Science.gov

Sample records for assessing human risks

  1. Human factors and risk assessment

    SciTech Connect

    Al-Minhali, A.

    1996-11-01

    A case study was presented in the 1994 Abu Dhabi International Exhibition and Conference (ADIPEC, 94) which discussed the importance of investigating human factors in the design of a high integrity protection system (HIPS) to be installed on an offshore high pressure gas platform, (SPE reference ADSPE 80). This paper will follow up on the design changes, installation and operation of the HIPS with emphasis on practical implications as a result of improper integration of human factors in the system reliability and risk assessment studies.

  2. NASA Human System Risk Assessment Process

    NASA Technical Reports Server (NTRS)

    Francisco, D.; Romero, E.

    2016-01-01

    NASA utilizes an evidence based system to perform risk assessments for the human system for spaceflight missions. The center of this process is the multi-disciplinary Human System Risk Board (HSRB). The HSRB is chartered from the Chief Health and Medical Officer (OCHMO) at NASA Headquarters. The HSRB reviews all human system risks via an established comprehensive risk and configuration management plan based on a project management approach. The HSRB facilitates the integration of human research (terrestrial and spaceflight), medical operations, occupational surveillance, systems engineering and many other disciplines in a comprehensive review of human system risks. The HSRB considers all factors that influence human risk. These factors include pre-mission considerations such as screening criteria, training, age, sex, and physiological condition. In mission factors such as available countermeasures, mission duration and location and post mission factors such as time to return to baseline (reconditioning), post mission health screening, and available treatments. All of the factors influence the total risk assessment for each human risk. The HSRB performed a comprehensive review of all potential inflight medical conditions and events and over the course of several reviews consolidated the number of human system risks to 30, where the greatest emphasis is placed for investing program dollars for risk mitigation. The HSRB considers all available evidence from human research and, medical operations and occupational surveillance in assessing the risks for appropriate mitigation and future work. All applicable DRMs (low earth orbit for 6 and 12 months, deep space for 30 days and 1 year, a lunar mission for 1 year, and a planetary mission for 3 years) are considered as human system risks are modified by the hazards associated with space flight such as microgravity, exposure to radiation, distance from the earth, isolation and a closed environment. Each risk has a summary

  3. Moving Forward in Human Cancer Risk Assessment

    PubMed Central

    Paules, Richard S.; Aubrecht, Jiri; Corvi, Raffaella; Garthoff, Bernward; Kleinjans, Jos C.

    2011-01-01

    Background The current safety paradigm for assessing carcinogenic properties of drugs, cosmetics, industrial chemicals, and environmental exposures relies mainly on in vitro genotoxicity testing followed by 2-year rodent bioassays. This testing battery is extremely sensitive but has low specificity. Furthermore, rodent bioassays are associated with high costs, high animal burden, and limited predictive value for human risks. Objectives We provide a response to a growing appeal for a paradigm change in human cancer risk assessment. Methods To facilitate development of a road map for this needed paradigm change in carcinogenicity testing, a workshop titled “Genomics in Cancer Risk Assessment” brought together toxicologists from academia and industry and government regulators and risk assessors from the United States and the European Union. Participants discussed the state-of-the-art in developing alternative testing strategies for carcinogenicity, with emphasis on potential contributions from omics technologies. Results and Conclusions The goal of human risk assessment is to decide whether a given exposure to an agent is acceptable to human health and to provide risk management measures based on evaluating and predicting the effects of exposures on human health. Although exciting progress is being made using genomics approaches, a new paradigm that uses these methods and human material when possible would provide mechanistic insights that may inform new predictive approaches (e.g., in vitro assays) and facilitate the development of genomics-derived biomarkers. Regulators appear to be willing to accept such approaches where use is clearly defined, evidence is strong, and approaches are qualified for regulatory use. PMID:21147607

  4. NEUROBEHAVIORAL TESTING IN HUMAN RISK ASSESSMENT

    PubMed Central

    Rohlman, Diane S.; Lucchini, Roberto; Anger, W. Kent; Bellinger, David C.; van Thriel, Christoph

    2008-01-01

    Neurobehavioral tests are being increasingly used in human risk assessment and there is a strong need for guidance. The field of neurobehavioral toxicology has evolved from research which initially focused on using traditional neuropsychological tests to identify “abnormal cases” to include methods used to detect sub-clinical deficits, to further incorporate the use of neurosensory assessment, and to expand testing from occupational populations to vulnerable populations including older adults and children. Even as exposures in the workplace are reduced, they have been increasing in the environment and research on exposure has now expanded to cross the entire lifetime. These neurobehavioral methods are applied in research and the findings used for regulatory purposes to develop preventative action for exposed populations. This paper reflects a summary of the talks presented at the symposium presented at the 11th meeting of the International Neurotoxicology Association. PMID:18539229

  5. MULTIMEDIA HUMAN EXPOSURE AND RISK ASSESSMENT MODELING

    EPA Science Inventory

    Exposures and health risk comparisons from different sites may be used for allocating limited resources available for remedial action. It is important that comparisons between different sites use similar levels of site-specific data and/or screening level data. Risk assessment c...

  6. THE ROLE OF EXPOSURE ANALYSIS IN HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    This presentation will cover the basic methodologies used for assessing human exposures to environmental pollutants, and some of the scientific challenges involved in conducting exposure and risk assessments in support of regulatory evaluations.

  7. Assessing human health risk in the USDA forest service

    SciTech Connect

    Hamel, D.R.

    1990-12-31

    This paper identifies the kinds of risk assessments being done by or for the US Department of Agriculture (USDA) Forest Service. Summaries of data sources currently in use and the pesticide risk assessments completed by the agency or its contractors are discussed. An overview is provided of the agency`s standard operating procedures for the conduct of toxicological, ecological, environmental fate, and human health risk assessments.

  8. INCORPORATING HUMAN INTERINDIVIDUAL BIOTRANSFORMATION VARIANCE IN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    The protection of sensitive individuals within a population dictates that measures other than central tendencies be employed to estimate risk. The refinement of human health risk assessments for chemicals metabolized by the liver to reflect data on human variability can be accom...

  9. TOXICOPROTEOMICS AND ITS APPLICATION TO HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    Humans are exposed to a variety of environmental toxicants, and this together with a large number of interacting factors can contribute to an individual's risk for health. To understand the toxic mechanisms and/or modes of action for human health risk assessment, molecular charac...

  10. 76 FR 39399 - Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... AGENCY Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Notice of Availability... availability of EPA's preliminary human health risk assessment for the registration review of chlorpyrifos and... comprehensive preliminary human health risk assessment for all chlorpyrifos uses. After reviewing...

  11. 76 FR 52945 - Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Extension of Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... AGENCY Chlorpyrifos Registration Review; Preliminary Human Health Risk Assessment; Extension of Comment... availability of the chlorpyrifos registration review; preliminary human health risk assessment. This document... for the chlorpyrifos reregistration review, preliminary human health risk assessment, established...

  12. Clean Slate transportation and human health risk assessment

    SciTech Connect

    1997-02-01

    Public concern regarding activities involving radioactive material generally focuses on the human health risk associated with exposure to ionizing radiation. This report describes the results of a risk analysis conducted to evaluate risk for excavation, handling, and transport of soil contaminated with transuranics at the Clean Slate sites. Transportation risks were estimated for public transport routes from the Tonopah Test Range (TTR) to the Envirocore disposal facility or to the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for both radiological risk and risk due to traffic accidents. Human health risks were evaluated for occupational and radiation-related health effects to workers. This report was generated to respond to this public concern, to provide an evaluation of the risk, and to assess feasibility of transport of the contaminated soil for disposal.

  13. A 21st Century Roadmap for Human Health Risk Assessment

    EPA Science Inventory

    For decades human health risk assessment has depended primarily on animal testing to predict adverse effects in humans, but that paradigm has come under question because of calls for more accurate information, less use of animals, and more efficient use of resources. Moreover, t...

  14. Environmental Epigenetics: Potential Application in Human Health Risk Assessment

    EPA Science Inventory

    Although previous studies have shown a significant involvement of epigenetic dysregulation in human diseases, the applicability of epigenetic data in the current human health risk assessment paradigm is unclear. The goals of this study are to compare the relative sensitivities of...

  15. Human health risk assessment of heavy metals in urban stormwater.

    PubMed

    Ma, Yukun; Egodawatta, Prasanna; McGree, James; Liu, An; Goonetilleke, Ashantha

    2016-07-01

    Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150μm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas. PMID:27046140

  16. A 21st century roadmap for human health risk assessment.

    PubMed

    Pastoor, Timothy P; Bachman, Ammie N; Bell, David R; Cohen, Samuel M; Dellarco, Michael; Dewhurst, Ian C; Doe, John E; Doerrer, Nancy G; Embry, Michelle R; Hines, Ronald N; Moretto, Angelo; Phillips, Richard D; Rowlands, J Craig; Tanir, Jennifer Y; Wolf, Douglas C; Boobis, Alan R

    2014-08-01

    The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21) project was initiated to develop a scientific, transparent, and efficient approach to the evolving world of human health risk assessment, and involved over 120 participants from 12 countries, 15 government institutions, 20 universities, 2 non-governmental organizations, and 12 corporations. This paper provides a brief overview of the tiered RISK21 framework called the roadmap and risk visualization matrix, and articulates the core principles derived by RISK21 participants that guided its development. Subsequent papers describe the roadmap and matrix in greater detail. RISK21 principles include focusing on problem formulation, utilizing existing information, starting with exposure assessment (rather than toxicity), and using a tiered process for data development. Bringing estimates of exposure and toxicity together on a two-dimensional matrix provides a clear rendition of human safety and risk. The value of the roadmap is its capacity to chronicle the stepwise acquisition of scientific information and display it in a clear and concise fashion. Furthermore, the tiered approach and transparent display of information will contribute to greater efficiencies by calling for data only as needed (enough precision to make a decision), thus conserving animals and other resources. PMID:25070413

  17. Humans vs Hardware: The Unique World of NASA Human System Risk Assessment

    NASA Technical Reports Server (NTRS)

    Anton, W.; Havenhill, M.; Overton, Eric

    2016-01-01

    Understanding spaceflight risks to crew health and performance is a crucial aspect of preparing for exploration missions in the future. The research activities of the Human Research Program (HRP) provide substantial evidence to support most risk reduction work. The Human System Risk Board (HSRB), acting on behalf of the Office of Chief Health and Medical Officer (OCHMO), assesses these risks and assigns likelihood and consequence ratings to track progress. Unfortunately, many traditional approaches in risk assessment such as those used in the engineering aspects of spaceflight are difficult to apply to human system risks. This presentation discusses the unique aspects of risk assessment from the human system risk perspective and how these limitations are accommodated and addressed in order to ensure that reasonable inputs are provided to support the OCHMO's overall risk posture for manned exploration missions.

  18. Human milk biomonitoring data: interpretation and risk assessment issues.

    PubMed

    LaKind, Judy S; Brent, Robert L; Dourson, Michael L; Kacew, Sam; Koren, Gideon; Sonawane, Babasaheb; Tarzian, Anita J; Uhl, Kathleen

    2005-10-22

    Biomonitoring data can, under certain conditions, be used to describe potential risks to human health (for example, blood lead levels used to determine children's neurodevelopmental risk). At present, there are very few chemical exposures at low levels for which sufficient data exist to state with confidence the link between levels of environmental chemicals in a person's body and his or her risk of adverse health effects. Human milk biomonitoring presents additional complications. Human milk can be used to obtain information on both the levels of environmental chemicals in the mother and her infant's exposure to an environmental chemical. However, in terms of the health of the mother, there are little to no extant data that can be used to link levels of most environmental chemicals in human milk to a particular health outcome in the mother. This is because, traditionally, risks are estimated based on dose, rather than on levels of environmental chemicals in the body, and the relationship between dose and human tissue levels is complex. On the other hand, for the infant, some information on dose is available because the infant is exposed to environmental chemicals in milk as a "dose" from which risk estimates can be derived. However, the traditional risk assessment approach is not designed to consider the benefits to the infant associated with breastfeeding and is complicated by the relatively short-term exposures to the infant from breastfeeding. A further complexity derives from the addition of in utero exposures, which complicates interpretation of epidemiological research on health outcomes of breastfeeding infants. Thus, the concept of "risk assessment" as it applies to human milk biomonitoring is not straightforward, and methodologies for undertaking this type of assessment have not yet been fully developed. This article describes the deliberations of the panel convened for the Technical Workshop on Human Milk Surveillance and Biomonitoring for Environmental

  19. Biological surveys for ecological and human health risk assessments

    SciTech Connect

    Kathman, R.D.; Reagan, D.P.; Mayfield, J.C.

    1994-12-31

    In the past, human risk assessment was used almost exclusively to determine remedial measures at contaminated waste sites. Recently, however, ecological risk assessments have gained importance in evaluating risk not only to plants and animals, but also to humans through use of measures such as action levels of chemicals in fish tissue. Biological surveys were initiated to assess the mercury concentrations in finfish and shellfish in Lavaca Bay, Texas, part of which has been closed to fish and shellfish consumption since 1988 due to high levels of mercury in these organisms. Samples of particulate organic matter, cordgrass, invertebrates and fish were collected and analyzed for mercury concentrations. In conjunction with the biological surveys, an extensive sediment sampling program was conducted to map mercury concentrations in the sediment throughout the bay. A food web pathways model developed by personnel at National Marine Fisheries Service to assess mercury uptake by aquatic organisms in the bay has enabled the authors to concentrate on specific locations/habitats where mercury concentrations in sediment exceed a critical value. Biological data, along with stable isotope analyses, were used to validate the food web model. The conclusion is that mercury is continuing to enter the food web through the sediment-based food chain and not through the water column. These studies will be used to identify areas which need to be addressed for possible remedial measures, resulting in less uptake and bioaccumulation of mercury, and possible future removal of the fishing ban, thus establishing a direct linkage with human health concerns.

  20. Advancing human health risk assessment: integrating recent advisory committee recommendations.

    PubMed

    Dourson, Michael; Becker, Richard A; Haber, Lynne T; Pottenger, Lynn H; Bredfeldt, Tiffany; Fenner-Crisp, Penelope A

    2013-07-01

    Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose-response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose-response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches. PMID:23844697

  1. Advancing human health risk assessment: Integrating recent advisory committee recommendations

    PubMed Central

    Becker, Richard A.; Haber, Lynne T.; Pottenger, Lynn H.; Bredfeldt, Tiffany; Fenner-Crisp, Penelope A.

    2013-01-01

    Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose–response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose–response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches. PMID:23844697

  2. Flood hazard, vulnerability, and risk assessment for human life

    NASA Astrophysics Data System (ADS)

    Pan, T.; Chang, T.; Lai, J.; Hsieh, M.; Tan, Y.; Lin, Y.

    2011-12-01

    Flood risk assessment is an important issue for the countries suffering tropical cyclones and monsoon. Taiwan is located in the hot zone of typhoon tracks in the Western Pacific. There are three to five typhoons landing Taiwan every year. Typhoons and heavy rainfalls often cause inundation disaster rising with the increase of population and the development of social economy. The purpose of this study is to carry out the flood hazard, vulnerability and risk in term of human life. Based on the concept that flood risk is composed by flood hazard and vulnerability, a inundation simulation is performed to evaluate the factors of flood hazard for human life according to base flood (100-year return period). The flood depth, velocity and rising ratio are the three factors of flood hazards. Furthermore, the factors of flood vulnerability are identified in terms of human life that are classified into two main factors, residents and environment. The sub factors related to residents are the density of population and the density of vulnerable people including elders, youngers and disabled persons. The sub factors related to environment include the the number of building floors, the locations of buildings, the and distance to rescue center. The analytic hierarchy process (AHP) is adopted to determine the weights of these factors. The risk matrix is applied to show the risk from low to high based on the evaluation of flood hazards and vulnerabilities. The Tseng-Wen River watershed is selected as the case study because a serious flood was induced by Typhoon Morakot in 2009, which produced a record-breaking rainfall of 2.361mm in 48 hours in the last 50 years. The results of assessing the flood hazard, vulnerability and risk in term of human life could improve the emergency operation for flood disaster to prepare enough relief goods and materials during typhoon landing.

  3. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  4. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONG HUMAN HEALTH, ECOLOGICAL AND ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  5. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONG HUMAN HEALTH, ECOLOGICAL, AND ENVIRONMENTAL MONITORING

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  6. HUMAN AND ECOLOGICAL RISK ASSESSMENT: ASSOCIATIONS AMONH HUMAN HEALTH, ECOLOGICAL AND ENVIRONMENTAL MONITORING DATA

    EPA Science Inventory

    While all life is affected by the quality of the environment, environmental risk factors for human and wildlife health are typically assessed using independent processes that are dissimilar in scale and scope. However, the integrated analysis of human, ecological, and environmen...

  7. Characterization of Evidence for Human System Risk Assessment

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Van Baalen, M.; Rossi, M.; Riccio, G.; Romero, E.; Francisco, D.

    2016-01-01

    Understanding the kinds of evidence available and using the best evidence to answer a question is critical to evidenced-based decision-making, and it requires synthesis of evidence from a variety of sources. Categorization of human system risks in spaceflight, in particular, focuses on how well the integration and interpretation of all available evidence informs the risk statement that describes the relationship between spaceflight hazards and an outcome of interest. A mature understanding and categorization of these risks requires: 1) sufficient characterization of risk, 2) sufficient knowledge to determine an acceptable level of risk (i.e., a standard), 3) development of mitigations to meet the acceptable level of risk, and 4) identification of factors affecting generalizability of the evidence to different design reference missions. In the medical research community, evidence is often ranked by increasing confidence in findings gleaned from observational and experimental research (e.g., "levels of evidence"). However, an approach based solely on aspects of experimental design is problematic in assessing human system risks for spaceflight. For spaceflight, the unique challenges and opportunities include: (1) The independent variables in most evidence are the hazards of spaceflight, such as space radiation or low gravity, which cannot be entirely duplicated in terrestrial (Earth-based) analogs, (2) Evidence is drawn from multiple sources including medical and mission operations, Lifetime Surveillance of Astronaut Health (LSAH), spaceflight research (LSDA), and relevant environmental & terrestrial databases, (3) Risk metrics based primarily on LSAH data are typically derived from available prevalence or incidence data, which may limit rigorous interpretation, (4) The timeframe for obtaining adequate spaceflight sample size (n) is very long, given the small population, (5) Randomized controlled trials are unattainable in spaceflight, (6) Collection of personal and

  8. Mammalian toxicology overview and human risk assessment for sulfosulfuron.

    PubMed

    Healy, Charles E; Heydens, William F; Naylor, Mark W

    2004-06-01

    Sulfosulfuron is a low-use rate sulfonylurea herbicide. A review of the toxicity database for sulfosulfuron indicates that the molecule has a low order of acute toxicity. It is not genotoxic and is not a reproductive, developmental, or nervous system toxicant. There were no indications of endocrine disruption in any study performed with the molecule. The only findings considered to be an adverse effect in mammalian laboratory animals following prolonged subchronic or chronic exposure to sulfosulfuron were isolated to the urinary tract. These findings occurred in conjunction with findings of urolith formation following high-level chemical dosing, resulting in epithelial hyperplasia that, in a few cases, progressed to tumor formation. Mode-of-action information supports the conclusion that these tumors result from a non-genotoxic, threshold-based process that is well established and widely considered to be not relevant to humans. Based on its short-term, infrequent application pattern and very low use rate and crop residues, aggregate and cumulative risk assessments indicate that sulfosulfuron has substantial margins of exposure and does not represent a significant risk to human health. PMID:15135210

  9. Human Health Risk Assessment Calculator. In: SMARTe20ll, EPA/600/C-10/007

    EPA Science Inventory

    This calculator is aimed at supporting a human health risk assessment. Risk scenarios can be built by combining various health effects, exposure pathways, exposure parameters, and analytes. Scenario risk are calculated for each exposure pathway and analyte combination. The out...

  10. Reproducibility and Transparency of Omics Research - Impacts on Human Health Risk Assessment

    EPA Science Inventory

    Omics technologies are becoming more widely used in toxicology, necessitating their consideration in human health hazard and risk assessment programs. Today, risk assessors in the United States Environmental Protection Agency’s Integrated Risk Information System (IRIS) Toxicologi...

  11. Human health risk assessment from arsenic exposures in Bangladesh.

    PubMed

    Joseph, Tijo; Dubey, Brajesh; McBean, Edward A

    2015-09-15

    High arsenic exposures, prevalent through dietary and non-dietary sources in Bangladesh, present a major health risk to the public. A quantitative human health risk assessment is described as a result of arsenic exposure through food and water intake, tea intake, accidental soil ingestion, and chewing of betel quid, while people meet their desirable dietary intake requirements throughout their lifetime. In evaluating the contribution of each intake pathway to average daily arsenic intake, the results show that food and water intake combined, makes up approximately 98% of the daily arsenic intake with the balance contributed to by intake pathways such as tea consumption, soil ingestion, and quid consumption. Under an exposure scenario where arsenic concentration in water is at the WHO guideline (0.01 mg/L), food intake is the major arsenic intake pathway ranging from 67% to 80% of the average daily arsenic intake. However, the contribution from food drops to a range of 29% to 45% for an exposure scenario where arsenic in water is at the Bangladesh standard (0.05 mg/L). The lifetime excess risk of cancer occurrence from chronic arsenic exposure, considering a population of 160 million people, based on an exposure scenario with 85 million people at the WHO guideline value and 75 million people at the Bangladesh standard, and assuming that 35 million people are associated with a heavy activity level, is estimated as 1.15 million cases. PMID:26006052

  12. Significance of rat mammary tumors for human risk assessment.

    PubMed

    Russo, Jose

    2015-02-01

    We have previously indicated that the ideal animal tumor model should mimic the human disease. This means that the investigator should be able to ascertain the influence of host factors on the initiation of tumorigenesis, mimic the susceptibility of tumor response based on age and reproductive history, and determine the response of the tumors induced to chemotherapy. The utilization of experimental models of mammary carcinogenesis in risk assessment requires that the influence of ovarian, pituitary, and placental hormones, among others, as well as overall reproductive events are taken into consideration, since they are important modifiers of the susceptibility of the organ to neoplastic development. Several species, such as rodents, dogs, cats, and monkeys, have been evaluated for these purposes; however, none of them fulfills all the criteria specified previously. Rodents, however, are the most widely used models; therefore, this work will concentrate on discussing the rat rodent model of mammary carcinogenesis. PMID:25714400

  13. Human health and ecological risk assessment of soil-borne arsenic and lead: A site-specific risk assessment

    SciTech Connect

    Roy, M.; Epp, G.A.; Beukema, P.; Nieboer, E.

    1997-12-31

    Screening level site specific human health and ecological risk assessments (ERA) were conducted at a historical (1908--1921) smelting and refining site in the Niagara Region, Ontario in accordance with the recently released provincial and federal risk assessment guidelines. The purpose of the assessment was to evaluate the risk associated with elevated levels of arsenic and lead in surface soils, and to assess alternative remediation options, prior to property transfer. Future intended land use will be parkland and for the site to remain forested. The identification of potential receptors, exposure pathways, and end-points was conducted at the biological community-level. The ERA involved a toxic cue inventory of the core smelting and refining site, adjacent lands and a reference site. Development of remediation options was based on hazard assessment and the prediction of risks associated with arsenic contamination. An evaluation of remediation options and the selection of a preferred option are discussed.

  14. Human tissue monitoring and specimen banking: opportunities for exposure assessment, risk assessment, and epidemiologic research.

    PubMed

    Lee, L W; Griffith, J; Zenick, H; Hulka, B S

    1995-04-01

    A symposium on Human Tissue Monitoring and Specimen Banking: Opportunities for Exposure Assessment, Risk Assessment, and Epidemiologic Research was held from 30 March to 1 April 1993 in Research Triangle Park, North Carolina. There were 117 registered participants from 18 states and 5 foreign countries. The first 2 days featured 21 invited speakers from the U.S. Environmental Protection Agency, the Centers for Disease Control and Prevention, the National Institute of Environmental Health Sciences, various other government agencies, and universities in the United States, Canada, Germany, and Norway. The speakers provided a state-of-the-art overview of human exposure assessment techniques (especially applications of biological markers) and their relevance to human tissue specimen banking. Issues relevant to large-scale specimen banking were discussed, including program design, sample design, data collection, tissue collection, and ethical ramifications. The final group of presentations concerned practical experiences of major specimen banking and human tissue monitoring programs in the United States and Europe. The symposium addressed the utility and research opportunities afforded by specimen banking programs for future research needs in the areas of human exposure assessment, risk assessment, and environmental epidemiology. The third day of the symposium consisted of a small workshop convened to discuss and develop recommendations to the U.S. Environmental Protection Agency regarding applications and utility of large-scale specimen banking, biological monitoring, and biological markers for risk assessment activities. PMID:7635108

  15. An Evaluation of Transplacental Carcinogenesis for Human Health Risk Assessment

    EPA Science Inventory

    Risk assessments take into account the sensitivity of the postnatal period to carcinogens through the application of age-dependent adjustment factors (ADAFs) (Barton et al. 2005). The prenatal period is also recognized to be sensitive but is typically not included into risk asse...

  16. The human relevant potency threshold: reducing uncertainty by human calibration of cumulative risk assessments.

    PubMed

    Borgert, C J; Sargent, E V; Casella, G; Dietrich, D R; McCarty, L S; Golden, R J

    2012-03-01

    The 2008 National Research Council report "Phthalates and Cumulative Risk Assessment: Tasks Ahead," rejected the underlying premises of TEQ-like approaches - e.g., chemicals are true congeners; are metabolized and detoxified similarly; produce the same biological effects by the same mode of action; exhibit parallel dose response curves - instead asserting that cumulative risk assessment should apply dose addition (DA) to all chemicals that produce "common adverse outcomes" (CAOS). Published mixtures data and a human health risk assessment for phthalates and anti-androgens were evaluated to determine how firmly the DA-CAOS concept is supported and with what level of statistical certainty the results may be extrapolated to lower doses in humans. Underlying assumptions of the DA-CAOS concept were tested for accuracy and consistency against data for two human pharmaceuticals and its logical predictions were compared to human clinical and epidemiological experience. Those analyses revealed that DA-CAOS is scientifically untenable. Therefore, an alternative approach was developed - the Human-Relevant Potency-Threshold (HRPT) - that appears to fit the data better and avoids the contradictions inherent in the DA-CAOS concept. The proposed approach recommends application of independent action for phthalates and other chemicals with potential anti-androgenic properties at current human exposure levels. PMID:22057094

  17. Human Health Risk Assessment of Trichloroethylene from Industrial Complex A

    PubMed Central

    Sin, Saemi

    2012-01-01

    This study investigated the human health risks of trichloroethylene from Industrial Complex A. The excessive carcinogenic risks for central tendency exposure were 1.40 × 10?5 for male and female residents in the vicinity of Industrial Complex A. The excessive cancers risk for reasonable maximum exposure were 2.88 × 10?5 and 1.97 × 10?5 for males and females, respectively. These values indicate that there are potential cancer risks for exposure to these concentrations. The hazard index for central tendency exposure to trichloroethylene was 1.71 for male and female residents. The hazard indexes for reasonable maximum exposure were 3.27 and 2.41 for males and females, respectively. These values were over one, which is equivalent to the threshold value. This result showed that adverse cancer and non-cancer health effects may occur and that some risk management of trichloroethylene from Industrial Complex A was needed. PMID:24278607

  18. Evaluating uncertainty to strengthen epidemiologic data for use in human health risk assessments

    EPA Science Inventory

    Background: There is a recognized need to improve the application of epidemiologic data in human health risk assessment especially for understanding and characterizing risks from environmental and occupational exposures. While most epidemiologic studies result in uncertainty, tec...

  19. Risk Assessment: Evidence Base

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.

    2007-01-01

    Human systems PRA (Probabilistic Risk Assessment: a) Provides quantitative measures of probability, consequence, and uncertainty; and b) Communicates risk and informs decision-making. Human health risks rated highest in ISS PRA are based on 1997 assessment of clinical events in analog operational settings. Much work remains to analyze remaining human health risks identified in Bioastronautics Roadmap.

  20. A global human health risk assessment for Decamethylcyclopentasiloxane (D5).

    PubMed

    Franzen, Allison; Van Landingham, Cynthia; Greene, Tracy; Plotzke, Kathy; Gentry, Robinan

    2016-02-01

    Decamethylcyclopentasiloxane (D5) is a low-molecular-weight cyclic siloxane used primarily as an intermediate in the production of several widely-used industrial and consumer products and intentionally added to consumer products, personal products and some dry cleaning solvents. The global use requires consideration of consumer use information and risk assessment requirements from various sources and authoritative bodies. A global "harmonized" risk assessment was conducted to meet requirements for substance-specific risk assessments conducted by regulatory agencies such as USEPA's Integrated Risk Information System (IRIS), Health Canada and various independent scientific committees of the European Commission, as well as provide guidance for chemical safety assessments under REACH in Europe, and other relevant authoritative bodies. This risk assessment incorporates global exposure information combined with a Monte Carlo analysis to determine the most significant routes of exposure, utilization of a multi-species, multi-route physiologically based pharmacokinetic (PBPK) model to estimate internal dose metrics, benchmark modeling to determine a point of departure (POD), and a margin of safety (MOS) evaluation to compare the estimates of intake with the POD. Because of the specific pharmacokinetic behaviors of D5 including high lipophilicity, high volatility with low blood-to-air partition coefficients and extensive metabolic clearance that regulate tissue dose after exposure, the use of a PBPK model was essential to provide a comparison of a dose metric that reflects these processes. The characterization of the potential for adverse effects after exposure to D5 using a MOS approach based on an internal dose metric removes the subjective application of uncertainty factors that may be applied across various regulatory agencies and allows examination of the differences between internal dose metrics associated with exposure and those associated with adverse effects. PMID

  1. Addressing Human Variability in Next-Generation Human Health Risk Assessments of Environmental Chemicals

    PubMed Central

    Bois, Frederic Y.; Chiu, Weihsueh A.; Hattis, Dale; Rusyn, Ivan; Guyton, Kathryn Z.

