It also showed how new methodology such as the use of in vitro studies and assays could be used to answer the specific questions which arise through the use of the matrix. The matrix also serves as a useful means to communicate progress to stakeholders during an assessment of chemical use. PMID:26517449

  10. Use of the RISK21 roadmap and matrix: human health risk assessment of the use of a pyrethroid in bed netting.

    PubMed

    Doe, John E; Lander, Deborah R; Doerrer, Nancy G; Heard, Nina; Hines, Ronald N; Lowit, Anna B; Pastoor, Timothy; Phillips, Richard D; Sargent, Dana; Sherman, James H; Young Tanir, Jennifer; Embry, Michelle R

    2016-01-01

    The HESI-coordinated RISK21 roadmap and matrix are tools that provide a transparent method to compare exposure and toxicity information and assess whether additional refinement is required to obtain the necessary precision level for a decision regarding safety. A case study of the use of a pyrethroid, "pseudomethrin," in bed netting to control malaria is presented to demonstrate the application of the roadmap and matrix. The evaluation began with a problem formulation step. The first assessment utilized existing information pertaining to the use and the class of chemistry. At each stage of the step-wise approach, the precision of the toxicity and exposure estimates were refined as necessary by obtaining key data which enabled a decision on safety to be made efficiently and with confidence. The evaluation demonstrated the concept of using existing information within the RISK21 matrix to drive the generation of additional data using a value-of-information approach. The use of the matrix highlighted whether exposure or toxicity required further investigation and emphasized the need to address the default uncertainty factor of 100 at the highest tier of the evaluation. It also showed how new methodology such as the use of in vitro studies and assays could be used to answer the specific questions which arise through the use of the matrix. The matrix also serves as a useful means to communicate progress to stakeholders during an assessment of chemical use. PMID:26517449

  11. Limitations of the CLEA model when assessing human health risks from dioxins and furans in soil at an allotments site in Rochdale, NW England.

    PubMed

    Megson, David; Dack, Sarah; Moore, Michael

    2011-07-01

    Many allotments in the UK today are situated on urban brownfield areas which creates a potential human health risk from soil borne contamination. This paper looks specifically at the risks to allotment users at a site in Rochdale, UK, from polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-furans (PCDD and PCDF). A contaminated land investigation was undertaken involving the collection and analysis of 24 soil samples from the top 0.0-0.3 m of the soil profile. Homogenised egg samples were also collected and analysed from plots where poultry were kept. The concentration of PCDD and PCDF in soil at the site varied from 0.69 to 13.62 μg kg(-1); two plots out of a total of eight exceeded the soil guideline value (SGV) of 8 μg kg(-1), however all plots fell below the site specific assessment criteria (SSAC) of 15.9 μg kg(-1). Human health risks were assessed using the Environment Agency's contaminated land exposure assessment (CLEA) model. The assessment using CLEA alone did not provide enough evidence to indicate significant possibility of significant harm (SPOSH) across the entire allotment site. However, when the likely exposure from the soil was combined with potential exposure from consumption of site laid eggs, the results indicated that the potential risks could constitute SPOSH. This paper gives evidence to support the bioconcentration of PCDD and PCDF in eggs and highlights the importance of considering pollutant linkages outside the generic CLEA model. PMID:21611642

  12. Radiation Beamline Testbeds for the Simulation of Planetary and Spacecraft Environments for Human and Robotic Mission Risk Assessment

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard

    2010-01-01

    The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the

  13. Radiation beamline testbeds for the simulation of planetary and spacecraft environments for human and robotic mission risk assessment

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard

    The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the

  14. Bioavailability of Organic Solvents in soils: Input into Biologically Based Dose-Response Models for Human Risk Assessments

    SciTech Connect

    Wester, Ronald C.

    1999-06-01

    The purpose of this study was to develop methods to expose rats and humans percutaneously and to use PBPK modeling to assess the percutaneous permeability of volatile compounds from aqueous or soil exposures. To estimate dermal absorption under realistic environmental exposure conditions, a patch system was developed that allowed for the volatilization of the compounds from the soil without contamination of inhaled or exhaled breath. The end product for this research will be a tested framework for the rapid screening of real and potential exposures while simultaneously developing physiologically based pharmacokinetic (PBPK) models to comprehensively evaluate and compare exposures to volatile chemicals from either contaminated soil or water.

  15. EXPOSURE ASSESSMENT METHODOLOGIES FOR HUMANS AND ECOSYSTEMS

    EPA Science Inventory

    Scientists and risk assessment experts are developing approaches to estimate exposure of human populations and ecosystems to environmental contaminants. cological scientists are exploring methodologies for estimating the exposure of ecosystems and their subdivisions to environmen...

  16. Benchmark dose risk assessment for formaldehyde using airflow modeling and a single-compartment, DNA-protein cross-link dosimetry model to estimate human equivalent doses.

    PubMed

    Schlosser, Paul M; Lilly, Patrick D; Conolly, Rory B; Janszen, Derek B; Kimbell, Julie S

    2003-06-01

    Formaldehyde induced squamous-cell carcinomas in the nasal passages of F344 rats in two inhalation bioassays at exposure levels of 6 ppm and above. Increases in rates of cell proliferation were measured by T. M. Monticello and colleagues at exposure levels of 0.7 ppm and above in the same tissues from which tumors arose. A risk assessment for formaldehyde was conducted at the CIIT Centers for Health Research, in collaboration with investigators from Toxicological Excellence in Risk Assessment (TERA) and the U.S. Environmental Protection Agency (U.S. EPA) in 1999. Two methods for dose-response assessment were used: a full biologically based modeling approach and a statistically oriented analysis by benchmark dose (BMD) method. This article presents the later approach, the purpose of which is to combine BMD and pharmacokinetic modeling to estimate human cancer risks from formaldehyde exposure. BMD analysis was used to identify points of departure (exposure levels) for low-dose extrapolation in rats for both tumor and the cell proliferation endpoints. The benchmark concentrations for induced cell proliferation were lower than for tumors. These concentrations were extrapolated to humans using two mechanistic models. One model used computational fluid dynamics (CFD) alone to determine rates of delivery of inhaled formaldehyde to the nasal lining. The second model combined the CFD method with a pharmacokinetic model to predict tissue dose with formaldehyde-induced DNA-protein cross-links (DPX) as a dose metric. Both extrapolation methods gave similar results, and the predicted cancer risk in humans at low exposure levels was found to be similar to that from a risk assessment conducted by the U.S. EPA in 1991. Use of the mechanistically based extrapolation models lends greater certainty to these risk estimates than previous approaches and also identifies the uncertainty in the measured dose-response relationship for cell proliferation at low exposure levels, the dose

  17. Quantitative risk assessment system (QRAS)

    NASA Technical Reports Server (NTRS)

    Weinstock, Robert M (Inventor); Smidts, Carol S (Inventor); Mosleh, Ali (Inventor); Chang, Yung-Hsien (Inventor); Swaminathan, Sankaran (Inventor); Groen, Francisco J (Inventor); Tan, Zhibin (Inventor)

    2001-01-01

    A quantitative risk assessment system (QRAS) builds a risk model of a system for which risk of failure is being assessed, then analyzes the risk of the system corresponding to the risk model. The QRAS performs sensitivity analysis of the risk model by altering fundamental components and quantifications built into the risk model, then re-analyzes the risk of the system using the modifications. More particularly, the risk model is built by building a hierarchy, creating a mission timeline, quantifying failure modes, and building/editing event sequence diagrams. Multiplicities, dependencies, and redundancies of the system are included in the risk model. For analysis runs, a fixed baseline is first constructed and stored. This baseline contains the lowest level scenarios, preserved in event tree structure. The analysis runs, at any level of the hierarchy and below, access this baseline for risk quantitative computation as well as ranking of particular risks. A standalone Tool Box capability exists, allowing the user to store application programs within QRAS.

  18. Building Better Environmental Risk Assessments.

    PubMed

    Layton, Raymond; Smith, Joe; Macdonald, Phil; Letchumanan, Ramatha; Keese, Paul; Lema, Martin

    2015-01-01

    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems - examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines. PMID:26301217

  19. Risk assessment in international operations

    SciTech Connect

    Stricklin, Daniela L.

    2008-11-15

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umea has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently.

