Sample records for astrobiology science conference

  1. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet Mars?; Titan Versus Europa - Potential for Astrobiology; Habitability Potential of Mars; Biosignatures: Tools and Development I; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Deserts and Evaporite Basins and Associated Microbialite Systems; Ancient Life and Synthetic Biology: Crossroad of the Past and Future; Biosignatures: Tools and Development II; Free Oxygen: Proxies, Causes, and Consequences; Life in Modern Microbialite Systems - Function and Adaptation; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Where Should We Go on Mars to Seek Signs of Life?; Search for Intelligent Life I. Innovative SETI Observing Programs and Future Directions; Integrating Astrobiology Research Across and Beyond the Community; Education in Astrobiology in K-12; Search for Intelligent Life II. Global Engagement and Interstellar Message Construction; Poster sessions included: Extraterrestrial Molecular Evolution and Pre-Biological Chemistry; Prebiotic Evolution: From Chemistry to Life; RNA World; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Virology and Astrobiology; Horizontal Genetic Transfer and Properties of Ancestral Organisms; Life in Volcanic Environments: On Earth and Beyond; Impact Events and Evolution; Evolution of Advanced Life; Evolution of Intelligent Life; Education in Astrobiology in K-12; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Astrobiology and Interdisciplinary Communication; Diversity in Astrobiology Research and Education; Integrating Astrobiology Research Across and Beyond the Community; Policy and Societal Issues: Dealing with Potential Bumps in the Astrobiology Road Ahead; Results from ASTEP and Other Astrobiology Field Campaigns; Energy Flow in Microbial Ecosystems; Psychrophiles and Polar Environments; Deserts and Evaporite Basins and Associated Microbialite stems; Life in Modern Microbialite Systems - Function and Adaptation; Free Oxygen: Proxies, Cause

  2. Astrobiology ScienceLearningActivitiesforAfterschool

    E-print Network

    Waliser, Duane E.

    Astrobiology ScienceLearningActivitiesforAfterschool Participantsages5-12 EDUCATOR RESOURCE produced by the Astromaterials Research and Exploration Science (ARES), Johnson Space Center. http://ares.jsc.nasa.gov/education Programs: Connecting to the Future can be downloaded from the NASA Informal Education web portal

  3. Astrobiology: A pathway to adult science literacy?

    NASA Astrophysics Data System (ADS)

    Oliver, C. A.; Fergusson, J.

    2007-10-01

    Adult science illiteracy is widespread. This is concerning for astrobiology, or indeed any other area of science in the communication of science to public audiences. Where and how does this scientific illiteracy arise in the journey to adulthood? Two astrobiology education projects have hinted that science illiteracy may begin in high school. This relationship between high school science education and the public understanding of science is poorly understood. Do adults forget their science education, or did they never grasp it in the first place? A 2003 science education project raised these questions when 24 16-year-olds from 10 Sydney high schools were brought into contact with real science. The unexpected results suggested that even good high school science students have a poor understanding of how science is really undertaken in the field and in the laboratory. This concept is being further tested in a new high school science education project, aimed at the same age group, using authentic astrobiology cutting-edge data, NASA Learning Technologies tools, a purpose-built research Information and Communication Technology-aided learning facility and a collaboration that spans three continents. In addition, a first year university class will be tested for evidence of science illiteracy immediately after high school among non-science oriented but well-educated students.

  4. Astrobiology Student Science Fair Projects

    Microsoft Academic Search

    M. Kadooka; K. J. Meech

    2004-01-01

    Extrasolar Planet Transit and The Light Curve of a Variable Star are some titles of high school student projects entered in the Hawaii State Science Fair. These students were mentored by teachers who participated in the UH Institute for Astronomy Toward Other Planetary Systems summer program under the direction of professor Karen J. Meech. After attending several 3-week TOPS NSF

  5. Teaching Astrobiology as a High School Science Course

    NASA Astrophysics Data System (ADS)

    Chambers, N. M.; Zimmerman-Brachman, R.

    2010-04-01

    Astrobiology is an ideal bridge between high school science and the professional community, inspiring high student enthusiasm. An existing upper-level elective course is outlined, including lab activities, standards, and outreach opportunities.

  6. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  7. Astrobiology in culture: the search for extraterrestrial life as "science".

    PubMed

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors. PMID:23078644

  8. Astrobiology Courses--A Useful Framework for Teaching Interdisciplinary Science.

    ERIC Educational Resources Information Center

    Sauterer, Roger

    2000-01-01

    Explains astrobiology and indicates the possibility of life on other planets and the interest of humankind in this possibility. Defines topics open to public misconception and their primary reinforcements by television shows. Expresses the need for students to learn the connections between different science majors. (YDS)

  9. Lunar and Planetary Science XXXV: Astrobiology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The presentations in this session are: 1. A Prototype Life Detection Chip 2. The Geology of Atlantis Basin, Mars, and Its Astrobiological Interest 3. Collecting Bacteria Together with Aerosols in the Martian Atmosphere by the FOELDIX Experimental Instrument Developed with a Nutrient Detector Pattern: Model Measurements of Effectivity 4. 2D and 3D X-ray Imaging of Microorganisms in Meteorites Using Complexity Analysis to Distinguish Field Images of Stromatoloids from Surrounding Rock Matrix in 3.45 Ga Strelley Pool Chert, Western Australia 4. Characterization of Two Isolates from Andean Lakes in Bolivia Short Time Scale Evolution of Microbiolites in Rapidly Receding Altiplanic Lakes: Learning How to Recognize Changing Signatures of Life 5. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode 6. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence 7. Microbial D/H Fractionation in Extraterrestrial Materials: Application to Micrometeorites and Mars 8. Carbon Isotope Characteristics of Spring-fed Iron-precipitating Microbial Mats 9. Amino Acid Survival Under Ambient Martian Surface UV Lighting Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions 10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods 11. Thermal Decomposition of Siderite-Pyrite Assemblages: Implications for Sulfide Mineralogy in Martian Meteorite ALH84001 Carbonate Globules 12. Determination of the Three-Dimensional Morphology of ALH84001 and Biogenic MV-1 Magnetite: Comparison of Results from Electron Tomography and Classical Transmission Electron Microscopy 13. On the Possibility of a Crypto-Biotic Crust on Mars Based on Northern and Southern Ringed Polar Dune Spots 14. Comparative Planetology of the Terrestrial Inner Planets: Implications for Astrobiology 15. A Possible Europa Exobiology 16. A Possible Biogeochemical Model for Titan

  10. NASA Astrobiology Portal

    NSDL National Science Digital Library

    This web site, hosted by NASA Ames Research Center, provides a portal to NASA's astrobiology program. It features astrobiology announcements, events, societal issues, forums, education, and the latest news stories. Links are provided to Astrobiology Magazine, Astrobiology Institute, the astrobiology roadmap, science goals, technologies, missions, workshops, web awards, the media center, public policy, contacts, and more.

  11. Astrobiology can help space science, education and the economy

    NASA Astrophysics Data System (ADS)

    Sephton, M. A.

    2014-08-01

    Astrobiology is a subject dedicated to understanding the origin, evolution and distribution of life. Astrobiology is a multidisciplinary discipline within which useful information comes from a variety of environments and from a myriad of techniques. The challenges of the Global Exploration Roadmap contain intrinsic astrobiology questions and opportunities. The potential astrobiology returns include scientific, educational and economic benefits.

  12. The Astronomical, Astrobiological and Planetary Science Case for Interstellar Spaceflight

    E-print Network

    Crawford, Ian A

    2010-01-01

    A review is presented of the scientific benefits of rapid (v >= 0.1c) interstellar spaceflight. Significant benefits are identified in the fields of interstellar medium studies, stellar astrophysics, planetary science and astrobiology. In the latter three areas the benefits would be considerably enhanced if the interstellar vehicle is able to decelerate from its interstellar cruise velocity to rest relative to the target system. Although this will greatly complicate the mission architecture, and extend the overall travel time, the scientific benefits are such that this option should be considered seriously in future studies.

  13. Life Elsewhere? Astrobiology, Science, and Society

    NSDL National Science Digital Library

    Catherine Baker (; )

    2007-06-28

    The search for extraterrestrial life is quixotic--or at least less immediately purposeful than the quest for a cure for cancer. Nonetheless, it falls squarely within the human purpose for science: to explore nature so that we can understand ourselves better.The means by which scientists search for life elsewhere, and the meaning of this enterprise, was the theme of a March 27 lecture sponsored by the Dialogue on Science, Ethics, and Religion (DoSER), a program of the American Association for the Advancement of Science (AAAS). The featured speaker was Dr. Bruce Jakosky, an astrobiologist involved in the Mars Global Surveyor mission as an Interdisciplinary Scientist for Surface-Atmosphere Interactions.

  14. Emphasizing Astrobiology: Highlighting Communication in an Elective Course for Science Majors

    ERIC Educational Resources Information Center

    Offerdahl, Erika G.; Prather, Edward E.; Slater, Timothy F.

    2004-01-01

    The project described here involved the design, implementation, and evaluation of an upper level, undergraduate elective course for science majors. Specific course goals were to help students gain an appreciation of the interdisciplinary nature of astrobiology, understand key ideas in astrobiology, and develop the skills necessary to communicate…

  15. Emphasizing Astrobiology

    NSDL National Science Digital Library

    Edward E. Prather

    2004-11-01

    The project described here involved the design, implementation, and evaluation of an upper-level, undergraduate elective course for science majors. Specific course goals were to help students gain an appreciation of the interdisciplinary nature of astrobiology, understand key ideas in astrobiology, and develop the skills necessary to communicate successfully with scientists across disciplines.

  16. Vanguard: A New Science Mission For Experimental Astrobiology

    NASA Astrophysics Data System (ADS)

    Ellery, A.; Wynn-Williams, D.; Edwards, H.; Dickensheets, D.; Welch, C.; Curley, A.

    As an alternative to technically and financially problemat ic sample return missions, a rover-mounted laser Raman spectrometer sensitive to biomolecules and their mineral substrata is a promising alternative in the search for evidence of former life on Mars. We presented a new remote in situ analysis package being designed for experimental astrobiology on terrestrial-type planetary surfaces. The science is based on the hypothesis that if life arose on Mars, the selective pressure of solar radiation would have led to the evolution of pigmented systems to harness the energy of sunlight and to protect cells from concurrent UV stress. Microbial communities would have therefore become stratified by the light gradient, and our remote system would penetrate the near-subsurface profile in a vertical transect of horizontal strata in ancient sediments (such as palaeolake beds). The system will include an extensive array of robotic support to translocate and deploy a Raman spectrometer detectors beneath the surface of Mars ­ it will comprise of a base station lander to support communications, a robotic micro-rover to permit well- separated triplicate profiles made by three ground-penetrating moles mounted in a vertical configuration. Each mole will deploy a tether carrying fibre optic cables coupling the Raman spectrometer onboard the rover and the side-scanning sensor head on the mole. The complete system has been named Vanguard, and it represents a close collaboration between a space robotics engineer (Ellery), an astrobiologist (Wynn-Williams), a molecular spectroscopist (Edwards), an opto-electronic technologist (Dickensheets), a spacecraft engineer (Welch) and a robotic vision specialist (Curley). The autonomy requirement for the Vanguard instrument requires that significant scientific competence is imparted to the instrument through an expert system to ensure that quick-look analysis is performed onboard in real-time as the mole penetrates beneath the surface. Onboard decision-making must be implemented to assess the need for further integrations on the basis of prior sensory data ­ Vanguard is essentially conceived to be a robotic field astrobiologist. In targetting the Martian sub-surface, Vanguard represents the obvious next step in the astrobiological investigation of Mars for Europe, with field trials in Antarctica. A more challenging application of a modified Vanguard instrument might be the astrobiological investigation of the near surface of Europa (with trials in Lake Vostok, Antarctica) if recent allegations concerning the significance of salts in the Europan ice are correct.

  17. The NASA Astrobiology Institute - Minority Institution Research Support Program: Strengthening the Astrobiology Community

    NASA Astrophysics Data System (ADS)

    Gary, T.; Butler, J.; Arino de La Rubia, L.; Myles, E. L.; Bradford, K.; Kirven-Brooks, M.; Ceballos, M.; Taylor, L.; Bell, B.; Coulter, G.

    2009-12-01

    This paper describes the history, purpose and successes of the NASA Astrobiology Institute Minority Institution Research Support Program (NAI-MIRS). This program is designed to provide support and training in astrobiology to a new generation of researchers from Minority Serving Institutions. The NAI-MIRS program provides sabbaticals, follow-up support, and travel opportunities for faculty and students from minority institutions. The purpose of this initiative is to increase the attendance and participation of underrepresented scientists in astrobiology research laboratories, at professional conferences, and as NAI Team members. As Minority Serving Institutions (MSIs) graduate a higher percentage of students of color entering graduate schools in science and engineering than their majority counterparts, support to MSIs from the NAI-MIRS program will encourage the growth of astrobiology-related programs at these institutions identifying talented researchers and providing an avenue to foster astrobiology research, increases awareness of astrobiology within minority communities. Achievements in astrobiology by the Minority Serving Institutions include the first direct detection of an extrasolar planet and a MSI graduate, LaTasha Taylor, featured in the journal Science as one of the first minority students to enter the NSF funded Astrobiology IGERT program. To date, the NAI-MIRS program has involved faculty members from the three major MSIs: Tribal Colleges and Universities, Historically Black Colleges and Universities, and Hispanic Serving Institutions and partnered with the Minority Institute Astrobiology Collaborative (MIAC).

  18. FORUM | PLANETARY SCIENCE & ASTROBIOLOGY Jupiter exploration: high risk and high rewards

    E-print Network

    Kite, Edwin

    FORUM | PLANETARY SCIENCE & ASTROBIOLOGY Jupiter exploration: high risk and high rewards Edwin S.ac.uk) Jupiter exploration is big science, and only the United States can afford self-contained missions into Jupiter to prevent it from contaminating Europa's ocean, cost $1.6 bn. Despite the failure of its High

  19. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with ASTEP field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. SUMMARY The Astrobiology Program in NASA's Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? Goals of the Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of past life on Earth with its changing environment, the formation and evolution of planets, links between planetary and biological evolution, the effects of climate and geology on habitability, and life's precursors and habitats in the outer solar system. Research dedicated to fulfilling these goals is conducted on Earth and in space, with a growing number of astrobiology investigations flying on planetary exploration missions. The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Since 1995, the field of astrobiology has grown rapidly, and the pace of discovery has been brisk. The possibility of extraterrestrial life is now a serious scientific question. Research findings over the past decade that are relevant to this question include the controversial 1996 claim of fossil evidence for microbial life in a martian meteorite, evidence of past and perhaps even present liquid water on Mars, the likeliho

  20. Astrobiology Outreach and the Nature of Science: The Role of Creativity

    PubMed Central

    Oliver, Carol; Walter, Malcolm R.

    2012-01-01

    Abstract There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research–related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science. Key Words: Science education—School science—Creativity—Nature and processes of science—Attitudes—Astrobiology. Astrobiology 12, 1143–1153. PMID:23134090

  1. Exo/Astrobiology in Europe

    NASA Astrophysics Data System (ADS)

    Brack, André; Horneck, Gerda; Wynn-Williams, David

    2001-08-01

    The question of the chemical origins of life is engraved in the European scientific patrimony as it can be traced back to the pioneer ideas of Charles Darwin, Louis Pasteur, and more recently to Alexander Oparin. During the last decades, the European community of origin of life scientists has organized seven out of the twelve International Conferences on the Origins of Life held since 1957. This community contributed also to enlarge the field of research to the study of life in extreme environments and to the search for extraterrestrial life, i.e. exobiology in its classical definition or astrobiology if one uses a more NASA-inspired terminology. The present paper aims to describe the European science background in exo/astrobiology as well as the project of a European Network of Exo/Astrobiology.

  2. Bringing Astrobiology to Middle School Students: ExxonMobil Bernard Harris Summer Science Camp

    NASA Astrophysics Data System (ADS)

    Mayeur, Paul A.; Whittet, D. C. B.; Delano, J.

    2010-01-01

    The ExxonMobil Bernard Harris Summer Science Camp (BHSSC) is a free, academic program of The Harris Foundation, which takes an active role in shaping education in students entering grade 6,7, or 8 in the fall. Science, technology, engineering and mathematics are critical to society’s infrastructure for the 21st century and preserving that future requires an investment, such as the BHSSC, in our youth today. At Rensselaer Polytechnic the topic of study in Summer 2009 was "The Search for Life" and 50 stu-dents learned about Astrobiology and also what was necessary for life outside of Earth. The object was to teach New York state education standards while using Astrobiology. Further, we wanted to show the students how the fields of science are connected. This is a great opportunity for Astrobiologist to teach the future gen-erations about their field while at the same time peak their interest in the subject.

  3. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  4. Astrobiology Workshop: Leadership in Astrobiology

    NASA Technical Reports Server (NTRS)

    DeVincenzi, D. (Editor); Briggs, G.; Cohen, M.; Cuzzi, J.; DesMarais, D.; Harper, L.; Morrison, D.; Pohorille, A.

    1996-01-01

    Astrobiology is defined in the 1996 NASA Strategic Plan as 'The study of the living universe.' At NASA's Ames Research Center, this endeavor encompasses the use of space to understand life's origin, evolution, and destiny in the universe. Life's origin refers to understanding the origin of life in the context of the origin and diversity of planetary systems. Life's evolution refers to understanding how living systems have adapted to Earth's changing environment, to the all-pervasive force of gravity, and how they may adapt to environments beyond Earth. Life's destiny refers to making long-term human presence in space a reality, and laying the foundation for understanding and managing changes in Earth's environment. The first Astrobiology Workshop brought together a diverse group of researchers to discuss the following general questions: Where and how are other habitable worlds formed? How does life originate? How have the Earth and its biosphere influenced each other over time? Can terrestrial life be sustained beyond our planet? How can we expand the human presence to Mars? The objectives of the Workshop included: discussing the scope of astrobiology, strengthening existing efforts for the study of life in the universe, identifying new cross-disciplinary programs with the greatest potential for scientific return, and suggesting steps needed to bring this program to reality. Ames has been assigned the lead role for astrobiology by NASA in recognition of its strong history of leadership in multidisciplinary research in the space, Earth, and life sciences and its pioneering work in studies of the living universe. This initial science workshop was established to lay the foundation for what is to become a national effort in astrobiology, with anticipated participation by the university community, other NASA centers, and other agencies. This workshop (the first meeting of its kind ever held) involved life, Earth, and space scientists in a truly interdisciplinary sharing of ideas related to life in the universe, and by all accounts was a resounding success.

  5. Astrobiology Roadmap

    NSDL National Science Digital Library

    Rothschild, Lynn

    This National Aeronautics and Space Administration (NASA) Astrobiology Roadmap outlines these multiple pathways for research and exploration and indicates how they might be prioritized and coordinated. The roadmap embodies the efforts of more than two-hundred scientists and technologists, including NASA employees, academic scientists whose research is partially funded by NASA grants, and many members of the broader community who have no formal association with NASA. This is a nice resource for those interested in physics, astronomy or space sciences.

  6. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  7. Make Astrobiology Yours

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    In this talk, I will give the AbGradCon attendees an overview of astrobiology activities ongoing at NASA as well as a brief description of the various funding programs and careers that they can pursue. After this, I will present to them the case that the future of the field is theirs to determine, and give input on how to effectively make astrobiology and NASA responsive to the needs of the community. This presentation will leverage my experiences leading various efforts in the early career astrobiology community, where I have served as a conference organizer, primer lead editor, community blogger, and unofficial liaison to NASA headquarters.

  8. An Evolving Astrobiology Glossary

    NASA Astrophysics Data System (ADS)

    Meech, K. J.; Dolci, W. W.

    2009-12-01

    One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be universally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astrobiology Institute so that it can continue to grow as an evolving resource for the astrobiology community.

  9. Astrobiology in the Classroom

    NSDL National Science Digital Library

    Tim Brennan

    2004-09-01

    Astrobiology is a relatively new field of study in science, one that has found a home in the curriculum of many universities. At the middle level, this multidisciplinary field is an exciting mix of topics and questions that can help students see how different fields of science can be integrated. The goal of this article is to define astrobiology and its aims, and to provide some ideas and inspiration for bringing it into a wide range of science classes.

  10. What Is Astrobiology?

    NSDL National Science Digital Library

    2008-09-09

    In this video from the Science and Technology Chat series, learn about astrobiology, an interdisciplinary field that uses biology, astronomy, and geology to study the origins of life on Earth and to search for possible life on other planets.

  11. Essays in the Non-Science Major Astrobiology Course

    NASA Astrophysics Data System (ADS)

    D'Cruz, Noella L.

    2014-06-01

    The non-science major "Life in the Universe" class offers students many opportunities to explore topics such as whether or not to send manned missions to Mars, which jovian moon is a suitable candidate for harboring life, etc. Some of these topics are suited to being offered as projects. At Joliet Junior College, Joliet, IL, we offer this general education class every semester to around 40 students. We expect our students to complete three short essays in a semester, instead of doing one or two large projects. The essays enable students to be engaged more deeply with some aspects of the course than is usually possible in the classroom. Some of our essay topics are based on suggestions in the textbook, others have been developed by us. In this poster, we will report on the essay topics and the attitudes of our Fall 2013 and Spring 2014 students to such essays.

  12. Astrobiological Stoichiometry

    NASA Astrophysics Data System (ADS)

    Young, Patrick A.; Desch, Steven J.; Anbar, Ariel D.; Barnes, Rory; Hinkel, Natalie R.; Kopparapu, Ravikumar; Madhusudhan, Nikku; Monga, Nikhil; Pagano, Michael D.; Riner, Miriam A.; Scannapieco, Evan; Shim, Sang-Heon; Truitt, Amanda

    2014-07-01

    Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the "Stellar Stoichiometry" Workshop Without Walls hosted at Arizona State University April 11-12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors. The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ~2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport.

  13. Astrobiological stoichiometry.

    PubMed

    Young, Patrick A; Desch, Steven J; Anbar, Ariel D; Barnes, Rory; Hinkel, Natalie R; Kopparapu, Ravikumar; Madhusudhan, Nikku; Monga, Nikhil; Pagano, Michael D; Riner, Miriam A; Scannapieco, Evan; Shim, Sang-Heon; Truitt, Amanda

    2014-07-01

    Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the "Stellar Stoichiometry" Workshop Without Walls hosted at Arizona State University April 11-12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors. The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ? 2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport. PMID:25014611

  14. Tumbleweed: Wind-propelled Surficial Measurements for Astrobiology and Planetary Science

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Behar, A. E.; Jones, J. A.; Carsey, F.; Coleman, M.; Bearman, G.; Buehler, M.; Boston, P. J.; McKay, C. P.; Rothschild, L.

    2004-01-01

    Tumbleweed is a wind-propelled long-range vehicle based on well-developed and tested technology, instrumented to perform surveys Mars analog environments for habitability and suitable for a variety of missions on Mars. Tumbleweeds are light-weight and relatively inexpensive, making it very attractive for multiple deployments or piggy-backing on a larger mission. Tumbleweeds with rigid structures are also being developed for similar applications. Modeling and testing have shown that a 6 meter diameter Tumbleweed is capable of climbing 25 hills, traveling over 1 meter diameter boulders, and ranging over a thousand kilometers. Tumbleweeds have a potential payload capability of about 10 kilograms with approximately 10-20 Watts of power. Stopping for science investigations can also be accomplished using partial deflation or other braking mechanisms. Surveys for Astrobiology and other applications of tumbleweeds are shown.

  15. Astrobiology in the Classroom

    ERIC Educational Resources Information Center

    Brennan, Tim

    2004-01-01

    Astrobiology is a relatively new field of study in science, one that has found a home in the curriculum of many major universities. It is a multidisciplinary field that draws participants from a range of scientific specialties: geology, physics, chemistry, engineering, computer science, and of course biology and astronomy. At the middle level, it…

  16. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  17. 2002 Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  18. The Living Universe: NASA and the Development of Astrobiology

    NASA Technical Reports Server (NTRS)

    Dick, Steven J.; Strick, James E.

    2004-01-01

    In the opening weeks of 1998 a news article in the British journal Nature reported that NASA was about to enter biology in a big way. A "virtual" Astrobiology Institute was gearing up for business, and NASA administrator Dan Goldin told his external advisory council that he would like to see spending on the new institute eventually reach $100 million per year. "You just wait for the screaming from the physical scientists (when that happens)," Goldin was quoted as saying. Nevertheless, by the time of the second Astrobiology Science Conference in 2002, attended by seven hundred scientists from many disciplines, NASA spending on astrobiology had reached nearly half that amount and was growing at a steady pace. Under NASA leadership numerous institutions around the world applied the latest scientific techniques in the service of astrobiology's ambitious goal: the study of what NASA's 1996 Strategic Plan termed the "living universe." This goal embraced nothing less than an understanding of the origin, history, and distribution of life in the universe, including Earth. Astrobiology, conceived as a broad interdisciplinary research program, held the prospect of being the science for the twenty-first century which would unlock the secrets to some of the great questions of humanity. It is no surprise that these age-old questions should continue into the twenty-first century. But that the effort should be spearheaded by NASA was not at all obvious to those - inside and outside the agency - who thought NASA's mission was human spaceflight, rather than science, especially biological science. NASA had, in fact, been involved for four decades in "exobiology," a field that embraced many of the same questions but which had stagnated after the 1976 Viking missions to Mars. In this volume we tell the colorful story of the rise of the discipline of exobiology, how and why it morphed into astrobiology at the end of the twentieth century, and why NASA was the engine for both the discipline's founding and for its transformation.

  19. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  20. Summer Research Experiences for Science and Art Teachers to Explore Astrobiology

    NASA Astrophysics Data System (ADS)

    Cola, J.; Gaucher, E.; Snell, T.; Greenwood, J.; Angra, A.; Zimmerman, C.; Williams, L. D.

    2012-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational program titled, "Life on the Edge: Astrobiology." The purpose of the program was to provide high school educators with the exposure, materials, and skills necessary to prepare our future workforce and to foster student interest in scientific discovery on Earth and throughout the universe. In an effort to promote and encourage entry into teaching careers, Georgia Tech paired teachers in the Georgia Intern-Fellowship for Teachers (GIFT) program with undergraduate students interested in becoming a teacher through the NSF Pre-Teaching REU program. The GIFT and Pre-Teaching fellows investigated extremophiles, which became the focus of a week-long, "Life on the Edge: Astrobiology " summer program developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty high school students were introduced to hands-on activities, such as astrobiology inspired art and techniques such as genomic DNA purification, gel electrophoresis, and Polymerase Chain Reaction (PCR). The impact of the Astrobiology program on the GIFT researchers, Pre-Teaching REU students, high school students, and faculty are discussed.

  1. Inaugural AGU Science Policy Conference

    NASA Astrophysics Data System (ADS)

    Uhlenbrock, Kristan

    2012-01-01

    AGU will present its inaugural Science Policy Conference, 30 April to 3 May 2012, at the Ronald Reagan Building and International Trade Center, located in downtown Washington, D. C. This conference will bring together leading scientists, policy makers, industry professionals, press, and other stakeholders to discuss natural hazards, natural resources, oceans, and Arctic science and the role these sciences play in serving communities. To bridge the science and policy fields, AGU plans to host this conference every 2 years and focus on the applications of Earth and space sciences to serve local and national communities. “Our nation faces a myriad of challenges such as the sustainability of our natural resources, current and future energy needs, and the ability to mitigate and adapt to natural and manmade hazards,” said Michael McPhaden, president of AGU. “It is essential that policies to address these challenges be built on a solid foundation of credible scientific knowledge.”

  2. MBL Astrobiology

    NSDL National Science Digital Library

    Marine Biological Laboratory

    This MBL Astrobiology portal includes information about the MBL Astrobiology team, its personnel, prior work, and publications. The MBL Astrobiology team works toward understanding the patterns and mechanisms of genome evolution and metabolic variation that allowed diverse microorganisms to adapt to new environments, generate novel phenotypes, and effect global-scale changes detectable by remote sensing. Their general strategy emphasizes the integration of molecular approaches to evolutionary biology with studies of metabolic activities in environments that most likely reflect conditions on early Earth. Physiological and microbial diversity studies focus on the hydrothermally altered sediments of Guaymas basin in the Gulf of California, the acidic, heavy metal laden Rio Tinto of southwestern Spain and isolates from the Juan de Fuca Ridge.

  3. Astrobiology Magazine

    NSDL National Science Digital Library

    With a sponsor such as NASA and a tagline that reads, "Search for Life in the Universe", the bar is set fairly high for the online Astrobiology magazine, and the results are quite nice. Produced by Helen Matsos, the magazine has been in existence since 2001, and contains thousands of short pieces about a compelling variety of topics, including life on Mars, extrasolar life, stellar evolution, and climate. From the site's homepage, visitors can peruse articles, view a list of "hot topics", and sign up to receive new editions of the magazine as they are published electronically. The site also has several thematic areas, including the compelling one dedicated to art of astrobiology. Here, visitors can look at visualizations of terrestrial climate, representations of Mars in pop culture, and other such items. The site is rounded out by a very well-designed search engine and an "On this day in..." feature that provides information about important dates in astrobiology.

  4. Astrobiology Curriculum

    NSDL National Science Digital Library

    TERC, in conjunction with NASA's Astrobiology Institute, has developed a set of educational materials for grades 5-12 (but written with 9th graders in mind). Using the field of astrobiology as a springboard, the lesson plans are designed to help students learn "that scientific knowledge is not a set of accumulated facts, but is a dynamic and, at times, confusing and amorphous set of current speculations." And if you're going to introduce confusion and amorphous speculation into the classroom, you're probably safest with astrobiology, an inherently fascinating field that should keep students interested and engaged. A series of downloadable resource guides are currently available, which "enable students to examine the nature of life, what it requires, its limits, and where it might be found."

  5. Using Astrobiology case studies to bring science decision making into the classroom: Mars sample return, exobiology and SETI

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    As citizens and decision makers of the future, today's students need to understand the nature of science and the implications of scientific discoveries and activities in a broad societal context. Astrobiology provides an opportunity to introduce students to real world decision-making involving cutting edge, multidisciplinary research topics that involve Earth, the solar system and beyond. Although textbooks and curricular materials may take years to develop, teachers can easily bring the latest astrobiological discoveries and hypotheses into the classroom in the form of case studies to complement science classes. For example, using basic biological, geological and chemical information from Earth and other planets, students can discuss the same questions that experts consider when planning a Mars Sample Return mission. How would you recognize extraterrestrial life? What would be the impact of bringing martian life to Earth? How should martian samples be handled and tested to determine whether they pose hazards to Earth's biota and ecosystems? If truly martian life exists, what are the implications for future human missions or colonies on the planet? What are the ethical and societal implications of discovering extraterrestrial life, whether in the solar system or beyond? What difference world it make if the extraterrestrial life is microbial and simple vs. intelligent and advanced? By integrating basic science concepts, up-to-date research findings, and information about laws, societal concerns, and public decision making, students can experience first-hand the kind of questions and challenges we're likely to face in the years ahead.

  6. Lunar and Planetary Science XXXV: Astrobiology: Analogs and Applications to the Search for Life

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Astrobiology: Analogs and Applications to the Search for Life" included the folowing reports:The Search for Life on Mars Using Macroscopically Visible Microbial Mats (Stromatolites) in 3.5/3.3 Ga Cherts from the Pilbara in Australia and Barberton in South Africa as Analogues; Life in a Mars Analog: Microbial Activity Associated with Carbonate Cemented Lava Breccias from NW Spitsbergen; Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features; Episodic Fossilization of Microorganisms on an Annual Timescale in an Anthropogenically Modified Natural Environment: Geochemical Controls and Implications for Astrobiology; Proterozoic Microfossils and Their Implications for Recognizing Life on Mars; Microbial Alteration of Volcanic Glass in Modern and Ancient Oceanic Crust as a Proxy for Studies of Extraterrestrial Material ; Olivine Alteration on Earth and Mars; Searching for an Acidic Aquifer in the R!o Tinto Basin. First Geobiology Results of MARTE Project; In-Field Testing of Life Detection Instruments and Protocols in a Mars Analogue Arctic Environment; Habitability of the Shallow Subsurface on Mars: Clues from the Meteorites; Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain; Characterization of the Organic Matter in an Archean Chert (Warrawoona, Australia); and The Solfatara Crater, Italy: Characterization of Hydrothermal Deposits, Biosignatures and Their Astrobiological Implication.

  7. Astrobiological polarimeter.

    PubMed

    Kothari, Neeraj; Jafarpour, Aliakbar; Trebino, Rick; Thaler, Tracey L; Bommarius, Andreas S

    2008-12-01

    Chirality is an excellent indicator of life, but naturally occurring astrobiological (as well as terrestrial) samples nearly always exhibit massive depolarizing light scattering, which renders conventional polarimeters useless. For astrobiological applications, we instead consider a novel polarimeter originally developed for non-invasive human-glucose measurement. It involves deliberately rotating in time the plane of polarization of a linearly polarized beam and detecting the shift in the plane of the rotating linearly polarized component of the transmitted light from a chiral sample relative to the input polarization plane. We find that this polarimeter can operate in 3 orders of magnitude more depolarizing scattering than conventional polarimeters. Furthermore, it can also be designed to be lightweight, compact, and energy efficient. PMID:19191536

  8. The Astrobiology Curriculum

    NSDL National Science Digital Library

    NASA

    This site is a preview version of the Astrobiology Curriculum, an interdisciplinary year-long course for middle and high school students developed by TERC and NASA. Through a series of investigations based on the search for life on other planets, students explore diverse concepts in chemistry, biology, Earth and space science, and engineering. Topics include the geologic history of planets, the chemical foundations of life, biological diversity, extremophiles, and the use of remote-sensing instrumentation. Students develop research skills through modeling, lab experiments, field observations, and image and data analysis, and are linked to data from NASA's planetary space missions. The site includes links to the overview, course description, sample activities with teacher guide, student guide and worksheets, and other astrobiology links.

  9. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    PubMed Central

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73??m. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging—Spectroscopy—Habitability—Arm instrument. Astrobiology 14, 132–169. PMID:24552233

  10. Science and Engineering Conference

    NSDL National Science Digital Library

    This is an activity about how to measure the interplanetary magnetic field, or IMF. Learners will act as scientists and engineers at a conference to explain their discoveries from earlier activities of the larger resource where they designed their own ways to measure the IMF. This activity should be used to illustrate how scientists and engineers working with the NASA STEREO-IMPACT mission have solved the same puzzle. This is Activity 3 in Session 3 of a larger resource, Exploring Magnetism in the Solar Wind.

  11. The narrative power of astrobiology

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    The narrative power of astrobiology: Telling the story of the quest to understand life's origins and the search for evidence of extraterrestrial life INTRODUCTION The story of the origins and evolution of life is a narrative with nearuniversal appeal. The story of life on Earth is meaningful to all people, and the search for life elsewhere is appealing across cultural boundaries. The U.S. National Aeronautics and Space Administration (NASA) funds an Astrobiology Program in NASA's Science Mission Directorate that is dedicated to the study of the origin, evolution, distribution, and future of life in the universe. Because public interest in astrobiology is great and advances in the field are rapid, the NASA Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. This strategic approach to communication is intended to promote the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by the Astrobiology Program. This paper will address how scientists in the field of astrobiology can participate in the telling of an ongoing story of interest to multicultural audiences and why it is important to tell this story. SUMMARY Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Goals of the NASA Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of past life on Earth with its changing environment, the formation and evolution of planets, links between planetary and biological evolution, the effects of climate and geology on habitability, and life's precursors and habitats in the outer solar system. Research dedicated to fulfilling these goals is conducted on Earth and in space, with a growing number of astrobiology investigations flying on planetary exploration missions. Since 1995, the field of astrobiology has grown rapidly, and the pace of discovery has been brisk. The possibility of extraterrestrial life is now a serious scientific question. Research findings over the past decade that are relevant to this question include the controversial 1996 claim of fossil evidence for microbial life in a martian meteorite, evidence of past and perhaps even present liquid water on Mars, the likelihood of a liquid water ocean on Europa, the possibility of liquid water beneath the surface of Titan, observations of a growing number of extrasolar planets, and identification of new forms of microbial life in an ever-widening range of extreme Earth environments. In the 21st century, the tempo of robotic planetary exploration is speeding up, and scientific and public attention is increasingly focusing on astrobiology research, especially the search for signs of life on Mars and other planetary bodies in our solar system. Mars is currently considered the best site in the solar system to search for evidence of past or present extraterrestrial life. And as Mars exploration proceeds, astrobiological interest in Enceladus, Europa, and Titan - outer solar system bodies that might have liquid water, prebiotic chemistry, or even life - is growing as new data are collected and analyzed. With an expanding array of solar system exploration endeavors involving and advancing astrobiology research, the NASA Astrobiology Program employs a communication strategy designed to establish that communication is an integral element of program planning and activities and an activity of fundamental importance to this scientific enterprise. This str

  12. Astrosociological Implications of Astrobiology (Revisited)

    Microsoft Academic Search

    Jim Pass

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical\\/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving

  13. Seventh international conference on coal science: Proceedings

    Microsoft Academic Search

    Michaelian

    1993-01-01

    This volume contains camera-ready papers based on poster presentations made at the Seventh International Conference on Coal Science, held in Banff, Alberta, September 12--17, 1993. The theme of the conference was ``Coal Science -- A Bridge to a Clean Future.`` The subject areas of the poster sessions span a wide range of topics in coal science. Papers were presented in

  14. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    PubMed

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73??m. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. PMID:24552233

  15. Australian Centre for Astrobiology

    NSDL National Science Digital Library

    The Australian Centre for Astrobiology performs research in physics, astronomy, and cosmology, as well as investigates the possibility of life beyond Earth. After learning about the Centre's latest news and events, users can find summaries of the many current research projects including studies of ancient hydrothermal systems, remote sensing of the atmosphere of Venus, and varying constants. The website features the research, papers, and achievements of Professor Paul Davies and the Centre's other members. Students and educators can discover research and scholarship opportunities. This site is also reviewed in the June 25, 2004 _NSDL Physical Sciences Report_.

  16. Astrobiology and Society: Building an Interdisciplinary Research Community

    PubMed Central

    Denning, Kathryn; Bertka, Constance M.; Dick, Steven J.; Harrison, Albert A.; Impey, Christopher; Mancinelli, Rocco

    2012-01-01

    Abstract This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers—astrobiologists as well as scholars in the humanities and social sciences—to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology. Key Words: Astrobiology—Extraterrestrial life—Life detection. Astrobiology 12, 958–965. PMID:23046203

  17. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; Liskowsky, David R.; Meadows, Victoria S.; Meyer, Michael A.; Pilcher, Carl B.; Nealson, Kenneth H.; Spormann, Alfred M.; Trent, Jonathan D.; Turner, William W.; Woolf, Neville J.; Yorke, Harold W.

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  18. Astrobiological polarimeter

    NASA Astrophysics Data System (ADS)

    Kothari, Neeraj; Jafarpour, Aliakbar; Thaler, Tracey L.; Trebino, Rick; Bommarius, Andreas S.

    2007-09-01

    Chirality is an excellent indicator of life, but naturally occurring terrestrial and extra-terrestrial samples nearly always exhibit massive depolarizing light scattering (DLS). This problem bears a striking resemblance to that of developing a chirality-based non-invasive glucose monitor for diabetics. Both applications require a lightweight, compact, efficient, and robust polarimeter that can operate despite significant DLS. So for astrobiological applications, we developed a polarimeter that was inspired from a polarimetry technique previously investigated for non-invasive in-vivo glucose-sensing. Our polarimeter involves continuously rotating the plane of linear polarization of a laser beam to probe a sample with DLS, and analyzing its transmission with a fixed analyzer to obtain a sinusoidal voltage signal. We lock-in detect this signal using a reference signal from an analogous set up without any sample. With milk as a scatterer, we find that this polarimeter detects chirality in the presence of three orders of magnitude more DLS than conventional polarimeters. It can accurately measure 0.1° of polarization rotation in the presence of 15% milk.

  19. Conferences and Sessions: NSTA Area Conference on Science Education: Sound Science: Southern Style, Nashville, 2010

    NSDL National Science Digital Library

    1900-01-01

    Join us in Music City for NSTA's December conference on science education. Conference strands include: Building Capacity to Lead Professional Learning The Brain-considerate Classroom Understanding a Designed World

  20. Astrosociological Implications of Astrobiology (Revisited)

    NASA Astrophysics Data System (ADS)

    Pass, Jim

    2010-01-01

    Supporters of astrobiology continue to organize the field around formalized associations and organizations under the guise of the so-called ``hard'' sciences (e.g., biology and the related physical/natural sciences). The so-called ``soft'' sciences-including sociology and the other social sciences, the behavioral sciences, and the humanities-remain largely separated from this dynamically growing field. However, as argued in this paper, space exploration involving the search for extraterrestrial life should be viewed as consisting of two interrelated parts (i.e., two sides of the same coin): astrobiology and astrosociology. Together, these two fields broadly combine the two major branches of science as they relate to the relationship between human life and alien life, as appropriate. Moreover, with a formalized system of collaboration, these two complimentary fields would also focus on the implications of their research to human beings as well as their cultures and social structures. By placing the astrosociological implications of astrobiology at a high enough priority, scientists interested in the search for alien life can augment their focus to include the social, cultural, and behavioral implications that were always associated with their work (yet previously overlooked or understated, and too often misunderstood). Recognition of the astrosociological implications expands our perception about alien life by creating a new emphasis on their ramifications to human life on Earth.

  1. Proceedings of the 38th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,

  2. Archive: From Astrobiology to Zoology: Igniting Students' Interests in Science Careers , April 30, 2008

    NSDL National Science Digital Library

    1900-01-01

    This Web Seminar, sponsored by Sally Ride Science, took place on April 30, 2008, from 6:30 p.m. to 8:00 p.m., Eastern Time. Presenting were Dr. Karen Flammer, Research Physicist at University of California in San Diego and Senior Vice-President at Sally Ride Science and Julie Miller from Olathe District Schools in Kansas. This web seminar focused on strategies that teachers can use to ignite students' interests in science careers. For more information about this web seminar, its presenter(s), read what participants said about it, and to see and download its PowerPoint slides go here.

  3. Archive: From Astrobiology to Zoology: Igniting Students' Interests in Science Careers , May 20, 2008

    NSDL National Science Digital Library

    1900-01-01

    This Web Seminar, sponsored by Sally Ride Science, took place on May 20, 2008, from 6:30 p.m. to 8:00 p.m., Eastern Time. Presenting were Brenda Wilson, Vice-President for Content and Out-of-School Programs at Sally Ride Science and Julie Miller from Olathe District Schools in Kansas. This web seminar focused on four science fields and a number of strategies that teachers can use to ignite students' interests in them. For more information about this web seminar, its presenter(s), read what participants said about it, and to see and download its PowerPoint slides go here .

  4. Astrobiological Complexity with Probabilistic Cellular Automata

    E-print Network

    Vukoti?, B

    2012-01-01

    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and ne...

  5. Astrobiology Undergraduate Education: Students' Knowledge and Perceptions of the Field

    NASA Astrophysics Data System (ADS)

    Foster, Jamie S.; Drew, Jennifer C.

    2009-04-01

    With the field of astrobiology continually evolving, it has become increasingly important to develop and maintain an educational infrastructure for the next generation of astrobiologists. In addition to developing more courses and programs for students, it is essential to monitor the learning experiences and progress of students taking these astrobiology courses. At the University of Florida, a new pilot course in astrobiology was developed that targeted undergraduate students with a wide range of scientific backgrounds. Pre- and post-course surveys along with knowledge assessments were used to evaluate the students' perceived and actual learning experiences. The class incorporated a hybrid teaching platform that included traditional in-person and distance learning technologies. Results indicate that undergraduate students have little prior knowledge of key astrobiology concepts; however, post-course testing demonstrated significant improvements in the students' comprehension of astrobiology. Improvements were not limited to astrobiology knowledge. Assessments revealed that students developed confidence in science writing as well as reading and understanding astrobiology primary literature. Overall, student knowledge of and attitudes toward astrobiological research dramatically increased during this course, which demonstrates the ongoing need for additional astrobiology education programs as well as periodic evaluations of those programs currently underway. Together, these approaches serve to improve the overall learning experiences and perceptions of future astrobiology researchers.