    2012-01-01

    Background: Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Objective: Our goal was to explore how next-generation human health risk assessments may better characterize variability in the context of the conceptual framework for the source-to-outcome continuum. Methods: This review was informed by a National Research Council workshop titled “Biological Factors that Underlie Individual Susceptibility to Environmental Stressors and Their Implications for Decision-Making.” We considered current experimental and in silico approaches, and emerging data streams (such as genetically defined human cells lines, genetically diverse rodent models, human omic profiling, and genome-wide association studies) that are providing new types of information and models relevant for assessing interindividual variability for application to human health risk assessments of environmental chemicals. Discussion: One challenge for characterizing variability is the wide range of sources of inherent biological variability (e.g., genetic and epigenetic variants) among individuals. A second challenge is that each particular pair of health outcomes and chemical exposures involves combinations of these sources, which may be further compounded by extrinsic factors (e.g., diet, psychosocial stressors, other exogenous chemical exposures). A third challenge is that different decision contexts present distinct needs regarding the identification—and extent of characterization—of interindividual variability in the human population. Conclusions: Despite these inherent challenges, opportunities exist to incorporate evidence from emerging data streams for addressing interindividual variability in a range of decision-making contexts. PMID:23086705

  2. Depleted uranium human health risk assessment, Jefferson Proving Ground, Indiana

    SciTech Connect

    Ebinger, M.H.; Hansen, W.R.

    1994-04-29

    The risk to human health from fragments of depleted uranium (DU) at Jefferson Proving Ground (JPG) was estimated using two types of ecosystem pathway models. A steady-state, model of the JPG area was developed to examine the effects of DU in soils, water, and vegetation on deer that were hunted and consumed by humans. The RESRAD code was also used to estimate the effects of farming the impact area and consuming the products derived from the farm. The steady-state model showed that minimal doses to humans are expected from consumption of deer that inhabit the impact area. Median values for doses to humans range from about 1 mrem ({plus_minus}2.4) to 0.04 mrem ({plus_minus}0.13) and translate to less than 1 {times} 10{sup {minus}6} detriments (excess cancers) in the population. Monte Carlo simulation of the steady-state model was used to derive the probability distributions from which the median values were drawn. Sensitivity analyses of the steady-state model showed that the amount of DU in airborne dust and, therefore, the amount of DU on the vegetation surface, controlled the amount of DU ingested by deer and by humans. Human doses from the RESRAD estimates ranged from less than 1 mrem/y to about 6.5 mrem/y in a hunting scenario and subsistence fanning scenario, respectively. The human doses exceeded the 100 mrem/y dose limit when drinking water for the farming scenario was obtained from the on-site aquifer that was presumably contaminated with DU. The two farming scenarios were unrealistic land uses because the additional risk to humans due to unexploded ordnance in the impact area was not figured into the risk estimate. The doses estimated with RESRAD translated to less than 1 {times} 10{sup {minus}6} detriments to about 1 {times} 10{sup {minus}3} detriments. The higher risks were associated only with the farming scenario in which drinking water was obtained on-site.

  3. Human health risk assessment related to contaminated land: state of the art.

    PubMed

    Swartjes, F A

    2015-08-01

    Exposure of humans to contaminants from contaminated land may result in many types of health damage ranging from relatively innocent symptoms such as skin eruption or nausea, on up to cancer or even death. Human health protection is generally considered as a major protection target. State-of-the-art possibilities and limitations of human health risk assessment tools are described in this paper. Human health risk assessment includes two different activities, i.e. the exposure assessment and the hazard assessment. The combination of these is called the risk characterization, which results in an appraisal of the contaminated land. Exposure assessment covers a smart combination of calculations, using exposure models, and measurements in contact media and body liquids and tissue (biomonitoring). Regarding the time frame represented by exposure estimates, biomonitoring generally relates to exposure history, measurements in contact media to actual exposures, while exposure calculations enable a focus on exposure in future situations. The hazard assessment, which is different for contaminants with or without a threshold for effects, results in a critical exposure value. Good human health risk assessment practice accounts for tiered approaches and multiple lines of evidence. Specific attention is given here to phenomena such as the time factor in human health risk assessment, suitability for the local situation, background exposure, combined exposure and harmonization of human health risk assessment tools. PMID:25809961

  4. Waste area Grouping 2 Phase I task data report: Human health risk assessment

    SciTech Connect

    Purucker, S.T.; Douthat, D.M.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow- up information to the Phase 1 Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that could cause potential human health risk and ecological risk within WAG2 at ORNL. The purpose of this report is to present a summary of the human health risk assessment results based on the data collected for the WAG 2 Phase 1 RI. Estimates of risk are provided based on measured concentrations in the surface water, floodplain soil, and sediment of White Oak Creek, Melton Branch, and their tributaries. The human health risk assessment methodology used in this risk assessment is based on Risk Assessment Guidance for Superfund (RAGS). First, the data for the different media are elevated to determine usability for risk assessment. Second, through the process of selecting chemicals of potential concern (COPCs), contaminants to be considered in the risk assessment are identified for each assessment of exposure potential is performed, and exposure pathways are identified. Subsequently, exposure is estimated quantitatively, and the toxicity of each of the COPCs is determined. The results of these analyses are combined and summarized in a risk characterization.

  5. Electronic cigarettes: incorporating human factors engineering into risk assessments

    PubMed Central

    Yang, Ling; Rudy, Susan F; Cheng, James M; Durmowicz, Elizabeth L

    2014-01-01

    Objective A systematic review was conducted to evaluate the impact of human factors (HF) on the risks associated with electronic cigarettes (e-cigarettes) and to identify research gaps. HF is the evaluation of human interactions with products and includes the analysis of user, environment and product complexity. Consideration of HF may mitigate known and potential hazards from the use and misuse of a consumer product, including e-cigarettes. Methods Five databases were searched through January 2014 and publications relevant to HF were incorporated. Voluntary adverse event (AE) reports submitted to the US Food and Drug Administration (FDA) and the package labelling of 12 e-cigarette products were analysed. Results No studies specifically addressing the impact of HF on e-cigarette use risks were identified. Most e-cigarette users are smokers, but data on the user population are inconsistent. No articles focused specifically on e-cigarette use environments, storage conditions, product operational requirements, product complexities, user errors or misuse. Twelve published studies analysed e-cigarette labelling and concluded that labelling was inadequate or misleading. FDA labelling analysis revealed similar concerns described in the literature. AE reports related to design concerns are increasing and fatalities related to accidental exposure and misuse have occurred; however, no publications evaluating the relationship between AEs and HF were identified. Conclusions The HF impacting e-cigarette use and related hazards are inadequately characterised. Thorough analyses of user–product–environment interfaces, product complexities and AEs associated with typical and atypical use are needed to better incorporate HF engineering principles to inform and potentially reduce or mitigate the emerging hazards associated with e-cigarette products. PMID:24732164

  6. QUANTITATIVE TOXICOPROTEOMIC ANALYSIS OF CARCINOGEN-TREATED ANIMAL TISSUES AND HUMAN CELLS FOR HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    Humans are exposed to a variety of environmental toxicants, and this together with a large number of interacting factors can contribute to an individual's risk for health. To understand the toxic mechanisms and/or modes of action for human health risk assessment, molecular charac...

  7. Assessment of Regional Human Health Risks from Lead Contamination in Yunnan Province, Southwestern China

    PubMed Central

    Lu, Lu; Cheng, Hongguang; Liu, Xuelian; Xie, Jing; Li, Qian; Zhou, Tan

    2015-01-01

    Identification and management the 'critical risk areas' where hotspot lead exposures are a potential risk to human health, become a major focus of public health efforts in China. But the knowledge of health risk assessment of lead pollution at regional and national scales is still limited in China. In this paper, under the guidance of 'sources-pathways-receptors' framework, regional human health risk assessment model for lead contamination was developed to calculate the population health risk in Yunnan province. And the cluster and AHP (analytic hierarchy process) analysis was taken to classify and calculate regional health risk and the decomposition of the regional health risk in the greatest health risk region, respectively. The results showed that Yunnan province can be divided into three areas. The highest health risk levels, located in northeastern Yunnan, including Kunming, Qujing, Zhaotong region. In those regions, lead is present at high levels in air, food, water and soil, and high population density which pose a high potential population risk to the public. The current study also reveals that most regional health risk was derived from the child receptors (age above 3 years) 4.3 times than the child receptors (age under 3years), and ingestion of lead-contaminated rice was found to be the most significant contributor to the health risk (accounting for more than 49 % health risk of total). This study can provide a framework for regional risk assessment in China and highlighted some indicators and uncertainties. PMID:25893826

  8. Assessment of regional human health risks from lead contamination in Yunnan province, southwestern China.

    PubMed

    Lu, Lu; Cheng, Hongguang; Liu, Xuelian; Xie, Jing; Li, Qian; Zhou, Tan

    2015-01-01

    Identification and management the 'critical risk areas' where hotspot lead exposures are a potential risk to human health, become a major focus of public health efforts in China. But the knowledge of health risk assessment of lead pollution at regional and national scales is still limited in China. In this paper, under the guidance of 'sources-pathways-receptors' framework, regional human health risk assessment model for lead contamination was developed to calculate the population health risk in Yunnan province. And the cluster and AHP (analytic hierarchy process) analysis was taken to classify and calculate regional health risk and the decomposition of the regional health risk in the greatest health risk region, respectively. The results showed that Yunnan province can be divided into three areas. The highest health risk levels, located in northeastern Yunnan, including Kunming, Qujing, Zhaotong region. In those regions, lead is present at high levels in air, food, water and soil, and high population density which pose a high potential population risk to the public. The current study also reveals that most regional health risk was derived from the child receptors (age above 3 years) 4.3 times than the child receptors (age under 3 years), and ingestion of lead-contaminated rice was found to be the most significant contributor to the health risk (accounting for more than 49% health risk of total). This study can provide a framework for regional risk assessment in China and highlighted some indicators and uncertainties. PMID:25893826

  9. A Stochastic Approach To Human Health Risk Assessment Due To Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    de Barros, F. P.; Rubin, Y.

    2006-12-01

    We present a probabilistic framework to addressing adverse human health effects due to groundwater contamination. One of the main challenges in health risk assessment is in relating it to subsurface data acquisition and to improvement in our understanding of human physiological responses to contamination. In this paper we propose to investigate this problem through an approach that integrates flow, transport and human health risk models with hydrogeological characterization. A human health risk cumulative distribution function is analytically developed to account for both uncertainty and variability in hydrogeological as well as human physiological parameters. With our proposed approach, we investigate under which conditions the reduction of uncertainties from flow physics, human physiology and exposure related parameters might contribute to a better understanding of human health risk assessment. Results indicate that the human health risk cumulative distribution function is sensitive to physiological parameters at low risk values associated with longer travel times. The results show that the worth of hydrogeological characterization in human health risk is dependent on the residence time of the contaminant plume in the aquifer and on the exposure duration of the population to certain chemicals.

  10. Human health risk assessment: selected Internet and world wide web resources.

    PubMed

    Patterson, Jacqueline; Hakkinen, P J Bert; Wullenweber, Andrea E

    2002-04-25

    The world wide web (WWW) has become a valuable source of 24 hour-a-day access to information needed by human health risk assessors. Various web sites and other Internet resources provide information needed for human hazard identification, dose-response evaluation, exposure assessment, risk characterization, and risk management. Information on risk communication is also available. Substantial collections of information on multiple aspects of risk assessment are found in sites sponsored by RiskWorld, the (US) EPA's National Center for Environmental Assessment (NCEA), the (US) National Library of Medicine's TOXNET, the (US) Agency for Toxic Substances and Disease Registry (ATSDR), and the International Programme on Chemical Safety (IPCS). Also valuable are various web sites providing information on the physical and chemical properties of chemicals, the environmental fate and transport of chemicals, government regulations, and guidance and training for performing risk assessments. Several professional societies and other organizations have web sites addressing risk assessment issues and information, and there are Internet mailing lists for online help and for sharing information and perspectives. We classify selected web sites according to user needs and provide the reader with a collection of selected sites that can serve as entry points to risk assessment-related web resources. PMID:11955689

  11. RISK ASSESSMENT AND LIFE CYCLE IMPACT ASSESSMENT (LCIA) FOR HUMAN HEALTH CANCEROUS AND NONCANCEROUS EMISSIONS: INTEGRATED AND COMPLEMENTARY WITH CONSISTENCY WITHIN THE USEPA

    EPA Science Inventory

    The historical parallels, complementary roles, and potential for integration of human health risk assessment (RA) and Life-Cycle Impact Assessment (LCIA) are explored. Previous authors have considered the comparison of LCA and risk assessment recognizing the inherent differences ...

  12. APPLICATION OF A TIERED SURROGATE APPROACH TO IDENTIFY TOXICITY SURROGATES FOR HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    APPLICATION OF A TIERED SURROGATE APPROACH TO IDENTIFY TOXICITY SURROGATES FOR HUMAN HEALTH RISK ASSESSMENT. P.R. Dodmane1, L.E. Lizarraga1, J.P. Kaiser2, S.C. Wesselkamper2, Q.J. Zhao2. 1ORISE Participant, U.S. EPA, National Center for Environmental Assessment (NCEA), Cincinnati...

  13. Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas

    PubMed Central

    Hill, A. A.; Dewé, T.; Kosmider, R.; Von Dobschuetz, S.; Munoz, O.; Hanna, A.; Fusaro, A.; De Nardi, M.; Howard, W.; Stevens, K.; Kelly, L.; Havelaar, A.; Stärk, K.

    2015-01-01

    The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations, extremely difficult and uncertain. As a first step towards assessing zoonotic risk of influenza, we demonstrate a risk assessment framework to assess the relative likelihood of influenza A viruses, circulating in animal populations, making the species jump into humans. The intention is that such a risk assessment framework could assist decision-makers to compare multiple influenza viruses for zoonotic potential and hence to develop appropriate strain-specific control measures. It also provides a first step towards showing proof of principle for an eventual pandemic risk model. We show that the spatial and temporal epidemiology is as important in assessing the risk of an influenza A species jump as understanding the innate molecular capability of the virus. We also demonstrate data deficiencies that need to be addressed in order to consistently combine both epidemiological and molecular virology data into a risk assessment framework. PMID:26473042

  14. Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas.

    PubMed

    Hill, A A; Dewé, T; Kosmider, R; Von Dobschuetz, S; Munoz, O; Hanna, A; Fusaro, A; De Nardi, M; Howard, W; Stevens, K; Kelly, L; Havelaar, A; Stärk, K

    2015-09-01

    The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations, extremely difficult and uncertain. As a first step towards assessing zoonotic risk of influenza, we demonstrate a risk assessment framework to assess the relative likelihood of influenza A viruses, circulating in animal populations, making the species jump into humans. The intention is that such a risk assessment framework could assist decision-makers to compare multiple influenza viruses for zoonotic potential and hence to develop appropriate strain-specific control measures. It also provides a first step towards showing proof of principle for an eventual pandemic risk model. We show that the spatial and temporal epidemiology is as important in assessing the risk of an influenza A species jump as understanding the innate molecular capability of the virus. We also demonstrate data deficiencies that need to be addressed in order to consistently combine both epidemiological and molecular virology data into a risk assessment framework. PMID:26473042

  15. Integrating human and ecological risk assessment: application to the cyanobacterial harmful algal bloom problem.

    PubMed

    Orme-Zavaleta, Jennifer; Munns, Wayne R

    2008-01-01

    Environmental and public health policy continues to evolve in response to new and complex social, economic and environmental drivers. Globalization and centralization of commerce, evolving patterns of land use (e.g., urbanization, deforestation), and technological advances in such areas as manufacturing and development of genetically modified foods have created new and complex classes of stressors and risks (e.g., climate change, emergent and opportunist disease, sprawl, genomic change). In recognition of these changes, environmental risk assessment and its use are changing from stressor-endpoint specific assessments used in command and control types of decisions to an integrated approach for application in community-based decisions. As a result, the process of risk assessment and supporting risk analyses are evolving to characterize the human-environment relationship. Integrating risk paradigms combine the process of risk estimation for humans, biota, and natural resources into one assessment to improve the information used in environmental decisions (Suter et al. 2003b). A benefit to this approach includes a broader, system-wide evaluation that considers the interacting effects of stressors on humans and the environment, as well the interactions between these entities. To improve our understanding of the linkages within complex systems, risk assessors will need to rely on a suite of techniques for conducting rigorous analyses characterizing the exposure and effects relationships between stressors and biological receptors. Many of the analytical techniques routinely employed are narrowly focused and unable to address the complexities of an integrated assessment. In this paper, we describe an approach to integrated risk assessment, and discuss qualitative community modeling and Probabilistic Relational Modeling techniques that address these limitations and evaluate their potential for use in an integrated risk assessment of cyanobacteria. PMID:18461794

  16. USDOE study: Human health and ecological risk assessment for produced water discharges

    SciTech Connect

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.; Hamilton, L.D.

    1994-12-31

    Produced water generated during the production of oil and gas can contain high concentrations of radionuclides, organics and heavy metals. There are concerns about potential human health and ecological impacts from the discharge of these contaminants to the Gulf of Mexico. Data collected in the United States Department of Energy (USDOE) field study are being used in a series of human health and ecological risk assessments. These assessments will support scientifically-based regulation and risk management. This presentation: summarizes risk assessments performed for produced water discharges; describes how uncertainties in these assessments are guiding data collection efforts in the USDOE field study; and outlines ongoing risk assessment studies. In these studies, risk assessment is treated as an iterative process. An initial screening-level assessment is performed to identify important contaminants, transport and exposure pathways, and parameters. These intermediate results are used to guide data collection efforts and refinements to the analysis. At this stage in the analysis, risk is described in terms of probabilities; the uncertainties in each measured or modeled parameter are considered explicitly.

  17. Mining the potential interrelationships between human health and ecological risk assessments of metal-contaminated sites

    SciTech Connect

    Appling, J.W.

    1994-12-31

    Conservative approaches to human health or ecological risk assessment often result in evaluations that indicate a risk at metal concentrations near or below background levels. This presents a complex dilemma to regulators, responsible parties, and the public: How can risk be more realistically estimated so that the public is not unnecessarily alarmed into thinking normal exposures pose abnormal risk, and site remediation can be responsible yet cost-effective? One answer is using-ecological and human health studies together to improve the quality of both types of assessments. Mammalian herbivores and roving children are good spatial and temporal integrators of exposure; biomarkers or Monte Carlo-based models of exposure to herbivores can support realistic estimates of exposure to children. Reduced bioavailability of metals in soils at mining sites is well recognized for many metals and is amenable to study in ecological species; such studies reduce the overestimate of risk to humans through direct contact or exposure via the food chain. Recent and current human health studies of lead and arsenic bioavailability also support ecological assessments. Mixtures of metals pose special challenges because of the potential for antagonistic, additive, or synergistic effects with respect to bioavailability, absorption, distribution, excretion, toxic effects and nutritional or physiological essentiality. Combining results from pharmacokinetic, mechanistic, and environmental studies of mixtures enhances the predictive abilities of risk assessments.

  18. INTEGRATION OF HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    The WHO International Programme on Chemical Safety (IPCS), the Organization for Economic Cooperation and Development (OECD), and the U.S. Environmental Protection Agency (USEPA) have developed a collaborative partnership to foster integration of assessment approaches to evaluate ...

  19. GM Risk Assessment

    NASA Astrophysics Data System (ADS)

    Sparrow, Penny A. C.

    GM risk assessments play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of a GM risk assessment will be to ensure the safe handling and containment of the GMO; and to assess any potential impacts on the environment and human health. A risk assessment should answer all ‘what if’ scenarios, based on scientific evidence.

  20. Toxicology and risk assessment of coumarin: focus on human data.

    PubMed

    Abraham, Klaus; Wöhrlin, Friederike; Lindtner, Oliver; Heinemeyer, Gerhard; Lampen, Alfonso

    2010-02-01

    Coumarin is a secondary phytochemical with hepatotoxic and carcinogenic properties. For the carcinogenic effect, a genotoxic mechanism was considered possible, but was discounted by the European Food Safety Authority in 2004 based on new evidence. This allowed the derivation of a tolerable daily intake (TDI) for the first time, and a value of 0.1 mg/kg body weight was arrived at based on animal hepatotoxicity data. However, clinical data on hepatotoxicity from patients treated with coumarin as medicinal drug is also available. This data revealed a subgroup of the human population being more susceptible for the hepatotoxic effect than the animal species investigated. The cause of the high susceptibility is currently unknown; possible mechanisms are discussed. Using the human data, a TDI of 0.1 mg/kg body weight was derived, confirming that of the European Food Safety Authority. Nutritional exposure may be considerably, and is mainly due to use of cassia cinnamon, which is a popular spice especially, used for cookies and sweet dishes. To estimate exposure to coumarin during the Christmas season in Germany, a telephone survey was performed with more than 1000 randomly selected persons. Heavy consumers of cassia cinnamon may reach a daily coumarin intake corresponding to the TDI. PMID:20024932

  1. Analytic concepts for assessing risk as applied to human space flight

    SciTech Connect

    Garrick, B.J.

    1997-04-30

    Quantitative risk assessment (QRA) principles provide an effective framework for quantifying individual elements of risk, including the risk to astronauts and spacecraft of the radiation environment of space flight. The concept of QRA is based on a structured set of scenarios that could lead to different damage states initiated by either hardware failure, human error, or external events. In the context of a spacecraft risk assessment, radiation may be considered as an external event and analyzed in the same basic way as any other contributor to risk. It is possible to turn up the microscope on any particular contributor to risk and ask more detailed questions than might be necessary to simply assess safety. The methods of QRA allow for as much fine structure in the analysis as is desired. For the purpose of developing a basis for comprehensive risk management and considering the tendency to {open_quotes}fear anything nuclear,{close_quotes} radiation risk is a prime candidate for examination beyond that necessary to answer the basic question of risk. Thus, rather than considering only the customary damage states of fatalities or loss of a spacecraft, it is suggested that the full range of damage be analyzed to quantify radiation risk. Radiation dose levels in the form of a risk curve accomplish such a result. If the risk curve is the complementary cumulative distribution function, then it answers the extended question of what is the likelihood of receiving a specific dose of radiation or greater. Such results can be converted to specific health effects as desired. Knowing the full range of the radiation risk of a space mission and the contributors to that risk provides the information necessary to take risk management actions [operational, design, scheduling of missions around solar particle events (SPE), etc.] that clearly control radiation exposure.

  2. Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals?

    PubMed

    Evans, Richard M; Martin, Olwenn V; Faust, Michael; Kortenkamp, Andreas

    2016-02-01

    Current chemicals regulation operates almost exclusively on a chemical-by-chemical basis, however there is concern that this approach may not be sufficiently protective if two or more chemicals have the same toxic effect. Humans are indisputably exposed to more than one chemical at a time, for example to the multiple chemicals found in food, air and drinking water, and in household and consumer products, and in cosmetics. Assessment of cumulative risk to human health and/or the environment from multiple chemicals and routes can be done in a mixture risk assessment (MRA). Whilst there is a broad consensus on the basic science of mixture toxicology, the path to regulatory implementation of MRA within chemical risk assessment is less clear. In this discussion piece we pose an open question: should the scope of human MRA cross legislative remits or 'silos'? We define silos as, for instance, legislation that defines risk assessment practice for a subset of chemicals, usually on the basis of substance/product, media or process orientation. Currently any form of legal mandate for human MRA in the EU is limited to only a few pieces of legislation. We describe two lines of evidence, illustrated with selected examples, that are particularly pertinent to this question: 1) evidence that mixture effects have been shown for chemicals regulated in different silos and 2) evidence that humans are co-exposed to chemicals from different silos. We substantiate the position that, because there is no reason why chemicals allocated to specific regulatory silos would have non-overlapping risk profiles, then there is also no reason to expect that MRA limited only to chemicals within one silo can fully capture the risk that may be present to human consumers. Finally, we discuss possible options for implementation of MRA and we hope to prompt wider discussion of this issue. PMID:26573369

  3. The Use of Biomonitoring Data in Exposure and Human Health Risk Assessment: BENZENE CASE STUDY.

    EPA Science Inventory

    HESI Biomonitoring Technical Committee A framework of "Common Criteria" (i.e., a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment (Albertini et al., 2006). The data-rich chemical b...

  4. HUMAN EXPOSURE MODELING TO CHARACTERIZE SOURCE-TO-DOSE RELATIONSHIPS AND REDUCE UNCERTAINTY IN RISK ASSESSMENT

    EPA Science Inventory

    In 1998 EPA's Office of Research and Development (ORD) identified necessary research to strengthen the scientific foundation for human health risk assessment as one of its six high priority areas for long-term research support. In addition, ORD identified three strategic researc...

  5. Cumulative effects of anti-androgenic chemical mixtures and their relevance to human health risk assessment

    EPA Science Inventory

    Kembra L. Howdeshell and L. Earl Gray, Jr.Toxicological studies of defined chemical mixtures assist human health risk assessment by characterizing the joint action of chemicals. This presentation will review the effects of anti-androgenic chemical mixtures on reproductive tract d...

  6. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance

    EPA Science Inventory

    Objective: Here we present possible approaches and identify research needs to enable human health risk assessments that focus on the role the environment plays in antibiotic treatment failure of patients. Methods: The authors participated in a workshop sub-committee to define t...

  7. The Basics of Risk Assessment to Protect Human Health and the Environment

    EPA Science Inventory

    Risk assessment is the evaluation to determine the chance of harmful effects to human health or ecological systems resulting from exposure to an environmental stressor. A stressor is any physical, chemical, or biological entity that can induce an adverse response. Stressors may a...

  8. 78 FR 17201 - Pesticide Chemicals; Registration Review; Draft Human Health and Ecological Risk Assessments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...This notice announces the availability of EPA's draft human health and ecological risk assessments for the registration review of ancymidol, fosthiazate, lactofen, polybutene resins, quizalofop, and soap salts and opens a public comment period on these documents. Registration review is EPA's periodic review of pesticide registrations to ensure that each pesticide continues to satisfy the......

  9. Application of Computational Toxicological Approaches in Supporting Human Health Risk Assessment, Project Summary

    EPA Science Inventory

    Summary

    This project has three parts. The first part focuses on developing a tiered strategy and applying computational toxicological approaches to support human health risk assessment by deriving a surrogate point-of-departure (e.g., NOAEL, LOAEL, etc.) using a test c...

  10. The Stoplight Task: A Procedure for Assessing Risk Taking in Humans

    ERIC Educational Resources Information Center

    Reilly, Mark P.; Greenwald, Mark K.; Johanson, Chris-Ellyn

    2006-01-01

    The Stoplight Task, a procedure involving a computer analog of a stoplight, was evaluated for assessing risk taking in humans. Seventeen participants earned points later exchangeable for money by completing a response requirement before the red light appeared on a simulated traffic light. The green light signaled to start responding; it changed to…

  11. USING PROTEOMICS TO IMPROVE RISK ASSESSMENT OF HUMAN EXPOSURE TO ENVIRONMENTAL AGENTS

    EPA Science Inventory

    Using Proteomics to Improve Risk Assessment of Human Exposure to Environmental Agents.
    Authors: Witold M. Winnik
    Key Words (4): Proteomics, LC/MS, Western Blots, 1D and 2D gel electrophoresis, toxicity

    The goal of this project is to use proteomics for the character...

  12. Assessing the Risks to Human Health in Heterogeneous Aquifers under Uncertainty

    NASA Astrophysics Data System (ADS)

    de Barros, Felipe

    2015-04-01

    Reliable quantification of human health risk from toxic chemicals present in groundwater is a challenging task. The main difficulty relies on the fact that many of the components that constitute human health risk assessment are uncertain and requires interdisciplinary knowledge. Understanding the impact from each of these components in risk estimation can provide guidance for decision makers to manage contaminated sites and best allocate resources towards minimal prediction uncertainty. This presentation will focus on the impact of aquifer heterogeneity in human health risk. Spatial heterogeneity of the hydrogeological properties can lead to the formation of preferential flow channels which control the plume spreading rates and travel time statistics, both which are critical in assessing the risk level. By making use of an integrated hydrogeological-health stochastic framework, the significance of characteristic length scales (e.g. characterizing flow, transport and sampling devices) in both controlling the uncertainty of health risk and determining data needs is highlighted. Through a series of examples, we show how fundamental knowledge on the main physical mechanisms affecting solute pathways are necessary to understand the human health response to varying drivers.

