Science.gov

Sample records for assurance management plan

  1. Waste Management Quality Assurance Plan

    SciTech Connect

    Not Available

    1993-11-30

    Lawrence Berkeley Laboratory`s Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department`s activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A.

  2. Waste Management Quality Assurance Plan

    SciTech Connect

    Waste Management Group

    2006-08-14

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs.

  3. Quality assurance management plan special analytical support

    SciTech Connect

    Myers, M.L.

    1997-01-30

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy (DOE), WDOE or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  4. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  5. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  6. Quality assurance management plan (QAPP) special analytical support (SAS)

    SciTech Connect

    LOCKREM, L.L.

    1999-05-20

    It is the policy of Special Analytical Support (SAS) that the analytical aspects of all environmental data generated and processed in the laboratory, subject to the Environmental Protection Agency (EPA), U.S. Department of Energy or other project specific requirements, be of known and acceptable quality. It is the intention of this QAPP to establish and assure that an effective quality controlled management system is maintained in order to meet the quality requirements of the intended use(s) of the data.

  7. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  8. Quality Assurance Project Plan

    SciTech Connect

    Holland, R. C.

    1998-06-01

    This Quality Assurance Project Plan documents the quality assurance activities for the Wastewater/Stormwater/Groundwater and Environmental Surveillance Programs. This QAPP was prepared in accordance with DOE guidance on compliance with 10CFR830.120.

  9. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    SciTech Connect

    Bibb, E.K.

    1997-10-15

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  10. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect

    HORHOTA, M.J.

    2000-12-21

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  11. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  12. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect

    Not Available

    1986-08-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  13. Performance assurance program plan

    SciTech Connect

    Rogers, B.H.

    1997-11-06

    B and W Protec, Inc. (BWP) is responsible for implementing the Performance Assurance Program for the Project Hanford Management Contract (PHMC) in accordance with DOE Order 470.1, Safeguards and Security Program (DOE 1995a). The Performance Assurance Program applies to safeguards and security (SAS) systems and their essential components (equipment, hardware, administrative procedures, Protective Force personnel, and other personnel) in direct support of Category I and H special nuclear material (SNM) protection. Performance assurance includes several Hanford Site activities that conduct performance, acceptance, operability, effectiveness, and validation tests. These activities encompass areas of training, exercises, quality assurance, conduct of operations, total quality management, self assessment, classified matter protection and control, emergency preparedness, and corrective actions tracking and trending. The objective of the Performance Assurance Program is to capture the critical data of the tests, training, etc., in a cost-effective, manageable program that reflects the overall effectiveness of the program while minimizing operational impacts. To aid in achieving this objective, BWP will coordinate the Performance Assurance Program for Fluor Daniel Hanford, Inc. (FDH) and serve as the central point for data collection.

  14. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  15. Quality assurance planning and structure.

    PubMed

    Jackman, W; Brown, L D; Al-assaf, A F; Reinke, J M; Abubaker, W; Winter, L; Murphy, G; Blumenfeld, S

    1995-01-01

    Planning for the introduction, implementation, and conduct of quality assurance activities has been the key issue from the outset of the project. Despite the various approaches to planning, no single Quality Assurance (QA) planning can be universally accepted by developing countries due to variations in the socioeconomic, cultural and political makeup of individual countries. This paper summarizes the lessons learned from the Quality Assurance Project in planning a QA program: 1) the need to understand organizational strengths and weaknesses to develop appropriate strategies for QA skills training and organizational change; 2) the need to build on existing systems or activities that support the objectives of the organization and provide an adequate foundation for the QA program; 3) the need to assign responsibility for quality assurance through the creation of QA councils and committees and the assignment of coordinators and other individuals; 4) the need to secure top-level management support to legitimize any changes; 5) the need to determine the method of introducing innovations into organizations, either by a top-down or bottom-up approach; 6) the plan should have well-defined priorities and objectives despite its flexibility as projects evolve and grow over time. PMID:12295830

  16. Quality assurance project plan for ground water monitoring activities managed by Westinghouse Hanford Company. Revision 3

    SciTech Connect

    Stauffer, M.

    1995-11-01

    This quality assurance project plan (QAPP) applies specifically to the field activities and laboratory analysis performed for all RCRA groundwater projects conducted by Hanford Technical Services. This QAPP is generic in approach and shall be implemented in conjunction with the specific requirements of individual groundwater monitoring plans.

  17. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    USGS Publications Warehouse

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  18. Quality assurance program plan for Building 324

    SciTech Connect

    Tanke, J.M.

    1997-05-22

    This Quality Assurance Program Plan (QAPP) provides an overview of the quality assurance program for Building 324. This plan supersedes the PNNL Nuclear Facilities Quality Management System Description, PNL-NF-QMSD, Revision 2, dated March 1996. The program applies to the facility safety structures, systems, and components and to activities that could affect safety structures, systems, and components. Adherence to the quality assurance program ensures the following: US Department of Energy missions and objectives are effectively accomplished; Products and services are safe, reliable, and meet or exceed the requirements and expectations of the user; Hazards to the public, to Hanford Site and facility workers, and to the environment are minimized. The format of this Quality Assurance Program Plan is structured to parallel that of 10 CFR 83 0.120, Quality Assurance Requirements.

  19. SWiFT Software Quality Assurance Plan.

    SciTech Connect

    Berg, Jonathan Charles

    2016-01-01

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  20. Parking and routing information system phase 1 evaluation -- Data management and quality control/quality assurance plans

    SciTech Connect

    Carter, R.J.

    1997-01-01

    A parking and routing information system (PARIS) is being designed and deployed at a test site on the Mountain Home Veterans Administration campus in Johnson City, Tennessee using three sensor technologies. The purpose of the PARIS project is to demonstrate innovative integration of vehicle sensing technologies with parking management strategies to improve mobility and relieve congestion associated with a growing medical technology complex. Oak Ridge National Laboratory`s (ORNL) role during phase 1 of the project is to act as the independent evaluator. This technical memorandum presents two plans, Data Management Plan and Quality Control/Quality Assurance (QC/QA) Plan, which were developed to support ORNL`s responsibilities and functions. The purposes of the Data Management Plan are to coordinate the data needs which will be addressed in four individual evaluation test plans and to deal with the data issues facing the phase 1 evaluation as a whole. The objectives of the QC/QA Plan are to ensure that the evaluation is conducted properly, to guarantee that the data which will be collected are valid and properly analyzed, and to make sure that the test results are accurately recorded and reported. The evaluation will be performed through the execution of four integrated studies (system performance, user acceptance, institutional and business issues, and transportation systems). The phase 1 evaluation data will be collected from 24 sources. Three databases will be established based upon these data (project team database, distributed database processor, and evaluator database).

  1. Florida Energy Assurance Plan

    NASA Astrophysics Data System (ADS)

    Turner, Niescja E.; Murtagh, William; Guthrie, Kevin; Nykyri, Katariina; Radasky, William A.; Senkowicz, Eric

    2012-08-01

    This spring, Florida held the nation's first statewide emergency preparedness training and exercises geared specifically to the aftermath of severe geomagnetic events. Funded by the State of Florida Division of Emergency Management (FDEM) via a Department of Energy grant and held in collaboration with Watch House International, Inquesta Corporation, and the Florida Institute of Technology, the 17-19 April 2012 workshop had 99 on-site attendees in an oceanfront hotel in Melbourne, Florida, as well as 16 over live Web streaming. The workshop was the capstone to a three-month season of 21 regional space weather training sessions and workshops serving 386 attendees in total.

  2. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

  3. Process chemistry {ampersand} statistics quality assurance plan

    SciTech Connect

    Meznarich, H.K.

    1996-08-01

    This document provides quality assurance guidelines and quality control requirements for Process Chemistry and Statistics. This document is designed on the basis of Hanford Analytical Services Quality Assurance Plan (HASQAP) technical guidelines and is used for governing process chemistry activities.

  4. Product assurance management and software product assurance

    NASA Technical Reports Server (NTRS)

    Schneider, C.; Borycki, G.; Panaroni, P.; Surbone, M.; Borcz, R.; Beddow, A. J.

    1991-01-01

    The evolution of software assurance is discussed. The definition and implementation of standards are considered. It is recommended that requirements be clarified at the start of a project. The need for quality assurance in hardware is identified as the coming trend in the production of high cost single units which call for eradication of all errors during the early stages of development. The need to apply quality assurance throughout the whole mission is stressed. The dangers of overpricing product assurance services is stressed.

  5. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    SciTech Connect

    Farmer, Carl J.

    2015-09-01

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  6. Near-facility environmental monitoring quality assurance project plan

    SciTech Connect

    McKinney, S.M.

    1997-11-24

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

  7. Quality assurance for IAEA inspection planning

    SciTech Connect

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with States, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, the authors summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are (1) administrative functions and communications with the State to confirm facility operating schedules and the State's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions.

  8. 222-S Laboratory Quality Assurance Plan. Revision 1

    SciTech Connect

    Meznarich, H.K.

    1995-07-31

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document.

  9. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  10. Quality assurance implementation plan for spent nuclear fuel characterization

    SciTech Connect

    Horhota, M.J.; Lawrence, L.A.

    1997-07-10

    A plan was prepared to implement the Quality Assurance requirements of the Office of Civilian Radioactive Waste Management RW-0333P to the Spent Nuclear Fuel Characterization activities. The plan was based on an evaluation of the current characterization activities against the RW-0333P requirements.

  11. Safe teleradiology: information assurance as project planning methodology

    NASA Astrophysics Data System (ADS)

    Collmann, Jeff R.; Alaoui, Adil; Nguyen, Dan; Lindisch, David

    2003-05-01

    This project demonstrates use of OCTAVE, an information security risk assessment method, as an approach to the safe design and planning of a teleradiology system. By adopting this approach to project planning, we intended to provide evidence that including information security as an intrinsic component of project planning improves information assurance and that using information assurance as a planning tool produces and improves the general system management plan. Several considerations justify this approach to planning a safe teleradiology system. First, because OCTAVE was designed as a method for retrospectively assessing and proposing enhancements for the security of existing information management systems, it should function well as a guide to prospectively designing and deploying a secure information system such as teleradiology. Second, because OCTAVE provides assessment and planning tools for use primarily by interdisciplinary teams from user organizations, not consultants, it should enhance the ability of such teams at the local level to plan safe information systems. Third, from the perspective of sociological theory, OCTAVE explicitly attempts to enhance organizational conditions identified as necessary to safely manage complex technologies. Approaching information system design from the perspective of information security risk management proactively integrates health information assurance into a project"s core. This contrasts with typical approaches that perceive "security" as a secondary attribute to be "added" after designing the system and with approaches that identify information assurance only with security devices and user training. The perspective of health information assurance embraces so many dimensions of a computerized health information system"s design that one may successfully deploy a method for retrospectively assessing information security risk as a prospective planning tool. From a sociological perspective, this approach enhances the

  12. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    SciTech Connect

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  13. Quality assurance for IAEA inspection planning

    SciTech Connect

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed.

  14. SAPHIRE 8 Software Quality Assurance Plan

    SciTech Connect

    Curtis Smith

    2010-02-01

    This Quality Assurance (QA) Plan documents the QA activities that will be managed by the INL related to JCN N6423. The NRC developed the SAPHIRE computer code for performing probabilistic risk assessments (PRAs) using a personal computer (PC) at the Idaho National Laboratory (INL) under Job Code Number (JCN) L1429. SAPHIRE started out as a feasibility study for a PRA code to be run on a desktop personal PC and evolved through several phases into a state-of-the-art PRA code. The developmental activity of SAPHIRE was the result of two concurrent important events: The tremendous expansion of PC software and hardware capability of the 90s and the onset of a risk-informed regulation era.

  15. Nova laser assurance-management system

    SciTech Connect

    Levy, A.J.

    1983-07-18

    In a well managed project, Quality Assurance is an integral part of the management activities performed on a daily basis. Management assures successful performance within budget and on schedule by using all the good business, scientific, engineering, quality assurance, and safety practices available. Quality assurance and safety practices employed on Nova are put in perspective by integrating them into the overall function of good project management. The Nova assurance management system was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management system. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project.

  16. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  17. 48 CFR 37.604 - Quality assurance surveillance plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... surveillance plans. 37.604 Section 37.604 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... assurance surveillance plans. Requirements for quality assurance and quality assurance surveillance plans are in Subpart 46.4. The Government may either prepare the quality assurance surveillance plan...

  18. 48 CFR 37.604 - Quality assurance surveillance plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... surveillance plans. 37.604 Section 37.604 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... assurance surveillance plans. Requirements for quality assurance and quality assurance surveillance plans are in Subpart 46.4. The Government may either prepare the quality assurance surveillance plan...

  19. 48 CFR 37.604 - Quality assurance surveillance plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... surveillance plans. 37.604 Section 37.604 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... assurance surveillance plans. Requirements for quality assurance and quality assurance surveillance plans are in Subpart 46.4. The Government may either prepare the quality assurance surveillance plan...

  20. 48 CFR 37.604 - Quality assurance surveillance plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... surveillance plans. 37.604 Section 37.604 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... assurance surveillance plans. Requirements for quality assurance and quality assurance surveillance plans are in Subpart 46.4. The Government may either prepare the quality assurance surveillance plan...

  1. EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014

    SciTech Connect

    Bush, Shane

    2014-09-01

    This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.

  2. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  3. Mixed Waste Integrated Program Quality Assurance requirements plan

    SciTech Connect

    Not Available

    1994-04-15

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

  4. Near Facility Environmental Monitoring Quality Assurance Project Plan

    SciTech Connect

    MCKINNEY, S.M.

    2000-05-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

  5. Software quality assurance plan for GCS

    NASA Technical Reports Server (NTRS)

    Duncan, Stephen E.; Bailey, Elizabeth K.

    1990-01-01

    The software quality assurance (SQA) function for the Guidance and Control Software (GCS) project which is part of a software error studies research program is described. The SQA plan outlines all of the procedures, controls, and audits to be carried out by the SQA organization to ensure adherence to the policies, procedures, and standards for the GCS project.

  6. Transuranic Waste Characterization Quality Assurance Program Plan

    SciTech Connect

    1995-04-30

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  7. Operating and Assurance Program Plan. Revision 4

    SciTech Connect

    Not Available

    1994-07-01

    The LBL Operating and Assurance Program (OAP) is a management system and a set of requirements designed to maintain the level of performance necessary to achieve LBL`s programmatic and administrative objectives effectively and safely through the application of quality assurance and related conduct of operations and maintenance management principles. Implement an LBL management philosophy that supports and encourages continual improvement in performance and quality at the Laboratory. Provide an integrated approach to compliance with applicable regulatory requirements and DOE orders. The OAP is intended to meet the requirements of DOE Order 5700.6C, Quality Assurance. The Program also contains management system elements of DOE Orders 5480.19, Conduct of Operations Requirements for DOE Facilities; 5480.25, Safety of Accelerator Facilities; and 4330.4A, Maintenance Management Program, and is meant to integrate these elements into the overall LBL approach to Laboratory management. The requirements of this program apply to LBL employees and organizations, and to contractors and facility users as managed by their LBL sponsors. They are also applicable to external vendors and suppliers as specified in procurement documents and contracts.

  8. Developing a quality assurance plan for telemetry studies: A necessary management tool for an effective study: Chapter 9.3

    USGS Publications Warehouse

    Hardiman, Jill M.; Walker, Christopher E.; Counihan, Timothy D.