  6. Astrobiology undergraduate education: students' knowledge and perceptions of the field.

    PubMed

    Foster, Jamie S; Drew, Jennifer C

    2009-04-01

    With the field of astrobiology continually evolving, it has become increasingly important to develop and maintain an educational infrastructure for the next generation of astrobiologists. In addition to developing more courses and programs for students, it is essential to monitor the learning experiences and progress of students taking these astrobiology courses. At the University of Florida, a new pilot course in astrobiology was developed that targeted undergraduate students with a wide range of scientific backgrounds. Pre- and post-course surveys along with knowledge assessments were used to evaluate the students' perceived and actual learning experiences. The class incorporated a hybrid teaching platform that included traditional in-person and distance learning technologies. Results indicate that undergraduate students have little prior knowledge of key astrobiology concepts; however, post-course testing demonstrated significant improvements in the students' comprehension of astrobiology. Improvements were not limited to astrobiology knowledge. Assessments revealed that students developed confidence in science writing as well as reading and understanding astrobiology primary literature. Overall, student knowledge of and attitudes toward astrobiological research dramatically increased during this course, which demonstrates the ongoing need for additional astrobiology education programs as well as periodic evaluations of those programs currently underway. Together, these approaches serve to improve the overall learning experiences and perceptions of future astrobiology researchers. PMID:19355819

  7. Astrobiology - The New Synthesis

    NASA Astrophysics Data System (ADS)

    Sik, A.; Simon, T.

    Background In connection with the complex planetology-education in Hungary [1] we have compiled an Astrobiology coursebook - as a base of its teaching in universities and perhaps in secondary schools as well. We tried to collect and assemble in a logical and thematical order the scientific breakthroughs of the last years, that made possible the fast improvement of astrobiology. The followings are a kind of summary of these. Introduction - The ultimate science Astrobiology is a young science, that search for the possibility, forms and places of extraterrestrial life. But it is not SETI, because do not search for intelligent life, just for living organisms, so SETI is a part of astrobiology. and an extremely important statement: we can search for life-forms that similar to terrestrial life in physiology so we can recognize it as life. Astrobiology is one of the most dynamical-developing sciences of the 21st century. To determine its boundaries is difficult because the complex nature of it: astrobiology melt into itself lot of other sciences, like a kind of ultimate science. The fundamental questions are very simple [2]: When, where and how converted the organic matter into life?; How does life evolve in the Universe?; Has it appeared on other planets?; How does it spread in time and space?; and What is the future of terrestrial life? However, trying to find the answers is quite difficult. So an astrobiologist has to be aware of the basics of astronomy, space research, earth and planetary sciences, and life sciences (mainly ecology, genetics, molecular and evolution biology). But it is not enough - the newest results of these at least as important as the basic knowledge. Part I. - Astro 1. Exoplanets 1995 was a particular year in astronomy: we have found the first planet out of the Solar System. Since that time the discovery of exoplanets progress fast: nowdays more than 80 examples are known and just 6 years passed [3]. The detailed analysis of these distant objects has verified and solidified our theo- ries of planet-formation. The places of this process are contacting clouds of gas and dust, like the Orion Nebula. In these star-birth clouds we can observe clusters of mat- ter in which the temperature and pressure reach a limit and a new-born star begin to "function", or rather radiate. Around the star, the remnant matter settle into a plane, 1 forming a protoplanetary disk. It has different zones: heavy elements nearer to the star, light elements farther from it. The planets are taking shape from these zones - perhaps rocky types and gas giants as well. To see so much example we can state that planetary system-formation is an absolutely normal, everyday process in the Universe. As a consequence there are a lot of planetary system near to our Earth, with planets orbiting around stars. Though, the known exoplanets are not too Earth-like objects. Most of them seems to be lonely gas giants (with mass bigger than our Jupiter) nearer to their star then rocky planets to our Sun (the only known multiple exoplanet sys- tem is around Upsilon Andromedae [4]). Probable the reason of this difference is the weak capability of our instrument and not the speciality of our system. By using ad- vanced methods and instruments (like Next Generation Space Telescope or Terrestrial Planet Finder spacecraft, planned to launch in 5 years [5]) rocky-like planets will be found as well. 2. Water in the Solar System Looking closer, the knowledge of our Solar System has increased intensively during the last years of the 20th century - due to the planetary spacecraft missions, like Lunar Prospector, Mars Pathfinder, Mars Global Surveyor, Galileo and NEAR-Shoemaker. The most important discovery, that liquid water is quite general in our local cosmic environment. and as we know this is the most important condition of life. First and foremost, the most important is Planet Mars. By reconstructing the surface evolution of our outer neighbor it seems that in the past, more billion years ago it had global ocean, the depressions were filled with sea

  8. Microgravity Materials Science Conference 2000. Volume 3

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Bennett, Nancy; McCauley, Dannah; Murphy, Karen; Poindexter, Samantha

    2001-01-01

    This is Volume 3 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close to 350 people, Posters were available for viewing during the conference and a dedicated poster session was held on the second day. Nanotechnology, radiation shielding materials, Space Station science opportunities, biomaterials research, and outreach and educational aspects of the program were featured in the plenary talks. This volume, the first to be released on CD-ROM for materials science, is comprised of the research reports submitted by the Principal Investigators at the conference.

  9. Microgravity Materials Science Conference 2000. Volume 2

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 2 of 3 of the 2000 Microgravity Materials Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the Microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference- In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference %%,its to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in material,, science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close to 350 people, Posters were available for viewing during the conference and a dedicated poster session was held on the second day. Nanotechnology, radiation shielding materials, Space Station science opportunities, biomaterials research, and outreach and educational aspects of the program were featured in the plenary talks. This volume, the first to be released on CD-ROM for materials science, is comprised of the research reports submitted by the Principal Investigators at the conference.

  10. Microgravity Materials Science Conference 2000. Volume 1

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan (Editor); Bennett, Nancy (Editor); McCauley, Dannah (Editor); Murphy, Karen (Editor); Poindexter, Samantha (Editor)

    2001-01-01

    This is Volume 1 of 3 of the 2000 Microgravity Material Science Conference that was held June 6-8 at the Von Braun Center, Huntsville, Alabama. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division (MRD) at NASA Headquarters, and hosted by NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the fourth NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approx. 200 investigators, all of whom made oral or poster presentations at this conference. In addition, posters and exhibits covering NASA microgravity facilities, advanced technology development projects sponsored by the NASA Microgravity Research Division at NASA Headquarters, and commercial interests were exhibited. The purpose of the conference was to inform the materials science community of research opportunities in reduced gravity and to highlight the Spring 2001 release of the NASA Research Announcement (NRA) to solicit proposals for future investigations. It also served to review the current research and activities in materials science, to discuss the envisioned long-term goals. and to highlight new crosscutting research areas of particular interest to MRD. The conference was aimed at materials science researchers from academia, industry, and government. A workshop on in situ resource utilization (ISRU) was held in conjunction with the conference with the goal of evaluating and prioritizing processing issues in Lunar and Martian type environments. The workshop participation included invited speakers and investigators currently funded in the material science program under the Human Exploration and Development of Space (HEDS) initiative. The conference featured a plenary session every day with an invited speaker that was followed by three parallel breakout sessions in subdisciplines. Attendance was close to 350 people. Posters were available for viewing during the conference and a dedicated poster session was held on the second day. Nanotechnology radiation shielding materials, Space Station science opportunities, biomaterials research, and outreach and educational aspects of the program were featured in the plenary talks. This volume, the first to be released on CD-ROM for materials science, is comprised of the research reports submitted by the Principal Investigators at the conference.

  11. Astro-Venture: An Integrated Earth and Space Science Curriculum Supplement Focused on Astrobiology

    Microsoft Academic Search

    C. M. O'Guinn; K. L. Wilmoth; L. K. Coe

    2005-01-01

    Astro-Venture is an example of a NASA educational product that successfully integrates Earth and space science by engaging students in grades 5-8 in the search for and design of a planet with the necessary characteristics for human habitation. Students study the Earth to understand how it meets human needs for survival in the areas of astronomy, geology, biology and atmospheric

  12. Astrobiology and society: building an interdisciplinary research community.

    PubMed

    Race, Margaret; Denning, Kathryn; Bertka, Constance M; Dick, Steven J; Harrison, Albert A; Impey, Christopher; Mancinelli, Rocco

    2012-10-01

    This paper reports recent efforts to gather experts from the humanities and social sciences along with astrobiologists to consider the cultural, societal, and psychological implications of astrobiology research and exploration. We began by convening a workshop to draft a research roadmap on astrobiology's societal implications and later formed a Focus Group on Astrobiology and Society under the auspices of the NASA Astrobiology Institute (NAI). Just as the Astrobiology Science Roadmap and various astrobiology science focus groups have helped researchers orient and understand their work across disciplinary contexts, our intent was to apply the same approach to examine areas beyond the physical and life sciences and expand interdisciplinary interaction and scholarly understanding. These efforts continue as an experiment in progress, with an open invitation to interested researchers-astrobiologists as well as scholars in the humanities and social sciences-to become involved in research, analysis, and proactive discussions concerning the potential impacts of astrobiology on society as well as the possible impacts of society on progress in astrobiology. PMID:23046203

  13. The Astrobiology Web

    NSDL National Science Digital Library

    SpaceRef Interactive Inc.

    This site contains astrobiology news and links about: astrochemistry, bioinformatics, biosatellites, gravitational biology, hydrothermal vent communities, genomics, astropaleobiology, radiation physiology, the search for exterrestrial intelligence (SETI), extremophiles, exopaleontology, cell biology, evolution, planetary protection, and space medicine. There are also links to NASA TV and video feeds, astrobiology press releases, and an introduction to what an astrobiologist is.

  14. Astrobiology - The New Synthesis

    Microsoft Academic Search

    A. Sik; T. Simon

    2002-01-01

    Background In connection with the complex planetology-education in Hungary [1] we have compiled an Astrobiology coursebook - as a base of its teaching in universities and perhaps in secondary schools as well. We tried to collect and assemble in a logical and thematical order the scientific breakthroughs of the last years, that made possible the fast improvement of astrobiology. The

  15. NASA Astrobiology Institute

    NSDL National Science Digital Library

    The National Aeronautics and Space Administration (NASA) and other leading academic or research organizations have joined together to create the NASA Astrobiology Institute. The institute's objectives are to promote, conduct, and lead integrated astrobiology (study of life in the universe) research and to train young researchers. Sections included at the Website are News & Views, Operations, and Learning Center.

  16. The Native American Astrobiology in the Secondary Classroom Initiative

    NASA Astrophysics Data System (ADS)

    Berthelson, M.; Morales, C.; Ceballos, M.

    2010-04-01

    Astrobiology as a platform to engage Native American K-12 Students into the sciences and mathematics with the intent of helping them change any negative views of science and mathematics into possible future educational goals and career paths.

  17. National Workshop on Astrobiology: The Life Science Involvement of AAS I Laben

    NASA Astrophysics Data System (ADS)

    Adami, Giorgio

    2006-12-01

    The search for traces of past and present life is a complex and multidisciplinary research activity involving several scientific heritages and a specific industrial ability for planetary exploration. Laben was established in 1958 to design and manufacture electronic instruments for research in nuclear physics. In the mid 2004 the company was merged with Alenia Spazio. It is now part of Alcatel Alenia Space, a French Italian joint venture. Alcatel Alenia Space Italia SpA is a Finmeccanica Company. Currently the plant of Vimodrone provides a wide heritage in life science oriented to space application. The experience in Space Life Science is consolidated in the following research areas: (1) Physiology: Mouse models related to studies on human physiology Human neuroscience research and dosimetry (2) Animal Adaptation and Behaviour: mice behaviour related to stabling stress (3) Developmental Biology: aquatic microorganisms cultivation (4) Cell culture & Biotechnology: Protein crystal growth General purpose Multiwell Next Biotechnology studies and development: Bio reactor, mainly oriented to tissue engineering Microsensor for tissue control (organ replacement) Multiwell for adherent cell culture or for automated biosensor based on cell culture Experiment Container for organic systems Experiment Container for small animals Instrumentation based on fluorescent Biosensors Sensors for Life science experiments for Biopan capsule and Space Vehicle Ray Shielding Materials Random Positioning Machine specialisation (Support ground equipment) The biological features of this heritage is at disposal for the exobiology multi science. The involvement of industries, from the beginning of the exobiology projects, allows a cost effective technologies closed loop development between Research Centres, Principal Investigators and industry.

  18. The astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Coll, P.; Cabane, M.; Hebrard, E.; Israel, G.; Nguyen, M.-J.; Szopa, C.; Gpcos Team

    Largest satellite of Saturn and the only satellite in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects: Its analogies with planet Earth, in spite of much lower temperatures, The Cassini-Huygens data have largely confirmed the many analogies between Titan and our own planet. Both have similar vertical temperature profiles, (although much colder, of course, on Titan). Both have condensable and non condensable greenhouse gases in their atmosphere. Both are geologically very active. Furthermore, the data also suggest strongly the presence of a methane cycle on Titan analogous to the water cycle on Earth. The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the organic matter in Titan low atmosphere (stratosphere and troposphere) is mainly concentrated in the aerosol particles. Because of the vertical temperature profile in this part of the atmosphere, most of the volatile organics are probably mainly condensed on the aerosol particles. The nucleus of these particles seems to be made of complex macromolecular organic matter, well mimicked in the laboratory by the "Titan's tholins". Now, laboratory tholins are known to release many organic compounds of biological interest, such as amino acids and purine and pyrimidine bases, when they are in contact with liquid water. Such hydrolysis may have occurred on the surface of Titan, in the bodies of liquid water which episodically may form on Titan's surface from meteoritic and cometary impacts. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. The possible emergence and persistence of Life on Titan 1 All ingredients which seems necessary for Life are present on Titan : • liquid water : permanently as a deep sub-surface ocean, and even episodically on the surface, • organic matter : in the internal structure, from chondritic materials, and in the atmosphere and on the surface, from the atmospheric organic chemistry • and energy : in the atmosphere (solar UV photons, energetic electrons from Saturn magnetosphere and cosmic rays) and, probably, in the environment of the sub-surface ocean (radioactive nuclei in the deep interior and tidal energy dissipation) as also supported by the likely presence of cryovolcanism on the surface Thus, it cannot be excluded that life may have emerged on or in Titan. In spite of the extreme conditions in this environment life may have been able to adapt and to persist. Many data are still expected from the Cassini-Huygens mission and future astrobiological exploration mission of Titan are now under consideration. Nevertheless, Titan already looks like another word, with an active prebiotic-like chemistry, but in the absence of permanent liquid water, on the surface: a natural laboratory for prebiotic-like chemistry. References. Fortes, A.D. (2000), `Exobiological implications of a possible ammonia-water ocean inside Titan', Icarus 146, 444-452 Raulin, F. (2005), `Exo-Astrobiological Aspects of Europa and Titan: From Observations to Speculations', Space Science Review 116 (1-2), 471-496. Nature, (2005), `The Huygens probe on Titan', 8 News & Views, Articles and Letters 438, 756-802 Schulze-Makuch, D., and Grinspoon D.H. (2005), `Biologically enhanced energy and carbon cycling on Titan?',Astrobiology 5, 560-567. 2

  19. Bridging Science and Policy: The AGU Science Policy Conference

    NASA Astrophysics Data System (ADS)

    Hankin, E. R.; Uhlenbrock, K.; Landau, E. A.

    2013-12-01

    In recent years, science has become inextricably linked to the political process. As such, it is more important now than ever for science to forge a better relationship with politics, for the health of both science and society. To help meet this need, the American Geophysical Union (AGU) strives to engage its members, shape policy, and inform society about the excitement of Earth and space science and its role in developing solutions for the sustainability of the planet. In June 2013, AGU held its second annual Science Policy Conference in Washington, D.C. The goal of the conference is to provide a new forum for diverse discussions and viewpoints on the challenges and opportunities of science policy, with a focus on applications of Earth and space science that serve local, national, and international communities. The meeting brought together more than 300 scientists, policy makers, industry professionals, members of the press, and other stakeholders to discuss the topics concerning the Arctic, climate change, oceans, energy, technology and infrastructure, and natural hazards science as they relate to challenges impacting society. Sessions such as 'The Water-Energy Nexus,' 'Potential for Megadisasters,' 'The Changing Ocean and Impacts on Human Health,' and 'Drowning and Drought: Agricultural Impacts of Climate Change' are examples of some of the intriguing and timely science policy issues addressed at the conference. The findings from the conference were used to develop a summary report. The report highlights key facts and figures to be used as a resource in discussions with policy makers and other stakeholders regarding the conference topics. This presentation will discuss the goals and outcomes of the conference and how the event represents one of the many ways AGU is approaching its 'Science and Society' priority objective as part of the Union's strategic plan; namely by increasing the effectiveness and recognition of AGU among policy makers as an authoritative source of integrated, interdisciplinary Earth and space science information.

  20. International Conference on Applied Sciences (ICAS2013)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2014-03-01

    The International Conference on Applied Sciences (ICAS2013) took place in Wuhan, P R China from 26-27 October 2013 at the Military Economics Academy. The conference is regularly organized, alternately in Romania and in P R China, by ''Politehnica'' University of Timi?oara, Romania, and Military Economics Academy of Wuhan, P R China, with the aim to serve as a platform for the exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The conference has been organized for the first time in 15-16 June 2012 at the Engineering Faculty of Hunedoara, Romania. The topics of the conference covered a comprehensive spectrum of issues: Economical sciences Engineering sciences Fundamental sciences Medical sciences The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in economics, defense, medicine, etc. The number of registered participants was nearly 90 from 5 countries. During the two days of the conference 4 invited and 36 oral talks were delivered. A few of the speakers deserve a special mention: Mircea Octavian Popoviciu, Academy of Romanian Scientist — Timi?oara Branch, Correlations between mechanical properties and cavitation erosion resistance for stainless steels with 12% chromium and variable contents of nickel; Carmen Eleonora H?r?u, ''Politehnica'' University of Timi?oara, SWOT analysis of Romania's integration in EU; Ding Hui, Military Economics Academy of Wuhan, Design and engineering analysis of material procurement mobile operation platform; Serban Rosu, University of Medicine and Pharmacy ''Victor Babe?'' Timi?oara, Cervical and facial infections — a real life threat, among others. Based on the work presented at the conference, 14 selected papers are included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new researches in the various fields of materials engineering, mechanical engineering, computers engineering, mathematical engineering and clinical engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further researches in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields. All papers published in this volume of IOP Conference Series: Materials Science and Engineering (MSE) have been peer reviewed through processes administered by the editors of the ICAS2013 proceedings, Ludovic Dan Lemle and Yiwen Jiang. Special thanks should be directed to the organizing committee for their tremendous efforts in organizing the conference: General Chair Zhou Laixin, Military Economics Academy of Wuhan Co-chairs Du Qifa, Military Economics Academy of Wuhan Serban Viorel-Aurel, ''Politehnica'' University of Timi?oara Fen Youmei, Wuhan University Lin Pinghua, Huazhong University of Science and Technology Members Lin Darong, Military Economics Academy of Wuhan Guo Zhonghou, Military Economics Academy of Wuhan Sun Honghong, Military Economics Academy of Wuhan Liu Dong, Military Economics Academy of Wuhan We thank the authors for their contributions and we would also like to express our gratitude everyone who contributed to this conference, especially for the generous support of the sponsor: micromega S C Micro-Mega HD S A Ludovic Dan Lemle and Yiwen Jiang Coordinators of the Scientific Committee of ICAS2013 Deatails of organizers and members of the scientific commmittee are available in the PDF

  1. -1first wageningen conference on applied soil science scientific program

    E-print Network

    Wall, Diana

    - 1first wageningen conference on applied soil science scientific program With this conference we want to emphasize the importance of soil science for combating and mitigating the challenges of our- annual Wageningen Conference on Applied Soil Science; informally: Wageningen Soil Meeting), we have

  2. Proceedings of the 40th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology; Seek Out and Explore: Upcoming and Future Missions; Mars: Early History and Impact Processes; Mars Analogs II: Chemical and Spectral; Achondrites and their Parent Bodies; and Planning for Future Exploration of the Moon The poster sessions were: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1; LRO and LCROSS; Geophysical Analysis of the Lunar Surface and Interior; Remote Observation and Geologic Mapping of the Lunar Surface; Lunar Spectroscopy; Venus Geology, Geophysics, Mapping, and Sampling; Planetary Differentiation; Bunburra and Buzzard Coulee: Recent Meteorite Falls; Meteorites: Terrestrial History; CAIs and Chondrules: Records of Early Solar System Processes; Volatile and Organic Compounds in Chondrites; Crashing Chondrites: Impact, Shock, and Melting; Ureilite Studies; Petrology and Mineralogy of the SNC Meteorites; Martian Meteorites; Phoenix Landing Site: Perchlorate and Other Tasty Treats; Mars Polar Atmospheres and Climate Modeling; Mars Polar Investigations; Mars Near-Surface Ice; Mars: A Volatile-Rich Planet; Mars: Geochemistry and Alteration Processes; Martian Phyllosilicates: Identification, Formation, and Alteration; Astrobiology; Instrument Concepts, Systems, and Probes for Investigating Rocks and Regolith; Seeing is Believing: UV, VIS, IR, X- and Gamma-Ray Camera and Spectrometer Instruments; Up Close and Personal: In Situ Analysis with Laser-Induced Breakdown Spectroscopy and Mass Spectrometry; Jupiter and Inscrutable Io; Tantalizing Titan; Enigmatic Enceladus and Intriguing Iapetus; Icy Satellites: Cryptic Craters; Icy Satellites: Gelid Geology/Geophysics; Icy Satellites: Cool Chemistry and Spectacular Spectroscopy; Asteroids and Comets; Comet Wild 2: Mineralogy and More; Hypervelocity Impacts: Stardust Models, LDEF, and ISPE; Presolar Grains; Early Nebular Processes: Models and Isotopes; Solar Wind and Genesis: Measurements and Interpretation; Education and Public Outreach; Mercury; Pursuing Lunar Exploration; Sources and Eruptionf Lunar Basalts; Chemical and Physical Properties of the Lunar Regolith; Lunar Dust and Transient

  3. The Astrobiology of Titan

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    2014-02-01

    Titan is a target of astrobiological interest because of its thick atmosphere, ample organics inventory, large size and presence of water ice and rock. Multiple habitable environments, or prebiotically interesting environments, may exist.

  4. Galactic Habitable Zone and Astrobiological Complexity

    NASA Astrophysics Data System (ADS)

    Vukotic, B.

    2012-12-01

    This is a short thesis description and for the sake of brevity most things are left out. For more details, those interested are further directed to the thesis related papers in this article reference list. Thesis itself is available at the University of Belgrade library "Svetozar Markovic" (Serbian version only). In this thesis we study the astrobiological history of the Galactic habitable zone through the means of numerical modeling. First group of simulations are unidimensional (time-axis) toy models examine the influence of global regulation mechanisms (gamma-ray bursts and supernovae) on temporal evolution of Galactic astrobiological complexity. It is shown that under the assumption of global regulation classical anti SETI arguments can be undermined. Second group of simulations are more complex bidimensional probabilistic cellular automata models of the Galactic thin disk. They confirm the findings of the toy models and give some insights into the spatial clustering of astrobiological complexity. As a new emerging multidisciplinary science the basic concepts of astrobiology are poorly understood and although all the simulations present here do not include some basic physics (such as Galactic kinematics and dynamics), the input parameters are somewhat arbitrary and could use a future refinement (such as the boundaries of the Galactic habitable zone). This is the cause for low weight and high uncertainty in the output results of the simulations. However, the probabilistic cellular automata has shown as a highly adaptable modeling platform that can simulate various class of astrobiological models with great ease.

  5. Astrobiology: Discovering New Worlds of Life.

    ERIC Educational Resources Information Center

    James, Charles C.; Van Dover, Cindy Lee

    2001-01-01

    Emphasizes discoveries at the frontiers of science. Includes an instructional poster illustrating the hydrothermal vent communities on the deep ocean floor. Describes research activities related to the new discipline of astrobiology, a multidisciplinary approach to studying the emergence of life in the universe. Research activities include the…

  6. MEASUREMENT SCIENCE AND STANDARDS IN FORENSIC HANDWRITING ANALYSIS CONFERENCE & WEBCAST

    E-print Network

    Magee, Joseph W.

    1 MEASUREMENT SCIENCE AND STANDARDS IN FORENSIC HANDWRITING ANALYSIS CONFERENCE & WEBCAST IMPORTANT and Standards in Forensic Handwriting Analysis Conference & Webcast that starts at 9:00AM Eastern Time on June 4

  7. 77 FR 4568 - Annual Computational Science Symposium; Public Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ...Annual Computational Science Symposium; Public...Annual Computational Science Symposium...advance computational science. At the conference...specific challenges in accessing and reviewing data to support product development. These...

  8. Astrobiology Research Experience for Undergraduates: An Interdisciplinary REU Program at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Devore, E. K.

    2009-12-01

    The SETI Institute hosts a summer Astrobiology Research Experience for Undergraduates program for highly motivated students interested in astrobiology research. Students work with scientists at the SETI Institute and at the nearby NASA Ames Research Center on projects spanning the field of astrobiology from microbiology to planetary geology to astronomy and astrophysics. Each student is mentored by a scientist for his/her summer research project. As astrobiology is interdisciplinary, the first week includes a seminar series to provide a broad foundation in the field as the students begin their research projects. The 10-week program includes a week-long field trip to the SETI Institute’s Allen Telescope Array, located at the Hat Creek Radio Astronomy Observatory in Northern California, as well as a field experience at hydrothermal systems at nearby Lassen Volcanic National Park. Students also participate in local field trips to places like the California Academy of Sciences and other nearby locations of scientific interest, and attend seminars, lectures, and discussions on astrobiology. Students are also invited to attend events at nearby NASA Ames Research Center, which offers the opportunity to interact with other undergraduate and graduate students participating in NASA summer programs. At the end of the program, students write up and present their research projects, and mentors recommend some projects for submission to a national scientific conference, which the selected students will be funded to attend. The Astrobiology REU program emphasizes three main areas, which are listed in the table along with typical project themes. Each year, specific student research projects are described on the website, and students are asked to select the three that most interest them as a part of their applications. Applications are due in early February. Typically, 10 students apply for each available position. Students have been selected from colleges and universities national-wide, including community colleges. The Astrobiology REU program has served 4 classes of students, and is funded through summer of 2011. A total of 61 students have participated (12 in 2006, 17 in 2007, 17 in 2008, and 15 in 2009); all have successfully completed their internships. Of these students, 59% were women, and 21% were minorities. To date 18 students have gone on to graduate studies, in Master’s or PhD programs at schools including Harvard, UC Berkeley, UC Santa Cruz, Stanford, Univ. of Nebraska, and many others, in fields including astronomy, optical science, space life sciences, geology, physics, mechanical engineering, and molecular and cellular biology. The SETI Institute is a non-profit private scientific research institution located in California’s Silicon Valley. The Astrobiology REU program is supported by National Science Foundation Grant AST-0852095 with additional funding from NASA’s Astrobiology Institute, the SETI Institute and private donors.Main research areas and typical project themes

  9. Lunar and Planetary Science XXXV: Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Astrobiology Stew: Pinch of Microbes, Smidgen of UV, Touch of Organics, and Dash of Meteorites includes the following topics: 1) Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential? 2) An Analysis of Potential Photosynthetic Life on Mars; 3) Radiation Inactivation of Bacterial spores on Mars; 4) Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers; 5) Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents; 6) Signs of Life in Meridiani Planum-What Might Opportunity See (or Miss)? 7) Isolation of PUrines and Pyrimidines from the Murchison Meteorite Using Sublimation; and 8) Relative Amino Acid Composition of CM1 Carbonaceous Chondrites.

  10. Third annual women in science and technology conference

    SciTech Connect

    Not Available

    1992-12-31

    This report presents discussions presented at the conference for women in science and technology. Topics include balancing careers with the family, choices concerning graduate schools, and sexual harassment.

  11. Third annual women in science and technology conference

    SciTech Connect

    Not Available

    1992-01-01

    This report presents discussions presented at the conference for women in science and technology. Topics include balancing careers with the family, choices concerning graduate schools, and sexual harassment.

  12. Astrobiological complexity with probabilistic cellular automata.

    PubMed

    Vukoti?, Branislav; ?irkovi?, Milan M

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches. PMID:22832998

  13. Astrobiological Complexity with Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Vukoti?, Branislav; ?irkovi?, Milan M.

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.

  14. Cultural Aspects of Astrobiology: A Preliminary Reconnaissance at

    NASA Astrophysics Data System (ADS)

    Dick, Steven

    NASA's Astrobiology Roadmap, developed in 1998 by an interdisciplinary team of more than 150 individuals, recognizes ten science goals, 17 more specific science objectives, and four broad principles for the Astrobiology Program. Among the four operating principles, which emphasize multidisciplinarity, planetary stewardship and public outreach, is one that also recognizes broad societal interest for the implications of astrobiology, especially its extraterrestrial life component. Although several meetings ahve been convened in the past decade to discuss the implications of extraterrestrial intelligence, including NASA's own CASETI workshops in 1991-1992, none have surveyed the broader implications of astrobiology as now defined at NASA. In this paper we survey these societal questions raised by astrobiology, and then focus on those related to extraterrestrial life, and in particular how they might differ from SETI concerns already discussed. As we enter the new millennium, the necessity for interdisciplinary studies is increasingly recognized in academia, industry and government. Astrobiology provides an unprecedented opportunity to encourage the unity of knowledge, as recently proposed in E. O. Wilson's book Consilience: The Unity of Knowledge. It is incumbent on scientists to support research on the implications of their work, in particular large government-funded scientific projects. The deep insights such study may yield has been amply demonstrated by the Human Genome Project, among others.

  15. Astrobiology: Exploring the Living Universe

    NSDL National Science Digital Library

    Of interest to both the general user and the scientist, this site offers a wealth of information on astrobiology (the study of life in space) and related activities at NASA. Among the site's offerings are the latest astrobiology news, an introduction to and overview of the study of astrobiology, discussions on the technologies used and future missions, workshop links, educational resources, an "Ask an Astrobiologist" feature, and related links, among others.

  16. Mars 2003: Site Priorities for Astrobiology

    NASA Astrophysics Data System (ADS)

    Farmer, Jack; Nelson, David; Greeley, Ron; Kusmin, Ruslan

    2001-01-01

    The exploration for past or present Martian life remains the primary goal of the Mars exploration program. In implementing this goal, the Astrobiology community has consistently recommended an approach that will create the proper environmental context for exploration through a synergistic use of orbital reconnaissance and landed in situ science. These broadly-based investigations are regarded to be an essential prelude for targeting sites for in situ life detection experiments and sample return(s).

  17. The Stanford Astrobiology Course

    NSDL National Science Digital Library

    Where do we come from? Where are we going? Are we alone in the universe? According to The Stanford Astrobiology Course, these are the three basic questions the field of astrobiology attempts to answer. Amazingly, the entire course is offered online. Click on Where Do We Come From? for a romp through the history of life, from the Big Bang through Darwin. The Where Are We Going? link will take readers to eight lectures about the future of life, while the link Are We Alone? navigates to seven lectures about the search for life on other planets. Anyone curious about their place in the cosmos should find much to ponder in these hours of lectures from some of the most popular professors on the Stanford campus.

  18. NASA Astrobiology Institute

    NSDL National Science Digital Library

    NASA Astrobiology Institute (NAI)

    This site provides information on NAI research, a library of publications, sections for teachers and students, and an Ask An Expert section. The student section features Astro-Venture, where students can search for and build a habitable planet; Habitable Worlds, to search the solar system for planets that might support life; and Mysteries of Microbes, containing videos and biographies of astrobiologists. The teacher section contains an astrobiology-related resource catalog of NASA sites.

  19. Astrobiology: The Case for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    The scientific discipline of astrobiology addresses one of the most fundamental unanswered questions of science: are we alone? Is there life elsewhere in the universe, or is life unique to Earth? The field of astrobiology includes the study of the chemical precursors for life in the solar system; it also includes the search for both presently existing life and fossil signs of previously existing life elsewhere in our own solar system, as well as the search for life outside the solar system. Two of the promising environments within the solar system being currently considered are the surface of the planet Mars, and the hypothesized oceans underneath the ice covering the moon Europa. Both of these environments differ in several key ways from the environments where life is found on Earth; the Mars environment in most places too cold and at too low pressure for liquid water to be stable, and the sub-ice environment of Europa lacking an abundance of free energy in the form of sunlight. The only place in the solar system where we know that life exists today is the Earth. To look for life elsewhere in the solar system, one promising search strategy would be to find and study the environment in the solar system with conditions that are most similar to the environmental conditions where life thrives on the Earth. Specifically, we would like to study a location in the solar system with atmospheric pressure near one bar; temperature in the range where water is liquid, 0 to 100 C; abundant solar energy; and with the primary materials required for life, carbon, oxygen, nitrogen, and hydrogen, present. Other than the surface of the Earth, the only other place where these conditions exist is the atmosphere of Venus, at an altitude of about fifty kilometers above the surface.

  20. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    PubMed

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product. PMID:22984874

  1. PREFACE: Tsukuba International Conference on Materials Science 2013

    NASA Astrophysics Data System (ADS)

    Kijima, Masashi; Ohshima, Kenichi; Kojima, Seiji; Nagasaki, Yukio; Miyazaki, Shuichi; Kim, Hee Young; Kadowaki, Kazuo; Kashiwagi, Takanari; Nakamura, Junji; Yamamoto, Yohei; Goto, Hiromasa

    2014-03-01

    Tsukuba International Conference on Materials Science (TICMS) was held from 28th August to 6th September, 2013 for the celebration of 40th year anniversary of the University of Tsukuba. The conference was organized by the Division of Materials Science, in cooperation with the Graduate School of Pure and Applied Sciences, and Tsukuba Research Center for Interdisciplinary Materials Science. The purpose of the conference was to provide a unique forum for researchers and students working in various fields of materials science, which have been progressing so rapidly that no single society could cover. The conference consists of following seven workshops to cover various fields. The organizing committee believed that the conference gave all participants new insights into the widespread development of materials science and enhanced the circulation, among them, of information released at the conference. The organizers are grateful for the financial support from University of Tsukuba. This volume contains 25 selected papers from invited and contributed papers, all of which have been screened on the basis of the standard review process of the program committee. The editors express their thanks to those authors who contributed the papers published in this proceedings, which reflects the scientific value of the conference. Nov. 20, 2013 Seiji Kojima, Prof. Dr. Chair, Division of Materials Science Chair, Doctoral Program in Materials Science TICMS 2013 (http://www.ticonfms.tsukuba.ac.jp/) Workshop list The 13th Japan-Korea Joint Workshop on Materials Science Summer School of Biomaterials Science The Japan-Korea Joint Workshop on Shape Memory and Superelastic Technologies The 2nd Workshop on THz Radiation from Intrinsic Josephson Junctions The 3rd German-Japan Nanoworkshop TICMS and IWP Joint Workshop on Conjugated Polymers International Workshop on Science and Patents (IWP) 2013

  2. Undergraduate Teaching in the Animal Sciences, Proceedings of a Conference.

    ERIC Educational Resources Information Center

    Commission on Education in Agriculture and Natural Resources, Washington, DC.

    The proceedings of a conference which reviewed the content of undergraduate animal science curricula, content of courses in the animal sciences, and methods and materials used in undergraduate teaching in the animal sciences are presented in this bulletin. These individual papers are included: Trends in Animal Agriculture and the Future of…

  3. Proceedings of the 39th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Sessions with oral presentations include: A SPECIAL SESSION: MESSENGER at Mercury, Mars: Pingos, Polygons, and Other Puzzles, Solar Wind and Genesis: Measurements and Interpretation, Asteroids, Comets, and Small Bodies, Mars: Ice On the Ground and In the Ground, SPECIAL SESSION: Results from Kaguya (SELENE) Mission to the Moon, Outer Planet Satellites: Not Titan, Not Enceladus, SPECIAL SESSION: Lunar Science: Past, Present, and Future, Mars: North Pole, South Pole - Structure and Evolution, Refractory Inclusions, Impact Events: Modeling, Experiments, and Observations, Mars Sedimentary Processes from Victoria Crater to the Columbia Hills, Formation and Alteration of Carbonaceous Chondrites, New Achondrite GRA 06128/GRA 06129 - Origins Unknown, The Science Behind Lunar Missions, Mars Volcanics and Tectonics, From Dust to Planets (Planetary Formation and Planetesimals):When, Where, and Kaboom! Astrobiology: Biosignatures, Impacts, Habitability, Excavating a Comet, Mars Interior Dynamics to Exterior Impacts, Achondrites, Lunar Remote Sensing, Mars Aeolian Processes and Gully Formation Mechanisms, Solar Nebula Shake and Bake: Mixing and Isotopes, Lunar Geophysics, Meteorites from Mars: Shergottite and Nakhlite Invasion, Mars Fluvial Geomorphology, Chondrules and Chondrule Formation, Lunar Samples: Chronology, Geochemistry, and Petrology, Enceladus, Venus: Resurfacing and Topography (with Pancakes!), Overview of the Lunar Reconnaissance Orbiter Mission, Mars Sulfates, Phyllosilicates, and Their Aqueous Sources, Ordinary and Enstatite Chondrites, Impact Calibration and Effects, Comparative Planetology, Analogs: Environments and Materials, Mars: The Orbital View of Sediments and Aqueous Mineralogy, Planetary Differentiation, Titan, Presolar Grains: Still More Isotopes Out of This World, Poster sessions include: Education and Public Outreach Programs, Early Solar System and Planet Formation, Solar Wind and Genesis, Asteroids, Comets, and Small Bodies, Carbonaceous Chondrites, Chondrules and Chondrule Formation, Chondrites, Refractory Inclusions, Organics in Chondrites, Meteorites: Techniques, Experiments, and Physical Properties, MESSENGER and Mercury, Lunar Science Present: Kaguya (SELENE) Results, Lunar Remote Sensing: Basins and Mapping of Geology and Geochemistry, Lunar Science: Dust and Ice, Lunar Science: Missions and Planning, Mars: Layered, Icy, and Polygonal, Mars Stratigraphy and Sedimentology, Mars (Peri)Glacial, Mars Polar (and Vast), Mars, You are Here: Landing Sites and Imagery, Mars Volcanics and Magmas, Mars Atmosphere, Impact Events: Modeling, Experiments, and Observation, Ice is Nice: Mostly Outer Planet Satellites, Galilean Satellites, The Big Giant Planets, Astrobiology, In Situ Instrumentation, Rocket Scientist's Toolbox: Mission Science and Operations, Spacecraft Missions, Presolar Grains, Micrometeorites, Condensation-Evaporation: Stardust Ties, Comet Dust, Comparative Planetology, Planetary Differentiation, Lunar Meteorites, Nonchondritic Meteorites, Martian Meteorites, Apollo Samples and Lunar Interior, Lunar Geophysics, Lunar Science: Geophysics, Surface Science, and Extralunar Components, Mars, Remotely, Mars Orbital Data - Methods and Interpretation, Mars Tectonics and Dynamics, Mars Craters: Tiny to Humongous, Mars Sedimentary Mineralogy, Martian Gullies and Slope Streaks, Mars Fluvial Geomorphology, Mars Aeolian Processes, Mars Data and Mission,s Venus Mapping, Modeling, and Data Analysis, Titan, Icy Dwarf Satellites, Rocket Scientist's Toolbox: In Situ Analysis, Remote Sensing Approaches, Advances, and Applications, Analogs: Sulfates - Earth and Lab to Mars, Analogs: Remote Sensing and Spectroscopy, Analogs: Methods and Instruments, Analogs: Weird Places!. Print Only Early Solar System, Solar Wind, IDPs, Presolar/Solar Grains, Stardust, Comets, Asteroids, and Phobos, Venus, Mercury, Moon, Meteorites, Mars, Astrobiology, Impacts, Outer Planets, Satellites, and Rings, Support for Mission Operations, Analog Education and Public Outreach.

  4. PREFACE: The International Conference on Science of Friction

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:

  5. Superlubricity and friction
  6. Electronic and phononic contributions to friction
  7. Friction on the atomic and molecular scales
  8. van der Waals friction and Casimir force
  9. Molecular motor and friction
  10. Friction and adhesion in soft matter systems
  11. Wear and crack on the nanoscale
  12. Theoretical studies on the atomic scale friction and energy dissipation
  13. Friction and chaos
  14. Mechanical properties of nanoscale contacts
  15. Friction of powder
  16. The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  17. Astrobiology: The Search for Life

    NSDL National Science Digital Library

    This is the latest website from the Exploratorium's _Origins_ series -- a Web-based project that "explores the origins of matter, the universe, earth, and even life itself." In "Astrobiology: The Search for Life," visitors can read up on Earth's extreme environments that support life and serve as models for extraterrestrial environments. The site also introduces some of the scientists working in astrobiology, including Jill Tarter. Other sections explore the tools of the trade (e.g. NASA's Mars Rover) and important ideas in astrobiology (e.g. the Drake Equation). Additionally, during the month of November, the Exploratorium will air live webcasts from field sites like Chile's Licancabur volcano, and broadcast interviews with some of astrobiology's top brass.

  18. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Jaffe, Richard; Liang, Shoudan; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2002-01-01

    We present results from several projects in the new field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. We have developed a procedure for calculating long-range effects in molecular dynamics using a plane wave expansion of the electrostatic potential. This method is expected to be highly efficient for simulating biological systems on massively parallel supercomputers. We have perform genomics analysis on a family of actin binding proteins. We have performed quantum mechanical calculations on carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible sources of organic material on the early earth. Finally, we have developed a model of protobiological chemistry using neural networks.

  19. From Astrochemistry to Astrobiology

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    2005-01-01

    The first part of this talk will describe how infrared spectroscopic studies of interstellar space, combined with laboratory simulations of interstellar ice chemistry, have revealed the widespread presence of interstellar PAHs and the composition of interstellar ices, the building blocks of comets. The remainder of the presentation will focus on the photochemical evolution of these materials and astrobiology. Within a molecular cloud, and especially the presolar nebula, materials frozen into the ices are photoprocessed by ultraviolet light and produce more complex molecules. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to have been important sources of complex materials delivered to the early Earth and their composition may be related to the origin of life.

  20. Titan's astrobiology: some new data

    Microsoft Academic Search

    Francois Raulin; Patrice Coll; Arnaud Buch; Megane Cloix; Yuan Yong Guan; Murielle Jerome; Olivier Poch; Sandra I. Ramirez; Cyril Szopa; Hervé Cottin

    2010-01-01

    The Cassini-Huygens observations of Titan have strongly strengthened its astrobiological impor-tance, clearly showing that Titan is one of the key planetary bodies for astrobiological studies. Indeed the Cassini-Huygens data show that there are many similarities which can be found when comparing Titan and the early Earth, in spite of much lower temperatures for Titan. One of these similarities is the

  21. Memorial tribute to astrobiology pioneers Dr. David S. Mckay and academician Georgy A. Zavarzin

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei Y.; Rozhnov, Sergei V.; Pikuta, Elena V.; Hoover, Richard B.

    2013-09-01

    During the past two years, the world has lost two great pioneers of the field of Astrobiology-Dr. David Stewart McKay who worked at the NASA-Johnson Space Center in Houston, Texas, USA and Academician Georgy Alexandrovich Zavarzin of the Institute of Microbiology of the Russian Academy of Sciences and Professor of the Moscow State University in Moscow, Russia. The Volume of the Proceedings of the 2013 SPIE Instruments, Methods, and Missions for Astrobiology XVI is dedicated to the memory of these great scientists. We remember our dear friends and review some of their many important contributions to Planetary Science, Geology, Meteoritics, Microbiology and Astrobiology.

  22. Astrobiology: The Story of NASA's Search for Life in the Universe

    NSDL National Science Digital Library

    This is a graphic novel history about NASA's search for life in the universe. It tells the story of some of the most important people and events that have shaped the NASA Exobiology and Astrobiology science.

  23. Astrobiology, Evolution, and Society: Public Engagement Insights

    NASA Astrophysics Data System (ADS)

    Bertka, C. M.

    2009-12-01

    It is unavoidable that the science of astrobiology will intersect with, and inevitably challenge, many deeply held beliefs. Exploration possibilities, particularly those that may include the discovery of extraterrestrial life, will continue to challenge us to reconsider our views of nature and our connection to the rest of the universe. As a scientific discipline, astrobiology works from the assumption that the origin and evolution of life can be accounted for by natural processes, that life could emerge naturally from the physical materials that make up the terrestrial planets. The search for life on other terrestrial planets is focused on “life as we know it.” The only life we currently know of is the life found on Earth, and for the scientific community the shared common ancestry of all Earth life, and its astounding diversity, is explained by the theory of evolution. The work of astrobiology, at its very core, is fueled by the theory of evolution. However, a survey by the Pew Forum on Religion and Public Life (2005) revealed that 42% of US adults believe that “life has existed in its present form since the beginning of time”. This answer persists nearly 150 years after the publication of Charles Darwin’s "On the Origin of the Species", the landmark work in which Darwin proposed that living things share common ancestors and have “descended with modification” from these ancestors through a process of natural selection . Perhaps even more distressing is the fact that these numbers have not changed in decades, despite the astounding advancements in science that have resulted over this same time period. How will these facts bear on the usefulness of astrobiology as a tool for encouraging a US public to share in the excitement of scientific discovery and be informed participants in a public dialogue concerning next steps? When people were asked “to identify the biggest influence on your thinking about how life developed,” the response chosen most frequently was “my religious beliefs.” A review of religious identification in this country will be presented in the context of offering insights for public engagement on the topic of evolution, and the contribution that astrobiology could make to encouraging a positive relationship between science and religion. A widespread acceptance of evolution in the United States may require that the scientific community go beyond a simple contrast approach to science and religion and be willing to encourage, and participate in, a program of in-depth and long-term engagement with theologians and religious community leaders. Astrobiology as a discipline is particularly burdened, perhaps blessed, with the responsibility to engage this issue. After all, humanity itself may be inherently defined by the ability we collectively posses to ask “Where did we come from?,” “Are we alone?,” and “Where are we going?”