  20. Building Better Environmental Risk Assessments

    PubMed Central

    Layton, Raymond; Smith, Joe; Macdonald, Phil; Letchumanan, Ramatha; Keese, Paul; Lema, Martin

    2015-01-01

    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems – examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines. PMID:26301217

  1. Risk assessment in international operations.

    PubMed

    Stricklin, Daniela L

    2008-11-15

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umeå has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently. PMID:18325560

  2. Occurrence, behavior and human health risk assessment of dechlorane plus and related compounds in indoor dust of China.

    PubMed

    Li, Wen-Long; Qi, Hong; Ma, Wan-Li; Liu, Li-Yan; Zhang, Zifeng; Zhu, Ning-Zheng; Mohammed, Mohammed O A; Li, Yi-Fan

    2015-09-01

    Levels of dechlorane plus (DP) and "DP-like" compounds were measured in indoor dust samples collected across China. The concentrations of ΣDP and "DP-like" compounds ranged from 0.35 to 1,000 ng g(-1) and<0.21 to 2.4 ng g(-1), respectively. The total DP concentration in urban sites were significantly higher than those of rural sites, while no significant difference was found for "DP-like" compounds, suggesting different sources of these compounds. Significant positive correlations were found between fsyn and latitude, and between fsyn and longitude. The deleterious risk associated with DP exposure via indoor dust for the general population in China was low and safer than expectation. For estimating human exposure via indoor dust, sensitivity analysis showed that more attention should be given to the influential variables such as the level of pollutants, body weight, and the amount of ingestion and adsorption. PMID:25950133

  3. Qualitative methods for assessing risk

    SciTech Connect

    Mahn, J.A.; Hannaman, G.W.; Kryska, P.

    1995-03-01

    The purpose of this document is to describe a qualitative risk assessment process that supplements the requirements of DOE/AL 5481.1B. Although facility managers have a choice of assessing risk either quantitatively or qualitatively, trade offs are involved in making the most appropriate choice for a given application. The results that can be obtained from a quantitative risk assessment are significantly more robust than those results derived from a qualitative approach. However, the advantages derived from quantitative risk assessment are achieved at a greater expenditure of money, time and convenience. This document provides the elements of a framework for performing a much less costly qualitative risk assessment, while retaining the best attributes of quantitative methods. The approach discussed herein will; (1) provide facility managers with the tools to prepare consistent, site wide assessments, and (2) aid the reviewers who may be tasked to evaluate the assessments. Added cost/benefit measures of the qualitative methodology include the identification of mechanisms for optimally allocating resources for minimizing risk in an expeditious, and fiscally responsible manner.

  4. Environmental risk assessment of paroxetine.

    PubMed

    Cunningham, Virginia L; Constable, David J C; Hannah, Robert E

    2004-06-15

    watershed-based environmental risk assessment model, PhATE, to predict environmental concentrations (PECs). Comparison of the calculated PECs with the PNEC allows an assessment of potential environmental risk. Within the 1-99% of stream segments in the PhATE model, PEC values ranged from 0.003 to 100 ng/L. The risk assessment PEC/PNEC ratios ranged from approximately 3 x 10(-8) to approximately 3 x 10(-3), indicating a wide margin of safety, since a PEC/PNEC ratio <1 is generally considered to represent a low risk to the environment. In addition, Microtox studies carried out on PM biodegradation byproducts indicated no detectable residual toxicity. Any compounds in the environment as a result of the biodegradation of PM should be innocuous polar byproducts that should not exert any toxic effects. PMID:15260335

  5. Caries management by risk assessment.

    PubMed

    Young, Douglas A; Featherstone, John D B

    2013-02-01

    Caries disease is multifactorial. Whether caries disease will be expressed and damage dental hard tissue is dependent on the patient's own unique make-up of pathogenic risk factors and protective factors. Objectives This manuscript will review the science of managing caries disease based on assessing caries risk. Methods The caries balance/imbalance model and a practical caries risk assessment procedure for patients aged 6 years through adult will illustrate how treatment options can be based on caries risk. Results Neither the forms nor the clinical protocols are meant to imply there is currently only one correct way this can be achieved, rather are used in this manuscript as examples only. Conclusions It is important to have the forms and protocols simple and easy to understand when implementing caries management by risk assessment into clinical practice. The science of CAMBRA based on the caries balance/imbalance model was reviewed and an example protocol was presented. PMID:24916678

  6. Statistical problems in the assessment of nuclear risks

    SciTech Connect

    Easterling, R. G.

    1980-01-01

    Information on nuclear power plant risk assessment is presented concerning attitudinal problems; and methodological problems involving expert opinions, human error probabilities, nonindependent events, uncertainty analysis, and acceptable risk criteria.

  7. RESIDUAL RISK ASSESSMENTS

    EPA Science Inventory

    Each source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation. These assesments utilize existing models and data bases to examine the multi-media and multi-...

  8. ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    The Ecological Soil Screening Level (Eco-SSL) Work Group, composed of scientists and risk assessors from EPA, Environment Canada, DOE, Army, Navy, Air Force, states, industry, academia, and consulting companies, has been working on the development of scientifically sound, ecologi...

  9. Human System Risk Management for Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in

  10. ADVANCED PESTICIDE RISK ASSESSMENT TECHNOLOGY

    EPA Science Inventory

    The use of herbicides, insecticides, fungicides, and growth regulating chemicals is necessary in modern agriculture, silviculture, and public health vector control operations. The task for environmental risk assessment is to delineate the food chain contamination and ecological v...

  11. RISK ASSESSMENT OF WASTEWATER DISINFECTION

    EPA Science Inventory

    A risk assessment data base is presented for several waste-water disinfection alternatives, including chlorination, ozonation, chlorination/dechlorination, and ultraviolet radiation. The data base covers hazards and consequences related to onsite use and transportation of the dis...

  12. APPROACHES FOR INTEGRATED RISK ASSESSMENT

    EPA Science Inventory

    Recognizing the need to enhance the effectiveness and efficiency of risk assessments globally, the WHO International Programme on Chemical Safety, the U.S. Environmental Protection Agency, the European Commission, and the Organization for Economic Cooperation and Development form...

  13. Cancer risk assessment of human exposure to polycyclic aromatic hydrocarbons (PAHs) via indoor and outdoor dust based on probit model.

    PubMed

    Kang, Yuan; Shao, Dingding; Li, Ning; Yang, Gelin; Zhang, Qiuyun; Zeng, Lixuan; Luo, Jiwen; Zhong, Wenfeng

    2015-03-01

    In the present study, the polycyclic aromatic hydrocarbons (PAHs) in indoor dust and outdoor dust including road and window dust around the traffic road in Hunan Province, China, were sampled and detected. The ∑PAHs in indoor dust ranged from 5007-24,236 ng g(-1), with a median of 14,049 ng g(-1). The ∑PAHs in road dust ranged from 3644-12,875 ng g(-1), with a median of 10,559 ng g(-1). The ∑PAHs in window dust ranged from 803-12,590 ng g(-1), with a median of 5459 ng g(-1). Similar pattern of PAHs was observed in road and window dust except in H3W and H4W samples, which was dominated by naphthalene (Nap), benzo(b+k)fluoranthene (B(b+k)F), phenanthrene (Phe), and fluorine (Fle). Indoor dust showed slightly different PAHs profiles, which was dominated by Nap, fluoranthene (Fla) and Phe. Risk assessment indicated that dermal contact and dust ingestion exposure pathways were more important than the inhalation pathway. Cancer risk of PAHs via dust varied from 2.73 × 10(-8)-8.04 × 10(-6), with a median of 2.06 × 10(-6) for children, and from 2 × 10(-8)-5.89 × 10(-6), with a median of 1.52 × 10(-6) for adult. Probit model showed that 76 and 71 % of samples in the sampling area would result in the risk of children and adult exposure to PAHs via dust higher than the acceptable level (1 × 10(-6)), respectively. PMID:25233919

  14. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water.

    PubMed

    Moffat, Ivy; Chepelev, Nikolai L; Labib, Sarah; Bourdon-Lacombe, Julie; Kuo, Byron; Buick, Julie K; Lemieux, France; Williams, Andrew; Halappanavar, Sabina; Malik, Amal I; Luijten, Mirjam; Aubrecht, Jiri; Hyduke, Daniel R; Fornace, Albert J; Swartz, Carol D; Recio, Leslie; Yauk, Carole L

    2015-01-01

    Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work. PMID:25605026

  15. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water

    PubMed Central

    Labib, Sarah; Bourdon-Lacombe, Julie; Kuo, Byron; Buick, Julie K.; Lemieux, France; Williams, Andrew; Halappanavar, Sabina; Malik, Amal; Luijten, Mirjam; Aubrecht, Jiri; Hyduke, Daniel R.; Fornace, Albert J.; Swartz, Carol D.; Recio, Leslie; Yauk, Carole L.

