Sample records for astacoidea

  1. The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences.

    PubMed Central

    Crandall, K A; Harris, D J; Fetzner, J W

    2000-01-01

    Despite their widespread use as model organisms, the phylogenetic status of the around 520 species of freshwater crayfish is still in doubt. One hypothesis suggests two distinct origins of freshwater crayfish as indicated by their geographical distribution, with two centres of origin near the two present centres of diversity; one in south-eastern United States and the other in Victoria, Australia. An alternative theory proposes a single (monophyletic) origin of freshwater crayfish. Here we use over 3000 nucleotides from three different gene regions in estimating phylogenetic relationships among freshwater crayfish and related Crustacea. We show clear evidence for monophyly of freshwater crayfish and for the sister-group relationship between crayfish and clawed lobsters. Monophyly of the superfamilies Astacoidea and Parastacoidea is also supported. However, the monophyly of the family Cambaridae is questioned with the genus Cambaroides being associated with the Astacidae. PMID:11467432

  2. Comparative Ultrastructure and Carbohydrate Composition of Gastroliths from Astacidae, Cambaridae and Parastacidae Freshwater Crayfish (Crustacea, Decapoda)

    PubMed Central

    Luquet, Gilles; Fernández, María S.; Badou, Aïcha; Guichard, Nathalie; Roy, Nathalie Le; Corneillat, Marion; Alcaraz, Gérard; Arias, José L.

    2012-01-01

    Crustaceans have to cyclically replace their rigid exoskeleton in order to grow.Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish) elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we studied the ultrastructure of gastroliths from freshwater crayfish by using a combination of microscopic and physical techniques. Because sugars are also molecules putatively involved in the elaboration process of these biomineralizations, we also determined their carbohydrate composition. This study was performed in a comparative perspective on crayfish species belonging to the infra-order Astacidea (Decapoda, Malacostraca): three species from the Astacoidea superfamily and one species from the Parastacoidea superfamily. We observed that all the gastroliths exhibit a similar dense network of protein-chitin fibers, from macro- to nanoscale, within which calcium is precipitated as amorphous calcium carbonate. Nevertheless, they are not very similar at the molecular level, notably as regards their carbohydrate composition. Besides glucosamine, the basic carbohydrate component of chitin, we evidenced the presence of other sugars, some of which are species-specific like rhamnose and galacturonic acid whereas xylose and mannose could be linked to proteoglycan components. PMID:24970155

  3. Life history of the vulnerable endemic crayfish Cambarus (Erebicambarus) maculatus Hobbs and Pflieger, 1988 (Decapoda: Astacoidea: Cambaridae) in Missouri, USA

    USGS Publications Warehouse

    DiStefano, Robert J.; Westhoff, Jacob T.; Ames, Catlin W.; Rosenberger, Amanda E.

    2016-01-01

    The vulnerable freckled crayfish, Cambarus maculatus Hobbs and Pflieger, 1988, is endemic to only one drainage in eastern Missouri, USA, which is impacted by heavy metals mining and adjacent to a rapidly-expanding urban area. We studied populations of C. maculatus in two small streams for 25 months to describe annual reproductive cycles, and gather information about fecundity, sex ratio, size at maturity, size-class structure, and growth, capturing a monthly average of more than 50 individuals from each of the two study populations. Information about the density of the species at supplemental sampling streams was also obtained. The species exhibited traits consistent with a K-strategist life history; long-lived, slow-growing, with fewer but larger eggs than sympatric crayfish species. Breeding season occurred in mid- to late autumn, potentially extending into early winter. Egg brooding occurred primarily in May. Young of year were first observed in June. We estimated that these populations contained four to six size-classes, observed smaller individuals grew faster than larger individuals, and most became sexually mature in their second year of life. Densities of C. maculatus were low relative to several sympatric species of Orconectes Cope, 1872. Life history information presented herein will be important for anticipated future conservation efforts.

  4. Crustacean hyperglycemic and vitellogenesis-inhibiting hormones in the lobster Homarus gammarus.

    PubMed

    Ollivaux, Céline; Vinh, Joëlle; Soyez, Daniel; Toullec, Jean-Yves

    2006-05-01

    Crustacean hyperglycemic hormone (CHH) and vitellogenesis-inhibiting hormone (VIH), produced by the X organ-sinus gland neurosecretory complex, belong to a peptide group referred to as the CHH family, which is widely distributed in arthropods. In this study, genetic variants and post-translationally modified isoforms of CHH and VIH were characterized in the European lobster Homarus gammarus. With the use of RP-HPLC and ELISA with specific antibodies that discriminate between stereoisomers of CHH and VIH, two groups of CHH-immunoreactive peaks were characterized from HPLC fractions of sinus gland extract (CHH A and CHH B); each group contained two variants (CHH and D-Phe3CHH). In the same way, two VIH-immunoreactive peaks (VIH and D-Trp4VIH) were demonstrated in HPLC fractions from sinus gland extract. The masses of these different neuropeptides were determined by FT-ICR MS: CHH A and CHH B spectra exhibited monoisotopic ions at 8557.05 Da and 8527.04 Da, respectively, and both VIH isomers displayed an m/z value of 9129.19 Da. Two full-length cDNAs encoding preprohomones of CHH A and CHH B and only one cDNA for VIH precursor were cloned and sequenced from X organ RNA. Comparison of CHH sequences between European lobster and other Astacoidea suggests that the most hydrophobic form appeared first during crustacean evolution.

  5. Systematics and position of Nephrops among the lobsters.

    PubMed

    Tshudy, Dale

    2013-01-01

    This chapter presents and explains the position of Nephrops norvegicus in the classification of lobsters. Covered, in order, are systematic classification of Nephrops, taxonomic history of Nephrops, and analysis of Nephrops in nephropid phylogeny. The genus Nephrops was erected by Leach in 1814 and has a long and interesting taxonomic history. Prior to 1972, Nephrops was known by 14 Recent species. All but one of these, N. norvegicus, were removed to a new genus, Metanephrops, by Jenkins (1972). Today, N. norvegicus is still the only known living representative of the genus. Similarly, Nephrops is known by only one fossil species, the Miocene Nephrops kvistgaardae, although several other fossil species have been previously referred to this genus. Nephrops, along with the other familiar and commercially important marine clawed lobsters, is referred to Family Nephropidae, one of 17 marine clawed lobster families arrayed in 3 infraorders, 6 families each in the Astacidea and Glypheidea and 5 in the Polychelida. Infraorder Astacidea includes the Superfamily Nephropoidea, as well as the lesser known 'reef lobsters' of the Superfamily Enoplometopoidea, and the freshwater crayfish, Superfamily Astacoidea. In phylogenetic analyses, the freshwater crayfish form a sister group to the Nephropoidea. It is interpreted that freshwater crayfish evolved from nephropoid lobsters, but from which lobster group is uncertain. The taxonomic placement of N. norvegicus is stable at all levels, from species on up. Despite that, the phylogenetic relationships of Nephrops to other nephropid genera are unsettled due to conflicting results in morphological and molecular analyses. Currently, new morphological characters and new genes are being analysed in the hope of elucidating nephropid phylogeny. Copyright © 2013 Elsevier Ltd. All rights reserved.