  24. Visions for a sustainable world: A conference on science, technology and social responsibility. Conference report

    SciTech Connect

    Not Available

    1992-12-31

    This report summarizes the organization, activities, and outcomes of Student Pugwash USA`s 1992 International Conference, Visions for a Sustainable World: A Conference on Science, Technology and Social Responsibility. The conference was held June 14--20, 1992 at Emory University, and brought together 94 students and over 65 experts from industry, academe, and government. The conference addressed issues ranging from global environmental cooperation to the social impacts of the Human Genome Project to minority concerns in the sciences. It provided a valuable forum for talented students and professionals to engage in critical dialogue on many interdisciplinary issues at the juncture of science, technology and society. The conference challenged students -- the world`s future scientists, engineers, and political leaders -- to think broadly about global problems and to devise policy options that are viable and innovative. The success of the conference in stimulating interest, understanding, and enthusiasm about interdisciplinary global issues is clearly evident from both the participants` feedback and their continued involvement in Student Pugwash USA programs. Six working groups met each morning. The working group themes included: environmental challenges for developing countries; energy options: their social and environmental impact; health care in developing countries; changing dynamics of peace and global security; educating for the socially responsible use of technology; ethics and the use of genetic information. The conference was specifically designed to include mechanisms for ensuring its long-term impact. Participants were encouraged to focus on their individual role in helping resolve global issues. This was achieved through each participant`s development of a Personal Plan of Action, a plan which mapped out activities the student could undertake after the conference to continue the dialogue and work towards the resolution of global and local problems.

  25. AGILE International Conference on Geographic Information Science 2010 Page 1 of 10 Guimares, Portugal

    E-print Network

    13th AGILE International Conference on Geographic Information Science 2010 Page 1 of 10 Guimarães). #12;13th AGILE International Conference on Geographic Information Science 2010 Page 2 of 10 Guimarães

  26. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.

    2000-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. The most direct approach to this problem is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing energy and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following questions about these proteins: (1) How do small proteins self-organize into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides form membrane-spanning structures (e.g. channels)? (3) By what mechanisms do such structures perform their functions? The simulations are performed using the molecular dynamics method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated in real space while long-range forces are evaluated in reciprocal space, using a particle-mesh algorithm which is of order O(NInN). With a time step of 2 femtoseconds, problems occurring on multi-nanosecond time scales (10(exp 6)-10(exp 8) time steps) are accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude, which requires algorithmic improvements and codes scalable to a large number of processors. Work in this direction is in progress. Two series of simulations are discussed. In one series, it is shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and fold into helical structures (see Figure). Once in the membrane, the peptides exhibit orientational flexibility with changing conditions, which may have provided a mechanism of transmitting signals between the protocell and its environment. In another series of simulations, the mechanism by which a simple protein channel efficiently mediates proton transport across membranes was investigated. This process is a key step in cellular bioenergetics. In the channel under study, proton transport is gated by four histidines that occlude the channel pore. The simulations identify the mechanisms by which protons move through the gate.

  27. From Astrochemistry to Astrobiology

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    2005-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty five years thanks to significant developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of interstellar dust is reasonably well understood. In molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared spectroscopic studies of interstellar space, combined with laboratory simulations of interstellar ice chemistry, have revealed the widespread presence of interstellar PAHs and the composition of interstellar ices, the building blocks of comets. The remainder of the presentation will focus on the photochemical evolution of these materials and astrobiology. Within a molecular cloud, and especially the presolar nebula, materials frozen into the ices are photoprocessed by ultraviolet light and produce more complex molecules. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to have been important sources of complex materials delivered to the early Earth and their composition may be related to the origin of life.

  28. Astrobiology: An astronomer's perspective

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin A.

    2014-12-01

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  29. The Third Annual NASA Science Internet User Working Group Conference

    NASA Technical Reports Server (NTRS)

    Lev, Brian S. (editor); Gary, J. Patrick (editor)

    1993-01-01

    The NASA Science Internet (NSI) User Support Office (USO) sponsored the Third Annual NSI User Working Group (NSIUWG) Conference March 30 through April 3, 1992, in Greenbelt, MD. Approximately 130 NSI users attended to learn more about the NSI, hear from projects which use NSI, and receive updates about new networking technologies and services. This report contains material relevant to the conference; copies of the agenda, meeting summaries, presentations, and descriptions of exhibitors. Plenary sessions featured a variety of speakers, including NSI project management, scientists, and NSI user project managers whose projects and applications effectively use NSI, and notable citizens of the larger Internet community. The conference also included exhibits of advanced networking applications; tutorials on internetworking, computer security, and networking technologies; and user subgroup meetings on the future direction of the conference, networking, and user services and applications.

  30. The NASA Astrobiology Institute: early history and organization.

    PubMed

    Blumberg, Baruch S

    2003-01-01

    The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally. PMID:14678657

  31. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  32. The First International Conference on Mars Polar Science and Exploration

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This volume contains abstracts of articles that have been accepted for presentation at the First International Conference on Mars Polar Science and Exploration. Articles about the geology of the Martian Polar regions were presented, and analogs from Earth's geology were also presented. Presentations also were given about the probable contents of the Martian polar caps

  1. Third International Conference on Mars Polar Science and Exploration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Third International Conference on Mars Polar Science and Exploration presented reports pertaining to image analysis of the polar regions of Mars, studies of Mars atmosphere and atmospheric models, as well as microbiological studies regarding habitat and analogies posed from anatartic regions on Earth to Mars.

  2. PHYTOREMEDIATION: STATE OF THE SCIENCE CONFERENCE AND OTHER DEVELOPMENTS

    EPA Science Inventory

    It is a pleasure to present six papers in this issue, selected from presentations at the USEPA conference, Phytoremediation: State of the Science, 5/1-2/2000, Boston, MA. These papers highlight some of the many advances reported in representative areas of phytoremediation. In add...

  3. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.; Vincenzi, Donald L. (Technical Monitor)

    2001-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. In the absence of any record of the earliest ancestors of contemporary cells, protocells, the most direct way to test our understanding of their characteristics is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs of molecules that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing and storing energy, and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following, questions about these proteins: (1) How do small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides aggregate to form membrane-spannin(y structures (e.g., channels)? (3) By what mechanisms do such aggregates perform their functions? The simulations are performed using the molecular dynamics (MD) method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated directly in real space while long-range forces are evaluated in reciprocal space, usually using a particle-mesh algorithm which is of order O(NlnN). Currently, a time step of 2 femtoseconds is typically used, thereby making studies of problems occurring on multi-nanosecond time scales (10(exp 6) - 10(exp 8) time steps) accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude. Such an extension requires both algorithmic improvements and codes scalable to a large number of parallel processors. Work in this direction is in progress. Two specific series of simulations that demonstrate how peptides self-organize and function in membranes are discussed. In one series of simulations, it was shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and, simultaneously, fold into two different helical structures, which remain in equilibrium. Once in the membrane, the peptides can readily change their orientation, especially in response to local electric fields. This structural and orientational flexibility of peptides with changing conditions may have provided a mechanism of transmitting signals between the environment and the interior of the protocell. In another series of simulations, the mechanism by which a simple protein channel efficiently mediates proton transport across membranes was investigated. This process is a key step in cellular bioenergetics. In the channel under study, proton transport is gated by four histidines that occlude the channel pore. The simulations demonstrate that protons move through the gate by a "shuttle" mechanism, wherein one histidine is protonated on the extracellular side and, subsequently, the proton bound on the opposite side is released.

  4. International Conference on Materials Science and Technology (ICMST 2012)

    NASA Astrophysics Data System (ADS)

    Joseph, Ginson P.

    2015-02-01

    FROM THE CONVENOR'S DESK The Department of Physics, St. Thomas College Pala, is highly privileged to organize an International Conference on Materials Science and Technology (ICMST 2012) during 10-14 June 2012, and as Convenor of the conference it is with legitimate pride and immense gratitude to God that I remember the most enthusiastic responses received for this from scientists all over the world. In a time of tremendous revolutionary changes in Materials Science and Technology, it is quite in keeping with the tradition of a pioneering institute that St. Thomas College is, to have risen to the occasion to make this conference a reality. We have no doubt that this proved to be a historic event, a real breakthrough, not only for us the organizers but also for all the participants. A conference of this kind provides a nonpareil, a distinctly outstanding platform for the scholars, researchers and the scientists to discuss and share ideas with delegates from all over the world. This had been most fruitful to the participants in identifying new collaborations and strengthening existing relations. That experts of diverse disciplines from across the world were sitting under one roof for five days, exchanging views and sharing findings, was a speciality of this conference. The event has evoked excellent responses from all segments of the Materials Science community worldwide. 600 renowned scholars from 28 countries participated in this. We were uniquely honoured to have Prof. C.N.R. Rao, Chairman, Scientific Advisory Council to the Prime Minister of India, to inaugurate this conference. May I take this opportunity to thank all those who have contributed their valuable share, diverse in tone and nature, in the making of this conference. My whole hearted gratitude is due to the international and national members of the advisory committee for their valuable guidance and involvement. I place on record my heartfelt gratitude to our sponsors. I am sure that this conference has contributed to more innovations and inventions in the field and promoted the advancement of Science and Technology in India. It is with immense pain and sorrow that I pay tribute to Prof. Antony Simon, one of the members of the organizing team, who departed from us after bestowing everything that one could for the success of ICMST 2012. I wish all the success to all who contributed papers to the conference. Dr. Ginson P. Joseph Convenor, ICMST 2012

  5. Astrobiology Drilling Program of the NASA Astrobiology Institute

    NASA Astrophysics Data System (ADS)

    Runnegar, B.

    2004-12-01

    Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores obtained through ADP projects are available to the whole community, following a one year embargo, upon application to project PIs and the ADP Steering Committee.

  6. Nonlinear aspects of astrobiological research

    Microsoft Academic Search

    Axel Brandenburg

    2008-01-01

    Several aspects of mathematical astrobiology are discussed. It is argued that around the time of the origin of life the handedness of biomolecules must have established itself through an instability. Possible pathways of producing a certain handedness include mechanisms involving either autocatalysis or, alternatively, epimerization as governing effects. Concepts for establishing hereditary information are discussed in terms of the theory

  7. The narrative power of astrobiology

    Microsoft Academic Search

    Linda Billings

    2008-01-01

    The narrative power of astrobiology: Telling the story of the quest to understand life's origins and the search for evidence of extraterrestrial life INTRODUCTION The story of the origins and evolution of life is a narrative with nearuniversal appeal. The story of life on Earth is meaningful to all people, and the search for life elsewhere is appealing across cultural

  8. Astrobiology: Life in Extreme Environments

    ERIC Educational Resources Information Center

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  9. Archive: Sally Ride Science/NSTA Symposium: From Astrobiology to Zoology: Igniting Students' Interests in Science Careers, Boston, MA: March 29, 2008

    NSDL National Science Digital Library

    1900-01-01

    During this half-day Symposium, scientists and education specialists from SRS, NOAA, and USFS talked about the basic science behind our understanding of climate change, and global impacts on the atmosphere, ecosystems (particularly forests), and oceans ar

  10. Past Conferences and Trainings - Implementation Science

    Cancer.gov

    Skip Navigation National Cancer Institute www.cancer.gov at the National Institutes of Health Cancer Control and Population Sciences: NCI's Bridge to Public Health Research, Practice, and Policy Search: Home About IS Vision Mission Meet the

  11. Capturing Student Interest in Astrobiology through Dilemmas and Paradoxes

    NASA Astrophysics Data System (ADS)

    Slater, T. F.

    2005-12-01

    Traditionally, many non-science majoring undergraduates readily reveal fairly negative opinions about their introductory science survey courses that serve as general education distribution requirements. Often seen as unimportant and unrelated to helping them acquire knowledge and skills for the workplace, such general education courses carry nicknames such as "Physics for Poets" (PHYSICS101), "Bugs for Thugs" (BIOLOGY101), "Rocks for Jocks" (GEOLOGY101), and "Moons for Goons" or "Scopes for Dopes" (ASTRONOMY101). In response, many faculty are experimenting with more modern science course offerings as general education courses in an effort to improve students' attitudes, values, and interests. One might think that ASTROBIOLOGY has natural curb appeal for students. However, despite the seemingly innate appeal of a course on extraterrestrial life, when it comes right down to it, an astrobiology course is still a natural science course at its core. As such, it can suffer from the same student apathy that afflicts traditional science courses if students can not find some personal relevance or interest in the topics. One approach to more fully engaging students is to couch core course concepts in terms of what Grant Wiggin and Jay McTighe (2004, 2000) call "essential questions." Essential questions are intended create enduring understanding in students and help students find deeply meaningful personal relevance to concepts. In response, we have created a series of probing essential questions that tie central concepts in astrobiology to dilemmas, paradoxes, and moral questions with the goal of intellectually engaging our students in the human-side of the astrobiology enterprise.

  12. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    PubMed

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission. PMID:20298148

  13. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  14. Aliens are us. An innovative course in astrobiology

    NASA Astrophysics Data System (ADS)

    Oliveira, Carlos F.; Barufaldi, James P.

    2009-01-01

    We live in a scientific world; paradoxically, the scientific literacy of the population is minimal at best. Science is an ongoing process, a human endeavour; paradoxically, students tend to believe that science is a finished enterprise. Many non-science major students are not motivated in science classes; paradoxically, there is a public fascination with the possibility of life in the Universe, which is nowadays a scientific endeavour. An astrobiology course was developed at the Center for Science and Mathematics Education at The University of Texas at Austin to address these paradoxes and includes the following objectives: (a) to improve scientific literacy; (b) to demonstrate that science is a work in progress; (c) to enhance the inherent interdisciplinary aspect of science; (d) to demonstrate that science is embedded in society and relates with several social sciences; (e) to improve the content knowledge about the nature of science; (f) to illustrate how engaging learning science can be; and (g) to draw from the intrinsic motivation already incorporated in the general population. The course has been offered, taught and revised for the past three years. The informal course student feedback has been very positive and encouraging. The purpose of this paper is to provide a general overview of the course. In addition, the course's background, content, themes and mode of delivery are outlined, discussed and analysed in this paper. This paper subscribes to an educational philosophy that focuses on the multidisciplinary nature of science and includes critical thinking-based teaching strategies using the dynamic discipline of astrobiology.

  15. Science Education Future. Proceedings of the Arctic Science Conference (39th, Fairbanks, Alaska, October 7-10, 1988).

    ERIC Educational Resources Information Center

    American Association for the Advancement of Science, Fairbanks, AK. Arctic Div.

    This catalog includes abstracts of each of the papers delivered at the Arctic Science Conference. The conference was divided into the following symposia: (1) "Biochemistry and Molecular Biology"; (2) "An Update of Alaskan Science and Discovery"; (3) "Science Education for the Public"; (4) "Hubbard Glacier, Russell Fjord and Situk River Studies";…

  16. The set of habitable planets and astrobiological regulation mechanisms

    NASA Astrophysics Data System (ADS)

    Vukoti?, Branislav

    2010-04-01

    The number of habitable planets in the Milky Way and its temporal variation are major unknowns in the nascent fields of astrobiology and Search for ExtraTerrestrial Intelligence studies. All numerical models developed thus far have suffered from large uncertainties in the input data, in addition to our lack of understanding of the processes of astrobiological dynamics. Here, we argue that at least the input data can now be specified with more confidence, and use a simple Monte Carlo model of the Galactic Habitable Zone (GHZ) as a flexible platform for their elucidation. Previous papers have described some of the major results of this class of models; in this paper we present its mechanics and input parameters, notably the number of the habitable planets in the GHZ and their temporal distribution, based on the results of Lineweaver et al. (Lineweaver, C.H., Fenner, Y. & Gibson, B.K. (2004). Science 303, 59-62.) Regulation mechanisms (such as gamma-ray bursts or supernovae) and their temporal evolution, assumed to be main agents responsible for large-scale correlation effects, are modelled as type ? (which can sterilize part of or the entire GHZ) and type ? (which are of local importance) events with decreasing mean temporal frequency over the cosmological timescale. The considered global risk function implies as an upper limit that about one out of a hundred habitable sites will achieve high astrobiological complexity. The preliminary results of numerical modelling presented here and elsewhere imply that the lack of a sudden change from an essentially dead Galaxy to a Galaxy filled with complex life - the astrobiological phase transition - in our past (a version of Fermi's paradox) may be understood as a consequence of global astrobiological disequilibrium, strongly indicating such a transitional epoch in our future.

  17. Twenty-Third Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a collection of papers from the Twenty-Third Lunar and Planetary Science Conference that were chosen for having the greatest potential interest for the general reading public. The presentations avoid jargon and unnecessarily complex terms. Topics covered include electron microscopy studies of a circumstellar rock, the fractal analysis of lava flows, volcanic activity on Venus, the isotopic signature of recent solar wind nitrogen, and the implications of impact crater distribution on Venus.

  18. Second International Conference on Mars Polar Science and Exploration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This volume contains abstracts that were presented at the Second International Conference on Mars Polar Science and Exploration, August 21-25, 2000. The abstracts of the presentations given are listed. Presentations were given on the advances in technology, data analysis of past and current missions, and new instruments destined for Mars. Particular attention was paid to the polar regions and what they reveal about Mars.

  19. Critical issues in the history, philosophy, and sociology of astrobiology.

    PubMed

    Dick, Steven J

    2012-10-01

    Fifty years after serious scientific research began in the field of exobiology, and forty years after serious historical research began on the subject of extraterrestrial life, this paper identifies and examines some of the most important issues in the history, philosophy, and sociology of what is today known as astrobiology. As in the philosophy of science in general, and in the philosophies of particular sciences, critical issues in the philosophy and sociology of astrobiology are both stimulated and illuminated by history. Among those issues are (1) epistemological issues such as the status of astrobiology as a science, the problematic nature of evidence and inference, and the limits of science; (2) metaphysical/scientific issues, including the question of defining the fundamental concepts of life, mind, intelligence, and culture in a universal context; the role of contingency and necessity in the origin of these fundamental phenomena; and whether or not the universe is in some sense fine-tuned for life and perhaps biocentric; (3) societal issues such as the theological, ethical, and worldview impacts of the discovery of microbial or intelligent life; and the question of whether the search for extraterrestrial life should be pursued at all, and with what precautions; and (4) issues related to the sociology of scientific knowledge, including the diverse attitudes and assumptions of different scientific communities and different cultures to the problem of life beyond Earth, the public "will to believe," and the formation of the discipline of astrobiology. All these overlapping issues are framed by the concept of cosmic evolution-the 13.7 billion year Master Narrative of the Universe-which may result in a physical, biological, or postbiological universe and determine the long-term destiny of humanity. PMID:23078642

  20. Undergraduate Research at SETI in Astrobiology

    NASA Astrophysics Data System (ADS)

    Kress, Monika; Phillips, C.; DeVore, E.; Hubickyj, O.

    2012-05-01

    The SETI Institute and San Jose State University (SJSU) have begun a partnership (URSA: Undergraduate Research at the SETI Institute in Astrobiology) in which undergraduate science and engineering majors from SJSU participate in research at the SETI Institute during the academic year. We are currently in our second year of the three-year NASA-funded grant. The goal of this program is to expose future scientists, engineers and educators to the science of astrobiology and to NASA in general, and by so doing, to prepare them for the transition to their future career in the Silicon Valley or beyond. The URSA students are mentored by a SETI Institute scientist who conducts research at the SETI Institute headquarters or nearby at NASA Ames Research Center. The SETI Institute is a private, nonprofit organization dedicated to scientific research, education and public outreach. Its mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. SJSU is a large urban public university that serves the greater Silicon Valley area in California. Students at SJSU come from diverse ethnic, cultural and socioeconomic backgrounds. Many of them face financial pressures that force them to pursue part-time work. URSA students are paid to work for 10 hours/week during the academic year, and also participate in monthly group meetings where they practice their presentation skills and discuss future plans. We encourage underserved and underrepresented students, including women, minority, and those who are the first in their family to go to college, to apply to the URSA program and provide ongoing mentoring and support as needed. While preparing students for graduate school is not a primary goal, some of our students have gone on to MS or PhD programs or plan to do so. The URSA program is funded by NASA EPOESS.

  1. Astrobiological Molecularly Imprinted Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Murray, G. M.; van Houten, K. A.; Hofstra, A. A.

    2005-12-01

    Development of Molecularly Imprinted Polymer (MIP) sensors for astrobiology is intended to provide a new class of microlaboratory sensors compatible with other life or biomarker detection. Molecular imprinting is a process for making selective binding sites in synthetic polymers. The process may be approached by designing the recognition site or by simply choosing monomers that may have favorable interactions with the imprinting molecule. We are working to apply this methodology to astrobiology for development of a reliable, low cost, low mass, low power consumption sensor technology for quantitative in-situ analysis of biochemistry, biomarkers, and other indicators of astrobiological importance. Specific goals of the project are: 1) To develop a general methodology and specific methods for MIP-based sensor construction. The overall methodology will guide procedures for design and testing of any desired sensor. Specific methods will be applied to key families and specific species of astrobiological interest, i.e., alkanes (and Polycyclic aromatic hydrocarbons - PAHs), amino acids, steroids, and hopanes; 2) To construct and characterize the general family and specific species sensors. We will test for accuracy, precision, interferences, and limitations of the sensor against blanks, standards, and known terrestrial biological environment samples. Additional testing will determine sturdiness and longevity of sensors after exposure to transit conditions (launch and space environment), and at potential target environments (pressure, temperature, pH, etc.); and 3) To construct and demonstrate the combination of multiple sensors into a viable prototype instrument, and roadmap the expansion of potential instrument capabilities and exploration of the ultimate environmental limitations of the technology, and the necessary changes and additions to create a mission-ready instrument. Initial work has resulted successful detection of aqueous alanine (D and L) with simple MIP sensors, and we will present results for other amino acid detector methodologies.

  2. European Space Agency European Mars Science and Exploration Conference: Mars Express & ExoMars

    E-print Network

    Withers, Paul

    European Space Agency European Mars Science and Exploration Conference: Mars Express & Exo University, Stanford, CA, USA. 4 Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston

  3. Searching for Aliens What is astrobiology?

    E-print Network

    Maxwell, Bruce D.

    Internet-connected computers in the Search for Extraterrestrial Intelligence (SETI). You can participateSearching for Aliens What is astrobiology? Astrobiology is the scientific study of the origin to help search for aliens! There is a scientific project at the University of California that uses

  4. Astrobiological Benefits of Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Crawford, Ian A.

    2010-08-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  5. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered. PMID:20735249

  6. Systems astrobiology for a reliable biomarker on exo-worlds

    NASA Astrophysics Data System (ADS)

    Chela Flores, Julian

    2013-04-01

    Although astrobiology is a science midway between biology and astrophysics, it has surprisingly remained largely disconnected from recent trends in certain branches of both of these disciplines. Aiming at discovering how systems properties emerge has proved valuable in chemistry and in biology and should also yield insights into astrobiology. This is feasible since new large data banks in the case of astrobiology are of a geophysical/astronomical kind, rather than the also large molecular biology data that are used for questions related firstly, to genetics in a systems context and secondly, to biochemistry. The application of systems biology is illustrated for our own planetary system, where 3 Earth-like planets are within the habitable zone of a G2V star and where the process of photosynthesis has led to a single oxygenic atmosphere that was triggered during the Great Oxidation Event some 2,5 billion years before the present. The significance of the biogenic origin of a considerable fraction of our atmosphere has been discussed earlier (Kiang et al., 2007). Bonding of O2 ensures that it is stable enough to accumulate in a world's atmosphere if triggered by a living process. The reduction of F and Cl deliver energy release per e+-transfer, but unlike O2 the weaker bonding properties inhibit large atmospheric accumulation (Catling et al., 2005). The evolution of O2-producing photosynthesis is very likely on exo-worlds (Wolstencroft and Raven, 2002). With our simplifying assumption of evolutionary convergence, we show how to probe for a reliable biomarker in the exo-atmospheres of planets, or their satellites, orbiting stars of different luminosities and ages (Chela-Flores, 2013). We treat the living process as a system of exo-environments capable of radically modifying their geology and atmospheres, both for exo-planets, and especially for exo-moons, the presence of which can be extracted from the Kepler data (Kipping et al., 2012). What we are learning about the moons of our solar system (Chela-Flores, 2010), and will learn in the foreseeable future with the JUICE Mission will be relevant to systems astrobiology. The distribution of systems of habitable worlds with their biomarkers will be testable in the short term with forthcoming space missions: FINNESSE, EChO and TESS. This would justify subsequent use of quantitative systems biology methods that are available from its repertoire of analytic approaches. References Catling et al. (2005). Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time", Astrobiology, 5, 415-438. Chela-Flores, J. (2010). Instrumentation for the search of habitable ecosystems in the future exploration of Europa and Ganymede. International Journal of Astrobiology, 9, 101-108. http://www.ictp.it/~chelaf/jcf_IJA_2010.pdf Chela-Flores, J. (2013). From systems chemistry to systems astrobiology: Life in the universe as an emergent phenomenon. Published online: 26 July 2012. International Journal of Astrobiology, 12,8-16. http://www.ictp.it/~chelaf/Int_J_AB_SAB_3.pdf Kiang, N.Y., et al (2007). Spectral signatures of photosynthesis II. Astrobiology 7, 252-274. Kipping, D. M. et al (2012). The Hunt for Exomoons with Kepler. arXiv:1201.0752 [astro-ph.EP]. Wolstencroft, R.D. and Raven, J.A. (2002). Photosynthesis: likelihood of occurrence and possibility of detection on earth-like planets. Icarus 157, 535-548.

  7. The Social Science Teacher. 1972. Collected Conference Papers: Social Science Concepts Classroom Methods.

    ERIC Educational Resources Information Center

    Noble, Pat, Ed.; And Others

    Papers in this publication are collected from a conference on social science concepts and classroom methods which focused on the theories of Jerome Bruner. The first article, entitled "Jerome Bruner," outlines four of Bruner's themes--structure, readiness, intuition, and interest--which relate to cognitive learning. Three papers--"Socialization"…

  8. Conference focuses on challenges, opportunities in key Earth science and policy topics

    NASA Astrophysics Data System (ADS)

    Landau, Elizabeth; Hankin, Erik; Uhlenbrock, Kristan

    2012-07-01

    In our rapidly changing world, integrating Earth and space science into policy is vital to supporting our economy, public safety, and national security. One way in which AGU is striving to bridge the science and policy fields is through discussions and collaborations at the AGU Science Policy Conference. This inaugural conference, held in May 2012 in Washington, D. C., featured experts from government, industry, academia, and nonprofits. The goal of this new conference is to ensure diverse discussions and viewpoints on the challenges and opportunities of science policy, with a focus on applications of Earth and space science that serve local, national, and international communities.

  9. Academia Sinica and The Scripps Research Institute Joint Conference on Chemical Biology Sciences

    E-print Network

    Academia Sinica and The Scripps Research Institute Joint Conference on Chemical Biology Sciences 9:00-18:00, April 15, 2014 3F, Lecture Hall, Building of Humanities and Social Sciences, Academia Sinica

  10. Conference Model: Guidelines...for Science Supervisors on How to Conduct a Successful Leadership Conference.

    ERIC Educational Resources Information Center

    DeBlasi, Robert V.

    Guidelines of a four-phase model for conducting leadership conferences are outlined. Phase I focuses on initial conference planning, including (1) identifying need and purpose for the conference; (2) selecting a conference chairperson; (3) forming the conference planning committee, listing suggested committees and their responsibilities (program,…

  11. 43rd Hawaii International Conference on System Sciences, January 2010 (best paper award) Combining Phasor Measurements to Monitor Cutset Angles

    E-print Network

    Dobson, Ian

    43rd Hawaii International Conference on System Sciences, January 2010 (best paper award) Combining11231. 43rd Hawaii International Conference on System Sciences, January 2010, Kauai, Hawaii. c 2010 IEEE

  12. EDUCATION FOR HEALTH SCIENCES LIBRARIANSHIP, PROCEEDINGS OF AN INVITATIONAL CONFERENCE (SEATTLE, SEPTEMBER 10-12, 1967).

    ERIC Educational Resources Information Center

    LIEBERMAN, IRVING

    MEDICAL LIBRARIANS, HEALTH SCIENCE FACULTY, AND SPECIALISTS IN RELATED AREAS WERE PARTICIPANTS IN A CONFERENCE HELD TO EXAMINE THE NEEDS AND REQUIREMENTS FOR HEALTH SCIENCE LIBRARIANSHIP AND DEVELOP SUGGESTIONS FOR APPROPRIATE LIBRARY SCHOOL PROGRAMS. THIS REPORT CONTAINS THE COMPLETE TEXTS OF WORKING PAPERS PREPARED FOR THE CONFERENCE AND MAJOR…

  13. Astrobiology: The Search for Life in the Universe

    NASA Technical Reports Server (NTRS)

    Pacchioli, David

    2003-01-01

    Each of the 11 lead members of NASA's Astrobiology Institute has a specific mission. According to Hiroshi Ohmoto, director of Penn State s Astrobiology Research Center, Here we are mainly concerned with the origin of life and the evolution and extinction of important organisms. These include bacteria that live on methane, cyanobacteria (the inventors of photosynthesis), eukaryotes (a big category, covering anything with a nucleus, from single-celled organisms to humans), land-dwelling organisms, and early animals. Penn State astrobiologists are studying the environment before there was life on Earth, the origin of oxygen in the atmosphere, the chemical and thermal structures of oceans, and the role of metals in the evolution of life. Overall, they want to understand the connection between changes in environment and changes in life forms in the early Earth. PSARC offers research assistantships for graduate and undergraduate students, fellowships for graduate students and post-doctoral fellows, and an undergraduate minor in astrobiology. The minor covers 18 credits in earth sciences, geochemistry, geophysics, astronomy, biology, biochemistry, meteorology, and microbiology. The goal, says Ohmoto, is to teach students to critically evaluate claims related to this field that they encounter well after their college education has ended. Under a scanning electron microscope, Martian meteorite ALH84001 yields tube-like structures that look a lot like remnants of Earthly bacteria except smaller by a factor of ten.

  14. Astrobiology Road Mapping (AstRoMap) - A project within FP7 of the European Commission: First results

    NASA Astrophysics Data System (ADS)

    Gomez-Gomez, Felipe; Capria, Maria Teresa; Palomba, Ernesto; Walter, Nicolas; Rettberg, Petra; Muller, Christian; Horneck, Gerda

    AstRoMap (Astrobiology and Planetary Exploration Road Mapping) is a funded project formulated in the 5th Call of the European Commission FP7 framework. The main objectives of the AstRoMap are: 1. Identify the main astrobiology issues to be addressed by Europe in the next decades in relation with space exploration 2. Identify potential mission concepts that would allow addressing these issues 3. Identify the technology developments required to enable these missions 4. Provide a prioritized roadmap integrating science and technology activities as well as ground-based approach 5. Map scientific knowledge related to astrobiology in Europe To reach those objectives, AstRoMap is executed within the following steps: 1. Community consultation. In order to map the European astrobiology landscape and to provide a collaborative networking platform for this community, the AstRoMap project hosts a database of scientists (European and beyond) interested in astrobiology and planetary exploration (see: http://www.astromap.eu/database.html). It reflects the demography and the research and teaching activities of the astrobiology community, as well as their professional profiles and involvement in astrobiology projects. Considering future aspects of astrobiology in Europe, the need for more astrobiology-dedicated funding programmes at the EU level, especially for cross-disciplinary groups, was stressed. This might eventually lead to the creation of a European laboratory of Astrobiology, or even of a European Astrobiology Institute. 2. Workshops organisation. On the basis of the feedbacks from the community consultation, the potential participants and interesting topics are being identified to take part in the following workshops: 1-. Origin of organic compounds, steps to life; 2. Physico-chemical boundary conditions for habitability 3. Biosignatures as facilitating life detection 4. Origin of the Solar system 3. Astrobiology road-mapping. Based on the results and major conclusions elaborated during the workshops, an astrobiology roadmap will be constructed tailored to the European needs and competences. 4. Education and public outreach. Parallel to the workshop and consultation activities, AstRoMap will provide a comprehensive education and outreach programme and disseminate the progress of AstRoMap through its web site (http://www.astromap.eu).

  15. Astrobiology and the Risk Landscape

    NASA Astrophysics Data System (ADS)

    Cirkovic, M. M.

    2013-09-01

    We live in the epoch of explosive development of astrobiology, a novel interdisciplinary field dealing with the origin, evolution, and the future of life. While at first glance its relevance for risk analysis is small, there is an increasing number of crossover problems and thematic areas which stem from considerations of observation selection effects and the cosmic future of humanity, as well as better understanding of our astrophysical environment and the open nature of the Earth system. In considering the totality of risks facing any intelligent species in the most general cosmic context (a natural generalization of the concept of global catastrophic risks or GCRs), there is a complex dynamical hierarchy of natural and anthropogenic risks, often tightly interrelated. I shall argue that this landscape-like structure can be defined in the space of astrobiological/SETI parameters and that it is a concept capable of unifying different strands of thought and research, a working concept and not only a metaphor. Fermi's Paradox or the "Great Silence" problem represents the crucial boundary condition on generic evolutionary trajectories of individual intelligent species; I briefly consider the conditions of its applicability as far as quantification of GCRs is concerned. Overall, such a perspective would strengthen foundations upon which various numerical models of the future of humanity can be built; the lack of such quantitative models has often been cited as the chief weakness of the entire GCR enterprise.

  16. Physiology and applied sciences in Nepal: 1st annual conference

    PubMed Central

    2014-01-01

    With the increasing number of medical schools in Nepal, there is an expected increase in the number of Nepalese physiologists. The first medical school was established in the 1970s. We report here about the first annual conference of Nepalese physiologists on 27-28 September 2013 organized by the Department of Clinical Physiology of the Nepalese Army Institute of Health Sciences (NAIHS) and Kathmandu University School of Medical Sciences (KUMS). Nepalese physiologists are trying to form their own physiological society. In this regard, NAIHS and KUMS have played an important role to bring physiologists from different parts of Nepal involved in teaching, learning, and research activities in medical schools. There were a number of foreign invitees (India, Israel, Italy, Japan, and Sweden). There were plenary presentations on the topics that are relevant in Nepal, e.g., high-altitude physiology and wilderness medicine. The final session of the conference was an open session meeting of Nepalese physiologists. There was an open interaction about establishing Nepalese Physiological Society. After much deliberation, there was an agreement to register the society in Kathmandu with the current ad hoc committee which will elect the first executive body of the society. PMID:24580838

  17. Dissecting the Butterfly: Representation of Disciplines Publishing at the Web Science Conference Series

    E-print Network

    Paris-Sud XI, Université de

    Dissecting the Butterfly: Representation of Disciplines Publishing at the Web Science Conference Science butterfly' diagram and the Web Science Subject Categorization. We discuss the benefits butterfly' diagram, which was used early on in the life of Web Science to convey the vision [8]. Nowadays

  18. Earth and Space Science: Making Connections in Education and Public Outreach ASP Conference Series, Vol. 443

    E-print Network

    Fillingim, Matthew

    Earth and Space Science: Making Connections in Education and Public Outreach ASP Conference Series and Earth Sciences (ROSES) Supplemental Education grant. Our collaborators include science and education 1Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, California 94720, USA 2

  19. ASTROBIOLOGY Volume 9, Number 2, 2009

    E-print Network

    OF ASTROBIOLOGY, Arora and Kamaluddin re- port that ribonucleotide monophosphates bind to the sur- face, 1949; Hazen, 2005). The prebiotic role of mineral surfaces as general catalysts looks very attractive

  20. Proceedings of the Plutonium Futures ? The Science 2006 Conference

    SciTech Connect

    Fluss, M; Hobart, D; Allan, P; Jarvinen, G

    2007-07-12

    Plutonium Futures--The Science 2006 provided opportunities to examine present knowledge of the chemical and physical properties of plutonium and other actinides in complex media and materials; to discuss the current and emerging science (chemistry, physics, materials science, nuclear science, and environmental effects) of plutonium and actinides relevant to enhancing global nuclear security; and to exchange ideas. This international conference also provided a forum for illustrating and enhancing capabilities and interests, and assessing issues in these areas. U.S. and international scientists, engineers, faculty, and students from universities, national laboratories, and DOE's nuclear complex were encouraged to participate and make technical contributions. The Conference ran from Sunday, July 9th through Thursday, July 13th. A popular aspect of the conference was the opening tutorial session on Sunday afternoon intended for students and scientists new to the area of plutonium research. The tutorial was well attended by novices and veterans alike, and featured such diverse topics as; plutonium metallurgy, plutonium in the environment, and international arms control and nonproliferation. Two plenary lectures began each morning and each afternoon session and highlighted the breakout sessions on coordination/organometallic chemistry, solid-state physics, environmental chemistry, materials science, separations and reprocessing, advanced fuels and waste forms, phase transformations, solution and gas-phase chemistry, compounds and complexes, electronic structure and physical properties, and more. Chemistry Highlights--Among the many chemistry highlights presented in this proceedings are the overview of concepts and philosophies on inert nuclear fuel matrices and concerns about the ever-increasing amounts of minor actinides and plutonium generated in the fuel cycle. The various ideas involve multiple reduction schemes for these materials, suggesting fuels for 'burning' or 'cradle-to-grave' accountability for various reactor types. Related work is presented on identification of the unique reaction mechanisms and identification of the intermediate products, including Pu(III), at the end of the PUREX process. In the important area of nuclear forensics, actual scenarios of nuclear materials confiscation and the successes of applying forensics protocols to determine attribution and possible intention are provided. In the area of reactor incidents, there is no other place on Earth like the Chernobyl Site Object Shelter and radioactive aerosol particle characterization studies reflect an important effort described herein. An additional report from another unique environmental site presents results on radionuclide monitoring, fate, and transport in the ecosystem of the Yenisei River in the Krasoyarsk region. In the area of nuclear waste disposal, a study of the ion irradiation damage to pyrochlore compounds with varying amounts of host elements and actinide dopants is presented. Papers on both the aqueous and nonaqueous chemistry of plutonium and other actinides are presented including anhydrous coordination chemistry and redox behavior in the presence of humic materials and the their sorption on common minerals in the environment. Also published herein are reports on the field of anhydrous coordination chemistry of the transuranic elements where there is scarce information. Solid-State and Materials Highlights--Plutonium solid-state and materials research is represented in these proceedings by a wealth of leading edge discovery class research. The breadth of this research is reflected in the topics covered: solid-state; materials science; superconductivity; phase changes, phonons, and entropy; electronic structure and physical properties; surface science and corrosion; and radiation effects, defects, impurities, and property changes. Indeed the scientific challenge and excitement of plutonium can best be highlighted by quoting the tutorial prospectus of Drs. Sarrao and Schwartz. 'Plutonium has long been recognized as a complex and scie

  1. Terrestrial atmosphere, water and astrobiology

    NASA Astrophysics Data System (ADS)

    Brack, A.; Coradini, M.

    2010-12-01

    Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  2. 11th National Conference on Science, Policy, and the Environment: Our Changing Oceans

    SciTech Connect

    Peter Saundry

    2012-04-17

    On January 19-21, 2011, The National Council for Science and the Environment (NCSE) successfully convened its 11th National Conference on Science, Policy and the Environment: Our Changing Oceans in Washington, DC at the Ronald Reagan Building and International Trade Center. Over 1,247 participants attended the conference, representing federal, state and local governments, university and colleges across the US, civil society organizations, the business community, and international entities. In addition, the conference was webcast to an audience across several states. The conference provided a forum to examine the profound changes our ocean will undergo over the next 25-50 years and share various perspectives on the new research, tools, and policy initiatives to protect and sustain our ocean. Conference highlights and recommendations are available to the public on NCSE's conference website, www.OurChangingOceans.org.

  3. Astrobiology and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  4. Life in the Cosmic Context. An Astrobiology Course as an Experiment in Transdisciplinarity

    NASA Astrophysics Data System (ADS)

    Friaça, A. C. S.; Janot Pacheco, E.

    2014-10-01

    ``Life in the Cosmic Context" (AGA0316) is the astrobiology course offered by University of São Paulo to undergraduate students of science and humanities majors. The variety of background of the population attending AGA0316 and the broad scope of the addresssed issues makes this course a laboratory of transdisciplinarity.

  5. Agriculture and Life Sciences Complex Shared Conference Room & Meeting Space Guidelines Reservations

    E-print Network

    June 2011 Agriculture and Life Sciences Complex Shared Conference Room & Meeting Space, with priority given to building occupants and other AgriLife entities. A small fee for custodial charges here: http://firstcall.tamu.edu/pdf/Scheduling%20a%20Shared%20Conference%20Room.pdf Other rooms may

  6. Proceedings of the New England Conference on Ocean Science Education, Woods Hole, Massachusetts, May 1966.

    ERIC Educational Resources Information Center

    Mangelsdorf, Frederick E.; And Others

    Reported are the papers presented at the New England Conference on Ocean Science Education. The purpose of the conference was to bring together prominent oceanographers and New England educators at the primary and secondary level to discuss current progress in oceanographic research and to relate this progress to the needs of schools for materials…

  7. A Comparison of the Methodological Quality of Articles in Computer Science Education Journals and Conference Proceedings

    ERIC Educational Resources Information Center

    Randolph, Justus J.; Julnes, George; Bednarik, Roman; Sutinen, Erkki

    2007-01-01

    In this study we empirically investigate the claim that articles published in computer science education journals are more methodologically sound than articles published in computer science education conference proceedings. A random sample of 352 articles was selected from those articles published in major computer science education forums between…

  8. Science Fiction: The Interdisciplinary Genre An international conference featuring Robert J. Sawyer

    E-print Network

    Haykin, Simon

    Science Fiction: The Interdisciplinary Genre An international conference featuring Robert J. Sawyer" Chester New Hall 102 #12;Valerie Broege (Vanier College) "Robert J. Sawyer: A Holistic Science Fiction and the Science Fiction of Sawyer and Van Vogt" Nick Matthews (Undergraduate Student, Waterloo) "Through a glass

  9. Proceedings of the Redesign in Science Education Conference (RISE) (Columbus, OH, October 20-21, 2000).

    ERIC Educational Resources Information Center

    Beeth, Michael E., Ed.; Kwon, Hyeoksoon, Ed.; Lee, Gyoungho, Ed.

    This document contains the papers presented at the Redesign in Science Education (RISE) Conference. Papers include: (1) "A Model Development Concept (MDC) for Education: A Framework for Change" (C. K. Barsky, K. G. Wilson, and B. Daviss); (2) "Teaching Science Everyday" (K. L. Scott); (3) "Science Teacher Licensure Requirements in Ohio" (P.…

  10. Astrobiological Significance of Microbial Extremophiles

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative pH. The epoch of study of thermophilic microorganisms starts with the discovery of Thermus aquaticus, and presently the maximum temperature for growth at 113 C was found for Pyrolobus fumarii. The microorganisms capable of growth at high temperatures and in hyperacidic environments on Earth are good analogs for life that might be able to survive in hot acidic droplets in the upper regimes of the atmosphere of Venus. The study of barophiles was made possible by engineering achievements leading to the development of the submersible crafts used to study the Black Smokers of the Deep-sea Hydrothermal vents. The first described radioresistant bacterium Deinococcus radiodurans can survive ionizing irradiation and other DNA-damaging assaults at doses that are lethal to all other organisms. These microbes are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath icy crusts Europa and Enceladus. This paper presents ESEM and FESEM images showing intact microbes preserved in the deep ice cores extracted from just above Lake Vostok, Antarctica that are considered analogs for life forms that might survive on comets and icy moons.