    2015-01-01

    Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lung 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work. PMID:25605026

  16. Seismic risk assessment for Yerevan city

    NASA Astrophysics Data System (ADS)

    Durgaryan, Raffi

    2014-05-01

    The purpose of the study was to conduct a seismic risk assessment for the territory of Yerevan city with the aim to evaluate potential earthquake hazard and associated risk and losses. This study enables the assessment of seismic risk in the city and evaluates the geographical distribution of potential human and building losses due to proposed earthquake scenarios. The results of this study are presented in form of various mapped seismic hazard parameters such as peak ground acceleration, spectral acceleration, as well as assessed parameters for expected life, building and lifeline losses. The study has been the first of its kind for Yerevan city that will serve as the first step in building a risk analysis tools to be used by governmental entities and other organizations for planning future disaster response efforts.

  17. Blue print for building a risk assessment

    SciTech Connect

    Otsuki, H.K.; Eagan-McNeill, E.

    1997-05-01

    Federal and stet regulations require the operator of a miscellaneous waste treatment unit to demonstrate compliance with environmental performance standard. A sample risk assessment is demonstrated as a means of showing compliance for such a treatment unit. A new Open Burning and Open Detonation (OB/OD) facility for explosive wastes at LLNL experimental site is used. Simplified, the process of performing a risk assessment consists of characterization of the treatment operation and estimation of emission rates; evaluation of the emission dispersion to estimate acute exposure; and evaluation of human and environmental risks. Each step may require the environmental analysts to perform detained date gathering, modeling and calculations, and to negotiate with facility operations personnel and regulatory representatives. The Risk Assessment Protocol, which explains the assumptions, model selection and inputs, and data selection, must ultimately withstand the rigors of regulatory review and public scrutiny.s

  18. The risk assessment information system

    SciTech Connect

    Kerr, S.B.; Bonczek, R.R.; McGinn, C.W.; Land, M.L.; Bloom, L.D.; Sample, B.E.; Dolislager, F.G.

    1998-06-01

    In an effort to provide service-oriented environmental risk assessment expertise, the Department of Energy (DOE) Center for Risk Excellence (CRE) and DOE Oak Ridge Operations Office (ORO) are sponsoring Oak Ridge National Laboratory (ORNL) to develop a web-based system for disseminating risk tools and information to its users. This system, the Risk Assessment Information System (RAIS), was initially developed to support the site-specific needs of the DOE-ORO Environmental Restoration Risk Assessment Program. With support from the CRE, the system is currently being expanded to benefit all DOE risk information users and can be tailored to meet site-specific needs. Taking advantage of searchable and executable databases, menu-driven queries, and data downloads, using the latest World Wide Web technologies, the RAIS offers essential tools that are used in the risk assessment process or anywhere from project scoping to implementation. The RAIS tools can be located directly at http://risk.lsd.ornl.gov/homepage/rap{_}tool.htm or through the CRE`s homepage at http://www.doe.gov/riskcenter/home.html.

  19. Incorporating Nonchemical Stressors Into Cumulative Risk Assessments

    PubMed Central

    Rider, Cynthia V.; Dourson, Michael L.; Hertzberg, Richard C.; Mumtaz, Moiz M.; Price, Paul S.; Simmons, Jane Ellen

    2012-01-01

    The role of nonchemical stressors in modulating the human health risk associated with chemical exposures is an area of increasing attention. On 9 March 2011, a workshop titled “Approaches for Incorporating Nonchemical Stressors into Cumulative Risk Assessment” took place during the 50th Anniversary Annual Society of Toxicology Meeting in Washington D.C. Objectives of the workshop included describing the current state of the science from various perspectives (i.e., regulatory, exposure, modeling, and risk assessment) and presenting expert opinions on currently available methods for incorporating nonchemical stressors into cumulative risk assessments. Herein, distinct frameworks for characterizing exposure to, joint effects of, and risk associated with chemical and nonchemical stressors are discussed. PMID:22345310

  20. Toxic substances and human risk: principles of data interpretation

    SciTech Connect

    Tardiff, R.G.; Rodricks, J.V.

    1988-01-01

    This book provides a comprehensive overview of the relationship between toxicology and risk assessment and identifying the principles that should be used to evaluate toxicological data for human risk assessment. The book opens by distinguishing between the practice of toxicology as a science (observational and data-gathering activities) and its practice as an art (predictive or risk-estimating activities). This dichotomous nature produces the two elemental problems with which users of toxicological data must grapple. First, how relevant are data provided by the science of toxicology to assessment of human health risks. Second, what methods of data interpretation should be used to formulate hypotheses or predictions regarding human health risk.

  1. Carcinogen risk assessment

    SciTech Connect

    Hazelwoold, R.N.

    1987-01-01

    This article describes the methods by which risk factors for carcinogenic hazards are determined and the limitations inherent in the process. From statistical and epidemiological studies, the major identifiable factors related to cancer in the United States were determined to be cigarette smoking, diet, reproductive and sexual behavior, infections, ultraviolet and ionizing radiation, and alcohol consumption. The incidence of lung cancer due to air pollutants was estimated to be less than 2%. Research needs were discussed.

  2. Space Radiation Risk Assessment

    NASA Astrophysics Data System (ADS)

    Blakely, E.

    Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from

  3. How Human Brucellosis Incidence in Urban Kampala Can Be Reduced Most Efficiently? A Stochastic Risk Assessment of Informally-Marketed Milk

    PubMed Central

    Makita, Kohei; Fèvre, Eric M.; Waiswa, Charles; Eisler, Mark C.; Welburn, Susan C.

    2010-01-01

    Background In Kampala, Uganda, studies have shown a significant incidence of human brucellosis. A stochastic risk assessment involving two field surveys (cattle farms and milk shops) and a medical record survey was conducted to assess the risk of human brucellosis infection through consumption of informally marketed raw milk potentially infected with Brucella abortus in Kampala and to identify the best control options. Methodology/Principal Findings In the cattle farm survey, sera of 425 cows in 177 herds in the Kampala economic zone were sampled and tested for brucellosis using a competitive enzyme-linked immunosorbent assay (CELISA). Farmers were interviewed for dairy information. In the milk shop surveys, 135 milk sellers in the urban areas were interviewed and 117 milk samples were collected and tested using an indirect enzyme-linked immunosorbent assay (IELISA). A medical record survey was conducted in Mulago National Referral Hospital for serological test results. A risk model was developed synthesizing data from these three surveys. Possible control options were prepared based on the model and the reduction of risk was simulated for each scenario. Overall, 12.6% (6.8–18.9: 90%CI) of informally marketed milk in urban Kampala was contaminated with B.abortus at purchase and the annual incidence rate was estimated to be 5.8 (90% CI: 5.3–6.2) per 10,000 people. The best control option would be the construction of a milk boiling centre either in Mbarara, the largest source of milk, or in peri-urban Kampala and to ensure that milk traders always sell milk to the boiling centre; 90% success in enforcing these two options would reduce risk by 47.4% (21.6–70.1: 90%CI) and 82.0% (71.0–89.0: 90%CI), respectively. Conclusion/Significance This study quantifies the risk of human brucellosis infection through informally marketed milk and estimates the incidence rate in Kampala for the first time; risk-based mitigation strategies are outlined to assist in developing

  4. HUMAN EXPOSURE MODELING FOR CUMULATIVE RISK

    EPA Science Inventory

    US EPA's Office of Research and Development (ORD) has identified cumulative risk assessment as a priority research area. This is because humans and other organisms are exposed to a multitude of chemicals, physical agents, and other stressors through multiple pathways, routes, an...