  13. Cancer risk assessment: Optimizing human health through linear dose-response models.

    PubMed

    Calabrese, Edward J; Shamoun, Dima Yazji; Hanekamp, Jaap C

    2015-07-01

    This paper proposes that generic cancer risk assessments be based on the integration of the Linear Non-Threshold (LNT) and hormetic dose-responses since optimal hormetic beneficial responses are estimated to occur at the dose associated with a 10(-4) risk level based on the use of a LNT model as applied to animal cancer studies. The adoption of the 10(-4) risk estimate provides a theoretical and practical integration of two competing risk assessment models whose predictions cannot be validated in human population studies or with standard chronic animal bioassay data. This model-integration reveals both substantial protection of the population from cancer effects (i.e. functional utility of the LNT model) while offering the possibility of significant reductions in cancer incidence should the hormetic dose-response model predictions be correct. The dose yielding the 10(-4) cancer risk therefore yields the optimized toxicologically based "regulatory sweet spot". PMID:25916915

  14. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  15. Evaluating Uncertainty to Strengthen Epidemiologic Data for Use in Human Health Risk Assessments

    PubMed Central

    Burns, Carol J.; Wright, J. Michael; Bateson, Thomas F.; Burstyn, Igor; Goldstein, Daniel A.; Klaunig, James E.; Luben, Thomas J.; Mihlan, Gary; Ritter, Leonard; Schnatter, A. Robert; Symons, J. Morel; Don Yi, Kun

    2014-01-01

    Background: There is a recognized need to improve the application of epidemiologic data in human health risk assessment especially for understanding and characterizing risks from environmental and occupational exposures. Although there is uncertainty associated with the results of most epidemiologic studies, techniques exist to characterize uncertainty that can be applied to improve weight-of-evidence evaluations and risk characterization efforts. Methods: This report derives from a Health and Environmental Sciences Institute (HESI) workshop held in Research Triangle Park, North Carolina, to discuss the utility of using epidemiologic data in risk assessments, including the use of advanced analytic methods to address sources of uncertainty. Epidemiologists, toxicologists, and risk assessors from academia, government, and industry convened to discuss uncertainty, exposure assessment, and application of analytic methods to address these challenges. Synthesis: Several recommendations emerged to help improve the utility of epidemiologic data in risk assessment. For example, improved characterization of uncertainty is needed to allow risk assessors to quantitatively assess potential sources of bias. Data are needed to facilitate this quantitative analysis, and interdisciplinary approaches will help ensure that sufficient information is collected for a thorough uncertainty evaluation. Advanced analytic methods and tools such as directed acyclic graphs (DAGs) and Bayesian statistical techniques can provide important insights and support interpretation of epidemiologic data. Conclusions: The discussions and recommendations from this workshop demonstrate that there are practical steps that the scientific community can adopt to strengthen epidemiologic data for decision making. Citation: Burns CJ, Wright JM, Pierson JB, Bateson TF, Burstyn I, Goldstein DA, Klaunig JE, Luben TJ, Mihlan G, Ritter L, Schnatter AR, Symons JM, Yi KD. 2014. Evaluating uncertainty to strengthen

  16. Priority setting for risk assessment-The benefit of human experience

    SciTech Connect

    Alonzo, Cristina . E-mail: aloncris@adinet.com.uy; Laborde, Amalia

    2005-09-01

    The chemical risk assessment process plays an essential role in the potential human health risk evaluation. Setting priorities for this purpose is critical for better use of the available human and material resources. It has been generally accepted that all new chemicals require safety evaluation before manufacture and sale. This is a difficult task due to the large number of chemicals directly consumed by man, as well as those that are widely used. At present, more than 50% of chemicals do not have the minimum data requirements for risk assessment. Production and release volumes are well-established prioritization criteria, although volume itself does not directly reflect the likelihood of human exposure. This quantitative approach applied in setting priorities may be influenced by human experience. Human data provided by epidemiological investigations have been accepted as the most credible evidence for human toxicity although analytical studies are expensive and require long-term follow up. Unfortunately, some epidemiological studies continue to have difficulties with exposure documentation, controlling bias and confounding, and are not able to provide predictions of risk until humans are exposed. Clinical toxicology services and Poison Centres around the world accumulate a great amount of toxicological-related information that may contribute to the evidence-based medicine and research and so collaborate with all the risk assessment disciplines. The information obtained from these services and centers has the potential to prioritize existing chemical assessment processes or to influence scheduling of classes of chemicals. Prioritization process may be improved by evaluating Poisons Centres statistics about frequency of cases, severity of effects, detection of unusual circumstances of exposure, as well as vulnerable sub-populations. International efforts for the harmonization of these data offer a useful tool to take advantage of this global information. Case

  17. GM Risk Assessment.

    PubMed

    Sparrow, Penny A C

    2009-01-01

    GM risk assessments play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of a GM risk assessment will be to ensure the safe handling and containment of the GMO; and to assess any potential impacts on the environment and human health. A risk assessment should answer all 'what if' scenarios, based on scientific evidence. This chapter sets out to provide researchers with helpful guidance notes on producing their own GM risk assessment. While reference will be made to UK and EU regulations, the underlying principles and points to consider are generic to most countries. PMID:19009454

  18. Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals.

    PubMed

    Bourdon-Lacombe, Julie A; Moffat, Ivy D; Deveau, Michelle; Husain, Mainul; Auerbach, Scott; Krewski, Daniel; Thomas, Russell S; Bushel, Pierre R; Williams, Andrew; Yauk, Carole L

    2015-07-01

    Toxicogenomics promises to be an important part of future human health risk assessment of environmental chemicals. The application of gene expression profiles (e.g., for hazard identification, chemical prioritization, chemical grouping, mode of action discovery, and quantitative analysis of response) is growing in the literature, but their use in formal risk assessment by regulatory agencies is relatively infrequent. Although additional validations for specific applications are required, gene expression data can be of immediate use for increasing confidence in chemical evaluations. We believe that a primary reason for the current lack of integration is the limited practical guidance available for risk assessment specialists with limited experience in genomics. The present manuscript provides basic information on gene expression profiling, along with guidance on evaluating the quality of genomic experiments and data, and interpretation of results presented in the form of heat maps, pathway analyses and other common approaches. Moreover, potential ways to integrate information from gene expression experiments into current risk assessment are presented using published studies as examples. The primary objective of this work is to facilitate integration of gene expression data into human health risk assessments of environmental chemicals. PMID:25944780

  19. A tiered assessment framework to evaluate human health risk of contaminated sediment.

    PubMed

    Greenfield, Ben K; Melwani, Aroon R; Bay, Steven M

    2015-07-01

    For sediment contaminated with bioaccumulative pollutants (e.g., PCBs and organochorine pesticides), human consumption of seafood that contain bioaccumulated sediment-derived contaminants is a well-established exposure pathway. Historically, regulation and management of this bioaccumulation pathway has focused on site-specific risk assessment. The state of California (United States) is supporting the development of a consistent and quantitative sediment assessment framework to aid in interpreting a narrative objective to protect human health. The conceptual basis of this framework focuses on 2 key questions: 1) do observed pollutant concentrations in seafood from a given site pose unacceptable health risks to human consumers? and 2) is sediment contamination at a site a significant contributor to seafood contamination? The first question is evaluated by interpreting seafood tissue concentrations at the site, based on health risk calculations. The second question is evaluated by interpreting site-specific sediment chemistry data using a food web bioaccumulation model. The assessment framework includes 3 tiers (screening assessment, site assessment, and refined site assessment), which enables the assessment to match variations in data availability, site complexity, and study objectives. The second and third tiers use a stochastic simulation approach, incorporating information on variability and uncertainty of key parameters, such as seafood contaminant concentration and consumption rate by humans. The framework incorporates site-specific values for sensitive parameters and statewide values for difficult to obtain or less sensitive parameters. The proposed approach advances risk assessment policy by incorporating local data into a consistent region-wide problem formulation, applying best available science in a streamlined fashion. PMID:25641876

  20. Monte Carlo Simulation of Spacecraft Particle Detectors to Assess the True Human Risk

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.

    2002-01-01

    Particle detectors (DOSTEL, CPDS, and TEPC) measure the energy deposition spectrum inside earth orbiting - manned spacecraft (shuttle, space station). These instruments attempt to emulate the deposition of energy in human tissue to evaluate the health risk. However, the measurements are often difficult to relate to tissue equivalent because nuclear fragmentation (internuclear cascade/evaporation), energy-loss straggling, heavy ions, spacecraft shielding and detector geometry/orientation, and coincidence thresholds significantly affect the measured spectrum. 'A le have developed a high fidelity Monte Carlo model addressing each of these effects that significantly improves interpretation of these instruments and the resulting assessment of radiation risk to humans.

  1. A Human-Health Risk Assessment for West Nile Virus and Insecticides Used in Mosquito Management

    PubMed Central

    Peterson, Robert K.D.; Macedo, Paula A.; Davis, Ryan S.

    2006-01-01

    West Nile virus (WNV) has been a major public health concern in North America since 1999, when the first outbreak in the Western Hemisphere occurred in New York City. As a result of this ongoing disease outbreak, management of mosquitoes that vector WNV throughout the United States and Canada has necessitated using insecticides in areas where they traditionally have not been used or have been used less frequently. This has resulted in concerns by the public about the risks from insecticide use. The objective of this study was to use reasonable worst-case risk assessment methodologies to evaluate human-health risks for WNV and the insecticides most commonly used to control adult mosquitoes. We evaluated documented health effects from WNV infection and determined potential population risks based on reported frequencies. We determined potential acute (1-day) and subchronic (90-day) multiroute residential exposures from each insecticide for several human subgroups during a WNV disease outbreak scenario. We then compared potential insecticide exposures to toxicologic and regulatory effect levels. Risk quotients (RQs, the ratio of exposure to toxicologic effect) were < 1.0 for all subgroups. Acute RQs ranged from 0.0004 to 0.4726, and subchronic RQs ranged from 0.00014 to 0.2074. Results from our risk assessment and the current weight of scientific evidence indicate that human-health risks from residential exposure to mosquito insecticides are low and are not likely to exceed levels of concern. Further, our results indicate that, based on human-health criteria, the risks from WNV exceed the risks from exposure to mosquito insecticides. PMID:16507459

  2. Quantitative Risk Assessment of Human Trichinellosis Caused by Consumption of Pork Meat Sausages in Argentina.

    PubMed

    Sequeira, G J; Zbrun, M V; Soto, L P; Astesana, D M; Blajman, J E; Rosmini, M R; Frizzo, L S; Signorini, M L

    2016-03-01

    In Argentina, there are three known species of genus Trichinella; however, Trichinella spiralis is most commonly associated with domestic pigs and it is recognized as the main cause of human trichinellosis by the consumption of products made with raw or insufficiently cooked pork meat. In some areas of Argentina, this disease is endemic and it is thus necessary to develop a more effective programme of prevention and control. Here, we developed a quantitative risk assessment of human trichinellosis following pork meat sausage consumption, which may be used to identify the stages with greater impact on the probability of acquiring the disease. The quantitative model was designed to describe the conditions in which the meat is produced, processed, transported, stored, sold and consumed in Argentina. The model predicted a risk of human trichinellosis of 4.88 × 10(-6) and an estimated annual number of trichinellosis cases of 109. The risk of human trichinellosis was sensitive to the number of Trichinella larvae that effectively survived the storage period (r = 0.89), the average probability of infection (PPinf ) (r = 0.44) and the storage time (Storage) (r = 0.08). This model allowed assessing the impact of different factors influencing the risk of acquiring trichinellosis. The model may thus help to select possible strategies to reduce the risk in the chain of by-products of pork production. PMID:26227185

  3. Rethinking risk assessment for emerging technology first-in-human trials.

    PubMed

    Genske, Anna; Engel-Glatter, Sabrina

    2016-03-01

    Recent progress in synthetic biology (SynBio) has enabled the development of novel therapeutic opportunities for the treatment of human disease. In the near future, first-in-human trials (FIH) will be indicated. FIH trials mark a key milestone in the translation of medical SynBio applications into clinical practice. Fostered by uncertainty of possible adverse events for trial participants, a variety of ethical concerns emerge with regards to SynBio FIH trials, including 'risk' minimization. These concerns are associated with any FIH trial, however, due to the novelty of the approach, they become more pronounced for medical applications of emerging technologies (emTech) like SynBio. To minimize potential harm for trial participants, scholars, guidelines, regulations and policy makers alike suggest using 'risk assessment' as evaluation tool for such trials. Conversely, in the context of emTech FIH trials, we believe it to be at least questionable to contextualize uncertainty of potential adverse events as 'risk' and apply traditional risk assessment methods. Hence, this issue needs to be discussed to enable alterations of the evaluation process before the translational phase of SynBio applications begins. In this paper, we will take the opportunity to start the debate and highlight how a misunderstanding of the concept of risk, and the possibilities and limitations of risk assessment, respectively, might impair decision-making by the relevant regulatory authorities and research ethics committees, and discuss possible solutions to tackle the issue. PMID:26276449

  4. Human health risk assessment of triclosan in land-applied biosolids.

    PubMed

    Verslycke, Tim; Mayfield, David B; Tabony, Jade A; Capdevielle, Marie; Slezak, Brian

    2016-09-01

    Triclosan (5-chloro-2-[2,4-dichlorophenoxy]-phenol) is an antimicrobial agent found in a variety of pharmaceutical and personal care products. Numerous studies have examined the occurrence and environmental fate of triclosan in wastewater, biosolids, biosolids-amended soils, and plants and organisms exposed to biosolid-amended soils. Triclosan has a propensity to adhere to organic carbon in biosolids and biosolid-amended soils. Land application of biosolids containing triclosan has the potential to contribute to multiple direct and indirect human health exposure pathways. To estimate exposures and human health risks from biosolid-borne triclosan, a risk assessment was conducted in general accordance with the methodology incorporated into the US Environmental Protection Agency's Part 503 biosolids rule. Human health exposures to biosolid-borne triclosan were estimated on the basis of published empirical data or modeled using upper-end environmental partitioning estimates. Similarly, a range of published triclosan human health toxicity values was evaluated. Margins of safety were estimated for 10 direct and indirect exposure pathways, both individually and combined. The present risk assessment found large margins of safety (>1000 to >100 000) for potential exposures to all pathways, even under the most conservative exposure and toxicity assumptions considered. The human health exposures and risks from biosolid-borne triclosan are concluded to be de minimis. Environ Toxicol Chem 2016;35:2358-2367. © 2016 SETAC. PMID:27552397

  5. Human variability in hepatic and renal elimination: implications for risk assessment.

    PubMed

    Dorne, J L C M

    2007-01-01

    Hepatic metabolism and renal excretion constitute the main routes of xenobiotic elimination in humans. Improving human risk assessment for threshold contaminants requires the incorporation of quantitative data related to their elimination (toxicokinetics) and potential toxic effects (toxicodynamics). This type of data provides a scientific basis to replace the standard uncertainty factor (UF = 10) allowing for the consideration of human variability in toxicokinetics and toxicodynamics. This review focuses on recent research efforts aiming to incorporate human variability in hepatic and renal elimination (toxicokinetics) into the risk assessment process. A therapeutic drug database was developed to quantify pathway-related variability in human phase I and phase II hepatic metabolism as well as renal excretion in subgroups of the population (healthy adults, neonates and the elderly), using data on compounds cleared primarily through each route (> 60% dose). For each subgroup of the population and elimination route, pathway-related UFs were then derived to cover 95-99% of each subgroup. Overall, the default toxicokinetic UFs would not cover neonates, the elderly for most elimination routes and any subgroup of the population for compounds metabolized via polymorphic isozymes (such as CYP2C19 and CYP2D6). These pathway-related UFs allow the incorporation of in vivo metabolism and toxicokinetic data in the risk assessment process and provide a flexible intermediate option between the default UF and chemical-specific adjustment factors (CSAFs) derived from physiologically based pharmacokinetic models. Implications of human variability in hepatic metabolism and renal excretion for chemical risk assessment are discussed. PMID:17497760

  6. Assessing risks for integrated water resource management: coping with uncertainty and the human factor

    NASA Astrophysics Data System (ADS)

    Polo, M. J.; Aguilar, C.; Millares, A.; Herrero, J.; Gómez-Beas, R.; Contreras, E.; Losada, M. A.

    2014-09-01

    Risk assessment for water resource planning must deal with the uncertainty associated with excess/scarcity situations and their costs. The projected actions for increasing water security usually involve an indirect "call-effect": the territory occupation/water use is increased following the achieved protection. In this work, flood and water demand in a mountainous semi-arid watershed in southern Spain are assessed by means of the stochastic simulation of extremes, when this human factor is/is not considered. The results show how not including this call-effect induced an underestimation of flood risk after protecting the floodplain of between 35 and 78 % in a 35-year planning horizon. Similarly, the pursued water availability of a new reservoir resulted in a 10-year scarcity risk increase up to 38 % when the trend of expanding the irrigated area was included in the simulations. These results highlight the need for including this interaction in the decision-making assessment.

  7. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters

    PubMed Central

    Straub, Jürg Oliver

    2013-01-01

    An environmental risk assessment (ERA) for the aquatic compartment in Europe from human use was developed for the old antibiotic Trimethoprim (TMP), comparing exposure and effects. The exposure assessment is based on European risk assessment default values on one hand and is refined with documented human use figures in Western Europe from IMS Health and measured removal in wastewater treatment on the other. The resulting predicted environmental concentrations (PECs) are compared with measured environmental concentrations (MECs) from Europe, based on a large dataset incorporating more than 1800 single MECs. On the effects side, available chronic ecotoxicity data from the literature were complemented by additional, new chronic results for fish and other organisms. Based on these data, chronic-based deterministic predicted no effect concentrations (PNECs) were derived as well as two different probabilistic PNEC ranges. The ERA compares surface water PECs and MECs with aquatic PNECs for TMP. Based on all the risk characterization ratios (PEC÷PNEC as well as MEC÷PNEC) and risk graphs, there is no significant risk to surface waters. PMID:27029296

  8. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance

    PubMed Central

    Amézquita, Alejandro; Backhaus, Thomas; Borriello, Peter; Brandt, Kristian K.; Collignon, Peter; Coors, Anja; Finley, Rita; Gaze, William H.; Heberer, Thomas; Lawrence, John R.; Larsson, D.G. Joakim; McEwen, Scott A.; Ryan, James J.; Schönfeld, Jens; Silley, Peter; Snape, Jason R.; Van den Eede, Christel; Topp, Edward

    2013-01-01

    Background: Only recently has the environment been clearly implicated in the risk of antibiotic resistance to clinical outcome, but to date there have been few documented approaches to formally assess these risks. Objective: We examined possible approaches and sought to identify research needs to enable human health risk assessments (HHRA) that focus on the role of the environment in the failure of antibiotic treatment caused by antibiotic-resistant pathogens. Methods: The authors participated in a workshop held 4–8 March 2012 in Québec, Canada, to define the scope and objectives of an environmental assessment of antibiotic-resistance risks to human health. We focused on key elements of environmental-resistance-development “hot spots,” exposure assessment (unrelated to food), and dose response to characterize risks that may improve antibiotic-resistance management options. Discussion: Various novel aspects to traditional risk assessments were identified to enable an assessment of environmental antibiotic resistance. These include a) accounting for an added selective pressure on the environmental resistome that, over time, allows for development of antibiotic-resistant bacteria (ARB); b) identifying and describing rates of horizontal gene transfer (HGT) in the relevant environmental “hot spot” compartments; and c) modifying traditional dose–response approaches to address doses of ARB for various health outcomes and pathways. Conclusions: We propose that environmental aspects of antibiotic-resistance development be included in the processes of any HHRA addressing ARB. Because of limited available data, a multicriteria decision analysis approach would be a useful way to undertake an HHRA of environmental antibiotic resistance that informs risk managers. Citation: Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DG, McEwen SA, Ryan JJ, Schönfeld J, Silley P, Snape JR

  9. Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China

    PubMed Central

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan

    2013-01-01

    Background: Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. Objectives: We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. Methods: We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. Results: We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at < 50 ng/L. Caffeine (median–maximum, nanograms per liter: 24.4–564), metronidazole (1.8–19.3), salicylic acid (16.6–41.2), clofibric acid (1.2–3.3), carbamazepine (1.3–6.7), and dimetridazole (6.9–14.7) were found in ≥ 20% of samples. Cities within the Yangtze River region and Guangzhou were regarded as contamination hot spots because of elevated levels and frequent positive detections. Of the 17 pharmaceuticals detected, 13 showed very low risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Conclusion: Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere. PMID:23665928

  10. Human and animal health risk assessments of chemicals in the food chain: Comparative aspects and future perspectives

    SciTech Connect

    Dorne, J.L.C.M.; Fink-Gremmels, J.

    2013-08-01

    Chemicals from anthropogenic and natural origins enter animal feed, human food and water either as undesirable contaminants or as part of the components of a diet. Over the last five decades, considerable efforts and progress to develop methodologies to protect humans and animals against potential risks associated with exposure to such potentially toxic chemicals have been made. This special issue presents relevant methodological developments and examples of risk assessments of undesirable substances in the food chain integrating the animal health and the human health perspective and refers to recent Opinions of the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). This introductory review aims to give a comparative account of the risk assessment steps used in human health and animal health risk assessments for chemicals in the food chain and provides a critical view of the data gaps and future perspectives for this cross-disciplinary field. - Highlights: ► Principles of human and animal health risk assessment. ► Data gaps for each step of animal health risk assessment. ► Implications of animal risk assessment on human risk assessment. ► Future perspectives on chemical risk assessment.

  11. Risk assessment of oil and gas well drilling activities in Iran - a case study: human factors.

    PubMed

    Amir-Heidari, Payam; Farahani, Hadi; Ebrahemzadih, Mehrzad

    2015-01-01

    Oil and gas well drilling activities are associated with numerous hazards which have the potential to cause injury or harm for people, property and the environment. These hazards are also a threat for the reputation of drilling companies. To prevent accidents and undesired events in drilling operations it is essential to identify, evaluate, assess and control the attendant risks. In this work, a structured methodology is proposed for risk assessment of drilling activities. A case study is performed to identify, analyze and assess the risks arising from human factors in one of the on shore drilling sites in southern Iran. A total of 17 major hazards were identified and analyzed using the proposed methodology. The results showed that the residual risks of 100% of these hazards were in the acceptable or transitional zone, and their levels were expected to be lowered further by proper controls. This structured methodology may also be used in other drilling sites and companies for assessing the risks. PMID:26333832

  12. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans

    SciTech Connect

    Kuempel, E.D.; Tran, C.L.; Castranova, V.; Bailer, A.J.

    2006-09-15

    Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and internal dose. Another approach is lung dosimetry modeling, which provides a biologically-based, mechanistic method to extrapolate doses from animals to humans. However, current mass-based lung dosimetry models may not fully account for differences in the clearance and translocation of nanoparticles. In this article, key steps in quantitative risk assessment are illustrated, using dose-response data in rats chronically exposed to either fine or ultrafine titanium dioxide (TiO{sub 2}), carbon black (CB), or diesel exhaust particulate (DEP). The rat-based estimates of the working lifetime airborne concentrations associated with 0.1% excess risk of lung cancer are approximately 0.07 to 0.3 mg/m{sup 3} for ultrafine TiO{sub 2}, CB, or DEP, and 0.7 to 1.3 mg/m{sup 3} for fine TiO{sub 2}. Comparison of observed versus model-predicted lung burdens in rats shows that the dosimetry models predict reasonably well the retained mass lung burdens of fine or ultrafine poorly soluble particles in rats exposed by chronic inhalation. Additional model validation is needed for nanoparticles of varying characteristics, as well as extension of these models to include particle translocation to organs beyond the lungs. Such analyses would provide improved prediction of nanoparticle dose for risk assessment.

  13. Metal uptake by homegrown vegetables - the relative importance in human health risk assessments at contaminated sites.

    PubMed

    Augustsson, Anna L M; Uddh-Söderberg, Terese E; Hogmalm, K Johan; Filipsson, Monika E M

    2015-04-01

    Risk assessments of contaminated land often involve the use of generic bioconcentration factors (BCFs), which express contaminant concentrations in edible plant parts as a function of the concentration in soil, in order to assess the risks associated with consumption of homegrown vegetables. This study aimed to quantify variability in BCFs and evaluate the implications of this variability for human exposure assessments, focusing on cadmium (Cd) and lead (Pb) in lettuce and potatoes sampled around 22 contaminated glassworks sites. In addition, risks associated with measured Cd and Pb concentrations in soil and vegetable samples were characterized and a probabilistic exposure assessment was conducted to estimate the likelihood of local residents exceeding tolerable daily intakes. The results show that concentrations in vegetables were only moderately elevated despite high concentrations in soil, and most samples complied with applicable foodstuff legislation. Still, the daily intake of Cd (but not Pb) was assessed to exceed toxicological thresholds for about a fifth of the study population. Bioconcentration factors were found to vary more than indicated by previous studies, but decreasing BCFs with increasing metal concentrations in the soil can explain why the calculated exposure is only moderately affected by the choice of BCF value when generic soil guideline values are exceeded and the risk may be unacceptable. PMID:25723126

  14. Physicologically Based Toxicokinetic Models of Tebuconazole and Application in Human Risk Assessment.

    PubMed

    Jónsdóttir, Svava Ósk; Reffstrup, Trine Klein; Petersen, Annette; Nielsen, Elsa

    2016-05-16

    A series of physiologically based toxicokinetic (PBTK) models for tebuconazole were developed in four species, rat, rabbit, rhesus monkey, and human. The developed models were analyzed with respect to the application of the models in higher tier human risk assessment, and the prospect of using such models in risk assessment of cumulative and aggregate exposure is discussed. Relatively simple and biologically sound models were developed using available experimental data as parameters for describing the physiology of the species, as well as the absorption, distribution, metabolism, and elimination (ADME) of tebuconazole. The developed models were validated on in vivo half-life data for rabbit with good results, and on plasma and tissue concentration-time course data of tebuconazole after i.v. administration in rabbit. In most cases, the predicted concentration levels were seen to be within a factor of 2 compared to the experimental data, which is the threshold set for the use of PBTK simulation results in risk assessment. An exception to this was seen for one of the target organs, namely, the liver, for which tebuconazole concentration was significantly underestimated, a trend also seen in model simulations for the liver after other nonoral exposure scenarios. Possible reasons for this are discussed in the article. Realistic dietary and dermal exposure scenarios were derived based on available exposure estimates, and the human version of the PBTK model was used to simulate the internal levels of tebuconazole and metabolites in the human body for these scenarios. By a variant of the models where the R(-)- and S(+)-enantiomers were treated as two components in a binary mixture, it was illustrated that the inhibition between the two tebuconazole enantiomers did not affect the simulation results for these realistic exposure scenarios. The developed models have potential as an important tool in risk assessment. PMID:26977527

  15. Comparative pathophysiology, toxicology, and human cancer risk assessment of pharmaceutical-induced hibernoma

    SciTech Connect

    Radi, Zaher; Bartholomew, Phillip; Elwell, Michael; Vogel, W. Mark

    2013-12-15

    In humans, hibernoma is a very rare, benign neoplasm of brown adipose tissue (BAT) that typically occurs at subcutaneous locations and is successfully treated by surgical excision. No single cause has been accepted to explain these very rare human tumors. In contrast, spontaneous hibernoma in rats is rare, often malignant, usually occurs in the thoracic or abdominal cavity, and metastases are common. In recent years, there has been an increased incidence of spontaneous hibernomas in rat carcinogenicity studies, but overall the occurrence remains relatively low and highly variable across studies. There have only been four reported examples of pharmaceutical-induced hibernoma in rat carcinogenicity studies. These include phentolamine, an alpha-adrenergic antagonist; varenicline, a nicotine partial agonist; tofacitinib, a Janus kinase (JAK) inhibitor; and hydromorphone, an opiod analgesic. Potential non-genotoxic mechanisms that may contribute to the pathogenesis of BAT activation/proliferation and/or subsequent hibernoma development in rats include: (1) physiological stimuli, (2) sympathetic stimulation, (3) peroxisome proliferator-activated receptor (PPAR) agonism, and/or (4) interference or inhibition of JAK/Signal Transducer and Activator of Transcription (JAK/STAT) signaling. The evaluation of an apparent increase of hibernoma in rats from 2-year carcinogenicity studies of novel pharmaceutical therapeutics and its relevance to human safety risk assessment is complex. One should consider: the genotoxicity of the test article, dose/exposure and safety margins, and pathophysiologic and morphologic differences and similarities of hibernoma between rats and humans. Hibernomas observed to date in carcinogenicity studies of pharmaceutical agents do not appear to be relevant for human risk at therapeutic dosages. - Highlights: • Highly variable incidence of spontaneous hibernoma in carcinogenicity studies • Recent increase in the spontaneous incidence of hibernomas

  16. Integration of modeling components into ecological and human health risk assessments

    SciTech Connect

    Chernoff, H.; Tomchuk, D.

    1995-12-31

    The Hudson River is an important recreational and ecological resource in New York State. From 1957 to 1975 between 209,000 and 1.3 million pounds of polychlorinated biphenyls (PCBs) were discharged into the Hudson River from two electrical capacitor manufacturing facilities. Many PCBs discharged to the river adhered to the sediment in the Upper River. Aquatic organisms have been exposed to PCBs in the sediment through ingestion or direct contact with sediment. PCBs in the sediment can enter the water column via particulate resuspension and dissolved PCB diffusion from sediment pore water to the overlying water column, providing additional exposure pathways. Multiple exposure pathways can increase the body burden of organisms living in contaminated areas. Ecological and human health risk assessments are being performed as part of a reassessment effort to determine the need and extent of remediation, required for contaminated sediments in the Upper River. Hydrodynamic, water quality and food-chain models based upon and calibrated to recent and historical data collection efforts are integrated into the risk assessments to provide estimates of total PCBs, Aroclors and selected congener concentrations at specific locations in the river under current and future scenarios. The results of both the ecological and human health risk assessments will assist in defining PCB concentrations that pose risks to the biological communities of the Hudson River.