    2012-01-01

    Telemetry provides a powerful and flexible tool for studying fish and other aquatic animals, and its use has become increasingly commonplace. However, telemetry is gear intensive and typically requires more specialized knowledge and training than many other field techniques. As with other scientific methods, collecting good data is dependent on an understanding of the underlying principles behind the approach, knowing how to use the equipment and techniques properly, and recognizing what to do with the data collected. This book provides a road map for using telemetry to study aquatic animals, and provides the basic information needed to plan, implement, and conduct a telemetry study under field conditions. Topics include acoustic or radio telemetry study design, tag implantation techniques, radio and acoustic telemetry principles and case studies, and data management and analysis.

  9. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    SciTech Connect

    Fernandez, L.

    1995-03-13

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements.

  10. 48 CFR 37.604 - Quality assurance surveillance plans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Quality assurance... SPECIAL CATEGORIES OF CONTRACTING SERVICE CONTRACTING Performance-Based Acquisition 37.604 Quality assurance surveillance plans. Requirements for quality assurance and quality assurance surveillance...

  11. Effluent monitoring Quality Assurance Project Plan for radioactive airborne emissions data. Revision 2

    SciTech Connect

    Frazier, T.P.

    1995-12-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling Hanford Site radioactive airborne emissions data. These data will be reported to the U.S. Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Effluent Monitoring performs compliance assessments on radioactive airborne sampling and monitoring systems. This Quality Assurance Project Plan is prepared in compliance with interim guidelines and specifications. Topics include: project description; project organization and management; quality assurance objectives; sampling procedures; sample custody; calibration procedures; analytical procedures; monitoring and reporting criteria; data reduction, verification, and reporting; internal quality control; performance and system audits; corrective actions; and quality assurance reports.

  12. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Boom, R.J.

    1995-12-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of radiological airborne emissions. This Quality Assurance Program Plan is prepared in accordance with and to written requirements.

  13. UMTRA technical assistance contractor quality assurance program plan

    SciTech Connect

    Not Available

    1994-10-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements.

  14. Research and development quality assurance planning

    SciTech Connect

    Hoke, P.B.

    1990-05-14

    Planning for quality assurance (QA) in research and development (R D) is like stealing eggs without waking up the chickens. The QA program should be as unobtrusive as possible. Researchers require a QA program that affords them an environment capable of supporting repeatable experiments with accurate data without unduly stifling their creative abilities. Careful advance planning ensures that the intensity of control provided by quality-related systems is commensurate with the importance and scope of the activities being performed. Good scientific practices applied to small bench-scale projects may require minimal additional controls. As projects increase in size and complexity the controls imposed through planning must, by necessity, be increased. Research and development QA planning, just like any other planning, involves all affected individuals. The application of control systems is determined by factors such as customer or sponsor requirements, the importance of an item or activity to the experiment's success, and the organizational complexity of the project. Many larger experiments are highly dependent on quality-related support activities such as calibration, engineering design, and inspection provided by organizations outside the R D group. Since, in most cases, the expense of support activities is taken directly from funds available for research, it is important for the researchers to be involved in the planning efforts to help determine and agree with the level of QA effort required. A single plan will often suffice for organizations engaged in large numbers of similar experiments. Complex experiments may require unique QA plans or additions to existing plans. Once implemented, the R D QA plans, like any others, require audits or surveillances and may require revisions if the scope of the experiment changes. 1 ref., 1 fig.

  15. National Ignition Facility quality assurance program plan revision 2

    SciTech Connect

    Wolfe, C R

    1998-06-01

    NIF Project activities will be conducted in a manner consistent with the guidance and direction of the DOE Order on Quality Assurance (414.1), the LLNL QA Program, and the Laser Directorate QA Plan. Quality assurance criteria will be applied in a graded manner to achieve a balance between the rigor of application of QA measures and the scale, cost, and complexity of the work involved. Accountability for quality is everyone's, extending from the Project Manager through established lines of authority to all Project personnel, who are responsible for the requisite quality of their own work. The NLF QA Program will be implemented by personnel conducting their activities to meet requirements and expectations, according to established plans and procedures that reflect the way business is to be conducted on the Project.

  16. Quality assurance for the IAEA inspection planning process

    SciTech Connect

    Markin, J.T.; Ahlquist, J.A.

    1985-08-01

    Under the provisions of the Treaty on Non-Proliferation of Nuclear Weapons, the International Atomic Energy Agency inspects over 400 nuclear facilities each year to confirm that their operation is consistent with peaceful uses of nuclear materials. Successful implementation of the inspections depends upon planning for verification activities such as comparisons of records and reports, measurements of material inventories, and employment of containment/surveillance methods. This report describes the Agency's inspection planning process, including administrative, technical, and management aspects, and suggests methods for applying quality assurance procedures to maintain the quality of that process.

  17. Operating and assurance plan. Revision 5

    SciTech Connect

    1996-02-15

    This document discusses the organization, process management, and performance assessment and improvement of Lawrence Berkeley Laboratory. Topics discussed include: policy; planning; organizational structure; staff proficiency; communication processes; hazards and risks in the work process; process control; documents and records management; self assessments and corrective actions.

  18. Quality Assurance Program Plan for FFTF effluent controls. Revision 1

    SciTech Connect

    Seamans, J.A.

    1995-06-08

    This Quality Assurance Program Plan is specific to environmental related activities within the FFTF Property Protected Area. The activities include effluent monitoring and Low Level Waste Certification.

  19. Waste Encapsulation and Storage Facility (WESF) Quality Assurance Program Plan (QAPP)

    SciTech Connect

    ROBINSON, P.A.

    2000-04-17

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD.

  20. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  1. Operational Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect

    Perkins, C.J.

    1994-08-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and operational environmental monitoring performed by Westinghouse Hanford Company as it implements the Operational Environmental Monitoring program. This plan applies to all sampling and monitoring activities performed by Westinghouse Hanford Company in implementing the Operational Environmental Monitoring program at the Hanford Site.

  2. 28 CFR 31.502 - Assurances and plan information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Assurances and plan information. 31.502 Section 31.502 Judicial Administration DEPARTMENT OF JUSTICE OJJDP GRANT PROGRAMS Juvenile Accountability Incentive Block Grants § 31.502 Assurances and plan information. (a) In its application for a Juvenile Accountability Incentive Block Grant...

  3. Guidelines for preparing a quality assurance plan for district offices of the U.S. Geological Survey

    USGS Publications Warehouse

    Schroder, L.J.; Shampine, W.J.

    1992-01-01

    The U.S. Geological Survey has a policy that requires each District office to prepare a Quality Assurance Plan. This plan is a combination of a District's management principles and quality assurance processes. The guidelines presented in this report provide a framework or expanded outline that a District can use to prepare a plan. Parti- cular emphasis is given to a District's: (1) quality assurance policies; (2) organization and staff responsibilities; and (3) program and project planning. The guidelines address the 'how', 'what', and 'who' questions that need to be answered when a District Quality Assurance Plan is prepared.

  4. Quality assurance program plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented.

  5. National Ignition Facility Quality Assurance Program Plan. Revision 1

    SciTech Connect

    Wolfe, C.R.; Yatabe, J.

    1996-09-01

    The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

  6. Quality Assurance Program Plan for radionuclide airborne emissions monitoring

    SciTech Connect

    Vance, L.M.

    1993-07-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.

  7. National Ignition Facility quality assurance plan for laser materials and optical technology

    SciTech Connect

    Wolfe, C.R.

    1996-05-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This subtier Quality Assurance Plan (QAP) applies to activities of the Laser Materials & Optical Technology (LM&OT) organization and its subcontractors. It responds to the NIF Quality Assurance Program Plan (QAPP, L-15958-2, NIF-95-499) and Department of Energy (DOE) Order 5700.6C. This Plan is organized according to 10 Quality Assurance (QA) criteria and subelements of a management system as outlined in the NIF QAPP. This Plan describes how those QA requirements are met. This Plan is authorized by the Associate Project Leader for the LM&OT organization, who has assigned responsibility to the Optics QA engineer to maintain this plan, with the assistance of the NIF QA organization. This Plan governs quality-affecting activities associated with: design; procurement; fabrication; testing and acceptance; handling and storage; and installation of NIF Project optical components into mounts and subassemblies.

  8. NIF Project Quality Assurance Program Plan Revision E

    SciTech Connect

    Dun, C; Brereton, S; Yatabe, J; Moses, E I

    2001-06-01

    The National Ignition Facility (NIF) is a key constituent of the Department Energy's (DOE's) Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets and will perform weapons physics, weapons effects, and high-energy-density experiments in support of national security and civilian objectives. The primary mission of the NIF Project is the design and construction of the facility and equipment, acceptance testing, and activation. To accomplish this mission, the LLNL Director created the NIF Programs Directorate, and within that Directorate, the NIF Project Office to organize and manage the Project. The NIF Project Office establishes this QA Program to ensure its success. This QA Program Plan (QAPP) defines and describes the program--the management system--for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of LLNL and the NIF Programs Directorate.

  9. The NASA Software Management and Assurance Program

    NASA Technical Reports Server (NTRS)

    Hall, D. L.; Wilson, W. M.

    1983-01-01

    A committee of experienced managers representing each major NASA organization guides a major development effort which seeks to ensure the acquisition of economical and reliable software for more complex future programs. The primary, near-term development objectives of the NASA Software Management and Assurance Program are: (1) to provide the best management and technical guidance available; (2) to facilitate the use of proven tools, techniques, and information; and (3) to maintain a pool of highly qualified software personnel. The software development tasks addressed involve such problems as satellite end-to-end architecture and advanced aircraft guidance and control systems.

  10. 49 CFR 1180.10 - Service assurance plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., TRACKAGE RIGHTS, AND LEASE PROCEDURES General Acquisition Procedures § 1180.10 Service assurance plans. For... describe how the operations of principal classification yards and major terminals would be changed...

  11. Safety and Mission Assurance Knowledge Management Retention

    NASA Technical Reports Server (NTRS)

    Johnson, Teresa A.

    2006-01-01

    This viewgraph presentation reviews the issues surrounding the management of knowledge in regards to safety and mission assurance. The JSC workers who were hired in the 1960's are slated to retire in the next two to three years. The experiences and knowledge of these NASA workers must be identified, and disseminated. This paper reviews some of the strategies that the S&MA is developing to capture that valuable institutional knowledge.

  12. Master Pump Shutdown MPS Software Quality Assurance Plan (SQAP)

    SciTech Connect

    BEVINS, R.R.

    2000-09-20

    The MPSS Software Quality Assurance (SQAP) describes the tools and strategy used in the development of the MPSS software. The document also describes the methodology for controlling and managing changes to the software.

  13. Incorporating cost-benefit analyses into software assurance planning

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Sigal, B.; Cornford, S. L.; Hutchinson, P.

    2001-01-01

    The objective is to use cost-benefit analyses to identify, for a given project, optimal sets of software assurance activities. Towards this end we have incorporated cost-benefit calculations into a risk management framework.

  14. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  15. The role of gap analyses in energy assurance planning.

    PubMed

    Shea, Katherine

    2013-01-01

    Energy-related emergencies, such as power outages or interruptions to other energy supplies, can arise from a number of factors. Common causes include severe weather events--such as snowstorms, hurricanes, or summer storms with strong winds--as well as energy infrastructure that is overburdened, aging, or in need of repair. As past experience indicates, jurisdictions will continue to experience severe weather events, as well as confront infrastructure issues that make future power outages likely. As a result, state and local governments have turned to energy assurance planning, an energy-specific form of planning that helps jurisdictions prepare for and recover from energy emergencies. Energy assurance recognizes that power loss/disruption cannot be eradicated completely, but jurisdictions can mitigate the impact of power loss through effective planning. This article discusses the role of energy assurance planning and provides a description of what energy assurance means and why developing such plans at the state and local levels is important. In addition, this article discusses the role of statutory gap analyses in energy assurance planning and discusses how a gap analysis can be used by planners to identify trends and gaps in energy assurance. To provide context, a recently conducted statutory gap analysis analyzing national emergency backup power trends is provided as a case study. A summary of this project and key findings is included. Finally, this article briefly touches on legislation as an alternative to energy assurance planning, and provides summaries of recent legislative proposals introduced in the aftermath of Hurricane Sandy. PMID:24180061

  16. Quality Assurance Program Plan for AGR Fuel Development and Qualification Program

    SciTech Connect

    W. Ken Sowder

    2004-02-01

    Quality Assurance Plan (QPP) is to document the Idaho National Engineering and Environmental Laboratory (INEEL) Management and Operating (M&O) Contractor’s quality assurance program for AGR Fuel Development and Qualification activities, which is under the control of the INEEL. The QPP is an integral part of the Gen IV Program Execution Plan (PEP) and establishes the set of management controls for those systems, structures and components (SSCs) and related quality affecting activities, necessary to provide adequate confidence that items will perform satisfactorily in service.

  17. Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report

    SciTech Connect

    Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L.; Upadhyaya, B.R.; Rowan, W.J.

    1994-10-01

    A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

  18. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  19. UMTRA technical assistance contractor Quality Assurance Program Plan. Revision 4

    SciTech Connect

    Pehrson, P.

    1993-10-12

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAC Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements. The key to ensuring compliance with this directive is a two-step professional approach: utilize the quality system in all areas of activity, and generate a personal commitment from all personnel to provide quality service. The quality staff will be experienced, trained professionals capable of providing maximum flexibility to Project goal attainment. Such flexibility will enable the staff to be more cost effective and to further improve communication and coordination. To provide control details, this QAPP will be supplemented by approved standard operating procedures that provide requirements for performing the various TAC quality-related activities. These procedures shall describe applicable design input and document control activities and documentation.

  20. ERD UMTRA Project quality assurance program plan, Revision 7

    SciTech Connect

    1995-09-01

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors.

  1. Software quality assurance plans for safety-critical software

    SciTech Connect

    Liddle, P.

    2006-07-01

    Application software is defined as safety-critical if a fault in the software could prevent the system components from performing their nuclear-safety functions. Therefore, for nuclear-safety systems, the AREVA TELEPERM{sup R} XS (TXS) system is classified 1E, as defined in the Inst. of Electrical and Electronics Engineers (IEEE) Std 603-1998. The application software is classified as Software Integrity Level (SIL)-4, as defined in IEEE Std 7-4.3.2-2003. The AREVA NP Inc. Software Program Manual (SPM) describes the measures taken to ensure that the TELEPERM XS application software attains a level of quality commensurate with its importance to safety. The manual also describes how TELEPERM XS correctly performs the required safety functions and conforms to established technical and documentation requirements, conventions, rules, and standards. The program manual covers the requirements definition, detailed design, integration, and test phases for the TELEPERM XS application software, and supporting software created by AREVA NP Inc. The SPM is required for all safety-related TELEPERM XS system applications. The program comprises several basic plans and practices: 1. A Software Quality-Assurance Plan (SQAP) that describes the processes necessary to ensure that the software attains a level of quality commensurate with its importance to safety function. 2. A Software Safety Plan (SSP) that identifies the process to reasonably ensure that safety-critical software performs as intended during all abnormal conditions and events, and does not introduce any new hazards that could jeopardize the health and safety of the public. 3. A Software Verification and Validation (V and V) Plan that describes the method of ensuring the software is in accordance with the requirements. 4. A Software Configuration Management Plan (SCMP) that describes the method of maintaining the software in an identifiable state at all times. 5. A Software Operations and Maintenance Plan (SO and MP) that

  2. 46 CFR 162.060-36 - Quality Assurance Project Plan (QAPP) requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Quality Assurance Project Plan (QAPP) requirements. 162.060-36 Section 162.060-36 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management...