  11. RESEARCH CONFERENCE OF THE ISRAEL SCIENCE FOUNDATION Automorphism Groups of Topological Structures

    E-print Network

    Prigozhin, Leonid

    RESEARCH CONFERENCE OF THE ISRAEL SCIENCE FOUNDATION Automorphism Groups of Topological Structures, ISRAEL PRINCIPAL INVITED SPEAKERS: Augustin Banyaga (USA), Jan Dijkstra (the Netherlands), Wieslaw Kubis (Poland), Matatyahu Rubin (Israel), Igor Protasov (Ukraine), Slawomir Solecki (USA) CONFIRMED PARTICIPANTS

  12. National conference on environmental remediation science and technology: Abstracts

    SciTech Connect

    NONE

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  13. 11th National Conference on Science, Policy, and the Environment: Our Changing Oceans

    Microsoft Academic Search

    Peter Saundry

    2012-01-01

    On January 19-21, 2011, The National Council for Science and the Environment (NCSE) successfully convened its 11th National Conference on Science, Policy and the Environment: Our Changing Oceans in Washington, DC at the Ronald Reagan Building and International Trade Center. Over 1,247 participants attended the conference, representing federal, state and local governments, university and colleges across the US, civil society

  14. Conferences and Sessions: NSTA Area Conference on Science Education: Science: The Foundation of the Future, Kansas City, 2010

    NSDL National Science Digital Library

    1900-01-01

    Join your colleagues on the banks of the Missouri River for the first of NSTA's 2010 fall conferences. Conference strands include: Data-driven Learning Developing and Communicating Conceptual Understanding for All Students Scient

  15. Alone? A Discovery Sourcebook for Astrobiology

    NASA Astrophysics Data System (ADS)

    Pecnik, B.; Isu Dp1'02 Team

    2003-04-01

    The sourcebook represent an international, interdisciplinary and intercultural approach to the topic of astrobiology. It addresses issues pertaining to the search for and discovery of non-Earth based life, extant or extinct, and not the study thereof. The period of the study is the past, the present and 20 years into the future. Study follows four themes; Current State - Discusses past, present, and planned astrobiology investigations. The Quest for Discovery - Discusses life, what we think life is, where to look for life, and the experiments to use to identify life, as we know it, either extant, or extinct. Overview of possible future space missions is provided, by identifying destinations and mission options. Human Elements - Discusses the impact of astrobiology on the human condition through scenarios. This is followed by a discussion of how education can bridge the gap between astrobiology and the public by functioning as a link among many other fields of study. Synthesis - Concludes the report in a case study of a future astrobiology mission to the Jovian moon Europa.

  16. Heterocyclic Anions of Astrobiological Interest

    NASA Astrophysics Data System (ADS)

    Cole, Callie A.; Demarais, Nicholas J.; Yang, Zhibo; Snow, Theodore P.; Bierbaum, Veronica M.

    2013-12-01

    As more complex organic molecules are detected in the interstellar medium, the importance of heterocyclic molecules to astrobiology and the origin of life has become evident. 2-Aminothiazole and 2-aminooxazole have recently been suggested as important nucleotide precursors, highlighting azoles as potential prebiotic molecules. This study explores the gas-phase chemistry of three deprotonated azoles: oxazole, thiazole, and isothiazole. For the first time, their gas-phase acidities are experimentally determined with bracketing and H/D exchange techniques, and their reactivity is characterized with several detected interstellar neutral molecules (N2O, O2, CO, OCS, CO2, and SO2) and other reactive species (CS2, CH3Cl, (CH3)3CCl, and (CH3)3CBr). Rate constants and branching fractions for these reactions are experimentally measured using a modified commercial ion trap mass spectrometer whose kinetic data are in good accord with those of a flowing afterglow apparatus reported here. Last, we have examined the fragmentation patterns of these deprotonated azoles to elucidate their destruction mechanisms in high-energy environments. All experimental data are supported and complemented by electronic structure calculations at the B3LYP/6-311++G(d,p) and MP2(full)/aug-cc-pVDZ levels of theory.

  17. Organization by Gordon Research Conferences of the 2012 Plasma Processing Science Conference 22-27 July 2012

    SciTech Connect

    Jane Chang

    2012-07-27

    The 2012 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in plasma science and technology as well as explore the applications of this nonequilibrium medium in possible approaches relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics and chemistry, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy, the production of fuels from renewable feedstocks and carbon dioxide neutral solar fuels (from carbon dioxide and water), and plasma-enabled medicine and sterilization.

  18. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Mai, N.; McIntyre, M.; Yost, B.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  19. Tanpopo: Astrobiology exposure and micrometeoroid capture experiments

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akihiko; Yano, Hajime; Okudaira, Kyoko; Kobayashi, Kensei; Yokobori, Shin-Ichi; Kawai, Hideyuki; Yamashita, Masamichi; Hashimoto, Hirofumi; Yabuta, Hikaru

    There is a long history of the microbe-collection experiments at high altitude (1). Microbes have been collected using balloons, aircraft and meteorological rockets. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments (1). It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. Tanpopo, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS) (2). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. In this presentation, we will present the recent results related to the microbiological analyses. The results suggested that the bleaching speeds and the spectra of fluorescence are different between different origins of the fluorescence: whether it is emitted from microbe or not. It is also shown that PCR analysis of the microbe can be used to determine the species. References 1)Yang, Y., Yokobori, S. and Yamagishi, A.: Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol. Sci. Space, 23 (2009), pp. 151-163. 2) Yamagishi, A., H. Yano, K. Kobayashi, K. Kobayashi, S. Yokobori, M. Tabata, H. Kawai, M. Yamashita, H. Hashimoto, H. Naraoka, H. Mita (2008) TANPOPO: astrobi-ology exposure and micrometeoroid capture experiments. International Symposium on Space Technology and Science (ISTS) Web Paper Archives. 2008-k-05.

  20. Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments

    NASA Astrophysics Data System (ADS)

    Yamagishi, Akihiko; Yano, Hajime; Yamashita, Masamichi; Hashimoto, Hirofumi; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Tabata, Makoto; Yabuta, Hikaru

    2012-07-01

    There is a long history of the microbe-collection experiments at high altitude (1). Microbes have been collected using balloons, aircraft and meteorological rockets. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments (1). It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. Tanpopo, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS) (2). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. In this presentation, we will present the recent results related to the microbiological analyses. The results suggested that the bleaching speeds and the spectra of fluorescence are different between different origins of the fluorescence: whether it is emitted from microbe or not. It is also shown that PCR analysis of the microbe can be used to determine the species. References 1)Yang, Y., Yokobori, S. and Yamagishi, A.: Assessing panspermia hypothesis by microorganisms collected from the high altitude atmosphere. Biol. Sci. Space, 23 (2009), pp. 151-163. 2) Yamagishi, A., H. Yano, K. Kobayashi, K. Kobayashi, S. Yokobori, M. Tabata, H. Kawai, M. Yamashita, H. Hashimoto, H. Naraoka, & H. Mita (2008) TANPOPO: astrobiology exposure and micrometeoroid capture experiments. International Symposium on Space Technology and Science (ISTS) Web Paper Archives. 2008-k-05.

  1. Astrobiology Sample Analysis as a Design Driver

    NASA Astrophysics Data System (ADS)

    Cohen, Marc M.

    2001-01-01

    This effort supports the Astrobiology Objective 8 the Search for LIFE ON MARS PAST AND PRESENT -(Astrobiology Program Office, 1998, p.7). The essential trade analysis is between returning very small samples to the Earth while protecting them versus in situ analysis on Mars. Developing these explicit parameters encompasses design, instrumentation, system integration, human factors and surface operations for both alternatives. This allocation of capability approach incorporates a "humans and machines in the loop" model that recognizes that every exploration system involves both humans and automated systems. The question is where in the loop they occur whether on Earth, in the Mars Base, in the rover or creeping over the Mars surface.

  2. Procedia Computer Science 00 (2011) 000000 International Conference on Mobile Web Information Systems (MobiWIS)

    E-print Network

    Hamlen, Kevin W.

    2011-01-01

    component of many modern web services. For example, geospatial web servers provide clients mobile bytecodeProcedia Computer Science 00 (2011) 000­000 Procedia Computer Science The 8th International Conference on Mobile Web Information Systems (MobiWIS) A Service-oriented Approach to Mobile Code Security

  3. IFLA General Conference, 1985. Division on Special Libraries. Section on Science and Technology Libraries. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on science and technology libraries which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "UAP (Universal Availability of Publications) and User Training for Categories of Grey Literature" (Dieter Schmidmaier, Mining Academy Freiberg, East Germany); (2) "Resource Sharing in Science…

  4. IFLA General Conference, 1986. Special Libraries Division. Section: Science and Technology Libraries. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    Papers on science and technology libraries which were presented at the 1986 International Federation of Library Associations (IFLA) conference include: (1) "Online Information Service of the Japan Information Center of Science and Technology" (Ryuko Igarashi, Japan); (2) "A View from the Chip--The Influence of Information Technologies on Libraries…

  5. Trends in the Disciplines: The 1979 United Nations Conference on Science and Technology for Development.

    ERIC Educational Resources Information Center

    Trends 2000, 1979

    1979-01-01

    The US National Paper on the UN Conference on Science and Technology for Development is grounded in the notion of "appropriate technology" and considers future courses of action. The Swedish Lund Letter on Science, Technology, and Basic Human Needs examines this position in terms of technology impact on employment. (JMF)

  6. Science, Technology, and the Liberal Arts: Report on a National Conference Held at Lehigh University.

    ERIC Educational Resources Information Center

    Cutcliffe, Stephen H.; Goldman, Steven L.

    1985-01-01

    Presents highlights of a conference which disseminated results of a National Science Foundation (NSF) curriculum development project at Lehigh University (NSF-SER-8005 199, "Elements of Technology in a Liberal Arts Curriculum"). Also discusses activities at other institutions designed to bring science, mathematics, and technology "literacy" into…

  7. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S. (editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  8. The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2004-01-01

    Infrared spectroscopy in the 2.5-16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept currently under study by a team of partners: NASA's Ames Research Center, Ball Aerospace and Technologies Corporation, and the Jet Propulsion Laboratory. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) The evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) The chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to HII regions and dense clouds, (3) The distribution of organics in the diffuse ISM, (4) The nature of organics in the Solar System (in comets, asteroids, satellites), and (5) The nature and distribution of organics in local galaxies. The technical considerations of achieving these science objectives in a MIDEX-sized mission will be presented.

  9. Literature and the Sea. Proceedings of a Conference Held at the Marine Science Center, Newport, Oregon, May 8, 1976.

    ERIC Educational Resources Information Center

    Astro, Richard, Ed.

    This document is a collection of eight papers presented at a conference held at the Marine Science Center, Newport, Oregon, May 8, 1976. The conference concluded a course offered jointly by the School of Oceanography and the Department of English at Oregon State University. The conference had two purposes: (1) focus on the relationship between…

  10. of planetsAstrobiology Biogeocatalysis Research Center

    E-print Network

    Maxwell, Bruce D.

    Makes up most of the planet's mass (Hydrogen/Helium/Ammonia/Water) Chemistry Volatile organics, gases Atmosphere Thin (Nitrogen/Argon) Chemistry Alkaline pH >7, salty #12;Buckets of planets (Methane/Carbon Dioxide) Chemistry organics, salty Buckets of planetsAstrobiology Biogeocatalysis Research

  11. Astrobiology: Not Just Little Green Men

    Microsoft Academic Search

    D. Morrison

    2004-01-01

    Astrobiology is the study of the origin, evolution, distribution, and future of life in the universe. This new (or at least newly-named) discipline responds to current opportunities to make significant progress on basic questions such as Where did we come from? Are we alone? Can we live on other planets? Every astronomer knows that these questions are frequently asked by

  12. ASTROBIOLOGY Volume 5, Number 6, 2005

    E-print Network

    Arizona, University of

    ABSTRACT Venus and Mars likely had liquid water bodies on their surface early in the Solar System his- tory--Terrestrial planets--Life--Inner Solar System. Astrobiology 5, 778­795. INTRODUCTION IN TERMS OF PLANETARY EXPLORATION of the inner planets in the Solar System. We are now transitioning into a mode of au- tonomous exploration

  13. Understanding the nineteenth century origins of disciplines: lessons for astrobiology today?

    NASA Astrophysics Data System (ADS)

    Brazelton, William J.; Sullivan, Woodruff T., III

    2009-10-01

    Astrobiology's goal of promoting interdisciplinary research is an attempt to reverse a trend that began two centuries ago with the formation of the first specialized scientific disciplines. We have examined this era of discipline formation in order to make a comparison with the situation today in astrobiology. Will astrobiology remain interdisciplinary or is it becoming yet another specialty? As a case study, we have investigated effects on the scientific literature when a specialized community is formed by analyzing the citations within papers published during 1802-1856 in Philosophical Transactions of the Royal Society (Phil. Trans.), the most important ‘generalist’ journal of its day, and Transactions of the Geological Society of London (Trans. Geol. Soc.), the first important disciplinary journal in the sciences. We find that these two journals rarely cited each other, and papers published in Trans. Geol. Soc. cited fewer interdisciplinary sources than did geology papers in Phil. Trans. After geology had become established as a successful specialized discipline, geologists returned to publishing papers in Phil. Trans., but they wrote in the new, highly specialized style developed in Trans. Geol. Soc. They had succeeded in not only creating a new scientific discipline, but also a new way of doing science with its own modes of research and communication. A similar citation analysis was applied to papers published over the period 2001-2008 in the contemporary journals Astrobiology and the International Journal of Astrobiology to test the hypothesis that astrobiologists are in the early stages of creating their own specialized community. Although still too early to reliably detect any but the largest trends, there is no evidence yet that astrobiologists are drifting into their own isolated discipline. Instead, to date they appear to remain interdisciplinary.

  14. PREFACE: 1st Conference on Light and Particle Beams in Materials Science 2013 (LPBMS2013)

    NASA Astrophysics Data System (ADS)

    Kumai, Reiji; Murakami, Youichi

    2014-04-01

    From 29-31 August 2013, the 1st International Conference on Light and Particle Beams in Materials Science, LPBMS 2013, took place in the Tsukuba International Congress Center in the city of Tsukuba, Japan. The conference was a continuation of the international series Synchrotron Radiation in Materials Science (SRMS), which started in 1994. The last one, SRMS-7, was held in Oxford UK 11-14 July 2010, where the International Advisory Committee (IAC) recommended the conference be enlarged to incorporate Materials Research from Neutron, Muon, and Slow Positron Sources, as well as the science emerging from Synchrotron Light Sources. The conference brought together contributions from academics and industrial researchers with a diverse background and experience from the physics, chemistry and engineering communities. The topics covered in the LPBMS2013 include strongly correlated electron systems, magnetism and magnetic materials, soft matter, interface and surface defects, catalysts, biomaterials, and ceramics. In the 3-day scientific program, the conference consisted of 9 plenary talks, 33 invited talks, 20 oral presentations, and 126 poster presentations. We are pleased to publish the proceedings of the LPBMS2013 in this volume of Journal of Physics: Conference Series. This volume contains 58 papers representing the work that was presented and discussed at the conference. We hope that this volume will promote further development of this interdisciplinary materials research emerging from synchrotron light, neutron, muon, and slow positron sciences. Finally, we would like to thank the International Advisory Committee (Chair: Professor G N Greaves), sponsors, all the participants and contributors for making possible this international meeting of researchers. Reiji Kumai & Youichi Murakami Conference photograph Details of the program and organizing committees are available in the pdf

  15. Proceedings of the First International Conference on Toxicogenomics Integrated with Environmental Sciences (TIES2007)

    Microsoft Academic Search

    Pierre R Bushel; Dahlia Nielsen; Weida Tong

    2009-01-01

    The First International Conference on Toxicogenomics Integrated with Environmental Sciences (TIES-2007) was held at the North Carolina State University McKimmon Center in Raleigh, North Carolina on October 25th and 26th, 2007. Based on the presentations at the conference and the commitment or interest of the presenters to contribute a manuscript of their research, we compiled this collection of articles as

  16. A Concept for NASA's Mars 2016 Astrobiology Field Laboratory

    NASA Astrophysics Data System (ADS)

    Beegle, Luther W.; Wilson, Michael G.; Abilleira, Fernando; Jordan, James F.; Wilson, Gregory R.

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  17. Science Education and the External Perspective on Science A paper presented at the 2nd International Conference on the History and Philosophy of

    E-print Network

    Cobern, William W.

    Science Education and the External Perspective on Science A paper presented at the 2nd International Conference on the History and Philosophy of Science in Science Teaching, May 11-15, 1992, Queen's University, Kingston, Ontario, Canada A revised version was published as: Cobern, W. W. (1995). Science

  18. Report on a Boston University Conference December 7-8, 2012 on 'How Can the History and Philosophy of Science Contribute to Contemporary U.S. Science Teaching?'

    E-print Network

    Garik, Peter

    2015-01-01

    This is an editorial report on the outcomes of an international conference sponsored by a grant from the National Science Foundation (NSF) (REESE-1205273) to the School of Education at Boston University and the Center for Philosophy and History of Science at Boston University for a conference titled: How Can the History and Philosophy of Science Contribute to Contemporary U.S. Science Teaching? The presentations of the conference speakers and the reports of the working groups are reviewed. Multiple themes emerged for K-16 education from the perspective of the history and philosophy of science. Key ones were that: students need to understand that central to science is argumentation, criticism, and analysis; students should be educated to appreciate science as part of our culture; students should be educated to be science literate; what is meant by the nature of science as discussed in much of the science education literature must be broadened to accommodate a science literacy that includes preparation for soci...

  19. 28th Annual JPMorgan Healthcare Conference--Human Genome Sciences and Celgene.

    PubMed

    Gale, Sophie; Croasdell, Gary

    2010-03-01

    The JPMorgan Healthcare Conference, held in San Francisco, included presentations by various pharmaceutical companies summarizing their achievements in 2009 and expectations for 2010. This conference report highlights presentations from Human Genome Sciences Inc and Celgene Corp. Investigational drugs from Human Genome Sciences, including belimumab (in collaboration with GlaxoSmithKline plc), albinterferon alfa-2b (with Novartis AG), mapatumumab (with Takeda Pharmaceutical Co Ltd) and HGS-1029, and from Celgene, including romidepsin, pomalidomide, apremilast and PDA-001 (Celgene Cellular Therapeutics), are discussed. PMID:20191423

  20. Report on a Boston University Conference December 7-8, 2012 on "How Can the History and Philosophy of Science Contribute to Contemporary US Science Teaching?"

    ERIC Educational Resources Information Center

    Garik, Peter; Benétreau-Dupin, Yann

    2014-01-01

    This is an editorial report on the outcomes of an international conference sponsored by a grant from the National Science Foundation (NSF) (REESE-1205273) to the School of Education at Boston University and the Center for Philosophy and History of Science at Boston University for a conference titled: "How Can the History and Philosophy of…

  1. AstroBiology Explorer Mission Concepts (ABE/ASPIRE)

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Ennico, Kimberly A.

    2006-01-01

    The AstroBiology Explorer (ABE) and the Astrobiology Space InfraRed Explorer (ASPIRE) Mission Concepts are two missions designed to address the questions (1) Where do we come from? and (2) Are we alone? as outlined in NASA s Origins Program using infrared spectroscopy to explore the identity, abundance, and distribution of molecules of astrobiological importance throughout the Universe. The ABE mission s observational program is focused on six tasks to: (1) Investigate the evolution of ice and organics in dense clouds and star formation regions, and the young stellar/planetary systems that form in them; (2) Measure the evolution of complex organic molecules in stellar outflows; (3) Study the organic composition of a wide variety of solar system objects including asteroids, comets, and the planets and their satellites; (4) Identify organic compounds in the diffuse interstellar medium and determine their distribution , abundance, and change with environment; (5) Detect and identify organic compounds in other galaxies and determine their dependence on galactic type; and (6) Measure deuterium enrichments in interstellar organics and use them as tracers of chemical processes. The ASPIRE mission s observational program expands upon ABE's core mission and adds tasks that (7) Address the role of silicates in interstellar organic chemistry; and (8) Use different resolution spectra to assess the relative roles and abundances of gas- and solid-state materials. ABE (ASPIRE) achieves these goals using a highly sensitive, cryogenically-cooled telescope in an Earth drift-away heliocentric orbit, armed with a suite of infrared spectrometers that cover the 2.5-20(40) micron spectral region at moderate spectral resolution (R>2000). ASPIRE's spectrometer complement also includes a high-resolution (R>25,000) module over the 4-8 micron spectral region. Both missions target lists are chosen to observe a statistically significant sample of a large number of objects of varied types in support of the tasks outline above. The ABE and ASPIRE mission lifetimes are designed to be 14 months and 3 years, respectively, both with significant cryogen and propellant lifetime margins to support an extended observing campaign. The ABE/ASPIRE mission concepts and their supporting Science Teams are led by Principal Investigator Dr. Scott Sandford of NASA s Ames Research Center, with industry partner Ball Aerospace Technologies Ltd., and managed by Jet Propulsion Laboratory. The ABE/ASPIRE Science Operations will be carried out at NASA s Ames Research Center, and the ABE/ASPIRE database will be archived at Caltech/IPAC.

  2. Future Directions in 3D Materials Science: Outlook from the First International Conference on 3D Materials Science

    NASA Astrophysics Data System (ADS)

    Lewis, Alexis C.; Howe, David

    2014-04-01

    The First International Conference on Three-Dimensional Materials Science was held in July 2012 in Seven Springs, Pennsylvania. The final session of the meeting consisted of a panel and audience discussion of the future directions of 3D materials science. Here we summarize these directions in four categories: improving data collection capabilities; increasing efficiency of collection, analysis, and modeling of data; error quantification; and data management.

  3. Are We All There Is? Astrobiology in Culture

    NASA Astrophysics Data System (ADS)

    Billings, L.

    2009-12-01

    This presentation will address public interest in, opinions about, and interpretations of scientific studies of the origin, evolution, distribution, and future of life in the universe, including the rise and fall and resurrection of the scientific search for evidence of extraterrestrial intelligent life. Astrobiology’s attention to the cultural dimensions of scientific research - societal, ethical, philosophical - will be covered. Depictions of astrobiology in scientific culture and in popular culture will be compared and contrasted, and interactions between scientific and popular culture with regard to astrobiology will be considered.

  4. Economist Conferences to hold international Life Science conference in Uppsala, Sweden

    E-print Network

    ? How will the sector cope with the changing business models of pharmaceutical companies? How can R. Confirmed speakers include Richard Bergström, Director General, European Federation of Pharmaceutical industry conferences, management events and government roundtables held around the world. As part

  5. PREFACE: 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.

  6. Perspectives of women of color in science-based education and careers. Summary of the conference on diversity in science

    SciTech Connect

    NONE

    1998-12-01

    Research on inequality or stratification in science and engineering tends to concentrate on black/white or male/female difference; very few studies have discussions of both race and gender. Consequently, very little is known about the exact course that women of color take in science-based education and employment or about the course that steers them out of science-based careers. Questions abound: What are the environmental factors that affect the choices in education and science-based careers of women of color? What has influenced women of color who currently are in science-based careers? Is critical mass important and, if so, what are the keys to increasing it? What recommendations can be made to colleges and universities, faculty members, employers, the federal government, women of color themselves, and to improve the conditions and numbers of women of color in science-based careers? These questions prompted the National Research Council`s Committee on Women in Science and Engineering (CWSE) to convene a conference on Diversity in Science: Perspectives on the Retention of Minority Women in Science, Engineering, and Health-Care Professions, held on October 21--23, 1995. Confronting the problem of the lack of knowledge about the journey of women of color in science-based education and career, the conference offered opportunities for these women to describe the paths that they have taken and to identify strategies for success. Their perspectives ground this report. For purposes of this document, women of color include women in the following racial or ethnic groups: Hispanics, African-Americans, Asian and Pacific Islanders, and American Indians and Alaskan Natives. Science-based careers include those in the physical sciences and mathematics, life sciences, social sciences, and engineering.

  7. 78 FR 10180 - Annual Computational Science Symposium; Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ...at least 14 days before the meeting. II. Information for Presenters...conference should submit an abstract online at http://www...NewProjectsCSS.aspx. Suggested poster abstract topics include: Data submission...efficiency, and cost. All abstracts must be received by...

  8. International conference on nuclear data for science and technology

    NASA Astrophysics Data System (ADS)

    Haight, Robert C.; Chadwick, Mark B.; Kawano, Toshihiko; Talou, Patrick

    2005-05-01

    All papers were peer reviewed. This conference focused on the broad field of nuclear data, their production, dissemination, and testing, with the goal of providing reliable data for applications such a nuclear fission and fusion energy, accelerators, spallation neutron sources, nuclear medicine, environment, space, non-proliferation, nuclear safety, astrophysics and cosmology, and basic research.

  9. International Scientific Conference Computer Science'2008 Near-Native Protein Folding

    E-print Network

    Fidanova, Stefka

    International Scientific Conference Computer Science'2008 61 Near-Native Protein Folding Stefka: The protein folding problem is a fundamental problem in computational molecular biology. The high resolution 3. After that the folding problem is de- fined like optimization problem. Keywords: Protein folding

  10. Abstract Presented at The Marine and Estuarine Shallow Water Science and Management Conference

    E-print Network

    Brookhaven National Laboratory

    Abstract Presented at The Marine and Estuarine Shallow Water Science and Management Conference treatment technologies for the decontamination of dredged material in New York/New Jersey Harbor construction is emphasized as a way of obtaining adequate funding for infrastructure and operating costs during

  11. In Proceedings of 8 Australian International Conference on Speech Science and

    E-print Network

    Millar, J. Bruce

    In Proceedings of 8 th Australian International Conference on Speech Science and Technology (SST-2000), 5-7 December, Canberra, pp.434-439 PROSPECTS FOR SPEECH TECHNOLOGY IN THE OCEANIA REGION J Bruce of Advanced Studies Australian National University ABSTRACT: The development of speech technology

  12. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 International Manufacturing Science and Engineering Conferences

    E-print Network

    Chen, Yong

    1 Copyright © 2012 by ASME Proceedings of the ASME 2012 International Manufacturing Science and Engineering Conferences MSEC2012 June 4-8, 2012, Notre Dame, Indiana, USA MSEC2012-7232 RAPID MANUFACTURING Pan, Chi Zhou, Yong Chen* Daniel J. Epstein Department of Industrial and Systems Engineering

  13. IFLA General Conference, 1984. Special Libraries Division. Section on Science and Technology Libraries. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on scientific/technical information and libraries presented at the 1984 IFLA general conference include: (1) "Library Ethics and the Special Library Network in Science and Technology" (Dieter Schmidmaier, East Germany); (2) "The Dissemination of Patent Information by Libraries: An Example Demonstrating the Necessity of Libraries in the…

  14. Conference of the Society for Literature and Science. Proceedings (Atlanta, Georgia, October 10-13, 1996).

    ERIC Educational Resources Information Center

    Perkowitz, Sidney, Ed.

    The papers contained in these proceedings from the 1996 Society for Literature and Science Conference are organized into sections based on theme. Some of these themes are: (1) Secularizing Enlightenment; (2) Eugenics and the Politics of Knowledge; (3) Reading the Discourses of Psychology; (4) Women and Medicine; (5) The Rhetoric of Public Health;…

  15. Proceedings of the Marine Sciences in Education Conference (University of California, Irvine, May 4, 1968).

    ERIC Educational Resources Information Center

    Linsky, Ronald B.

    This Conference brought together practicing educators at all levels to present their methods and techniques of utilizing the concept of the marine sciences within the educational spectrum. Included are descriptions of extant programs, discussions of specific ways to use the marine environment for instructional purposes, papers directed at the role…

  16. IFLA General Conference, 1985. Division on Special Libraries. Section on Biological and Medical Science Libraries. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on biological and medical science libraries which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "The International Programs of the National Library of Medicine" (Lois Ann Colaianni, United States); (2) "Information Needs for International Health. A CDC (Centers for Disease…

  17. 2011 IEEE Nuclear Science Symposium Conference Record NPl.M-225 Graphene Field Effect Transistor

    E-print Network

    Chen, Yong P.

    of graphene-based radiation detectors to X-rays, gamma-rays, and light photons. We observed increasing variety of applications like nuclear security, medicine, and basic research. a. b. Radiat2011 IEEE Nuclear Science Symposium Conference Record NPl.M-225 Graphene Field Effect Transistor

  18. 2011 IEEE Nuclear Science Symposium Conference Record NP1.M-161 Graphene-Based Neutron Detectors

    E-print Network

    Chen, Yong P.

    2011 IEEE Nuclear Science Symposium Conference Record NP1.M-161 Graphene-Based Neutron Detectors unusual electrical properties of potential use for next-generation radiation detectors. Of particular, Arnol Patil, Yong P. Chen, Member, IEEE, and Igor Jovanovic Abstract-We are developing detector

  19. PHYTOREMEDIATION: STATE OF THE SCIENCE CONFERENCE AND OTHER DEVELOPMENTS. EDITORIAL INTRODUCTION AND SPECIAL COMMENTARY

    EPA Science Inventory

    It is a pleasure to present six papers in this issue, selected from presentations at the U.S. Environmental Protection Agency (EPA) Conference, Phytoremediation: State of the Science held May 1-2, 2000 in Boston, MA, USA. These papers highlight some of the many advances reported...

  20. The 5th international atmospheric sciences and applications to air quality conference

    SciTech Connect

    NONE

    1996-12-31

    This document contains one page abstracts from the Fifth International Atmospheric Sciences and Applications to Air Quality Conference. Topics include the following: emissions and integrated assessment; ozone analysis and modeling; acid deposition; measurements and monitoring; advances in air pollution modeling; removal processes; long range transport; meteorological modeling and emergency response; urban air quality; aerosol processes and characterization.

  1. International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07277

    E-print Network

    Danon, Yaron

    thin films. The chamber was successfully tested and calibrated using 0.4 ng of 252 Cf and massInternational Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07277 regions. The chamber was first tested with 252 Cf. This verified the function of the chamber

  2. STUDENT CONFERENCE IN CONSERVATION SCIENCE, THEME: BIODIVERSITY IN AFRICA PRESENT STATE, CHALLENGES AND

    E-print Network

    , Biodiversity and ecosystem functioning and services and Conservation of carnivores. Although all 4 workshopsSTUDENT CONFERENCE IN CONSERVATION SCIENCE, THEME: BIODIVERSITY IN AFRICA ­ PRESENT STATE entitled: "Biodiversity and ecology of ophiostomatoid fungi associated with native trees in the Cape

  3. Water Environment Federation. National TMDL Science and Policy Conference. Phoenix, AZ. November 13 16, 2002.

    E-print Network

    Pitt, Robert E.

    Water Environment Federation. National TMDL Science and Policy Conference. Phoenix, AZ. November 13 ­ 16, 2002. AVAILABILITY OF ATMOSPHERICALLY DEPOSITED MERCURY TO RUNOFF AND RECEIVING WATERS Mark C to receiving waters; such estimates are overly conservative, and do not reflect the complex nature of mercury

  4. To appear, Proceedings of the 2006 American Society of Information Science & Technology Conference

    E-print Network

    Welch, Greg

    personnel in trauma emergency care situations. 3D telepresence technology has the potential to provideTo appear, Proceedings of the 2006 American Society of Information Science & Technology Conference richer visual information than current 2D video conferencing techniques. This may be of benefit

  5. In Search of Dialogue: Staging Science Communication in Consensus Conferences

    Microsoft Academic Search

    Maja Horst

    Controversies about science and technology are often understood as problems of poor communication between science and society.\\u000a Based on the academic tradition of studies in the public understanding of science, the chapter identifies three different\\u000a models for the communicative relationship between science and its publics (the model of diffusion, the model of deliberation\\u000a and the model of negotiation). The author

  6. PREFACE: 23rd International Conference on High Pressure Science and Technology (AIRAPT-23)

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.

    2012-07-01

    The 23rd AIRAPT International Conference on High Pressure Science and Technology was held at Bhabha Atomic Research Centre, Mumbai, from 25-30 September 2011. This conference is part of the series of AIRAPT International Conferences which are held biennially. AIRAPT is an acronym for the French title which translates as 'International Association for the Advancement of High Pressure Science and Technology'. This was the second time the AIRAPT Conference was organized in India. The first was held 20 years ago at the National Aeronautical Laboratory, Bangalore in 1991. The 23rd Conference covered many important topics in the area of both static and dynamic high pressures including theoretical and experimental investigations on the response of materials under high pressures, new developments using neutron and synchrotron sources, investigations on superconductivity under high pressure, studies of geophysical and planetary sciences, biosciences, and the synthesis of new materials. The conference program included Bridgman award lecture, Jemieson award lecture, seven plenary talks, 85 invited talks, 83 oral presentations and about 195 posters. In all there were 372 presentations. 285 scientists from 19 countries participated in the conference. The countries represented included Austria, Canada, China, Estonia, France, Germany, India, Israel, Italy, Japan, Nepal, New Zealand, Poland, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, UK, Ukraine and USA. Many new developments were presented, for example, measurement techniques using the new generation synchrotron sources, more powerful neutron sources and much brighter laser sources; integration of gas-gun with synchrotron source; the achievement of multi-megabar pressures in shock-less dynamic compressions; and capabilities to synthesize centimeter size diamonds with better quality. All these developments have opened up new opportunities for understanding the physics of materials under high pressures. I would like to thank all those who have made valuable contributions to the success of the conference, which include the members of the AIRAPT executive committee, the International Advisory Committee and National Advisory Committee, the plenary speakers, invited speakers, the chairmen of various sessions, all the participants, and the authors of the papers in this volume. All the papers accepted for the proceedings have been reviewed by two independent referees. I am extremely thankful to all the anonymous referees, who have spent their valuable time to ensure the quality of the papers of this volume. I wish to express my gratitude to the members of the Local Organizing Committee for their help and hard work for the success of the conference. Finally, I convey my special thanks to Dr T C Kaushik and Dr K D Joshi, who worked tirelessly and enthusiastically towards making this conference a success. I am confident that this volume of the Conference proceedings will provide an excellent source of information on the current trends in the field of High Pressure Science and Technology. Satish C Gupta Conference Chairman 25-30 September 2011 Conference logo Conference photograph

  7. 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014), was held at the Media Hotel, Jakarta, Indonesia, on 13-14 January 2014. The ScieTech 2014 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. ScieTech 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Mathematics, Chemistry and Physics. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 187 papers and after rigorous review, 50 papers were accepted. The participants come from 16 countries. There are 5 (Five) Paralell Sessions and Four Keynote Speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2014. The Editors of the Scietech 2014 Proceedings: Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. P.N. Gajjar

  8. PREFACE: 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2013)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford

    2013-03-01

    The 2013 International Conference on Science and Engineering in Mathematics, Chemistry and Physics (ScieTech 2013), was held at the Aston Rasuna Hotel, Jakarta, Indonesia, on 24-25 January 2013. The ScieTech 2013 conference aims to bring together scholars, leading researchers and experts from diverse backgrounds and applications areas. Special emphasis is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics, all areas of sciences and applied mathematics. We would like to thank the invited and plenary speakers as well as all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program. This year, we received 197 papers and, after rigorous review, 67 papers were accepted. The participants come from 21 countries. There are 6 (six) Plenary and Invited Speakers. It is an honour to present this volume of Journal of Physics: Conference Series and we thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed ScieTech 2013 be be sucyh a success. The Editors of the ScieTech 2013 Proceedings Dr Ford Lumban Gaol Dr Hoga Saragih Tumpal Pandiangan Dr Mohamed Bououdina The PDF also contains the abstracts of the Invited and Plenary talks, and some photographs taken during the conference.

  9. Miniature GC: Minicell ion mobility spectrometer (IMS) for astrobiology planetary missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Holland, Paul M.; Stimac, Robert M.; Kaye, William J.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or longer mission life for stationary landers/laboratories. We describe here the development of a miniature GC - Minicell Ion Mobility Spectrometer (IMS) under development through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA's Small Business Innovative Research (SBIR) Program.

  10. LunGradCon: The Lunar Graduate Conference

    NASA Astrophysics Data System (ADS)

    Dove, A.; Poppe, A.; Neish, C.; Fagan, A.; Fuqua, H.; Kramer, G. Y.; Horanyi, M.

    2011-12-01

    Members of the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) initiated the Lunar Graduate Conference (LunGradCon), modeled after the highly successful Astrobiology Graduate Conference (AbGradCon). The purpose of this conference is to enhance the professional development of graduate students and early postdoctoral researchers by providing an opportunity to present and discuss scientific research in an environment of their peers. For the first two years, LunGradCon has been held as a one-day conference in conjunction with the NASA Lunar Science Institue's (NLSI) Lunar Science Forum at the NASA Ames Research Center. Activities include an invited overview talk on each of the NASA Lunar Science Institute's three main research areas (OF the Moon, ON the Moon, and FROM the Moon), submitted oral presentations from graduate students and postdoctoral researchers, and networking opportunities with established member of the lunar science community and the NLSI. In each of the first two years of LunGradCon, there have been 20-25 attendees, with about 15 of those presenting submitted talks. Each speaker received feedback forms from the other participants in order to improve on their presentation techniques. Participants also provided feedback on the conference as a whole in order to evaluate the content and provide suggestions for improvement in following years. Overall, the feedback has been extremely positive. This talk will summarize the achievements of past LunGradCons and plans for expansion of the conference to ensure a long-term positive impact on the early careers of future lunar, planetary and space science researchers.

  11. Commentary: Professional Development and Resources for Educators in Astrobiology

    NSDL National Science Digital Library

    Daniella Scalice

    2005-02-01

    In addition to catalyzing and promoting interdisciplinary research in astrobiology, the NASA Astrobiology Institute (NAI) also seeks to train the next generation of astrobiologists. To accomplish this, NAI provides a wealth of resources and support for educators. This month's Commentary column highlights products, programs, and summer workshops that are offered through NAI's network.

  12. Lower Secondary Students' Views in Astrobiology

    ERIC Educational Resources Information Center

    Hansson, Lena; Redfors, Andreas

    2013-01-01

    Astrobiology is, on a profound level, about whether life exists outside of the planet Earth. The question of existence of life elsewhere in the universe has been of interest to many societies throughout history. Recently, the research area of astrobiology has grown at a fast rate, mainly due to the development of observational methods, and the…

  13. A review of "Making Science Social: The Conferences of Theophraste Renaudot 1633-1642" by Kathleen Wellman.

    E-print Network

    Karol K. Weaver

    2004-01-01

    is an important and instructive work. Kathleen Wellman. Making Science Social: The Conferences of Th?ophraste Renaudot 1633-1642. Norman: University of Oklahoma Press, 2003. xviii + 461 pp. + 4 illus. $39.95. Review by KAROL K. WEAVER, SUSQUEHANNA UNIVERSITY.... Kathleen Wellman?s Making Science Social: The Conferences of Th?ophraste Renaudot 1633-1642 traces the history of the seven- teenth-century conferences led by Th?ophraste Renaudot to eluci- date the characteristics of early seventeenth-century science...

  14. Taking the initiative: A leadership conference for women in science and engineering

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The conference sprang from discussions on the current climate that women face in science, mathematics, engineering, and technology. The conference (and this document) is a beginning, not a culmination, of women's learning leadership skills. Conferees were active, articulate, energetic, and ready to learn leadership qualities, some of which seem universal, others that appear to require skills in specific fields. After the introduction, the workshops and presentations are arranged under vision and direction, barriers, alignment and communication, and motivation and inspiration. Some statistics are presented on women degrees and employment in various fields.

  15. An Astrobiology Summer Program for High School Teachers and Students

    NASA Astrophysics Data System (ADS)

    Cola, J.; Williams, L. D.; Gaucher, E.; Snell, T.

    2010-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational summer program titled, “Life on the Edge: Astrobiology.” The purpose of the program was to expose high school educators to the field of astrobiology and provide them with skills and classroom activities necessary to foster student interest in scientific discovery on Earth and throughout the universe. Astrobiology activities for a week-long summer enrichment program for high school students was developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty-four high school students were introduced to hands-on activities and techniques such as gel electrophoresis, thin layer chromatography, and manual polymerase chain reaction. The impact of the astrobiology summer program on teachers and high school students will be discussed.

  16. Press abstracts of the 21st Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Program Committee for the Twenty-fisrt Lunar and Planetary Science Conference has chosen these contributions as having the greatest potential interest for the general public. The papers in this collection were written for general presentation, avoiding jargon and unnecessarily complex terms. More technical abstracts will be found in Lunar and Planetary Science XXI. Representative titles are: Ancient Ocean-Land-Atmosphere Interactions on Mars: Global Model and Geological Evidence; Oxygen Isotopic Compositions of Ordinary Chondrites and Their Chondrules; Exposure Ages and Collisional History of L-Chondrite Parent Bodies; Models of Solar-Powered Geysers on Triton; and Search for Life: A Science Rationale for a Permanent Base on Mars.

  17. Ethical issues in astrobiology: a Christian perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Randolph, R. O.

    2009-12-01

    With its focus on the origin, extent, and future of life, Astrobiology raises exciting, multidisciplinary questions for science. At the same time, Astrobiology raises important questions for the humanities. For instance, the prospect of discovering extraterrestrial life - either intelligent or unintelligent - raises questions about humans’ place in the universe and our relationship with nature on planet Earth. Fundamentally, such questions are rooted in our understanding of what it means to be human. From a Christian perspective, the foundational claim about human nature is that all persons bear the "imago dei", the image of God. This concept forms the basis for how humans relate to one another (dignity) and how humans relate to nature (stewardship). For many Christians the "imago dei" also suggests that humans are at the center of the universe. The discovery of extraterrestrial life would be another scientific development - similar to evolution - that essentially de-centers humanity. For some Christian perspectives this de-centering may be problematic, but I will argue that the discovery of extraterrestrial life would actually offer a much needed theological corrective for contemporary Christians’ understanding of the "imago dei". I will make this argument by examining two clusters of ethical issues confronting Astrobiology: 1. What ethical obligations would human explorers owe to extraterrestrial life? Are there ethical obligations to protect extraterrestrial ecosystems from harm or exploitation by human explorers? Do our ethical considerations change, if the extraterrestrial life is a “second genesis;” in other words a form of life completely different and independent from the carbon-based life that we know on Earth? 2. Do we have an ethical obligation to promote life as much as we can? If human explorers discover extraterrestrial life and through examination determine that it is struggling to survive, do we have an ethical obligation to assist that ecological community to become stronger? If after a thorough investigation we determine that no life exists and that a planet is nothing more than a lifeless body of rocks and dust, do we have an ethical obligation to attempt the creation of life through a process called planetary ecosynthesis? Or, do we have the opposite obligation to respect the rocks and dust for what they are, and refrain from any attempts to engineer life on a lifeless planet? While these two clusters of issues pose new ethical questions, I will argue that from a Christian perspective the framework for responding to these challenges would remain the Genesis Creation stories and the concept of the "imago dei". However, the new ethical challenges posed by Astrobiology require a re-framing of the "imago dei" that is closer to the intent of the original scriptures and that predicts simultaneously the presence of extraterrestrial life and the de-centering of humanity.

  18. Symposium on Fabrication at Small Scale (FASS) and Indo-US Conference on Fabrionics: Science of Advanced Fabrication

    E-print Network

    Srivastava, Kumar Vaibhav

    Symposium on Fabrication at Small Scale (FASS) and Indo-US Conference on Fabrionics: Science of Advanced Fabrication 9 - 12th An Indo-US conference on Fabrionics was organized to bring together- fabrication technology, biology and energy systems. A key strength of the meeting was the scientific

  19. UNDERGRADUATE EDUCATION IN THE BIOLOGICAL SCIENCES FOR STUDENTS IN AGRICULTURE AND NATURAL RESOURCES, PROCEEDINGS OF A CONFERENCE.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    REPORTED ARE THE PROCEEDINGS OF A 1966 CONFERENCE WHICH DEALT WITH UNDERGRADUATE EDUCATIONAL NEEDS FOR STUDENTS IN AGRICULTURE AND NATURAL RESOURCES. THE 167 EDUCATORS (MOSTLY DEANS AND DIRECTORS OF RESIDENT INSTRUCTION) WHO PARTICIPATED IN THE CONFERENCE REPRESENTED AGRICULTURE, RENEWABLE NATURAL RESOURCES, THE BIOLOGICAL SCIENCES, AND…

  20. Mars Astrobiology Research and Technology Experiment

    NSDL National Science Digital Library

    Mars Astrobiology Research and Technology Experiment

    This site from NASA presents a comprehensive overview of the Mars Astrobiology Research and Technology Experiment (MARTE) project, which is developing drilling, sample handling, and instrument technologies relevant to searching for life in the Martian subsurface, and demonstrating them in a field test at a site with a Mars-analog subsurface biosphere on Earth. The site highlights the many problems inherent to drilling for subsurface life on Mars, and tracks the Rio Tinto project in Spain which is seen as a proxy for future Mars missions.

  1. Conference of the Society for Literature and Science. Proceedings (Los Angeles, California, November 2-5, 1995).

    ERIC Educational Resources Information Center

    Labinger, Jay, Ed.