  17. Deoxynivalenol: signaling pathways and human exposure risk assessment--an update.

    PubMed

    Wang, Zhonghong; Wu, Qinghua; Kuča, Kamil; Dohnal, Vlastimil; Tian, Zhihong

    2014-11-01

    Deoxynivalenol (DON) is a group B trichothecene and a common contaminant of crops worldwide. This toxin is known to cause a spectrum of diseases in animals and humans such as vomiting and gastroenteritis. Importantly, DON could inhibit the synthesis of protein and nucleonic acid and induce cell apoptosis in eukaryote cells. The transduction of signaling pathways is involved in the underlying mechanism of the cytotoxicity of DON. Mitogen-activated protein kinase and Janus kinase/signal transducer and activator of transcription seem to be two important signaling pathways and induce the inflammatory response by modulating the binding activates of specific transcription factors. This review mainly discussed the toxic mechanism of DON from the vantage point of signaling pathways and also assessed the profiles of DON and its metabolites in humans. Importantly, we conducted a human exposure risk assessment of DON from cereals, cereal-based foods, vegetables, water, and animal-derived foods in different countries. Some regular patterns of DON occurrence in these countries are suggested based on an analysis of global contamination with DON. This review should provide further insight for the toxic mechanism study of DON and human exposure risk assessment, thereby facilitating mycotoxin control strategies. PMID:25199684

  18. An overview of the evolution of human reliability analysis in the context of probabilistic risk assessment.

    SciTech Connect

    Bley, Dennis C.; Lois, Erasmia; Kolaczkowski, Alan M.; Forester, John Alan; Wreathall, John; Cooper, Susan E.

    2009-01-01

    Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAs). The purpose of this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the importance of human errors in complex human-technical systems, examines why humans contribute to accidents and unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has become increasingly more important to understand and model the more cognitive aspects of human performance and to address the broader range of factors that have been shown to influence human performance in complex domains. The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their likelihood.

  19. Chronic and acute risk assessment of human exposed to novaluron-bifenthrin mixture in cabbage.

    PubMed

    Shi, Kaiwei; Li, Li; Li, Wei; Yuan, Longfei; Liu, Fengmao

    2016-09-01

    Based on the dissipation and residual level in cabbage determined by gas chromatography coupled with an electron capture detector (GC-ECD), chronic and acute risk assessments of the novaluron and bifenthrin were investigated. At different spiked levels, mean recoveries were between 81 and 108 % with relative standard deviations (RSDs) from 1.1 to 6.8 %. The limit of quantification (LOQ) was 0.01 mg kg(-1), and good linearity with correlation coefficient (>0.9997) were obtained. The half-lives of novaluron and bifenthrin in cabbage were in the range of 3.2~10 days. Based on the consumption data in China, the risk quotients (RQs) of novaluron and bifenthrin were all below 100 %. The chronic and acute risk of novaluron in cabbage was relatively low, while bifenthrin exerts higher acute risk to humans than chronic risk. The obtained results indicated that the use of novaluron-bifenthrin mixture does not seem to pose any chronic or acute risk to humans even if cabbages are consumed at high application dosages and short preharvest interval (PHI). PMID:27550439

  20. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment

    PubMed Central

    McHale, Cliona M.; Zhang, Luoping; Smith, Martyn T.

    2012-01-01

    Benzene causes acute myeloid leukemia and probably other hematological malignancies. As benzene also causes hematotoxicity even in workers exposed to levels below the US permissible occupational exposure limit of 1 part per million, further assessment of the health risks associated with its exposure, particularly at low levels, is needed. Here, we describe the probable mechanism by which benzene induces leukemia involving the targeting of critical genes and pathways through the induction of genetic, chromosomal or epigenetic abnormalities and genomic instability, in a hematopoietic stem cell (HSC); stromal cell dysregulation; apoptosis of HSCs and stromal cells and altered proliferation and differentiation of HSCs. These effects modulated by benzene-induced oxidative stress, aryl hydrocarbon receptor dysregulation and reduced immunosurveillance, lead to the generation of leukemic stem cells and subsequent clonal evolution to leukemia. A mode of action (MOA) approach to the risk assessment of benzene was recently proposed. This approach is limited, however, by the challenges of defining a simple stochastic MOA of benzene-induced leukemogenesis and of identifying relevant and quantifiable parameters associated with potential key events. An alternative risk assessment approach is the application of toxicogenomics and systems biology in human populations, animals and in vitro models of the HSC stem cell niche, exposed to a range of levels of benzene. These approaches will inform our understanding of the mechanisms of benzene toxicity and identify additional biomarkers of exposure, early effect and susceptibility useful for risk assessment. PMID:22166497

  1. Probabilistic Human Health Risk Assessment of Chemical Mixtures: Hydro-Toxicological Interactions and Controlling Factors

    NASA Astrophysics Data System (ADS)

    Henri, C.; Fernandez-Garcia, D.; de Barros, F.

    2014-12-01

    Improper disposals of hazardous wastes in most industrial countries give rise to severe groundwater contamination problems that can lead to adverse health effects in humans. Therefore risk assessment methods play an important role in population protection by (1) quantifying the impact on human health of an aquifer contamination and (2) aiding the decision making process of to better manage our groundwater resources. Many reactive components such as chlorinated solvent or nitrate potentially experience attenuation processes under common geochemical conditions. Based on this, monitored natural attenuation has become nowadays an attractive remediation solution. However, in some cases, intermediate degradation products can constitute noxious chemical compounds before reaching a harmless chemical form. In these cases, the joint effect of advection-dispersion transport and the species-dependent kinetic reactions and toxicity will dictate the relative importance of the degradation byproducts to the total risk. This renders the interpretation of risk a non-trivial task. In this presentation, we quantify, through a probabilistic framework, the human health risk posed by a chemical mixture in a heterogeneous aquifer. This work focuses on a Perchloroethylene contamination problem followed by the first-order production/biodegradation of its daughter species Trichloroethylene, Dichloroethylene and Vinyl Chlorine that is known to be highly toxic. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme. A comparative description of human health risk metrics as a function of aquifer heterogeneity and contaminant injection mode is provided by means of a spatial characterization of the lower-order statistical moments and empirical probability density functions of both individual and total risks. Interestingly, we show that the human health risk of a chemical mixture is mainly controlled by a modified Damköhler number that express the joint effect

  2. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 5. Human health risk assessment (HHRA): Evaluation of potential risks from multipathway exposure to emissions. Draft report

    SciTech Connect

    1995-11-01

    The Human Health Risk Assessment (HHRA) portion of the WTI Risk Assessment involves the integration of information about the facility with site-specific data for the surrounding region and population to characterize the potential human health risks due to emissions from the facility. The estimation of human health risks is comprised of the following general steps: (1) identification of substances of potential concern; (2) estimation of the nature and magnitude of chemical releases from the WTI facility; (3) prediction of the atmospheric transport of the emitted contaminants; (4) determination of the types of adverse effects associated with exposure to the substances of potential concern (referred to as hazard identification), and the relationship between the level of exposure and the severity of any health effect (referred to as dose-response assessment); (5) estimation of the magnitude of exposure (referred to as exposure assessment); and (6) characterization of the health risks associated with exposure (referred to as risk characterization).

  3. A quantitative methodology to assess the risks to human health from CO 2 leakage into groundwater

    NASA Astrophysics Data System (ADS)

    Siirila, Erica R.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.; McCray, John E.

    2012-02-01

    Leakage of CO 2 and associated gases into overlying aquifers as a result of geologic carbon capture and sequestration may have adverse impacts on aquifer drinking-water quality. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Here we present a quantitative risk assessment framework to predict potential human health risk from CO 2 leakage into drinking water aquifers. This framework incorporates the potential release of CO 2 into the drinking water aquifer; mobilization of metals due to a decrease in pH; transport of these metals down gradient to municipal receptors; distributions of contaminated groundwater to multiple households; and exposure and health risk to individuals using this water for household purposes. Additionally, this framework is stochastic, incorporates detailed variations in geological and geostatistical parameters and discriminates between uncertain and variable parameters using a two-stage, or nested, Monte Carlo approach. This approach is demonstrated using example simulations with hypothetical, yet realistic, aquifer characteristics and leakage scenarios. These example simulations show a greater risk for arsenic than for lead for both cancer and non-cancer endpoints, an unexpected finding. Higher background groundwater gradients also yield higher risk. The overall risk and the associated uncertainty are sensitive to the extent of aquifer stratification and the degree of local-scale dispersion. These results all highlight the importance of hydrologic modeling in risk assessment. A linear relationship between carcinogenic and noncarcinogenic risk was found for arsenic and suggests action levels for carcinogenic risk will be exceeded in exposure

  4. Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis.

    PubMed

    Péry, A R R; Schüürmann, G; Ciffroy, P; Faust, M; Backhaus, T; Aicher, L; Mombelli, E; Tebby, C; Cronin, M T D; Tissot, S; Andres, S; Brignon, J M; Frewer, L; Georgiou, S; Mattas, K; Vergnaud, J C; Peijnenburg, W; Capri, E; Marchis, A; Wilks, M F

    2013-07-01

    For more than a decade, the integration of human and environmental risk assessment (RA) has become an attractive vision. At the same time, existing European regulations of chemical substances such as REACH (EC Regulation No. 1907/2006), the Plant Protection Products Regulation (EC regulation 1107/2009) and Biocide Regulation (EC Regulation 528/2012) continue to ask for sector-specific RAs, each of which have their individual information requirements regarding exposure and hazard data, and also use different methodologies for the ultimate risk quantification. In response to this difference between the vision for integration and the current scientific and regulatory practice, the present paper outlines five medium-term opportunities for integrating human and environmental RA, followed by detailed discussions of the associated major components and their state of the art. Current hazard assessment approaches are analyzed in terms of data availability and quality, and covering non-test tools, the integrated testing strategy (ITS) approach, the adverse outcome pathway (AOP) concept, methods for assessing uncertainty, and the issue of explicitly treating mixture toxicity. With respect to exposure, opportunities for integrating exposure assessment are discussed, taking into account the uncertainty, standardization and validation of exposure modeling as well as the availability of exposure data. A further focus is on ways to complement RA by a socio-economic assessment (SEA) in order to better inform about risk management options. In this way, the present analysis, developed as part of the EU FP7 project HEROIC, may contribute to paving the way for integrating, where useful and possible, human and environmental RA in a manner suitable for its coupling with SEA. PMID:23624004

  5. Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm.

    PubMed

    Muñoz, Ivan; Martínez Bueno, María J; Agüera, Ana; Fernández-Alba, Amadeo R

    2010-05-01

    In this work the risk posed to seawater organisms, predators and humans is assessed, as a consequence of exposure to 12 organic micro-pollutants, namely metronidazole, trimethoprim, erythromycin, simazine, flumequine, carbaryl, atrazine, diuron, terbutryn, irgarol, diphenyl sulphone (DPS) and 2-thiocyanomethylthiobenzothiazole (TCMTB). The risk assessment study is based on a 1-year monitoring study at a Spanish marine fish farm, involving passive sampling techniques. The results showed that the risk threshold for irgarol concerning seawater organisms is exceeded. On the other hand, the risk to predators and especially humans through consumption of fish is very low, due to the low bioconcentration potential of the substances assessed. PMID:19932535

  6. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    SciTech Connect

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  7. Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors

    PubMed Central

    Habert, René; Muczynski, Vincent; Grisin, Tiphany; Moison, Delphine; Messiaen, Sébastien; Frydman, René; Benachi, Alexandra; Delbes, Géraldine; Lambrot, Romain; Lehraiki, Abdelali; N'Tumba-Byn, Thierry; Guerquin, Marie-Justine; Levacher, Christine; Rouiller-Fabre, Virginie; Livera, Gabriel

    2014-01-01

    Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk. PMID:24497529

  8. Concerns about the widespread use of rodent models for human risk assessments of endocrine disruptors.

    PubMed

    Habert, René; Muczynski, Vincent; Grisin, Tiphany; Moison, Delphine; Messiaen, Sébastien; Frydman, René; Benachi, Alexandra; Delbes, Géraldine; Lambrot, Romain; Lehraiki, Abdelali; N'tumba-Byn, Thierry; Guerquin, Marie-Justine; Levacher, Christine; Rouiller-Fabre, Virginie; Livera, Gabriel

    2014-01-01

    Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk. PMID:24497529

  9. Emission and Dispersion of Bioaerosols from Dairy Manure Application Sites: Human Health Risk Assessment.

    PubMed

    Jahne, Michael A; Rogers, Shane W; Holsen, Thomas M; Grimberg, Stefan J; Ramler, Ivan P

    2015-08-18

    In this study, we report the human health risk of gastrointestinal infection associated with inhalation exposure to airborne zoonotic pathogens emitted following application of dairy cattle manure to land. Inverse dispersion modeling with the USEPA's AERMOD dispersion model was used to determine bioaerosol emission rates based on edge-of-field bioaerosol and source material samples analyzed by real-time quantitative polymerase chain reaction (qPCR). Bioaerosol emissions and transport simulated with AERMOD, previously reported viable manure pathogen contents, relevant exposure pathways, and pathogen-specific dose-response relationships were then used to estimate potential downwind risks with a quantitative microbial risk assessment (QMRA) approach. Median 8-h infection risks decreased exponentially with distance from a median of 1:2700 at edge-of-field to 1:13 000 at 100 m and 1:200 000 at 1000 m; peak risks were considerably greater (1:33, 1:170, and 1:2500, respectively). These results indicate that bioaerosols emitted from manure application sites following manure application may present significant public health risks to downwind receptors. Manure management practices should consider improved controls for bioaerosols in order to reduce the risk of disease transmission. PMID:26158489

  10. An assessment of the risk significance of human errors in selected PSAs and operating events

    SciTech Connect

    Palla, R.L. Jr.; El-Bassioni, A. . Office of Nuclear Reactor Regulation); Higgins, J. )

    1991-01-01

    Sensitivity studies based on Probabilistic Safety Assessments (PSAs) for a pressurized water reactor and a boiling water reactor are described. In each case human errors modeled in the PSAs were categorized according to such factors as error type, location, timing, and plant personnel involved. Sensitivity studies were then conducted by varying the error rates in each category and evaluating the corresponding change in total core damage frequency and accident sequence frequency. Insights obtained are discussed and reasons for differences in risk sensitivity between plants are explored. A separate investigation into the role of human error in risk-important operating events is also described. This investigation involved the analysis of data from the USNRC Accident Sequence Precursor program to determine the effect of operator-initiated events on accident precursor trends, and to determine whether improved training can be correlated to current trends. The findings of this study are also presented. 5 refs., 15 figs., 1 tab.

  11. Toxicovigilance: A new approach for the hazard identification and risk assessment of toxicants in human beings

    SciTech Connect

    Descotes, Jacques . E-mail: jacques-georges.descotes@chu-lyon.fr; Testud, Francois

    2005-09-01

    The concept of toxicovigilance encompasses the active detection, validation and follow-up of clinical adverse events related to toxic exposures in human beings. Poison centers are key players in this function as poisoning statistics are essential to define the cause, incidence and severity of poisonings occurring in the general population. In addition, the systematic search for unexpected shifts in the recorded causes of poisonings, e.g., following the introduction of a new product, or change in the formulation or recommended use of an old product, allows for a rapid detection of potential adverse health consequences and the implementation of preventive or corrective measures. However, toxicovigilance is genuinely a medical and not only a statistical approach of human toxicity issues. In contrast to epidemiology, toxicovigilance is based on the in-depth medical assessment of acute or chronic intoxications on an individual basis, which requires detailed information that poison centers can rarely obtain via emergency telephone calls and that epidemiologists cannot collect or process. Validation of this medical information must primarily be based on toxicological expertise to help identify causal links between otherwise unexplained pathological conditions and documented toxic exposures. Thus, toxicovigilance can contribute to hazard identification and risk assessment by providing medically validated data which are often overlooked in the process of risk assessment. So far, very few structured toxicovigilance systems have been set up and hopefully national and international initiatives will bridge this gap in our knowledge of the toxicity of many chemicals and commercial products in human beings.

  12. Vehicle Shield Optimization and Risk Assessment for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Nounu, Hatem N.; Kim, Myung-Hee; Cucinotta, Francis A.

    2011-01-01

    As the focus of future human space missions shifts to destinations beyond low Earth orbit such as Near Earth Objects (NEO), the moon, or Mars, risks associated with extended stay in hostile radiation environment need to be well understood and assessed. Since future spacecrafts designs and shapes are evolving continuous assessments of shielding and radiation risks are needed. In this study, we use a predictive software capability that calculates risks to humans inside a spacecraft prototype that builds on previous designs. The software uses CAD software Pro/Engineer and Fishbowl tool kit to quantify radiation shielding provided by the spacecraft geometry by calculating the areal density seen at a certain point, dose point, inside the spacecraft. Shielding results are used by NASA-developed software, BRYNTRN, to quantify organ doses received in a human body located in the vehicle in case of solar particle event (SPE) during such prolonged space missions. Organ doses are used to quantify risks on astronauts health and life using NASA Space Cancer Model. The software can also locate shielding weak points-hotspots-on the spacecraft s outer surface. This capability is used to reinforce weak areas in the design. Results of shielding optimization and risk calculation on an exploration vehicle design for missions of 6 months and 30 months are provided in this study. Vehicle capsule is made of aluminum shell that includes main cabin and airlock. The capsule contains 5 sets of racks that surround working and living areas. Water shelter is provided in the main cabin of the vehicle to enhance shielding in case of SPE.

  13. Human Risk Assessment and Its Application to Nanotechnology: A Challenge for Assessors

    NASA Astrophysics Data System (ADS)

    Emond, C.; Britos, T. N.

    2015-05-01

    Scientific literature suggests that exposure to nanoparticles (NPs) might be associated with adverse health effects. A well-developed human risk assessment (HRA) that applies to NPs has never been established and optimized-until now. Furthermore, no government regulations are in place that establish what is considered to be an adequate and secure level of exposure and supported by a strong scientific approach for nanotechnology. It is important to implement the HRA to ensure that workers producing NPs, users of NPs and the general population are protected from deleterious issues related to NPs. In this work, a methodology is described based on the HRA. An effort is required during synthesis before the commercialization phase to evaluate the results of a systematic and rigorous assessment because this could significantly reduce the health risks of those exposed to NPs, including workers and the population.

  14. Assessment of the long-term risks of inadvertent human intrusion

    SciTech Connect

    Wuschke, D.M. )

    1993-01-01

    Canada has conducted an extensive research program on the safe disposal of nuclear fuel wastes. The program has focused on the concept of disposal of spent fuel in durable containers in an engineered facility, or vault, 500 to 1000 m deep in intrusive igneous rock in the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada's regulatory agency, the Atomic Energy Control Board (AECB). These criteria are expressed in terms of risk, where risk is defined as the sum over all significant scenarios of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This paper describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility and the results of its application to a conceptual design of such a facility.

  15. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals.

    PubMed

    Terry, Claire; Hays, Sean; McCoy, Alene T; McFadden, Lisa G; Aggarwal, Manoj; Rasoulpour, Reza J; Juberg, Daland R

    2016-03-01

    A strategic and comprehensive program in which toxicokinetic (TK) measurements are made for all agrochemicals undergoing toxicity testing (both new compounds and compounds already registered for use) is described. This approach provides the data to more accurately assess the toxicokinetics of agrochemicals and their metabolites in laboratory animals and humans. Having this knowledge provides the ability to conduct more insightful toxicity studies, refine and interpret exposure assessments and reduce uncertainty in risk assessments. By developing a better understanding of TK across species, including humans via in vitro metabolism studies, any differences across species in TK can be identified early and the most relevant species can be selected for toxicity tests. It also provides the ability to identify any non-linearities in TK as a function of dose, which in turn can be used to identify a kinetically derived maximum dose (KMD) and avoid dosing inappropriately outside of the kinetic linear range. Measuring TK in key life stages also helps to identify changes in ADME parameters from in utero to adults. A robust TK database can also be used to set internal concentration based "Reference Concentrations" and Biomonitoring Equivalents (BE), and support selection of Chemical Specific Adjustment Factors (CSAF). All of these factors support the reduction of uncertainty throughout the entire risk assessment process. This paper outlines how a TK research strategy can be integrated into new agrochemical toxicity testing programs, together with a proposed Framework for future use. PMID:26472101

  16. Human Health and Ecological Risk Assessment Work Plan Mud Pit Release Sites, Amchitka Island, Alaska

    SciTech Connect

    DOE /NV

    2001-03-12

    This Work Plan describes the approach that will be used to conduct human health and ecological risk assessments for Amchitka Island, Alaska, which was utilized as an underground nuclear test site between 1965 and 1971. During this period, the U.S. Atomic Energy Commission (now the U.S. Department of Energy) conducted two nuclear tests (known as Long Shot and Milrow) and assisted the U.S. Department of Defense with a third test (known as Cannikin). Amchitka Island is approximately 42 miles long and located 1,340 miles west-southwest of Anchorage, Alaska, in the western end of the Aleutian Island archipelago in a group of islands known as the Rat Islands. Historically including deep drilling operations required large volumes of drilling mud, a considerable amount of which was left on the island in exposed mud pits after testing was completed. Therefore, there is a need for drilling mud pit remediation and risk assessment of historical mud pit releases. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the constituents in soil, surface water, and sediment at these former testing sites. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate what further remedial action is required to achieve permanent closure of these three sites that will protect both human health and the environment. Suspected compounds of potential ecological concern for investigative analysis at these sites include diesel-range organics, polyaromatic hydrocarbons, polychlorinated biphenyls, volatile organic compounds, and chromium. The results of these characterizations and risk assessments will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-sit e

  17. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment

    SciTech Connect

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L.

    2015-07-15

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10{sup −6}) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. - Highlights: • We determined in skin-contact clothes the concentrations of a number of metals. • Dermal contact exposure and health risks for adults and for 1-year-old children were assessed. • Carcinogenic risks were considered as acceptable (<10{sup −6}). • For non-carcinogenic risks, only Sb exceeded a 10% of the HQ for dermal contact with clothes.

  18. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water. PMID:25514858

  19. Potential human health risks from metals and As via Odontesthes bonariensis consumption and ecological risk assessments in a eutrophic lake.

    PubMed

    Monferran, Magdalena V; Garnero, Paola Lorena; Wunderlin, Daniel A; Angeles Bistoni, María de Los

    2016-07-01

    The concentration of Al, Cr, Fe, Mn, Ni, Cu, Zn, Hg, Sr, Mo, Ag, Cd, Pb and As was analyzed in water, sediment, and muscle of Odontesthes bonariensis from the eutrophic San Roque Lake (Córdoba-Argentina). The monitoring campaign was performed during the wet, dry and intermediate season. The concentration of Cr, Fe, Pb, Zn, Al and Cd in water exceeded the limits considered as hazardous for aquatic life. The highest metal concentrations were observed in sediment, intermediate concentrations, in fish muscle, and the lowest in water, with the exception of Cr, Zn, As and Hg, which were the highest in fish muscle. Potential ecological risk analysis of heavy metal concentrations in sediment indicated that the San Roque Lake posed a low ecological risk in all sampling periods. The target hazard quotients (THQs) and carcinogenic risk (CR) for individual metals showed that As in muscle was particularly hazardous, posing a potential risk for fishermen and the general population during all sampling periods. Hg poses a potential risk for fishermen only in the intermediate season. It is important to highlight that none of these two elements exceeded the limits considered as hazardous for aquatic life in water and sediment. This result proves the importance of performing measurements of contaminants, in both abiotic and biotic compartments, to assess the quality of food resources. These results suggest that the consumption of this fish species from this reservoir is not completely safe for human health. PMID:27060257

  20. Human health risk assessment of nitrosamines and nitramines for potential application in CO2 capture.

    PubMed

    Ravnum, S; Rundén-Pran, E; Fjellsbø, L M; Dusinska, M

    2014-07-01

    Emission and accumulation of carbon dioxide (CO2) in the atmosphere exert an environmental and climate change challenge. An attempt to deal with this challenge is made at Mongstad by application of amines for CO2 capture and storage (CO2 capture Mongstad (CCM) project). As part of the CO2 capture process, nitrosamines and nitramines may be emitted. Toxicological testing of nitrosamines and nitramines indicate a genotoxic potential of these substances. Here we present a risk characterization and assessment for five nitrosamines (N-Nitrosodi-methylamine (NDMA) N-Nitrosodi-ethylamine (NDEA), N-Nitroso-morpholine (NNM), N-Nitroso-piperidine (NPIP), and Dinitroso-piperazine (DNP)) and two nitramines (N-Methyl-nitramine (NTMA), Dimethyl-nitramine (NDTMA)), which are potentially emitted from the CO2 capture plant (CCP). Human health risk assessment of genotoxic non-threshold substances is a heavily debated topic, and no consensus methodology exists internationally. Extrapolation modeling from high-dose animal exposures to low-dose human exposures can be crucial for the final risk calculation. In the work presented here, different extrapolation models are discussed, and suggestions on applications are given. Then, preferred methods for calculating derived minimal effect level (DMEL) are presented with the selected nitrosamines and nitramines. PMID:24747397

  1. Novel Threat-risk Index Using Probabilistic Risk Assessment and Human Reliability Analysis - Final Report

    SciTech Connect

    George A. Beitel

    2004-02-01

    In support of a national need to improve the current state-of-the-art in alerting decision makers to the risk of terrorist attack, a quantitative approach employing scientific and engineering concepts to develop a threat-risk index was undertaken at the Idaho National Engineering and Environmental Laboratory (INEEL). As a result of this effort, a set of models has been successfully integrated into a single comprehensive model known as Quantitative Threat-Risk Index Model (QTRIM), with the capability of computing a quantitative threat-risk index on a system level, as well as for the major components of the system. Such a threat-risk index could provide a quantitative variant or basis for either prioritizing security upgrades or updating the current qualitative national color-coded terrorist threat alert.

  2. Establishing the importance of human health risk assessment for metals and metalloids in urban environments.

    PubMed

    Peña-Fernández, A; González-Muñoz, M J; Lobo-Bedmar, M C

    2014-11-01

    Rapid development, industrialisation, and urbanisation have resulted in serious contamination of soil by metals and metalloids from anthropogenic sources in many areas of the world, either directly or indirectly. Exponential urban and economic development has resulted in human populations settling in urban areas and as a result being exposed to these pollutants. Depending on the nature of the contaminant, contaminated urban soils can have a deleterious effect on the health of exposed populations and may require decontamination, recovery, remediation and restoration. Therefore, human health risk assessments in urban environments are very important. In the case of Spain, there are few studies regarding risk assessment of trace elements in urban soils, and those that exist have been derived mainly from areas potentially exposed to industrial contamination or in the vicinity of point pollution. The present study analysed Al, As, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Ti, Tl, V and Zn soil concentrations in and around the city of Alcalá de Henares (35 km NE of Madrid). Soil samples were collected in public parks and recreation areas within the city and in an industrial area on the periphery of the city. From these results, an assessment of the health risk for the population was performed following the methodology described by the US EPA (1989). In general, it was observed that there could be a potential increased risk of developing cancer over a lifetime from exposure to arsenic (As) through ingestion of the soils studied (oral intake), as well as an increased risk of cancer due to inhalation of chromium (Cr) present in re-suspended soils from the industrial area. Our group has previously reported (Granero and Domingo, 2002; Peña-Fernández et al., 2003) that there was an increased risk of developing cancer following exposure to As in the same soils in a previous study. Therefore, it is necessary to reduce the levels of contaminants in these soils, especially As and Cr

  3. Application of data fusion in human health risk assessment for hydrocarbon mixtures on contaminated sites.

    PubMed

    Dyck, Roberta; Islam, M Shafiqul; Zargar, Amin; Mohapatra, Asish; Sadiq, Rehan

    2013-11-16

    The exposure and toxicological data used in human health risk assessment are obtained from diverse and heterogeneous sources. Complex mixtures found on contaminated sites can pose a significant challenge to effectively assess the toxicity potential of the combined chemical exposure and to manage the associated risks. A data fusion framework has been proposed to integrate data from disparate sources to estimate potential risk for various public health issues. To demonstrate the effectiveness of the proposed data fusion framework, an illustrative example for a hydrocarbon mixture is presented. The Joint Directors of Laboratories Data Fusion architecture was selected as the data fusion architecture and Dempster-Shafer Theory (DST) was chosen as the technique for data fusion. For neurotoxicity response analysis, neurotoxic metabolites toxicological data were fused with predictive toxicological data and then probability-boxes (p-boxes) were developed to represent the toxicity of each compound. The neurotoxic response was given a rating of "low", "medium" or "high". These responses were then weighted by the percent composition in the illustrative F1 hydrocarbon mixture. The resulting p-boxes were fused according to DST's mixture rule of combination. The fused p-boxes were fused again with toxicity data for n-hexane. The case study for F1 hydrocarbons illustrates how data fusion can help in the assessment of the health effects for complex mixtures with limited available data. PMID:23219588

  4. Quantitative Microbial Risk Assessment in Occupational Settings Applied to the Airborne Human Adenovirus Infection.

    PubMed

    Carducci, Annalaura; Donzelli, Gabriele; Cioni, Lorenzo; Verani, Marco

    2016-01-01

    Quantitative Microbial Risk Assessment (QMRA) methodology, which has already been applied to drinking water and food safety, may also be applied to risk assessment and management at the workplace. The present study developed a preliminary QMRA model to assess microbial risk that is associated with inhaling bioaerosols that are contaminated with human adenovirus (HAdV). This model has been applied to air contamination data from different occupational settings, including wastewater systems, solid waste landfills, and toilets in healthcare settings and offices, with different exposure times. Virological monitoring showed the presence of HAdVs in all the evaluated settings, thus confirming that HAdV is widespread, but with different average concentrations of the virus. The QMRA results, based on these concentrations, showed that toilets had the highest probability of viral infection, followed by wastewater treatment plants and municipal solid waste landfills. Our QMRA approach in occupational settings is novel, and certain caveats should be considered. Nonetheless, we believe it is worthy of further discussions and investigations. PMID:27447658

  5. Quantitative Microbial Risk Assessment in Occupational Settings Applied to the Airborne Human Adenovirus Infection

    PubMed Central

    Carducci, Annalaura; Donzelli, Gabriele; Cioni, Lorenzo; Verani, Marco

    2016-01-01

    Quantitative Microbial Risk Assessment (QMRA) methodology, which has already been applied to drinking water and food safety, may also be applied to risk assessment and management at the workplace. The present study developed a preliminary QMRA model to assess microbial risk that is associated with inhaling bioaerosols that are contaminated with human adenovirus (HAdV). This model has been applied to air contamination data from different occupational settings, including wastewater systems, solid waste landfills, and toilets in healthcare settings and offices, with different exposure times. Virological monitoring showed the presence of HAdVs in all the evaluated settings, thus confirming that HAdV is widespread, but with different average concentrations of the virus. The QMRA results, based on these concentrations, showed that toilets had the highest probability of viral infection, followed by wastewater treatment plants and municipal solid waste landfills. Our QMRA approach in occupational settings is novel, and certain caveats should be considered. Nonetheless, we believe it is worthy of further discussions and investigations. PMID:27447658

  6. Identification of potentially hazardous human gene products in GMO risk assessment.

    PubMed

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here. PMID:18384725

  7. Human health risk assessment in restoring safe and productive use of abandoned contaminated sites.

    PubMed

    Wcisło, Eleonora; Bronder, Joachim; Bubak, Anicenta; Rodríguez-Valdés, Eduardo; Gallego, José Luis R

    2016-09-01

    In Europe soil contamination has been recognized as a serious problem. The needs to remediate contaminated sites are not questionable, although the remediation actions are often hindered by their very high financial costs. On the other hand, the abandoned contaminated sites may have the potential for redevelopment and creating conditions appropriate for their productive reuse bringing social, economic and environmental benefits. The main concern associated with the contaminated sites is their potential adverse health impact. Therefore, in the process of contaminated site redevelopment the risk assessment and the subsequent risk management decisions will play a crucial role. The main objective of this study was to illustrate the role of the human health risk assessment (HRA) in supporting site remediation and reuse decisions. To exemplify the significance of the HRA process in this field the Nitrastur site, located in Asturias, Spain was used. Risks resulting from soil contamination with arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), mercury (Hg), zinc (Zn) and lead (Pb) were assessed under three potential future land use patterns: industrial, residential and recreational. The results of the study indicated that soil at the Nitrastur site might pose non-cancer and cancer risks to potential future receptors - industrial workers, residents and recreational users. Arsenic and lead are the main substances responsible for the health risk and the primary drivers of remedial decisions at the site. The highest total cancer risks were observed under the residential scenario, followed in descending order by the recreational and industrial ones. The remedial maps illustrate in which areas remediation activities are required, depending on a given land use pattern. The obtained results may be used to develop, analyse, compare and select the remedial options within the intended land use pattern. They may also be used to support the decisions concerning the

  8. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.