  3. 46 CFR 162.060-36 - Quality Assurance Project Plan (QAPP) requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Quality Assurance Project Plan (QAPP) requirements. 162.060-36 Section 162.060-36 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060-36 Quality...

  4. 46 CFR 162.060-36 - Quality Assurance Project Plan (QAPP) requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Quality Assurance Project Plan (QAPP) requirements. 162.060-36 Section 162.060-36 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management...

  5. QUALITY ASSURANCE PROJECT PLANS: A USELESS PAPER EXERCISE OR VALUABLE AID?

    EPA Science Inventory

    Two perspectives on the fundamental question "Are quality assurance project plans (QAPPS) a useless paper exercise or a valuable aid?" will be explored. These perspectives include those of a Branch Chief (i.e., the supervisor/manager) and an active researcher. As a Branch Chief, ...

  6. 42 CFR 441.474 - Quality assurance and improvement plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Quality assurance and improvement plan. 441.474 Section 441.474 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: REQUIREMENTS AND LIMITS APPLICABLE TO SPECIFIC SERVICES Optional Self-Directed...

  7. 42 CFR 441.474 - Quality assurance and improvement plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Quality assurance and improvement plan. 441.474 Section 441.474 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: REQUIREMENTS AND LIMITS APPLICABLE TO SPECIFIC SERVICES Optional Self-Directed...

  8. QUALITY ASSURANCE PROJECT PLAN: 1991 EMAP WETLANDS SOUTHEASTERN PILOT STUDY

    EPA Science Inventory

    Quality Assurance (QA) methodology, as set forth in this plan is used to insure the QA objectives of the study are met. ll participants must be impressed from the beginning with importance of maintaining a commitment to quality throughout the project. raining field personnel is a...

  9. Quality assurance planning for lunar Mars exploration

    NASA Technical Reports Server (NTRS)

    Myers, Kay

    1991-01-01

    A review is presented of the tools and techniques required to meet the challenge of total quality in the goal of traveling to Mars and returning to the moon. One program used by NASA to ensure the integrity of baselined requirements documents is configuration management (CM). CM is defined as an integrated management process that documents and identifies the functional and physical characteristics of a facility's systems, structures, computer software, and components. It also ensures that changes to these characteristics are properly assessed, developed, approved, implemented, verified, recorded, and incorporated into the facility's documentation. Three principal areas are discussed that will realize significant efficiencies and enhanced effectiveness, change assessment, change avoidance, and requirements management.

  10. Westinghouse Hanford Company quality assurance program and implementation plan

    SciTech Connect

    Moss, S.S., Westinghouse Hanford

    1996-07-01

    This is the first revision of the Quality AssurancePlan/Implementation Plan (QAP/IP) for nuclear facilities managedand operated by the Westinghouse Hanford Company (WHC).Development of the initial IP required review of the WHC qualityassurance program to the requirements of the 10 CFR 830.120, andcompletion of initial baseline assessments against the QAP toverify implementation of the program. Each WHC-managed nuclearfacility provided a stand-alone section to the QAP/IP, describingits mission and life-cycle status. WHC support organizationsalso performed assessments for their lead areas, and providedinputs to a separate stand-alone section with the initialbaseline assessment results. In this first revision, the initialbaseline matrixes for those facilities found to be in compliancewith the QAP have been removed. Tank Waste Remediation System(TWRS) and K Basins have modified their baseline matrixes to showcompletion of action items to date. With the followingexceptions, the WHC-managed nuclear facilities and their supportorganizations were found to have implemented QA programs thatsatisfy the requirements of 10 CFR 830.120. TWRS identifiedImplementation Plan Action Items having to do with: generationand revision of as-built drawings; updating TWRS organizationaland program documents; tracking the condition/age ofmaterials/equipment; and reconstitution of design bases forexisting, active facilities. No incremental funding needs wereidentified for FY95. For FY97, TWRS identified incrementalfunding in the amount of $65,000 for as-built drawings, and$100,000 for tracking the age/condition of materials/equipment.The K Basin Fuel Storage Facility identified Implementation PlanAction Items having to do with: training; updating procedures;establishing configuration management; reconstituting designbases; and providing darwings; and developing integrated,resource-loaded schedules. Incremental funding needs in theamount of $1.7 million were identified, over a time

  11. International Thermonuclear Experimental Reactor U.S. Home Team Quality Assurance Plan

    SciTech Connect

    Sowder, W. K.

    1998-10-01

    The International Thermonuclear Experimental Reactor (ITER) project is unique in that the work is divided among an international Joint Central Team and four Home Teams, with the overall responsibility for the quality of activities performed during the project residing with the ITER Director. The ultimate responsibility for the adequacy of work performed on tasks assigned to the U.S. Home Team resides with the U.S. Home Team Leader and the U.S. Department of Energy Office of Fusion Energy (DOE-OFE). This document constitutes the quality assurance plan for the ITER U.S. Home Team. This plan describes the controls exercised by U.S. Home Team management and the Performing Institutions to ensure the quality of tasks performed and the data developed for the Engineering Design Activities assigned to the U.S. Home Team and, in particular, the Research and Development Large Projects (7). This plan addresses the DOE quality assurance requirements of 10 CFR 830.120, "Quality Assurance." The plan also describes U.S. Home Team quality commitments to the ITER Quality Assurance Program. The ITER Quality Assurance Program is based on the principles described in the International Atomic Energy Agency Standard No. 50-C-QA, "Quality Assurance for Safety in Nuclear Power Plants and Other Nuclear Facilities." Each commitment is supported with preferred implementation methodology that will be used in evaluating the task quality plans to be submitted by the Performing Institutions. The implementing provisions of the program are based on guidance provided in American National Standards Institute/American Society of Mechanical Engineers NQA-1 1994, "Quality Assurance." The individual Performing Institutions will implement the appropriate quality program provisions through their own established quality plans that have been reviewed and found to comply with U.S. Home Team quality assurance plan commitments to the ITER Quality Assurance Program. The extent of quality program provisions

  12. Quality assurance plan for the Objective Supply Capability Adaptive Redesign (OSCAR) project

    SciTech Connect

    Stewart, K.A.; Rasch, K.A.; Reid, R.W.

    1996-11-01

    This document establishes the Quality Assurance Plan (QAP) for the National Guard Bureau Objective Supply Capability Adaptive Redesign (OSCAR) project activities under the Oak Ridge National Laboratory (ORNL) management. It defines the requirements and assigns responsibilities for ensuring, with a high degree of confidence, that project objectives will be achieved as planned. The QAP outlined herein is responsive to and meets the Quality Assurance Program standards for the U.S. Department of Energy (DOE), Lockheed Martin Energy Research Corporation and ORNL and the ORNL Computing, Robotics, and Education Directorate (CRE). This document is intended to be in compliance with DOE Order 5700.6C, Quality Assurance Program, and the ORNL Standard Practice Procedure, SPP X-QA-8, Quality Assurance for ORNL Computing Software. This standard allows individual organizations to apply the stated requirements in a flexible manner suitable to the type of activity involved. Section I of this document provides an introduction to the OSCAR project QAP; Sections 2 and 3 describe the specific aspects of quality assurance as applicable to the OSCAR project. Section 4 describes the project approach to risk management. The Risk Management Matrix given in Appendix A is a tool to assess, prioritize, and prevent problems before they occur. Therefore, the matrix will be reviewed and revised on a periodic basis.

  13. Quality assurance plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-01-01

    This Quality Assurance Plan (QAP) is concerned with design and construction (Sect. 2) and characterization and monitoring (Sect. 3). The basis for Sect. 2 is the Quality Assurance Plan for the Design and Construction of Waste Area Grouping 6 Closure at Oak Ridge National Laboratory, Oak Ridge, Tennessee, and the basis for Sect. 3 is the Environmental Restoration Quality Program Plan. Combining the two areas into one plan gives a single, overall document that explains the requirements and from which the individual QAPs and quality assurance project plans can be written. The Waste Area Grouping (WAG) 6 QAP establishes the procedures and requirements to be implemented for control of quality-related activities for the WAG 6 project. Quality Assurance (QA) activities are subject to requirements detailed in the Martin Marietta Energy Systems, Inc. (Energy Systems), QA Program and the Environmental Restoration (ER) QA Program, as well as to other quality requirements. These activities may be performed by Energy Systems organizations, subcontractors to Energy Systems, and architect-engineer (A-E) under prime contract to the US Department of Energy (DOE), or a construction manager under prime contract to DOE. This plan specifies the overall Energy Systems quality requirements for the project. The WAG 6 QAP will be supplemented by subproject QAPs that will identify additional requirements pertaining to each subproject.

  14. Quality assurance in radiation therapy: future plans in physics.

    PubMed

    Suntharalingam, N

    1984-06-01

    Modern day radiation therapy has seen the impact of high technology resulting in more sophisticated computer augmented treatment delivery systems, treatment planning procedures and diagnostic imaging techniques. Much work has already been reported in the area of physics efforts related to quality assurance in radiation therapy. Future efforts in physics will have to address the new developments in each component of the whole radiation treatment process. Certain new developments, using both computer and imaging technologies, show promise in providing tools to verify the accuracy of the delivered radiation treatment. Areas receiving careful attention are: integration and registration of information from multiple sources of diagnostic studies; validation of the accuracy of treatment planning systems; assessment of relative merits of alternate dose distributions; improvement of portal and verification film image quality; real time monitoring using light emitting screens and coupled with TV systems; monitoring of treatment and machine parameters using "record and verify" computer systems. The medical physics community, primarily through the American Association of Physicists in Medicine (AAPM), will continue the development of methodologies for technology transfer in the area of quality assurance. Committees and task groups within the AAPM will address the new developments impacting on quality assurance and prepare appropriate protocols and documents to assist the practicing physicist. By necessity, the national Radiological Physics Center (RPC) and the regional Centers for Radiological Physics (CRP) will have to take a major role in the development of new quality assurance programs. PMID:6735795

  15. Sandia National Laboratories, California Quality Assurance Project Plan for Environmental Monitoring Program.

    SciTech Connect

    Holland, Robert C.

    2005-09-01

    This Quality Assurance Project Plan (QAPP) applies to the Environmental Monitoring Program at the Sandia National Laboratories/California. This QAPP follows DOE Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance (DOE G 414.1-2A June 17, 2005). The Environmental Monitoring Program is located within the Environmental Operations Department. The Environmental Operations Department is responsible for ensuring that SNL/CA operations have minimal impact on the environment. The Department provides guidance to line organizations to help them comply with applicable environmental regulations and DOE orders. To fulfill its mission, the department has groups responsible for waste management; pollution prevention, air quality; environmental planning; hazardous materials management; and environmental monitoring. The Environmental Monitoring Program is responsible for ensuring that SNL/CA complies with all Federal, State, and local regulations and with DOE orders regarding the quality of wastewater and stormwater discharges. The Program monitors these discharges both visually and through effluent sampling. The Program ensures that activities at the SNL/CA site do not negatively impact the quality of surface waters in the vicinity, or those of the San Francisco Bay. The Program verifies that wastewater and stormwater discharges are in compliance with established standards and requirements. The Program is also responsible for compliance with groundwater monitoring, and underground and above ground storage tanks regulatory compliance. The Program prepares numerous reports, plans, permit applications, and other documents that demonstrate compliance.

  16. Regulatory compliance, management assurance drive environmental audits

    SciTech Connect

    Diberto, M. )

    1994-07-01

    As environmental protection takes on greater priority, more companies are developing environmental auditing programs. Details of these programs vary, but they share a basic goal--to verify that environmental, health and safety activities comply with company policies, and federal, state and local regulations. The growth of environmental auditing has been driven by the same forces that since 1970 have changed many aspects the business-environment relationship. In addition, regulations, court case precedents and public expectations are forcing companies to disclose much more about their environmental performance than in the past. The handful of companies that developed auditing programs considered them internal tools for evaluating environmental performance in their facilities and operations. As the discipline has spread and environmental regulations have proliferated, auditing increasingly has been driven by a need to assure senior management that their companies are in compliance and sound environmental procedures are being used. To achieve these goals, companies systematically design and conduct environmental audits to address relevant concerns, and appropriately document and report all findings.

  17. UMTRA Project Office quality assurance program plan. Revision 6

    SciTech Connect

    Not Available

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors.

  18. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect

    Not Available

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  19. PRE-QUALITY ASSURANCE PROJECT PLAN (QAPP) AGREEMENT (PQA) (HANDOUT)

    EPA Science Inventory

    The Land Remediation and Pollution Control Division (LRPCD) QA Manager strives to assist LRPCD researchers in developing functional planning documents for their research projects. As part of the planning process, several pieces of information are needed, including information re...

  20. Energy Management Plan.

    ERIC Educational Resources Information Center

    Tasmania Dept. of Education, Hobart (Australia). Facilities Services Section.

    This report presents an overview of the energy management plan for Tasmanian schools designed to minimize the costs of all forms of energy usage within these facilities. The policy and objectives of the plan are provided along with details of the plan itself and its current status. Appendices contain an extract from Asset Management Plan for Real…

  1. Planning and Management Process.

    ERIC Educational Resources Information Center

    Chuang, Ying C.

    The planning technique or device, regardless of its degree of sophistication, is only a tool and cannot be substituted for effective managers. The planning process must be an integral part of the entire management process, which often evolves over many generations of trial and error. The function of planning and management entails the continuous,…

  2. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    SciTech Connect

    Krenzien, Susan; Farnham, Irene

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participant’s requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  3. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    SciTech Connect

    Farnham, Irene; Krenzien, Susan

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  4. UMTRA project technical assistance contractor quality assurance implementation plan

    SciTech Connect

    Not Available

    1994-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP) (DOE, 1993a), which was developed using US Department of Energy (DOE) Order 5700.6C quality assurance (QA) criteria. The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. All QA issues in the QAIP shall comply with requirements contained in the TAC QAPP (DOE, 1933a). Because industry standards for data acquisition and data control are not addressed in DOE Order 5700.6C, the QAIP has been formatted to the 14 US Environmental Protection Agency (EPA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) QA requirements. DOE Order 5700.6C criteria that are not contained in the CERCLA requirements are added to the QAIP as additional requirements in Sections 15.0 through 18.0. Project documents that contain CERCLA requirements and 5700.6 criteria shall be referenced in this document to avoid duplication. Referenced documents are not included in this QAIP but are available through the UMTRA Project Document Control Center.

  5. Quality assurance plan for the Basic Environmental Compliance and Monitoring Program (BECAMP). Revision 1

    SciTech Connect

    Essington, E.H.

    1993-11-01

    This quality assurance plan (QAP) is designed ensure that the methodologies and the data used for environmental cleanup and treatment studies at the Nevada Test Site are both usable and defensible. The QAP serves two purposes in this regard: (1) to guide the preparation of procedures for carrying out the tasks of the Basic Environmental compliance and Monitoring program (BECAMP); and (2) to help management track the progress of those tasks.

  6. Energy planning and management plan

    SciTech Connect

    1996-01-01

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration`s final draft and environmental impact statement, and Energy Planning and Management Program.

  7. Data Quality Assurance Program Plan for NRC Division of Risk Analysis Programs at the INL

    SciTech Connect

    Sattison, Martin B.; Wierman, Thomas E.; Vedros, Kurt G.; Germain, Shawn W. St.; Eide, Steven A.; Sant, Robert L.