  5. Taking the Risk Out of Risk Assessment

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The ability to understand risks and have the right strategies in place when risky events occur is essential in the workplace. More and more organizations are being confronted with concerns over how to measure their risks or what kind of risks they can take when certain events transpire that could have a negative impact. NASA is one organization that faces these challenges on a daily basis, as effective risk management is critical to the success of its missions especially the Space Shuttle missions. On July 29, 1996, former NASA Administrator Daniel Goldin charged NASA s Office of Safety and Mission Assurance with developing a probabilistic risk assessment (PRA) tool to support decisions on the funding of Space Shuttle upgrades. When issuing the directive, Goldin said, "Since I came to NASA [in 1992], we've spent billions of dollars on Shuttle upgrades without knowing how much they improve safety. I want a tool to help base upgrade decisions on risk." Work on the PRA tool began immediately. The resulting prototype, the Quantitative Risk Assessment System (QRAS) Version 1.0, was jointly developed by NASA s Marshall Space Flight Center, its Office of Safety and Mission Assurance, and researchers at the University of Maryland. QRAS software automatically expands the reliability logic models of systems to evaluate the probability of highly detrimental outcomes occurring in complex systems that are subject to potential accident scenarios. Even in its earliest forms, QRAS was used to begin PRA modeling of the Space Shuttle. In parallel, the development of QRAS continued, with the goal of making it a world-class tool, one that was especially suited to NASA s unique needs. From the beginning, an important conceptual goal in the development of QRAS was for it to help bridge the gap between the professional risk analyst and the design engineer. In the past, only the professional risk analyst could perform, modify, use, and perhaps even adequately understand PRA. NASA wanted

  6. Sudden Cardiac Arrest (SCA) Risk Assessment

    MedlinePlus

    ... Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  7. INTEGRATING EPIDEMIOLOGY AND TOXICOLOGY IN NEUROTOXICITY RISK ASSESSMENT.

    EPA Science Inventory

    Neurotoxicity risk assessments depend on the best available scientific information, including data from animal toxicity, human experimental studies and human epidemiology studies. There are several factors to consider when evaluating the comparability of data from studies. Reg...

  8. Qualitative methods for assessing risk

    SciTech Connect

    Mahn, J.A.; Hannaman, G.W.; Kryska, P.

    1995-04-01

    The Department of Energy`s (DOE) non-nuclear facilities generally require only a qualitative accident analysis to assess facility risks in accordance with DOE Order 5481.1B, Safety Analysis and Review System. Achieving a meaningful qualitative assessment of risk necessarily requires the use of suitable non-numerical assessment criteria. Typically, the methods and criteria for assigning facility-specific accident scenarios to the qualitative severity and likelihood classification system in the DOE order requires significant judgment in many applications. Systematic methods for more consistently assigning the total accident scenario frequency and associated consequences are required to substantiate and enhance future risk ranking between various activities at Sandia National Laboratories (SNL). SNL`s Risk Management and National Environmental Policy Act (NEPA) Department has developed an improved methodology for performing qualitative risk assessments in accordance wi the DOE order requirements. Products of this effort are an improved set of qualitative description that permit (1) definition of the severity for both technical and programmatic consequences that may result from a variety of accident scenarios, and (2) qualitative representation of the likelihood of occurrence. These sets of descriptions are intended to facilitate proper application of DOE criteria for assessing facility risks.

  9. Comparison of the industrial source complex and AERMOD dispersion models: case study for human health risk assessment.

    PubMed

    Silverman, Keith C; Tell, Joan G; Sargent, Edward V; Qiu, Zeyuan

    2007-12-01

    Air quality models are typically used to predict the fate and transport of air emissions from industrial sources to comply with federal and state regulatory requirements and environmental standards, as well as to determine pollution control requirements. For many years, the U.S. Environmental Protection Agency (EPA) widely used the Industrial Source Complex (ISC) model because of its broad applicability to multiple source types. Recently, EPA adopted a new rule that replaces ISC with AERMOD, a state-of-the-practice air dispersion model, in many air quality impact assessments. This study compared the two models as well as their enhanced versions that incorporate the Plume Rise Model Enhancements (PRIME) algorithm. PRIME takes into account the effects of building downwash on plume dispersion. The comparison used actual point, area, and volume sources located on two separate facilities in conjunction with site-specific terrain and meteorological data. The modeled maximum total period average ground-level air concentrations were used to calculate potential health effects for human receptors. The results show that the switch from ISC to AERMOD and the incorporation of the PRIME algorithm tend to generate lower concentration estimates at the point of maximum ground-level concentration. However, the magnitude of difference varies from insignificant to significant depending on the types of the sources and the site-specific conditions. The differences in human health effects, predicted using results from the two models, mirror the concentrations predicted by the models. PMID:18200928

  10. Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Airway Cells

    PubMed Central

    Hatch, Gary E.; Duncan, Kelly E.; Diaz-Sanchez, David; Schmitt, Michael T.; Ghio, Andrew J.; Carraway, Martha Sue; McKee, John; Dailey, Lisa A.; Berntsen, Jon; Devlin, Robert B.

    2014-01-01

    In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in vivo exposure of a living person. The goal of the present study was to compare the dose and effect of O3 in airway cells of humans exposed in vivo to that of human cells exposed in vitro. Ten subjects breathed labeled O3 (18O3, 0.3 ppm, 2 h) while exercising intermittently. Bronchial brush biopsies and lung lavage fluids were collected 1 h post exposure for in vivo data whereas in vitro data were obtained from primary cultures of human bronchial epithelial cells exposed to 0.25–1.0 ppm 18O3 for 2 h. The O3 dose to the cells was defined as the level of 18O incorporation and the O3 effect as the fold increase in expression of inflammatory marker genes (IL-8 and COX-2). Dose and effect in cells removed from in vivo exposed subjects were lower than in cells exposed to the same 18O3 concentration in vitro suggesting upper airway O3 scrubbing in vivo. Cells collected by lavage as well as previous studies in monkeys show that cells deeper in the lung receive a higher O3 dose than cells in the bronchus. We conclude that the methods used herein show promise for replicating and comparing the in vivo dose and effect of O3 in an in vitro system. PMID:24928893

  11. Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures.

    PubMed

    Zanetti, Filippo; Sewer, Alain; Mathis, Carole; Iskandar, Anita R; Kostadinova, Radina; Schlage, Walter K; Leroy, Patrice; Majeed, Shoaib; Guedj, Emmanuel; Trivedi, Keyur; Martin, Florian; Elamin, Ashraf; Merg, Céline; Ivanov, Nikolai V; Frentzel, Stefan; Peitsch, Manuel C; Hoeng, Julia

    2016-08-15

    Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared

  12. EPA's neurotoxicity risk assessment guidelines.

    PubMed

    Boyes, W K; Dourson, M L; Patterson, J; Tilson, H A; Sette, W F; MacPhail, R C; Li, A A; O'Donoghue, J L

    1997-12-01

    The proposed Neurotoxicity Risk Assessment Guidelines (U.S. EPA, 1995c Fed. Reg. 60(192), 52032-52056) of the U.S. Environmental Protection Agency (EPA) were the subject of a workshop at the 1997 Meeting of the Society of Toxicology. The workshop considered the role of guidelines in the risk assessment process, the primary features, scientific basis, and implications of the guidelines for EPA program offices, as well as for industrial neurotoxicologists from the perspectives of both pesticides and toxic substances regulation. The U.S. National Academy of Sciences (NAS, 1983, Risk Assessment in the Federal Government: Managing the Process) established a framework for distinguishing risk management from risk assessment, the latter being the result of integrating hazard identification, hazard characterization, and exposure assessment data. The guidelines are intended to establish operating principles that will be used when examining data in a risk assessment context. The proposed neurotoxicity risk assessment guidelines provide a conceptual framework for deciding whether or not a chemically induced effect can be considered to be evidence of neurotoxicity. Topics in the proposed guidelines include structural and functional effects, dose-response and -duration considerations, and relationships between effects. Among the issues that must be considered are the multiplicity of chemical effects, the levels of biological organization in the nervous system, and the tests, measurements, and protocols used. Judgment of the adversity of an effect depends heavily on the amount and types of data available. The attribution of a chemically induced effect to an action on the nervous system depends on several factors such as the quality of the study, the nature of the outcome, dose-response and time-response relationships, and the possible involvement of nonneural factors. The guidelines will also serve as a reference for those conducting neurotoxicity testing, as well as establish a

  13. Evolutionary Consequences for Ecological Risk Assessment and Management.

    ERIC Educational Resources Information Center

    Gochfeld, Michael; Burger, Joanna

    1993-01-01

    Discusses the use of the human health risk assessment model as a basis for developing ecological risk assessment (ERA). For ERA, risk to individuals is less important than the survival of the population, with the exception of endangered species. Suggests that ERA take into account the relative reproductive value of the potentially impacted…

  14. RISK ASSESSMENT AND MANAGEMENT: FRAMEWORK FOR DECISION MAKING

    EPA Science Inventory

    The risk assessment and risk management initiatives described in this report are tools which will help make possible more efficient protection of the environment and human health. e expect to gain the following specific management advantages: isk assessment and risk management he...