    PubMed

    de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale

    2015-04-01

    A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants. PMID:25453834

  9. A quantitative methodology to assess the risks to human health from CO2 leakage into groundwater

    NASA Astrophysics Data System (ADS)

    Siirila, E.; Sitchler, A.; Maxwell, R. M.; McCray, J. E.

    2010-12-01

    Leakage of CO2 and associated gases into overlying aquifers as a result of geologic carbon capture and sequestration may have adverse impacts on aquifer drinking-water quality. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Here we present a quantitative risk assessment framework to predict potential human health risk from CO2 leakage into drinking water aquifers. This framework incorporates the potential release of CO2 into the drinking water aquifer; mobilization of metals due to a decrease in pH; transport of these metals down gradient to municipal receptors; distributions of contaminated groundwater to multiple households; and exposure and health risk to individuals using this water for household purposes. Additionally, this framework is stochastic, incorporates detailed variations in geological and geostatistical parameters and discriminates between uncertain and variable parameters using a two-stage, or nested, Monte Carlo approach. This approach is demonstrated using example simulations with hypothetical, yet realistic, aquifer characteristics and leakage scenarios. These example simulations show a greater risk for arsenic than for lead for both cancer and non-cancer endpoints, an unexpected finding given greater toxicity of lead at lower doses than arsenic. It was also found that higher background groundwater gradients also yield higher risk. The overall risk and the associated uncertainty are sensitive to the extent of aquifer stratification and the degree of local-scale dispersion. These results all highlight the importance of hydrologic modeling in risk assessment. A linear relationship between carcinogenic and noncarcinogenic risk was found for arsenic and

  10. Dioxin risk assessment: mechanisms of action and possible toxicity in human health.

    PubMed

    Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Karlen, David J; Razavizadeh, Bi Bi Marzieh; Abouzari-Lotf, Ebrahim

    2015-12-01

    Dioxin-like compounds (DLCs) have been classified by the World Health Organization (WHO) as one of the most persistent toxic chemical substances in the environment, and they are associated with several occupational activities and industrial accidents around the world. Since the end of the 1970s, these toxic chemicals have been banned because of their human toxicity potential, long half-life, wide dispersion, and they bioaccumulate in the food web. This review serves as a primer for environmental health professionals to provide guidance on short-term risk assessment of dioxin and to identify key findings for health and exposure assessment based on policies of different agencies. It also presents possible health effects of dioxins, mechanisms of action, toxic equivalency factors (TEFs), and dose-response characterization. Key studies related to toxicity values of dioxin-like compounds and their possible human health risk were identified through PubMed and supplemented with relevant studies characterized by reviewing the reference lists in the review articles and primary literature. Existing data decreases the scope of analyses and models in relevant studies to a manageable size by focusing on the set of important studies related to the perspective of developing toxicity values of DLCs. PMID:26514567

  11. Assessing Human Health Risk to Endocrine Disrupting Chemicals: a Focus on Prenatal Exposures and Oxidative Stress

    PubMed Central

    Neier, Kari; Marchlewicz, Elizabeth H.; Dolinoy, Dana C.; Padmanabhan, Vasantha

    2016-01-01

    Understanding the health risk posed by endocrine disrupting chemicals (EDCs) is a challenge that is receiving intense attention. The following study criteria should be considered to facilitate risk assessment for exposure to EDCs: 1) characterization of target health outcomes and their mediators, 2) study of exposures in the context of critical periods of development, 3) accurate estimates of human exposures and use of human-relevant exposures in animal studies, and 4) cross-species comparisons. In this commentary, we discuss the importance and relevance of each of these criteria in studying the effects of prenatal exposure to EDCs. Our discussion focuses on oxidative stress as a mediator of EDC-related health effects due to its association with both EDC exposure and health outcomes. Our recent study (Veiga-Lopez et al. 2015)1 addressed each of the four outlined criteria and demonstrated that prenatal bisphenol-A exposure is associated with oxidative stress, a risk factor for developing diabetes and cardiovascular diseases in adulthood. PMID:27231701

  12. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks

    USGS Publications Warehouse

    Warila, James; Batterman, Stuart; Passino-Reader, Dora R.

    2001-01-01

    Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 Iμg/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation eficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in txicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (>200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions.

  13. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks.

    PubMed

    Warila, J; Batterman, S; Passino-Reader, D R

    2001-02-01

    Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 micrograms/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation efficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in toxicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (> 200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions. PMID:11351445

  14. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment.

    PubMed

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2015-07-01

    Metals in textile products and clothing are used for many purposes, such as metal complex dyes, pigments, mordant, catalyst in synthetic fabrics manufacture, synergists of flame retardants, antimicrobials, or as water repellents and odour-preventive agents. When present in textile materials, heavy metals may mean a potential danger to human health. In the present study, the concentrations of a number of elements (Al, As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Tl, V, and Zn) were determined in skin-contact clothes. Analysed clothes were made of different materials, colours, and brands. Interestingly, we found high levels of Cr in polyamide dark clothes (605 mg/kg), high Sb concentrations in polyester clothes (141 mg/kg), and great Cu levels in some green cotton fabrics (around 280 mg/kg). Dermal contact exposure and human health risks for adult males, adult females, and for <1-year-old children were assessed. Non-carcinogenic and carcinogenic risks were below safe (HQ<1) and acceptable (<10(-6)) limits, respectively, according to international standards. However, for Sb, non-carcinogenic risk was above 10% of the safety limit (HQ>0.1) for dermal contact with clothes. PMID:25889781

  15. Environmental risk assessment

    SciTech Connect

    MacDonell, M.M.

    1997-10-01

    This paper presents a current overview of the basic elements of environmental risk assessment within the basic four-step process of hazard identification, exposure assessment, toxicity assessment, and risk characterization. These general steps have been applied to assess both human and ecological risks from environmental exposures. Approaches used to identify hazards and exposures are being refined, including the use of optimized field sampling and more representative, rather than conservative,upper-bound estimates. In addition, toxicity data are being reviewed more rigorously as US and European harmonization initiatives gain strength, and the classification of chemicals has become more qualitative to more flexibly accommodate new dose-response information as it is developed. Finally, more emphasis is being placed on noncancer end points, and human and ecological risks are being weighed against each other more explicitly at the risk characterization phase. Recent advances in risk-based decision making reflect the increased transparency of the overall process, with more explicit incorporation of multiple trade-offs. The end result is a more comprehensive life-cycle evaluation of the risks associated with environmental exposures at contaminated sites.

  16. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants.

    PubMed

    Valcke, Mathieu; Krishnan, Kannan

    2014-03-01

    A default uncertainty factor of 3.16 (√10) is applied to account for interindividual variability in toxicokinetics when performing non-cancer risk assessments. Using relevant human data for specific chemicals, as WHO/IPCS suggests, it is possible to evaluate, and replace when appropriate, this default factor by quantifying chemical-specific adjustment factors for interindividual variability in toxicokinetics (also referred to as the human kinetic adjustment factor, HKAF). The HKAF has been determined based on the distributions of pharmacokinetic parameters (e.g., half-life, area under the curve, maximum blood concentration) in relevant populations. This article focuses on the current state of knowledge of the use of physiologically based algorithms and models in characterizing the HKAF for environmental contaminants. The recent modeling efforts on the computation of HKAF as a function of the characteristics of the population, chemical and its mode of action (dose metrics), as well as exposure scenario of relevance to the assessment are reviewed here. The results of these studies, taken together, suggest the HKAF varies as a function of the sensitive subpopulation and dose metrics of interest, exposure conditions considered (route, duration, and intensity), metabolic pathways involved and theoretical model underlying its computation. The HKAF seldom exceeded the default value of 3.16, except in very young children (i.e., <≈ 3 months) and when the parent compound is the toxic moiety. Overall, from a public health perspective, the current state of knowledge generally suggest that the default uncertainty factor is sufficient to account for human variability in non-cancer risk assessments of environmental contaminants. PMID:24038072

  17. The use of biomonitoring data in exposure and human health risk assessment: benzene case study

    PubMed Central

    Angerer, Juergen; Boogaard, Peter J.; Hughes, Michael F.; O’Lone, Raegan B.; Robison, Steven H.; Robert Schnatter, A.

    2013-01-01

    A framework of “Common Criteria” (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m3), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10−5 excess cancer risk (2.9 µg/m3). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects. PMID:23346981

  18. Human health risk assessment of groundwater in Hetao Plain (Inner Mongolia Autonomous Region, China).

    PubMed

    Zhang, Yilong; Ma, Rong; Li, Zhenghong

    2014-08-01

    Groundwater quality significantly affects public health. In order to better understand groundwater suitability, a total of 887 shallow groundwater samples were collected from the Hetao Plain (HP), Inner Mongolia, China; the maximum and minimum health guideline values of each element were established in this work. Subsequently, the desirability functions (DFs) theory was employed to evaluate the human health risk of groundwater. The results indicate that 780 of the samples were unsuitable for drinking purposes due to the iron, total dissolved solids (TDS), arsenic, strontium, fluoride, and manganese concentrations present, all of which exceeded their maximum guideline value (MaGV). Only 107 samples were suitable for drinking use; however, these samples also have adverse effects on human health to some extent, due to the extremely lower concentrations of nutrient elements and existence of non-nutrient elements. Based on the observed results, groundwater that is unsuitable for drinking use must undergo bacteriological treatment prior to consumption. It was necessary for residents in the western, central, and northeastern parts of the study area are required to be supplied with certain nutrient elements, such as iron, iodine, molybdenum, manganese, and lithium. According to the human health risk assessment of groundwater, the general public can safely and reasonably consume the groundwater for drinking, agriculture irrigation, and industrial purposes. PMID:24705813

  19. Human health risk assessment of heavy metals in a replaced urban industrial area of Qingdao, China.

    PubMed

    Xu, Zhongshuo; Li, Jinjun; Pan, Yuying; Chai, Xiaoli

    2016-04-01

    The aim of this study was risk characterization of a replaced urban industrial land located north of Qingdao, in relation to heavy metals values. Soil concentrations of Cd, Pb, Cu, Ni, Cr, and Zn were analyzed. It was observed that the components of Cd, Pb, Cu, Ni, Cr, and Zn are about 2.22, 8.07, 4.70, 6.81, 2.65, and 3.0-folds, respectively, when compared with the local natural background values in Qingdao. The spatial distribution of heavy metals indicated that these hotspots for Cr and Zn located in the southwestern part, Ni and Cd in the middle of the south area, Pb in the northwest, and Cu in the middle of the east area. The values of pollution index and Nemerow integrated pollution index revealed that 100 % of soil samples were moderately or heavily contaminated by six heavy metals. From these results, human health risk assessment for sensitive population was performed according to two different land uses. For non-carcinogenic risk, the direct oral ingestion appeared to be the main exposure pathway followed by dermal and inhalation absorption. The HI values of Pb and Cr characterized for children were larger than 1, while HI values of each metal for adults in two scenarios were lower than 1. Besides, carcinogenic risk from inhalation exposure to Cr for children and adults in two scenarios all exceeded the safety limit. PMID:26984566

  20. Coastal erosion risk assessment using natural and human factors in different scales.

    NASA Astrophysics Data System (ADS)

    Alexandrakis, George; Kampanis, Nikolaos

    2015-04-01

    Climate change, including sea-level rise and increasing storms, raise the threats of coastal erosion. Mitigating and adapting to coastal erosion risks in areas of human interest, like urban areas, culture heritage sites, and areas of economic interest, present a major challenge for society. In this context, decision making needs to be based in reliable risk assessment that includes environmental, social and economic factors. By integrating coastal hazard and risk assessments maps into coastal management plans, risks in areas of interest can be reduced. To address this, the vulnerability of the coast to sea level rise and associated erosion, in terms of expected land loss and socioeconomic importance need to be identified. A holistic risk assessment based in environmental, socioeconomic and economics approach can provide managers information how to mitigate the impact of coastal erosion and plan protection measures. Such an approach needs to consider social, economic and environmental factors, which interactions can be better assessed when distributed and analysed along the geographical space. In this work, estimations of climate change impact to coastline are based on a combination of environmental and economic data analysed in a GIS database. The risk assessment is implemented through the estimation of the vulnerability and exposure variables of the coast in two scales. The larger scale estimates the vulnerability in a regional level, with the use environmental factors with the use of CVI. The exposure variable is estimated by the use of socioeconomic factors. Subsequently, a smaller scale focuses on highly vulnerable beaches with high social and economic value. The vulnerability assessment of the natural processes to the environmental characteristics of the beach is estimated with the use of the Beach Vulnerability Index. As exposure variable, the value of beach width that is capitalized in revenues is implemented through a hedonic pricing model. In this

  1. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    EPA Science Inventory

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be ap...

  2. Promoting Service User Inclusion in Risk Assessment and Management: A Pilot Project Developing a Human Rights-Based Approach

    ERIC Educational Resources Information Center

    Greenhill, Beth; Whitehead, Richard

    2011-01-01

    Recent reports highlight the extent to which many people with learning disabilities are not afforded access to their basic human rights. In addition, traditional approaches to risk management often focus on professional assessments of risks and challenging behaviour and exclude service user perspectives. In this paper, we outline what we believe…

  3. Risk assessment

    SciTech Connect

    Wray, T.K.

    1993-01-01

    The chance of developing cancer from exposure to chemicals in the environment is calculated based on statistical evidence, but the task is a complex one that stirs much debate. There are as many as 2,000 substances that various groups have labeled as suspect, probable or definite human carcinogens. Only 23 substances, including aflatoxin, asbestos, vinyl chloride and benzene, have been proven through human epidemiological studies to increase cancer rates. The remainder received their carcinogenic classification based on animal studies. Animal testing usually involves feeding rats or mice extremely high doses of a substance, often the maximum amount they can tolerate without dying directly from toxicity. This approach ensures maximum sensitivity to potential carcinogenic effects and minimizes the number of lab animals required for such studies. Exposing them to levels similar to what humans experience would require millions of test animals. With few exceptions, no one denies trace exposure levels exist for most chemicals, below which no toxic effects occur in any individual. However, statistical evidence from human epidemiological studies is inadequate to detect small increases in mortality. Although animal studies are more sensitive to carcinogenic effects because of the high doses involved, they are inadequate to explain what occurs at much lower doses common in the real world. Human epidemiological studies, for example, show no evidence of increased cancer from many products containing minute quantities of substances known to cause cancer in lab animals.

  4. Risk assessment of human health from exposure to the discharged ballast water after full-scale electrolysis treatment.

    PubMed

    Zhang, Nahui; Wang, Yidan; Xue, Junzeng; Yuan, Lin; Wang, Qiong; Liu, Liang; Wu, Huixian; Hu, Kefeng

    2016-06-01

    The presence of disinfection by-products (DBPs) releasing from ballast water management systems (BWMS) can cause a possible adverse effects on humans. The objectives of this study were to compute the Derived No Effect Levels (DNELs) for different exposure scenarios and to compare these levels with the exposure levels from the measured DBPs in treated ballast water. The risk assessment showed that when using animal toxicity data, all the DNELs values were approximately 10(3)-10(12) times higher than the exposure levels of occupational and general public exposure scenarios, indicating the level of risk was low (risk characterization ratios (RCRs) < 1). However, when using human data, the RCRs were higher than 1 for dichlorobromomethane and trichloromethane, indicating that the risk of adverse effects on human were significant. This implies that there are apparent discrepancies between risk characterization from animal and human data, which may affect the overall results. We therefore recommend that when appropriate, human data should be used in risk assessment as much as possible, although human data are very limited. Moreover, more appropriate assessment factors can be considered to be employed in estimating the DNELs for human when the animal data is selected as the dose descriptors. PMID:26997144

  5. Human Mitochondrial DNA and Endogenous Bacterial Surrogates for Risk Assessment of Graywater Reuse

    EPA Science Inventory

    Previous graywater risk assessment studies have focused on fecal contamination, yet the low density of fecal indicators may not provide the most useful approach to assess pathogen removal during graywater treatment. In this study, we employed high throughput bacterial sequencing ...

  6. Parameters for Pesticide QSAR and PBPK/PD Models to inform Human Risk Assessments

    EPA Science Inventory

    Physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) modeling has emerged as an important computational approach supporting quantitative risk assessment of agrochemicals. However, before complete regulatory acceptance of this tool, an assessment of assets and liabi...

  7. Risk assessment of the amnesic shellfish poison, domoic acid, on animals and humans.

    PubMed

    Kumar, K Prem; Kumar, Sreeletha Prem; Nair, G Achuthan

    2009-05-01

    Risk assessment of the amnesic shellfish poison, domoic acid, a potent neurotoxin, is evaluated based on its current knowledge and its harmful effects, and is presented under four headings, viz., (1) hazard identification, (2) dose response assessment, (3) exposure assessment and (4) risk characterization. Domoic acid binds the glutamate receptor site of the central nervous system (CNS) of humans and causes depolarization of neurons and an increase in cellularcalcium. In nature, domoic acid is produced by the algae, Pseudonitzschia spp. and they enter into the body of shellfish through their consumption. This toxin is reported to cause gastroenteritis, renal insufficiency confusion and memory loss in humans, since it affects the hippocampus of the brain. In rats, intraperitonial and oral administration of domoic acid result in scratching, tremor and convulsions, and in monkeys, the toxic symptoms like mastication, salivation, projectile vomiting, weakness, teeth grinding and lethargy are apparent. The no-observed-adverse-effect-level (NOAEL) in animals reveals that pure toxin is more effective than those isolated from shellfish. Based on LD50 values, it is found that intraperitonial administration of this toxin in animals is 31 fold more effective than oral administration. Low levels of domoic acid (0.20-0.75 ppm) show no toxic symptoms in non-human primates, but clinical effects are apparent in them and in humans, at a concentration of 1.0 ppm. The tolerable daily intake (TDI) of domoic acid for humans is calculated as 0.075 ppm, whereas for razor clams and crabs, the TDI are 19.4 and 31.5 ppm respectively. The hazard quotient (HQ) is found to be 2. Being an irreversible neurotoxin, domoic acid has severe public health implications. Death occurs in those above 68 years old. In order to ensure adequate protection to public health, the concentration of domoic acid in shellfish and shellfish parts at point of sale shall not exceed the current permissible limit of 20

  8. Quantitative human health risk assessment for 1,3-butadiene based upon ovarian effects in rodents.

    PubMed

    Kirman, C R; Grant, R L

    2012-03-01

    A case study was prepared for noncancer risk assessment of 1,3-butadiene (BD) based upon the ovarian atrophy effects in rodents with specific consideration of the guidelines described by NAS (2009). Ovarian toxicity has been identified in the past as a sensitive endpoint for BD, and serves as the basis for noncancer risk assessment by regulatory agencies. A meta-analysis was conducted in which the available dose-response data from rats and mice were normalized using an internal dose estimate (DEB in blood) that is causally related to ovarian toxicity. A time-to-response (multistage-Weibull) model was used to simultaneously fit the pooled rodent data sets with exposure durations ranging from 13 to 105weeks. Human variation in ovarian follicle count was assumed to reflect variation in sensitivity to the adverse effects associated with follicle depletion (i.e., premature menopause). Information on follicle count in women was used in two ways: (1) the window of susceptibility (from birth to menopause) was defined as 49.6years for women born with an average follicle count, 38.7years for women born with a low follicle count, and 60.0years for women born with a high follicle count; and (2) follicle count was assumed to reflect human susceptibility due to toxicodynamic factors. The multistage-Weibull model was used to predict dose-response curves for three scenarios (average, low, and high follicle counts at birth to generate reference concentration values ranging from 0.2 to 20ppm). This case study illustrates how information on mode of action can be used to guide key decisions in the dose-response assessment with respect to identifying a dose measure, low-dose extrapolation method, background exposure, and sensitive subpopulations. PMID:22100993

  9. WORKSHOP PROCEEDINGS: APPROACHES FOR IMPROVING THE ASSESSMENT OF HUMAN GENETIC RISK--HUMAN BIOMONITORING

    EPA Science Inventory

    Federal laws require a consideration of adverse health effects, including mutagenicity, in arriving at regulatory decisions on chemical substances. Certain laws require balancing the consequences of these risks with the benefits provided by the use of chemical substances. This re...

  10. Ozone Risk Assessment Utilities

    Energy Science and Technology Software Center (ESTSC)

    1999-08-10

    ORAMUS is a user-friendly, menu-driven software system that calculates and displays user-selected risk estimates for health effects attributable to short-term exposure to tropospheric ozone. Inputs to the risk assessment are estimates of exposure to ozone and exposure-response relationships to produce overall risk estimates in the form of probability distributions. Three fundamental models are included: headcount risk, benchmark risk, and hospital admissions. Exposure-response relationships are based on results of controlled human exposure studies. Exposure estimates aremore » based on the EPA''s probabilistic national ambient air quality standards (NAAQS) exposure model, pNEM/Osub3, which simulates air quality associated with attainment of alternative NAAQS. Using ORAMUS, risk results for 27 air quality scenarios, air quality in 9 urban areas, 33 health endpoints, and 4 chronic health endpoints can be calculated.« less

  11. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure.

    PubMed

    Bourdon, Julie A; Williams, Andrew; Kuo, Byron; Moffat, Ivy; White, Paul A; Halappanavar, Sabina; Vogel, Ulla; Wallin, Håkan; Yauk, Carole L

    2013-01-01

    New approaches are urgently needed to evaluate potential hazards posed by exposure to nanomaterials. Gene expression profiling provides information on potential modes of action and human relevance, and tools have recently become available for pathway-based quantitative risk assessment. The objective of this study was to use toxicogenomics in the context of human health risk assessment. We explore the utility of toxicogenomics in risk assessment, using published gene expression data from C57BL/6 mice exposed to 18, 54 and 162 μg Printex 90 carbon black nanoparticles (CBNP). Analysis of CBNP-perturbed pathways, networks and transcription factors revealed concomitant changes in predicted phenotypes (e.g., pulmonary inflammation and genotoxicity), that correlated with dose and time. Benchmark doses (BMDs) for apical endpoints were comparable to minimum BMDs for relevant pathway-specific expression changes. Comparison to inflammatory lung disease models (i.e., allergic airway inflammation, bacterial infection and tissue injury and fibrosis) and human disease profiles revealed that induced gene expression changes in Printex 90 exposed mice were similar to those typical for pulmonary injury and fibrosis. Very similar fibrotic pathways were perturbed in CBNP-exposed mice and human fibrosis disease models. Our synthesis demonstrates how toxicogenomic profiles may be used in human health risk assessment of nanoparticles and constitutes an important step forward in the ultimate recognition of toxicogenomic endpoints in human health risk. As our knowledge of molecular pathways, dose-response characteristics and relevance to human disease continues to grow, we anticipate that toxicogenomics will become increasingly useful in assessing chemical toxicities and in human health risk assessment. PMID:23146762

  12. 77 FR 44613 - Notice of Availability of the External Review Draft of Framework for Human Health Risk Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...The U.S. Environmental Protection Agency (EPA) Office of the Science Advisor (OSA) announces a 60-day public comment period for the external review draft of ``A Framework for Human Health Risk Assessment to Inform Decision Making.'' This document was developed as part of an agencywide program by the EPA Risk Assessment Forum. The EPA is releasing this draft document solely for the purpose of......

  13. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  14. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  15. Pesticide Residues in Bovine Milk in Punjab, India: Spatial Variation and Risk Assessment to Human Health.

    PubMed

    Bedi, J S; Gill, J P S; Aulakh, R S; Kaur, Prabhjit

    2015-08-01

    In the present study, gas chromatographic analysis of pesticide residues in bovine milk (n = 312) from Punjab, India, showed chlorpyrifos, DDT, and γ-HCH as the predominant contaminants. In addition, the presence of β-endosulfan, endosulfan suphate, cypermethrin, cyhalothrin, fenvalerate, deltamethrin, malathion, profenofos, and ethion was reported in milk samples. In this study, it was observed that 12 milk samples exceeded the maximum residue limits (MRLs) for γ-HCH (lindane), 18 for DDT and chlorpyrifos, and 1 sample each for endosulfan, cypermethrin, and profenophos. In India, DDT is still permitted for a malaria control program, which may be the plausible reason for its occurrence in milk samples. The spatial variation for presence of pesticide residues in milk indicated greater levels in cotton-growing areas of Punjab. At current levels of pesticide residues in bovine milk, the human health risk assessment in terms of noncancer and cancer hazard was calculated based on both lower-bound [LB (mean residue levels)] and upper-bound [UP (95th percentile level)] limits. It was noticed that cancer and noncancer risk were within United States Environmental Protection Agency prescribed limits for both adults and children at the LB, but children were being exposed to greater risk for DDT and HCH at the 95th-percentile UB level. PMID:26008642

  16. GM risk assessment.

    PubMed

    Sparrow, P A C

    2010-03-01

    GM risk assessments (GMRAs) play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of each GMRA will be able to ensure the safe handling and containment of the GMO; and to asses any potential impacts on the environment and human health. A risk assessment should answer all "what if" scenarios, based on scientific evidence. This article sets out to provide researchers with helpful guidance notes on producing their own GMRA. While reference is made to UK and EU regulations, the underlying principles and points to consider are generic to most countries. PMID:20087690

  17. Towards a non-animal risk assessment for anti-androgenic effects in humans.

    PubMed

    Dent, Matthew P; Carmichael, Paul L; Jones, Kevin C; Martin, Francis L

    2015-10-01

    Toxicology testing is undergoing a transformation from a system based on high-dose studies in laboratory animals to one founded primarily on in vitro methods that evaluate changes in normal cellular signalling pathways using human-relevant cells or tissues. We review the tools and approaches that could be used to develop a non-animal safety assessment for anti-androgenic effects in humans, with a focus on the molecular initiating events (MIEs) that human disorders indicate critical for normal functioning of the hypothalamus-pituitary-testicular (HPT) axis. In vitro test systems exist which can be used to characterize the effects of test chemicals on some MIEs such as androgen receptor antagonism, inhibition of steroidogenic enzymes or 5α-reductase inhibition. When used alongside information describing the pharmacokinetics of a specific chemical exposure, these could be used to inform a pathways-based safety assessment. However, some parts of the HPT axis such as events occurring in the hypothalamus or pituitary are not well represented by accepted in vitro methods. In vitro tools to characterize perturbations in these events need to be developed before a fully integrated model of the HPT axis can be described. Knowledge gaps also exist which prevent us from using in vitro data to predict the type and severity of in vivo effect(s) that could arise from a given level of in vitro anti-androgenic activity. This means that more work is needed to reliably link an MIE with an adverse outcome. However, especially for chemicals with low anti-androgenic activity, human exposure data can be used to put in vitro mode of action data into context for risk-based safety decision-making. PMID:26115536

  18. Epidemiologic approaches to assessing human cancer risk from consuming aquatic food resources from chemically contaminated water.