    2009-07-01

    The Division of Risk Analysis (DRA), Office of Nuclear Regulatory Research (RES), must ensure that the quality of the data that feed into its programs follow Office of Management and Budget (OMB) and U.S. Nuclear Regulatory Commission (NRC) guidelines and possibly other standards and guidelines used in nuclear power plant risk analyses. This report documents the steps taken in DRA’s Data Quality Improvement project (Job Control Number N6145) to develop a Data Quality Assurance Program Plan. These steps were 1. Conduct a review of data quality requirements 2. Review current data programs, products, and data quality control activities 3. Review the Institute of Nuclear Power Operation (INPO) Equipment Performance and Information Exchange (EPIX) data quality programs and characterize the EPIX data quality and uncertainty 4. Compare these programs, products, and activities against the requirements 5. Develop a program plan that provides assurance that data quality is being maintained. It is expected that the Data Quality Assurance Program Plan will be routinely implemented in all aspects of future data collection and processing efforts and that specific portions will be executed annually to provide assurance that data quality is being maintained.

  8. Quality Assurance Project Plan for waste tank vapor characterization

    SciTech Connect

    Suydam, C.D. Jr.

    1993-12-01

    This Quality Assurance Project Plan, WHC-SD-WM-QAPP-013, applies to four separate vapor sampling tasks associated with Phases 1 and 2 of the Tank Vapor Issue Resolution Program and support of the Rotary Mode Core Drilling Portable Exhauster Permit. These tasks focus on employee safety concerns and tank ventilation emission control design requirements. Previous characterization efforts and studies are of insufficient accuracy to adequately define the problem. It is believed that the technology and maturity of sampling and analytical methods can be sufficiently developed to allow the characterization of the constituents of the tank vapor space.

  9. Environmental Management System Plan

    SciTech Connect

    Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy; Hatayama, Howard

    2009-03-24

    Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and other natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These

  10. UMTRA Project Office Quality Assurance Program Plan. Revision 5

    SciTech Connect

    Not Available

    1993-11-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office directs the overall Project. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA Project Office shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan or an industry standard format that has been approved by the DOE Project Office.

  11. Integrating quality assurance in project work plans of the U.S. Geological Survey

    USGS Publications Warehouse

    Shampine, W.J.; Pope, L.M.; Koterba, M.T.

    1992-01-01

    The U.S. Geological Survey's objectives for including quality assurance procedures in a project work plan are to ensure that the quality of the data collected is defined and is appropriate for the objectives of the investigation. The data- quality information can be used in the interpre- tation of the data. A project work plan that includes quality assessment provides definable benefits such as clarity of expectations, a method for obtaining a set of data that is expected and has been proven valid, a documentation trail, products that are produced on time and that meet project objectives, and a decrease in work that is lost or redone. Project chiefs must prepare and can publish the work plan for scientific investigations. An expanded outline of a framework that can be used to prepare a project work plan that includes quality assurance is described in this report and contains the following topics: data-quality objectives; project organization and responsibilities; data collection; data processing; project reviews; data analysis; remedial actions; project progress reports and quality assurance reports to management.

  12. Quality assurance plan for the High Level Controller for the CBMS Block II

    SciTech Connect

    Reid, R.W.; Robbins, I.F.; Stewart, K.A.; Terry, C.L.; Whitaker, R.A.; Wolf, D.A.; Zager, J.C.

    1997-09-01

    This document establishes the software Quality Assurance Plan (QAP) for the High Level Controller for the Chemical and Biological Mass Spectrometer Block II (HLC/CBMS-II) project activities under the Computing, Robotics, and Education (CRE) Directorate management. It defines the requirements and assigns responsibilities for ensuring, with a high degree of confidence, that project objectives will be achieved as planned. The CBMS Program was awarded to ORNL by the US Army Chemical and Biological Defense command, Aberdeen Proving Ground, Maryland, to design the next version (Block II) mass spectrometer for the detection and identification of chemical and biological warfare agents, to fabricate four engineering prototypes, and to construct eight preproduction units. Section 1 of this document provides an introduction to the HLC/CBMS-II project QAP. Sections 2 and 3 describe the specific aspects of quality assurance as applicable to the project. Section 4 reviews the project approach to risk management. The Risk Management Matrix given in Appendix A is a tool to assess, prioritize, and prevent problems before they occur; therefore, the matrix will be reviewed and revised on a periodic basis. Appendix B shows the quality assurance criteria of the DOE Order 5700.6C and their applicability to this project.

  13. 75 FR 57274 - Financial Management and Assurance; Government Auditing Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... OFFICE Financial Management and Assurance; Government Auditing Standards AGENCY: Government... all levels of government, private enterprise, public accounting, and academia. This exposure draft of...Jlowbookgao.gov . Public Law 67-13, 42 Stat. 20. James R. Dalkin, Director, Financial Management and...

  14. Facility Planning and Management.

    ERIC Educational Resources Information Center

    Earthman, Glen I.

    This chapter of "Principles of School Business Management" reviews the extensive range of activities associated with planning for and constructing school facilities. These activities include (1) organizing the staff and organizing the task; (2) conducting long-range planning (involving the gathering of data, the development of a planning document,…

  15. 242-A evaporator quality assurance project plan: Revision 1

    SciTech Connect

    Tucker, B.J.

    1994-11-04

    The scope of this quality assurance project plan (Plan) is sampling and analytical services including, but not limited to, sample receipt, handling and storage, analytical measurements, submittal of data deliverables, archiving selected portions of samples, returning unneeded sample material to Westinghouse Hanford Company (WHC), and/or sample disposal associated with candidate feed samples and process condensate compliance samples. Sampling and shipping activities are also included within the scope. The purpose of this project is to provide planning, implementation, and assessment guidance for achieving established data quality objectives measurement parameters. This Plan requires onsite and offsite laboratories to conform to that guidance. Laboratory conformance will help ensure that quality data are being generated and therefore, that the 242-A evaporator is operating in a safe and compliant manner. The 242-A evaporator feed stream originates from double-shell tanks (DSTs) identified as candidate feed tanks. The 242-A evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending it to the Liquid Effluent Retention Facility (LERF) storage basin before further treatment. The slurry product is returned to DSTs. Evaporation results in considerable savings by reducing the volume of mixed waste for disposal.

  16. PREPARING PERFECT PROJECT PLANS: A POCKET GUIDE FOR THE PREPARATION OF QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    This Pocket Guide helps you prepare Quality Assurance (QA) Project Plans thoroughly and easily. he Risk Reduction Engineering Laboratory (RREL) utilizes a four-tiered project category approach in order to more effectively focus QA with respect to the intended use of the data and ...

  17. Quality control and quality assurance plan for bridge channel-stability assessments in Massachusetts

    USGS Publications Warehouse

    Parker, Gene W.; Pinson, Harlow

    1993-01-01

    A quality control and quality assurance plan has been implemented as part of the Massachusetts bridge scour and channel-stability assessment program. This program is being conducted by the U.S. Geological Survey, Massachusetts-Rhode Island District, in cooperation with the Massachusetts Highway Department. Project personnel training, data-integrity verification, and new data-management technologies are being utilized in the channel-stability assessment process to improve current data-collection and management techniques. An automated data-collection procedure has been implemented to standardize channel-stability assessments on a regular basis within the State. An object-oriented data structure and new image management tools are used to produce a data base enabling management of multiple data object classes. Data will be reviewed by assessors and data base managers before being merged into a master bridge-scour data base, which includes automated data-verification routines.

  18. Quality assurance methodology for Varian RapidArc treatment plans.

    PubMed

    Iftimia, Ileana; Cirino, Eileen T; Xiong, Li; Mower, Herbert W

    2010-01-01

    With the commercial introduction of the Varian RapidArc, a new modality for treatment planning and delivery, the need has arisen for consistent and efficient techniques for performing patient-specific quality assurance (QA) tests. In this paper we present our methodology for a RapidArc treatment plan QA procedure. For our measurements we used a 2D diode array (MapCHECK) embedded at 5 cm water equivalent depth in MapPHAN 5 phantom and an Exradin A16 ion chamber placed in six different positions in a cylindrical homogeneous phantom (QUASAR). We also checked the MUs for the RapidArc plans by using independent software (RadCalc). The agreement between Eclipse calculations and MapCHECK/MapPHAN5 measurements was evaluated using both absolute distance-to-agreement (DTA) and gamma index with 10% dose threshold (TH), 3% dose difference (DD), and 3 mm DTA. The average agreement was 94.4% for the DTA approach and 96.3% for the gamma index approach. In high-dose areas, the discrepancy between calculations and ion chamber measurements using the QUASAR phantom was within 4.5% for prostate cases. For the RadCalc calculations, we used the average SSD along the arc; however, for some patients the agreement for the MUs obtained with RadCalc versus Eclipse was inadequate (discrepancy > 5%). In these cases, the plan was divided into partial arc plans so that RadCalc could perform a better estimation of the MUs. The discrepancy was further reduced to within ~4% using this approach. Regardless of the variation in prescribed dose and location of the treated areas, we obtained very good results for all patients studied in this paper. PMID:21081873

  19. IMRT Quality Assurance Using a Second Treatment Planning System

    SciTech Connect

    Anjum, Muhammad Naeem; Parker, William; Ruo, Russell; Aldahlawi, Ismail; Afzal, Muhammad

    2010-01-01

    We used a second treatment planning system (TPS) for independent verification of the dose calculated by our primary TPS in the context of patient-specific quality assurance (QA) for intensity-modulated radiation therapy (IMRT). QA plans for 24 patients treated with inverse planned dynamic IMRT were generated using the Nomos Corvus TPS. The plans were calculated on a computed tomography scan of our QA phantom that consists of three Solid Water slabs sandwiching radiochromic films, and an ion chamber that is inserted into the center slab of the phantom. For the independent verification, the dose was recalculated using the Varian Eclipse TPS using the multileaf collimator files and beam geometry from the original plan. The data was then compared in terms of absolute dose to the ion chamber volume as well as relative dose on isodoses calculated at the film plane. The calculation results were also compared with measurements performed for each case. When comparing ion chamber doses, the mean ratio was 0.999 (SD 0.010) for Eclipse vs. Corvus, 0.988 (SD 0.020) for the ionization chamber measurements vs. Corvus, and 0.989 (SD 0.017) for the ionization chamber measurements vs. Eclipse. For 2D doses with gamma histogram, the mean value of the percentage of pixels passing the criteria of 3%, 3 mm was 94.4 (SD 5.3) for Eclipse vs. Corvus, 85.1 (SD 10.6) for Corvus vs. film, and 93.7 (SD 4.1) for Eclipse vs. film; and for the criteria of 5%, 3 mm, 98.7 (SD 1.5) for Eclipse vs. Corvus, 93.0 (SD 7.8) for Corvus vs. film, and 98.0 (SD 1.9) for Eclipse vs. film. We feel that the use of the Eclipse TPS as an independent, accurate, robust, and time-efficient method for patient-specific IMRT QA is feasible in clinic.

  20. Risk management and lessons learned solutions for satellite product assurance

    NASA Astrophysics Data System (ADS)

    Larrère, Jean-Luc

    2004-08-01

    The historic trend of the space industry towards lower cost programmes and more generally a better economic efficiency raises a difficult question to the quality assurance community: how to achieve the same—or better—mission success rate while drastically reducing the cost of programmes, hence the cost and level of quality assurance activities. EADS Astrium Earth Observation and Science (France) Business Unit have experimented Risk Management and Lessons Learned on their satellite programmes to achieve this goal. Risk analysis and management are deployed from the programme proposal phase through the development and operations phases. Results of the analysis and the corresponding risk mitigation actions are used to tailor the product assurance programme and activities. Lessons learned have been deployed as a systematic process to collect positive and negative experience from past and on-going programmes and feed them into new programmes. Monitoring and justification of their implementation in programmes is done under supervision from the BU quality assurance function. Control of the system is ensured by the company internal review system. Deployment of these methods has shown that the quality assurance function becomes more integrated in the programme team and development process and that its tasks gain focus and efficiency while minimising the risks associated with new space programmes.

  1. 75 FR 61143 - Financial Management and Assurance; Government Auditing Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... From the Federal Register Online via the Government Publishing Office GOVERNMENT ACCOUNTABILITY OFFICE Financial Management and Assurance; Government Auditing Standards Correction In notice document 2010-23374 beginning on page 57274 in the issue of Monday, September 20, 2010 make the...

  2. TWRS safety management plan

    SciTech Connect

    Popielarczyk, R.S., Westinghouse Hanford

    1996-08-01

    The Tank Waste Remediation System (TWRS) Safety Management Program Plan for development, implementation and maintenance of the tank farm authorization basis is described. The plan includes activities and procedures for: (a) Updating the current Interim Safety Basis, (b) Development,implementation and maintenance of a Basis for Interim Operations, (c) Development, implementation and maintenance of the Final Safety Analyses Report, (d) Development and implementation of a TWRS information Management System for monitoring the authorization basis.

  3. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect

    1995-11-01

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  4. Assure

    Integrated Risk Information System (IRIS)

    Assure ; CASRN 76578 - 14 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  5. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  6. A workbook for preparing a district quality- assurance plan for water-quality activities

    USGS Publications Warehouse

    Schertz, Terry L.; Childress, Carolyn J.O.; Kelly, Valerie J.; Boucher, Michelle S.; Pederson, Gary L.

    1998-01-01

    APPEARS TO BE A REPORT ON HOW TO WRITE REPORTS --THE 'ABSTRACT' THAT FOLLOWS IS JUST THE GENERIC ABSTRACT TO BE USED FOR WATER USE REPORTS: In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Division of the U.S. Geological Survey, a quality-assurance plan has been created for use by the [State name] District in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the [State name] District for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures that are documented in this quality-assurance plan for water-quality activities are meant to complement the District quality-assurance plans for surface-water and ground-water activities and to supplement the [State name] District quality-assurance plan.

  7. Performance Management Plan

    SciTech Connect

    IT Corporation, Las Vegas, NV

    2002-08-21

    This Performance Management Plan describes the approach for accelerating cleanup activities of U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Environmental Management (EM) Program. This approach accelerates the reduction of risk at NNSA/NV sites while performing the work responsibly, effectively, and more efficiently. In May 2002, NNSA/NV EM and the Nevada Division of Environmental Protection signed a Letter of Intent formalizing an agreement to pursue accelerated risk reduction and cleanup for activities within the State of Nevada. This Performance Management Plan provides the strategic direction for implementing the Letter of Intent.

  8. Quality Assurance (QA) plan for the Airlift Deployment Analysis System (ADANS)

    SciTech Connect

    Loffman, R.S.; Truett, L.F.

    1990-09-01

    Development of the Airlift Deployment Analysis System (ADANS) at Oak Ridge National Laboratory (ORNL) began in 1986. When fully implemented in 1992, ADANS will provide Headquarters, Military Airlift Command with an automated airlift planning and scheduling system. ADANS will be operational through at least the year 2000. This Quality Assurance (QA) Plan will be used by the ADANS team at ORNL as a guide to ensure that the ADANS software development project results in a high-quality product completed on time and within budget. The Plan defines the program elements to be considered under QA management, the responsibilities of each individual concerned, the acceptance criteria, and a schedule for QA program element reviews. Forms for maintaining appropriate QA records are also included.

  9. Systems engineering management plans.

    SciTech Connect

    Rodriguez, Tamara S.