    The papers contained in this proceedings from the 1995 Society for Literature and Science Conference are organized into sections with the following themes: (1) Metaphor and Science; (2) The Technological Invasion of the Living Space; (3) Autobiographies and Biographies of Scientists; (4) Science and 19th Century Literature; (5) Visions of the…

  2. Science Education and Outreach: Forging a Path to the Future ASP Conference Series, Vol. **VOLUME**, c 2010

    E-print Network

    Hillenbrand, Lynne

    Science Education and Outreach: Forging a Path to the Future ASP Conference Series, Vol. **VOLUME timely to think about the successes of the year and, as this ASP annual meeting title indicates, forge

  3. Tourism Development in Aqaba and Human Sustainability International Conference, Science and Technology in Archaeology and Conservation, Rome

    E-print Network

    Tourism Development in Aqaba and Human Sustainability 6th International Conference, Science and external tourism because of natural resources, variety of landscape and historic sites in the area development plans. Israel's strategies aim at benefiting from regional potentialities (geophysical structure

  4. News CPD Event: Teaching day gives new perspectives Workshop: IOP network devolops its ideas Conference: Conference offers much to teachers Event: Physics is made easy in Liverpool Communication: IOSTE debates the complexities of STE Conference: Teaching event excites in Exeter Meeting Invitation: Wales physics meeting invites bookings CPD Event: Science teachers get hands on with development Research: Conference highlights liquid crytstal research in teaching Education: Teachers give positive feedback Science Fair: Science fair brings physics to students Teaching: Conference explores trends in teaching Forthcoming events

    NASA Astrophysics Data System (ADS)

    2010-09-01

    CPD Event: Teaching day gives new perspectives Workshop: IOP network devolops its ideas Conference: Conference offers much to teachers Event: Physics is made easy in Liverpool Communication: IOSTE debates the complexities of STE Conference: Teaching event excites in Exeter Meeting Invitation: Wales physics meeting invites bookings CPD Event: Science teachers get hands on with development Research: Conference highlights liquid crytstal research in teaching Education: Teachers give positive feedback Science Fair: Science fair brings physics to students Teaching: Conference explores trends in teaching Forthcoming events

  5. Report on a Boston University Conference December 7-8, 2012 on How Can the History and Philosophy of Science Contribute to Contemporary US Science Teaching?

    NASA Astrophysics Data System (ADS)

    Garik, Peter; Benétreau-Dupin, Yann

    2014-09-01

    This is an editorial report on the outcomes of an international conference sponsored by a grant from the National Science Foundation (NSF) (REESE-1205273) to the School of Education at Boston University and the Center for Philosophy and History of Science at Boston University for a conference titled: How Can the History and Philosophy of Science Contribute to Contemporary US Science Teaching? The presentations of the conference speakers and the reports of the working groups are reviewed. Multiple themes emerged for K-16 education from the perspective of the history and philosophy of science. Key ones were that: students need to understand that central to science is argumentation, criticism, and analysis; students should be educated to appreciate science as part of our culture; students should be educated to be science literate; what is meant by the nature of science as discussed in much of the science education literature must be broadened to accommodate a science literacy that includes preparation for socioscientific issues; teaching for science literacy requires the development of new assessment tools; and, it is difficult to change what science teachers do in their classrooms. The principal conclusions drawn by the editors are that: to prepare students to be citizens in a participatory democracy, science education must be embedded in a liberal arts education; science teachers alone cannot be expected to prepare students to be scientifically literate; and, to educate students for scientific literacy will require a new curriculum that is coordinated across the humanities, history/social studies, and science classrooms.

  6. Proceedings of the 9th International CDIO Conference, Massachusetts Institute of Technology and Harvard University School of Engineering and Applied Sciences, Cambridge, Massachusetts, June 9 13, 2013.

    E-print Network

    Paris-Sud XI, Université de

    Proceedings of the 9th International CDIO Conference, Massachusetts Institute of Technology and Harvard University School of Engineering and Applied Sciences, Cambridge, Massachusetts, June 9 ­ 13, 2013 International CDIO Conference, Massachusetts Institute of Technology and Harvard University School

  7. Sixteenth Lunar and Planetary Science Conference. Press abstracts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A broad range of topics concerned with lunar and planetary science are discussed. Topics among those included are, the sun, the planets, comets, meteorities, asteroids, satellites, space exploration, and the significance of these to Earth.

  8. The AGU Chapman Conference on Communicating Climate Science: A Historic Look to the Future

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; Rasch, P. J.; Andronova, N. G.

    2013-12-01

    The American Geophysical Union hosted a Chapman Conference on Communicating Climate Science at Snow Mountain Ranch, Granby, Colorado, June 8-13, 2013. The goal of the Chapman Conference was to bring together scholars, social scientists and journalists to discuss the history, and more importantly, the present and future of climate change communication. We met to evaluate our current and needed communication capacity, and to develop ways and means to convey advances in the understanding of climate science. Delegates discussed and presented methods and capacity to communicate to policymakers, the media, and society. Our focus was on the efficacy of scientific communication, on improving communication practices, and on building collaborations spawned at the conference, and beyond. The Chapman was a success. Close to 150 of us gathered high in the Colorado Rockies to share almost 100 presentations and nearly 10 hours of group discussions focused on ways and means to better bring the climate change message to society, to educators and policymakers in North America and around the world. This presentation will focus on the outcomes of the Chapman Climate Change Communication Conference; the conclusions of the delegate community; and directions forward.

  9. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    PubMed

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. PMID:25474292

  10. The NASA Astrobiology Institute & Collaboration: A Critical Orientation for Today's World

    NASA Astrophysics Data System (ADS)

    Wilmoth, Krisstina; Faithorn, Lisa

    Astrobiology is a science of collaboration. The pursuit of answers to questions about the origin and evolution of life in the universe requires input from many different specialized fields. Biologists team up with geologists and paleontologists in order to understand the nature of ancient earth when life first began; astronomers and chemists work together to build a picture of distant star systems and the presence of organic compounds in them; and all these scientists must work with engineers to build the necessary equipment used in scientific exploration of our universe. Astrobiology then is the perfect backdrop for a discussion of how and why collaboration is important and how it fits into the modern world. The NASA Astrobiology Institute (NAI) works to explore advanced communication tools and to build a culture supportive of collaborative work. NAI must also actively seek ways in which to recruit and train the next generation of researchers including preparing them for collaborative working environments. Collaborations between scientists and teachers are essential to achieving those goals. Discussions will include NAI's current efforts in collaboration in both scientific and educational communities.

  11. News Conference: Brecon hosts 10th teacher's conference Summer school: Science summer school heads to Crete Award: The Corti Science Prize Radioactivity: Scottish beach is no beta off Workshop: Heureka project promotes teaching Experiments: Spanish project proves that learning science can be exciting Lecture: IOP schools lecture journeys from x-rays to antimatter Correction to the news item 'Delegates experience universality' Forthcoming events

    NASA Astrophysics Data System (ADS)

    2012-01-01

    Conference: Brecon hosts 10th teacher's conference Summer school: Science summer school heads to Crete Award: The Corti Science Prize Radioactivity: Scottish beach is no beta off Workshop: Heureka project promotes teaching Experiments: Spanish project proves that learning science can be exciting Lecture: IOP schools lecture journeys from x-rays to antimatter Correction to the news item 'Delegates experience universality' Forthcoming events

  12. Astrobiological landscape: a platform for the neo-Copernican synthesis?

    NASA Astrophysics Data System (ADS)

    ?irkovi?, Milan M.; Vukoti?, Branislav

    2013-01-01

    We live in the epoch of explosive development of astrobiology, a novel interdisciplinary field dealing with the origin, evolution and the future of life. The relationship between cosmology and astrobiology is much deeper than it is usually assumed - besides a similarity in the historical model of development of these two disciplines, there is an increasing number of crossover problems and thematic areas which stem from considerations of Copernicanism and observation selection effects. Such a crossover area is both visualized and heuristically strengthened by introduction of the astrobiological landscape, describing complexity of life in the most general context. We argue that this abstract landscape-like structure in the space of astrobiological parameters is a concept capable of unifying different strands of thought and research, a working concept and not only a metaphor. By analogy with phase spaces of complex physical systems, we can understand the astrobiological landscape as a set of viable evolutionary histories of life in a particular region of space. It is a notion complementary to the classical concept of biological morphological space, underscoring the fact that modern astrobiology offers a prospect of both foundational support and vast extension of the domain of applicability of the Darwinian biological evolution. Such a perspective would strengthen foundations upon which various numerical models can be built; the lack of such quantitative models has often been cited as the chief weakness of the entire astrobiological enterprise.

  13. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  14. An Explorer-Class Astrobiology Mission

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Greene, Thomas; Allamandola, Louis; Arno, Roger; Bregman, Jesse; Cox, Sylvia; Davis, Paul K.; Gonzales, Andrew; Haas, Michael; Hanel, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.

  15. The AstroBiology Explorer (ABE) Mission

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    2003-01-01

    Introduction: Infrared spectroscopy in the 2.5- 16 micron range is a principle means by which organic compounds can be detected and identified in space via their vibrational transitions. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Furthermore, the presence of D-enriched organics in meteorites suggests that a portion of these materials survives incorporation into protosolar nebulae. Unfortunately, neither the distribution of these materials in space nor their genetic and evolutionary relationships with each other or their environments are currently well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to use infrared spectroscopy to address outstanding problems in Astrochemistry which are particularly relevant to Astrobiology and are amenable to astronomical observation. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation and the Jet Propulsion Laboratory. ABE was selected for Phase A study during the last MIDEX AO round, but has yet to be selected for flight.

  16. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 3

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (editor); Hariharan, P. C. (editor); Blasso, L. G. (editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.

  17. PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude

    2008-06-01

    The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) was held on 9-14 September 2007 at Kobe International Conference Center in Kobe, Japan. The host organizations for this conference were Osaka University and the Institute of Laser Engineering (ILE) at Osaka University; and co-organized by the Institute Lasers and Plasmas (ILP) in France, the Commissariatá l'Energie Atomique (CEA), Lawrence Livermore National Laboratory (LLNL), National Institute for Fusion Science (NIFS) in Japan, and Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA). The conference objective was to review the state of the art of research in inertial fusion sciences and applications since the last conference held in Biarritz, France, in 2005. 470 abstracts were accepted, and 448 persons from 18 countries attended the conference. These Proceedings contain 287 of the papers presented at IFSA 2007. This collection of papers represents the manuscripts submitted to and passing the peer review process. The program was organized with some specific features: The reviews of influential programs appeared both at the very beginning and at the very end of the Conference to attract attendance throughout the Conference. Each poster session had the same time period as a single oral session, thereby avoiding overlap with oral talks. The everyday program was structured to be as similar as possible so the attendees could easily recognize the program. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, researchers presented the exciting advances in both traditional hot spot ignition and fast ignition approach, including status report of USA's National Ignition Facility (NIF), French Laser Magajoule (LMJ), Japanese Fast Ignition Realization Experiment (FIREX), and European High Power laser Energy Research (HiPER). A particular emphasis of the meeting was that the `physics of inertial fusion' category was dominated by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that subject are gathered. The IFSA International Organizing Committee and Scientific Advisory Board

  18. Proceedings of the Klamath Basin Science Conference, Medford, Oregon, February 1-5, 2010

    USGS Publications Warehouse

    Thorsteinson, Lyman, (Edited By); VanderKooi, Scott; Duffy, Walter

    2011-01-01

    This report presents the proceedings of the Klamath Basin Science Conference (February 2010). A primary purpose of the meeting was to inform and update Klamath Basin stakeholders about areas of scientific progress and accomplishment during the last 5 years. Secondary conference objectives focused on the identification of outstanding information needs and science priorities as they relate to whole watershed management, restoration ecology, and possible reintroduction of Pacific salmon associated with the Klamath Basin Restoration Agreement (KBRA). Information presented in plenary, technical, breakout, and poster sessions has been assembled into chapters that reflect the organization, major themes, and content of the conference. Chapter 1 reviews the major environmental issues and resource management and other stakeholder needs of the basin. Importantly, this assessment of information needs included the possibility of large-scale restoration projects in the future and lessons learned from a case study in South Florida. Other chapters (2-6) summarize information about key components of the Klamath Basin, support conceptual modeling of the aquatic ecosystem (Chapter 7), and synthesize our impressions of the most pressing science priorities for management and restoration. A wealth of information was presented at the conference and this has been captured in chapters addressing environmental setting and human development of the basin, hydrology, watershed processes, fishery resources, and potential effects from climate change. The final chapter (8) culminates in a discussion of many specific research priorities that relate to and bookend the broader management needs and restoration goals identified in Chapter 1. In many instances, the conferees emphasized long-term and process-oriented approaches to watershed science in the basin as planning moves forward.

  19. PREFACE: 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6)

    NASA Astrophysics Data System (ADS)

    Ahsan Bhatti, Javaid; Hussain, Talib; Khan, Wakil

    2013-06-01

    The Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA) conference series has been organized to create a new forum in Asia and Australia to discuss vacuum, surface and related sciences, techniques and applications. The conference series is officially endorsed by the International Union for Vacuum Science, Technique and Application (IUVSTA). The International Steering Committee of VASSCAA is comprised of Vacuum Societies in seven countries: Australia, China, India, Iran, Japan, South Korea and Pakistan. VASSCAA-1 was organized by the Vacuum Society of Japan in 1999 in Tokyo, Japan. VASSCAA-2 was held in 2002 in Hong Kong, VASSCAA-3 in Singapore in 2005. VASSCAA-4 was held in Matsue, Japan in 2008 and VASSCAA-5 in 2010 in Beijing, China. The 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6) was held from 9-13 October 2012 in the beautiful city of Islamabad, Pakistan. The venue of the conference was the Pak-China Friendship Centre, Islamabad. More than six hundred local delgates and around seventy delegates from different countries participated in this mega event. These delegates included scientists, researchers, engineers, professors, plant operators, designers, vendors, industrialists, businessmen and students from various research organizations, technical institutions, universities, industries and companies from Pakistan and abroad. The focal point of the event was to enhance cooperation between Pakistan and the international community in the fields of vacuum, surface science and other applied technologies. At VASSCAA-6 85 oral presentations were delivered by local and foreign speakers. These were divided into different sessions according to their fields. A poster session was organized at which over 70 researchers and students displayed their posters. The best three posters won prizes. In parallel to the main conference sessions four technical short courses were held. The participants showed keen interest in all these courses. The most significant part of this event was an international exhibition of science, technology, energy and industry. In this international exhibition over 60 prominent international as well as local industrialists and vendors displayed their products. For the recreation of conference participants a cultural program and dinner was arranged. This entertaining program was fully enjoyed by all the participants especially the foreign guests. Recreational trips were also arranged for the foreign delegates. This mega event provided a unique opportunity to our scientific community to benefit from the rich international experience. The conference was a major forum for the exchange of knowledge and provided numerous scientific, technical and social opportunities for meeting leading experts. Editors Dr Javaid Ahsan Bhatti, Dr Talib Hussain, Dr Suleman Qaiser and Dr Wakil Khan National Institute of Vacuum Science and Technology (NINVAST) NCP Complex, Quaid-e-Azam University, Islamabad, Pakistan The PDF also contains a list of delegates.

  20. INTERNATIONAL CONFERENCE ON ADVANCES IN PLANT SCIENCES (ICAPS 2012)

    E-print Network

    and bio-fertilizers, plant physiology and biochemistry, climate change, plant adaptation and many more in Biodiversity Conservation", covered various aspects of plant sciences, including agro-biodiversity, "Phosphorus deficiency affects nitrogen nutrition of two legume tree species from Fynbos Mediterranean

  1. The 2009 Astrobiology Graduate Student Conference (AbGradCon)

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Anderson, R.; Antonio, M.; Cash, M. C.; Claire, M.; Cowan, N.; Ewert, M.; Goldman, A.; Snowden, D.; Stüeken, E.

    2010-04-01

    The 2009 AbGradCon was held at the University of Washington in July 2009. It brought together 67 participants from 8 different countries and 34 different universities. AbGradCon also took place in the virtual world of Second Life.

  2. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    NASA Astrophysics Data System (ADS)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  3. M/SET 2000: International Conference on Mathematics/Science Education & Technology Proceedings (San Diego, California, February 5-8, 2000).

    ERIC Educational Resources Information Center

    Robson, Robby, Ed.

    The International Conference on Mathematics/Science Education and Technology (M/SET) is an annual conference focusing on current research, theory, issues, classroom applications, developments, and trends related to the use of information technologies in mathematics, science, and computer science education. This proceedings contains a corporate…

  4. The Astrobiology Primer - an Early Career Scientist Education, Outreach and Professional Development Project

    NASA Astrophysics Data System (ADS)

    Wright, K. E.; Domagal-Goldman, S. D.

    2011-12-01

    We are early-career scientists jointly leading a project to write 'The Astrobiology Primer', a brief but comprehensive introduction to astrobiology, and we are using the process of producing the document as an innovative way of strengthening the international community of early-career astrobiologists. Astrobiology is the study of the origin, evolution, distribution and future of life in our universe. It includes not just study of life on Earth, but also the potential for life to exist beyond Earth, and the development of techniques to search for such life. It therefore incorporates geological and earth sciences, life sciences, chemistry, astronomy and planetary sciences. This requires astrobiologists to integrate these different disciplines in order to address questions such as 'How did Earth and its biosphere originate?', 'How do life and the physical, chemical and geological cycles on Earth interact, and affect each other?' and so 'What does life on Earth tell us about the habitability of environments outside Earth?'. The primer will provide a brief but comprehensive introduction to the field; it will be significantly more comprehensive than a normal review paper but much shorter than a textbook. This project is an initiative run entirely by early-career scientists, for the benefit of other early-career scientists and others. All the writers and editors of the primer are graduate/post-graduate students or post-doctoral fellows, and our primary target group for the primer is other early-career scientists, although we hope and expect that the primer will also be useful far more broadly in education and outreach work. An Astrobiology Primer was first published in 2006(Ref1), written and edited by a small group of early-career astrobiologists to provide an introduction to astrobiology for other early-career scientists new to the field. It has been used not only by the target group for private study, but in formal education and outreach settings at universities and high-schools. We are now producing a second edition, which is an entirely new re-write, and we are making the process of producing the primer a development opportunity in its own right, to strengthen the international community of early-career astrobiologists. We have recruited a large team of writers and editors, 45 people from 11 different countries across North and South America, Europe and Australia. By working together on this joint project we are strengthening links between early-career scientists in these countries. In addition, we have a wider group of early-career astrobiologists who we consulted on the content that the primer should include. We have also recruited early-career scientists from this group, and more widely, to act as 'accessibility reviewers' to check that the primer meets its goal of being clear to people who are not experts in the field. We expect that the primer will be published in 2012, in several different languages. It will be freely available online to all who want it. References 1. Mix LM et al (2006) The Astrobiology Primer : An Outline of General Knowledge - Version 1, 2006 Astrobiology 6(5) : 735-813

  5. The 10th International Equitation Science Conference is held in Denmark from August 6th 9th 2014. This book of proceedings contains abstracts of 35 oral and 57 poster presentations within the conference themes Equine

    E-print Network

    Science (ISES) is a non-profit organisation which aims to facilitate research into the training of horses PROCEEDINGS 10TH INTERNATIONAL EQUITATION SCIENCE CONFERENCE 6 - 9 AUGUST 2014 AT VINGSTED HOTEL AT VINGSTED HOTEL AND CONFERENCE CENTRE, DENMARK #12;Series: DCA report No.: 044 Authors: Janne Winther

  6. Interdisciplinary Teaching, a First Step Toward Interdisciplinary Astrobiology Research

    NASA Astrophysics Data System (ADS)

    Gale, J.

    2010-04-01

    An interdisciplinary elective workshop for third year undergraduates, on the Astrobiology of Planet Earth, is described. It puts planet Earth and the appearance, evolution, survival and future of life and humanity as the central theme.

  7. Ideal Microhabitats on Mars: The Astrobiological Potential of Polar Dunes

    Microsoft Academic Search

    T. Gánti; T. Pócs; Sz. Bérczi; A. Horváth; A. Kereszturi; A. Sik; E. Szathmáry

    2009-01-01

    Astrobiological potential of polar Dark Dunes: they may hold less oxidants, trap water-ice, mm layer of them shields UV radiation, allows light income for photosynthesis. Water uptake in nighttime, temperature in daytime is favorable for metabolism.

  8. Ideal Microhabitats on Mars: The Astrobiological Potential of Polar Dunes

    NASA Astrophysics Data System (ADS)

    Gánti, T.; Pócs, T.; Bérczi, Sz.; Horváth, A.; Kereszturi, A.; Sik, A.; Szathmáry, E.

    2009-03-01

    Astrobiological potential of polar Dark Dunes: they may hold less oxidants, trap water-ice, mm layer of them shields UV radiation, allows light income for photosynthesis. Water uptake in nighttime, temperature in daytime is favorable for metabolism.

  9. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    NASA Technical Reports Server (NTRS)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  10. Mobile Raman spectroscopy in astrobiology research.

    PubMed

    Vandenabeele, Peter; Jehli?ka, Jan

    2014-12-13

    Raman spectroscopy has proved to be a very useful technique in astrobiology research. Especially, working with mobile instrumentation during fieldwork can provide useful experiences in this field. In this work, we provide an overview of some important aspects of this research and, apart from defining different types of mobile Raman spectrometers, we highlight different reasons for this research. These include gathering experience and testing of mobile instruments, the selection of target molecules and to develop optimal data processing techniques for the identification of the spectra. We also identify the analytical techniques that it would be most appropriate to combine with Raman spectroscopy to maximize the obtained information and the synergy that exists with Raman spectroscopy research in other research areas, such as archaeometry and forensics. PMID:25368355

  11. Habitability & Astrobiology Research in Mars Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    We performed a series of field research campaigns (ILEWG EuroMoonMars) in the extreme Utah desert relevant to Mars environments, and in order to help in the interpretation of Mars missions measurements from orbit (MEX, MRO) or from the surface (MER, MSL), or Moon geochemistry (SMART-1, LRO). We shall give an update on the sample analysis in the context of habitability and astrobiology. Methods & Results: In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station, near Hanksville Utah, a suite of instruments and techniques [A, 1, 2, 9-11] including sample collection, context imaging from remote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geochemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [1-9] to new measurements from 2010-2013 campaigns [10-12] relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. Keywords: field analogue research, astrobiology, habitability, life detection, Earth-Moon-Mars, organics References [A] Foing, Stoker & Ehrenfreund (Editors, 2011) "Astrobiology field Research in Moon/Mars Analogue Environments", Special Issue of International Journal of Astrobiology , IJA 2011, 10, vol. 3. 137-305 [1] Foing B. et al. (2011) Field astrobiology research at Moon-Mars analogue site: Instruments and methods, IJA 2011, 10 (3), 141;[2] Clarke, J., Stoker, C. Concretions in exhumed & inverted channels near Hanksville Utah: implications for Mars, (IJA 2011, 10 (3), 162;[3] Thiel et al., (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. (IJA 2011, 10 (3), 177;[4] Direito et al. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). (IJA 2011, 10 (3), 191;[5] Orzechowska, G. et al (20110 analysis of Mars Analog soils using solid Phase Microextraction, Organics solvent extraction and GCMS, (IJA 2011, 10 (3), 209; [6] Kotler et al. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah Desert. (IJA 2011, 10 (3), 221; [7] Martins et al. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. (IJA 2011, 10 (3), 231; [8] Ehrenfreund et al. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. (IJA 2011, 10 (3), 239; [9] Stoker C. et al (2011) Mineralogical, Chemical, Organic & Microbial Properties of Subsurface Soil Cores from Mars Desert Research Station, a Phyllosilicate and Sulfate Rich Mars Analog Site, IJA 2011, 10 (3), 269; [10] Rodrigues L. et al (2014, in preparation) Preventing biocontamination during sterile sampling; [11] Rodrigues L. et al (2014, in preparation) Microbial diversity in MDRS rocks and soils; [12] ILEWG EuroMoonMars Team, (2014, special issue in preparation) Results from ILEWG EuroMoonMars campaign 2013 **Acknowledgements: B.H.Foing (1, 2, 6), C. Stoker (3), P. Ehrenfreund (4, 5), I. Rammos (2), L. Rodrigues (2), A. Svendsen (2), D. Oltheten (2), K. Nebergall (6), M. Battler (6, 7), H. v't Houd (8), A. Bruneau (6,9), M. Cross (6,7), V. Maivald (10), C. Orgel (6), A. Elsaesser (4),

  12. Proceedings of ASME 2011 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering

    E-print Network

    Bahrami, Majid

    -ION BATTERY PACKS FOR HYBRID AND ELECTRIC VEHICLES Peyman Taheri Mechatronic Systems Engineering School Email: slh2@sfu.ca Majid Bahrami Mechatronic Systems Engineering School of Engineering Science Simon Science, Engineering and Technology Conference ESFuelCell2011 August 7-10, 2011, Washington, DC, USA DRAFT

  13. Information in the Language Sciences: Proceedings of the Conference Held at Warrenton, Virginia, March 4-6, 1966.

    ERIC Educational Resources Information Center

    Freeman, Robert R., Ed.; And Others

    This collection of 22 papers from the Conference on Information in the Language Sciences held in Warrenton, Va., in 1966, sponsored by the Center for Applied Linguistics, stresses three themes: general trends, information needs of the languages sciences, and system design. Discussions attempt to formulate modern rational approaches to the complex…

  14. European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Computational Fluid Dynamics Conference 2001-03-29

    E-print Network

    Grant, P. W.

    of non-Newtonian Fluid Mechanics, Department of Computer Science, University of Wales Swansea, Singleton, Institute of Non-Newtonian Fluid Mechanics, Department of Computer Science, University of Wales Swansea Computational Fluid Dynamics Conference 2001-03-29 Swansea, Wales, UK, 4-7 September 2001-03-29 © ECCOMAS

  15. Progress Toward an Enceladus Amino Acid Sampler Astrobiology Instrument

    NASA Astrophysics Data System (ADS)

    Kirby, J. P.; Willis, P. A.; Blacksberg, J.

    2012-12-01

    The development of a new astrobiolgoy instrument for exploring the trace chemical composition of the Enceladus jets and plume, and the e-ring of Saturn is presented. The Enceladus amino acid sampler (EAAS) allows for detection of amino acids using optical Raman spectroscopy integrated with a sample pre-concentration system. The pre-concentration process facilitates the delivery of a sample to a mass spectrometer for detection of specific amino acids. The initial EAAS design utilizes lab-on-a-breadboard components where a sample inlet, sample outlet, reagents, controllers, pumps, valves and pre-concentration column for the EAAS prototype are all assembled on a 5" x 7" breadboard. The pre-concentration process is controlled using automation scripts and software. An optical window allows a Raman spectrometer to directly monitor the pre-concentration of amino acids in a filter/column loaded with of a strong cation exchange resin. Initial samples to demonstrate EAAS simulate the conditions of Don Juan Pond, one of the coldest and saltiest bodies of liquid water on Earth, located in the Wright Valley of Antarctica. This EAAS development is an important step toward a new type of astrobiology science instrument that is capable of operating on a spacecraft in flight or in orbit.

  16. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (editor); Hariharan, P. C. (editor); Blasso, L. G. (editor)

    1992-01-01

    This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  17. Proceedings of the Annual International Conference of the Association for the Education of Teachers in Science (Cincinnati, OH, January 9-12, 1997).

    ERIC Educational Resources Information Center

    Rubba, Peter A., Ed.; And Others

    This proceedings of the 1997 Annual International Conference of the Association for the Education of Teachers in Science (AETS) includes a copy of the conference program and 43 papers and presentation summaries from the meeting, placed in order by conference session. Among the topics of the papers include are: reading-to-learn and writing-to-learn…

  18. Goals for the Correlation of Elementary Science and Mathematics; The Report of the Cambridge Conference on the Correlation of Science and Mathematics in Schools.

    ERIC Educational Resources Information Center

    Cambridge Conference on School Mathematics, Newton, MA.

    This is The Report of the 1967 Cambridge Conference on the Correlation of Science and Mathematics in the Schools. It is addressed to professionals in education, and is designed to stimulate dialogue among them concerning the mathematics-science curriculum. The report is organized in five chapters, each dealing respectively with (1) educational…

  19. PREFACE: IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences

    NASA Astrophysics Data System (ADS)

    Kosmas, Theocharis; Vagenas, Elias; Vlachos, Dimitrios

    2013-02-01

    The first International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE) took place in Budapest, Hungary, from Monday 3 to Friday 7 September 2012. The conference was attended by more than 130 participants, and hosted about 290 oral, poster and virtual papers by more than 460 pre-registered authors. The first IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields in which mathematical modelling is used, such as theoretical/mathematical physics, neutrino physics, non-integrable systems, dynamical systems, computational nanoscience, biological physics, computational biomechanics, complex networks, stochastic modelling, fractional statistics, DNA dynamics, and macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, two parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The mounting question is whether this occurred accidentally, or whether IC-MSQUARE is a necessity in the field of physical and mathematical modelling. For all of us working in the field, the existing and established conferences in this particular field suffer from two distinguished and recognized drawbacks: the first is the increasing orientation, while the second refers to the extreme specialization of the meetings. Therefore, a conference which aims to promote the knowledge and development of high-quality research in mathematical fields concerned with applications of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology, environmental sciences etc., appears to be a necessity. This is the key role that IC-MSQUARE will play. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contributions to IC-MSQUARE. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. Conference Chairmen Theocharis Kosmas Department of Physics, University of Ioannina Elias Vagenas RCAAM, Academy of Athens Dimitrios Vlachos Department of Computer Science and Technology, University of Peloponnese The PDF also contains a list of members of the International Scientific Committes and details of the Keynote and Invited Speakers.

  20. [Note to the reader: At science conferences, presentations are ad-libbed and built around overheads. At humanities conferences, presentations are written in advance in the King's English and read verbatim.

    E-print Network

    Hickey, Barbara

    Banas Pacific Northwest American Academy of Religion meeting, Eugene OR, 2002 If environmental science of science just as it's a limited idea of religion. If we want to understand better what science is, how[Note to the reader: At science conferences, presentations are ad-libbed and built around overheads

  1. Thirty-ninth Hawaii International Conference on System Sciences, January 2006, Kauai, Hawaii. c 2006 IEEE An estimator of propagation of cascading failure

    E-print Network

    Thirty-ninth Hawaii International Conference on System Sciences, January 2006, Kauai, Hawaii. c under contract number DE-AC05-00OR22725. Thirty-ninth Hawaii International Conference on System Sciences, January 2006, Kauai, Hawaii. c 2006 IEEE. We now explain how branching processes can be useful

  2. Phenylketonuria Scientific Review Conference: state of the science and future research needs.

    PubMed

    Camp, Kathryn M; Parisi, Melissa A; Acosta, Phyllis B; Berry, Gerard T; Bilder, Deborah A; Blau, Nenad; Bodamer, Olaf A; Brosco, Jeffrey P; Brown, Christine S; Burlina, Alberto B; Burton, Barbara K; Chang, Christine S; Coates, Paul M; Cunningham, Amy C; Dobrowolski, Steven F; Ferguson, John H; Franklin, Thomas D; Frazier, Dianne M; Grange, Dorothy K; Greene, Carol L; Groft, Stephen C; Harding, Cary O; Howell, R Rodney; Huntington, Kathleen L; Hyatt-Knorr, Henrietta D; Jevaji, Indira P; Levy, Harvey L; Lichter-Konecki, Uta; Lindegren, Mary Lou; Lloyd-Puryear, Michele A; Matalon, Kimberlee; MacDonald, Anita; McPheeters, Melissa L; Mitchell, John J; Mofidi, Shideh; Moseley, Kathryn D; Mueller, Christine M; Mulberg, Andrew E; Nerurkar, Lata S; Ogata, Beth N; Pariser, Anne R; Prasad, Suyash; Pridjian, Gabriella; Rasmussen, Sonja A; Reddy, Uma M; Rohr, Frances J; Singh, Rani H; Sirrs, Sandra M; Stremer, Stephanie E; Tagle, Danilo A; Thompson, Susan M; Urv, Tiina K; Utz, Jeanine R; van Spronsen, Francjan; Vockley, Jerry; Waisbren, Susan E; Weglicki, Linda S; White, Desirée A; Whitley, Chester B; Wilfond, Benjamin S; Yannicelli, Steven; Young, Justin M

    2014-06-01

    New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 ?mol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 ?mol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism. PMID:24667081

  3. Volcanic Rocks As Targets For Astrobiology Missions

    NASA Astrophysics Data System (ADS)

    Banerjee, N.

    2010-12-01

    Almost two decades of study highlight the importance of terrestrial subaqueous volcanic rocks as microbial habitats, particularly in glass produced by the quenching of basaltic lava upon contact with water. On Earth, microbes rapidly begin colonizing glassy surfaces along fractures and cracks exposed to water. Microbial colonization of basaltic glass leads to enhanced alteration through production of characteristic granular and/or tubular bioalteration textures. Infilling of formerly hollow alteration textures by minerals enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggest the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend back ~3.5 billion years and is widespread in modern oceanic crust and its ancient metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.

  4. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  5. An International Workshop on Primary Science. Report on the Primary Science Workshop Held after the Conference in Science and Technology Education and Future Human Needs (Bangalore, India, August 1985).

    ERIC Educational Resources Information Center

    Harlen, Wynne, Comp.

    A conference on science and technology and future human needs was attended by over 300 science educators from 64 countries. Educators with particular interest in primary science and technology education extended their stay for an additional seminar. This report highlights the events of that seminar. Contents include: (1) recent and on-going work…

  6. Life Out There: An Astrobiological Multimedia Experience for the Digital Planetarium

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Grinspoon, D.

    2013-04-01

    Planetariums have a long history of experimentation with audio and visuals to create new multimedia experiences. We report on a series of innovative experiences in the Gates Planetarium at the Denver Museum of Nature & Science in 2009-2011 combining live performances of music and navigation through scientific visualizations. The Life Out There productions featured a story showcasing astrobiology concepts at scales ranging from galactic to molecular, and told using VJ-ing of immersive visualizations and musical performances from the House Band to the Universe. Funded by the NASA Astrobiology Institute's JPL-Titan Team, these hour-long shows were broken into four separate themed musical movements, with an improvisatory mix of music, dome visuals, and spoken science narrative which resulted in no two performances being exactly alike. Post-performance dissemination is continuing via a recorded version of the performance available as a DVD and online streaming video. Written evaluations from visitors who were present at the live shows reveal high satisfaction, while one of the Life Out There concerts was used to inaugurate a new evening program to draw in a younger audience demographic to DMNS.

  7. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.

  8. Science Conference

    NSDL National Science Digital Library

    2012-08-03

    This is an activity about sunspots and solar flares. Learners will work collaboratively to create abstracts detailing their knowledge of sunspots and solar flares and then present their work to the entire audience. A background understanding of our Sun and its features is needed prior to starting this activity. This is activity 4 in Exploring Magnetism in Solar Flares.

  9. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  10. Astrobiology field research in Moon/Mars analogue environments

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-07-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on ‘Astrobiology field research in Moon/Mars analogue environments’ relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  11. Proceedings of the Annual International Conference of the Association for the Education of Teachers in Science (Minneapolis, MN, January 8-11, 1998).

    ERIC Educational Resources Information Center

    Rubba, Peter A., Ed.; Rye, James A., Ed.

    The 40 papers from this international conference addressed the major theme of facilitating science literacy for all teachers and students. Papers include the following: (1) "Confronting the Gender Gap in Science and Mathematics: The Sisters in Science Program" (P. Hammrich); (2) Teaching Instructional Materials for Science Educators with a CD-ROM…

  12. The Science of Enhanced Student Engagement and Employability: Introducing the Psychology Stream of the Inaugural HEA STEM Conference

    ERIC Educational Resources Information Center

    Hulme, Julie; Taylor, Jacqui; Davies, Mark N. O.; Banister, Peter

    2012-01-01

    The Higher Education Academy (HEA) is committed to enhancing the quality of learning and teaching for all university students in the UK, and the inaugural conference for the Science, Technology, Engineering and Mathematics (STEM) subjects, held in April 2012 at Imperial College, London, aimed to showcase research and evidence-based educational…

  13. Education in Library and Information Science. Proceedings of the International Conference (Dubrovnik, Yugoslavia, May 21-26, 1984).

    ERIC Educational Resources Information Center

    Mihel, Ivan, Ed.; Tudor-Silovic, Neva, Ed.

    1984-01-01

    An international conference attended by 59 participants from 12 countries was organized to present Yugoslavia as a case study to the international audience, to bring to the Yugoslav audience a variety of international experiences in library and information science education and training, and to acquaint participants with some of the new…

  14. Classroom Assessment in Mathematics: Views from a National Science Foundation Working Conference (Greensboro, North Carolina, May 16-18, 1997).

    ERIC Educational Resources Information Center

    Bright, George W., Ed.; Joyner, Jeane M., Ed.

    This document presents papers from a National Science Foundation (NSF) working conference to identify research issues and implementation strategies that support quality classroom assessment. Papers include: (1) "Understanding and Improving Classroom Assessment: Summary of Issues Raised" (George W. Bright and Jeane M. Joyner); (2) "Recommendations…

  15. Proceedings of the Class of 2006 Senior Conference, pages 1926, Computer Science Department, Swarthmore College c 2005

    E-print Network

    Wicentowski, Richard

    of computer hackers also give valuable insight into the blackhat community (hackers working towards negativeProceedings of the Class of 2006 Senior Conference, pages 19­26, Computer Science Department of the alerts given out by the Apache and Snort logs, we find that only inexperienced hackers attack

  16. Proceedings of the Class of 2006 Senior Conference, pages 19--26, Computer Science Department, Swarthmore College c

    E-print Network

    Wicentowski, Richard

    of computer hackers also give valuable insight into the blackhat community (hackers working towards negativeProceedings of the Class of 2006 Senior Conference, pages 19--26, Computer Science Department of the alerts given out by the Apache and Snort logs, we find that only inexperienced hackers attack

  17. NIH State-of-the-Science Conference Statement on Prevention of Fecal and Urinary Incontinence in Adults

    E-print Network

    Rau, Don C.

    is inevitably accumulating through medical research, and that the information provided is not a substitute that they are not proponents of an advocacy position with regard to the topic and are not identified with research that couldNIH State-of-the-Science Conference Statement on Prevention of Fecal and Urinary Incontinence

  18. PROCEEDINGS OF THE CONFERENCE ON THE CHANGING IDENTITY OF GRADUATE EARTH SCIENCE EDUCATION (ATLANTA, JANUARY 25-26, 1965).

    ERIC Educational Resources Information Center

    WEAVER, CHARLES E.

    DISCUSSED ARE THE CHANGING IDENTITY OF GRADUATE EARTH SCIENCE EDUCATION, THE FACTORS WHICH PRECIPITATED THESE CHANGES, AND THE RESULTING PROBLEMS. THE CONFERENCE PARTICIPANTS INCLUDED EARTH SCIENTISTS WITH DIVERSE SCIENTIFIC BACKGROUNDS FROM A BROAD GEOGRAPHICAL AREA. SPECIFIC TOPICS COVERED INCLUDED--(1) PRESENT DEVELOPMENTS AND FUTURE OF EARTH…

  19. IFLA General Conference, 1985. Division on Special Libraries. Section on Social Science Libraries and Geography and Map Libraries. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers presented on social science and map and geography libraries at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Information for the Developing World: NTIS's (National Technical Information Service) Role in Information Transfer to Developing Countries" (Joseph F. Caponio, United States); (2)…

  20. Improving Science Instruction for Students with Disabilities: Proceedings. Working Conference on Science for Persons with Disabilities (Anaheim, California, March 28-29, 1994).

    ERIC Educational Resources Information Center

    Stefanich, Greg P.; Egelston-Dodd, Judy, Ed.

    This proceedings report includes papers presented at a conference on teaching science to students with disabilities. In the first paper, "Family Pedigrees: A Model Lesson Illustrating Strategies for Teaching Students with Disabilities in a Mainstreamed High School Biology Class" (Kathleen Ball and Edward C. Keller, Jr.), strategies are described…

  1. PREFACE: 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013. The Conference was attended by more than 280 participants and hosted about 400 oral, poster, and virtual presentations while counted more than 600 pre-registered authors. The second IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel sessions were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. Further information on the editors, speakers and committees is available in the attached pdf.

  2. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  3. 2011 X-Ray Science Gordon Research Conference (August 7-12, 2011, Colby, College. Waterville, ME)

    SciTech Connect

    Gregory Stephenson

    2011-08-12

    The 2011 Gordon Research Conference on X-ray Science will feature forefront x-ray-based science enabled by the rapid improvements in synchrotron and x-ray laser sources. Across the world, x-ray sources are playing an increasingly important role in physics, materials, chemistry, and biology, expanding into ever broadening areas of science and engineering. With the first hard x-ray free electron laser source beginning operation and with other advanced x-ray sources operational and planned, it is a very exciting and pivotal time for exchange ideas about the future of x-ray science and applications. The Conference will provide the forum for this interaction. An international cast of speakers will illuminate sessions on ultrafast science, coherence, imaging, in situ studies, extreme conditions, new developments in optics, sources, and detectors, inelastic scattering, nanoscience, life science, and energy sciences. The Conference will bring together investigators at the forefront of these areas, and will provide a venue for young scientists entering a career in x-ray research to present their research in poster format, hold discussions in a friendly setting, and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with ample time for discussion as well as opportunities for informal gatherings in the afternoons and evenings, will provide an avenue for scientists from different disciplines to exchange ideas about forefront x-ray techniques and will promote cross-fertilization between the various research areas represented.

  4. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations. PMID:22300413

  5. News Conference: Take a hold of Hands-on Science Meeting: Prize-winning physics-education talks are a highlight of the DPG spring meeting in Jena Event: Abstracts flow in for ICPE-EPEC 2013 Schools: A new Schools Physics Partnership in Oxfordshire Conference: 18th MPTL is forum for multimedia in education Meeting: Pursuing playful science with Science on Stage Forthcoming events

    NASA Astrophysics Data System (ADS)

    2013-03-01

    Conference: Take a hold of Hands-on Science Meeting: Prize-winning physics-education talks are a highlight of the DPG spring meeting in Jena Event: Abstracts flow in for ICPE-EPEC 2013 Schools: A new Schools Physics Partnership in Oxfordshire Conference: 18th MPTL is forum for multimedia in education Meeting: Pursuing playful science with Science on Stage Forthcoming events

  6. ASTROBIOLOGY Habitability of Enceladus: Planetary Conditions for Life

    E-print Network

    that may allow it to support life. We discuss evidence for surface/ocean material exchange on EnceladusASTROBIOLOGY Habitability of Enceladus: Planetary Conditions for Life Christopher D. Parkinson of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies

  7. Recent Aqueous Environments in Martian Impact Craters: An Astrobiological Perspective

    Microsoft Academic Search

    Nathalie A Cabrol; David D Wynn-Williams; David A Crawford; Edmond A Grin

    2001-01-01

    The discovery of gullies and debris aprons raises the question of the existence of aqueous environments on Mars in recent geological times and its astrobiological implications. Three cases of such environments are surveyed at MOC high resolution in the E-Gorgonum chaos and Newton and Hale craters. The regional setting of these craters suggests that the mechanisms of aquifer destabilization, flow

  8. Astrobiology as an Integrating Theme in Solar System Exploration

    Microsoft Academic Search

    B. M. Jakosky

    2003-01-01

    The discipline of astrobiology examines (i) the origin and evolution of life on Earth and the detailed interplay between biological and planetary evolution, (ii) the evolution of our solar system and the potential and actual distribution of life within it, (iii) the occurrence of planets around other stars and their potential for life, and (iv) the interplay between each of

  9. Is there intelligent life out there? Astrobiology Biogeocatalysis

    E-print Network

    Maxwell, Bruce D.

    of habitation of other worlds. Our research also focuses on the future of life on Earth.These efforts support of the Rockies, Space Public Outreach Team and Hopa Mountain.We also work closely with the other teams fromThe Drake equaTion Is there intelligent life out there? Astrobiology Biogeocatalysis Research

  10. Life on Earth...and Elsewhere? Astrobiology in Your Classroom

    NSDL National Science Digital Library

    2005-01-01

    The hands-on activities in this educators guide lay the conceptual groundwork for understanding questions fundamental to the field of astrobiology. They enable students to examine the nature of life, what it requires, its limits, and where it might be found. Through these experiences, students learn ideas related to the search for extraterrestrial life.

  11. Life in Ice: Implications to Astrobiology

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a possible natural phenomenon of the solar system that may have played a profoundly important role in the Origin of Life on Earth and the Distribution of Life in the Cosmos. The paper concludes with a consideration of the protective properties of ice by absorption of UV-B, UV-C, h-rays, gamma-rays and the high energy proton environment of the Jupiter Radiation Belt. A proposed instrument that may provide additional data on the potential survivability of microbial extremophiles encased in ice and subjected to the simulated space environment will be briefly described.