  15. FRAMEWORK FOR INORGANIC METALS RISK ASSESSMENT - 1/2007

    EPA Science Inventory

    The EPA¿s Risk Assessment Forum has prepared a framework to guide risk assessors in assessing human and ecological risks of inorganic metals. Metals and metal compounds have properties not generally encountered with organic chemicals. For example, metals are neither created nor d...

  16. A retrospective approach to assess human health risks associated with growing air pollution in urbanized area of Thar Desert, western Rajasthan, India

    PubMed Central

    2014-01-01

    Air pollution has been a matter of great concern globally because of the associated health risks to individuals. The situation is getting worse in developing countries with more urbanization, industrialization and more importantly the rapidly growing population posing a threat to human life in the form of pulmonary, cardiovascular, carcinogenic or asthmatic diseases by accumulating toxic pollutants, harmful gases, metals, hydrocarbons etc. Objective The present study was undertaken to assess the magnitude of ambient air pollutants and their human health risks like respiratory ailments, infectious diseases, cardiovascular diseases and cancer using a Retrospective Approach of Bart Ostra. Methodology The parameters PM2.5, PM10, NOx, SO2, NH3 and O3 were monitored at all selected study sites monitored through a high volume sampler (APM 451 Envirotech, Envirotech Instruments Pvt. Ltd., New Delhi, India). Retrospective Approach was used for assessment of risk factors and disease burden of respiratory and cardiopulmonary health problems. Results Environmental burden of disease showed that the problem of health related to air pollution is a main concern particularly in the growing cities of India. High to critical level of air pollution including PM10, PM2.5, NOx, SO2, NH3 and O3 was observed in all seasons at traffic intersections and commercial sites. The respiratory infections (25% incidence in population exposed to indoor smoke problems) and a prevalence of asthma/COPD (4.4%) in households exposed to high vehicular pollution along with signs of coronary artery/heart disease and/or hypertension and cancers (37.9-52.2%), were reported requiring preventive measures. Conclusion The study reflects a great concern for the mankind with the need of having streamline ways to limit air pollution and emphasize upon efficiently determining the risk of illness upon exposure to air pollution. PMID:24406114

  17. Neurotoxicity in risk assessment

    SciTech Connect

    Weiss, B.

    1988-01-01

    Neurotoxicity is a property of many metals, even those deemed biologically essential. Manganese, one of the essential elements, can induce a syndrome displaying aspects of both Parkinsonism and dystonia, but accompanied, as well, by psychological abnormalities. At low exposure levels, however, neurotoxicity may be detectable with psychological tests. Mercury vapor exposure also induces neurological signs, psychological aberrations, and subtle evidence of dysfunction on psychological tests. Methylmercury and lead are particularly toxic to the developing brain. The most recent research indicates that psychological testing may uncover deficits even in children showing no evidence of impairment. Because of their special features, neurotoxic endpoints may have to be evaluated for risks by a process that diverges significantly from the standard program based on carcinogenicity.

  18. A comparative human health risk assessment of p-dichlorobenzene-based toilet rimblock products versus fragrance/surfactant-based alternatives.

    PubMed

    Aronson, Dallas B; Bosch, Stephen; Gray, D Anthony; Howard, Philip H; Guiney, Patrick D

    2007-10-01

    A comparison of the human health risk to consumers using one of two types of toilet rimblock products, either a p-dichlorobenzene-based rimblock or two newer fragrance/surfactant-based alternatives, was conducted. Rimblock products are designed for global use by consumers worldwide and function by releasing volatile compounds into indoor air with subsequent exposure presumed to be mainly by inhalation of indoor air. Using the THERdbASE exposure model and experimentally determined emission data, indoor air concentrations and daily intake values were determined for both types of rimblock products. Modeled exposure concentrations from a representative p-dichlorobenzene rimblock product are an order of magnitude higher than those from the alternative rimblock products due to its nearly pure composition and high sublimation rate. Lifetime exposure to p-dichlorobenzene or the subset of fragrance components with available RfD values is not expected to lead to non-cancer-based adverse health effects based on the exposure concentrations estimated using the THERdbASE model. A similar comparison of cancer-based effects was not possible as insufficient data were available for the fragrance components. PMID:17934948

  19. Human Health Risk Assessment of Artisanal Miners Exposed to Toxic Chemicals in Water and Sediments in the Prestea Huni Valley District of Ghana.

    PubMed

    Obiri, Samuel; Yeboah, Philip O; Osae, Shiloh; Adu-Kumi, Sam; Cobbina, Samuel J; Armah, Frederick A; Ason, Benjamin; Antwi, Edward; Quansah, Reginald

    2016-01-01

    A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR-Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA). The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As), 0.17 μg/L to 340 μg/L (Cd), 0.17 μg/L to 122 μg/L (Pb) and 132 μg/L to 866 μg/L (Hg), respectively. These measured concentrations of arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pb) were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE) and reasonable maximum exposure (RME) parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd), 1.45 (Pb), 4.60 (Hg) and 1.98 (As); while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10(-3). The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10(-4) to 1 × 10(-6). These findings call for case-control epidemiological studies to establish the relationship between exposure to the

  20. Human Health Risk Assessment of Artisanal Miners Exposed to Toxic Chemicals in Water and Sediments in the Prestea Huni Valley District of Ghana

    PubMed Central

    Obiri, Samuel; Yeboah, Philip O.; Osae, Shiloh; Adu-kumi, Sam; Cobbina, Samuel J.; Armah, Frederick A.; Ason, Benjamin; Antwi, Edward; Quansah, Reginald

    2016-01-01

    A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR—Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA). The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As), 0.17 μg/L to 340 μg/L (Cd), 0.17 μg/L to 122 μg/L (Pb) and 132 μg/L to 866 μg/L (Hg), respectively. These measured concentrations of arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pb) were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE) and reasonable maximum exposure (RME) parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd), 1.45 (Pb), 4.60 (Hg) and 1.98 (As); while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10−3. The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10−4 to 1 × 10−6. These findings call for case-control epidemiological studies to establish the relationship between exposure to the

  1. A margin of exposure approach to assessment of non-cancerous risk of diethyl phthalate based on human exposure from bottled water consumption.

    PubMed

    Zare Jeddi, Maryam; Rastkari, Noushin; Ahmadkhaniha, Reza; Yunesian, Masud; Nabizadeh, Ramin; Daryabeygi, Reza

    2015-12-01

    Phthalates may be present in food due to their widespread presence as environmental contaminants or due to migration from food contact materials. Exposure to phthalates is considered to be potentially harmful to human health as well. Therefore, determining the main source of exposure is an important issue. So, the purpose of this study was (1) to measure the release of diethyl phthalate (DEP) in bottled water consumed in common storage conditions specially low temperature and freezing conditions; (2) to evaluate the intake of DEP from polyethylene terephthalate (PET) bottled water and health risk assessment; and (3) to assess the contribution of the bottled water to the DEP intake against the tolerable daily intake (TDI) values. DEP migration was investigated in six brands of PET-bottled water under different storage conditions room temperature, refrigerator temperature, freezing conditions (40 °C ,0 °C and -18 °C) and outdoor] at various time intervals by magnetic solid extraction (MSPE) using gas chromatography-mass spectroscopy (GC-MS). Eventually, a health risk assessment was conducted and the margin of exposure (MOE) was calculated. The results indicate that contact time with packaging and storage temperatures caused DEP to be released into water from PET bottles. But, when comprising the DEP concentration with initial level, the results demonstrated that the release of phthalates were not substantial in all storage conditions especially at low temperatures (<25 °C) and freezing conditions. The daily intake of DEP from bottled water was much lower than the reference value. However, the lowest MOE was estimated for high water consumers (preschooler > children > lactating women > teenagers > adults > pregnant women), but in all target groups, the MOE was much higher than 1000, thus, low risk is implied. Consequently, PET-bottled water is not a major source of human exposure to DEP and from this perspective is safe for consumption. PMID

  2. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    NASA Astrophysics Data System (ADS)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential

  3. Assessment of the risks for human health of adenoviruses, hepatitis A virus, rotaviruses and enteroviruses in the Buffalo River and three source water dams in the Eastern Cape.