    2009-10-01

    The Systems Engineering Management Plan (SEMP) is a comprehensive and effective tool used to assist in the management of systems engineering efforts. It is intended to guide the work of all those involved in the project. The SEMP is comprised of three main sections: technical project planning and control, systems engineering process, and engineering specialty integration. The contents of each section must be tailored to the specific effort. A model outline and example SEMP are provided. The target audience is those who are familiar with the systems engineering approach and who have an interest in employing the SEMP as a tool for systems management. The goal of this document is to provide the reader with an appreciation for the use and importance of the SEMP, as well as provide a framework that can be used to create the management plan.

  10. Management of government quality assurance functions for NASA contracts

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  11. Quality assurance measurement for emergency management

    SciTech Connect

    Pawlowski, M.S.

    1993-12-31

    Under the Federal Civil Defense Act of 1950, as amended, the Federal Emergency Management Agency (FEMA) is charged with maintenance of a nationwide inventory of 4.3 million radiological instruments procured and granted by the federal government to state and local governments. These instruments are used by trained state Radiological Response Team Members, first responders, and critical workers to support the population from a national security or large-scale peacetime radiological disaster, e.g., Chernobyl, Three Mile Island, Satellite Reentry, etc. The inventory is maintained through a network of 100% federally funded state maintenance and calibration facilities, with overall technical guidance and standardization provided by the FEMA Radiological Instrumentation Test Facility. The system used to support maintenance and standardized calibration of the inventory consists of CDV-794 Radiation Calibrator (High Range), CDV-765 Model 2 Gamma Transfer Standard, CDV-790 Model 1 Calibrator (Low Range), and Dosimeter Transfer Standards. Past studies have indicated the {open_quotes}Readiness{close_quotes} and {open_quotes}Reliability{close_quotes} of the inventory to meet mission requirements based upon a standardized system of maintenance and calibration. FEMA has just initiated a new instrument Readiness and Reliability study with the State of Ohio Radiological Instrument Maintenance and Calibration Program to provide data to reassess the capability of the current inventory to support all types of peacetime and national security missions.

  12. Hazardous Waste Remedial Actions Program: Remedial Actions Planning Program Quality Assurance Program Plan

    SciTech Connect

    Not Available

    1989-04-01

    The purpose of this Plan is to describe the quality assurance (QA) requirements for the RAP Program by identifying the quality elements to be controlled and specifying how they will be controlled. The activities for which control elements will be identified include those relating to: preparation, review, and approval of plans, reports, and studies; execution of field and analytical work by subcontractors and other agents; control of subcontractors and other agents during other phases of work; and actions internal to the RAP Program to ensure proper execution of projects.

  13. Cesium legacy safety project management work plan

    SciTech Connect

    Durham, J.S.

    1998-04-21

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell).

  14. 42 CFR 447.256 - Procedures for CMS action on assurances and State plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and sections 1116, 1902(b) and 1915(f) of the Act. (2) In the case of State plan and plan amendment... determination as to whether the assurances regarding a State plan amendment are acceptable within 90 days of the... amendment will be deemed accepted and approved. (c) Effective date. A State plan amendment that is...

  15. 42 CFR 447.256 - Procedures for CMS action on assurances and State plan amendments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and sections 1116, 1902(b) and 1915(f) of the Act. (2) In the case of State plan and plan amendment... determination as to whether the assurances regarding a State plan amendment are acceptable within 90 days of the... amendment will be deemed accepted and approved. (c) Effective date. A State plan amendment that is...

  16. 42 CFR 447.256 - Procedures for CMS action on assurances and State plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and sections 1116, 1902(b) and 1915(f) of the Act. (2) In the case of State plan and plan amendment... determination as to whether the assurances regarding a State plan amendment are acceptable within 90 days of the... amendment will be deemed accepted and approved. (c) Effective date. A State plan amendment that is...

  17. 42 CFR 447.256 - Procedures for CMS action on assurances and State plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and sections 1116, 1902(b) and 1915(f) of the Act. (2) In the case of State plan and plan amendment... determination as to whether the assurances regarding a State plan amendment are acceptable within 90 days of the... amendment will be deemed accepted and approved. (c) Effective date. A State plan amendment that is...

  18. 42 CFR 447.256 - Procedures for CMS action on assurances and State plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and sections 1116, 1902(b) and 1915(f) of the Act. (2) In the case of State plan and plan amendment... determination as to whether the assurances regarding a State plan amendment are acceptable within 90 days of the... amendment will be deemed accepted and approved. (c) Effective date. A State plan amendment that is...

  19. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  20. Fault Management Architectures and the Challenges of Providing Software Assurance

    NASA Technical Reports Server (NTRS)

    Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek

    2015-01-01

    The satellite systems Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most is system complexity due to a need to establish a multi-dimensional structure across hardware, software and operations. This structure is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. These architecture, implementation and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (VV) is challenging. A breakout session at the 2012 NASA Independent Verification Validation (IVV) Annual Workshop titled VV of Fault Management: Challenges and Successes exposed these issues in terms of VV for a representative set of architectures. NASA's IVV is funded by NASA's Software Assurance Research Program (SARP) in partnership with NASA's Jet Propulsion Laboratory (JPL) to extend the work performed at the Workshop session. NASA IVV will extract FM architectures across the IVV portfolio and evaluate the data set for robustness, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This work focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures, visibility, and associated VVIVV techniques provides a data set that can enable higher assurance that a satellite system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the satellite community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the

  1. Fault Management Architectures and the Challenges of Providing Software Assurance

    NASA Technical Reports Server (NTRS)

    Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek

    2015-01-01

    Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most missions is system complexity due to a need to establish a multi-dimensional structure across hardware, software and spacecraft operations. FM is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. Generally, FM architecture, implementation, and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (V&V) is challenging. A breakout session at the 2012 NASA Independent Verification & Validation (IV&V) Annual Workshop titled "V&V of Fault Management: Challenges and Successes" exposed this issue in terms of V&V for a representative set of architectures. NASA's Software Assurance Research Program (SARP) has provided funds to NASA IV&V to extend the work performed at the Workshop session in partnership with NASA's Jet Propulsion Laboratory (JPL). NASA IV&V will extract FM architectures across the IV&V portfolio and evaluate the data set, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This SARP initiative focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures and associated V&V/IV&V techniques provides a data set that can enable improved assurance that a system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the space community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research.

  2. Project specific quality assurance plan, W-151, Tank 241-AZ-101 waste retrieval system. Revision 2

    SciTech Connect

    Manthei, M.E.

    1994-11-21

    This project specific quality assurance program plan establishes the responsibility for the implementation of QA requirements, defines and documents the QA requirements associated with design, procurement, and construction, and defines and documents the degree of QA reviews and verifications on the design and construction necessary to assure compliance to project and DOE requirements. Revision 2 updates the QAPP to provide concurrence with approved work scope deletion. In addition, the Quality Assurance Program Index is being updated to reflect the current Quality Assurance Program requirements per DOE Order 5700.6C.

  3. Plutonium Vulnerability Management Plan

    SciTech Connect

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  4. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  5. Gulf of Mexico dissolved oxygen model (GoMDOM) research and quality assurance project plan

    EPA Science Inventory

    An integrated high resolution mathematical modeling framework is being developed that will link hydrodynamic, atmospheric, and water quality models for the northern Gulf of Mexico. This Research and Quality Assurance Project Plan primarily focuses on the deterministic Gulf of Me...

  6. Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan

    SciTech Connect

    Pereira, Mario M.; Slonecker, Bruce D.

    2012-06-01

    The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNL’s support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

  7. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-03-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  8. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-02-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  9. 42 CFR 457.720 - State plan requirement: State assurance regarding data collection, records, and reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... data collection, records, and reports. 457.720 Section 457.720 Public Health CENTERS FOR MEDICARE... State plan requirement: State assurance regarding data collection, records, and reports. A State plan... plans under Title XXI of the Act. This includes collection of data and reporting as required under §...

  10. Medical waste management plan.

    SciTech Connect

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  11. Biohazardous waste management plan.

    SciTech Connect

    Lane, Todd W.

    2004-01-01

    This plan describes the process for managing non-medical biohazardous waste at Sandia National Laboratories California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of biohazardous waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to non-medical biohazardous waste.

  12. Water resource management planning guide for Savannah River Plant

    SciTech Connect

    Hubbard, J.E.; Stephenson, D.E.; Steele, J.L. and Co., Aiken, SC . Savannah River Lab.); Gordon, D.E. and Co., Aiken, SC . Savannah River Plant)

    1988-10-01

    The Water Resource Management Planning Guide provides an outline for the development of a Savannah River Plant Water Resource Management Plan (WRMP) to protect, manage, and monitor the site's water resources. The management plan is based on three principle elements: (1) protection of the water quality, (2) management of the water quantity, and (3) monitoring of the water quality and quantity. The plan will assure that changes in water quality and quantity are identified and that corrective action is implemented as needed. In addition, water management activities within and between Savannah River Plant (SRP) organizations and departments will be coordinated to ensure the proper management of water resources. This document is intended as a guide to suggest goals and objectives that will provide a basis for the development of a water resource plan for SRP. Planning should be flexible rather than rigid, and the plan outlines in this document was prepared to be modified or updated as conditions necessitate. 16 refs., 12 figs.

  13. Total quality management -- Remedial actions planning program

    SciTech Connect

    Petty, J.L.; Horne, T.E.

    1989-01-01

    This paper describes the management approach being taken within the Hazardous Waste Remedial Actions Program (HAZWRAP) Support Contractor Office (SCO) to ensure quality of services in a highly competitive waste management environment. An overview is presented of the contractor support role assigned to Martin Marietta Energy Systems, Inc., by the Department of Energy (DOE) national program for managing hazardous waste. The HAZWRAP SCO mission, organizational structure, and major programs are outlined, with emphasis on waste management planning for the DOE Work for Others (WFO) Program. The HAZWRAP SCO provides waste management technical support, via interagency agreements between DOE and various Department of Defense (DOD) agencies for DOD sponsors planning remedial response actions. The remainder of the paper focuses on how the concept of Total Quality Management is applied to the HAZWRAP Remedial Actions Planning (RAP) Program. The management challenge is to achieve quality on a ''system'' basis where all functional elements of program management synergistically contribute to the total quality of the effort. The quality assurance (QA) program requirements applied to the RAP Program and its subcontractors are discussed. The application of management principles in the areas of program management, procurement, and QA to achieve total quality is presented. 3 refs.

  14. 42 CFR 423.153 - Drug utilization management, quality assurance, and medication therapy management programs (MTMPs).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... medication therapy management programs (MTMPs). 423.153 Section 423.153 Public Health CENTERS FOR MEDICARE... Drug utilization management, quality assurance, and medication therapy management programs (MTMPs). (a... to reduce medication errors and adverse drug interactions and improve medication use that include...

  15. 42 CFR 423.153 - Drug utilization management, quality assurance, and medication therapy management programs (MTMPs).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... medication therapy management programs (MTMPs). 423.153 Section 423.153 Public Health CENTERS FOR MEDICARE... management, quality assurance, and medication therapy management programs (MTMPs). (a) General rule. Each... and systems to reduce medication errors and adverse drug interactions and improve medication use...

  16. 42 CFR 423.153 - Drug utilization management, quality assurance, and medication therapy management programs (MTMPs).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... medication therapy management programs (MTMPs). 423.153 Section 423.153 Public Health CENTERS FOR MEDICARE... Drug utilization management, quality assurance, and medication therapy management programs (MTMPs). (a... to reduce medication errors and adverse drug interactions and improve medication use that include...

  17. Medical Device Risk Management For Performance Assurance Optimization and Prioritization.

    PubMed

    Gaamangwe, Tidimogo; Babbar, Vishvek; Krivoy, Agustina; Moore, Michael; Kresta, Petr

    2015-01-01

    Performance assurance (PA) is an integral component of clinical engineering medical device risk management. For that reason, the clinical engineering (CE) community has made concerted efforts to define appropriate risk factors and develop quantitative risk models for efficient data processing and improved PA program operational decision making. However, a common framework that relates the various processes of a quantitative risk system does not exist. This article provides a perspective that focuses on medical device quality and risk-based elements of the PA program, which include device inclusion/exclusion, schedule optimization, and inspection prioritization. A PA risk management framework is provided, and previous quantitative models that have contributed to the advancement of PA risk management are examined. A general model for quantitative risk systems is proposed, and further perspective on possible future directions in the area of PA technology is also provided. PMID:26618842

  18. Strategic Planning and Financial Management

    ERIC Educational Resources Information Center

    Conneely, James F.

    2010-01-01

    Strong financial management is a strategy for strategic planning success in student affairs. It is crucial that student affairs professionals understand the necessity of linking their strategic planning with their financial management processes. An effective strategic planner needs strong financial management skills to implement the plan over…

  19. Quality Assurance Program Plan for the Waste Sampling and Characterization Facility

    SciTech Connect

    Grabbe, R.R.

    1995-03-02

    The objective of this Quality Assurance Plan is to provide quality assurance (QA) guidance, implementation of regulatory QA requirements, and quality control (QC) specifications for analytical service. This document follows the Department of Energy (DOE)-issued Hanford Analytical Services Quality Assurance Plan (HASQAP) and additional federal [10 US Code of Federal Regulations (CFR) 830.120] QA requirements that HASQAP does not cover. This document describes how the laboratory implements QA requirements to meet the federal or state requirements, provides what are the default QC specifications, and/or identifies the procedural information that governs how the laboratory operates. In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. This document also covers QA elements that are required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAPPs), (QAMS-004), and Interim Guidelines and Specifications for Preparing Quality Assurance Product Plans (QAMS-005) from the Environmental Protection Agency (EPA). A QA Index is provided in the Appendix A.

  20. Project Management Plan

    SciTech Connect

    Not Available

    1988-01-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

  1. Empowering Managers, Assuring Governors: The Introduction of Dual Assurance at the University of Exeter

    ERIC Educational Resources Information Center

    Weale, Gillian

    2010-01-01

    Since the start of the academic session 2007-08, the University of Exeter has been operating a unique system of governance known as dual assurance, which has replaced a more traditional system of committees sitting under Council, the governing body. This paper describes the background to the development of dual assurance at Exeter, and the reasons…

  2. 42 CFR 423.153 - Drug utilization management, quality assurance, and medication therapy management programs (MTMPs).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Drug utilization management, quality assurance, and medication therapy management programs (MTMPs). 423.153 Section 423.153 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) VOLUNTARY MEDICARE PRESCRIPTION...

  3. Effective information management and assurance for a modern organisation during a crisis.

    PubMed

    MacLeod, Andrew

    2015-01-01

    During a crisis, organisations face a major unpredictable event with potentially negative consequences. Effective information management and assurance can assist the organisation in making sure that they have the correct information in a secure format to make decisions to recover their operations. The main elements of effective information management and assurance are confidentiality, integrity and availability, combined with non-repudiation. Should an element of effective information management or assurance be removed it can have a detrimental effect on the other elements and render the information management and assurance practices of the organisation ineffectual. PMID:26420395

  4. Waste management and quality assurance: Reasonable co-existence?

    SciTech Connect

    Bresson, J.F.