    PubMed Central

    Ozonoff, D; Longnecker, M P

    1991-01-01

    Epidemiologic approaches to assessing human cancer risk from consuming fish from contaminated waters must confront the problems of long latency and rarity of the end point (cancer). The latency problem makes determination of diet history more difficult, while the low frequency of cancer as an end point reduces the statistical power of the study. These factors are discussed in relation to the study designs most commonly employed in epidemiology. It is suggested that the use of biomarkers for persistent chemicals may be useful to mitigate the difficulty of determining exposure, while the use of more prevalent and timely end points, such as carcinogen-DNA adducts or oncogene proteins, may make the latency and rarity problems more tractable. PMID:2050052

  19. A model for assessing the risk of human trafficking on a local level

    NASA Astrophysics Data System (ADS)

    Colegrove, Amanda

    Human trafficking is a human rights violation that is difficult to quantify. Models for estimating the number of victims of trafficking presented by previous researchers depend on inconsistent, poor quality data. As an intermediate step to help current efforts by nonprofits to combat human trafficking, this project presents a model that is not dependent on quantitative data specific to human trafficking, but rather profiles the risk of human trafficking at the local level through causative factors. Businesses, indicated by the literature, were weighted based on the presence of characteristics that increase the likelihood of trafficking in persons. The mean risk was calculated by census tract to reveal the multiplicity of risk levels in both rural and urban settings. Results indicate that labor trafficking may be a more diffuse problem in Missouri than sex trafficking. Additionally, spatial patterns of risk remained largely the same regardless of adjustments made to the model.

  20. Human health risk assessment of pharmaceuticals in water: an uncertainty analysis for meprobamate, carbamazepine, and phenytoin.

    PubMed

    Kumar, Arun; Xagoraraki, Irene

    2010-01-01

    This study presents a step-wise development of a quantitative pharmaceutical risk assessment (QPhRA, hereafter) framework, including Monte Carlo uncertainty analysis for meprobamate, carbamazepine, and phenytoin during (1) accidental exposures of stream water and fish consumption and (2) direct ingestion of finished drinking water for children and adults. Average hazard quotients of these pharmaceuticals (i.e., the ratio of values of chronic daily intake to acceptable daily intake) were found to lie between 1x10(-10) and 3x10(-5) and 99 th percentile values of hazard quotients were found to be less than 1x10(-4) for both sub-populations, indicating no potential risks of adverse effects due to pharmaceuticals exposures. In addition, pharmaceutical concentrations were also observed to be lower than their respective calculated acceptable daily intake-equivalent drinking water levels, indicating no potential human health risks. To the authors' knowledge, for the first time in QPhRA studies, this study has attempted to characterize and quantify effects of factors, such as considerations for sensitive sub-populations using subpopulation-specific toxic endpoints and use of pharmaceutical concentrations in stream and finished drinking waters on risk estimates. Acceptable daily intake was observed to be the primary contributor (>93% variance contribution) in the overall uncertainties of estimates of hazard quotients, followed by fish consumptions and pharmaceutical concentrations in water. Further research efforts are required to standardize use of acceptable daily intake values to reduce large variability in estimation of hazard quotients. PMID:20152876

  1. Human health risk assessment due to global warming--a case study of the Gulf countries.

    PubMed

    Husain, Tahir; Chaudhary, Junaid Rafi

    2008-12-01

    Accelerated global warming is predicted by the Intergovernmental Panel on Climatic Change (IPCC) due to increasing anthropogenic greenhouse gas emissions. The climate changes are anticipated to have a long-term impact on human health, marine and terrestrial ecosystems, water resources and vegetation. Due to rising sea levels, low lying coastal regions will be flooded, farmlands will be threatened and scarcity of fresh water resources will be aggravated. This will in turn cause increased human suffering in different parts of the world. Spread of disease vectors will contribute towards high mortality, along with the heat related deaths. Arid and hot climatic regions will face devastating effects risking survival of the fragile plant species, wild animals, and other desert ecosystems. The paper presents future changes in temperature, precipitation and humidity and their direct and indirect potential impacts on human health in the coastal regions of the Gulf countries including Yemen, Oman, United Arab Emirates, Qatar, and Bahrain. The analysis is based on the long-term changes in the values of temperature, precipitation and humidity as predicted by the global climatic simulation models under different scenarios of GHG emission levels. Monthly data on temperature, precipitation, and humidity were retrieved from IPCC databases for longitude 41.25 degrees E to 61.875 degrees E and latitude 9.278 degrees N to 27.833 degrees N. Using an average of 1970 to 2000 values as baseline, the changes in the humidity, temperature and precipitation were predicted for the period 2020 to 2050 and 2070 to 2099. Based on epidemiological studies on various diseases associated with the change in temperature, humidity and precipitation in arid and hot regions, empirical models were developed to assess human health risk in the Gulf region to predict elevated levels of diseases and mortality rates under different emission scenarios as developed by the IPCC.The preliminary assessment indicates

  2. Human Health Risk Assessment due to Global Warming – A Case Study of the Gulf Countries

    PubMed Central

    Husain, Tahir; Chaudhary, Junaid Rafi

    2008-01-01

    Accelerated global warming is predicted by the Intergovernmental Panel on Climatic Change (IPCC) due to increasing anthropogenic greenhouse gas emissions. The climate changes are anticipated to have a long-term impact on human health, marine and terrestrial ecosystems, water resources and vegetation. Due to rising sea levels, low lying coastal regions will be flooded, farmlands will be threatened and scarcity of fresh water resources will be aggravated. This will in turn cause increased human suffering in different parts of the world. Spread of disease vectors will contribute towards high mortality, along with the heat related deaths. Arid and hot climatic regions will face devastating effects risking survival of the fragile plant species, wild animals, and other desert ecosystems. The paper presents future changes in temperature, precipitation and humidity and their direct and indirect potential impacts on human health in the coastal regions of the Gulf countries including Yemen, Oman, United Arab Emirates, Qatar, and Bahrain. The analysis is based on the long-term changes in the values of temperature, precipitation and humidity as predicted by the global climatic simulation models under different scenarios of GHG emission levels. Monthly data on temperature, precipitation, and humidity were retrieved from IPCC databases for longitude 41.25°E to 61.875°E and latitude 9.278°N to 27.833°N. Using an average of 1970 to 2000 values as baseline, the changes in the humidity, temperature and precipitation were predicted for the period 2020 to 2050 and 2070 to 2099. Based on epidemiological studies on various diseases associated with the change in temperature, humidity and precipitation in arid and hot regions, empirical models were developed to assess human health risk in the Gulf region to predict elevated levels of diseases and mortality rates under different emission scenarios as developed by the IPCC. The preliminary assessment indicates increased mortality rates

  3. The EPA's Human Exposure Research Program for Assessing Cumulative Risk in Communities

    EPA Science Inventory

    Communities are faced with challenges in identifying and prioritizing environmental issues, taking actions to reduce their exposures, and determining their effectiveness for reducing human health risks. Additional challenges include determining what scientific tools are available...

  4. Human health risk assessment of heavy metals in cosmetics in Nigeria.

    PubMed

    Nduka, John K; Odiba; Orisakwe, Orish E; Ukaebgu, Linda D; Sokaibe, Chinwetuto; Udowelle, Nnaemeka A

    2015-01-01

    Forty two different cosmetics were purchased from supermarkets and cosmetic shops within Unitsha Main Market and Eke-Awka markets in Anambra, Nigeria. Of the cosmetics, 16% were locally manufactured in Nigeria while 83.33% were imported into Nigeria. The cosmetics were ashed before digestion and filtration. The filtrates were assayed for lead, cadmium, manganese, nickel, chromium, mercury, and arsenic with atomic absorption spectrophotometry at 205 Å. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential human health risk of heavy metals in cosmetics. About 61.91% of the cosmetic samples contained lead with concentration in the range of 0.10-42.12 mg/kg. Cadmium levels of the cosmetics ranged from 0.01 to 1.32 mg/kg, manganese from 0.02 to 67.65 mg/kg, nickel from 0.05 to 17.34 mg/kg, chromium from 0.11 to 9.81 mg/kg, mercury from 0.003 to 0.07 mg/kg, and arsenic from 0.002 to 0.005 mg/kg. Although the target hazard quotients and the hazard indices suggest a measure of safety, cosmetics may add to the body burden of potential toxic metals after chronic exposure. PMID:26665979

  5. Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons.

    PubMed

    Qu, Changsheng; Li, Bing; Wu, Haisuo; Wang, Shui; Giesy, John P

    2015-06-01

    To assess aggregate exposure to polycyclic aromatic hydrocarbons (PAHs) via several environmental media and pathways, a probabilistic framework for multi-pathway health risk assessment that integrates PAHs potency equivalence factors, risk estimation modeling, and Monte Carlo simulation was applied to a case study in Nanjing, which is an important industrial city in China. Incremental lifetime risk of additional cancers posed by exposure to 16 USEPA priority PAHs in air, water, soil, and fish was assessed. Risks to three age groups, infants, children, and adults, through various exposure pathways, including oral ingestion, dermal absorption, and inhalation, were estimated. Results of the analysis of risk indicated that B[a]P, B[b]F, and BA were the predominant PAHs pollutants in Nanjing. Risk of additional cancer for local adults was on average 2.62 × 10(-5). The risks were primarily due to ingestion of fish and inhalation, which contributed 99 % of the total risks. By contrast, risk to infants was essentially negligible. Results of a sensitivity analysis indicated that the input variables of concentration of PAHs in fish (C f), the body weight (BW), and the ingestion rate of fish (IRf) were the major influences on estimates of risks. PMID:25571860

  6. Parameters for Pyrethroid Insecticide QSAR and PBPK/PD Models for Human Risk Assessment

    EPA Science Inventory

    This pyrethroid insecticide parameter review is an extension of our interest in developing quantitative structure–activity relationship–physiologically based pharmacokinetic/pharmacodynamic (QSAR-PBPK/PD) models for assessing health risks, which interest started with the organoph...

  7. RISK ASSESSMENT AND RISK MANAGEMENT

    EPA Science Inventory

    Risk assessment of mixtures of environmental pollutants has become a subject of increasing public and regulatory concern. ypically, assessment of mixtures has been based on aggregating the risks associated with the individual constituents of the mixture. his approach does not con...

  8. Site specific risk assessment of an energy-from-waste thermal treatment facility in Durham Region, Ontario, Canada. Part A: Human health risk assessment.

    PubMed

    Ollson, Christopher A; Knopper, Loren D; Whitfield Aslund, Melissa L; Jayasinghe, Ruwan

    2014-01-01

    The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. This paper presents the results of a comprehensive human health risk assessment for this facility. This assessment was based on extensive sampling of baseline environmental conditions (e.g., collection and analysis of air, soil, water, and biota samples) as well as detailed site specific modeling to predict facility-related emissions of 87 identified contaminants of potential concern. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and for the maximum design capacity (400,000 tonnes per year). For the 140,000 tonnes per year scenario, this assessment indicated that facility-related emissions are unlikely to cause adverse health risks to local residents, farmers, or other receptors (e.g., recreational users). For the 400,000 tonnes per year scenarios, slightly elevated risks were noted with respect to inhalation (hydrogen chloride) and infant consumption of breast milk (dioxins and furans), but only during predicted 'upset conditions' (i.e. facility start-up, shutdown, and loss of air pollution control) that represent unusual and/or transient occurrences. However, current provincial regulations require that additional environmental screening would be mandatory prior to expansion of the facility beyond the initial approved capacity (140,000 tonnes per year). Therefore, the potential risks due to upset conditions for the 400,000 tonnes per year scenario should be more closely investigated if future expansion is pursued. PMID:23911923

  9. Biomarkers of benzene exposure and their interpretation for human health risk assessment

    EPA Science Inventory

    Human biomarkers of exposure such as parent or metabolite concentrations in blood or urine are often reported without any context to the sources of exposure or the implications for human risk. The Biomonitoring Technical Committee of the International Life Sciences Institute/Huma...

  10. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century.

    PubMed

    Mortensen, Holly M; Euling, Susan Y

    2013-09-15

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment. PMID:21291902

  11. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    SciTech Connect

    Mortensen, Holly M.; Euling, Susan Y.

    2013-09-15

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.

  12. IMPLICATIONS OF GLOBAL CLIMATE CHANGE FOR THE ASSESSMENT AND MANAGEMENT OF HUMAN HEALTH RISKS OF CHEMICALS IN THE NATURAL ENVIRONMENT

    PubMed Central

    Balbus, John M; Boxall, Alistair BA; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren

    2013-01-01

    Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Environ. Toxicol. Chem. 2013;32:62–78. © 2012 SETAC PMID:23147420

  13. Interim response action basin F liquid incineration project final draft human health risk assessment. Volume 1. Final draft report

    SciTech Connect

    1991-07-01

    This document is a comprehensive, multiple exposure pathway, human health risk assessment prepared for the proposed Basin F Liquid Incineration Project. The submerged quench incinerator will treat Basin F liquid and hydrazine rinse water. The objective of the risk assessment is to establish chemical emission limits which are protective of human health. Average and maximum lifetime daily intakes were calculated for adults, children, and infants in four maximum exposure scenarios under base case and sensitivity case emissions condition. It was concluded that the incineration facility poses neither carcinogenic nor noncarcinogenic risk to any sensitive population. The assessment is divided into: (1) Incineration facility description; (2) Description of surrounding area; (3) Process of pollutant identification and selection; and (4) Determination of emission rates from incineration facility.

  14. Risk assessment of human exposure to cypermethrin during treatment of mandarin fields.

    PubMed

    Choi, H; Moon, J K; Liu, K H; Park, H W; Ihm, Y B; Park, B S; Kim, J H

    2006-04-01

    The potential dermal and respiratory exposure assessment and risk assessment for applicator were performed with cypermethrin EC. The pesticide was applied on a mandarin field using a power sprayer. Gloves were used for the hand exposure assessment, mask for face, and dermal patches for the other parts of the body. Personal air monitor equipped with a XAD-2 resin was used for the respiratory exposure assessment. During the application of cypermethrin in the field, the rate of potential dermal exposure ranged from 28.1 to 58.8 mg/h. The major exposure parts were upper-arms (22.1-24.6%) and legs (thigh and shin, 28.3-29.2%) for females and thigh (21.0-46.9%) and hand (14.9-19.3%) for males. Females were exposed more than males. No exposure was detected from the respiratory monitoring. For risk assessment, the potential dermal exposure (PDE), the absorbable quantity of exposure (AQE), and the margin of safety (MOS) were calculated. Among those four risk assessments, MOS was < 1 in only trial I, which indicated any possibility of risk. However, in the others, the possibility of risk was little. Moreover, the safe work time ranged from 3.61 h to 9.69 h. PMID:16502205

  15. Risk: assessment, acceptability and management

    SciTech Connect

    Not Available

    1981-01-01

    Risk assessment, particularly of risks to the public health resulting from government and industry decisions, is discussed. Cost/benefit analysis as applied to such situations as human deaths and the contracting of cancer by humans is discussed. The role of government regulations and standards is discussed.

  16. Human health risk assessment from exposure to trihalomethanes in Canadian cities.

    PubMed

    Chowdhury, Shakhawat; Hall, Kevin

    2010-07-01

    Lifetime exposure to trihalomethanes (THMs) through ingestion, inhalation and dermal contacts may pose risks to human health. Current approaches may under predict THMs exposure by using THMs in cold water during showering and bathing. Warming of chlorinated water during showering may increase THMs formation through reactions between organics and residual chlorine, which can increase human health risks. In this study, THMs concentrations in shower water were estimated using THMs rate increase model. Using cold water THMs, exposure through ingestion was estimated, while THMs exposure during showering was estimated using THMs in warm water. Human health cancer risks and additional expenses for 20 most populated Canadian cities from exposure to THMs were estimated. Inhalation and dermal contact during showering contributed 30% to 50% of total cancer risks, while risks from inhalation and dermal contacts were comparable for all cities. Overall cancer risks were estimated between 7.2 x 10(-6) and 6.4 x 10(-5) for these cities. Cancer incidents were estimated highest for Montreal (94/year) followed by Toronto (53/year), which may require additional medical expenses of 18.8 and 10.7 million dollars/year for Montreal and Toronto respectively. Cancer risks from exposure to THMs can be controlled by reducing THMs in water supply and varying shower stall volume, shower duration and air exchange rate in shower stall. PMID:20434775

  17. 76 FR 30705 - Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... the public and an independent, external panel of scientific experts (73 FR 54400). Dated: May 18, 2011... AGENCY Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids... Pathogens in Land-Applied Biosolids'' EPA/600/R-08/035F, which was prepared by the National Center...

  18. SUMMARY OF THE U.S. EPA COLLOQUIA ON A FRAMEWORK FOR HUMAN HEALTH RISK ASSESSMENT (VOLUME 1, 1997)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has recognized the need to develop a framework for human health risk assessment that puts a perspective on the approaches in practice throughout the Agency. The framework will be a communication piece that will lay out the scientific...

  19. SUMMARY OF THE U.S. EPA COLLOQUIUM ON A FRAMEWORK FOR HUMAN HEALTH RISK ASSESSMENT (VOLUME 2, 1998)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has recognized the need to develop a framework for human health risk assessment that puts a perspective on the approaches in practice throughout the Agency. The framework will be a communication piece that will lay out the scientific...

  20. CONTROLLED DIESEL EXPOSURES: INTER-PHASING HUMAN AND ANIMAL STUDIES AND THEIR USE IN THE RISK ASSESSMENT

    EPA Science Inventory

    Controlled diesel exposures: Inter-phasing human and animal studies and their use in the risk assessment process.
    Michael C. Madden, US EPA.

    Particulate matter (PM) has been reported to be associated with health effects (e.g., premature deaths, hospitalizations, lung ...

  1. DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROOVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    EPA Science Inventory

    DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    Jeffry D. Schroeter, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Ted B. Martonen, ETD, NHEERL, USEPA, RTP, NC 27711; Do...

  2. Risk assessment of coccidostatics during feed cross-contamination: Animal and human health aspects

    SciTech Connect

    Dorne, J.L.C.M.; Fernández-Cruz, M.L.; Bertelsen, U.; Renshaw, D.W.; Peltonen, K.; Anadon, A.; Feil, A.; Sanders, P.; Wester, P.; Fink-Gremmels, J.

    2013-08-01

    Coccidiosis, an intestinal plasmodium infection, is a major infectious disease in poultry and rabbits. Eleven different coccidiostats are licensed in the EU for the prevention of coccidiosis in these animal species. According to their chemical nature and main biological activity, these compounds can be grouped as ionophoric (monensin, lasalocid sodium, salinomycin, narasin, maduramicin and semduramicin) or non-ionophoric (robenidine, decoquinate, nicarbazin, diclazuril, and halofuginone) substances. Coccidiostats are used as feed additives, mixed upon request into the compounded feed. During the technical process of commercial feed production, cross-contamination of feed batches can result in the exposure of non-target animals and induce adverse health effects in these animals due to a specific sensitivity of mammalian species as compared to poultry. Residue formation in edible tissues of non-target species may result in unexpected human exposure through the consumption of animal products. This review presents recent risk assessments performed by the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). The health risk to non-target species that would result from the consumption of cross-contaminated feed with coccidostats at levels of 2, 5 or 10% was found to be negligible for most animal species with the exception of salinomycin and monensin in horses because of the particular sensitivity for which toxicity may occur when cross-contamination exceeds 2% and 5% respectively. Kinetic data and tissue analyses showed that residues of coccidiostats may occur in the liver and eggs in some cases. However, the level of residues of each coccidiostat in edible animal tissues remained sufficiently low that the aggregate exposure of consumers would not exceed the established acceptable daily intake (ADI) of each coccidiostat. It could be concluded that technical cross-contamination of animal feeds would not be expected to

  3. Risk assessment of coccidostatics during feed cross-contamination: animal and human health aspects.

    PubMed

    Dorne, J L C M; Fernández-Cruz, M L; Bertelsen, U; Renshaw, D W; Peltonen, K; Anadon, A; Feil, A; Sanders, P; Wester, P; Fink-Gremmels, J

    2013-08-01

    Coccidiosis, an intestinal plasmodium infection, is a major infectious disease in poultry and rabbits. Eleven different coccidiostats are licensed in the EU for the prevention of coccidiosis in these animal species. According to their chemical nature and main biological activity, these compounds can be grouped as ionophoric (monensin, lasalocid sodium, salinomycin, narasin, maduramicin and semduramicin) or non-ionophoric (robenidine, decoquinate, nicarbazin, diclazuril, and halofuginone) substances. Coccidiostats are used as feed additives, mixed upon request into the compounded feed. During the technical process of commercial feed production, cross-contamination of feed batches can result in the exposure of non-target animals and induce adverse health effects in these animals due to a specific sensitivity of mammalian species as compared to poultry. Residue formation in edible tissues of non-target species may result in unexpected human exposure through the consumption of animal products. This review presents recent risk assessments performed by the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). The health risk to non-target species that would result from the consumption of cross-contaminated feed with coccidostats at levels of 2, 5 or 10% was found to be negligible for most animal species with the exception of salinomycin and monensin in horses because of the particular sensitivity for which toxicity may occur when cross-contamination exceeds 2% and 5% respectively. Kinetic data and tissue analyses showed that residues of coccidiostats may occur in the liver and eggs in some cases. However, the level of residues of each coccidiostat in edible animal tissues remained sufficiently low that the aggregate exposure of consumers would not exceed the established acceptable daily intake (ADI) of each coccidiostat. It could be concluded that technical cross-contamination of animal feeds would not be expected to

  4. Application of quantitative uncertainty analysis for human health risk assessment at Rocky Flats

    SciTech Connect

    Duncan, F.L.W.; Gordon, J.W. ); Smith, D. ); Singh, S.P. )

    1993-01-01

    The characterization of uncertainty is an important component of the risk assessment process. According to the U.S. Environmental Protection Agency's (EPA's) [open quotes]Guidance on Risk Characterization for Risk Managers and Risk Assessors,[close quotes] point estimates of risk [open quotes]do not fully convey the range of information considered and used in developing the assessment.[close quotes] Furthermore, the guidance states that the Monte Carlo simulation may be used to estimate descriptive risk percentiles. To provide information about the uncertainties associated with the reasonable maximum exposure (RME) estimate and the relation of the RME to other percentiles of the risk distribution for Operable Unit 1 (OU-1) at Rocky Flats, uncertainties were identified and quantitatively evaluated. Monte Carlo simulation is a technique that can be used to provide a probability function of estimated risk using random values of exposure factors and toxicity values in an exposure scenario. The Monte Carlo simulation involves assigning a joint probability distribution to the input variables (i.e., exposure factors) of an exposure scenario. Next, a large number of independent samples from the assigned joint distribution are taken and the corresponding outputs calculated. Methods of statistical inference are used to estimate, from the output sample, some parameters of the output distribution, such as percentiles and the expected value.

  5. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils.

    PubMed

    Nabulo, G; Young, S D; Black, C R

    2010-10-15

    Fifteen tropical leafy vegetable types were sampled from farmers' gardens situated on nine contaminated sites used to grow vegetables for commercial or subsistence consumption in and around Kampala City, Uganda. Trace metal concentrations in soils were highly variable and originated from irrigation with wastewater, effluent discharge from industry and dumping of solid waste. Metal concentrations in the edible shoots of vegetables also differed greatly between, and within, sites. Gynandropsis gynandra consistently accumulated the highest Cd, Pb and Cu concentrations, while Amaranthus dubius accumulated the highest Zn concentration. Cadmium uptake from soils with contrasting sources and severity of contamination was consistently lowest in Cucurbita maxima and Vigna unguiculata, suggesting these species were most able to restrict Cd uptake from contaminated soil. Concentrations of Pb and Cr were consistently greater in unwashed, than in washed, vegetables, in marked contrast to Cd, Ni and Zn. The risk to human health, expressed as a 'hazard quotient' (HQ(M)), was generally greatest for Cd, followed successively by Pb, Zn, Ni and Cu. Nevertheless, it was apparent that urban cultivation of leafy vegetables could be safely pursued on most sites, subject to site-specific assessment of soil metal burden, judicious choice of vegetable types and adoption of washing in clean water prior to cooking. PMID:20739044

  6. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes.

    PubMed

    Oorts, Marlies; Baze, Audrey; Bachellier, Philippe; Heyd, Bruno; Zacharias, Thomas; Annaert, Pieter; Richert, Lysiane

    2016-08-01

    Drug-induced cholestasis (DIC) is recognized as one of the prime mechanisms for DILI. Hence, earlier detection of drug candidates with cholestatic signature is crucial. Recently, we introduced an in vitro model for DIC and evaluated its performance with several cholestatic drugs. We presently expand on the validation of this model by 14 training compounds (TCs) of the EU-EFPIA IMI project MIP-DILI. Several batches of human hepatocytes in sandwich-culture were qualified for DIC assessment by verifying the bile acid-dependent increase in sensitivity to the toxic effects of cyclosporin A. The cholestatic potential of the TCs was expressed by determining the drug-induced cholestasis index (DICI). A safety margin (SM) was calculated as the ratio of the lowest TC concentration with a DICI≤0.80 to the Cmax,total. Nefazodone, bosentan, perhexiline and troglitazone were flagged for cholestasis (SM<30). The hepatotoxic (but non-cholestatic) compounds, amiodarone, diclofenac, fialuridine and ximelagatran, and all non-hepatotoxic compounds were cleared as "safe" for DIC. Tolcapone and paracetamol yielded DICI-based SM values equal to or higher than those based on cytotoxicity, thus excluding DIC as a DILI mechanism. This hepatocyte-based in vitro assay provides a unique tool for early and reliable identification of drug candidates with cholestasis risk. PMID:27046439

  7. Assessment of the human health risks posed by exposure to chromium-contaminated soils

    SciTech Connect

    Sheehan, P.J.; Meyer, D.M.; Sauer, M.M.; Paustenbach, D.J. )

    1991-02-01

    Millions of tons of chromite-ore processing residue have been used as fill in various locations in northern New Jersey and elsewhere in the United States. The primary toxicants in the residue are trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)). The hazard posed by Cr(III) is negligible due to its low acute and chronic toxicity. In contrast, Cr(VI) is a human carcinogen following inhalation of high concentrations. It can also cause allergic contact dermatitis. This evaluation addresses a residential site where the arithmetic mean (x) and geometric mean (gm) concentrations of Cr(III) in soil were 2879 and 1212 mg/kg (ppm). The mean concentrations of Cr(VI) were 180 and 4 mg/kg, respectively. The uptake (absorbed dose) of Cr(III) via soil ingestion, consumption of homegrown vegetables, and ingestion of inspired particles was determined. The uptake of Cr(VI) via dermal absorption from contact with surface soil and building wall surfaces, as well as inhalation, was also evaluated. The techniques used in this assessment are applicable for evaluating the human health risks posed by any residential site having contaminated soil. The potential for both sensitized and unsensitized persons to develop allergic contact dermatitis due to exposure to soil contaminated at these levels was found to be negligible. The estimated average daily dose (ADD) via ingestion and dermal absorption for the maximally exposed individual (MEI) was about 1500- and 40-fold below the EPA reference dose (RfD) for Cr(III) and Cr(VI), respectively. It was shown that for residential sites, the most important route of exposure to Cr(III) was incidental soil ingestion. Although not relevant to these sites specifically, if garden vegetables could be successfully grown in these soils, then they would probably be the predominant source of uptake of Cr(III). 163 refs.

  8. Fumonisin contamination of food: progress in development of biomarkers to better assess human health risks.

    PubMed

    Turner, P C; Nikiema, P; Wild, C P

    1999-07-15

    Fumonisins, fungal toxins produced by Fusarium moniliforme, contaminate maize based foods and feeds throughout the world. They cause liver and kidney toxicity in animals in addition to leukoencephalomalacia in horses and pulmonary edema in pigs. Fumonisin B(1) is carcinogenic in rats and mice. Ecological studies have linked consumption of fumonisin contaminated maize with oesophageal cancer in human populations in South Africa and China. This review discusses the potential health risks for people exposed to the fumonisins, and describes how mechanistic studies of toxicity in animal models have allowed the development of putative biomarkers of fumonisin exposure at the individual level. The requirements for an applicable biomarker include sample availability as well as a high specificity and sensitivity for the exposure of interest. Most environmental toxic insults involve complex exposures both to other toxins and to infections; these confounding factors need to be considered in assessing both the validity of the biomarker and the exposure-disease associations. Fumonisins can be detected in the urine of animals in feeding studies but the sensitivity of the current methodology means only highly exposed people could be monitored. Mechanistic studies indicate that ceramide synthase, an enzyme involved in sphingolipid synthesis, is one cellular target for fumonisin toxicity and carcinogenicity, and this disruption to sphingolipid metabolism increases the ratio of two sphingoid precursors, sphinganine and sphingosine. The altered ratio has been observed in tissues, serum and urine for a number of animal models suggesting it as a good candidate marker of fumonisin exposure. Despite development of analytical methods to measure this biomarker there have been no studies to date correlating it to fumonisin intake in people. Given the toxic effects of fumonisins in animals and the widespread human exposure, which has been calculated to reach 440 micrograms kg(-1) body weight

  9. ASSESSMENT OF RISKS TO HUMAN REPRODUCTION AND TO DEVELOPMENT OF THE HUMAN CONCEPTUS FROM EXPOSURE TO ENVIRONMENTAL SUBSTANCES

    EPA Science Inventory

    The Offices of Health Research and of Health and Environmental Assessment within the Office of Research and Development sponsored a conference to produce a technical document on the current status of risk assessment methodologies for teratogenic and other reproductive effects. Th...