  12. Astrobiological studies with extremely halophilic Archaea

    NASA Astrophysics Data System (ADS)

    Fendrihan, S.; Lotter, H. Stan

    2007-08-01

    Extremely halophilic Archaea were isolated and characterized by both classical and modern molecular biological methods from hypersaline and haloalkaline lakes, salted soils, solar salterns and rock salt deposits (1). The survival of these micro-organisms after embedding in laboratory-made halite was investigated. Their presence in fluid inclusions was demonstrated by staining with the BacLight LIVE/DEAD kit and observation of their fluorescence by microscopy. Following resuspension of cells from halite crystals, a survival of about 0.5 - 4% according to colony forming units was obtained. In previous studies which focussed on the resistance of halophilic archaea to UV radiation or the space environment, survival of a dose of 110 J/m2 (using liquid cultures) and up to 10 000 J/m2 at a range of 200 - 400 nm was reported, when dried Haloarcula sp. in a single layer were exposed on the Biopan facility (2). We exposed a few haloarchaeal strains to a Martian UV simulator lamp with a range of 200 - 400 nm and an intensity of 41.2 W/m2, obtaining a viability of about 51- 67% of cells following different exposure times. Other studies focus on the detection of haloarchaea in halite by Raman microspectroscopy and by NIR-FT-Raman spectroscopy, which are considered to be important future tools for Mars exploration (3). Using the Dilor XY Raman spectrometer with laser excitation at 514.5 nm, equipped with a confocal microscope BX40 (Olympus Corp., Japan) and a Bruker IFS 66 + FRA106 with laser excitation at 1064 nm (Bruker, Germany), instruments, we obtained characteristic carotenoid peaks contained by these microorganisms. 1. Fendrihan S., Legat A., Pfaffenhuemer M., Gruber C., Weidler G., Gerbl F. Stan Lotter H. (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Review. Environ. Sci. Biotechnol. 5: 203-218. 2. Mancinelli R. L., White M. R., Rothschild L. J. (1998) Biopan survival I : exposure of the osmophiles Synechococcus sp. (Nägeli) and Haloarcula sp. to the space environment. Adv Space Res. 22: 327-334. 3. Ellery A., Wynn-Williams D., Parnell J., Edwards H.G.M., Dickensheets D. (2004) The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars, J. Raman Spectrosc. 35: 441-457.

  13. News Teaching Support: New schools network launched Competition: Observatory throws open doors to a select few Festival: Granada to host 10th Ciencia en Acción Centenary: Science Museum celebrates 100 years Award: Queen's birthday honour for science communicator Teacher Training: Training goes where it's needed Conference: Physics gets creative in Christchurch Conference: Conference is packed with ideas Poster Campaign: Bus passengers learn about universe Forthcoming events

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Teaching Support: New schools network launched Competition: Observatory throws open doors to a select few Festival: Granada to host 10th Ciencia en Acción Centenary: Science Museum celebrates 100 years Award: Queen's birthday honour for science communicator Teacher Training: Training goes where it's needed Conference: Physics gets creative in Christchurch Conference: Conference is packed with ideas Poster Campaign: Bus passengers learn about universe Forthcoming events

  14. Field astrobiology research in Moon-Mars analogue environments: instruments and methods

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Stoker, C.; Zavaleta, J.; Ehrenfreund, P.; Thiel, C.; Sarrazin, P.; Blake, D.; Page, J.; Pletser, V.; Hendrikse, J.; Direito, S.; Kotler, J. M.; Martins, Z.; Orzechowska, G.; Gross, C.; Wendt, L.; Clarke, J.; Borst, A. M.; Peters, S. T. M.; Wilhelm, M.-B.; Davies, G. R.; Davies

    2011-07-01

    We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the entire experimental approach from determining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measurements as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements from selected sampling sites. We discuss in sequence: the campaign objectives and trade-off based on science, technical or operational constraints. This includes remote sensing data and maps, and geological context; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis).

  15. A Survey of Educational Activities and Resources Relevant to Mars and Astrobiology

    NASA Astrophysics Data System (ADS)

    Manning, Heidi L. K.; Bleacher, L.

    2009-09-01

    Sample Analysis at Mars (SAM) is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover, which was recently named Curiosity in a student-naming contest. SAM's three instruments are devoted to studying the chemical composition of the Martian surface and atmosphere and to understanding the planet's past habitability and potential habitability today. Curiosity is scheduled to launch in 2011, however many Education and Public Outreach (EPO) activities supported by the MSL mission are well underway. The SAM EPO plan includes elements of both formal and informal education in addition to outreach, such as incorporating data into the Mars Exploration Student Data Teams program, developing a museum exhibit and associated educational materials about SAM's research, and writing articles about the MSL mission and SAM's findings for ChemMatters magazine. One of the EPO projects currently being carried out by members of the SAM team is training secondary education teachers in Mars geology, astrobiology, and SAM science goals via professional development workshops. Several of the recent Mars missions have had extensive EPO components to them. As a result, numerous educational activities and resources have already been developed relating to understanding Mars and astrobiology. We have conducted a survey of these activities and resources previously created and have compiled those relevant and useful for our SAM teacher training workshops. Resources and activities have been modified as needed. In addition, we have identified areas in which no educational activities exist and are developing new curriculum specifically to address these gaps. This work is funded by the MN Space Grant Consortium and NASA's Science Mission Directorate.

  16. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 6th International Conference on Energy Sustainability & 10th Fuel Cell Science,

    E-print Network

    Bahrami, Majid

    Conversion (LAEC), Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University Conversion (LAEC), Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University Sustainability & 10th Fuel Cell Science, Engineering and Technology Conference ESFuelCell2012 July 23-26, 2012

  17. Extremotolerance and Resistance of Lichens: Comparative Studies on Five Species Used in Astrobiological Research I. Morphological and Anatomical Characteristics

    NASA Astrophysics Data System (ADS)

    Meeßen, J.; Sánchez, F. J.; Brandt, A.; Balzer, E.-M.; de la Torre, R.; Sancho, L. G.; de Vera, J.-P.; Ott, S.

    2013-06-01

    Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species— Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum—used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.

  18. Extremotolerance and resistance of lichens: comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics.

    PubMed

    Meeßen, J; Sánchez, F J; Brandt, A; Balzer, E-M; de la Torre, R; Sancho, L G; de Vera, J-P; Ott, S

    2013-06-01

    Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species-Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum-used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research. PMID:23868319

  19. CASANZ Conference Linking Air Pollution, Science, Policy and Management -Newcastle, NSW Australia 23-27 Nov 2003 Page 1 of 5

    E-print Network

    Kentucky, University of

    CASANZ Conference ­ Linking Air Pollution, Science, Policy and Management - Newcastle, NSW related to ventilation rate changes. Keywords: Chicken, Ventilation, Air Quality, Poultry. 1. Introduction about the industry's impact on local and regional air quality. Quantitative estimates are also required

  20. Copyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6-9, 1998, Kona, Hawaii.

    E-print Network

    Copyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6- 9, 1998, Kona, Hawaii. A Simulation Based Approach to Pricing Reactive Power James D

  1. Copyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6-9, 1998, Kona, Hawaii.

    E-print Network

    Copyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6- 9, 1998, Kona, Hawaii. Inclusion of Price Dependent Load Models in the Optimal Power

  2. 51st Annual Early Childhood Conference Dr. Aimee Lee Govett: Center for Math and Science Education,

    E-print Network

    Karsai, Istvan

    University School #12;Introduction · The History of Organic Gardening 251st Annual Early Childhood Conference Conference #12;K-Kids Organic Garden University School Teacher: Ms. Mary Myron 551st Annual Early Childhood are spectacular! 2251st Annual Early Childhood Conference #12;Second Grade Organic Gardening University School

  3. Astrobiological Aspects of Mars and Human Presence: Pros and Cons

    PubMed Central

    Horneck, G

    2008-01-01

    After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with regard to planetary protection issues. Therefore, before planning any human exploratory mission, the critical issues concerning human health and wellbeing as well as protection of Mars in its pristine condition need to be investigated. PMID:19048093

  4. Case--studies approach to transferring introductory STEM classes: a course on astrobiology

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Enger, Sandra K.

    2011-04-01

    There is a growing awareness to the need for moving away from lecture--mode approaches in undergraduate STEM education and to the importance of increasing innovation and diversity in STEM education programs. We adopt the case--studies approach, and have taught an introductory course on astrobiology ---the science of life in the universe--- at the University of Alabama in Huntsville. We have created teaching materials using different types of cases, and have conducted an evaluation study. We intend to refine our teaching materials based on the evaluation study, and repeat the course next year. Following this study the teaching materials will be made available free of charge to any instructor, and the approach will be applied to other disciplines, including large enrollment classes.

  5. Life, the universe, and everything: an education outreach proposal to build a traveling astrobiology exhibit.

    PubMed

    Barge, Laura M; Pulschen, André A; Emygdio, Ana Paula Mendes; Congreve, Curtis; Kishimoto, Darío E; Bendia, Amanda G; de Morais M Teles, Antonio; DeMarines, Julia; Stoupin, Daniel

    2013-03-01

    Astrobiology is a transdisciplinary field with extraordinary potential for the scientific community. As such, it is important to educate the community at large about the growing importance of this field to increase awareness and scientific content learning and expose potential future scientists. To this end, we propose the creation of a traveling museum exhibit that focuses exclusively on astrobiology and utilizes modern museum exhibit technology and design. This exhibit (the "Astrobiology Road Show"), organized and evaluated by an international group of astrobiology students and postdocs, is planned to tour throughout the Americas. PMID:23469863

  6. The NASA Astrobiology Institute: A Decade of Education and Outreach

    NASA Astrophysics Data System (ADS)

    Scalice, Daniella

    The mission statement of the NASA Astrobiology Institute (NAI) charts a course to establishing astrobiology as a new and influential field of scientific inquiry. It integrates world class, interdisciplinary research with training for the next generation of astrobiologists. It enables collaboration between distributed research teams by prioritizing the use of modern information technologies, and empowers astrobiologists to provide leadership for space missions. But this unique vision would not have been complete without the inclusion of an Education and Public Outreach (E/PO) program. Over the past ten years, NAI's E/PO program has taken shape - from bootstrapping in the early days, to partnering with the likes of Disney and PBS - in pursuit of inspiring young people onto the scientific path. The E/PO program's highly collaborative group of education specialists has worked with museums, national parks, filmmakers, radio broadcasters, families, teachers, and students to ensure that the bright young faces of today find themselves in the labs of tomorrow's astrobiologists.

  7. Case studies approach for an undergraduate astrobiology course

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Enger, Sandra

    2013-04-01

    Case studies is a well known and widely used method in law schools, medical schools, and business schools, but relatively little used in physics or astronomy courses. We developed an astrobiology course based strongly on the case studies approach, and after teaching it first at the University of Alabama in Huntsville, we have adapted it and are now teaching it at Alabama A&M University, a HBCU. The case studies approach uses several well tested and successful teaching methods - including group work, peer instruction, current interest topics, just-in-time teaching, &c. We have found that certain styles of cases are more popular among students than other styles, and will revise our cases to reflect such student preferences. We chose astrobiology -- an inherently multidisciplinary field -- because of the popularity of the subject matter, its frequent appearance in the popular media (news stories about searches for life in the universe, the discovery of Earth-like exoplanets, etc, in addition to SciFi movies and novels), and the rapid current progress in the field. In this talk we review briefly the case studies method, the styles of cases used in our astrobiology course, and student response to the course as found in our assessment analysis.

  8. CONFERENCES AND SYMPOSIA: Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the centenary of L D Landau's birth (22-23 January 2008)

    Microsoft Academic Search

    A. F. Andreev; Yu M. Kagan; L. P. Pitaevskii; I. M. Khalatnikov; A. Yu Kamenshchik; B. L. Ioffe; L. B. Okun; L. N. Lipatov

    2008-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the centenary of L D Landau's birth was held in the Conference Hall of the Lebedev Physics Institute, Russian Academy of Sciences, on 22 and 23 January 2008. An Opening Address by A F Andreev and the following reports were presented at the session:

  9. Research in Science Education, Volume 7. Proceedings of the Annual Conference of the Australian Science Education Research Association (8th, Riverina College of Advanced Education, Wagga Wagga, New South Wales, May 16-18, 1977).

    ERIC Educational Resources Information Center

    Blake, Anthony J. D., Ed.; Power, Colin N., Ed.

    This volume contains papers presented at the eighth Annual Conference of the Australian Science Education Research Association held at Riverina College of Advanced Education in May, 1977. Paper topics include: (1) the nature of science problems; (2) logical connectives in science; (3) a model of cognitive processes; (4) measures of meaningful…

  10. Lunar and Planetary Science Conference, 21st, Houston, TX, Mar. 12-16, 1990, Proceedings

    SciTech Connect

    Ryder, G.; Sharpton, V.L.; (Lunar and Planetary Institute, Houston, TX)

    1991-01-01

    The present conference on lunar and planetary science discusses the geology and geophysics of Venus; the lunar highlands and regolith; magmatic processes of the moon and meteorites; remote sensing of the moon and Mars; chondrites, cosmic dust, and comets; ammonia-water mixtures; and the evolution of volcanism, tectonics, and volatiles on Mars. Attention is given to volcanism on Venus, pristine moon rocks, the search for Crisium Basin ejecta, Apollo 14 glasses, lunar anorthosites, the sources of mineral fragments in impact melts 15445 and 15455, and argon adsorption in the lunar atmosphere. Also discussed are high-pressure experiments on magnesian eucrite compositions, the early results of thermal diffusion in metal-sulfide liquids, preliminary results of imaging spectroscopy of the Humorum Basin region of the moon, high-resolution UV-visible spectroscopy of lunar red spots, and a radar-echo model for Mars. Other topics addressed include nitrogen isotopic signatures in the Acapulco Meteorite, tridymite and maghemite formation in an Fe-SiO smoke, and the enigma of mottled terrain on Mars.

  11. Space Environment Survivability of Live Organisms: Results From a NASA Astrobiology Nanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Santos, Orlando; Ehrenfreund, Pascale; Mancinelli, Rocco; Nicholson, Wayne; Ricco, Antonio

    NASA's Organism/Organic Exposure to Orbital Stresses, or O/OREOS, nanosatellite is a sci-ence demonstration mission that showcases achievements in using hardware from a technology development program led by the Small Spacecraft Division at NASA's Ames Research Center, Moffett Field, California. Continuing Ames' development of triple-cube nanosatellite tech-nology and flight systems, which includes the successful GeneSat-1 and PharmaSat missions, O/OREOS is constructed from off-the-shelf commercial and NASA-designed parts to create a fully self-contained, automated, stable, light-weight space science laboratory with innovative environment and power control techniques; sensors to monitor the levels of pressure, temper-ature, humidity, radiation and acceleration; and a communications system able to regularly accept commands from the ground and transmit data back to Earth for scientific analysis. The overall goal of the O/OREOS mission is to demonstrate the capability to do low-cost sci-ence experiments on autonomous nanosatellites in space in support of the Astrobiology Small Payloads program under the Planetary Science Division of the Science Mission Directorate at NASA Headquarters. The spacecraft houses two science payloads: the Space Environment Viability of Organics (SEVO) experiment will monitor the stability and changes in four classes of organic matter (results presented at another COSPAR session); and the Space Environment Survivability of Live Organisms (SESLO) experiment (presented here). SESLO will charac-terize the growth, activity, health, and ability of microorganisms to adapt to the stresses of the space environment. The experiment is sealed in a vessel at one atmosphere and contains two types of microbes commonly found in salt ponds and soil, in a dried and dormant state: Halorubrum chaoviator and Bacillus subtilis. After it reaches orbit, the experiment will initiate and begin to rehydrate and grow three sets of the microbes at three different times: a few days, three months, and six months after launch. Once the satellite is in its highly inclined orbit, the microbes are constantly being exposed to space's high-energy radiation while in micro-gravity. The SESLO experiment measures the microbes' population density as they consume the components of the nutrient medium; a metabolism indicator dye included in the medium changes color, enabling quantitative tracking of metabolic activity. Together, these data en-able determination of the effects of the combined exposure to space radiation and microgravity on organism growth, health and survival. The design of the spacecraft, its ability to support Astrobiology goals, and the actual spaceflight data obtained will be presented.

  12. The Conference on Corporate Interference with Science and Health: fracking, food and wireless: genesis, rationale, and results.

    PubMed

    Kopald, Deborah E

    2013-01-01

    A number of serious environmental health hazards created by under-regulated/unregulated industries have morphed into public health crises around the world. The Conference on Corporate Interference with Science and Health (the Conference) was held to examine this trend in three economically significant industries: fracking, food, and wireless. The Conference provided an overview of the structures of these three industries and the history of standard-setting therein, identified the sources of environmental exposures created by these industries, and surveyed the health consequences of these exposures and the policies that have resulted in them. It then examined corporate influence on the setting of these policies and the production of scientific studies and interpretation of their results. The Conference also analyzed the general influence of corporations on the political system and the relationship of this conflict of interest to the aforementioned topics. The concluding discussion focused on what solutions could be implemented to improve public health, including what institutional changes are necessary to promote public awareness and change policy. PMID:24413210

  13. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2014. The Editors of the AeroEarth 2014 Proceedings Dr. Ford Lumban Gaol Dr. Benfano Soewito

  14. ASTROBIOLOGY Volume 8, Number 4, 2008

    E-print Network

    , determining the principles that will shape life in the future, and recognizing signatures of life on other of life, and studies of the potential of life to adapt to future challenges, both on Earth and in space that encompass the space, Earth, and biological sciences. The ongoing development of as- trobiology roadmaps

  15. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; Steele, Andrew; Amashukeli, Xenia; Fisher, Anita; Grunthaner, Frank; Aubrey, Andrew; Bada, Jeff; Chiesl, Tom; Stockton, Amanda; Mathies, Rich

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  16. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 6th International Conference on Energy Sustainability & 10th Fuel Cell Science,

    E-print Network

    Bahrami, Majid

    DIFFUSION LAYERS Hamidreza Sadeghifar PhD candidate Mechatronic Systems Engineering, School of Engineering * Associate Professor Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University Sustainability & 10th Fuel Cell Science, Engineering and Technology Conference ESFuelCell2012 July 23-26, 2012

  17. Proceedings of the Annual International Conference of the Association for the Education of Teachers in Science (Charlotte, North Carolina, January 10-13, 2002).

    ERIC Educational Resources Information Center

    Rubba, Peter A., Ed.; Rye, James A., Ed.; DiBiase, Warren J., Ed.; Crawford, Barbara A., Ed.

    This document contains the proceedings of the 2002 Annual International Conference of the Association for the Education of Teachers in Science which was held in Charlotte, North Carolina, January 10-13, 2002. Papers include: (1) "Teaching Science Methods Courses with Web-Enhanced Activities" (Alec M. Bodzin); (2) "How Is Your Lawnmower Working?…

  18. MSaTERs: Mathematics, Science, and Technology Educators & Researchers of The Ohio State University. Proceedings of the Annual Spring Conference (3rd, Columbus, OH, May 15, 1999).

    ERIC Educational Resources Information Center

    Costner, Kelly M., Ed.; Reed, Michelle K., Ed.

    The Mathematics, Science, and Technology Educators and Researchers of The Ohio State University (MSaTERs-OSU) is a student organization that grew out of the former OSU Council of Teachers of Mathematics (OSU-CTM). Papers from the third annual conference include: (1) "Gender, Ethnicity, and Science" (Terry Arambula-Greenfield); (2) "Assessment: The…

  19. Science, Technology and the Liberal Arts: Report on a National Conference Held at Lehigh University (Bethlehem, Pennsylvania, April 1-3, 1984).

    ERIC Educational Resources Information Center

    Cutcliffe, Stephen H.; Goldman, Steven L.

    This conference was designed to provide information on the development and implementation of seven undergraduate science courses primarily for non-science majors at Lehigh University, to examine what ought to be the objectives of courses such as these in the liberal arts curriculum, and to describe parallel efforts with similar educational…

  20. Technical Education: A Growing Challenge in American Higher Education. Report of the AAAS Conference on Science in Technical Education (Washington, D.C., July 22-23, 1968).

    ERIC Educational Resources Information Center

    Foncannon, Howard F.

    This conference sought to analyze the major problems of science in technical education, formulate possible solutions, and stimulate action by higher education, government, the scientific community, foundations, and private industry. This part of the study concerns only physical science and engineering technicians, most of whom attend junior or…

  1. Exploring the Proposition of a Joint Conference between State Science, and Technology and Engineering Education Associations

    ERIC Educational Resources Information Center

    Love, Tyler S.; Loveland, Thomas

    2014-01-01

    In this article the authors collected numerous forms of data to better understand the perceptions of a joint conference from the various stakeholders. From the detailed survey and interview responses, the researchers found that administrators/supervisors had fewer reservations in regards to holding a joint conference. One reason for this may due…

  2. The Cyborg Astrobiologist: porting from a wearable computer to the Astrobiology Phone-cam

    NASA Astrophysics Data System (ADS)

    Bartolo, Alexandra; McGuire, Patrick C.; Camilleri, Kenneth P.; Spiteri, Christopher; Borg, Jonathan C.; Farrugia, Philip J.; Ormö, Jens; Gómez-Elvira, Javier; Rodriguez-Manfredi, José Antonio; Díaz-Martínez, Enrique; Ritter, Helge; Haschke, Robert; Oesker, Markus; Ontrup, Jörg

    2007-08-01

    We have used a simple camera phone to significantly improve an `exploration system' for astrobiology and geology. This camera phone will make it much easier to develop and test computer-vision algorithms for future planetary exploration. We envision that the `Astrobiology Phone-cam' exploration system can be fruitfully used in other problem domains as well.

  3. of the SpringS: Astrobiology in Yellowstone National Park --Booklet

    E-print Network

    Maxwell, Bruce D.

    (astro: space, and biology: life). Astrobiol- ogy is about life (or aliens) in space. Astrobiologists (scientists who study astrobiology) ask questions like, "Is there life on other planets?" "How could life Yellowstone and astrobiology. Students will understand the importance of extremophiles to the search for life

  4. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  5. Astrobiology: Using Current Research to Invigorate Science Curricula

    ERIC Educational Resources Information Center

    Nassif, Thomas Harttung; Zeller, Nancy

    2006-01-01

    Humans have long pondered the question of life's origins on Earth and sought to understand their place in the vast expanse of the Universe. Are they alone, in which case the inception of life is a phenomenon unique to planet Earth, or will they find signs of life on other terrestrial bodies? Today, technology allows space probes and rovers to…

  6. Might Astrobiological Findings Evoke a Religious Crisis?

    NASA Astrophysics Data System (ADS)

    Peters, T.; Froehlig, J. L.

    2009-12-01

    What might be the likely impact of confirmed discovery of extraterrestrial life—microbial or intelligent life—on terrestrial religion? Many have speculated that the anthropo-centrism and earth-centrism which allegedly have characterized our religious traditions would be confronted with a crisis. Would new knowledge that we are not alone in the universe lead to a collapse of traditional religious belief? This presentation will summarize the results of the Peters Religious Crisis Survey of 1325 respondents. This survey shows that the majority of adherents to Christianity, Islam, Judaism, and Buddhism demonstrate little or no anxiety regarding the prospect of contact with extraterrestrial life, even if they express some doubts regarding their respective religious tradition and the traditions of others. This presentation will also show that theological speculation regarding other worlds has sparked lively debate beginning as far back as the middle ages and continuing into our present era. Ted Peters is a research and teaching scholar with the Center for Theology and the Natural Sciences at the Graduate Theological Union in Berkeley, California. He is co-editor of the journal, Theology and Science, and author of the books, The Evolution of Terrestrial and Extraterrestrial Life (Pandora 2008) and Playing God? Genetic Determinism and Human Freedom (Routledge, rev. ed., 2003).

  7. PREFACE: 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) and 25th Symposium on Plasma Science for Materials (SPSM-25)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Kaneko, Toshio; Sekine, Makoto; Tanaka, Yasunori

    2013-06-01

    The 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) was held in Kyoto, Japan on 2-5 October 2012 with the 25th Symposium on Plasma Science for Materials (SPSM-25). SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. APCPST and SPSM are jointly held biennially to survey the current status of low temperature and thermal plasma physics and chemistry for industrial applications. The whole area of plasma processing was covered from fundamentals to applications. Previous meetings were held in China, Japan, Korea, and Australia, attended by scientists from the Asia-Pacific and other countries. The joint conference was organized in plenary lectures, invited, contributed oral presentations and poster sessions. At this meeting, we had 386 participants from 10 countries and 398 presentations, including 26 invited presentations. This year, we arranged special topical sessions that covered green innovation, life innovation, and technical reports from industry. This conference seeks to bring the plasma community together and to create a forum for discussing the latest developments and issues, the challenges ahead in the field of plasma research and applications among engineers and scientists in Asia, the Pacific Rim, as well as Europe. This volume presents 44 papers that were selected via a strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from the basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This volume offers an overview of recent advances in thermal and non-equilibrium plasmas as well as on more new and innovative developments in the field of life innovation, green innovation and a technical report session. The editors hope that this volume will be useful and helpful for deepening our understanding of science and technology of plasma materials processing and also for stimulating further development of the plasma technology. Finally, we would like to thank the conference chairmen, the members of the organizing committee, the advisory committee, the executive committee, the program committee, the publication committee, organizing secretariat and financial support from The 153rd Committee on Plasma Materials Science, JSPS. Sponsors and Supporting Organization: The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science Organizing Committee Chairperson: Osamu Tsuji, SAMCO Corporation, Japan Advisory Committee Chairperson: Akihisa Matsuda, Osaka University, Japan Executive Committee Chairperson: Masaru Hori, Nagoya University, Japan Program Committee Chairperson: Takamasa Ishigaki, Hosei University, Japan Publication Committee Chairperson: Takayuki Watanabe, Kyushu University Editors of APCPST-11 and SPMS-25 Professor Takayuki Watanabe, Kyushu University, Japan Professor Toshio Kaneko, Tohoku University, Japan Professor Makoto Sekine, Nagoya University, Japan Professor Yasunori Tanaka, Kanazawa University, Japan

  8. Astrobiology at Arizona State University: An Overview of Accomplishments

    NASA Technical Reports Server (NTRS)

    Farmer, Jack

    2005-01-01

    During our five years as an NAI charter member, Arizona State University sponsored a broadly-based program of research and training in Astrobiology to address the origin, evolution and distribution of life in the Solar System. With such a large, diverse and active team, it is not possible in a reasonable space, to cover all details of progress made over the entire five years. The following paragraphs provide an overview update of the specific research areas pursued by the Arizona State University (ASU) Astrobiology team at the end of Year 5 and at the end of the 4 month and subsequent no cost month extensions. for a more detailed review, the reader is referred to the individual annual reports (and Executive Summaries) submitted to the NAI at the end of each of our five years of membership. Appended in electronic form is our complete publication record for all five years, plus a tabulation of undergraduates, graduate students and post-docs supported by our program during this time. The overarching theme of ASU s Astrobiology program was "Exploring the Living Universe: Studies of the Origin, Evolution and Distribution of Life in the Solar System". The NAi-funded research effort was organized under three basic sub- themes: 1. Origins of the Basic Building Blocks of Life. 2. Early Biosphere Evolution. and 3. Exploring for Life in the Solar System. These sub-theme areas were in turn, subdivided into Co-lead research modules. In the paragraphs that follow, accomplishments for individual research modules are briefly outlined, and the key participants presented in tabular form. As noted, publications for each module are appended in hard copy and digital formats, under the name(s) of lead co-Is.

  9. Brazilian research on extremophiles in the context of astrobiology

    NASA Astrophysics Data System (ADS)

    Duarte, Rubens T. D.; Nóbrega, Felipe; Nakayama, Cristina R.; Pellizari, Vivian H.

    2012-10-01

    Extremophiles are organisms adapted to grow at extreme ranges of environmental variables, such as high or low temperatures, acid or alkaline medium, high salt concentration, high pressures and so forth. Most extremophiles are micro-organisms that belong to the Archaea and Bacteria domains, and are widely spread across the world, which include the polar regions, volcanoes, deserts, deep oceanic sediments, hydrothermal vents, hypersaline lakes, acid and alkaline water bodies, and other extreme environments considered hostile to human life. Despite the tropical climate, Brazil has a wide range of ecosystems which include some permanent or seasonally extreme environments. For example, the Cerrado is a biome with very low soil pH with high Al+3 concentration, the mangroves in the Brazilian coast are anaerobic and saline, Pantanal has thousands of alkaline-saline lakes, the Caatinga arid and hot soils and the deep sea sediments in the Brazilian ocean shelf. These environments harbour extremophilic organisms that, coupled with the high natural biodiversity in Brazil, could be explored for different purposes. However, only a few projects in Brazil intended to study the extremophiles. In the frame of astrobiology, for example, these organisms could provide important models for defining the limits of life and hypothesize about life outside Earth. Brazilian microbiologists have, however, studied the extremophilic micro-organisms inhabiting non-Brazilian environments, such as the Antarctic continent. The experience and previous results obtained from the Brazilian Antarctic Program (PROANTAR) provide important results that are directly related to astrobiology. This article is a brief synopsis of the Brazilian experience in researching extremophiles, indicating the most important results related to astrobiology and some future perspectives in this area.

  10. Astrobiology: guidelines and future missions plan for the international community

    NASA Astrophysics Data System (ADS)

    French, L.; Miller, D.

    The search for extra-terrestrial life has been going on ever since humans realized there was more to the Universe than just the Earth. These quests have taken many forms including, but not limited to: the quest for understanding the biological origins of life on Earth; the deployment of robotic probes to other planets to look for microbial life; the analysis of meteorites for chemical and fossil remnants of extra - terrestrial life; and the search of the radio spectrum for signs of extra-solar intelligence. These searches so far have yielded hints, but no unambiguous proof of life with origins from off Earth. The emerging field of astrobiology studies the origin, distribution, and future of life in the Universe. Technical advances and new, though not conclusive, evidence of extinct microbial life on Mars have created a new enthusiasm for astrobiology in many nations. However, the next steps to take are not clear, and should a positive result be returned, the follow-on missions are yet to be defined. This paper reports on the results of an eight-week study by the students of the International Space University during the summer of 2002. The study created a source book that can be used by mission designers and policy makers to chart the next steps in astrobiology. In particular, the study addresses the following questions:1.What is the full set of dimensions along which we can search forextra-terrestrial life?2.What activities are currently underway by the internationalcommunity along each of these dimensions?3.What are the most effective next steps that can be taken by theinternational space community in order to further this search (from a policy,sociological and mission point of view)?4.What are the proper steps for eliminating possible contaminationof the Earth's biosphere?5.What are the issues with planetary quarantine with regards tounwanted contamination of other biospheres with terrestrial organisms? Integrating all the considerations affecting the search for the origins of the universe, this study proposes a strategy and an integrated series of missions that will advance the international astrobiology effort.

  11. Astrobiology: guidelines and future missions plan for the international community

    NASA Astrophysics Data System (ADS)

    French, L.; Miller, D.

    The search for extra-terrestrial life has been going on ever since humans realized there was more to the Universe than just the Earth. These quests have taken many forms including, but not limited to: the quest for understanding the biological origins of life on Earth; the deployment of robotic probes to other planets to look for microbial life; the analysis of meteorites for chemical and fossil remnants of extra - terrestrial life; and the search of the radio spectrum for signs of extra-solar intelligence. These searches so far have yielded hints, but no unambiguous proof of life with origins from off Earth. The emerging field of astrobiology studies the origin, distribution, and future of life in the Universe. Technical advances and new, though not conclusive, evidence of extinct microbial life on Mars have created a new enthusiasm for astrobiology in many nations. However, the next steps to take are not clear, and should a positive result be returned, the follow-on missions are yet to be defined. This paper reports on the results of an eight-week study by the students of the International Space University during the summer of 2002. The study created a source book that can be used by mission designers and policy makers to chart the next steps in astrobiology. In particular, the study addresses the following questions: What is the full set of dimensions along which we can search for extra -terrestrial life? What activities are currently underway by the international community along each of these dimensions? What are the most effective next steps that can be taken by the international space community in order to further this search (from a policy, sociological and mission point of view)? What are the proper steps for eliminating possible contamination of the Earth's biosphere? What are the issues with planetary quarantine with regards to unwanted contamination of other biospheres with terrestrial organisms? Integrating all the considerations affecting the search for the origins of the universe, this study proposes a strategy and an integrated series of missions that will advance the international astrobiology effort.

  12. Proceedings of AAAI-86 fifth national conference on artificial intelligence. Volume 1: Science

    SciTech Connect

    Not Available

    1986-01-01

    This book contains the proceedings of a conference on Artificial Intelligence. Topics include the following: Automatic Programming; Uncertainty and Expert Systems; Artificial Languages and Architectures; and Application of Knowledge Based Systems Technology to Triple Quadrupole Mass Spectrometry.

  13. Proceedings of the 25th annual offshore technology conference. Volume 1: Geology, earth sciences and environment

    SciTech Connect

    Not Available

    1993-01-01

    This conference proceedings represents volume 1 of a 4 volume conference relating to offshore operations in both energy and non-energy fields of resource development. This volume discusses the use of geophysical surveying techniques and equipment for mapping the seafloor; the design and use of offshore platforms; safety engineering systems; interpretation techniques for offshore survey data; environmental impacts from offshore operations; geology of offshore areas; and regulations pertaining to the development of offshore resources.

  14. Research in Science Education, Volume 5. Proceedings of the Annual Conference of the Australian Science Education Research Association (6th, Flinders University, Bedford Park, South Australia, May 19-21, 1975).

    ERIC Educational Resources Information Center

    Lucas, A. M., Ed.; Power, Colin, N., Ed.

    This volume contains papers presented at the sixth Annual Conference of the Australian Science Education Research Association (ASERA) held at Flinders University in May, 1975. Paper topics include: pupil learning and classroom climate, teacher structuring behavior, the Australian Science Education Project (ASEP), cognitive preference and…

  15. Astrobiology Results from ILEWG EuroMoonMars Analogue Field Research

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We give an update on the astrobiology results from a series of field research campaigns (ILEWG EuroMoonMars) in the extreme environment of the Utah desert. These are relevant to prepare future lunar landers and polar sample return missions, interpret Moon-Mars data (eg SMART1, LRO, Mars Express, MRO, MER, MSL), study habitability and astrobiology in Moon-Mars environments, or to test human-robotic surface EVA or base operations. In the frame of ILEWG EuroMoonMars campaigns (2009 to 2013) we deployed at Mars Desert Research station near Hanksville Utah, a suite of instruments and techniques [0, 1, 2, 9-11] including sample collection, context imaging from re-mote to local and microscale, drilling, spectrometers and life sensors. We analyzed how geological and geo-chemical evolution affected local parameters (mineralogy, organics content, environment variations) and the habitability and signature of organics and biota. Results: Among the important findings are the diversity in the composition of soil samples even when collected in close proximity, the low abundances of detectable PAHs and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles was observed [3,4,9]. A dominant factor seems to be soil porosity and lower clay-sized particle content [6-8]. A protocol was developed for sterile sampling, contamination issues, and the diagnostics of biodiversity via PCR and DGGE analysis in soils and rocks samples [10, 11]. We compare the 2009 campaign results [0-9] to new measurements from 2010-2013 campaigns relevant to: comparison between remote sensing and in-situ measurements; the study of minerals; the detection of organics and signs of life. We acknowledge team members and supporting institutes: B.H. Foing (1, 2, 6), C. Stoker (3), P. Ehrenfreund (4, 5), I. Rammos (2), L. Rodrigues (2), A. Svendsen (2), D. Oltheten (2), I. Schlacht (2), K. Nebergall (6), M. Battler (6, 7), H. v’t Houd (8), A. Bruneau (6,9), M. Cross (6,7), V. Maivald (10), C. Orgel (6), A. Elsaesser (4), S.O.L. Direito (2,4), W.F.M. Röling (2), G.R. Davies (2); EuroGeoMars2009 Team, DOMMEX-ILEWG EuroMoonMars 2010-2013 Teams (1) ESA/ ESTEC, Postbus 299, 2200 AG Noordwik, NL; (2) Vrije Universiteit, Amsterdam, Faculty of Earth & Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, NL; (3) NASA Ames Research Centre; US; (4) Leiden Institute of Chemistry, NL; (5) Space Policy Institute, GWU, Washington D.C., USA; (6) ILEWG; (7) CPSX; (8) Cerberus Blackshore, ESIC Noordwijk, NL; (9) ENSC Bordeaux; (10) DLR, Bremen References: Foing, Stoker & Ehrenfreund (Editors, 2011) “Astrobiology field Research in Moon/Mars Analogue Environments”, Special Issue of International Journal of Astrobiology , IJA 2011, 10, vol.3. 137-305; [1] Foing B. et al. (2011) Field astrobiology research at Moon-Mars analogue site: Instruments and methods, IJA 2011, 10 (3), 141; [2] Clarke, J., Stoker, C. Concretions in exhumed & inverte channels near Hanksville Utah: implications for Mars, (IJA 2011, 10 (3), 162; [3] Thiel et al., (2011) PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. (IJA 2011, 10 (3), 177; [4] Direito et al. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). (IJA 2011, 10 (3), 191; [5] Orzechowska, G. et al (20110 analysis of Mars Analog soils using solid Phase Microextraction, Organics solvent extraction and GCMS, (IJA 2011, 10 (3), 209; [6] Kotler et al. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah Desert. (IJA 2011, 10 (3), 221; [7] Martins et al. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. (IJA 2011, 10 (3), 231; [8] Ehrenfreund et al. (2011) Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. (IJA 2011, 10 (3), 239; [9] Stoker C. et al (2011) Mineralogical

  16. Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Blackwell, Kim; Blasso, Len (editor); Lipscomb, Ann (editor)

    1991-01-01

    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  17. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  18. XVII International AIDS Conference: From Evidence to Action - Social, behavioural and economic science and policy and political science.

    PubMed

    Mykhalovskiy, Eric; Brown, Glen; Kort, Rodney

    2009-01-01

    AIDS 2008 firmly established stigma and discrimination as fundamental priorities in the push for universal access to HIV prevention, treatment, care and support. Conference sessions and discussions reinforced the tangible negative effects of stigma on national legislation and policies. A strong theme throughout the conference was the need to replace prevention interventions that focus exclusively on individual behaviour change or biomedical prevention interventions with "combination prevention" approaches that address both individual and structural factors that increase vulnerability to HIV infection.Several high-level sessions addressed various aspects of the debate over "vertical" (disease-specific) versus "horizontal" (health systems) funding. The majority of evidence presented at the conference suggests that HIV investments strengthen health systems through the establishment of clinical and laboratory infrastructure, strengthened supply and procurement systems, improvements in health care worker training, and increased community engagement.Human rights were a focal point at the conference; several presentations emphasized the importance of securing human rights to achieve universal access goals, including workplace discrimination, travel restrictions, gender inequality, and the criminalization of homosexuality, drug use, sex work, and HIV transmission and/or exposure. PMID:19811671

  19. The O/OREOS mission—Astrobiology in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; Mancinelli, R.; Mattioda, A.; Nicholson, W.; Quinn, R.; Santos, O.; Tahu, G.; Voytek, M.; Beasley, C.; Bica, L.; Diaz-Aguado, M.; Friedericks, C.; Henschke, M.; Landis, D.; Luzzi, E.; Ly, D.; Mai, N.; Minelli, G.; McIntyre, M.; Neumann, M.; Parra, M.; Piccini, M.; Rasay, R.; Ricks, R.; Schooley, A.; Stackpole, E.; Timucin, L.; Yost, B.; Young, A.

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small-Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72°), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cm3) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA's scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  20. Earth Science and Public Health: Proceedings of the Second National Conference on USGS Health-Related Research

    USGS Publications Warehouse

    Buxton, Herbert T.; Griffin, Dale W.; Pierce, Brenda S.

    2007-01-01

    The mission of the U.S. Geological Survey (USGS) is to serve the Nation by providing reliable scientific information to describe and understand the earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. As the Nation?s largest water, earth, and biological science and civilian mapping agency, the USGS can play a significant role in providing scientific knowledge and information that will improve our understanding of the relations of environment and wildlife to human health and disease. USGS human health-related research is unique in the Federal government because it brings together a broad spectrum of natural science expertise and information, including extensive data collection and monitoring on varied landscapes and ecosystems across the Nation. USGS can provide a great service to the public health community by synthesizing the scientific information and knowledge on our natural and living resources that influence human health, and by bringing this science to the public health community in a manner that is most useful. Partnerships with health scientists and managers are essential to the success of these efforts. USGS scientists already are working closely with the public health community to pursue rigorous inquiries into the connections between natural science and public health. Partnering agencies include the Armed Forces Institute of Pathology, Agency for Toxic Substances Disease Registry, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, Food and Drug Administration, Mine Safety and Health Administration, National Cancer Institute, National Institute of Allergy and Infectious Disease, National Institute of Environmental Health Sciences, National Institute for Occupational Safety and Health, U.S. Public Health Service, and the U.S. Army Medical Research Institute of Infectious Diseases. Collaborations between public health scientists and earth scientists can lead to improved solutions for existing and emerging environmental health problems. This report summarizes the presentations and discussions held at the Second National Conference on USGS Health-Related Research, held at the USGS national headquarters in Reston, Virginia. The report presents 68 abstracts of technical presentations made at the conference and summaries of six topical breakout sessions. The abstracts cover a broad range of issues and demonstrate connections between human health and the quality and condition of our environment and wildlife. The summaries of the topical breakout sessions present ideas for advancing interdisciplinary science in areas of earth science and human health.

  1. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal incredible returns for several disciplines including: exploration, in situ resource utilization, planetary defense, and science. Of particular, interest to the scientific

  2. Dikes and recent mud-flow deposits marking potential astrobiologically interesting sites: an assessment study in the Atlantis Chaos region, Mars.

    NASA Astrophysics Data System (ADS)

    de Pablo, M. A.; Fairén, A. G.; Márquez, A.

    The search for life on Mars is focused on areas where the geomorphologic features and chemical composition indicates the possible existence of water during relatively long periods of time during the ancient history of this planet. For example, Gusev crater, an ancient lake on the Martian highlands, was selected as the `Spirit' Mars Exploration Rover landing site. Its analysis was focussed in checking the existence of an ancient lake in this impact basin and to explore its ancient climatic environmental conditions. The Atlantis basin [1], located at 35°S,177°W, in Sirenum Terrae, is another place of the martian highlands where the existence of an ancient lake, at least during the middle Noachian [2], has been proposed. The analysis of the Mars Global Surveyor and Mars Odyssey high resolution images of this area shows the existence of numerous lineal structures, previously described as possible dikes [3], and mud flow deposits which description and astrobiological implications are discussed in this work. The existence of dikes on the Atlantis Chaos chaotic terrain at the Atlantis basin has been described, but only from a local perspective [3]. A new analysis of the MOC (Mars Global Surveyor) and THEMIS (Mars Odyssey) images has shown the existence of such lineal structures in the chaotic area. These structures correspond to residual reliefs of a lineal pattern in the regions more eroded of the tables forming the chaotic terrain. These dikes could be related with the thermal episodes that originated the volcanic reliefs observed in the area [3] [4]. On the other hand, they could also be related with the origin of the chaotic terrain, independently of the proposed models [5] [6]. Both in MOC and THEMIS images, the existence of sedimentary deposits between the mesas constituting the chaotic terrain of Atlantis Chaos is noted. Its lobular front, hummocky surfaces, distribution confined to the valleys, and relation with the dikes, all support the interpretation of the sedimentary deposits as originated by mud flows, markedly different than the origin of those deposits located at the impact crater inner slopes [3]. Their location, extension and morphology are very different. In addition, the Atlantis Chaos mud flow deposits have few impact craters, which are locally, superimposed to each others. All these characteristics indicate their relative youth. In conclusion, the presence of dikes and sedimentary deposits originated by mass flows can be indicative of the existence of a thermal source and related liquid water, at least on early Mars. Both conditions could indicate the existence of sites where the environmental setting was once more favourable for life. Thus, the narrow relationship among dikes and mud-flow deposits could be used as a pacemaker for the location of astrobiological interesting sites. This hypothesis is proposed after the study of the Atlantis Chaos region, and it requires to be fully checked in other surfaces where the same geologic processes are observed. [1] de Pablo, M.A., Fairén, A.G., Márquez, A. 2004. XXXV Lunar Planet. Sci. Conf., abstract #1485. [2] Irwin, R.P., Maxwell, T.A., Howard, A.D., Craddock, R.A., Leverington, D.W. 2002. Science, 297, 2209-2212. [3] de Pablo, M.A., Márquez, A. 2004. XXXV Lunar Planet. Sci. Conf., abstract #1138. [4] Scott, D.H., Tanaka, K.L. 1986. USGS. Misc. Inv. Ser. Map I-1802-A. [5] Komatsu, G. et al. 2000 XXXI Lunar Planet. Sci. Conf., abstract #1434. [6] Oyawa, Y., et al. 2003 V Mars Conference, Abstract #3095.

  3. NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    NASA Technical Reports Server (NTRS)

    Kobler, Benjamin (editor); Hariharan, P. C. (editor); Blasso, L. G. (editor)

    1992-01-01

    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.