    PubMed

    Chigor, Vincent N; Sibanda, Timothy; Okoh, Anthony I

    2014-06-01

    Buffalo River is an important water resource in the Eastern Cape Province of South Africa. The potential risks of infection constituted by exposure to human enteric viruses in the Buffalo River and three source water dams along its course were assessed using mean values and static quantitative microbial risk assessment (QMRA). The daily risks of infection determined by the exponential model [for human adenovirus (HAdV) and enterovirus (EnV)] and the beta-Poisson model (for hepatitis A virus (HAV) and rotavirus (RoV)) varied with sites and exposure scenario. The estimated daily risks of infection values at the sites where the respective viruses were detected, ranged from 7.31 × 10(-3) to 1 (for HAdV), 4.23 × 10(-2) to 6.54 × 10(-1) (RoV), 2.32 × 10(-4) to 1.73 × 10(-1) (HAV) and 1.32 × 10(-4) to 5.70 × 10(-2) (EnV). The yearly risks of infection in individuals exposed to the river/dam water via drinking, recreational, domestic or irrigational activities were unacceptably high, exceeding the acceptable risk of 0.01% (10(-4) infection/person/year), and the guideline value used as by several nations for drinking water. The risks of illness and death from infection ranged from 6.58 × 10(-5) to 5.0 × 10(-1) and 6.58 × 10(-9) to 5.0 × 10(-5), respectively. The threats here are heightened by the high mortality rates for HAV, and its endemicity in South Africa. Therefore, we conclude that the Buffalo River and its source water dams are a public health hazard. The QMRA presented here is the first of its kinds in the Eastern Cape Province and provides the building block for a quantitatively oriented local guideline for water quality management in the Province. PMID:24676673

  4. Risk assessment of component failure modes and human errors using a new FMECA approach: application in the safety analysis of HDR brachytherapy.

    PubMed

    Giardina, M; Castiglia, F; Tomarchio, E

    2014-12-01

    Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brachytherapy treatments. The critical analysis of the results can provide recommendations and suggestions regarding safety provisions for the equipment and procedures required to reduce the occurrence of accidental events. PMID:25379678

  5. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment.

    PubMed

    Zhao, Zhonghua; Zhang, Lu; Cai, Yongjiu; Chen, Yuwei

    2014-06-01

    The residual levels, tissue distribution and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in edible fishes, bighead carp (Aristichthys nobilis) and silver carp (Hypophthalmichthys molitrix), from the largest freshwater lake in China, Poyang Lake, were studied. PAH concentrations ranged from 105 to 513ng g(-1)ww and from 53.9 to 401ng g(-1)ww in different tissues of bighead carp and silver carp, respectively. Low molecular weight (LMW) PAHs were the predominant compounds, suggesting the gill-water transfer might be the major exposure route for PAHs in the studied fish species. Tissue distribution indicated that the hepatobiliary system accumulated higher concentrations of PAHs than the extrahepatic tissues with bile being the most predominant tissue for both species. Composition analysis demonstrated that PAHs were from the combined petrogenic and pyrogenic origin, and the gasoline combustion might be the main source. A preliminary evaluation of human health risk using benzo[a]pyrene (BaP) potency equivalent concentration (PEC) as well as the incremental lifetime cancer risk (ILCR) indicated that PAHs in fish would induce potential carcinogenic effects. PMID:24732028

  6. Toxicological Risks During Human Space Exploration

    NASA Technical Reports Server (NTRS)

    James, John T.; Limero, T. F.; Lam, C. W.; Billica, Roger (Technical Monitor)

    2000-01-01

    The goal of toxicological risk assessment of human space flight is to identify and quantify significant risks to astronaut health from air pollution inside the vehicle or habitat, and to develop a strategy for control of those risks. The approach to completing a toxicological risk assessment involves data and experience on the frequency and severity of toxicological incidents that have occurred during space flight. Control of these incidents depends on being able to understand their cause from in-flight and ground-based analysis of air samples, crew reports of air quality, and known failures in containment of toxic chemicals. Toxicological risk assessment in exploration missions must be based on an evaluation of the unique toxic hazards presented by the habitat location. For example, lunar and Martian dust must be toxicologically evaluated to determine the appropriate control measures for exploration missions. Experience with near-earth flights has shown that the toxic products from fires present the highest risk to crew health from air pollution. Systems and payload leaks also present a significant hazard. The health risk from toxicity associated with materials offgassing or accumulation of human metabolites is generally well controlled. Early tests of lunar and Martian dust simulants have shown that each posses the potential to cause fibrosis in the lung in a murine model. Toxicological risks from air pollutants in space habitats originate from many sources. A number of risks have been identified through near-earth operations; however, the evaluation of additional new risks present during exploration missions will be a challenge.

  7. Human health risk assessment of lead from mining activities at semi-arid locations in the context of total lead exposure.

    PubMed

    Zheng, Jiajia; Huynh, Trang; Gasparon, Massimo; Ng, Jack; Noller, Barry

    2013-12-01

    Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate. PMID:24122159

  8. 78 FR 3824 - Draft Qualitative Risk Assessment of Risk of Activity/Food Combinations for Activities (Outside...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 117 Draft Qualitative Risk Assessment of Risk of... comment on, a document entitled ``Draft Qualitative Risk Assessment of Risk of Activity/Food Combinations.... II. Qualitative Risk Assessment As explained in the draft RA, we conducted the qualitative...

  9. 78 FR 64428 - Draft Qualitative Risk Assessment of Risk of Activity/Animal Food Combinations for Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 507 Draft Qualitative Risk Assessment of Risk of... requesting comment on, a document entitled ``Draft Qualitative Risk Assessment of Risk of Activity/Animal...(n) of the FD&C Act. II. Qualitative Risk Assessment As explained in the draft RA, we conducted...

  10. Size fraction effect on phthalate esters accumulation, bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk assessment of human exposure.

    PubMed

    Wang, Wei; Wu, Fu-Yong; Huang, Min-Juan; Kang, Yuan; Cheung, Kwai Chung; Wong, Ming Hung

    2013-10-15

    Indoor and outdoor dusts from two urban centers in the Pearl River Delta, China, were analyzed and phthalate esters varied from 4.95 to 2,220 μg g(-1) in indoor dust, significantly higher than outdoor dust (1.70-869 μg g(-1)). Di-2-ethylhexyl phthalate (DEHP) was the dominant phthalate found and the highest distribution factor (DF) (1.56 ± 0.41) was noted in the <63 μm fraction (p<0.05). In vitro cytotoxicity of dust extract on human T cell lymphoblast leukemic cell line (CCRF-CEM) indicated by Lethal Concentration 50 (LC50) decreased with particle size. The power model was found as a better fit for explaining the relationship between LC50 and phthalates (R(2)=0.46, p<0.01). Bioaccessibility of phthalates in dust varied with different particle sizes, with the greatest bioaccessible fraction (2.49-38.6%) obtained in <63 μm. Risk assessment indicated that indoor dust ingestion accounted for the major source for DEHP exposure (81.4-96.4% of non-dietary exposure and 36.5% of total exposure), especially for toddlers. The cancer risks associated with DEHP via home dust were high (10(-6)-10(-4)), with 10% of houses estimated with unacceptable risks (>10(-4)). After corrected with the bioaccessibility of phthalates, the cancer risks of dust exposure were moderate (10(-7)-10(-5)). PMID:23755845

  11. Space shuttle operational risk assessment

    NASA Astrophysics Data System (ADS)

    Fragola, Joseph R.; Maggio, Gaspare

    1996-03-01

    A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission end. The study which was conducted under the direction of NASA's Shuttle Safety and Mission Assurance office at Johnson Spaceflight Center focused on shuttle operational risk but included consideration of all the shuttle flight and test history since the beginning of the program through Mission 67 in July of 1994.