  10. Pharmacology-based toxicity assessment: towards quantitative risk prediction in humans.

    PubMed

    Sahota, Tarjinder; Danhof, Meindert; Della Pasqua, Oscar

    2016-05-01

    Despite ongoing efforts to better understand the mechanisms underlying safety and toxicity, ~30% of the attrition in drug discovery and development is still due to safety concerns. Changes in current practice regarding the assessment of safety and toxicity are required to reduce late stage attrition and enable effective development of novel medicines. This review focuses on the implications of empirical evidence generation for the evaluation of safety and toxicity during drug development. A shift in paradigm is needed to (i) ensure that pharmacological concepts are incorporated into the evaluation of safety and toxicity; (ii) facilitate the integration of historical evidence and thereby the translation of findings across species as well as between in vitro and in vivo experiments and (iii) promote the use of experimental protocols tailored to address specific safety and toxicity questions. Based on historical examples, we highlight the challenges for the early characterisation of the safety profile of a new molecule and discuss how model-based methodologies can be applied for the design and analysis of experimental protocols. Issues relative to the scientific rationale are categorised and presented as a hierarchical tree describing the decision-making process. Focus is given to four different areas, namely, optimisation, translation, analytical construct and decision criteria. From a methodological perspective, the relevance of quantitative methods for estimation and extrapolation of risk from toxicology and safety pharmacology experimental protocols, such as points of departure and potency, is discussed in light of advancements in population and Bayesian modelling techniques (e.g. non-linear mixed effects modelling). Their use in the evaluation of pharmacokinetics (PK) and pharmacokinetic-pharmacodynamic relationships (PKPD) has enabled great insight into the dose rationale for medicines in humans, both in terms of efficacy and adverse events. Comparable benefits

  11. Lessons learned: Needs for improving human health risk assessment at USDOE Sites

    SciTech Connect

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.; Daniels, J.I.; Layton, D.W.; Anspaugh, L.R.

    1993-09-01

    Realistic health risk assessments were performed in a pilot study of three U.S. Department of Energy (USDOE) sites. These assessments, covering a broad spectrum of data and methods, were used to identify needs for improving future health risk assessments at USDOE sites. Topics receiving specific recommendations for additional research include: choice of distributions for Monte Carlo simulation; estimation of risk reduction; analysis of the U.S. Department of Agriculture Database on food and nutrient intakes; investigations on effects of food processing on contaminant levels; background food and environmental concentrations of contaminants; method for handling exposures to groundwater plumes, methods for analyzing less than lifetime exposure to carcinogens; and improvement of bioaccumulation factors.

  12. Exploration Health Risks: Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer; Charles, John; Hayes, Judith; Wren, Kiley

    2006-01-01

    Maintenance of human health on long-duration exploration missions is a primary challenge to mission designers. Indeed, human health risks are currently the largest risk contributors to the risks of evacuation or loss of the crew on long-duration International Space Station missions. We describe a quantitative assessment of the relative probabilities of occurrence of the individual risks to human safety and efficiency during space flight to augment qualitative assessments used in this field to date. Quantitative probabilistic risk assessments will allow program managers to focus resources on those human health risks most likely to occur with undesirable consequences. Truly quantitative assessments are common, even expected, in the engineering and actuarial spheres, but that capability is just emerging in some arenas of life sciences research, such as identifying and minimize the hazards to astronauts during future space exploration missions. Our expectation is that these results can be used to inform NASA mission design trade studies in the near future with the objective of preventing the higher among the human health risks. We identify and discuss statistical techniques to provide this risk quantification based on relevant sets of astronaut biomedical data from short and long duration space flights as well as relevant analog populations. We outline critical assumptions made in the calculations and discuss the rationale for these. Our efforts to date have focussed on quantifying the probabilities of medical risks that are qualitatively perceived as relatively high risks of radiation sickness, cardiac dysrhythmias, medically significant renal stone formation due to increased calcium mobilization, decompression sickness as a result of EVA (extravehicular activity), and bone fracture due to loss of bone mineral density. We present these quantitative probabilities in order-of-magnitude comparison format so that relative risk can be gauged. We address the effects of

  13. Human health-risk assessment for municipal-sludge disposal: benefits of alternative regulatory options. Draft report

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses numerical criteria for the reuse and disposal of municipal sewage sludge and evaluates reductions in human health risks or benefits derived from controlling sludge-disposal practices. Quantitative aggregate risk estimates are projected for 31 contaminants for each of the key sludge-management practices: incineration; monofilling; land application (food chain and non-food chain); and distribution and marketing. The study utilizes state-of-the-art fate, transport, and exposure methodologies in predicting environmental concentrations. The analysis evaluates a number of human-exposure routes including dietary, drinking water, and inhalation pathways. The analysis couples this information with national and local populations exposed along with the Agency's most recent health-effects data in assessing risks. A methodology for quantitatively assessing non-carcinogenic effects from exposure to lead is introduced.

  14. Heart Attack Risk Assessment

    MedlinePlus

    ... Pressure Tools & Resources Stroke More Heart Attack Risk Assessment Updated:May 31,2016 We're sorry, but ... Can You Recognize a Heart Attack? Quiz Risk Assessment Patient Information Sheets: Heart Attack Heart Attack Personal ...

  15. Teaching Risk Assessment.

    ERIC Educational Resources Information Center

    Oravec, Jo Ann

    2000-01-01

    Risk management training cannot prevent hazards, but can help students learn to deal with them more efficiently. A risk-assessment and risk-communication approach to dealing with computer problems can be applied in the business classroom. (JOW)

  16. Assessment of risks to human reproduction and to development of the human conceptus from exposure to environmental substances

    SciTech Connect

    Galbraith, W.M.; Voytek, P.; Ryon, M.G.

    1982-02-01

    The Offices of Health Research and of Health and Environmental Assessment within the Office of Research and Development sponsored a conference to produce a technical document on the current status of risk assessment methodologies for teratogenic and other reproductive effects. The conference brought together scientists knowledgeable in reproductive biology and teratology to discuss techniques and concepts pertinent to developing risk assessment methodologies. The document is divided into three main subject areas: assessment of toxicity to female reproduction, assessment of toxicity to male reproduction, and assessment of toxicity to the conceptus. There are three supplemental parts: pharmacokinetics and epidemiologic considerations, which are common to all toxicological assessments, and a special section on the behavioral aspects of sexual development. The specific areas addressed are the potential adverse effects on the female and male reproductive systems as well as adverse effects on the developing conceptus. A broad range of problems and effects are discussed, including infertility, early resorption of the conceptus, and possible behavioral disorders producted by subtle changes in the biochemical environment of the fetus. Suggestions are given for improvement in standard toxicological protocols for evaluation of reproductive risks, identifies new concepts and procedures that can be immediately applicable, and designates those that need further expansion and development through research. Included is a discussion on the predictive ability of the tests in estimating risk.

  17. Chapter 6: Ecotoxicology, Environmental Risk Assessment & Potential Impact on Human Health

    EPA Science Inventory

    This chapter examines potential risks posed by pharmaceuticals present in the aquatic environment to humans and aquatic life. We begin by describing the mechanisms by which pharmaceuticals enter the vertebrate body, produce effects and leave the body. Then we describe theoretical...

  18. Balancing risk: Ethical issues in risk assessment

    SciTech Connect

    Longstreth, J.D.

    1992-06-01

    The last five decades have seen an explosive growth of information, accompanied by the development of a strong environmental movement. These two factors have been critical contributors to the development of the scientific discipline that has come to be called risk analysis or risk assessment. In this context, risk assessment can be described as an analytic approach used to organize large amounts of information from diverse disciplines so as to evaluate the possible impacts of pollution on human health and the environment. Early efforts in this field focused on the protection of human health. More recently, however, it has been realized that humans and their environment are intimately linked and that environmental impacts must also be evaluated. At some point, it seems likely that the joint goals of protecting human health and the environment may come into conflict. This essay reviews current developments in the assessment of risks both to humans and the environment in order to expose similarities and differences with the ultimate aim of opening a dialogue between scientists in the different disciplines so that evaluation strategies can be designed which will enable decision makers to make trade-offs between human health and environmental risk is an informed and egalitarian way.

  19. Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado

    SciTech Connect

    Daniels Jeffrey I.,Chapman Jenny B.

    2012-01-01

    The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

  20. Schedule Risk Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Greg

    2003-01-01

    Schedule risk assessments determine the likelihood of finishing on time. Each task in a schedule has a varying degree of probability of being finished on time. A schedule risk assessment quantifies these probabilities by assigning values to each task. This viewgraph presentation contains a flow chart for conducting a schedule risk assessment, and profiles applicable several methods of data analysis.

  1. XENOBIOTIC METABOLISM RESEARCH AND ITS APPLICATION TO HUMAN AND ECOLOGICAL EXPOSURE AND RISK ASSESSMENT

    EPA Science Inventory

    A major uncertainty in risk assessment is determining the exposure of a target organism to a chemical stressor, and a confounding factor is the transformation of the chemical to a toxic metabolite inside the target organism. Physiologically-based pharmacokinetic (PBPK) models are...

  2. Application of Toxicogenomics in Decision Making in Ecological and Human Health Risk Assessment

    EPA Science Inventory

    Uncertainties in risk assessment arise from sparse or inadequate data including gaps in our understanding of mode of action, the exposure-dose-response pathway, cross-species toxicokinetic and toxicodynamic information, and/or exposure data. There is an expectation that toxicogen...

  3. Characterizing Uncertainty in Epidemiological Studies for use in Human Health Risk Assessment

    EPA Science Inventory

    Characterization of scientific uncertainty can provide risk assessments with a level of confidence regarding decisions, whichallows for evaluation of the degree that uncertainty plays in the analysis of consequences of specific policies.To the best of our knowledge, there are no ...

  4. Quantitative microbial risk assessment of human illness from exposure to marine beach sand.

    PubMed

    Shibata, Tomoyuki; Solo-Gabriele, Helena M

    2012-03-01

    Currently no U.S. federal guideline is available for assessing risk of illness from sand at recreational sites. The objectives of this study were to compute a reference level guideline for pathogens in beach sand and to compare these reference levels with measurements from a beach impacted by nonpoint sources of contamination. Reference levels were computed using quantitative microbial risk assessment (QMRA) coupled with Monte Carlo simulations. In order to reach an equivalent level of risk of illness as set by the U.S. EPA for marine water exposure (1.9 × 10(-2)), levels would need to be at least about 10 oocysts/g (about 1 oocyst/g for a pica child) for Cryptosporidium, about 5 MPN/g (about 1 MPN/g for pica) for enterovirus, and less than 10(6) CFU/g for S. aureus. Pathogen levels measured in sand at a nonpoint source recreational beach were lower than the reference levels. More research is needed in evaluating risk from yeast and helminth exposures as well as in identifying acceptable levels of risk for skin infections associated with sand exposures. PMID:22296573

  5. Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in The Netherlands.

    PubMed Central

    Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C

    1999-01-01

    A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions. Images Figure 1 Figure 2 Figure 3 PMID:9872714

  6. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    PubMed

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential. PMID:25058416

  7. A GIS-based human health risk assessment for urban green space planning--an example from Grugliasco (Italy).

    PubMed

    Poggio, Laura; Vrscaj, Borut

    2009-11-15

    The need to develop approaches for risk-based management of soil contamination, as well as the integration of the assessment of the human health risk (HHR) due to the soil contamination in the urban planning procedures has been the subject of recent attention of scientific literature and policy makers. The spatial analysis of environmental data offers multiple advantages for studying soil contamination and HHR assessment, facilitating the decision making process. The aim of this study was to explore the possibilities and benefits of spatial implementation of a quantitative HHR assessment methodology for a planning case in a typical urban environment where the soil is contaminated. The study area is located in the city of Grugliasco a part of the Turin (Italy) metropolitan area. The soils data were derived from a site specific soil survey and the land-use data from secondary sources. In the first step the soil contamination data were geo-statistically analysed and a spatial soil contamination data risk modelling procedure designed. In order to spatially assess the HHR computer routines were developed using GIS raster tools. The risk was evaluated for several different land uses for the planned naturalistic park area. The HHR assessment indicated that the contamination of soils with heavy metals in the area is not sufficient to induce considerable health problems due to typical human behaviour within the variety of urban land uses. An exception is the possibility of direct ingestion of contaminated soil which commonly occurs in playgrounds. The HHR evaluation in a planning case in the Grugliasco Municipality confirms the suitability of the selected planning option. The construction of the naturalistic park presents one solution for reducing the impacts of soil contamination on the health of citizens. The spatial HHR evaluation using GIS techniques is a diagnostic procedure for assessing the impacts of urban soil contamination, with which one can verify planning

  8. Human and ecological risk assessment of a crop protection chemical: a case study with the azole fungicide epoxiconazole.

    PubMed

    Chambers, Janice E; Greim, Helmut; Kendall, Ronald J; Segner, Helmut; Sharpe, Richard M; Van Der Kraak, Glen

    2014-02-01

    Conventional risk assessments for crop protection chemicals compare the potential for causing toxicity (hazard identification) to anticipated exposure. New regulatory approaches have been proposed that would exclude exposure assessment and just focus on hazard identification based on endocrine disruption. This review comprises a critical analysis of hazard, focusing on the relative sensitivity of endocrine and non-endocrine endpoints, using a class of crop protection chemicals, the azole fungicides. These were selected because they are widely used on important crops (e.g. grains) and thereby can contact target and non-target plants and enter the food chain of humans and wildlife. Inhibition of lanosterol 14α-demethylase (CYP51) mediates the antifungal effect. Inhibition of other CYPs, such as aromatase (CYP19), can lead to numerous toxicological effects, which are also evident from high dose human exposures to therapeutic azoles. Because of its widespread use and substantial database, epoxiconazole was selected as a representative azole fungicide. Our critical analysis concluded that anticipated human exposure to epoxiconazole would yield a margin of safety of at least three orders of magnitude for reproductive effects observed in laboratory rodent studies that are postulated to be endocrine-driven (i.e. fetal resorptions). The most sensitive ecological species is the aquatic plant Lemna (duckweed), for which the margin of safety is less protective than for human health. For humans and wildlife, endocrine disruption is not the most sensitive endpoint. It is concluded that conventional risk assessment, considering anticipated exposure levels, will be protective of both human and ecological health. Although the toxic mechanisms of other azole compounds may be similar, large differences in potency will require a case-by-case risk assessment. PMID:24274332

  9. Assessing the distribution and human health risk of organochlorine pesticide residues in sediments from selected rivers.

    PubMed

    Ogbeide, Ozekeke; Tongo, Isioma; Ezemonye, Lawrence

    2016-02-01

    Sediment samples from major agricultural producing areas in Edo state Nigeria were analysed for α-HCH, γ-HCH, β-HCH and ∑DDT with the aim of elucidating contamination profiles, distribution characteristics, carcinogenic and non-carcinogenic risk of these compounds in these regions. Analysis was done using a gas chromatography (GC) equipped with electron capture detector (ECD), while health risk assessment was carried out using the Incremental Lifetime Cancer Risk (ILCR) and the chronic daily intake (CDI). Results showed varying concentrations of α-HCH, γ-HCH, β-HCH and ∑DDT pesticides in sediment samples with hexachlorocyclohexane (∑HCHs) (4.6 µg/g/dw) being the dominant contaminants as it was widely detected in all samples and stations. Source identification revealed that the current levels of HCHs and DDT in sediments were attributed to both historical use and fresh usage of these pesticides. Risk estimates using ILCR and CDI showed that the risk of cancer and non-cancer effects was highest when exposure route was through ingestion. Furthermore, model projections highlights children as high risk population groups for non-dietary exposure to OCPs. These findings suggests the need for increased monitoring programmes, with a wider scope for both currently used pesticides and legacy/banned pesticides. PMID:26476770

  10. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment.

    PubMed

    Li, Hai-Ling; Song, Wei-Wei; Zhang, Zi-Feng; Ma, Wan-Li; Gao, Chong-Jing; Li, Jia; Huo, Chun-Yan; Mohammed, Mohammed O A; Liu, Li-Yan; Kannan, Kurunthachalam; Li, Yi-Fan

    2016-09-15

    Phthalates are widely used chemicals in household products, which severely affect human health. However, there were limited studies emphasized on young adults' exposure to phthalates in dormitories. In this study, seven phthalates were extracted from indoor dust that collected in university dormitories in Harbin, Shenyang, and Baoding, in the north of China. Dust samples were also collected in houses in Harbin for comparison. The total concentrations of phthalates in dormitory dust in Harbin and Shenyang samples were significantly higher than those in Baoding samples. The total geometric mean concentration of phthalates in dormitory dust in Harbin was lower than in house dust. Di-(2-ethylhexyl) phthalate (DEHP) was the most abundant phthalate in both dormitory and house dust. The daily intakes of the total phthalates, carcinogenic risk (CR) of DEHP, hazard index (HI) of di-isobutyl phthalate (DiBP), dibutyl phthalate (DBP), and DEHP were estimated, the median values for all students in dormitories were lower than adults who live in the houses. Monte Carlo simulation was applied to predict the human exposure risk of phthalates. HI of DiBP, DBP, and DEHP was predicted according to the reference doses (RfD) provided by the United States Environmental Protection Agency (U.S.EPA) and the reference doses for anti-androgenicity (RfD AA) developed by Kortenkamp and Faust. The results indicated that the risks of some students had exceeded the limitation, however, the measured results were not exceeded the limitation. Risk quotients (RQ) of DEHP were predicted based on China specific No Significant Risk Level (NSRL) and Maximum Allowable Dose Level (MADL). The predicted results of CR and RQ of DEHP suggested that DEHP could pose a health risk through intake of indoor dust. PMID:27186877

  11. Data Mining of Historical Human Data to Assess the Risk of Injury due to Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Wells, Jesica; Somers, Jeffrey T.; Newby, N.; Gernhardt, Michael

    2014-01-01

    The NASA Occupant Protection Group is charged with ensuring crewmembers are protected during all dynamic phases of spaceflight. Previous work with outside experts has led to the development of a definition of acceptable risk (DAR) for space capsule vehicles. The DAR defines allowable probability rates for various categories of injuries. An important question is how to validate these probabilities for a given vehicle. One approach is to impact test human volunteers under projected nominal landing loads. The main drawback is the large number of subject tests required to attain a reasonable level of confidence that the injury probability rates would meet those outlined in the DAR. An alternative is to mine existing databases containing human responses to impact. Testing an anthropomorphic test device (ATD) at the same human-exposure levels could yield a range of ATD responses that would meet DAR. As one aspect of future vehicle validation, the ATD could be tested in the vehicle's seat and suit configuration at nominal landing loads and compared with the ATD responses supported by the human data set. This approach could reduce the number of human-volunteer tests NASA would need to conduct to validate that a vehicle meets occupant protection standards. METHODS: The U.S. Air Force has recorded hundreds of human responses to frontal, lateral, and spinal impacts at many acceleration levels and pulse durations. All of this data are stored on the Collaborative Biomechanics Data Network (CBDN), which is maintained by the Wright Patterson Air Force Base (WPAFB). The test device for human occupant restraint (THOR) ATD was impact tested on WPAFB's horizontal impulse accelerator (HIA) matching human-volunteer exposures on the HIA to 5 frontal and 3 spinal loading conditions. No human injuries occurred as a result of these impact conditions. Peak THOR response variables for neck axial tension and compression, and thoracic-spine axial compression were collected. Maximal chest

  12. Improving pandemic influenza risk assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessing the pandemic risk posed by specific non-human influenza A viruses remains a complex challenge. As influenza virus genome sequencing becomes cheaper, faster and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk asses...

  13. Assessing risks to humans from invasive Burmese pythons in Everglades National Park, Florida, USA

    USGS Publications Warehouse

    Reed, Robert N.; Snow, Ray W.

    2014-01-01

    Invasive Burmese pythons (Python molurus bivittatus) are now established across a large area of southern Florida, USA, including all of Everglades National Park (NP). The presence of these large-bodied snakes in the continental United States has attracted intense media attention, including regular reference to the possibility of these snakes preying on humans. Over the course of a decade (2003–2012), we solicited reports of apparently unprovoked strikes directed at humans in Everglades NP. We summarize the circumstances surrounding each of the 5 reported incidents, which occurred between 2006 and 2012. All strikes were directed toward biologists moving through flooded wetlands; 2 strikes resulted in minor injury and none resulted in constriction. We consider most of these strikes to be cases of “mistaken identity,” in which the python initiated a strike at a potential prey item but aborted its predatory behavior prior to constriction and ingestion. No strikes are known to have been directed at park visitors despite visitation rates averaging over one million per year during this period. We conclude that while risks to humans should not be completely discounted, the relative risk of a human being killed by a python in Everglades NP appears to be extremely low.

  14. Strategic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Derleth, Jason; Lobia, Marcus

    2009-01-01

    This slide presentation provides an overview of the attempt to develop and demonstrate a methodology for the comparative assessment of risks across the entire portfolio of NASA projects and assets. It includes information about strategic risk identification, normalizing strategic risks, calculation of relative risk score, and implementation options.

  15. Assessment of Ecological and Human Health Risks of Heavy Metal Contamination in Agriculture Soils Disturbed by Pipeline Construction

    PubMed Central

    Shi, Peng; Xiao, Jun; Wang, Yafeng; Chen, Liding

    2014-01-01

    The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management. PMID:24590049

  16. Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction.

    PubMed

    Shi, Peng; Xiao, Jun; Wang, Yafeng; Chen, Liding

    2014-03-01

    The construction of large-scale infrastructures such as nature gas/oil pipelines involves extensive disturbance to regional ecosystems. Few studies have documented the soil degradation and heavy metal contamination caused by pipeline construction. In this study, chromium (Cr), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) levels were evaluated using Index of Geo-accumulation (Igeo) and Potential Ecological Risk Index (RI) values, and human health risk assessments were used to elucidate the level and spatial variation of heavy metal pollution risks. The results showed that the impact zone of pipeline installation on soil heavy metal contamination was restricted to pipeline right-of-way (RoW), which had higher Igeo of Cd, Cu, Ni and Pb than that of 20 m and 50 m. RI showed a declining tendency in different zones as follows: trench > working zone > piling area > 20 m > 50 m. Pipeline RoW resulted in higher human health risks than that of 20 m and 50 m, and children were more susceptible to non-carcinogenic hazard risk. Cluster analysis showed that Cu, Ni, Pb and Cd had similar sources, drawing attention to the anthropogenic activity. The findings in this study should help better understand the type, degree, scope and sources of heavy metal pollution from pipeline construction to reduce pollutant emissions, and are helpful in providing a scientific basis for future risk management. PMID:24590049

  17. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    SciTech Connect

    Chiu, Weihsueh A.; Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P.

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  18. Risk Assessment Overview

    NASA Technical Reports Server (NTRS)

    Prassinos, Peter G.; Lyver, John W., IV; Bui, Chinh T.

    2011-01-01

    Risk assessment is used in many industries to identify and manage risks. Initially developed for use on aeronautical and nuclear systems, risk assessment has been applied to transportation, chemical, computer, financial, and security systems among others. It is used to gain an understanding of the weaknesses or vulnerabilities in a system so modification can be made to increase operability, efficiency, and safety and to reduce failure and down-time. Risk assessment results are primary inputs to risk-informed decision making; where risk information including uncertainty is used along with other pertinent information to assist management in the decision-making process. Therefore, to be useful, a risk assessment must be directed at specific objectives. As the world embraces the globalization of trade and manufacturing, understanding the associated risk become important to decision making. Applying risk assessment techniques to a global system of development, manufacturing, and transportation can provide insight into how the system can fail, the likelihood of system failure and the consequences of system failure. The risk assessment can identify those elements that contribute most to risk and identify measures to prevent and mitigate failures, disruptions, and damaging outcomes. In addition, risk associated with public and environment impact can be identified. The risk insights gained can be applied to making decisions concerning suitable development and manufacturing locations, supply chains, and transportation strategies. While risk assessment has been mostly applied to mechanical and electrical systems, the concepts and techniques can be applied across other systems and activities. This paper provides a basic overview of the development of a risk assessment.

  19. Challenges for In vitro to in Vivo Extrapolation of Nanomaterial Dosimetry for Human Risk Assessment

    SciTech Connect

    Smith, Jordan N.

    2013-11-01

    The proliferation in types and uses of nanomaterials in consumer products has led to rapid application of conventional in vitro approaches for hazard identification. Unfortunately, assumptions pertaining to experimental design and interpretation for studies with chemicals are not generally appropriate for nanomaterials. The fate of nanomaterials in cell culture media, cellular dose to nanomaterials, cellular dose to nanomaterial byproducts, and intracellular fate of nanomaterials at the target site of toxicity all must be considered in order to accurately extrapolate in vitro results to reliable predictions of human risk.

  20. ECOLOGICAL RISK ASSESSMENT WORKSHOP

    EPA Science Inventory

    As ecological risk assessment evolves, it is moving beyond focus on single species toward addressing multiple species and their interactions, and from assessing effects of simple chemical toxicity to the cumulative impacts of multiple interacting chemical, physical, and biologica...

  1. Consideration of soil properties in assessment of human health risk from exposure to arsenic-enriched soils.

    PubMed

    Datta, Rupali; Sarkar, Dibyendu

    2005-01-01

    Encroachment of residential development on agricultural lands in the United States where arsenical pesticides were extensively used prior to the 1990s has increased the potential for human exposure to arsenic (As), a group A carcinogen. Soil ingestion by children is a critical issue in assessing health risks from exposure to As-enriched soils. In the absence of a universal "soil model" on As bioavailability, many baseline risk assessment studies use the assumption that all (100%) As present in soil is bioavailable. However, As exists in many geochemical forms as dictated by soil chemical properties. Because As bioavailability is a function of soil speciation, using total soil arsenic values potentially overestimates human health risk, thereby increasing site cleanup expenses. A laboratory incubation study was conducted to estimate in vitro As bioavailability as a function of soil properties in four chemically variant soil types contaminated with sodium arsenite pesticide. Results demonstrate that As speciation in certain soils translates to significant lowering of As bioavailability and hence potential cancer risk. PMID:16637147

  2. Diabetic foot risk assessment.

    PubMed

    Woodbury, M Gail

    2016-05-01

    Diabetes is a serious chronic disease that results in foot complications for many people world-wide. In 2014, the World Health Organization estimated the global prevalence of diabetes in adults to be 9%. To ascertain the risk that an individual patient might develop a diabetic foot ulcer that could lead to an amputation, clinicians are strongly encouraged to perform a risk assessment. Monteiro-Soares and Dinis-Ribeiro have presented a new DIAbetic FOot Risk Assessment with the acronym DIAFORA. It is different from other risk assessments in that it predicts the risk of developing both diabetic foot ulcers and amputation specifically. The risk variables were derived by regression analysis based on a data set of 293 patients from a high-risk setting, a Hospital Diabetic Foot Clinic, who had diabetes and a diabetic foot ulcers. Clear descriptions of the risk variables are provided as well as sensitivity, specificity, positive and negative predictive values for the risk categories. As an added benefit, likelihood ratios are provided that will help clinicians determine the risk of amputation for individual patients. Having a risk assessment form is important for clinician use and examples exist. A question is raised about the effectiveness of risk assessment and how effectiveness might be determined. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26825436

  3. Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds

    EPA Science Inventory

    The Risk Assessment Forum (RAF) Human Health TEFs document describes EPA’s updated approach for evaluating the human health risks from exposures to environmental media containing dioxin-like compounds. It recommends the use of consensus TEF values for 2,3,7,8-tetrachlorodibenzo-...

  4. Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment.

    PubMed

    Knaak, James B; Dary, Curtis C; Zhang, Xiaofei; Gerlach, Robert W; Tornero-Velez, R; Chang, Daniel T; Goldsmith, Rocky; Blancato, Jerry N

    2012-01-01

    In this review we have examined the status of parameters required by pyrethroid QSAR-PBPK/PD models for assessing health risks. In lieu of the chemical,biological, biochemical, and toxicological information developed on the pyrethroids since 1968, the finding of suitable parameters for QSAR and PBPK/PD model development was a monumental task. The most useful information obtained came from rat toxicokinetic studies (i.e., absorption, distribution, and excretion), metabolism studies with 14C-cyclopropane- and alcohol-labeled pyrethroids, the use of known chiral isomers in the metabolism studies and their relation to commercial products. In this review we identify the individual chiralisomers that have been used in published studies and the chiral HPLC columns available for separating them. Chiral HPLC columns are necessary for isomer identification and for developing kinetic values (Vm,, and Kin) for pyrethroid hydroxylation. Early investigators synthesized analytical standards for key pyrethroid metabolites, and these were used to confirm the identity of urinary etabolites, by using TLC. These analytical standards no longer exist, and muste resynthesized if further studies on the kinetics of the metabolism of pyrethroids are to be undertaken.In an attempt to circumvent the availability of analytical standards, several CYP450 studies were carried out using the substrate depletion method. This approach does not provide information on the products formed downstream, and may be of limited use in developing human environmental exposure PBPK/PD models that require extensive urinary metabolite data. Hydrolytic standards (i.e., alcohols and acids) were available to investigators who studied the carboxylesterase-catalyzed hydrolysis of several pyrethroid insecticides. The data generated in these studies are suitable for use in developing human exposure PBPK/PD models.Tissue:blood partition coefficients were developed for the parent pyrethroids and their metabolites, by using

  5. Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco.