  4. Joint Tenure-Track Faculty Position in Exoplanetary Science Earth and Planetary Sciences and Physics Department, McGill University

    E-print Network

    Kambhampati, Patanjali

    Joint Tenure-Track Faculty Position in Exoplanetary Science Earth and Planetary Sciences and Physics Department, McGill University The Department of Earth and Planetary Sciences (www, astrobiology and atmospheric sciences in Earth and Planetary Science and other departments. We seek candidates

  5. IFLA General Conference, 1987. Division of Special Libraries. Biological and Medical Science Libraries Section. Social Science Libraries Section. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Six of the nine papers in this collection focus on biological and medical science libraries; the remaining three are concerned with social science libraries. The papers on biological and medical science libraries appear first in this list: (1) "Standards for Medical and Health Care Libraries: Canada" (Jan Greenwood, Canada); (2) "Standards for…

  6. Conference Report: Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation

    EPA Science Inventory

    1. Introduction The 3rd International Conference on Alternatives for Developmental Neurotoxicity Testing (DNT3), organized by the European Centre for the Validation of Alternative Methods (ECVAM), the Joint Research Centre of the European Commission, was held from May 10 -13, 20...

  7. OpTeC Annual Meeting Agenda 1 11 Sept. 2014 Optical Science & Engineering Conference

    E-print Network

    Maxwell, Bruce D.

    Conference Organizers: Dr. Joseph Shaw ­ OpTeC Director Dr. Larry Johnson ­ Montana Photonics Industry Shaw & Larry Johnson 2:20 pm Joe Shaw ­ Welcome and recognition of invited guests 2:30 pm Tom Baur:00 pm Larry Johnson, President Montana Photonics Industry Alliance Montana's Emerging Photonics Industry

  8. The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, and planetary mantles.

  9. Discrimination of Pigments of Microalgae, Bacteria and Yeasts Using Lightweight Handheld Raman Spectrometers: Prospects for Astrobiology

    NASA Astrophysics Data System (ADS)

    Jehlicka, J.; Osterrothova, K.; Nedbalova, L.; Gunde-Cimerman, N.; Oren, A.

    2014-06-01

    Handheld Raman instrumentation with 532 nm lasers can be used to distinguish carotenoids of autotrophic microalgae, purple sulfur bacteria, halophilic Archaea and pigmented yeasts. Pigments are proposed as biomarkers for astrobiology of Mars.

  10. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    SciTech Connect

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  11. Proceedings of the International Conference on Mathematics/Science Education & Technology (MSET 2000), San Diego, CA, March 2000. AACE, pp. 410-415.

    E-print Network

    Massachusetts at Amherst, University of

    Proceedings of the International Conference on Mathematics/Science Education & Technology (MSET reduced. These pressures are acute in teaching "service" courses such as general chemistry and physics goals are to: 1) Expand the use of OWL in other large service courses. This effort started

  12. International Conference in Computational Engineering & Sciences (ICES), Puerto Vallarta, Mexico, August 19-24, 2001 Wave Scattering by Cracks in Laminated Media

    E-print Network

    Entekhabi, Dara

    International Conference in Computational Engineering & Sciences (ICES), Puerto Vallarta, Mexico to several disciplines such as fracture mechanics, seismology and non-destructive evaluation, and has been. On the one hand is the real state [ ],u T for the actual displacement and stress fields ( ) ( ), , ,T Tu x

  13. Proceedings of the 4th Fire in Eastern Oak Forests Conference 207GTR-NRS-P-102 GENESIS OF AN OAK-FIRE SCIENCE CONSORTIUM

    E-print Network

    herbivory [Fuhlendorf and others 2009], fire history) that would benefit fire managers outside the regionProceedings of the 4th Fire in Eastern Oak Forests Conference 207GTR-NRS-P-102 GENESIS OF AN OAK-FIRE SCIENCE CONSORTIUM Keith W. Grabner, Michael C. Stambaugh, Richard P. Guyette, Daniel C. Dey, and Gary D

  14. 2012 IEEE Nuclear Science Symposiwn and Medical Imaging Conference Record (NSS/MIC) R12-3 Design and Simulation of a Graphene DEPFET

    E-print Network

    Chen, Yong P.

    and measuring the amount of radiation-induced charge. In this paper, after describing the device structure2012 IEEE Nuclear Science Symposiwn and Medical Imaging Conference Record (NSS/MIC) R12-3 Design- Graphene field effect transistors (GFETs) fabricated on undoped semiconductor substrates have shown promise

  15. Proceedings of the Annual International Conference of the Association for the Education of Teachers in Science (Costa Mesa, California, January 18-21, 2001).

    ERIC Educational Resources Information Center

    Rubba, Peter A., Ed.; Rye, James A., Ed.; DiBiase, Warren J., Ed.; Crawford, Barbara A., Ed.

    This document contains the proceedings of the 2001 Annual International Conference of the Association for the Education of Teachers in Science which was held in Costa Mesa, California, January 18-21, 2001. Papers include: (1) "An Elementary Preservice Teacher's Search for Solutions about the Evolution-Divine Creation Question: The Story of Tracy"…

  16. Brainstorming Conference on STI Policy-Implementation The Science, Technology and Innovation Policy 2013(STI) (www.dst.gov.in ) was unveiled by

    E-print Network

    Dhingra, Narender K.

    of the people of India. The Policy outlines several principles and constructs for invigorating the National and mechanisms contained in the Policy necessitate wide ranging national consultations with differentA write-up Brainstorming Conference on STI Policy-Implementation The Science, Technology

  17. Delivering Academic Excellence to Culturally Diverse Populations (Language Development through Math/Science Activities). Conference Proceedings (Saddle Brook, New Jersey, December 7-8, 1984).

    ERIC Educational Resources Information Center

    Bilotta, Cynthia, Ed.

    This document includes the proceedings of a conference that made the following points about American society now and in the future: (1) racial changes in demographics require preparing urban minority students for entrance into scientific and technological fields; (2) the science/mathematics education movement of the late 1950s into the 1970s has…

  18. MSaTERs: Mathematics, Science, and Technology Educators & Researchers of The Ohio State University. Proceedings of the Annual Spring Conference (4th, Columbus, Ohio, May 6, 2000).

    ERIC Educational Resources Information Center

    Costner, Kelly M., Ed.; Herman, Marlena F., Ed.

    The Mathematics, Science, and Technology Educators and Researchers of The Ohio State University (MSaTERs-OSU) is a student organization that grew out of the former Ohio State University Council of Teachers of Mathematics (OSU-CTM). Papers from the fourth annual conference include: (1) "Technology Education Curriculum Models in Michigan Secondary…

  19. Astrobiological Effects of Stellar Radiation in Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.

    2006-10-01

    The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.

  20. Astrobiological phase transition: towards resolution of Fermi's paradox.

    PubMed

    Cirkovi?, Milan M; Vukoti?, Branislav

    2008-12-01

    Can astrophysics explain Fermi's paradox or the "Great Silence" problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are gamma-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the "Great Silence", it is not supportive of the "contact pessimist" position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way. PMID:18855114

  1. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    ?irkovi?, Milan M.; Vukoti?, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are ?-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  2. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    NASA Astrophysics Data System (ADS)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. ? Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. ? Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. ? Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. ? Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic systems and tissue engineering; nanotechnology for drug delivery and imaging; bionanotechnology in cancer and cardiovascular disease; nanostructured biomaterials; nanotechnology in bioengineering; nanofabrication of biosensing devices. We are pleased to present a selection of research papers in this special issue of Nanotechnology on behalf of the Nanoscale Science and Engineering Forum (NSEF). NSEF was established in 2001 as a new division of AIChE to promote nanotechnology efforts in chemical engineering. The chemical engineering discipline deals with the production and processing of chemicals and materials, and does so through a fundamental understanding of the core issues of transport, thermodynamics, and kinetics that exist at multiple length scales. Thus, it should come as no surprise that chemical engineers have been pursuing nanotechnology research for the last fifty years. For example, fuel production has benefited immensely from improved catalysts in which their pore structure is controlled with nanoscale precision, and polymer properties have been improved by controlling the polymer supramolecular structure at the nanometre scale. Chemical engineering will continue to make important contributions to nanotechnology, and will play a critical role in the transition from basic science and engineering research to commercial applications. We would like to thank all of the authors who contributed to this special issue; the three NSEF poster presentation award winners for their papers (Sureshkumar, Sunkara, and Rinaldi groups); Dr Nina Couzin, Publisher of Nanotechnology, for her support and enthusiasm for this project; Drs Sharon Glotzer and Dan Coy who chaired the topical conference; and Drs Meyya Meyyappan and Brett Cruden (NASA Ames Research Center) for their assistance in the initial planning stages. We also take this opportunity to thank the many people and organizations who have supported the 2004 topical conference along the way, which include all the session chairs, Hyperion Catalysis International, Inc., Nanophase Technologies, Inc., and

  3. News Event: UK to host Science on Stage Travel: Gaining a more global perspective on physics Event: LIYSF asks students to 'cross scientific boundaries' Competition: Young Physicists' tournament is international affair Conference: Learning in a changing world of new technologies Event: Nordic physical societies meet in Lund Conference: Tenth ESERA conference to publish ebook Meeting: Rugby meeting brings teachers together Note: Remembering John L Lewis OBE

    NASA Astrophysics Data System (ADS)

    2013-03-01

    Event: UK to host Science on Stage Travel: Gaining a more global perspective on physics Event: LIYSF asks students to 'cross scientific boundaries' Competition: Young Physicists' tournament is international affair Conference: Learning in a changing world of new technologies Event: Nordic physical societies meet in Lund Conference: Tenth ESERA conference to publish ebook Meeting: Rugby meeting brings teachers together Note: Remembering John L Lewis OBE

  4. Circinaria gyrosa, a new astrobiological model system for studying the effects of heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Martín, María Luisa; Moeller, Ralf; De la Torre Noetzel, Rosa; Raguse, M. Marina

    Up to date, most astrobiological experiments performed on space have been carried out on board of Earth-orbiting spacecrafts (e.g., Foton satellites), or on board of human-tended spacecrafts, (space shuttles and space stations). Organisms included in these experiments have been exposed to harsh space conditions: vacuum, doses of UV and ionizing radiation as well as extreme temperature fluctuations. Space radiation that arrived on these organisms is related with different sources: (e.g. solar particle events, galactic cosmic rays and electromagnetic radiation) [1]. More information on biological effects of cosmic radiation is needed to understand the possible risks for biological systems exposed to space conditions and to broaden our knowledge on the limits of terrestrial life. This study is focused on Circinaria gyrosa (from Aspicilia fruticulosa, ren. see Sohrabi, M., 2012), a vagrant lichen species collected at the steppic highlands of Central Spain. C. gyrosa. has been previously used in various space experiments, e.g., LITHOPANSPERMIA experiment, BIOPAN-6, FOTON M3, 2007, and in ground-based laboratory studies [2]. For example, after intensive UV-C exposure (7.2 x 107J/m2), C. gyrosa showed the highest PS-II activity of all lichens species tested [3]. Based on this high resistance to UV radiation C. gyrosa has been included in the next EXPOSE-R2 ISS experiment called “BIOMEX” (Biology and Mars-Experiment), in which different biological systems will be exposed to space and Martian conditions for nearly one and a half year. Here, we will present our first results of C.gyrosa, which have been obtained in frame of the STARLIFE project, an intercomparison project testing the effects of space-relevant ionizing radiation, i.e., heavy ions and X-rays, on different astrobiological model systems. For C. gyrosa we tested the organism metabolism through pulse amplitude modulated (PAM) fluorescence analysis prior and after the each irradiation experiment. This new data provide further evidence that lichens are suitable organisms to experimentally verify the potential of lichens in a Lithopanspermia scenario, as indicated by Horneck et al. (2008) [4] References [1] L. R. Dartnell. Ionizing radiation and life Astrobiology 11(6): 551-582 (2011) [2] R. de la Torre, L. G. Sancho, G. Horneck, A. de los Rios, J. Wierzchos, K. Olsson-Francis, C. S. Cockell, P. Rettberg, T. Berger, J. P. de Vera, S. Ott, J. Martinez Frias. P. González Melendi, M. M. Lucas, M. Reina, A. Pintado and R. Demets. Survival of lichens and bacteria exposed to outer space conditions. Results of the Lithopanspermia experiments. Icarus 208: 735-748 (2010) [3] F. J. Sánchez, E. Mateo-Martí, J. Raggio, J. Meeßen, J. Martínez-Frías, L. G .Sancho, S. Ott and R. de la Torre. The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions - a model test for the survival capacity of an eukaryotic extremophile. Planetary and Space Science. 72 (1): 102-110 (2012) [4] Horneck, G., Klaus, D.M., and R. L. Mancinelli. Space microbiology. Microbiology and Molecular Biology Reviews: 74(1):121-156 (2010)

  5. Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.

  6. Lunar and Planetary Science Conference, 13th, Houston, TX, March 15-19, 1982, Proceedings. Part 2

    NASA Technical Reports Server (NTRS)

    Boynton, W. V. (editor); Ahrens, T. J.

    1983-01-01

    The second part of the proceedings of the Thirteenth Lunar and Planetary Science Conference considers sedimentary processes and crustal cycling on Venus, a model for the formation of the earth's core, evidence of resurfacing in the lunar nearside highlands, the geology of Tethys, thermal stresses in planetary elastic lithospheres, the petrology and comparative thermal and mechanical histories of clasts in breccia 62236, lunar paleointensity data and its implications for the origin of lunar magnetism, and a model for the accumulation of solar wind radiation damage effects in lunar dust grains. Also discussed are fluid inclusions in stony meteorites, nuclear track and compositional studies of olivines in CI and CM chondrites, the impact of an asteroid or comet in the ocean and the extinction of terrestrial life, cooling rates for glass-containing lunar compositions, and the homogeneity of lava flows.

  7. Proceedings of the precollege-university partnerships for science and mathematics education conference

    SciTech Connect

    Not Available

    1992-08-01

    In April of 1992 in Atlanta, Georgia, nearly 50 elementary and secondary educators and about 100 postsecondary educators convened to explore their common interests in the conference on precollege-university partnerships. This report summarizes the remarks and conclusions of speakers, panelists, and of attendees gathered in regional work groups. During the course of the conference, attendees heard from federal agencies and foundations which fund education-related projects and learned of their enthusiastic support of partnerships. In our national need to manage education and training resources wisely, these funding agents see partnership benefits such as renewed excitement for teaching at all levels, effective and technologically up-to-date in-service training, more and better-prepared high school graduates entering colleges, and a general enhancement of understanding among educators at all levels of teaching. As an added benefit, the partnership concept promotes discussion and understanding in an atmosphere of respect, appreciation, and self-esteem. Several hours of the conference were devoted to panels addressing five questions important to education coalitions. The panelists represented a wide variety of teaching levels, geographic locations, educational experiences, and ethnic groups.

  8. Students' Socio-Scientific Reasoning in an Astrobiological Context During Work with a Digital Learning Environment

    NASA Astrophysics Data System (ADS)

    Hansson, Lena; Redfors, Andreas; Rosberg, Maria

    2011-08-01

    In a European project—CoReflect—researchers in seven countries are developing, implementing and evaluating teaching sequences using a web-based platform (STOCHASMOS). The interactive web-based inquiry materials support collaborative and reflective work. The learning environments will be iteratively tested and refined, during different phases of the project. All learning environments are focusing "socio-scientific issues". In this article we report from the pilot implementation of the Swedish learning environment which has an Astrobiology context. The socio-scientific driving questions are "Should we look for, and try to contact, extraterrestrial life?", and "Should we transform Mars into a planet where humans can live in the future?" The students were in their last year of compulsory school (16 years old), and worked together in triads. We report from the groups' decisions and the support used for their claims. On a group level a majority of the student groups in their final statements express reluctance towards both the search of extraterrestrial life and the terraforming of Mars. The support used by the students are reported and discussed. We also look more closely into the argumentation of one of the student groups. The results presented in this article, differ from earlier studies on students' argumentation and decision making on socio-scientific issues (Aikenhead in Science education for everyday life. Evidence-based practice. Teachers College Press, New York, (2006) for an overview), in that they suggest that students do use science related arguments—both from "core" and "frontier" science—in their argumentation and decision making.

  9. News Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

  10. News Conference: The Big Bangor Day Meeting Lecture: Charterhouse plays host to a physics day Festival: Science on Stage festival 2013 arrives in Poland Event: Scottish Physics Teachers' Summer School Meeting: Researchers and educators meet at Lund University Conference: Exeter marks the spot Recognition: European Physical Society uncovers an historic site Education: Initial teacher education undergoes big changes Forthcoming events

    NASA Astrophysics Data System (ADS)

    2013-09-01

    Conference: The Big Bangor Day Meeting Lecture: Charterhouse plays host to a physics day Festival: Science on Stage festival 2013 arrives in Poland Event: Scottish Physics Teachers' Summer School Meeting: Researchers and educators meet at Lund University Conference: Exeter marks the spot Recognition: European Physical Society uncovers an historic site Education: Initial teacher education undergoes big changes Forthcoming events

  11. News Expedition: Teachers go on extreme journey Summer School: Summer school inspires student Conference: Bristol plans science teaching festival Teacher Support: Make the most of your SPN support Conference: Schools can use latest physics Web Resource: Datamouse online project goes live Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2010-01-01

    Expedition: Teachers go on extreme journey Summer School: Summer school inspires student Conference: Bristol plans science teaching festival Teacher Support: Make the most of your SPN support Conference: Schools can use latest physics Web Resource: Datamouse online project goes live Forthcoming Events

  12. National Reports on the State of Social Science Information and Documentation in 16 European Countries. Reports Presented to the ECSSID General Conference (European Cooperation in Social Science Information and Documentation, 4th, Athens, Greece, October 21-23, 1984).

    ERIC Educational Resources Information Center

    Saelen, Kirsti Thesen, Ed.

    Papers presented at the fourth European Cooperation in Social Science Information and Documentation (ECSSID) General Conference provide information on developments in the field in 16 European countries. According to the general outlines provided for these reports, the presentations focus on developments after 1977, thus supplementing information…

  13. Evaluation of the 2012 18th Maternal and Child Health (MCH) Epidemiology and 22nd CityMatCH MCH Urban Leadership Conference: six month impact on science, program, and policy.

    PubMed

    Arellano, Danielle E; Goodman, David A; Howlette, Travis; Kroelinger, Charlan D; Law, Mark; Phillips, Donna; Jones, Jessica; Brantley, Mary D; Fitzgerald, Maureen

    2014-09-01

    The 18th Maternal and Child Health (MCH) Epidemiology and 22nd CityMatCH MCH Urban Leadership Conference took place in December 2012, covering MCH science, program, and policy issues. Assessing the impact of the Conference on attendees' work 6 months post-Conference provides information critical to understanding the impact and the use of new partnerships, knowledge, and skills gained during the Conference. Evaluation assessments, which included collection of quantitative and qualitative data, were administered at two time points: at Conference registration and 6 months post-Conference. The evaluation files were merged using computer IP address, linking responses from each assessment. Percentages of attendees reporting Conference impacts were calculated from quantitative data, and common themes and supporting examples were identified from qualitative data. Online registration was completed by 650 individuals. Of registrants, 30 % responded to the 6 month post-Conference assessment. Between registration and 6 month post-Conference evaluation, the distribution of respondents did not significantly differ by organizational affiliation. In the 6 months following the Conference, 65 % of respondents reported pursuing a networking interaction; 96 % shared knowledge from the Conference with co-workers and others in their agency; and 74 % utilized knowledge from the Conference to translate data into public health action. The Conference produced far-reaching impacts among Conference attendees. The Conference served as a platform for networking, knowledge sharing, and attaining skills that advance the work of attendees, with the potential of impacting organizational and workforce capacity. Increasing capacity could improve MCH programs, policies, and services, ultimately impacting the health of women, infants, and children. PMID:25107597

  14. Developing cyber-infrastructure for addressing grand challenge questions in Sun-Earth system science: First results of a testbed worldwide online conference series

    NASA Astrophysics Data System (ADS)

    Kozyra, J. U.; Barnes, R.; Fox, N. J.; Fox, P. A.; Kuznetsova, M. M.; Morrison, D.; Pallamraju, D.; Papitashvili, V.; Ridley, A.; Talaat, E. R.; Weiss, M.; Young, C. A.; Zanetti, L. J.

    2006-12-01

    Software supporting an online conference series was developed with the purpose of catalyzing interdisciplinary investigations in Sun-Earth system science among large groups of researchers worldwide in celebration of the 50th anniversary of the International Geophysical Year in 2007. Transformative science in this area lies at the edges and intersections of individual elements (the Sun, heliosphere, magnetosphere, ionosphere and atmosphere) whose collective behavior determines the global system response. Continuing progress requires access to a vast developing cyber-infrastructure of large international data sets, high performance computing and advanced visualization. However, it also requires the development of new tools that bring these advances into contact with groups of interdisciplinary and international researchers so they can be used to attack grand challenge science issues in a manner not previously possible. This presentation describes the results of an eGY showcase project to develop a testbed online conference series for this purpose. The conference series is a collaborative effort between the CAWSES, IHY, eGY, ICESTAR, NASA/LWS and NSF Atmospheric Sciences Programs. Lessons learned in developing this first interface, as well as a discussion of key elements and how they worked will be presented.

  15. Conference Abstracts: NECC '82.

    ERIC Educational Resources Information Center

    Journal of Computers in Mathematics and Science Teaching, 1982

    1982-01-01

    Abstracts from eight papers presented at the June 1982 National Educational Computing Consortium (NECC '82) conference in Kansas City, Missouri are provided. It is noted copies of the conference proceedings may be purchased from the Department of Computer Science, University of Iowa. The papers examine a variety of educational aspects. (MP)

  16. ASE Annual Conference 2010

    ERIC Educational Resources Information Center

    McCune, Roger

    2010-01-01

    In this article, the author describes the ASE Annual Conference 2010 which was held at Nottingham after a gap of 22 years. As always, the main conference was preceded by International Day, an important event for science educators from across the world. There were two strands to the programme: (1) "What works for me?"--sharing new ideas and tried…

  17. Data management in astrobiology: challenges and opportunities for an interdisciplinary community.

    PubMed

    Aydinoglu, Arsev Umur; Suomela, Todd; Malone, Jim

    2014-06-01

    Data management and sharing are growing concerns for scientists and funding organizations throughout the world. Funding organizations are implementing requirements for data management plans, while scientists are establishing new infrastructures for data sharing. One of the difficulties is sharing data among a diverse set of research disciplines. Astrobiology is a unique community of researchers, containing over 110 different disciplines. The current study reports the results of a survey of data management practices among scientists involved in the astrobiology community and the NASA Astrobiology Institute (NAI) in particular. The survey was administered over a 2-month period in the first half of 2013. Fifteen percent of the NAI community responded (n=114), and additional (n=80) responses were collected from members of an astrobiology Listserv. The results of the survey show that the astrobiology community shares many of the same concerns for data sharing as other groups. The benefits of data sharing are acknowledged by many respondents, but barriers to data sharing remain, including lack of acknowledgement, citation, time, and institutional rewards. Overcoming technical, institutional, and social barriers to data sharing will be a challenge into the future. PMID:24840364

  18. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Vincenzi, Donald (Technical Monitor)

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR studies (telescopic and laboratory) have demonstrated that much of the carbon in the interstellar medium (ISM) is in complex organic species of a variety of types, but the distribution, abundance, and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEAST mission concept designed to conduct IR spectroscopic observations to detect and identify these materials to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. Systematic studies include the observation of planetary nebulae and stellar outflows, protostellar objects, Solar System Objects, and galaxies, and multiple lines of sight through dense molecular clouds and the diffuse ISM. ABE will also search for evidence of D enrichment in complex molecules in all these environments. The mission is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cryogenic cross-dispersed spectrographs that share a single common slit. The 3 spectrometers each measure single spectral octaves (2.5-5, 5-10, 10-20 microns) and together cover the entire 2.5 - 20 micron region simultaneously. The spectrometers use state-of-the-art 1024x1024 pixel detectors, with a single InSb array for the 2.5-5 micron region and two Si:As arrays for the 5-10 and 10-20 micron regions. The spectral resolution is wavelength dependent but is greater than 2000 across the entire spectral range. ABE would operate in a heliocentric, Earth drift-away orbit and is designed to take maximum advantage of this environment for cooling, thermal stability, and mission lifetime. ABE would have a core science mission lasting approximately 1.5 years.

  19. Physics of Granular Materials: Investigations in Support of Astrobiology

    NASA Technical Reports Server (NTRS)

    Marshall, John R.

    2002-01-01

    This publication list is submitted as a summary of the work conducted under Cooperative Agreement 1120. The goal of the 1120 research was to study granular materials within a planetary, astrophysical, and astrobiological context. This involved research on the physical, mechanical and electrostatic properties of granular systems, as well as the examination of these materials with atomic force microscopy and x-ray analysis. Instruments for analyzing said materials in planetary environments were developed, including the MECA (Mars Environment Compatibility Assessment) experiment for the MSP '01 lander, the ECHOS/MATADOR experiment for the MSP '03 lander, an ISRU experiment for the '03 lander, and MiniLEAP technology. Flight experiments for microgravity (Space Station and Shuttle) have also been developed for the study of granular materials. As expressed in the publications, work on 1120 encompassed laboratory research, theoretical modeling, field experiments, and flight experiments: a series of successful new models were developed for understanding the behavior of triboelectrostatically charged granular masses, and 4 separate instruments were selected for space flight. No inventions or patents were generated by the research under this Agreement.

  20. Astrobiologically Interesting Stars Within 10 Parsecs of the Sun

    NASA Astrophysics Data System (ADS)

    Porto de Mello, Gustavo; del Peloso, Eduardo F.; Ghezzi, Luan

    2006-04-01

    The existence of life based on carbon chemistry and water oceans relies upon planetary properties, chiefly climate stability, and stellar properties, such as mass, age, metallicity, and galactic orbits. The latter can be well constrained with present knowledge. We present a detailed, up-to-date compilation of the atmospheric parameters, chemical composition, multiplicity, and degree of chromospheric activity for the astrobiologically interesting solar-type stars within 10 parsecs of the Sun. We determined their state of evolution, masses, ages, and space velocities, and produced an optimized list of candidates that merit serious scientific consideration by the future space-based interferometry probes aimed at directly detecting Earthsized extrasolar planets and seeking spectroscopic infrared biomarkers as evidence of photosynthetic life. The initially selected stars number 33 solar-type within the total population (excluding some incompleteness for late M-dwarfs) of 182 stars closer than 10 parsecs. A comprehensive and detailed data compilation for these objects is still lacking; a considerable amount of recent data has so far gone unexplored in this context. We present 13 objects as the nearest "biostars," after eliminating multiple stars, young, chromospherically active, hard xray- emitting stars, and low metallicity objects. Three of these "biostars"-Zeta Tucanae, Beta Canum Venaticorum, and 61 Virginis-closely reproduce most of the solar properties and are considered as premier targets. We show that approximately 7% of the nearby stars are optimally interesting targets for exobiology.

  1. First Light from Extrasolar Planets and Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  2. Astrobiologically interesting stars within 10 parsecs of the sun.

    PubMed

    Porto de Mello, Gustavo; Fernandez Del Peloso, Eduardo; Ghezzi, Luan

    2006-04-01

    The existence of life based on carbon chemistry and water oceans relies upon planetary properties, chiefly climate stability, and stellar properties, such as mass, age, metallicity, and galactic orbits. The latter can be well constrained with present knowledge. We present a detailed, up-to-date compilation of the atmospheric parameters, chemical composition, multiplicity, and degree of chromospheric activity for the astrobiologically interesting solar-type stars within 10 parsecs of the Sun. We determined their state of evolution, masses, ages, and space velocities, and produced an optimized list of candidates that merit serious scientific consideration by the future space-based interferometry probes aimed at directly detecting Earthsized extrasolar planets and seeking spectroscopic infrared biomarkers as evidence of photosynthetic life. The initially selected stars number 33 solar-type within the total population (excluding some incompleteness for late M-dwarfs) of 182 stars closer than 10 parsecs. A comprehensive and detailed data compilation for these objects is still lacking; a considerable amount of recent data has so far gone unexplored in this context. We present 13 objects as the nearest "biostars," after eliminating multiple stars, young, chromospherically active, hard x-ray- emitting stars, and low metallicity objects. Three of these "biostars"-- Zeta Tucanae, Beta Canum Venaticorum, and 61 Virginis -- closely reproduce most of the solar properties and are considered as premier targets. We show that approximately 7% of the nearby stars are optimally interesting targets for exobiology. PMID:16689649

  3. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  4. Macroengineering in the Galactic Context: A New Agenda for Astrobiology

    E-print Network

    Milan M. Cirkovic

    2006-08-20

    We hereby consider the problem of detectability of macro-engineering projects over interstellar distances, in the context of Search for ExtraTerrestrial Intelligence (SETI). Freeman J. Dyson and his imaginative precursors, like Konstantin Tsiolkovsky, Olaf Stapledon or John B. S. Haldane, suggested macro-engineering projects as focal points in the context of extrapolations about the future of humanity and, by analogy, other intelligent species in the Milky Way. We emphasize that the search for signposts of extraterrestrial macro-engineering projects is not an optional pursuit within the family of ongoing and planned SETI projects; inter alia, the failure of the orthodox SETI thus far clearly indicates this. Instead, this approach (for which we suggest a name of "Dysonian") should be the front-line and mainstay of any cogent SETI strategy in future, being significantly more promising than searches for directed, intentional radio or microwave emissions. This is in accord with our improved astrophysical understanding of the structure and evolution of the Galactic Habitable Zone, as well as with the recent wake-up call of Steven J. Dick to investigate consequences of postbiological evolution for astrobiology in general and SETI programs in particular. The benefits this multidisciplinary approach may bear for astrobiologists, evolutionary theorists and macro-engineers are also briefly highlighted.

  5. Deprotonated purine dissociation: experiments, computations, and astrobiological implications.

    PubMed

    Cole, Callie A; Wang, Zhe-Chen; Snow, Theodore P; Bierbaum, Veronica M

    2015-01-15

    A central focus of astrobiology is the determination of abiotic formation routes to important biomolecules. The dissociation mechanisms of these molecules lend valuable insights into their synthesis pathways. Because of the detection of organic anions in the interstellar medium (ISM), it is imperative to study their role in these syntheses. This work aims to experimentally and computationally examine deprotonated adenine and guanine dissociation in an effort to illuminate potential anionic precursors to purine formation. Collision-induced dissociation (CID) products and their branching fractions are experimentally measured using an ion trap mass spectrometer. Deprotonated guanine dissociates primarily by deammoniation (97%) with minor losses of carbodiimide (HNCNH) and/or cyanamide (NH2CN), and isocyanic acid (HNCO). Deprotonated adenine fragments by loss of hydrogen cyanide and/or isocyanide (HCN/HNC; 90%) and carbodiimide (HNCNH) and/or cyanamide (NH2CN; 10%). Tandem mass spectrometry (MS(n)) experiments reveal that deprotonated guanine fragments lose additional HCN and CO, while deprotonated adenine fragments successively lose HNC and HCN. Every neutral fragment observed in this study has been detected in the ISM, highlighting the potential for nucleobases such as these to form in such environments. Lastly, the acidity of abundant fragment ions is experimentally bracketed. Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and analyze the energies of reactants, intermediates, transition states, and products of these CID processes. PMID:25559322

  6. Proceedings of the U.S. Geological Survey Eighth Biennial Geographic Information Science Workshop and first The National Map Users Conference, Denver, Colorado, May 10-13, 2011

    USGS Publications Warehouse

    Sieverling, Jennifer B.; Dietterle, Jeffrey

    2014-01-01

    The U.S. Geological Survey (USGS) is sponsoring the first The National Map Users Conference in conjunction with the eighth biennial Geographic Information Science (GIS) Workshop on May 10-13, 2011, in Lakewood, Colorado. The GIS Workshop will be held at the USGS National Training Center, located on the Denver Federal Center, Lakewood, Colorado, May 10-11. The National Map Users Conference will be held directly after the GIS Workshop at the Denver Marriott West, a convention hotel in the Lakewood, Colorado area, May 12-13. The National Map is designed to serve the Nation by providing geographic data and knowledge for government, industry, and public uses. The goal of The National Map Users Conference is to enhance communications and collaboration among the communities of users of and contributors to The National Map, including USGS, Department of the Interior, and other government GIS specialists and scientists, as well as the broader geospatial community. The USGS National Geospatial Program intends the conference to serve as a forum to engage users and more fully discover and meet their needs for the products and services of The National Map. The goal of the GIS Workshop is to promote advancement of GIS and related technologies and concepts as well as the sharing of GIS knowledge within the USGS GIS community. This collaborative opportunity for multi-disciplinary GIS and associated professionals will allow attendees to present and discuss a wide variety of geospatial-related topics. The Users Conference and Workshop collaboration will bring together scientists, managers, and data users who, through presentations, posters, seminars, workshops, and informal gatherings, will share accomplishments and progress on a variety of geospatial topics. During this joint event, attendees will have the opportunity to present or demonstrate their work; to develop their knowledge by attending hands-on workshops, seminars, and presentations given by professionals from USGS and other Federal Agencies, GIS related companies, and academia; and to network with other professionals to develop collaborative opportunities. Specific conference topics include scientific and modeling applications using The National Map, opportunities for partnerships, and advances in geospatial technologies. The first part of the week will be the GIS Workshop, offered as a pre-conference seminar. It will focus on hands-on GIS training and seminars concerning current topics of geospatial interest. The focus of the USGS GIS Workshop is to showcase specific techniques and concepts for using GIS in support of science. The presentations will be educational and not a marketing endeavor. To promote awareness of and interaction with selected USGS corporate and local science center data products, as well as promoting collaboration, a “GIS Olympics” event will be held Tuesday evening during the GIS Workshop. The second part of the week will feature interactive briefings and discussions on issues and opportunities of The National Map. The focus of the Users Conference will be on the role of The National Map in supporting science initiatives, emergency response, land and wildlife management, and other activities. All presentations at the Users Conference include use or innovations related to a The National Map data theme or application. On Wednesday evening, a poster session is being held as a combined event for all attendees and as a juncture between the events. On Thursday evening, the Henry Gannett Award will be presented. Additionally, poster awards will be presented. Several prominent speakers are featured at plenary sessions at The National Map Users Conference, including Deanna A. Archuleta, Deputy Assistant Secretary for Water and Science, Department of the Interior; Dr. Barbara P. Buttenfield, Professor of Geography at the University of Colorado in Boulder; best-selling author Frederick Reuss; and Dr. Joel Scheraga, Senior Advisor for Climate Adaptation, U.S. Environmental Protection Agency. Additionally, panel discussions have attracted participation from notabl

  7. USL NASA/RECON project presentations at the 1985 ACM Computer Science Conference: Abstracts and visuals

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (editor); Chum, Frank Y.; Gallagher, Suzy; Granier, Martin; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1985-01-01

    This Working Paper Series entry represents the abstracts and visuals associated with presentations delivered by six USL NASA/RECON research team members at the above named conference. The presentations highlight various aspects of NASA contract activities pursued by the participants as they relate to individual research projects. The titles of the six presentations are as follows: (1) The Specification and Design of a Distributed Workstation; (2) An Innovative, Multidisciplinary Educational Program in Interactive Information Storage and Retrieval; (3) Critical Comparative Analysis of the Major Commercial IS and R Systems; (4) Design Criteria for a PC-Based Common User Interface to Remote Information Systems; (5) The Design of an Object-Oriented Graphics Interface; and (6) Knowledge-Based Information Retrieval: Techniques and Applications.

  8. (Networking + Integrating) * (Systems + Society). Proceedings of the Annual Canadian Conference of Information Science (12th, Toronto, Ontario, May 14-16, 1984) = (Reseaux + Integration) * (Systemes + Societe). Comptes rendus de la conference annuelle Canadienne des sciences de l'information (12th, Toronto, Ontario, 14-16 mai, 1984).

    ERIC Educational Resources Information Center

    Canadian Association for Information Science, Ottawa (Ontario).

    Seventeen papers from the 1984 annual conference of the Canadian Association for Information Science (CAIS) are presented in four broad topic areas. The first group, which focuses on changing roles in information access, includes the keynote address by Charles Meadow, "Integrating Access to Information Utilities: Promises, Problems, and Profiles…

  9. Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003

    SciTech Connect

    Pfaltzgraff, Robert L [Institute for Foreign Policy Analysis

    2006-10-22

    This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administrationâ??s â??Atoms for Peaceâ? concept, the current and future role of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.

  10. Walk Through Solar System Times: An Exhibit with an Astrobiology Emphasis

    NASA Technical Reports Server (NTRS)

    Cheung, C. Y.

    2012-01-01

    In this astrobiology outreach project, we attempt to present the research of the Goddard Center for Astrobiology (GCA) in the context of the history of the Solar System. GCA research emphasizes the origin and formation of complex pre-biotic organic materials in extraterrestrial environments and explores whether the delivery of these primordial materials and water to the early Earth enabled the emergence and evolution of life. The content expounds on areas that are usually not touched upon in a timeline of the Earth's formation. The exhibit addresses the questions: How did our solar system form? How is the formation of our solar systems similar or different from others? How did the organic molecules we observe in space get to the Earth? What conditions are most suitable for life? We will address the issues and challenges of designing the exhibit and of explaining advanced astrobiology research topics to the public.

  11. Talking Science Booking is essential

    E-print Network

    by email or by phone, we do not produce hard copy tickets. Science and Technology Facilities Council ­ audience KS3/4 - Bookings now open Astrobiology - the hunt for alien life Dr Lewis Dartnell Join Dr. Lewis further afield to alien worlds we've discovered orbiting distant stars, to explore one of the greatest

  12. Third Annual Student Conference on Renewable Energy Science, Technology and Policy

    E-print Network

    Ziurys, Lucy M.

    of IIIV MultiJunction Solar Cells" "Characterization and Analysis of 300 nm GaAs SingleJunction Solar" "Metal Oxide Materials for Dye Sensitized Solar Cells" "Solutionprocessable sidestrapped, NAU Dr. Neal Armstrong, Professor and Director of the Center for Interface Science: Solar

  13. 1 Copyright 2011 by ASME Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conferences

    E-print Network

    Chen, Yong

    1 Copyright © 2011 by ASME Proceedings of the ASME 2011 International Manufacturing Science OF CONFORMAL ULTRASOUND TRANSDUCER ARRAYS AND HORNS BASED ON MULTI-AXIS CNC ACCUMULATION Yayue Pan, Chi Zhou) 740-1120, Email: yongchen@usc.edu KEYWORDS Additive Manufacturing, Solid Freeform Fabrication

  14. IFLA General Conference, 1987. Division of Special Libraries. Science and Technology Libraries Section. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    The six papers in this collection focus on science and technology libraries: (1) "Human Aspects of Electronically-Stored Information: The Library User" (A. J. Meadows, United Kingdom); (2) "Untersuchung Menschlicher Aspekte bei den Elektronisch Gespeicherten Informationen: Ansichten des Leiters eines Bibliothekskollektives = Human Aspects of…

  15. The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition.

  16. The Twenty-Fifth Lunar and Planetary Science Conference. Part 2: H-O

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: planetary geology, lunar geology, meteorites, shock loads, cometary collisions, planetary mapping, planetary atmospheres, chondrites, chondrules, planetary surfaces, impact craters, lava flow, achondrites, geochemistry, stratigraphy, micrometeorites, tectonics, mineralogy, petrology, geomorphology, and volcanology.

  17. Try/CATCH (Computing and Technology Conference for Her) Women In Computing Science

    E-print Network

    Hell, Pavol

    towards high school girls of all grades, and will be invaluable in creating curiosity about the exciting in Computing Science, or WICS, and are actively working to inspire high school girls to take an interest school girls, grades 8 through 12 Date: Saturday, May 14th , 2011 Time: 10:30 AM ­ 6:30 PM Location: SFU

  18. Try/CATCH (Computing and Technology Conference for Her) Women In Computing Science

    E-print Network

    Hell, Pavol

    /CATCH is a one-day event organized specifically for all high school girls school girls to learn about the latest innovations in technology and see where is to encourage high school girls to take an interest in computing science. Girls

  19. The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z

    SciTech Connect

    Not Available

    1994-01-01

    Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition. Separate abstracts have been prepared for articles from this report.

  20. Proceedings of the Second Annual NASA Science Internet User Working Group Conference

    NASA Technical Reports Server (NTRS)

    Jackson, Lenore A. (editor); Gary, J. Patrick (editor)

    1991-01-01

    Copies of the agenda, list of attendees, meeting summaries, and all presentations and exhibit material are contained. Included are plenary sessions, exhibits of advanced networking applications, and user subgroup meetings on NASA Science Internet policy, networking, security, and user services and applications topics.

  1. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., < 1 in 10 (6) chance of escape of particles > 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international communities in planetary protection, sample return science, and deep space engineering must me

  2. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  3. A Perspective on the Importance of Reproductive Mode in Astrobiology

    NASA Astrophysics Data System (ADS)

    Van Doninck, Karine; Schön, Isa; Martens, Koen

    2003-12-01

    Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.

  4. Acetate: A better astrobiological indicator of life than methane?

    NASA Astrophysics Data System (ADS)

    Kanik, I.; Russell, M. J.; Hodyss, R. P.; Johnson, P. V.

    2009-12-01

    The emergence of life on the ocean floor of the early Earth has implications for life detection on other rocky planetary bodies having subsurface ocean or ground waters in our solar system. At bottom life hydrogenates carbon dioxide. This is true not only of oxygenic photosynthesis—a relatively late evolutionary invention—but also of autotrophic chemosynthesizers such as the acetogenic bacteria and the methanoarchaea; respectively probably the first and second organisms to have emerged on Earth. Both of these prokaryotes use the acetyl coenzyme-a pathway for biosynthesis, though the variant leading to methanogenesis is substantially more complicated and therefore more highly evolved. Yet serpentinization and volcanism can produce methane with facility—an ambiguity that confounds life detection. In contrast, hydrothermal vent experiments to date along with hot spring analyses have indicated that no significant concentrations of abiotic acetate were produced in spite of the simplicity of the biological pathway. It seems that the geochemical conditions that generate abiotic methane are generally too reducing to produce acetate. Thus, the generation of acetate is solely a biotic process. As there is every reason to believe that the same chemical and electrochemical tensions would occur on other wet rocky planets containing subsurface ocean or ground waters. This encourages us to look into chemical and spectroscopic methods of detecting of acetate (both remotely and in situ) which is a better indicator than methane for the past or present biological activity on planetary bodies such as Mars. We, at the Jet Propulsion Laboratory, have designed laboratory experiments to investigate the feasibility of detecting acetate using conventional chemical and spectroscopic methods. The results and applicability of these techniques for the future astrobiology missions will be discussed.

  5. Thermal Desorption/GCMS Analysis of Astrobiologically Relevant Organic Materials

    NASA Technical Reports Server (NTRS)

    McDonald, Gene D.

    2001-01-01

    Several macromolecular organic materials, both biologically-derived (type II kerogen and humic acid) and abiotic in origin (Murchison insoluble organic material, cyanide polymer, and Titan tholin) were subjected to thermal desorption using a Chromatoprobe attachment on a Varian Saturn 2000 GCMS system. Each sample was heated sequentially at 100, 200, and 300 C to release volatile components. The evolved compounds were then separated on a Supelco EC-1 dimethylsilica GC column and detected by the Saturn 2000 ion trap mass spectrometer. The various types of macromolecular organic material subjected to thermal desorption produced distinctly different GCMS chromatograms at each temperature, containing fractions of both low and high chromatographic mobility. The relative amounts of detectable volatiles released at each temperature also differed, with type II kerogen and cyanide polymer containing the highest percentage of low-temperature components. In all the samples, the highest yield of released compounds occurred at 300 C. Only cyanide polymer evolved a homologous hydrocarbon series, suggesting that it is the only material among those examined that contains a truly polymeric structure. Pyrolysis/gas chromatography/mass spectrometry has been used extensively for analysis of terrestrial organic macromolecular materials, and was also part of the instrument package on the Viking landers. Thorough analysis by pyrolysis usually employs temperatures of 500 C or higher, which for in situ analyses can be problematic given spacecraft power and materials constraints. This study demonstrates that heating of organic materials of astrobiological relevance to temperatures as low as 200-300 C for short periods releases volatile components that can be analyzed by gas chromatography and mass spectrometry. Even in the absence of full pyrolysis, useful chemical information on samples can be obtained, and materials from different biological and abiological sources can be distinguished. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology

    NASA Astrophysics Data System (ADS)

    de Vera, Jean-Pierre; Boettger, Ute; Noetzel, Rosa de la Torre; Sánchez, Francisco J.; Grunow, Dana; Schmitz, Nicole; Lange, Caroline; Hübers, Heinz-Wilhelm; Billi, Daniela; Baqué, Mickael; Rettberg, Petra; Rabbow, Elke; Reitz, Günther; Berger, Thomas; Möller, Ralf; Bohmeier, Maria; Horneck, Gerda; Westall, Frances; Jänchen, Jochen; Fritz, Jörg; Meyer, Cornelia; Onofri, Silvano; Selbmann, Laura; Zucconi, Laura; Kozyrovska, Natalia; Leya, Thomas; Foing, Bernard; Demets, René; Cockell, Charles S.; Bryce, Casey; Wagner, Dirk; Serrano, Paloma; Edwards, Howell G. M.; Joshi, Jasmin; Huwe, Björn; Ehrenfreund, Pascale; Elsaesser, Andreas; Ott, Sieglinde; Meessen, Joachim; Feyh, Nina; Szewzyk, Ulrich; Jaumann, Ralf; Spohn, Tilman

    2012-12-01

    The Low Earth Orbit (LEO) experiment Biology and Mars Experiment (BIOMEX) is an interdisciplinary and international space research project selected by ESA. The experiment will be accommodated on the space exposure facility EXPOSE-R2 on the International Space Station (ISS) and is foreseen to be launched in 2013. The prime objective of BIOMEX is to measure to what extent biomolecules, such as pigments and cellular components, are resistant to and able to maintain their stability under space and Mars-like conditions. The results of BIOMEX will be relevant for space proven biosignature definition and for building a biosignature data base (e.g. the proposed creation of an international Raman library). The library will be highly relevant for future space missions such as the search for life on Mars. The secondary scientific objective is to analyze to what extent terrestrial extremophiles are able to survive in space and to determine which interactions between biological samples and selected minerals (including terrestrial, Moon- and Mars analogs) can be observed under space and Mars-like conditions. In this context, the Moon will be an additional platform for performing similar experiments with negligible magnetic shielding and higher solar and galactic irradiation compared to LEO. Using the Moon as an additional astrobiological exposure platform to complement ongoing astrobiological LEO investigations could thus enhance the chances of detecting organic traces of life on Mars. We present a lunar lander mission with two related objectives: a lunar lander equipped with Raman and PanCam instruments which can analyze the lunar surface and survey an astrobiological exposure platform. This dual use of testing mission technology together with geo- and astrobiological analyses will significantly increase the science return, and support the human preparation objectives. It will provide knowledge about the Moon's surface itself and, in addition, monitor the stability of life-markers, such as cells, cell components and pigments, in an extraterrestrial environment with much closer radiation properties to the surface of Mars. The combination of a Raman data base of these data together with data from LEO and space simulation experiments, will lead to further progress on the analysis and interpretation of data that we will obtain from future Moon and Mars exploration missions.