  12. Assessing Risk of Innovation

    SciTech Connect

    Allgood, GO

    2001-08-15

    Today's manufacturing systems and equipment must perform at levels thought impossible a decade ago. Companies must push operations, quality, and efficiencies to unprecedented levels while holding down costs. In this new economy, companies must be concerned with market shares, equity growth, market saturation, and profit. U.S. manufacturing is no exception and is a prime example of businesses forced to adapt to constant and rapid changes in customer needs and product mixes, giving rise to the term ''Agile Manufacturing''. The survival and ultimate success of the American Manufacturing economy may depend upon its ability to create, innovate, and quickly assess the impact that new innovations will have on its business practices. Given the need for flexibility, companies need proven methods to predict and measure the impact that new technologies and strategies will have on overall plant performance from an enterprise perspective. The Value-Derivative Model provides a methodology and approach to assess such impacts in terms of energy savings, production increases, quality impacts, emission reduction, and maintenance and operating costs as they relate to enabling and emerging technologies. This is realized by calculating a set of first order sensitivity parameters obtained from expanding a Taylor Series about the system's operating point. These sensitivity parameters are invariant economic and operational indicators that quantify the impact of any proposed technology in terms of material throughput, efficiency, energy usage, environmental effects, and costs. These parameters also provide a mechanism to define metrics and performance measures that can be qualified in terms of real economic impact. Value-Derivative Analysis can be applied across all manufacturing and production segments of our economy and has found specific use in steel and textiles. Where economic models give the cost of conducting a business, Value-Derivative Analysis provides the cost to conduct

  13. Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate.

    PubMed

    Tsaboula, Aggeliki; Papadakis, Emmanouil-Nikolaos; Vryzas, Zisis; Kotopoulou, Athina; Kintzikoglou, Katerina; Papadopoulou-Mourkidou, Euphemia

    2016-05-01

    A pesticide prioritization approach was developed and implemented in the Pinios River Basin of Central Greece. It takes under consideration the Level of Environmental Risk containing information on the frequency of occurrence of pesticides above environmental thresholds, the intensity of this occurrence and the spatial distribution as well as information about the fate and behavior of pesticides in the environment and the potential to have adverse impact on humans' health. Original 3-year monitoring data from 102 Stationary Sampling Sites located on rivers and their tributaries, reservoirs, streams and irrigation/drainage canals giving rise to a collection of 2382 water samples resulting in 7088 data sets, were included in this integrated prioritization study. Among 302 monitored active ingredients, 119 were detected at least once and the concentrations found in the aquatic systems for 41% of compounds were higher than the respective lowest Predicted Non-Effect Concentration (PNEC) values. Sixteen and 5 pesticides were found with risk ratios (MECmax/PNEC) above 10 (high concern) and 100 (very high concern), respectively. However, pesticides with maximum Measured Environmental Concentration (MECmax) values exceeding by 1000 times the respective lowest PNEC values were also found which were considered of extremely high concern; in the latter group were included prometryn, chlorpyrifos, diazinon, λ-cyhalothrin, cypermethrin, α-cypermethrin deltamethrin, ethalfluralin and phosmet. The sensitivity of the analytical methods used in the monitoring study was considered inadequate to meet the toxicological endpoints for 32 pesticides. The widest distribution of occurrence in the Stationary Sampling Sites of the monitoring program was found for the pesticides, prometryn, fluometuron, terbuthylazine, S-metolachlor, chlorpyrifos, diphenylamine, acetochlor, alachlor, 2,4-D, etridiazole, imidacloprid and lindane (γ-ΗCH). Among the 27 priority pesticides included in the

  14. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 5. Human health risk assessment; evaluation of potential risks from multipathway exposure to emissions

    SciTech Connect

    1997-05-01

    The report provide estimates of: (1) individual risks based on central tendency exposure; (2) individual risks based on maximum environmental concentrations; (3) risks to highly exposed or susceptible subgroups of the population (e.g., subsistence farmers and school children); (4) risks associated with specific activities that may result in elevated exposures (e.g., subsistence fishermen and deer hunters); and (5) population risk. This approach allows for the estimation of risks to specific segments of the population taking into consideration activity patterns, number of individuals, and actual locations of individuals in these subgroups with respect to the facility. The fate and transport modeling of emissions from the facility to estimate exposures to identified subgroups is described.

  15. Risk-benefit evaluation of fish from Chinese markets: nutrients and contaminants in 24 fish species from five big cities and related assessment for human health.

    PubMed

    Du, Zhen-Yu; Zhang, Jian; Wang, Chunrong; Li, Lixiang; Man, Qingqing; Lundebye, Anne-Katrine; Frøyland, Livar

    2012-02-01

    The risks and benefits of fish from markets in Chinese cities have not previously been fully evaluated. In the present study, 24 common fish species with more than 400 individual samples were collected from markets from five big Chinese cities in 2007. The main nutrients and contaminants were measured and the risk-benefit was evaluated based on recommended nutrient intakes and risk level criteria set by relevant authorities. The comprehensive effects of nutrients and contaminants in marine oily fish were also evaluated using the data of two related human dietary intervention trials performed in dyslipidemic Chinese men and women in 2008 and 2010, respectively. The results showed that concentrations of contaminants analyzed including DDT, PCB(7), arsenic and cadmium were much lower than their corresponding maximum limits with the exception of the mercury concentration in common carp. Concentrations of POPs and n-3 LCPUFA, mainly EPA and DHA, were positively associated with the lipid content of the fish. With a daily intake of 80-100g marine oily fish, the persistent organic pollutants in fish would not counteract the beneficial effects of n-3 LCPUFA in reducing cardiovascular disease (CVD) risk markers. Marine oily fish provided more effective protection against CVD than lean fish, particularly for the dyslipidemic populations. The risk-benefit assessment based on the present daily aquatic product intake in Chinese urban residents (44.9 and 62.3g for the average values for all cities and big cities, respectively) indicated that fish, particularly marine oily fish, can be regularly consumed to achieve optimal nutritional benefits from n-3 LCPUFA, without causing significant contaminant-related health risks. However, the potential health threat from contaminants in fish should still be emphasized for the populations consuming large quantities of fish, particularly wild fish. PMID:22225822

  16. Tsunami risk assessment in Indonesia

    NASA Astrophysics Data System (ADS)

    Strunz, G.; Post, J.; Zosseder, K.; Wegscheider, S.; Mück, M.; Riedlinger, T.; Mehl, H.; Dech, S.; Birkmann, J.; Gebert, N.; Harjono, H.; Anwar, H. Z.; Sumaryono; Khomarudin, R. M.; Muhari, A.

    2011-01-01

    In the framework of the German Indonesian Tsunami Early Warning System (GITEWS) the assessment of tsunami risk is an essential part of the overall activities. The scientific and technical approach for the tsunami risk assessment has been developed and the results are implemented in the national Indonesian Tsunami Warning Centre and are provided to the national and regional disaster management and spatial planning institutions in Indonesia. The paper explains the underlying concepts and applied methods and shows some of the results achieved in the GITEWS project (Rudloff et al., 2009). The tsunami risk assessment has been performed at an overview scale at sub-national level covering the coastal areas of southern Sumatra, Java and Bali and also on a detailed scale in three pilot areas. The results are provided as thematic maps and GIS information layers for the national and regional planning institutions. From the analyses key parameters of tsunami risk are derived, which are integrated and stored in the decision support system of the national Indonesian Early Warning Centre. Moreover, technical descriptions and guidelines were elaborated to explain the developed approach, to allow future updates of the results and the further development of the methodologies, and to enable the local authorities to conduct tsunami risk assessment by using their own resources.

  17. Benzidine dihydrochloride: risk assessment.

    PubMed

    Littlefield, N A; Nelson, C J; Gaylor, D W

    1984-02-01

    Benzidine, recognized as a bladder carcinogen in man and as a liver carcinogen in experimental animals, is the chemical basis of as many as 200 commercial dyes. Physiological processes can metabolize these dyes to release benzidine, thereby creating a potential exposure hazard. To assess this hazard, both sexes of F1 hybrid (genetically homogeneous) and monohybrid (genetically heterogeneous) mice from a BALB/c male and C57BL/6 female cross were exposed for their respective lifespans to benzidine dihydrochloride in their drinking water at concentrations of 0, 30, 40, 60, 80, 120, and 160 ppm for males, and 0, 20, 30, 40, 60, 80, and 120 ppm for females. Animals were removed from the study when they were dead or moribund. This study was terminated after 33 months of exposure. Using the endpoint of hepatocellular adenomas and carcinomas, the Armitage Doll multistage model was used to describe the tumor rates in the experimental dose range and to obtain the upper confidence level on tumor rates. Linear interpolation was used between zero dose and the upper confidence level of the lowest experimental dosage for predicting potential low dose tumor rates. Dose-response effects on body weight, survival, and liver neoplasms were noted in both stocks. For each of the endpoints, the females were more susceptible than males and the F1 (homogeneous) stock was more susceptible than the monohybrid cross (heterogeneous). The calculated virtually "safe" dose predicted to produce less than one per million F1 female mice with a liver tumor is 0.045 ppb. One part per billion of benzidine dihydrochloride in the drinking water of these mice is estimated to produce liver tumors in less than 2.23 mice per 100,000 population. PMID:6363187

  18. Environmental Risk Assessment of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  19. Probabilistic risk assessment: Number 219

    SciTech Connect

    Bari, R.A.