    1989-11-01

    Implementing Chapter 3, Low-Level Waste Management, of DOE Order 5820-2, ``Radioactive Waste Management`` has created a major change in the operating philosophy of DOE`s prime contractors. So has the decision of May 1, 1987, when it was made clear that EPA has regulatory authority over DOE`s mixed waste. Suddenly two additional items became clear. First, DOE and its contractors were going to learn more about composition of low-level and low-level mixed waste than ever before. Second, low-level waste management was about to become a more focused, formal program, complete with needs for: (1) waste form identification, (2) program documentation; and (3) assurance that DOE`s waste does in fact comply with applicable requirements. The importance of the above items is clearly emphasized by the inclusion of Data Quality Objectives in the Waste Acceptance Criteria section of DOE 5820-2 Chapter 3 guidance called Data Quality Objectives, (DQO). Simply put, the purpose of the DQO is to identify the quality (and quantity) of information necessary to convince a regulator or decision maker that enough is known about DOE`s low-level and low-level mixed waste to allow safe disposal. The main objectives of the DOE and EPA shallow land burial requirements are to: (1) generate, with documented evidence, waste forms which are chemically inert and immobile, such that the waste will not tend to move about in the disposal medium; (2) select a disposal medium which would not let the wastes move about anyway; and (3) build some barriers around the wastes as emplaced in burial grounds, to provide additional assurance that buried wastes will stay in place. Compliance with these requirements must be demonstrated by quality data which describes the entire series of compliance activities.

  5. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  6. Guidance for implementing an environmental, safety, and health-assurance program. Volume 15. A model plan for line organization environmental, safety, and health-assurance programs

    SciTech Connect

    Ellingson, A.C.; Trauth, C.A. Jr.

    1982-01-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This particular document presents a model operational-level ES and H Assurance Program that may be used as a guide by an operational-level organization in developing its own plan. The model presented here reflects the guidance given in the total series of 15 documents.

  7. Lightning Mapper Sensor Lens Assembly S.O. 5459: Project Management Plan

    NASA Technical Reports Server (NTRS)

    Zeidler, Janet

    1999-01-01

    Kaiser Electro-Optics, Inc. (KEO) has developed this Project Management Plan for the Lightning Mapper Sensor (LMS) program. KEO has integrated a team of experts in a structured program management organization to meet the needs of the LMS program. The project plan discusses KEO's approach to critical program elements including Program Management, Quality Assurance, Configuration Management, and Schedule.

  8. Project Hanford management contract quality improvement project management plan

    SciTech Connect

    ADAMS, D.E.

    1999-03-25

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process.

  9. 49 CFR 1180.10 - Service assurance plans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... full-system plan encompassing: (a) Integration of operations. Based on the operating plan, and using... timely integration of applicants' information systems is vitally important to service, applicants must identify the process to be used for systems integration and training of involved personnel. This...

  10. 49 CFR 1180.10 - Service assurance plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... full-system plan encompassing: (a) Integration of operations. Based on the operating plan, and using... timely integration of applicants' information systems is vitally important to service, applicants must identify the process to be used for systems integration and training of involved personnel. This...

  11. Waste management R&D Quality Assurance: An alternative approach

    SciTech Connect

    Brosseau, D.A.; Harlan, C.P.; Cochrell, R.C.

    1991-02-01

    This paper summarizes the development and initial implementation of a Quality Assurance (QA) Program for technical activities associated with assessing compliance of an existing DOE nuclear waste site with applicable environmental regulations. The requirements for establishing the QA program are defined, along with the approach and emphasis used to develop the program. The structure of the program and the various levels of QA plans and procedures are briefly discussed. Initial implementation efforts are summarized. The QA program was developed by and for the project participants and was structured according to the major technical requirements of the project. The QA plans and procedures are written for the convenience and use of the technical staff and not merely to satisfy auditor expectations. Every effort was made to avoid an 18-point approach typical of many QA programs patterned after the dictates of the industry recognized ``national consensus standards.`` Flexibility is emphasized due to the nature of the research and development activities associated with the technical program. Recommendations are provided for using this alternative approach to QA program development for similar technical efforts elsewhere. 10 refs., 1 fig., 5 tabs.

  12. Summary report on the Solar Consumer Assurance Network (SOLCAN) Program Planning Task in the southern region

    SciTech Connect

    Browne, M. B.

    1981-03-15

    The goal of the SOLCAN Program Planning Task is to assist in the development, at the state and local levels, of consumer assurance approaches that will support the accelerated adoption and effective use of new products promoted by government incentives to consumers to meet our nation's energy needs. The task includes state-conducted evaluations and state SOLCAN meetings to identify consumer assurance mechanisms, assess their effectiveness, and identify and describe alternative means for strengthening consumer and industry assurance in each state. Results of the SOLCAN process are presented, including: a Solar Consumer Protection State Assessment Guide; State Solar Consumer Assurance Resources for Selected States; State Solar Consumer Protection Assessment Interviews for Florida; and state SOLCAN meeting summaries and participants. (LEW)

  13. Quality Assurance and Risk Management: A Survey of Dental Schools and Recommendations for Integrated Program Management.

    ERIC Educational Resources Information Center

    Fredekind, Richard E.; Cuny, Eve J.; Nadershahi, Nader A.

    2002-01-01

    Surveyed U.S. and Canadian dental schools about integration of quality assurance (QA) and risk management (RM) and what mechanisms have been most effective in measuring accomplishments. Main findings included that a majority of schools had a written QA program and committee and many reported significant changes resulting from the program; over…

  14. Assuring a Healthy Future: Succession Planning at Independent Schools

    ERIC Educational Resources Information Center

    Mason, Peter L.

    2015-01-01

    On Monday, October 6, 2014, Meg Whitman, CEO of Hewlett Packard, announced that her company would be splitting into two companies and laying off thousands of employees in the process. Speaking to "Fortune" magazine, Whitman underscored that the company's problems over the years relate directly to a lack of succession planning among…

  15. Draft issue of proposed document entitled Management Program to Assure Quality

    SciTech Connect

    Not Available

    1983-11-11

    Material related to the existing DOE Management Program to Assure Quality was reviewed. A proposed Management Program to Assure Quality (MPAQ) document is outlined as follows: (1) Quality Assurance Policy Statement by Under Secretary; the Policy Statement will promulgate a DOE policy on QA and mandate each Program Secretarial Office preparing a formal QA program; (2) Foreword; (3) Background, (a) QA Philosophy, (b) DOE policy related to QA, (c) Purpose of MPAQ; (4) Program Development Methodology; this section will detail the process for developing a QA program tailored to the needs of the specific organization; (5) Essential Quality Assurance Elements; and appendices.

  16. Celebrate Your Freedom--Assuring Equal Justice for All. Law Day 2002 Planning Guide.

    ERIC Educational Resources Information Center

    White, Charles, Ed.

    The theme for Law Day 2002 was set long before the tragic events of September 11, 2001, and its aftermath. The vision of Law Day planners was to plan programs on how the courts and legal system seek to assure equal access to justice for all people. This guide gives planners the tools for programs and discussions on legal aid, the "pro bono…

  17. Up-Stream Dissolved Oxygen TMDL Project Quality Assurance ProjectPlan

    SciTech Connect

    Stringfellow, William T.

    2005-05-13

    A quality assurance project plan (QAPP) for the execution of an ecosystem level monitoring and research program examining algal ecology in highly impaired rivers. Procedures for executing both field and laboratory surface water quality and flow analysis are described. The procedures described here are compatible with the California Surface Water Ambient Monitoring program (SWAMP).

  18. Planning and Developing Open and Distance Learning : A Quality Assurance Approach. Radiological Studies in Distance Education.

    ERIC Educational Resources Information Center

    Melton, Reginald F.

    This book presents a blueprint for using a quality assurance-based approach to planning and developing open and distance learning (ODL) courses in the United Kingdom. The following are among the specific topics discussed: (1) typical aims of ODL (opening access to education; responding to student needs; designing self-study materials; student…

  19. INTERIM EPA GUIDANCE FOR GEOSPATIAL-RELATED QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    This guidance supplements EPA Guidance for Quality,Assurance Project Plans (EPA QA/G-5), in that the focus here is on collection and use of geospatial rather than other environmental data (e.g., strictly chemical or biological data), including unique aspects of data storage, retr...

  20. PREPARATION AIDS FOR THE DEVELOPMENT OF CATEGORY II QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    Data collection activities performed for the Risk Reduction Engineering aboratory (RREL) of the U.S. Environmental Protection Agency are divided into tour categories, depending on the intended use of the data. uality Assurance (QA) Project Plans are written to ensure that project...

  1. PREPARATION AIDS FOR THE DEVELOPMENT OF CATEGORY IV QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    Data collection activities performed for the Risk Reduction Engineering Laboratory (RREL) of the U.S. Environmental Protection Agency are divided into four categories, depending on the intended use of the data. uality Assurance (QA) Project Plans are written to ensure that projec...

  2. PREPARATION AIDS FOR THE DEVELOPMENT OF CATEGORY I QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    Data collection activities performed for the Risk Reduction Engineering aboratory (RREL) of the U.S. Environmental Protection Agency are divided into tour categories, depending on the intended use of the data. uality Assurance (QA) Project Plans are written to ensure that project...

  3. PREPARATION AIDS FOR THE DEVELOPMENT OF CATEGORY III QUALITY ASSURANCE PROJECT PLANS

    EPA Science Inventory

    Data collection activities performed for the Risk Reduction Engineering Laboratory (RREL) of the U.S. Environmental Protection Agency are divided into four categories, depending on the intended use of the data. uality Assurance (QA) Project Plans are written to ensure that projec...

  4. A PLAN TO DEVELOP AND IMPLEMENT A QUALITY ASSURANCE PROGRAM FOR THE AMES/SALMONELLA TEST

    EPA Science Inventory

    This document discusses a plan to develop and carry out a quality assurance program for the Ames/Salmonella test. The Ames test is in one of the 13 categories of tests mentioned in the Federal Insecticide, Fungicide, and Rodenticide Act legislation and is chosen as a model for pr...

  5. Wildlife management, surface mining, and regional planning

    SciTech Connect

    Nieman, T.J.; Merkin, Z.R.

    1995-12-31

    Wildlife management, surface mining, and regional planning historically have had conflicting missions. The cooperative public/private venture which created the Robinson Forest and Cyprus-Amax Wildlife Management Areas is presented as an example of how a regional perspective encourages a symbiotic relationship among these functions. Wildlife management areas, as either an interim or final land use, are shown to incorporate development concepts which benefit the general public, the coal industry, and the environment. Examining the regional pattern of wildlife management areas and refuges confirms the appropriateness of the subject site for this use. It is suggested that the pattern of mined lands can be studied to identify other sites with potential to provide linkages between a wildlife habitat areas and encourage reclamation of such sites to the {open_quotes}fish and wildlife{close_quotes} postmining land use. Such reclamation strategies should be pursued within a long-term planning framework. More research is needed to recreate specific habitat types on drastically disturbed land and planning is needed to assure that sensitive habitats or species are located away from zones likely to undergo future development. Use of geographic information systems to integrate existing environmental information could make such studies more effective. 14 refs., 7 figs.

  6. National Ignition Facility Risk Management Plan

    SciTech Connect

    Brereton, S.J.

    1997-02-01

    The NIF Risk Management Plan has been prepared in accordance with the DOE Life Cycle Asset Management Good Practice Guide to support Critical Decision 3 of the NIF Project. The objectives of the plan are to: 1) identify the risks to the completion of the Project in terms of meeting technical and regulatory requirements, cost, and schedule, 2) assess the risks in terms of likelihood of occurrence and their impact potential relative to technical performance, ES&H (environment, safety and health), costs, and schedule, and 3) address each identified risk in terms of suitable risk mitigation measures. The documents that form the basis for this risk assessment are as follows: 1. Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (DOE, 1996a) and Record of Decision (DOE, 1996b), 2. Preliminary Hazards Analysis (Brereton, 1993), 3. Fire Hazards Analysis (Jensen, 1997), 4. Preliminary Safety Analysis Report (LLNL, 1996a), 5. Reliability, Availability and Maintainability Report, 6. Radiation Protection Evaluation, 7. Primary Criteria and Functional Requirements (LLNL, 1996b), 8. Project Execution Plan (DOE, 1996c), 9. Schedule Risk Assessment, 10. Construction Safety Program (LLNL, 1997), 11. Title I Design Media, 12. Congressional Data Sheet. The process used in developing this plan was to form a Risk Assessment team of knowledgeable project personnel. This included: Assurances Manager, Systems Integration Manager, Project Control Manager, a Risk Management consultant, Deputy Associate Project Engineer for Activation and Start-up (Co-chairperson), and Lead Engineer for Safety Analysis (Co-chairperson). They were familiar with the risk basis documents and developed a list of the key risk elements. A methodology for assigning likelihoods, consequences, and risks was developed. Risk elements were then reviewed, and likelihoods, consequences, and risks were assigned. Risk mitigation measures were then developed. Comments were obtained

  7. Waste Management Program management plan. Revision 1

    SciTech Connect

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  8. Quality assurance plan for 1991 pilot study of the ecological condition of municipal wastewater constructed wetland treatment systems

    SciTech Connect

    Sherman, A.D.; McAllister, L.S.

    1992-12-01

    The purpose of the quality assurance plan is to detail the methods and procedures to be used in the pilot study of the ecological condition in municipal wastewater constructed wetland treatment systems. It includes specific procedures for assuring that data are of known, high quality. Background material and description of the general approach are outlined in a separate project work plan.

  9. A Model for Managing Data Assurance in Higher Education

    ERIC Educational Resources Information Center

    Hamblin, David J.; Phoenix, David A.

    2012-01-01

    There are increasing demands for higher levels of data assurance in higher education. This paper explores some of the drivers for this trend, and then explains what stakeholders mean by the concept of data assurance, since this has not been well defined previously. The paper captures insights from existing literature, stakeholders, auditors, and…

  10. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-03-28

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  11. Environmental monitoring and assessment program forest health monitoring quality assurance project plan for detection monitoring project

    SciTech Connect

    Cline, S.P.; Alexander, S.A.; Barnard, J.E.

    1995-05-01

    The Quality Assurance Project Plan (QAP) is written specifically for the Detection Minitoring project of the interagency Forest Health Monitoring (FHM) program. Sections 1 through 3 briefly explain key features of the Environmental Monitoring and Assessment Program (EMAP), the FHM program, and their interrelationship, respectively. Section 4 describes the general quality assurance (QA) requirements for the FHM Detection Monitoring project. Section 5 contains the separate QAPs for each forest condition indicator: site condition and tree growth and regeneration, tree crown condition, tree damage assessment, photosynthetically active radiation (PAR), vegetation structure, ozone bioindicator plants, and lichen communities.

  12. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  13. Development and implementation of an analytical quality assurance plan at the Hanford site

    SciTech Connect

    Kuhl-Klinger, K.J.; Taylor, C.D.; Kawabata, K.K.

    1995-08-01

    The Hanford Analytical Services Quality Assurance Plan (HASQAP) provides a uniform standard for onsite and offsite laboratories performing analytical work in support of Hanford Site environmental cleanup initiatives. The Hanford Site is a nuclear site that originated during World War 11 and has a legacy of environmental clean up issues. In early 1993, the need for and feasibility of developing a quality assurance plan to direct all analytical activities performed to support environmental cleanup initiatives set forth in the Hanford Federal Facility Agreement and Consent Order were discussed. Several group discussions were held and from them came the HASQAP. This document will become the quality assurance guidance document in a Federal Facility Agreement and Consent Order. This paper presents the mechanics involved in developing a quality assurance plan for this scope of activity, including the approach taken to resolve the variability of quality control requirements driven by numerous regulations. It further describes the consensus building process and how the goal of uniting onsite and offsite laboratories as well as inorganic, organic, and radioanalytic disciplines under a common understanding of basic quality control concepts was achieved.