    PubMed

    Nouri, Mohamed; Haddioui, Abdelmajid

    2016-01-01

    The goal of this paper is to investigate metal pollution in food chain and assess the resulting health risks to native citizens in Ait Ammar village. The results showed that cadmium (Cd), lead (Pb), and copper (Cu) concentrations in animal organs were above the metal concentration safety limit. Nevertheless, soils and plants from mining area were contaminated with iron (Fe), chromium (Cr), zinc (Zn), and Cr, Cu, Zn respectively. Cd concentrations in almost animal organs were higher than the acceptable daily upper limit, suggesting human consumption of this livestock meat and offal may pose a health risk. The estimated intake of Pb and Cd for Ait Ammar population could be a cause of concern because it exceeded the Provisional Tolerable Weekly Intake (PTWI) proposed by Joint Expert Committee on Food Additives (JECFA) in this area. Thus, conducting regular periodic studies to assess the dietary intake of mentioned elements are recommended. PMID:26631396

  6. Cadmium and lead in seafood from the Aratu Bay, Brazil and the human health risk assessment.

    PubMed

    da Araújo, Cecilia Freitas Silva; Lopes, Mariângela Vieira; Vasquez, Mirian Rocha; Porcino, Thiago Santos; Ribeiro, Amanda Santos Vaz; Rodrigues, Juliana Lima Gomes; Oliveira, Sérgio Soares do Prado; Menezes-Filho, José Antonio

    2016-04-01

    This study aimed to evaluate cadmium (Cd) and lead (Pb) levels in seafood and perform a risk assessment based on individual food consumption frequency of inhabitants of the Aratu Bay, Brazil. From December 2013 to November 2014, ready-to-market seafood, including fish [pititinga (Lile piquitinga) and small green eel (Gobionellus oceanicus)], mollusks [mussel (Mytella guyanensis) and oyster (Crassostrea rhizophorae)], and crustaceans [white shrimp (Litopenaeus schmitti) and blue crab (Callinectes exasperatus)], were purchased bimonthly from a local artisanal shellfish harvester. Metal levels were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Based on the volunteer' seafood consumption, estimates of the non-carcinogenic target hazard quotients (THQs) were calculated. The annual concentrations (μg/g, w/w) of Cd were 0.007 (±0.001) in crustaceans, 0.001 (±0.0003) in fish, and 0.446 (±0.034) in mollusks. Lead levels were risk; however, 9.1 % presented THQs between ≥1 and <9.9. These data are important to inform the community of the imminent exposure risk through communication strategies, with the purpose of minimizing exposure and, consequently, the health effects associated with it. PMID:27034241

  7. Bioaccessibility of metals and human health risk assessment in community urban gardens.

    PubMed

    Izquierdo, M; De Miguel, E; Ortega, M F; Mingot, J

    2015-09-01

    Pseudo-total (i.e. aqua regia extractable) and gastric-bioaccessible (i.e. glycine+HCl extractable) concentrations of Ca, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in a total of 48 samples collected from six community urban gardens of different characteristics in the city of Madrid (Spain). Calcium carbonate appears to be the soil property that determines the bioaccessibility of a majority of those elements, and the lack of influence of organic matter, pH and texture can be explained by their low levels in the samples (organic matter) or their narrow range of variation (pH and texture). A conservative risk assessment with bioaccessible concentrations in two scenarios, i.e. adult urban farmers and children playing in urban gardens, revealed acceptable levels of risk, but with large differences between urban gardens depending on their history of land use and their proximity to busy areas in the city center. Only in a worst-case scenario in which children who use urban gardens as recreational areas also eat the produce grown in them would the risk exceed the limits of acceptability. PMID:25966050

  8. Cadmium and lead in seafood from the Aratu Bay, Brazil and the human health risk assessment.

    PubMed

    Silva da Araújo, Cecilia Freitas; Lopes, Mariângela Vieira; Vaz Ribeiro, Mirian Rocha; Porcino, Thiago Santos; Vaz Ribeiro, Amanda Santos; Rodrigues, Juliana Lima Gomes; do Prado Oliveira, Sérgio Soares; Menezes-Filho, José Antonio

    2016-04-01

    This study aimed to evaluate cadmium (Cd) and lead (Pb) levels in seafood and perform a risk assessment based on individual food consumption frequency of inhabitants of the Aratu Bay, Brazil. From December 2013 to November 2014, ready-to-market seafood, including fish [pititinga (Lile piquitinga) and small green eel (Gobionellus oceanicus)], mollusks [mussel (Mytella guyanensis) and oyster (Crassostrea rhizophorae)], and crustaceans [white shrimp (Litopenaeus schmitti) and blue crab (Callinectes exasperatus)], were purchased bimonthly from a local artisanal shellfish harvester. Metal levels were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Based on the volunteer’ seafood consumption, estimates of the non-carcinogenic target hazard quotients (THQs) were calculated. The annual concentrations (μg/g, w/w) of Cd were 0.007 (±0.001) in crustaceans, 0.001 (±0.0003) in fish, and 0.446 (±0.034) in mollusks. Lead levels were risk; however, 9.1 % presented THQs between ≥1 and <9.9. These data are important to inform the community of the imminent exposure risk through communication strategies, with the purpose of minimizing exposure and, consequently, the health effects associated with it. PMID:27359001

  9. Improving pandemic influenza risk assessment.

    PubMed

    Russell, Colin A; Kasson, Peter M; Donis, Ruben O; Riley, Steven; Dunbar, John; Rambaut, Andrew; Asher, Jason; Burke, Stephen; Davis, C Todd; Garten, Rebecca J; Gnanakaran, Sandrasegaram; Hay, Simon I; Herfst, Sander; Lewis, Nicola S; Lloyd-Smith, James O; Macken, Catherine A; Maurer-Stroh, Sebastian; Neuhaus, Elizabeth; Parrish, Colin R; Pepin, Kim M; Shepard, Samuel S; Smith, David L; Suarez, David L; Trock, Susan C; Widdowson, Marc-Alain; George, Dylan B; Lipsitch, Marc; Bloom, Jesse D

    2014-01-01

    Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response. PMID:25321142

  10. Improving pandemic influenza risk assessment

    PubMed Central

    Russell, Colin A; Kasson, Peter M; Donis, Ruben O; Riley, Steven; Dunbar, John; Rambaut, Andrew; Asher, Jason; Burke, Stephen; Davis, C Todd; Garten, Rebecca J; Gnanakaran, Sandrasegaram; Hay, Simon I; Herfst, Sander; Lewis, Nicola S; Lloyd-Smith, James O; Macken, Catherine A; Maurer-Stroh, Sebastian; Neuhaus, Elizabeth; Parrish, Colin R; Pepin, Kim M; Shepard, Samuel S; Smith, David L; Suarez, David L; Trock, Susan C; Widdowson, Marc-Alain; George, Dylan B; Lipsitch, Marc; Bloom, Jesse D

    2014-01-01

    Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response. DOI: http://dx.doi.org/10.7554/eLife.03883.001 PMID:25321142

  11. Cancer Risk Assessment Primer.

    ERIC Educational Resources Information Center

    Aidala, Jim

    1985-01-01

    Describes the scientific basis of cancer risk assessment, outlining the dominant controversies surrounding the use of different methods for identifying carcinogens (short-term tests, animal bioassays, and epidemiological studies). Points out that risk assessment is as much an art as it is a science. (DH)

  12. Metal uptake by homegrown vegetables – The relative importance in human health risk assessments at contaminated sites

    SciTech Connect

    Augustsson, Anna L.M.; Uddh-Söderberg, Terese E.; Hogmalm, K. Johan; Filipsson, Monika E.M.

    2015-04-15

    Risk assessments of contaminated land often involve the use of generic bioconcentration factors (BCFs), which express contaminant concentrations in edible plant parts as a function of the concentration in soil, in order to assess the risks associated with consumption of homegrown vegetables. This study aimed to quantify variability in BCFs and evaluate the implications of this variability for human exposure assessments, focusing on cadmium (Cd) and lead (Pb) in lettuce and potatoes sampled around 22 contaminated glassworks sites. In addition, risks associated with measured Cd and Pb concentrations in soil and vegetable samples were characterized and a probabilistic exposure assessment was conducted to estimate the likelihood of local residents exceeding tolerable daily intakes. The results show that concentrations in vegetables were only moderately elevated despite high concentrations in soil, and most samples complied with applicable foodstuff legislation. Still, the daily intake of Cd (but not Pb) was assessed to exceed toxicological thresholds for about a fifth of the study population. Bioconcentration factors were found to vary more than indicated by previous studies, but decreasing BCFs with increasing metal concentrations in the soil can explain why the calculated exposure is only moderately affected by the choice of BCF value when generic soil guideline values are exceeded and the risk may be unacceptable. - Highlights: • Uptake of Cd and Pb by lettuce and potatoes increased with soil contamination. • Consumption of homegrown vegetables may lead to a daily Cd intake above TDIs. • The variability in the calculated BCFs is high when compared to previous studies. • Exposure assessments are most sensitive to the choice of BCFs at low contamination.

  13. Fukushima nuclear accident: preliminary assessment of the risks to non-human biota.

    PubMed

    Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi; Garba, Nuraddeen Nasiru; Saleh, Muneer Aziz; Gabdo, Hamman Tukur; Liman, Muhammad Sanusi

    2015-02-01

    This study assesses the 'radio-ecological' impacts of Fukushima nuclear accident on non-human biota using the ERICA Tool, which adopts an internationally verified methodology. The paper estimates the impacts of the accident on terrestrial and marine biota based on the environmental data reported in literature for Japan, China, South Korea and the USA. Discernible impacts have been detected in the marine biota around Fukushima Daiichi nuclear power plant. This study confirms that the Fukushima accident had caused heavier damage to marine bionts compared with terrestrial flora and fauna, in Japan. PMID:24827576

  14. Computer Security Risk Assessment

    Energy Science and Technology Software Center (ESTSC)

    1992-02-11

    LAVA/CS (LAVA for Computer Security) is an application of the Los Alamos Vulnerability Assessment (LAVA) methodology specific to computer and information security. The software serves as a generic tool for identifying vulnerabilities in computer and information security safeguards systems. Although it does not perform a full risk assessment, the results from its analysis may provide valuable insights into security problems. LAVA/CS assumes that the system is exposed to both natural and environmental hazards and tomore » deliberate malevolent actions by either insiders or outsiders. The user in the process of answering the LAVA/CS questionnaire identifies missing safeguards in 34 areas ranging from password management to personnel security and internal audit practices. Specific safeguards protecting a generic set of assets (or targets) from a generic set of threats (or adversaries) are considered. There are four generic assets: the facility, the organization''s environment; the hardware, all computer-related hardware; the software, the information in machine-readable form stored both on-line or on transportable media; and the documents and displays, the information in human-readable form stored as hard-copy materials (manuals, reports, listings in full-size or microform), film, and screen displays. Two generic threats are considered: natural and environmental hazards, storms, fires, power abnormalities, water and accidental maintenance damage; and on-site human threats, both intentional and accidental acts attributable to a perpetrator on the facility''s premises.« less

  15. ECO 201: Overview of Ecological Risk Assessment

    EPA Science Inventory

    The objectives of this course is to provide participants with knowledge about the fundamentals of ecological risk assessment. A brief history of how ecological risk assessment has evolved over time and how it is both similar to and different from human health risk assessment wil...

  16. Hazardous waste transportation risk assessment for the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement -- human health endpoints

    SciTech Connect

    Hartmann, H.M.; Policastro, A.J.; Lazaro, M.A.

    1994-03-01

    In this presentation, a quantitative methodology for assessing the risk associated with the transportation of hazardous waste (HW) is proposed. The focus is on identifying air concentrations of HW that correspond to specific human health endpoints.

  17. Quantitative risk assessment of human salmonellosis and listeriosis related to the consumption of raw milk in Italy.

    PubMed

    Giacometti, Federica; Bonilauri, Paolo; Albonetti, Sabrina; Amatiste, Simonetta; Arrigoni, Norma; Bianchi, Manila; Bertasi, Barbara; Bilei, Stefano; Bolzoni, Giuseppe; Cascone, Giuseppe; Comin, Damiano; Daminelli, Paolo; Decastelli, Lucia; Merialdi, Giuseppe; Mioni, Renzo; Peli, Angelo; Petruzzelli, Annalisa; Tonucci, Franco; Bonerba, Elisabetta; Serraino, Andrea

    2015-01-01

    Two quantitative risk assessment (RA) models were developed to describe the risk of salmonellosis and listeriosis linked to consumption of raw milk sold in vending machines in Italy. Exposure assessment considered the official microbiological records monitoring raw milk samples from vending machines performed by the regional veterinary authorities from 2008 to 2011, microbial growth during storage, destruction experiments, consumption frequency of raw milk, serving size, and consumption preference. Two separate RA models were developed: one for the consumption of boiled milk and the other for the consumption of raw milk. The RA models predicted no human listeriosis cases per year either in the best or worst storage conditions and with or without boiling raw milk, whereas the annual estimated cases of salmonellosis depend on the dose-response relationships used in the model, the milk storage conditions, and consumer behavior in relation to boiling raw milk or not. For example, the estimated salmonellosis cases ranged from no expected cases, assuming that the entire population boiled milk before consumption, to a maximum of 980,128 cases, assuming that the entire population drank raw milk without boiling, in the worst milk storage conditions, and with the lowest dose-response model. The findings of this study clearly show how consumer behavior could affect the probability and number of salmonellosis cases and in general, the risk of illness. Hence, the proposed RA models emphasize yet again that boiling milk before drinking is a simple yet effective tool to protect consumers against the risk of illness inherent in the consumption of raw milk. The models may also offer risk managers a useful tool to identify or implement appropriate measures to control the risk of acquiring foodborne pathogens. Quantification of the risks associated with raw milk consumption is necessary from a public health perspective. PMID:25581173

  18. Use of biological markers and pharmacokinetics in human health risk assessment.

    PubMed Central

    Hattis, D

    1991-01-01

    There are two reasons to connect discussions of biological markers and pharmacokinetics. First, both tend to open up the black box between exposure and effect. Doing this promises more complete scientific understanding than simple input-output analysis, the possibility of better mechanism-based projection of risk beyond the range of possible direct observations, and the possibility of greater sensitivity of analysis, in some cases going from the organism to the cell as the unit of analysis. Second, pharmacokinetic (or similar pharmacodynamic) analysis will often be essential for appropriate interpretation of biological marker information. One needs some sort of dynamic model of the generation and loss of the marker in relation to exposure in order to use a biological marker, either to form a better measure of dosage (either accumulated past dose, or biologically relevant dose), or to make an improved prediction of effect. (For example, the use of a blood cadmium level alone to predict kidney effects might be inferior to predictions based on aggregate past accumulation of cadmium in the kidney, based on the past history of cadmium blood levels x time). Several examples will be discussed of the use of biomarkers and pharmacokinetics in risk assessments for both carcinogenesis and other effects. PMID:2050066

  19. Man-made mineral fibers (MMMF): Human exposures and health risk assessment

    SciTech Connect

    Lippmann, M. )

    1990-01-01

    Man-made mineral fibers (MMMF) are made by spraying or extruding molten glass, furnace slag, or mineral rock. Health concerns are based on the morphological and toxicological similarities between MMF and asbestos, and the well-documented evidence that asbestos fibers can cause lung fibrosis (asbestosis), bronchial cancer, and mesothelioma in humans. Epidemiological evidence for human disease from inhalation exposures to fibrous glass is largely negative. Some positive associations have been reported from slag and rockwools. Most of the toxicological evidence for MMMF toxicity in laboratory animals is based on nonphysiological exposures such as intratracheal instillation or intraperitoneal injection of fiber suspensions. The risks for lung fibrosis, lung cancer, and mesothelioma for industrial exposures to most fibrous glass products are either low or negligible for a variety of reasons. First, most commercial fibrous glass products have mean fiber diameters of {approximately} 7.5 {mu}m, which results in mean aerodynamic diameters > 22 {mu}m. Thus, most glass fibers, even if dispersed into the air, do not penetrate into the lung to any great extent. Second, the small fraction of smaller diameter fibers which do penetrate into the lungs are not persistent within the lungs for most fibrous glass products, due to mechanical breakage into shorter lengths and dissolution. Dissolution is most rapid for the smaller diameters capable of producing mesothelioma. The greater hazards for slag and rockwools, in comparison to conventional fibrous glass, appear to be related to their smaller diameters and greater durability within the lungs.

  20. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans.

    PubMed

    Dorne, J L C M; Renwick, A G

    2005-07-01

    The derivation of safe levels of exposure in humans for compounds that are assumed to cause threshold toxicity has relied on the application of a 100-fold uncertainty factor to a measure for the threshold, such as the no observed adverse effect level (NOAEL) or the benchmark dose (BMD). This 100-fold safety factor consists of the product of two 10-fold factors allowing for human variability and interspecies differences. The International Programme on Chemical Safety has suggested the subdivision of these 10-fold factors to allow for variability in toxicokinetics and toxicodynamics. This subdivision allows the replacement of the default uncertainty factors with a chemical-specific adjustment factor (CSAF) when suitable data are available. This short review describes potential options to refine safety factors used in risk assessment, with particular emphasis on pathway-related uncertainty factors associated with variability in kinetics. These pathway-related factors were derived from a database that quantified interspecies differences and human variability in phase I metabolism, phase II metabolism, and renal excretion. This approach allows metabolism and pharmacokinetic data in healthy adults and subgroups of the population to be incorporated in the risk-assessment process and constitutes an intermediate approach between simple default factors and chemical-specific adjustment factors. PMID:15800035

  1. Myeloid leukemia risk assessment and dynamics of the granulocytopoietic system in acutely and continuously irradiated humans: modeling approach.

    PubMed

    Smirnova, O A

    2015-05-01

    A dynamic modeling approach to the risk assessment of radiogenic myeloid leukemia is proposed. A basic tool of this approach is a biologically motivated mathematical model of the granulocytopoietic system, which is capable of predicting the dynamics of blood granulocytes and bone marrow granulocytopoietic cells in acutely and chronically irradiated humans. The performed modeling studies revealed that the dose dependence of the scaled maximal concentration of bone marrow granulocytopoietic cells with radiation-induced changes, which make a cell premalignant, and the dose dependence of the scaled integral of the concentration of these cells over the period of the response of the granulocytopoietic system to acute irradiation conform to the dose dependence of excess relative risk for myeloid leukemia among atomic bomb survivors in a wide range of doses and in a range of comparatively low doses, respectively. Additionally, the dose dependence of the scaled integral of the concentration of these cells over the period of the response of the granulocytopoietic system to continuous irradiation with the dose rate and durations, which were used in brachytherapy, conforms to the dose dependence of excess relative risk for leukemia among the respective groups of exposed patients. These modeling findings demonstrate the potential to use the proposed modeling approach for predicting the excess relative risk for myeloid leukemia among humans exposed to various radiation regimes. Obviously, this is especially important in the assessment of the risks for radiogenic myeloid leukemia among people residing in contaminated areas after an accident or explosion of a radiological device, among astronauts on long-term space missions, as well as among patients treated with radiotherapy. PMID:25811147

  2. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report.

    PubMed

    2000-01-01

    On 23-24 March 1998, the International Life Sciences Institute (ILSI) Risk Science Institute convened a workshop entitled "Relevance of the Rat Lung Response to Particle Overload for Human Risk Assessment." The workshop addressed the numerous study reports of lung tumors in rats resulting from chronic inhalation exposures to poorly soluble, nonfibrous particles of low acute toxicity and not directly genotoxic. These poorly soluble particles, indicated by the acronym PSPs (e.g., carbon black, coal dust, diesel soot, nonasbestiform talc, and titanium dioxide), elicit tumors in rats when deposition overwhelms the clearance mechanisms of the lung resulting in a condition referred to as "overload." These PSPs have been shown not to induce tumors in mice and hamsters, and the available data in humans are consistently negative. The objectives were twofold: (1) to provide guidance for risk assessment on the interpretation of neoplastic and nonneoplastic responses of the rat lung to PSPs; and (2) to identify important data gaps in our understanding of the lung responses of rats and other species to PSPs. Utilizing the five critical reviews of relevant literature that follow herein and the combined expertise and experience of the 30 workshop participants, a number of questions were addressed. The consensus views of the workshop participants are presented in this report. Because it is still not known with certainty whether high lung burdens of PSPs can lead to lung cancer in humans via mechanisms similar to those of the rat, in the absence of mechanistic data to the contrary it must be assumed that the rat model can identify potential carcinogenic hazards to humans. Since the apparent responsiveness of the rat model at overload is dependent on coexistent chronic active inflammation and cell proliferation, at lower lung doses where chronic active inflammation and cell proliferation are not present, no lung cancer hazard is anticipated. PMID:10715616

  3. Use of human in vitro skin models for accurate and ethical risk assessment: metabolic considerations.

    PubMed

    Hewitt, Nicola J; Edwards, Robert J; Fritsche, Ellen; Goebel, Carsten; Aeby, Pierre; Scheel, Julia; Reisinger, Kerstin; Ouédraogo, Gladys; Duche, Daniel; Eilstein, Joan; Latil, Alain; Kenny, Julia; Moore, Claire; Kuehnl, Jochen; Barroso, Joao; Fautz, Rolf; Pfuhler, Stefan

    2013-06-01

    Several human skin models employing primary cells and immortalized cell lines used as monocultures or combined to produce reconstituted 3D skin constructs have been developed. Furthermore, these models have been included in European genotoxicity and sensitization/irritation assay validation projects. In order to help interpret data, Cosmetics Europe (formerly COLIPA) facilitated research projects that measured a variety of defined phase I and II enzyme activities and created a complete proteomic profile of xenobiotic metabolizing enzymes (XMEs) in native human skin and compared them with data obtained from a number of in vitro models of human skin. Here, we have summarized our findings on the current knowledge of the metabolic capacity of native human skin and in vitro models and made an overall assessment of the metabolic capacity from gene expression, proteomic expression, and substrate metabolism data. The known low expression and function of phase I enzymes in native whole skin were reflected in the in vitro models. Some XMEs in whole skin were not detected in in vitro models and vice versa, and some major hepatic XMEs such as cytochrome P450-monooxygenases were absent or measured only at very low levels in the skin. Conversely, despite varying mRNA and protein levels of phase II enzymes, functional activity of glutathione S-transferases, N-acetyltransferase 1, and UDP-glucuronosyltransferases were all readily measurable in whole skin and in vitro skin models at activity levels similar to those measured in the liver. These projects have enabled a better understanding of the contribution of XMEs to toxicity endpoints. PMID:23539547

  4. Landslide risk assessment

    USGS Publications Warehouse

    Lessing, P.; Messina, C.P.; Fonner, R.F.

    1983-01-01

    Landslide risk can be assessed by evaluating geological conditions associated with past events. A sample of 2,4 16 slides from urban areas in West Virginia, each with 12 associated geological factors, has been analyzed using SAS computer methods. In addition, selected data have been normalized to account for areal distribution of rock formations, soil series, and slope percents. Final calculations yield landslide risk assessments of 1.50=high risk. The simplicity of the method provides for a rapid, initial assessment prior to financial investment. However, it does not replace on-site investigations, nor excuse poor construction. ?? 1983 Springer-Verlag New York Inc.

  5. The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans.

    PubMed

    Blaauboer, Bas J; Boekelheide, Kim; Clewell, Harvey J; Daneshian, Mardas; Dingemans, Milou M L; Goldberg, Alan M; Heneweer, Marjoke; Jaworska, Joanna; Kramer, Nynke I; Leist, Marcel; Seibert, Hasso; Testai, Emanuela; Vandebriel, Rob J; Yager, James D; Zurlo, Joanne

    2012-01-01

    The role that in vitro systems can play in toxicological risk assessment is determined by the appropriateness of the chosen methods, with respect to the way in which in vitro data can be extrapolated to the in vivo situation. This report presents the results of a workshop aimed at better defining the use of in vitro-derived biomarkers of toxicity (BoT) and determining the place these data can have in human risk assessment. As a result, a conceptual framework is presented for the incorporation of in vitro-derived toxicity data into the risk assessment process. The selection of BoT takes into account that they need to distinguish adverse and adaptive changes in cells. The framework defines the place of in vitro systems in the context of data on exposure, structural and physico-chemical properties, and toxicodynamic and biokinetic modeling. It outlines the determination of a proper point-of-departure (PoD) for in vitro-in vivo extrapolation, allowing implementation in risk assessment procedures. A BoT will need to take into account both the dynamics and the kinetics of the compound in the in vitro systems. For the implementation of the proposed framework it will be necessary to collect and collate data from existing literature and new in vitro test systems, as well as to categorize biomarkers of toxicity and their relation to pathways-of-toxicity. Moreover, data selection and integration need to be driven by their usefulness in a quantitative in vitro-in vivo extrapolation (QIVIVE). PMID:23138511

  6. Public Risk Assessment Program

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin

    2010-01-01

    The Public Entry Risk Assessment (PERA) program addresses risk to the public from shuttle or other spacecraft re-entry trajectories. Managing public risk to acceptable levels is a major component of safe spacecraft operation. PERA is given scenario inputs of vehicle trajectory, probability of failure along that trajectory, the resulting debris characteristics, and field size and distribution, and returns risk metrics that quantify the individual and collective risk posed by that scenario. Due to the large volume of data required to perform such a risk analysis, PERA was designed to streamline the analysis process by using innovative mathematical analysis of the risk assessment equations. Real-time analysis in the event of a shuttle contingency operation, such as damage to the Orbiter, is possible because PERA allows for a change to the probability of failure models, therefore providing a much quicker estimation of public risk. PERA also provides the ability to generate movie files showing how the entry risk changes as the entry develops. PERA was designed to streamline the computation of the enormous amounts of data needed for this type of risk assessment by using an average distribution of debris on the ground, rather than pinpointing the impact point of every piece of debris. This has reduced the amount of computational time significantly without reducing the accuracy of the results. PERA was written in MATLAB; a compiled version can run from a DOS or UNIX prompt.

  7. GAR Global Risk Assessment

    NASA Astrophysics Data System (ADS)

    Maskrey, Andrew; Safaie, Sahar

    2015-04-01

    Disaster risk management strategies, policies and actions need to be based on evidence of current disaster loss and risk patterns, past trends and future projections, and underlying risk factors. Faced with competing demands for resources, at any level it is only possible to priorities a range of disaster risk management strategies and investments with adequate understanding of realised losses, current and future risk levels and impacts on economic growth and social wellbeing as well as cost and impact of the strategy. The mapping and understanding of the global risk landscape has been greatly enhanced by the latest iteration of the GAR Global Risk Assessment and the objective of this submission is to present the GAR global risk assessment which contributed to Global Assessment Report (GAR) 2015. This initiative which has been led by UNISDR, was conducted by a consortium of technical institutions from around the world and has covered earthquake, cyclone, riverine flood, and tsunami probabilistic risk for all countries of the world. In addition, the risks associated with volcanic ash in the Asia-Pacific region, drought in various countries in sub-Saharan Africa and climate change in a number of countries have been calculated. The presentation will share thee results as well as the experience including the challenges faced in technical elements as well as the process and recommendations for the future of such endeavour.

  8. Schedule Risk Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Grego

    2004-01-01

    Schedule Risk Assessment (SRA) determines the probability of finishing on or before a given point in time. This viewgraph presentation introduces the prerequisites, probability distribution curves, special conditions, calculations, and results analysis for SRA.

  9. An exploration of spatial human health risk assessment of soil toxic metals under different land uses using sequential indicator simulation.

    PubMed

    Huang, Jin-Hui; Liu, Wen-Chu; Zeng, Guang-Ming; Li, Fei; Huang, Xiao-Long; Gu, Yan-Ling; Shi, Li-Xiu; Shi, Ya-Hui; Wan, Jia

    2016-07-01

    A modified method was proposed which integrates the spatial patterns of toxic metals simulated by sequential indicator simulation, different exposure models and local current land uses extracted by remote-sensing software into a dose-response model for human health risk assessment of toxic metals. A total of 156 soil samples with a various land uses containing farm land (F1-F25), forest land (W1-W12) and residential land (U1-U15) were collected in a grid pattern throughout Xiandao District (XDD), Hunan Province, China. The total Cr and Pb in topsoil were analyzed. Compared with Hunan soil background values, the elevated concentrations of Cr were mainly located in the east of XDD, and the elevated concentrations of Pb were scattered in the areas around F1, F6, F8, F13, F14, U5, U14, W2 and W11. For non-carcinogenic effects, the hazard index (HI) of Cr and Pb overall the XDD did not exceed the accepted level to adults. While to children, Cr and Pb exhibited HI higher than the accepted level around some areas. The assessment results indicated Cr and Pb should be regarded as the priority pollutants of concern in XDD. The first priority areas of concern were identified in region A with a high probability (>0.95) of risk in excess of the accepted level for Cr and Pb. The areas with probability of risk between 0.85 and 0.95 in region A were identified to be the secondary priority areas for Cr and Pb. The modified method was proved useful due to its improvement on previous studies and calculating a more realistic human health risk, thus reducing the probability of excessive environmental management. PMID:27045920

  10. Acceptability of human risk.

    PubMed Central

    Kasperson, R E

    1983-01-01

    This paper has three objectives: to explore the nature of the problem implicit in the term "risk acceptability," to examine the possible contributions of scientific information to risk standard-setting, and to argue that societal response is best guided by considerations of process rather than formal methods of analysis. Most technological risks are not accepted but are imposed. There is also little reason to expect consensus among individuals on their tolerance of risk. Moreover, debates about risk levels are often at base debates over the adequacy of the institutions which manage the risks. Scientific information can contribute three broad types of analyses to risk-setting deliberations: contextual analysis, equity assessment, and public preference analysis. More effective risk-setting decisions will involve attention to the process used, particularly in regard to the requirements of procedural justice and democratic responsibility. PMID:6418541