    1985-11-13

    This report describes a methodology for analyzing the safety of nuclear power plants. A historical overview of plants in the US is provided, and past, present, and future nuclear safety and risk assessment are discussed. A primer on nuclear power plants is provided with a discussion of pressurized water reactors (PWR) and boiling water reactors (BWR) and their operation and containment. Probabilistic Risk Assessment (PRA), utilizing both event-tree and fault-tree analysis, is discussed as a tool in reactor safety, decision making, and communications. (FI)

  20. Human health risk assessment of heavy metals in the irrigated area of Jinghui, Shaanxi, China, in terms of wheat flour consumption.

    PubMed

    Lei, Lingming; Liang, Dongli; Yu, Dasong; Chen, Yupeng; Song, Weiwei; Li, Jun

    2015-10-01

    Contamination of heavy metals (HMs) in agricultural soil has become a serious environmental problem because it poses a serious threat to human health by entering into food chains. Wheat is a staple food of the majority of the world's population; therefore, understanding the relationship between HM concentration in soils and its accumulation in wheat grain is imperative. This study assessed the concentrations of HMs (i.e., Hg, As, Cd, Cr, Pb, Cu, Zn, and Ni) in agricultural soils (a loess soil, eum-orthic anthrosol) and wheat flour in the historical irrigated area of Jinghui, Northwest China. The potential human health risks of HMs among local residents were also determined by evaluating the consumption of wheat flour. Results showed that the mean soil concentrations of HMs exceeded the corresponding natural background values of agricultural surface soil in Shaanxi: 0.07 mg kg(-1) for Hg, 15.4 mg kg(-1) for As, 0.25 mg kg(-1) for Cd, 75.5 mg kg(-1) for Cr, 27.2 mg kg(-1) for Pb, 28.1 mg kg(-1) for Cu, 81.1 mg kg(-1) for Zn, and 36.6 mg kg(-1) for Ni, respectively. However, all of the mean concentrations of HMs in soil were within the safety limits set by the Chinese regulation (HJ332-2006). The total HM concentrations in wheat flour were 0.0017 mg kg(-1) for Hg, 0.028 mg kg(-1) for As, 0.020 mg kg(-1) for Cd, 0.109 mg kg(-1) for Cr, 0.128 mg kg(-1) for Pb, 2.66 mg kg(-1) for Cu, 24.20 mg kg(-1) for Zn, and 0.20 mg kg(-1) for Ni, and they were significantly lower than the tolerance limits of Chinese standards. However, 15% of the wheat flour samples exceeded the Chinese standard (GB2762-2012) for Pb. This study highlighted the human health risks in the relationship of wheat flour consumption for both adults and children with HMs accumulated area. HMs did not cause noncarcinogenic risks in the area (HI < 1) except for children in Jingyang county; Cd generated the greatest carcinogenic risk, which poses a potential health risk to consumers. The results obtained in

  1. CANCER RISK ASSESSMENT FOR CHLOROFORM

    EPA Science Inventory

    Chloroform is a common chlorination by-product in drinking water. EPA has regulated chloroform as a probable human carcinogen under the Safe Drinking Water Act. The cancer risk estimate via ingestion was based on the 1985 Jorgenson study identifying kidney tumors in male Osborne ...

  2. 24 CFR 35.315 - Risk assessment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Provided by a Federal Agency Other Than HUD § 35.315 Risk assessment. Each owner shall complete a risk assessment in accordance with 40 CFR 745.227(d). Each risk assessment shall be completed in accordance with... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Risk assessment. 35.315 Section...

  3. 24 CFR 35.315 - Risk assessment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Provided by a Federal Agency Other Than HUD § 35.315 Risk assessment. Each owner shall complete a risk assessment in accordance with 40 CFR 745.227(d). Each risk assessment shall be completed in accordance with... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Risk assessment. 35.315 Section...

  4. 24 CFR 35.315 - Risk assessment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Provided by a Federal Agency Other Than HUD § 35.315 Risk assessment. Each owner shall complete a risk assessment in accordance with 40 CFR 745.227(d). Each risk assessment shall be completed in accordance with... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Risk assessment. 35.315 Section...

  5. 24 CFR 35.315 - Risk assessment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Provided by a Federal Agency Other Than HUD § 35.315 Risk assessment. Each owner shall complete a risk assessment in accordance with 40 CFR 745.227(d). Each risk assessment shall be completed in accordance with... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Risk assessment. 35.315 Section...

  6. 24 CFR 35.315 - Risk assessment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Provided by a Federal Agency Other Than HUD § 35.315 Risk assessment. Each owner shall complete a risk assessment in accordance with 40 CFR 745.227(d). Each risk assessment shall be completed in accordance with... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Risk assessment. 35.315 Section...

  7. Resource handbook on transportation risk assessment.

    SciTech Connect

    Chen, S. Y.; Biwer, B. M.; Monette, F. A.; Environmental Assessment; SNL; BAPL; USOE; Battelle Memorial Inst.

    2003-01-01

    This resource handbook contains useful information to streamline radioactive material transportation risk assessments for National Environmental Policy Act (NEPA) documents prepared for U.S. Department of Energy (DOE) programs. Streamlining refers to instituting steps that can increase the efficiency of future assessments, reduce costs, and promote increased quality and consistency across the DOE complex. This handbook takes advantage of the wealth of information developed through decades of DOE's NEPA experience. It contains a review of historical assessments; a description of comprehensive and generally acceptable transportation risk assessment methodology (i.e., models); and a compilation of supporting data, parameters, and generally accepted assumptions. This handbook also includes a discussion paper that addresses cumulative impacts (Appendix A). The discussion paper illustrates the evolving and sometimes unresolved issues encountered in transportation risk assessment. Other topics, such as sabotage, environmental justice, and human factors, may be addressed in the future. This resource document was developed as the first primary reference book providing useful information for conducting transportation risk assessments for radioactive material in the NEPA context.

  8. Dynamical systems probabilistic risk assessment.

    SciTech Connect

    Denman, Matthew R.; Ames, Arlo Leroy

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  9. IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk

    EPA Science Inventory

    This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the ne...

  10. Collegiate Alcohol Risk Assessment Guide.

    ERIC Educational Resources Information Center

    Anderson, David S.; Janosik, Steven M.

    An instrument to help administrators assess the liability resulting from alcohol-related activities on the college campus is presented. The hazards and associated liability of these events can be reduced by developing an aggressive risk management strategy designed to inform, educate, and coordinate the actions of individuals and groups associated…

  11. Human Health and Ecological Risk Assessment of 16 Polycyclic Aromatic Hydrocarbons in Drinking Source Water from a Large Mixed-Use Reservoir.

    PubMed

    Sun, Caiyun; Zhang, Jiquan; Ma, Qiyun; Chen, Yanan

    2015-11-01

    Reservoirs play an important role in living water supply and irrigation of farmlands, thus the water quality is closely related to public health. However, studies regarding human health and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the waters of reservoirs are very few. In this study, Shitou Koumen Reservoir which supplies drinking water to 8 million people was investigated. Sixteen priority PAHs were analyzed in a total of 12 water samples. In terms of the individual PAHs, the average concentration of Fla, which was 5.66 × 10(-1) μg/L, was the highest, while dibenz(a,h)anthracene which was undetected in any of the water samples was the lowest. Among three PAH compositional patterns, the concentration of low-molecular-weight and 4-ring PAHs was dominant, accounting for 94%, and the concentration of the total of 16 PAHs was elevated in constructed-wetland and fish-farming areas. According to the calculated risk quotients, little or no adverse effects were posed by individual and complex PAHs in the water on the aquatic ecosystem. In addition, the results of hazard quotients for non-carcinogenic risk also showed little or no negative impacts on the health of local residents. However, it could be concluded from the carcinogenic risk results that chrysene and complex PAHs in water might pose a potential carcinogenic risk to local residents. Moreover, the possible sources of PAHs were identified as oil spills and vehicular emissions, as well as the burning of biomass and coal. PMID:26529001