  14. Treatment plan complexity metrics for predicting IMRT pre-treatment quality assurance results.

    PubMed

    Crowe, S B; Kairn, T; Kenny, J; Knight, R T; Hill, B; Langton, C M; Trapp, J V

    2014-09-01

    The planning of IMRT treatments requires a compromise between dose conformity (complexity) and deliverability. This study investigates established and novel treatment complexity metrics for 122 IMRT beams from prostate treatment plans. The Treatment and Dose Assessor software was used to extract the necessary data from exported treatment plan files and calculate the metrics. For most of the metrics, there was strong overlap between the calculated values for plans that passed and failed their quality assurance (QA) tests. However, statistically significant variation between plans that passed and failed QA measurements was found for the established modulation index and for a novel metric describing the proportion of small apertures in each beam. The 'small aperture score' provided threshold values which successfully distinguished deliverable treatment plans from plans that did not pass QA, with a low false negative rate. PMID:24810792

  15. Mixed waste management facility FY94 plan

    SciTech Connect

    Streit, R.

    1994-01-01

    This document is a progress report detailing the different aspects of the project plan. Included are the topics of quality assurance, safety and cost as they relate to the processing and storage of hazardous materials and radioactive waste.

  16. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    SciTech Connect

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  17. Quality management system for application of the analytical quality assurance cycle in a research project

    NASA Astrophysics Data System (ADS)

    Camargo, R. S.; Olivares, I. R. B.

    2016-07-01

    The lack of quality assurance and quality control in academic activities have been recognized by the inability to demonstrate reproducibility. This paper aim to apply a quality tool called Analytical Quality Assurance Cycle on a specific research project, supported by a Verification Programme of equipment and an adapted Quality Management System based on international standards, to provide traceability to the data generated.

  18. Types of Managed Care Plans

    MedlinePlus

    ... AAP Find a Pediatrician Family Life Medical Home Health Insurance Pediatric Specialists Family Dynamics Media Work & Play Getting ... Your Community Healthy Children > Family Life > Medical Home > Health Insurance > Types of Managed Care Plans Family Life Listen ...

  19. Financial Management and Strategic Planning.

    ERIC Educational Resources Information Center

    Dickmeyer, Nathan

    1982-01-01

    Strategic planning involves analysis of risks and opportunities; financial management entails balancing risks and resources to achieve institutional goals. A framework is suggested to help college administrators integrate the two functions. (Author/MSE)

  20. Medical technology management: from planning to application.

    PubMed

    David, Y; Jahnke, E

    2005-01-01

    Appropriate deployment of technological innovation contributes to improvement in the quality of healthcare delivered, the containment of cost, and access to the healthcare system. Hospitals have been allocating a significant portion of their resources to procuring and managing capital assets; they are continuously faced with demands for new medical equipment and are asked to manage existing inventory for which they are not well prepared. To objectively manage their investment, hospitals are developing medical technology management programs that need pertinent information and planning methodology for integrating new equipment into existing operations as well as for optimizing costs of ownership of all equipment. Clinical engineers can identify technological solutions based on the matching of new medical equipment with hospital's objectives. They can review their institution's overall technological position, determine strengths and weaknesses, develop equipment-selection criteria, supervise installations, train users and monitor post procurement performance to assure meeting of goals. This program, together with cost accounting analysis, will objectively guide the capital assets decision-making process. Cost accounting analysis is a multivariate function that includes determining the amount, based upon a strategic plan and financial resources, of funding to be allocated annually for medical equipment acquisition and replacement. Often this function works closely with clinical engineering to establish equipment useful life and prioritization of acquisition, upgrade, and replacement of inventory within budget confines and without conducting time consuming, individual financial capital project evaluations. PMID:17282142

  1. Case management: planning and coordinating strategies.

    PubMed

    Walden, T; Hammer, K; Kurland, C H

    1990-01-01

    In summary, planning a case management system involves moving through sequenced stages; namely, (1) a developmental stage; (2) a phase-in stage; and (3) an operational stage. During the developmental stage, before processes have been formalized, attention is given to the political realities, the formation of a representative planning group, formulating goals and objectives, obtaining administrative support, information gathering, assessment of needs, resource procurement, program structure and design, selection of a case management model, participatory decision making, determining organizational fit, and beginning networking. During the phase-in or early implementation state, the formal stage of system introduction, attention is given to the establishment of interorganizational relationships, contracting for services, job descriptions, work assignments, training, problem solving, and conflict resolution. During the operational or full implementation stage, a period when the system should become more stabilized, attention needs to be given to managing movement of the client through the system, the flow of information, program updating, quality assurance, recordkeeping, resource management, evaluating, and system refurbishing. In practice, these stages will interact and overlap. Closure, if the system is to remain viable and open to change, should never occur. PMID:10110505

  2. [Psychology of patient management: evaluation and quality assurance of psychosocial management in pediatric oncology].

    PubMed

    Kusch, M; Labouvie, H; Jäger, R S; Bode, U

    1997-02-01

    Since the introduction of health-care reform in Germany, quality assurance of inpatient care is required. In paediatric oncology this also includes quality assurance measures of psycho-social care. Care Psychology deals with the development, testing and continual improvement of high-quality psycho-social care. Based on clinical experience, scientific knowledge and ascertained requirements a handbook and manual of service delivery of psycho-social care is formulated and tested in everyday practice. Service performance analyses are carried out, and verified improvements are re-tested in practice. This, as well as additional attempts, should lead to total quality management (TQM) of psycho-social care in paediatric oncology according to the criteria of the European Foundation of Quality Management (EFQM). PMID:9156631

  3. Quality assurance for a treatment planning system in scanned ion beam therapy.

    PubMed

    Jäkel, O; Hartmann, G H; Karger, C P; Heeg, P; Rassow, J

    2000-07-01

    Conformal radiation therapy using dynamic beam delivery systems like scanned ion beams requires concise quality assurance procedures for the complete treatment planning process. For the heavy ion therapy facility at GSI, Darmstadt, a quality assurance program for the treatment planning system (TPS) has been developed. It covers the development and updating of software, data protection and safety, and the application of soft- and hardware. The tests also apply to the geometrical precision of imaging devices and the geometrical and dosimetrical verification of dose distributions in different phantoms. The quality assurance program addresses acceptance and constancy tests of the treatment planning program. Results of the acceptance tests served as a basis for its governmental approval. Two main results of the acceptance tests are representative for the overall performance of the system. (1) The geometrical uncertainty that could be achieved for the target point definition, setup accuracy, field contouring, and field alignment is typically 1.5 mm. The uncertainty for the setup verification using digitally reconstructed radiographs (DRR's) is limited to 2 mm. (2) The mean deviations between measured and planned dose values is 3% for standardized cases in a water phantom and up to 6% for more complicated treatment configurations. PMID:10947262

  4. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    SciTech Connect

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  5. Legality, Quality Assurance and Learning: Competing Discourses of Plagiarism Management in Higher Education

    ERIC Educational Resources Information Center

    Sutherland-Smith, Wendy

    2014-01-01

    In universities around the world, plagiarism management is an ongoing issue of quality assurance and risk management. Plagiarism management discourses are often framed by legal concepts of authorial rights, and plagiarism policies outline penalties for infringement. Learning and teaching discourses argue that plagiarism management is, and should…

  6. Construction Management: Planning Ahead.

    ERIC Educational Resources Information Center

    Arsht, Steven

    2003-01-01

    Explains that preconstruction planning is essential when undertaking the challenges of a school building renovation or expansion, focusing on developing a detailed estimate, creating an effective construction strategy, conducting reviews and value-engineering workshops, and realizing savings through effective risk analysis and contingency…

  7. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2009-04-02

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2 Project. The plan is designed to be used exclusively by project staff.

  8. Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs

    SciTech Connect

    Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

    1995-03-16

    The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

  9. Strategic planning for every manager.

    PubMed

    Reeves, P N

    1990-01-01

    All managers plan, but many managers of small organizations limit their planning activities to developing and guiding discrete projects. This decision stems from two erroneous assumptions: strategic planning is useful only in large organizations, and it is too complex for a small organization. As a result, these managers deprive their organizations of an essential tool for long-term survival and prosperity. Strategic planning helps any organization effectively use its scarce resources by relating every decision to the organization's mission. The process for doing this consists of a sequence of decisions that applies in all cases. However, the effort involved in reaching each of these decisions varies with the size and complexity of the organization. Consequently, leaders of small units need not forego using this essential managerial tool. In this article, each decision is described and illustrated with an example from a typical small enterprise. PMID:10106892

  10. AVLIS production plant waste management plan

    SciTech Connect

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  11. Groundwater protection management program plan

    SciTech Connect

    Not Available

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ``Groundwater Protection Management Program Plan`` (groundwater protection plan) of sufficient scope and detail to reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

  12. Quality-Assurance Plan for Water-Quality Activities in the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Wagner, Richard J.; Kimbrough, Robert A.; Turney, Gary L.

    2007-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), this quality-assurance plan has been created for use by the USGS Washington Water Science Center (WAWSC) in conducting water-quality activities. The plan documents the standards, policies, and procedures used by the personnel of the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures that are documented in this quality-assurance plan for water-quality activities are meant to complement the WAWSC's quality-assurance plans for surface-water and ground-water activities and to supplement the WAWSC quality-assurance plan.

  13. Minerals Management Service: Strategic plan

    SciTech Connect

    1997-09-30

    This plan addresses the management of the mineral resources on the Outer Continental Shelf in an environmentally sound and safe manner and the timely collection, verification, and distribution of mineral revenues from Federal and Indian lands. The Minerals Management Service (MMS) manages the Nation`s natural gas, oil and other mineral resources on the Outer Continental Shelf (OCS), and collects, accounts for, and disburses revenues from offshore federal mineral leases and from onshore mineral leases on Federal and Indian lands.

  14. GSC configuration management plan

    NASA Technical Reports Server (NTRS)

    Withers, B. Edward

    1990-01-01

    The tools and methods used for the configuration management of the artifacts (including software and documentation) associated with the Guidance and Control Software (GCS) project are described. The GCS project is part of a software error studies research program. Three implementations of GCS are being produced in order to study the fundamental characteristics of the software failure process. The Code Management System (CMS) is used to track and retrieve versions of the documentation and software. Application of the CMS for this project is described and the numbering scheme is delineated for the versions of the project artifacts.

  15. Underground storage tank management plan

    SciTech Connect

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  16. QUALITY ASSURANCE PLAN FOR 1991 PILOT STUDY OF ECOLOGICAL CONDITION OF MUNICIPAL WASTEWATER CONSTRUCTED WETLAND TREATMENT SYSTEMS

    EPA Science Inventory

    The purpose of this quality assurance plan is to detail the methods and procedures to be used in the pilot study of the ecological condition in municipal wastewater constructed wetland treatment systems. t includes specific procedures for assuring that data are of known, high qua...

  17. Guidance and Control Software Project Data - Volume 4: Configuration Management and Quality Assurance Documents

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J. (Editor)

    2008-01-01

    The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977 and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements, design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project, describes the 4-volume set of documents and the role they are playing in training, and includes configuration management and quality assurance documents from the GCS project. Volume 4 contains six appendices: A. Software Accomplishment Summary for the Guidance and Control Software Project; B. Software Configuration Index for the Guidance and Control Software Project; C. Configuration Management Records for the Guidance and Control Software Project; D. Software Quality Assurance Records for the Guidance and Control Software Project; E. Problem Report for the Pluto Implementation of the Guidance and Control Software Project; and F. Support Documentation Change Reports for the Guidance and Control Software Project.

  18. 25 CFR 23.46 - Financial management, internal and external controls and other assurances.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Financial management, internal and external controls and....46 Financial management, internal and external controls and other assurances. Grantee financial... required by the grantee's financial management system. The Secretary or his/her designee may review...

  19. 25 CFR 23.46 - Financial management, internal and external controls and other assurances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Financial management, internal and external controls and....46 Financial management, internal and external controls and other assurances. Grantee financial... required by the grantee's financial management system. The Secretary or his/her designee may review...

  20. 25 CFR 23.46 - Financial management, internal and external controls and other assurances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Financial management, internal and external controls and....46 Financial management, internal and external controls and other assurances. Grantee financial... required by the grantee's financial management system. The Secretary or his/her designee may review...

  1. 25 CFR 23.46 - Financial management, internal and external controls and other assurances.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Financial management, internal and external controls and....46 Financial management, internal and external controls and other assurances. Grantee financial... required by the grantee's financial management system. The Secretary or his/her designee may review...

  2. QUALITY ASSURANCE PLAN: LOVE CANAL STUDY. APPENDIX Q. SUBCONTRACTORS' QA PLANS

    EPA Science Inventory

    IIT Research Institute (IITRI) has been subcontracted by GCA/Technology Division (GCA) to perform quality assurance checks on ambient air samples taken in the Love Canal area of Niagara Falls, NY. Specifically, the subcontract requires the quantitative analysis of nine QA/QC Tena...

  3. A reservoir management plan

    SciTech Connect

    Allis, R.G.

    1989-06-16

    There are numerous documented cases of extraction of fluids from the ground causing surface subsidence. The cases include groundwater, oil and gas, as well as geothermal fluid withdrawal. A recent comprehensive review of all types of man-induced land subsidence was published by the Geological Survey of America. At the early stages of a geothermal power development project it is standard practice in most countries for an environmental impact report to be required. The possibility of geothermal subsidence has to be addressed, and usually it falls on the geophysicists and/or geologists to make some predictions. The advice given is vital for planning the power plant location and the borefield pipe and drain layout. It is not so much the vertical settlement that occurs with subsidence but the accompanying horizontal ground strains that can do the most damage to any man-made structure.

  4. Solid Waste Management Program Plan

    SciTech Connect

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  5. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey in Miami, Florida

    USGS Publications Warehouse

    Lietz, A. C., (compiler)

    2003-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been created for use by the U.S. Geological Survey (USGS) in Miami to conduct water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Miami USGS for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures that are documented in this quality-assurance plan for water-quality activities are meant to complement the Miami USGS quality-assurance plans for surface-water and ground-water activities.

  6. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H., (compiler)

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  7. Surface water quality-assurance plan, U.S. Geological Survey, Kentucky Water Science Center, water year 2006

    USGS Publications Warehouse

    Griffin, Michael S.

    2006-01-01

    This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kentucky Water Science Center for activities related to the collection, processing, storage, analysis, and publication of surface-water data.

  8. Quality Assurance/Quality Control Issues for Intraoperative Planning and Adaptive Repeat Planning of Image-Guided Prostate Implants

    SciTech Connect

    Zaider, Marco Cohen, Gilad; Meli, Jerome; Rosenfeld, Anatoly B.

    2008-05-01

    The quality assurance/quality control purpose is this. We design a treatment plan, and we wish to be as certain as reasonably possible that the treatment is delivered as planned. In the case of conventionally planned prostate brachytherapy, implementing to the letter the implantation plan is rarely attainable and therefore can require adaptive replanning (a quality control issue). The reasons for this state of affairs include changes in the prostate shape and volume during implantation and treatment delivery (e.g., edema resolution) and unavoidable inaccuracy in the placement of the seeds in the prostate. As a result, quality-control activities (e.g., the need to monitor-ideally, on the fly-the target and urethral and rectal dosage) must be also addressed.

  9. Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting

    SciTech Connect

    Burris, S.A.; Thomas, S.P.

    1994-02-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

  10. National Surface Water Survey: Western Lake Survey (Phase 1 - synoptic chemistry) quality assurance plan

    SciTech Connect

    Silverstein, M.E.; Drouse, S.K.; Engels, J.L.; Faber, M.L.; Mitchell-Hall, T.E.

    1987-06-01

    The purpose of the National Surface Water Survey of the National Acid Precipitation Assessment Program is to evaluate the present water chemistry of lakes and streams, to determine the status of certain biotic resources, and to select regionally representative surface waters for a long-term monitoring program to study changes in aquatic resources. The Western Lake Survey is part of the National Surface Water Survey. The U.S. Environmental Protection Agency requires that data-collection activities be based on a program that ensures that the resulting data are of known quality and are suitable for their intended purpose. This quality assurance plan describes in detail the quality-assurance requirements and procedures that are unique to the Western Lake Survey - Phase I.

  11. Demil planning and management system

    SciTech Connect

    Huber, C.C.; Bormet, S.M.; Whitfield, R.G.; Bowen, M.; Chun, K.C.; Golden, R.E.; Fuller, R.

    1997-08-01

    The National Maintenance Point (NMP) Branch of the US Army Industrial Operations Command (IOC) serves as the Single Manager for Conventional Ammunition (SMCA) agent for managing the renovation, modification, recycling, and disposal of conventional ammunition, thereby improving readiness. The mission of the NMP includes program management for demilitarization (demil) activities, ammunition maintenance, and ammunition peculiar equipment (APE) projects. Through an Interagency Agreement between the US Army and the US Department of Energy, Argonne National Laboratory (ANL) is developing an integrated data management system, called the Demil Planning and Management System (DPMS), for IOC. DPMS is intended to help NMP efficiently manage information on ongoing demil project activities and asset inventories, plan future projects, and allocate budgets. This system, when fully implemented, will also make it possible for the user community to interactively access the DPMS database; perform data entry and queries; and run reports through network, modem, and Internet access to the system. This paper describes the principal components of the DPMS, current capabilities, and planned enhancements.

  12. Management Planning: Innovation on Campus.

    ERIC Educational Resources Information Center

    Hall, Stephen S. J.

    1973-01-01

    Management planning is a body of concepts and techniques designed to facilitate the analytical and forecasting processes within a department, to increase the decision-making prerogatives of the department director within predetermined guidelines, and to encourage and reinforce communication both among the departments and between the departments…

  13. University Planning and Management Techniques.

    ERIC Educational Resources Information Center

    Lockwood, Geoffrey

    The growing competition between higher education, other levels of education, and other sectors of the economy for limited government funds has made the need for more systematic methods of planning and management of higher education systems and institutions of utmost importance. This document presents a report of a conference whose purpose was to…

  14. Quality assurance in military medical research and medical radiation accident management.

    PubMed

    Hotz, Mark E; Meineke, Viktor

    2012-08-01

    The provision of quality radiation-related medical diagnostic and therapeutic treatments cannot occur without the presence of robust quality assurance and standardization programs. Medical laboratory services are essential in patient treatment and must be able to meet the needs of all patients and the clinical personnel responsible for the medical care of these patients. Clinical personnel involved in patient care must embody the quality assurance process in daily work to ensure program sustainability. In conformance with the German Federal Government's concept for modern departmental research, the international standard ISO 9001, one of the relevant standards of the International Organization for Standardization (ISO), is applied in quality assurance in military medical research. By its holistic approach, this internationally accepted standard provides an excellent basis for establishing a modern quality management system in line with international standards. Furthermore, this standard can serve as a sound basis for the further development of an already established quality management system when additional standards shall apply, as for instance in reference laboratories or medical laboratories. Besides quality assurance, a military medical facility must manage additional risk events in the context of early recognition/detection of health risks of military personnel on deployment in order to be able to take appropriate preventive and protective measures; for instance, with medical radiation accident management. The international standard ISO 31000:2009 can serve as a guideline for establishing risk management. Clear organizational structures and defined work processes are required when individual laboratory units seek accreditation according to specific laboratory standards. Furthermore, international efforts to develop health laboratory standards must be reinforced that support sustainable quality assurance, as in the exchange and comparison of test results within

  15. Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated Pareto-optimal treatment plans

    NASA Astrophysics Data System (ADS)

    Wang, Yibing; Breedveld, Sebastiaan; Heijmen, Ben; Petit, Steven F.

    2016-06-01

    IMRT planning with commercial Treatment Planning Systems (TPSs) is a trial-and-error process. Consequently, the quality of treatment plans may not be consistent among patients, planners and institutions. Recently, different plan quality assurance (QA) models have been proposed, that could flag and guide improvement of suboptimal treatment plans. However, the performance of these models was validated using plans that were created using the conventional trail-and-error treatment planning process. Consequently, it is challenging to assess and compare quantitatively the accuracy of different treatment planning QA models. Therefore, we created a golden standard dataset of consistently planned Pareto-optimal IMRT plans for 115 prostate patients. Next, the dataset was used to assess the performance of a treatment planning QA model that uses the overlap volume histogram (OVH). 115 prostate IMRT plans were fully automatically planned using our in-house developed TPS Erasmus-iCycle. An existing OVH model was trained on the plans of 58 of the patients. Next it was applied to predict DVHs of the rectum, bladder and anus of the remaining 57 patients. The predictions were compared with the achieved values of the golden standard plans for the rectum D mean, V 65, and V 75, and D mean of the anus and the bladder. For the rectum, the prediction errors (predicted–achieved) were only  ‑0.2  ±  0.9 Gy (mean  ±  1 SD) for D mean,‑1.0  ±  1.6% for V 65, and  ‑0.4  ±  1.1% for V 75. For D mean of the anus and the bladder, the prediction error was 0.1  ±  1.6 Gy and 4.8  ±  4.1 Gy, respectively. Increasing the training cohort to 114 patients only led to minor improvements. A dataset of consistently planned Pareto-optimal prostate IMRT plans was generated. This dataset can be used to train new, and validate and compare existing treatment planning QA models, and has been made publicly available. The OVH model was highly

  16. Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated Pareto-optimal treatment plans.

    PubMed

    Wang, Yibing; Breedveld, Sebastiaan; Heijmen, Ben; Petit, Steven F

    2016-06-01

    IMRT planning with commercial Treatment Planning Systems (TPSs) is a trial-and-error process. Consequently, the quality of treatment plans may not be consistent among patients, planners and institutions. Recently, different plan quality assurance (QA) models have been proposed, that could flag and guide improvement of suboptimal treatment plans. However, the performance of these models was validated using plans that were created using the conventional trail-and-error treatment planning process. Consequently, it is challenging to assess and compare quantitatively the accuracy of different treatment planning QA models. Therefore, we created a golden standard dataset of consistently planned Pareto-optimal IMRT plans for 115 prostate patients. Next, the dataset was used to assess the performance of a treatment planning QA model that uses the overlap volume histogram (OVH). 115 prostate IMRT plans were fully automatically planned using our in-house developed TPS Erasmus-iCycle. An existing OVH model was trained on the plans of 58 of the patients. Next it was applied to predict DVHs of the rectum, bladder and anus of the remaining 57 patients. The predictions were compared with the achieved values of the golden standard plans for the rectum D mean, V 65, and V 75, and D mean of the anus and the bladder. For the rectum, the prediction errors (predicted-achieved) were only  -0.2  ±  0.9 Gy (mean  ±  1 SD) for D mean,-1.0  ±  1.6% for V 65, and  -0.4  ±  1.1% for V 75. For D mean of the anus and the bladder, the prediction error was 0.1  ±  1.6 Gy and 4.8  ±  4.1 Gy, respectively. Increasing the training cohort to 114 patients only led to minor improvements. A dataset of consistently planned Pareto-optimal prostate IMRT plans was generated. This dataset can be used to train new, and validate and compare existing treatment planning QA models, and has been made publicly available. The OVH model was highly accurate

  17. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    SciTech Connect

    1993-07-01

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

  18. Forest Resource Management Plans: A Sustainability Approach

    ERIC Educational Resources Information Center

    Pile, Lauren S.; Watts, Christine M.; Straka, Thomas J.

    2012-01-01

    Forest Resource Management Plans is the capstone course in many forestry and natural resource management curricula. The management plans are developed by senior forestry students. Early management plans courses were commonly technical exercises, often performed on contrived forest "tracts" on university-owned or other public lands, with a goal of…

  19. Implementation of a quality assurance program for computerized treatment planning systems

    SciTech Connect

    Camargo, Priscilla R. T. L.; Rodrigues, Laura N.; Furnari, Laura; Rubo, Rodrigo A.

    2007-07-15

    In the present investigation, the necessary tests for implementing a quality assurance program for a commercial treatment planning system (TPS), recently installed at Sao Paulo University School of Medicine Clinicas Hospital--Brazil, was established and performed in accordance with the new IAEA publication TRS 430, and with AAPM Task Group 53. The tests recommended by those documents are classified mainly into acceptance, commissioning (dosimetric and nondosimetric), periodic quality assurance, and patient specific quality assurance tests. The recommendations of both IAEA and AAPM documents are being implemented at the hospital for photon beams produced by two linear accelerators. A Farmer ionization chamber was used in a 30x30x30 cm{sup 3} phantom with a dose rate of 320 monitor unit (MU)/min and 50 MU in the case of the dosimetric tests. The acceptance tests verified hardware, network systems integration, data transfer, and software parameters. The results obtained are in good agreement with the specifications of the manufacturer. For the commissioning dosimetric tests, the absolute dose was measured for simple geometries, such as square and rectangular fields, up to more complex geometries such as off-axis hard wedges and for behavior in the build up region. Results were analysed by the use of confidence limit as proposed by Venselaar et al. [Radio Ther. Oncol. 60, 191-201 (2001)]. Criteria of acceptability had been applied also for the comparison between the values of MU calculated manually and MU generated by TPS. The results of the dosimetric tests show that work can be reduced by choosing to perform only those that are more crucial, such as oblique incidence, shaped fields, hard wedges, and buildup region behavior. Staff experience with the implementation of the quality assurance program for a commercial TPS is extremely useful as part of a training program.

  20. Implementation of a quality assurance program for computerized treatment planning systems.

    PubMed

    Camargo, Priscilla R T L; Rodrigues, Laura N; Furnari, Laura; Rubo, Rodrigo A

    2007-07-01

    In the present investigation, the necessary tests for implementing a quality assurance program for a commercial treatment planning system (TPS), recently installed at Sao Paulo University School of Medicine Clinicas Hospital-Brazil, was established and performed in accordance with the new IAEA publication TRS 430, and with AAPM Task Group 53. The tests recommended by those documents are classified mainly into acceptance, commissioning (dosimetric and nondosimetric), periodic quality assurance, and patient specific quality assurance tests. The recommendations of both IAEA and AAPM documents are being implemented at the hospital for photon beams produced by two linear accelerators. A Farmer ionization chamber was used in a 30 x 30 x 30 cm3 phantom with a dose rate of 320 monitor unit (MU)/min and 50 MU in the case of the dosimetric tests. The acceptance tests verified hardware, network systems integration, data transfer, and software parameters. The results obtained are in good agreement with the specifications of the manufacturer. For the commissioning dosimetric tests, the absolute dose was measured for simple geometries, such as square and rectangular fields, up to more complex geometries such as off-axis hard wedges and for behavior in the build up region. Results were analysed by the use of confidence limit as proposed by Venselaar et al. [Radio Ther. Oncol. 60, 191-201 (2001)]. Criteria of acceptability had been applied also for the comparison between the values of MU calculated manually and MU generated by TPS. The results of the dosimetric tests show that work can be reduced by choosing to perform only those that are more crucial, such as oblique incidence, shaped fields, hard wedges, and buildup region behavior. Staff experience with the implementation of the quality assurance program for a commercial TPS is extremely useful as part of a training program. PMID:17821990

  1. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    SciTech Connect

    Li, Guangjun; Wu, Kui; Peng, Guang; Zhang, Yingjie; Bai, Sen

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.

  2. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    SciTech Connect

    Not Available

    1988-04-01

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  3. Planning for hazardous waste management.

    PubMed

    Rhoades, R F

    1982-01-01

    Various responsibilities and issues must be considered when becoming involved in the management of hazardous wastes. A basic understanding of the problem and control methodologies including the regulatory provisions of the Resource Conservation and Recovery act (RCRA) is necessary in order to begin the initial phase of the planning process. The roles of industry, the public and the federal government are discussed as well as various management options which can be pursued by state and local authorities. Special attention is focused on the issues of site selection, existing and abandoned sites and the application of "Superfund," disposition of exempt waste quantities and emergency response. PMID:10257564

  4. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning.

    PubMed

    Fraass, B; Doppke, K; Hunt, M; Kutcher, G; Starkschall, G; Stern, R; Van Dyke, J

    1998-10-01

    In recent years, the sophistication and complexity of clinical treatment planning and treatment planning systems has increased significantly, particularly including three-dimensional (3D) treatment planning systems, and the use of conformal treatment planning and delivery techniques. This has led to the need for a comprehensive set of quality assurance (QA) guidelines that can be applied to clinical treatment planning. This document is the report of Task Group 53 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. The purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a comprehensive but viable program of quality assurance for modern radiotherapy treatment planning. The scope of the QA needs for treatment planning is quite broad, encompassing image-based definition of patient anatomy, 3D beam descriptions for complex beams including multileaf collimator apertures, 3D dose calculation algorithms, and complex plan evaluation tools including dose volume histograms. The Task Group recommends an organizational framework for the task of creating a QA program which is individualized to the needs of each institution and addresses the issues of acceptance testing, commissioning the planning system and planning process, routine quality assurance, and ongoing QA of the planning process. This report, while not prescribing specific QA tests, provides the framework and guidance to allow radiation oncology physicists to design comprehensive and practical treatment planning QA programs for their clinics. PMID:9800687

  5. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  6. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan

    SciTech Connect

    Not Available

    1992-06-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  7. Quality Assurance Program Plan for the radiological survey activities program --- Uranium Mill Tailings Remedial Action Project

    SciTech Connect

    Knott, R.R.; Little, C.A.

    1991-08-01

    The Pollutant Assessments Group (PAG) at the Grand Junction Office (GJO), Colorado, of Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude these sites from UMTRAP based on whether the on-site residual radioactive material (if any) originated from the former mill sites, and radiation levels on-site are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the Quality Assurance Plan (QAP) for the PAG in conducting all activities related to UMTRAP. All quality assurance provisions given by the DOE, DOE/UMTRA and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the PAG/UMTRA QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups. 11 refs., 6 figs., 3 tabs.

  8. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan]. Revision 4

    SciTech Connect

    Not Available

    1992-06-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  9. 34 CFR 363.11 - What information and assurances must be included in the State plan supplement?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rehabilitation services identified in the State plan submitted under 34 CFR part 361 as the State agency or... 34 Education 2 2013-07-01 2013-07-01 false What information and assurances must be included in the State plan supplement? 363.11 Section 363.11 Education Regulations of the Offices of the Department...

  10. 34 CFR 363.11 - What information and assurances must be included in the State plan supplement?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rehabilitation services identified in the State plan submitted under 34 CFR part 361 as the State agency or... 34 Education 2 2011-07-01 2010-07-01 true What information and assurances must be included in the State plan supplement? 363.11 Section 363.11 Education Regulations of the Offices of the Department...