  7. Teachers' and students' perceptions of seventh- and eighth-grade science education in a selected Seventh-day Adventist Union Conference

    NASA Astrophysics Data System (ADS)

    Sargeant, Marcel Andre Almont

    Problem. Science education has long been a great concern in the United States, where less than one-third of the students perform at or above the proficient level. The purpose of this study was to investigate the status of the science program in a selected Union Conference of the Seventh-day Adventist school system. Specifically, this study investigated the perceptions of teachers and students regarding the extent to which the science program meets the criteria of the National Commission on Mathematics and Science Teaching for the 21st century and to what extent these criteria are related to academic performance as indicated by Iowa Test of Basic Skills (ITBS) science scores. Method. Two questionnaires designed by the researcher were used to get responses from 424 students in seventh and eighth grades and 68 teachers to see how this school system compares to the criteria of National Commission on Mathematics and Science Teaching for the 21 st century. Three classroom configurations were investigated in this study, namely: (a) multigrade, (b) two-grade, and (c) single-grade. Crosstabulation, one-way analysis of variance, Kruskal-Wallis test, and linear regression were used to analyze the four research questions of this study. Results. The single-grade classroom configuration received a better rating for the science criteria (p < 0.01), and students from single-grade performed significantly better than two-grade/multigrade (p < 0.01) classroom configurations on their science achievement (ITBS). There were significant relationships among science achievement and the factors that measured the criteria of the National Commission for Mathematics and Science Teaching for the 21st century. Conclusions. The differences in teaching practices explained the discrepancies in the three classroom configurations. Schools can therefore develop policies and strategies to improve the practices in the teaching and learning process in science education that were identified as being deficient by the criteria of National Commission on Mathematics and Science Teaching for the 21st century.

  8. Dear Colleagues, We are delighted to host the 14th annual conference of the Israel Plasma Science and Technology

    E-print Network

    1 PREFACE Dear Colleagues, We are delighted to host the 14th annual conference of the Israel Plasma) February 2012 #12;2 CONFERENCE ORGANIZATION IPSTA Board · Chair: Yakov Krasik (Technion ­ Israel Institute Competition Committee · Michael Mond (Ben Gurion University of the Negev, Israel) · Eli Sarid (NRCN, Israel

  9. From Quarantine to Exploration: Space Agencies and the Ethical Challenge of Astrobiology

    Microsoft Academic Search

    Jacques Arnould

    2012-01-01

    Astrobiology, as its prefix suggests, is inextricably linked to space exploration. From the onset of the space age, space agencies discovered the need to take into account the question of protection: protection of planetary bodies; protection of the samples brought back from space; protection of spaceflight crews; and the extent to which spaceflight crew members should be treated as samples.

  10. The SOLID (Signs Of LIfe Detector) instrument concept: an antibody microarray-based biosensor for life detection in astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, V.; Rivas, L. A.; Rodríguez-Manfredi, J. A.; Blanco, Y.; de Diego-Castilla, G.; Cruz-Gil, P.; Moreno-Paz, M.; García-Villadangos, M.; Compostizo, C.; Herrero, P. L.

    2009-04-01

    Immunosensors have been extensively used since many years for environmental monitoring. Different technological platforms allow new biosensor designs and implementations. We have reported (Rivas et al., 2008) a shotgun approach for antibody production for biomarker detection in astrobiology and environmental monitoring, the production of 150 new polyclonal antibodies against microbial strains and environmental extracts, and the construction and validation of an antibody microarray (LDCHIP200, for "Life Detector Chip") containing 200 different antibodies. We have successfully used the LDCHIP200 for the detection of biological polymers in extreme environments in different parts of the world (e.g., a deep South African mine, Antarctica's Dry valleys, Yellowstone, Iceland, and Rio Tinto). Clustering analysis associated similar immunopatterns to samples from apparently very different environments, indicating that they indeed share similar universal biomarkers. A redundancy in the number of antibodies against different target biomarkers apart of revealing the presence of certain biomolecules, it renders a sample-specific immuno-profile, an "immnuno-fingerprint", which may constitute by itself an indirect biosignature. We will present a case study of immunoprofiling different iron-sulfur as well as phylosilicates rich samples along the Rio Tinto river banks. Based on protein microarray technology, we designed and built the concept instrument called SOLID (for "Signs Of LIfe Detector"; Parro et al., 2005; 2008a, b; http://cab.inta.es/solid) for automatic in situ analysis of soil samples and molecular biomarkers detection. A field prototype, SOLID2, was successfully tested for the analysis of grinded core samples during the 2005 "MARTE" campaign of a Mars drilling simulation experiment by a sandwich microarray immunoassay (Parro et al., 2008b). We will show the new version of the instrument (SOLID3) which is able to perform both sandwich and competitive immunoassays. SOLID3 consists of two separate functional units: a Sample Preparation Unit (SPU), for ten different extractions by ultrasonication, and a Sample Analysis Unit (SAU), for fluorescent immunoassays. The SAU consists of ten different flow cells each of one allocate one antibody microarray (up to 2000 spots), and is equipped with an unique designed optical package for fluorescent detection. We demonstrate the performance of SOLID3 for the detection of a broad range of molecular size compounds, from the amino acid size, peptides, proteins, to whole cells and spores, with sensitivities at the ppb level. References Parro, V., et al., 2005. Planetary and Space Science 53: 729-737. Parro, V., et al., 2008a. Space Science Reviews 135: 293-311 Parro, V., et al., 2008b. Astrobiology 8:987-99 Rivas, L. A., et al., 2008. Analytical Chemistry 80: 7970-7979

  11. Lunar and Planetary Science Conference, 18th, Houston, TX, Mar. 16-20, 1987, Proceedings

    NASA Astrophysics Data System (ADS)

    Ryder, Graham

    Papers on lunar and planetary science are presented, including petrogenesis and chemistry of lunar samples, geology and petrogenesis of the Apollo 15 landing site, lunar geology and applications, cratering records and cratering effects, differentiated meteorites, chondritic meteorites and asteroids, extraterrestrial grains, Venus, Mars, and icy satellites. The importance of lunar granite and KREEP in very high potassium basalt petrogenesis, indentifying parent plutonic rocks from lunar breccia and soil fragments, glasses in ancient and young Apollo 16 regolith breccias, the formation of the Imbrium basin, the chemistry and petrology of the Apennine Front, lunar mare ridges, studies of Rima Mozart, electromagnetic energy applications in lunar resource mining and construction, detecting a periodic signal in the terrestrial cratering record, and a search for water on the moon, are among the topics discussed. Other topics include the bidirectional reflectance properties of Fe-Ni meteorites, the nature and origin of C-rich ordinary chondrites and chondritic clasts, the dehydration kinetics of shocked serpentine, characteristics of Greenland Fe/Ni cosmic grains, electron microscopy of a hydrated interplanetary dust particle, trapping Ne, Ar, Kr, and Xe in Si2O3 smokes, gossans on Mars, and a model of the porous structure of icy satellites.

  12. Proceedings of Lunar and Planetary Science, Volume 22; Conference, Houston, TX, Mar. 18-22, 1991

    NASA Technical Reports Server (NTRS)

    Ryder, Graham (editor); Sharpton, Virgil L. (editor)

    1992-01-01

    Various papers on lunar and planetary science are presented. Individual topics addressed include: analysis of Phobos Mission Gamma ray spectra from Mars, comparison of volcanic and modified landforms from Tharsis Montes on Mars, polygenetic origin of Hrad Vallis region of Mars, new evidence of lacustrine basins on Mars, flood surge through the Lunae Planum Outflow Complex on Mars, interpretation of canyon materials and flood sources on Kasei Valles on Mars, geochemistry of Manson Impact structure rocks, micrometer-sized glass spheres in Apollo 16 soil 61181, isotopic abundances in Pesyanoe of solar-type xenon, mineralogy of 12 large 'chondritic' interplanetary dust particles. Also discussed are: trace elements in chondritic stratospheric particles, evolution of isotopic signatures in lunar regolith nitrogen, pyroclastic deposits on the western limb of the moon, origin of picritic green glass magmas by polybaric fractional fusion, origin of yellow glasses associated with Apollo 15 KREEP basalt fragments, trace elements in 59 mostly highland moon rocks, mineralization on the moon, relation between diogenite cumulates and eucrite magmas.

  13. Lunar and Planetary Science Conference, 18th, Houston, TX, Mar. 16-20, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    Ryder, Graham (editor)

    1988-01-01

    Papers on lunar and planetary science are presented, including petrogenesis and chemistry of lunar samples, geology and petrogenesis of the Apollo 15 landing site, lunar geology and applications, cratering records and cratering effects, differentiated meteorites, chondritic meteorites and asteroids, extraterrestrial grains, Venus, Mars, and icy satellites. The importance of lunar granite and KREEP in very high potassium basalt petrogenesis, indentifying parent plutonic rocks from lunar breccia and soil fragments, glasses in ancient and young Apollo 16 regolith breccias, the formation of the Imbrium basin, the chemistry and petrology of the Apennine Front, lunar mare ridges, studies of Rima Mozart, electromagnetic energy applications in lunar resource mining and construction, detecting a periodic signal in the terrestrial cratering record, and a search for water on the moon, are among the topics discussed. Other topics include the bidirectional reflectance properties of Fe-Ni meteorites, the nature and origin of C-rich ordinary chondrites and chondritic clasts, the dehydration kinetics of shocked serpentine, characteristics of Greenland Fe/Ni cosmic grains, electron microscopy of a hydrated interplanetary dust particle, trapping Ne, Ar, Kr, and Xe in Si2O3 smokes, gossans on Mars, and a model of the porous structure of icy satellites.

  14. Sara Walker | Physical Sciences in Oncology

    Cancer.gov

    Sara Walker works in the School of Life Science and the Beyond Center at Arizona State University. She is also a NASA Astrobiology fellow. She spoke about the deep evolutionary history of life on earth and it’s routes to cancer.

  15. Take Me Out to the Ball Game: Science Outreach to Nontraditional Audiences

    Microsoft Academic Search

    B. A. Norsted

    2010-01-01

    Science outreach often targets audiences that are already interested in science and are looking for related educational experiences for themselves or their families. The University of Wisconsin Geology Museum (UWGM) with funding from the NASA Astrobiology Institute (NAI) is targeting unique venues and thereby new audiences who may not typically seek out science outreach events. With this goal in mind,

  16. The Expose-R2 mission: astrobiology and astrochemistry in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Demets, René

    EXPOSE is an exposure platform developed by ESA which permits scientists to install test samples for 1 to 2 years at the outer surface of the ISS. In that way, the impact of the open space environment on biological and biochemical sample materials can be explored. This environment, featuring full-spectrum solar light, near-vacuum, cosmic radiation, wide temperature variations and near-weightlessness, is impossible to reproduce in its entirety in the lab. As such, EXPOSE offers astrochemists and astrobiologists a chance to acquire novel scientific data. Astrochemists are interested in Low Earth Orbit conditions due to the fact that photochemistry in space is quite different from photochemistry on Earth, where the high-energy UV compounds of the solar spectrum are filtered away by our atmosphere. As for the astro biologists, EXPOSE offers an attractive opportunity to expand earlier results obtained during short-duration LEO flights, which have shown that particular microbes and, amazingly, even some multi-cellular macroscopic organisms were able to cope with a two-week exposure to space. The open space environment, often described as harsh and hostile, can apparently be tolerated by some robust inhabitants of our Earth - unprotected, in the absence of a space suit! The first mission of EXPOSE, as an external payload on the European Columbus module, happened during 2008-2009 with the test samples provided by five separate research teams. Three additional teams were involved in the monitoring of space environment. The results were published collectively in 2012 in a special issue of the monthly journal Astrobiology. Several organisms survived, having spent 1.5 years in space. The second mission was called EXPOSE-R, the R referring to ‘Russian segment’, the location where the EXPOSE instrument was installed this time. The EXPOSE-R mission took place in 2009-2011, ten science teams were involved. The publication of the results, again as a collection, is currently in preparation. A follow-on mission, EXPOSE-R2, is planned for 2014-2016. The upload of the new sample trays to the ISS will have occurred just before COSPAR 2014. In this presentation the new EXPOSE-R2 experiments are introduced, with an overview of the test samples and the scientific goals. The main characteristics of the EXPOSE platform are addressed including the sensors used to monitor the space environment. The envisaged operational flow in flight and on ground are explained. Moreover, a brief overview of the key lessons learnt from the past EXPOSE missions is provided.

  17. 960 Global Telecommunications Conference -Globecom99 General Conference (Part B)

    E-print Network

    California at Davis, University of

    Products Group, San Jose/Tustin, CA, USA 3 Department of Electrical and Computer Engineering, University960 Global Telecommunications Conference - Globecom99 General Conference (Part B) REDUCEDRMLQ * 2NOREGÃ¥LMD3,4 , Richard Yamasaki2 1 Department of Electrical Engineering and Computer Sciences

  18. The Proposed Mars Astrobiology Explorer - Cacher [MAX-C] Rover: First Step in a Potential Sample Return Campaign

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Beaty, David W.

    2010-01-01

    Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.

  19. Internalizing Null Extraterrestrial "Signals": An Astrobiological App for a Technological Society

    E-print Network

    Chaisson, Eric J

    2014-01-01

    One of the beneficial outcomes of searching for life in the Universe is that it grants greater awareness of our own problems here on Earth. Lack of contact with alien beings to date might actually comprise a null "signal" pointing humankind toward a viable future. Astrobiology has surprising practical applications to human society; within the larger cosmological context of cosmic evolution, astrobiology clarifies the energetic essence of complex systems throughout the Universe, including technological intelligence that is intimately dependent on energy and likely will be for as long as it endures. The "message" contained within the "signal" with which today's society needs to cope is reasonably this: Only solar energy can power our civilization going forward without soiling the environment with increased heat yet robustly driving the economy with increased per capita energy usage. The null "signals" from extraterrestrials also offer a rational solution to the Fermi paradox as a principle of cosmic selection l...

  20. Best Practices Summary Report: Engineering Education Innovators Conference: April 7-8, 1997

    NSDL National Science Digital Library

    Engineering Education Innovators Conference (1997 : Arlington. VA).

    1998-01-01

    Sponsored by the Engineering Education and Centers Division of the National Science Foundation (NSF), the Innovators conference met to discuss engineering education. The conference proceedings are now online.

  1. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  2. Field\\/Lab Training Workshops in Planetary Geology and Astrobiology for Secondary School Teachers

    Microsoft Academic Search

    A. Treiman; H. Newsom; T. Hoehler; C. Tsairides; K. Karlstrom; L. Crossey; W. Kiefer; S. Kadel; F. Garcia-Pichel; J. Aubele; L. Crumpler

    2003-01-01

    Thematic field-lab-classroom workshops can be successful in training secondary teachers in planetary geology and astrobiology, from the LPI's 4 years experience. A typical workshop includes ˜4 days of field study and ˜3 days of related classroom\\/lab lectures and exercises. Up to 30 teachers have participated at once, and the staff averages 5 researchers and educators. The 2003 workshop, The Great

  3. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Sandford, S. A.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a dedicated space observatory having a 60 cm class primary mirror cooled to T < 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission s observational program would make fundamental scientific progress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars, 2) The Diffuse Interstellar Medium, 3) Dense Molecular Clouds, Star Formation Regions, and Young StellarPlanetary Systems, 4) Planets, Satellites, and Small Bodies within the Solar System, and 5 ) The Interstellar Media of Other Galaxies. ABE could make fundamental progress in all of these areas by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micron spectral range at a spectral resolution of R > 2000 of about 1500 objects including galaxies, stars, planetary nebulae, young stellar objects, and solar system objects. Keywords: Astrobiology, infrared, Explorers, interstellar organics, telescope, spectrometer, space, infrared detectors

  4. The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park

    PubMed Central

    Siefert, Janet L.; Escalante, Ana E.; Elser, James J.; Eguiarte, Luis E.

    2012-01-01

    Abstract The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a “Precambrian Park” for astrobiology. Key Words: Microbial mats—Stromatolites—Early Earth—Extremophilic microorganisms—Microbial ecology. Astrobiology 12, 641–647. PMID:22920514

  5. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  6. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere. PMID:24106911

  7. Planetary imaging in powers of ten: a multiscale, multipurpose astrobiological imager.

    PubMed

    Fink, Wolfgang; Sun, Henry J; Mahaney, William C; Kuhlman, Kimberly R; Schulze-Makuch, Dirk

    2013-11-01

    Contextual, multiscale astrobiological imaging is necessary to discover, map, and image patchy microbial colonization in extreme environments on planetary surfaces. The large difference in scale--several orders of magnitude--between search environment and microorganisms or microbial communities represents a challenge, which to date no single imaging instrument is able to overcome. In support of future planetary reconnaissance missions, we introduce an adapter-based imager, built from an off-the-shelf consumer digital camera, that offers scalable imaging ranging from macroscopic (meters per pixel) to microscopic (micrometers per pixel) imaging, that is, spanning at least 6 orders of magnitude. Magnification in digital cameras is governed by (1) the native resolution of the CCD/CMOS chip of the camera, (2) the distance between camera and object to be imaged (focal length), and (3) the built-in optical and digital zoom. Both telezoom and macro mode alone are usually insufficient for microscopic imaging. Therefore, the focal distance has to be shortened, and the native CCD resolution of the camera has to be increased to attain a microscopic imaging capability. Our adapter-based imager bridges the gap between macroscopic and microscopic imaging, thereby enabling for the first time contextual astrobiological imaging with the same instrument. Real-world applications for astrobiology and planetary geology are discussed, and proof-of-concept imagery taken with our prototype is presented. PMID:24228931

  8. News Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

    NASA Astrophysics Data System (ADS)

    2012-05-01

    Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

  9. Energy - Water Nexus -- Meeting the Energy and Water Needs of the Snake\\/Columbia River Basin in the 21st CenturyScience and Technology SummitConference Results

    Microsoft Academic Search

    Paul L. Wichlacz; Gerald Sehlke

    2008-01-01

    In June 2007, representatives from federal, state, and academic institutions met to discuss the role of innovative science, technology, and policy in meeting future energy and water demands in the Snake-Columbia River Basin. Conference members assessed the state-of-the-science, technology, and associated research to develop cost-effective and environmentally sound methodologies and technologies to maximize the production of energy and availability of

  10. The Place of the Liberal Arts and Sciences in the Curriculum: A Renewed Commitment. Proceedings of a Conference Sponsored by the State Council of Higher Education for Virginia (Richmond, Virginia, December 17-18, 1984).

    ERIC Educational Resources Information Center

    Potter, David L., Ed.

    Proceedings of a conference on Virginia's undergraduate curriculum are presented. Attention is focused on the future of the traditional arts and sciences disciplines. Contents include: (1) a keynote address on benefits of studying the humanities, along with answers to audience questions (William H. Bennett, head of the National Endowment for the…

  11. Ten Years [of] GASAT (Gender and Science and Technology) Activities in a Changing Europe. Contributions to and Proceedings of the East and West European Conference (3rd, Geldrop, The Netherlands, October 25-29, 1992). Vols. I, II, and III.

    ERIC Educational Resources Information Center

    Alting, Annita, Comp.; And Others

    Despite efforts to increase the participation of women in applied mathematics and technology, women are still underrepresented in these areas of study. A conference of those concerned with gender and science and technology (GASAT) was held to allow all those interested a chance to discuss advances in previous efforts and areas of concern. The…

  12. Youth in Transition: The Challenges of Generational Change in Asia. Proceedings of the Biennial General Conference of the Association of Asian Social Science Research Councils (15th, Canberra, Australia, 2005)

    ERIC Educational Resources Information Center

    Gale, Fay, Ed.; Fahey, Stephanie, Ed.

    2005-01-01

    This book originates from a conference of the Association of Asian Social Science Research Councils and contains writings and research reports on Youth in Transition in the Asia and Pacific region. The definition of "youth" varies from country to country and ranges between the ages of 10 to 35. The publication summarizes issues in the region,…

  13. International Joint Conference of ISAMA, the International Society of the Arts, Mathematics, and Architecture, and BRIDGES, Mathematical Connections in Art Music, and Science, University of Granada, Spain, July, 2003

    E-print Network

    Tennant, Raymond F.

    , and Architecture, and BRIDGES, Mathematical Connections in Art Music, and Science, University of Granada, SpainInternational Joint Conference of ISAMA, the International Society of the Arts, Mathematics ornamentation in the Alhambra Palace in Granada, Spain to the exquisite tilings, which are seen in mosques

  14. Proceedings (CD) of the 3rd International Conference on Porous Media and its Applications in Science and

    E-print Network

    Bahrami, Majid

    , mbahrami@sfu.ca Mechatronic Systems Engineering, School of Engineering Science, Simon Fraser University, BC in Science and Engineering ICPM3 June 20-25, 2010, Montecatini, Italy Transverse Permeability of Fibrous

  15. Proceedings of the Annual Western Australian Science Education Association Conference (21st, November 29, 1996, Perth, Western Australia, Australia).

    ERIC Educational Resources Information Center

    Hackling, Mark W., Ed.

    This proceedings is comprised of the edited papers presented at the 21st meeting of the Western Australian Science Education Association (WASEA). The 26 papers included here relate to many different topics such as proportional reasoning, the state of primary science in Western Australia, faculty culture, concept formation in elementary science

  16. Proceedings of the Frontiers in Science Education Research Conference, 22 24 March 2009, Eastern Mediterranean University, Famagusta, North Cyprus.

    E-print Network

    Brom, Cyril

    was created in 2005 primarily for undergraduate computer science students, but it was also adopted for a high and animal-like agents Cyril Brom Department of Software and Computer Science Education, Faculty heritage applications, virtual reality environments for cognitive science research, and computational

  17. A Global Observing System for Mars: The dual satellite Mars Astrobiology and Climate Observatory (MACO)

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Lyons, J.; Newman, C.; Richardson, M. I.; Ward, D.; Otarola, A. C.

    2009-12-01

    We summarize a planetary decadal survey white paper describing the rationale for and key elements of a dual satellite orbiting mission (DSM) concept called the Mars Astrobiology and Climate Observatory (MACO). MACO uses mm-wavelength satellite to satellite (sat-sat) occultations in combination with solar occultations (SO) to answer and strongly constrain many key lower and middle atmosphere Mars science questions previously considered unachievable from orbit. On the climate side, MACO would focus on the hydrological, dust and energy cycles of Mars. MACO would measure the transport of water in the present Martian climate, identify sources and sinks and constrain processes in order to better understand present and past Martian climate and glacial and subsurface water reservoirs. Dust-penetrating, satellite-to-satellite mm-wave occultations would profile water vapor to 3%, temperature to 0.4K, geopotential height of pressure to 10 m, line of sight winds to < 2 m/s and balanced winds via pressure gradients, as well turbulence and certain trace constituents with 60 meter diffraction limited vertical resolution and high precision extending down to the surface. A prototype mm-wave occultation instrument will be demonstrated in 2010 via high altitude aircraft to aircraft occultations. MACO will make coincident thermal IR and shortwave measurements to characterize airborne dust to understand dust storm initiation and evolution and how atmospheric dust concentrations are maintained in general. The combination of sensitivity, accuracy and vertical resolution from the satellite to satellite occultation is simply not possible with radiometers and will provide ~30,000 globally distributed near-entry probe quality profiles each Martian year profiling the boundary layer and exchange between the atmosphere and surface. A near-IR solar occultation instrument, such as the French SOIR or a derivative of the Canadian ACE FTIR instrument, would survey chemical trace species such as methane in the Martian atmosphere to look for signatures of subsurface processes related to possible habitable zones and life. MACO’s winds will be key in tracing plumes back to their source regions. Proposed near-surface ion-related heterogeneous chemistry will be assessed by profiling near surface concentrations of H2O2, H2O and dust to look for predicted enhancements in of H2O2 and how they vary with H2O and dust concentrations. MACO’s combined capabilities are a superset of the Mars Science Orbiter (MSO) recommended by the Calvin et al. (2007) report. MACO would fit as a moderate scale mission in the 2016 launch opportunity. Alternatively, since NASA and ESA have recently announced their intent to fly a single orbiter, trace gas mission in 2016, the MACO mm occultation receiver (which can also measure thermal emission and solar occultations) could be flown on that mission and the occultation transmitter could be carried on another mission flown by an international partner such as Japan or India.

  18. New Student Conferences

    E-print Network

    Behmer, Spencer T.

    ongratulations on accepting our offer of admission to become an Aggie! Your next step is to schedule a New-refundable conference registration fee online through the Applicant Information System (AIS) at applicant.tamu.edu. You Development ENGR Engineering GEOS Geosciences LBAR Liberal Arts NURS Nursing SCIE Science VETM Veterinary

  19. Annual Fall Conference

    NSDL National Science Digital Library

    2010-01-01

    Our two-day fall conference focuses on training science faculty to teach with case studies and to write their own cases. It features a track for beginners and a track for more experienced case teachers as well as a third track on Saturday for high school teachers.

  20. Astrobiology Magazine http://www.astrobio.net/news/print.php?sid=785 1 of 3 08/06/04 18:00

    E-print Network

    Astrobiology Magazine http://www.astrobio.net/news/print.php?sid=785 1 of 3 08/06/04 18:00 Galactic. Galactic Mergers and Acquisitions based on Max Planck Society report The largest contiguous color image at the American Astronomical Society meeting in Atlanta, Georgia. #12;Astrobiology Magazine http://www.astrobio.net/news/print.php

  1. International Conference on Nuclear Data For Science and Technology in Santa Fe, Sept 26-Oct 1 2004; a Summary

    NASA Astrophysics Data System (ADS)

    Haight, Robert; Chadwick, Mark; Moller, Peter

    2004-10-01

    We present a summary of the ND2004 Conference, which focuses on nuclear data, their production, dissemination, testing, processing methods and application. The data are produced both through experiments and theoretical models; they are compiled and evaluated to form data libraries of use in applications; and they are tested through benchmark experiments and a very wide range of applications. The Conference includes all of these activities with the goal of improving nuclear data, identifying areas of data needs where progress is required, and providing reliable data for applications including fission and fusion energy, accelerator driven systems, accelerator technology, spallation-neutron sources, nuclear medicine, environment, space, nonproliferation, nuclear safety, astrophysics and cosmology, and basic research.

  2. IX Jakub K. Parnas Conference Joint Research Conference of the Israel Institute for

    E-print Network

    Shamir, Ron

    IX Jakub K. Parnas Conference Joint Research Conference of the Israel Institute for Advanced Studies and the Israel Science Foundation Supported within 3+ Meeting Programme September 29 - October 2, The Hebrew University The conference will take place at the Israel Institute for Advanced Studies, The Hebrew

  3. PREFACE: International Symposium on Materials Science and Innovation for Sustainable Society - Eco-Materials and Eco-Innovation for Global Sustainability - The 21st Iketani Conference 2011

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuo

    2012-08-01

    Conference logo The 21st century has been called the century of environmental revolution. Green innovations and environmentally friendly production systems based on physics, chemistry, materials science, and electronic engineering will be indispensable for ensuring renewable energy and establishing a sustainable society. In particular, production design, materials processing, and fabrication technologies such as welding and joining will be very important components of such green innovations. For these reasons, the International Symposium on Materials Science and Innovation for Sustainable Society - eco-materials and eco-innovation for global sustainability - (ECO-MATES 2011) was organized by the Joining and Welding Research Institute (JWRI) and the Center of Environmental Innovation Design for Sustainability (CEIDS), Osaka University. ECO-MATES 2011 was held at Hotel Hankyu Expo Park, Osaka, Japan from 28-30 November 2011. 435 participants from 20 countries around the world attended the symposium. 149 oral presentations including 60 invited talks and 160 posters were presented at the symposium to discuss the latest research and developments in green innovations in relation to environmental issues. The topics of the symposium covered all environmentally related fields including renewable energy, energy-materials, environment and resources, waste and biomass, power electronics, semiconductor, rare-earth metals, functional materials, organic electronics materials, electronics packaging, smart processing, joining and welding, eco-efficient processes, and green applied physics and chemistry. Therefore, 55 full papers concerning green innovations and environmentally benign production were selected and approved by the editorial board and the program committee of ECO-MATES 2011. All papers were accepted through peer review processes. I believe that all the papers have many informative contents. On behalf of the steering committee of the symposium, I would like to express my sincere appreciation to all the committees and secretariats, authors, participants of ECO-MATES 2011, and everybody involved in the publication of this special issue. It is a great honor for me that the special issue of Journal of Physics: Conference Series will contribute to establishing green innovations and a sustainable society. Chairman's signature Yasuo Takahashi Chairman of ECO-MATES 2011 Conference photograph ECO-MATES 2011 November 28-30, 2011 Venue: Hotel Hankyu Expo Park, Osaka, Japan The PDF also contains a list of the organizing committees.

  4. Human crew-related aspects for astrobiology research

    NASA Astrophysics Data System (ADS)

    Thiel, Cora S.; Pletser, Vladimir; Foing, Bernard

    2011-07-01

    Several space agencies and exploration stakeholders have a strong interest in obtaining information on technical and human aspects to prepare for future extra-terrestrial planetary exploration. In this context, the EuroGeoMars campaign, organized with support from the International Lunar Exploration Working Group (ILEWG), the European Space Agency (ESA), the National Aeronautics and Space Administration (NASA) Ames Research Center and partner institutes, was conducted by the crews 76 and 77 in February 2009 in The Mars Society's ‘Mars Desert Research Station’ (MDRS) in Utah. The EuroGeoMars encompasses two groups of experiments: (1) a series of field science experiments that can be conducted from an extra-terrestrial planetary surface in geology, biology, astronomy/astrophysics and the necessary technology and networks to support these field investigations; (2) a series of human crew-related investigations on crew time organization in a planetary habitat, on the different functions and interfaces of this habitat, and on man-machine interfaces of science and technical equipment. This paper recalls the objective of the EuroGeoMars project and presents the MDRS and its habitat layout. Social and operational aspects during simulations are described. Technical and operational aspects of biology investigations in the field and in the habitat laboratory are discussed in detail with the focus point set on the polymerase chain reaction (PCR)-based detection of microbial DNA in soil samples.

  5. The Astrobiology Primer: An Outline of General Knowledge-Version 1, 2006

    NASA Astrophysics Data System (ADS)

    Billings, L.; Cameron, V.; Claire, M.; Dick, G. J.; Domagal-Goldman, S. D.; Javaux, E. J.; Johnson, O. J.; Laws, C.; Race, M. S.; Rask, J.; Rummel, J. D.; Schelble, R. T.; Vance, S.

    2006-10-01

    The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Each section includes a brief overview of a topic and a short list of readable and important literature for those interested in deeper knowledge. Because of the great diversity of material, each section was written by a different author with a different expertise. Contributors, authors, and editors are listed at the beginning, along with a list of those chapters and sections for which they were responsible. We are deeply indebted to the NASA Astrobiology Institute (NAI), in particular to Estelle Dodson, David Morrison, Ed Goolish, Krisstina Wilmoth, and Rose Grymes for their continued enthusiasm and support. The Primer came about in large part because of NAI support for graduate student research, collaboration, and inclusion as well as direct funding. We have entitled the Primer version 1 in hope that it will be only the first in a series, whose future volumes will be produced every 3-5 years. This way we can insure that the Primer keeps up with the current state of research. We hope that it will be a great resource for anyone trying to stay abreast of an ever-changing field. If you have noticed any errors of fact or wish to be involved in future incarnations of the project, please contact Lucas Mix (e-mail: lucas@flirble.org).

  6. Field/Lab Training Workshops in Planetary Geology and Astrobiology for Secondary School Teachers

    NASA Astrophysics Data System (ADS)

    Treiman, A.; Newsom, H.; Hoehler, T.; Tsairides, C.; Karlstrom, K.; Crossey, L.; Kiefer, W.; Kadel, S.; Garcia-Pichel, F.; Aubele, J.; Crumpler, L.

    2003-12-01

    Thematic field-lab-classroom workshops can be successful in training secondary teachers in planetary geology and astrobiology, from the LPI's 4 years experience. A typical workshop includes ˜4 days of field study and ˜3 days of related classroom/lab lectures and exercises. Up to 30 teachers have participated at once, and the staff averages 5 researchers and educators. The 2003 workshop, The Great Desert, focused on geology and life in the Colorado Plateau as analogs for Mars. Specific emphases were on geologic processes exemplified in the Grand Canyon, Sunset Crater and Meteor Crater, and on biotic communities in desert soils and hot springs. The classroom portion, hosted by UNM, included lectures, lab work, and teaching exercises keyed to the field experience and its extensions to Mars. Formal followups: non-directive exit questionnaires; email list-serves for participants; websites with images, presentations, and exercises from the workshop, and links to related materials (e.g., http://www.lpi.usra.edu/education/EPO/yellowstone2002/index.html); and interviews for six-month retrospective. Graduate and continuing education credit are available. Past workshops, all relevant to Mars, have targeted: geology and extremophiles of Yellowstone NP, geology of the Cascade volcanos; and giant floods and lava flows of central Washington. The greatest benefit of this workshop format is the teachers' intense, deep experience, emphasizing scientific content. They learn from field, classroom, and laboratory perspectives, and work with PhD level researchers who contribute their excitement, demonstrate and teach critical thought processes, and provide authoritative background and answers. The small group size permits personal interactions (among teachers and presenters) that complement each other's understanding and appreciation of the subject. They log ˜65 contact hours with the staff, in small groups or one-on-one. Teachers return to the classroom with personal experiences, with heightened appreciation, excited, and energetic. The teachers are asked to share their knowledge in their districts (in one case, saving the district thousands of dollars). For the presenters, the workshop format allows personal interactions with the teachers, leading to enhanced appreciation of their perspectives and needs. This year, teacher input assisted with an NSF-sponsored National Park education initiative. And in one case, a meaningful research collaboration has come from these workshops. Logistics is the greatest challenge of this workshop format. Hosts and teaching/lab venues need to be arranged early in sites dictated by science content, not convenience. Travel and lodging must be arranged for teachers and presenters at several sites, usually all distant from the organizing institution. Logistics also dictates that each workshop cannot serve more than about 30 teachers. The depth of knowledge imparted and its long-term effects on the teachers and their districts offsets the small number of teachers reached per year. Authors here are the 2003 organizers and presenters. Many others have organized and presented at past workshops - especially Dr. A.J. Irving of U. Wash. We are grateful for past support from NASA Broker/Facilitator, and now from Sandia National Laboratory and NASA OSS/EPO.

  7. Women in engineering conference: capitalizing on today`s challenges

    SciTech Connect

    Metz, S.S.; Martins, S.M. [eds.] [eds.

    1996-06-01

    This document contains the conference proceedings of the Women in Engineering Conference: Capitalizing on Today`s Challenges, held June 1-4, 1996 in Denver, Colorado. Topics included engineering and science education, career paths, workplace issues, and affirmative action.

  8. An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel; Sapers, Haley; Simoncini, Eugenio; Lutz, Stefanie; Alexandre, Marcelo da Rosa; Galante, Douglas

    2014-04-01

    We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.

  9. Report on a NASA astrobiology institute-funded workshop without walls: stellar stoichiometry.

    PubMed

    Desch, Steven J; Young, Patrick A; Anbar, Ariel D; Hinkel, Natalie; Pagano, Michael; Truitt, Amanda; Turnbull, Margaret

    2014-04-01

    We report on the NASA Astrobiology Institute-funded Workshop Without Walls entitled "Stellar Stoichiometry," hosted by the "Follow the Elements" team at Arizona State University in April 2013. We describe several innovative practices we adopted that made effective use of the Workshop Without Walls videoconferencing format, including use of information technologies, assignment of scientific tasks before the workshop, and placement of graduate students in positions of authority. A companion article will describe the scientific results arising from the workshop. Our intention here is to suggest best practices for future Workshops Without Walls. PMID:24684174

  10. Astrobiology in the Environments of Main-Sequence Stars: Effects of Photospheric Radiation

    E-print Network

    Cuntz, M; Guinan, E F; Kurucz, R L

    2007-01-01

    We explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of photospheric stellar radiation, such as UV-C. Therefore, we focus on main-sequence stars of spectral types F, G, K, and M. Emphasis is placed on investigating the radiative environment in the stellar habitable zones. Stellar habitable zones are relevant to astrobiology because they constitute circumstellar regions in which a planet of suitable size can maintain surface temperatures for water to exist in fluid form, thus increasing the likelihood of Earth-type life.

  11. Astrobiological Effects of F, G, K and M Main-Sequence Stars

    E-print Network

    Cuntz, M; Guinan, E F; Kurucz, R L

    2007-01-01

    We focus on the astrobiological effects of photospheric radiation produced by main-sequence stars of spectral types F, G, K, and M. The photospheric radiation is represented by using realistic spectra, taking into account millions or hundred of millions of lines for atoms and molecules. DNA is taken as a proxy for carbon-based macromolecules, assumed to be the chemical centerpiece of extraterrestrial life forms. Emphasis is placed on the investigation of the radiative environment in conservative as well as generalized habitable zones.

  12. Astrobiology in the Environments of Main-Sequence Stars: Effects of Photospheric Radiation

    E-print Network

    M. Cuntz; L. Gurdemir; E. F. Guinan; R. L. Kurucz

    2007-12-19

    We explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of photospheric stellar radiation, such as UV-C. Therefore, we focus on main-sequence stars of spectral types F, G, K, and M. Emphasis is placed on investigating the radiative environment in the stellar habitable zones. Stellar habitable zones are relevant to astrobiology because they constitute circumstellar regions in which a planet of suitable size can maintain surface temperatures for water to exist in fluid form, thus increasing the likelihood of Earth-type life.

  13. Astrobiological Effects of F, G, K and M Main-Sequence Stars

    E-print Network

    M. Cuntz; L. Gurdemir; E. F. Guinan; R. L. Kurucz

    2008-02-15

    We focus on the astrobiological effects of photospheric radiation produced by main-sequence stars of spectral types F, G, K, and M. The photospheric radiation is represented by using realistic spectra, taking into account millions or hundred of millions of lines for atoms and molecules. DNA is taken as a proxy for carbon-based macromolecules, assumed to be the chemical centerpiece of extraterrestrial life forms. Emphasis is placed on the investigation of the radiative environment in conservative as well as generalized habitable zones.

  14. Proceedings (CD) of the 3rd International Conference on Porous Media and its Applications in Science and

    E-print Network

    Bahrami, Majid

    Mechatronic System Engineering School of Engineering Sciences Simon Fraser University, BC, Canada ali in Science and Engineering ICPM3 June 20-25, 2010, Montecatini, Italy Effects of Fiber Orientation on Flow the resulting pressure drop are important in numerous engineering applications such as filtration and separation

  15. A Practitioner's Guide to Science-Based Prevention: A Handbook of Promising, Effective and Model Programs. 2002 Conference Edition.

    ERIC Educational Resources Information Center

    Schinke, Steven

    The importance of science-based programs is now widely acknowledged in the substance abuse prevention field. The Center for Substance Abuse Prevention (CSAP) continues its efforts on several fronts to inform the field of the existence and availability of science-based program options. It primarily does this through its National Registry of…

  16. Invited Plenary Speech, Second International Conference on Cognitive Science. July 2730, 1999. Japan. 1 Artificial Intelligence for Improving Children's Thinking

    E-print Network

    Ling, Charles X.

    . Japan. 1 Artificial Intelligence for Improving Children's Thinking Charles X. Ling Department intelligence tests. 2 Artificial Intelligence and Cognitive Science Cognitive science studies how the human@csd.uwo.ca Extended Abstract 1 Human Intelligence There is no universally accepted definition for intelli­ gence among

  17. Perspectives on U.S. Competitiveness in Science and Technology. Conference Proceedings (Washington, DC, November 8, 2006)

    ERIC Educational Resources Information Center

    Galama, Titus, Ed.; Hosek, James, Ed.

    2007-01-01

    Concern has grown that the United States is losing its competitive edge in science and technology (S&T). The factors driving this concern include globalization, the rise of science centers in developing countries such as China and India, the increasing number of foreign-born Ph.D. students in the United States, and claims of a shortage of S&T…

  18. The Chirality Of Life: From Phase Transitions To Astrobiology

    E-print Network

    Marcelo Gleiser; Sara Imari Walker

    2008-11-08

    The search for life elsewhere in the universe is a pivotal question in modern science. However, to address whether life is common in the universe we must first understand the likelihood of abiogenesis by studying the origin of life on Earth. A key missing piece is the origin of biomolecular homochirality: permeating almost every life-form on Earth is the presence of exclusively levorotary amino acids and dextrorotary sugars. In this work we discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events in a mechanism referred to as punctuated chirality. Applying these arguments to other potentially life-bearing platforms has significant implications for the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic on average.

  19. The Chirality of Life:. from Phase Transitions to Astrobiology

    NASA Astrophysics Data System (ADS)

    Gleiser, M.; Walker, S. I.

    2010-04-01

    The search for life elsewhere in the universe is a pivotal question in modern science. However, to address whether life is common in the universe we must first understand the likelihood of abiogenesis by studying the origin of life on Earth. A key missing piece is the origin of biomolecular homochirality: permeating almost every life-form on Earth is the presence of exclusively levorotary amino acids and dextrorotary sugars. In this work we discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events in a mechanism referred to as punctuated chirality. Applying these arguments to other potentially life-bearing platforms has significant implications for the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic on average.

  20. SETI and astrobiology: The Rio Scale and the London Scale

    NASA Astrophysics Data System (ADS)

    Almár, Iván

    2011-11-01

    The public reaction to a discovery, the character of the corresponding risk communication, as well as the possible impact on science and society all depend on the character of the phenomenon discovered, on the method of discovery, on the distance to the phenomenon and, last but not least, on the reliability of the announcement itself. The Rio Scale - proposed together with Jill Tarter just a decade ago at an IAA symposium in Rio de Janeiro - attempts to quantify the relative importance of such a “low probability, high consequence event”, namely the announcement of an ETI discovery. After the publication of the book “The Eerie Silence” by Paul Davies it is necessary to control how the recently suggested possible “technosignatures” or “technomarkers” mentioned in this book could be evaluated by the Rio Scale. The new London Scale, proposed at the Royal Society meeting in January 2010, in London, is a similar attempt to quantify the impact of an announcement regarding the discovery of ET life on an analogous ordinal scale between zero and ten. Here again the new concept of a “shadow biosphere” raised in this book deserves a special attention since a “weird form of life” found on Earth would not necessarily have an extraterrestrial origin, nevertheless it might be an important discovery in itself. Several arguments are presented that methods, aims and targets of “search for ET life” and “search for ET intelligence” are recently converging. The new problem is raised whether a unification of these two scales is necessary as a consequence of the convergence of the two subjects. Finally, it is suggested that experts in social sciences should take the structure of the respective scales into consideration when investigating case by case the possible effects on the society of such discoveries.

  1. Research in Science Education. Volume 12. Proceedings of the Annual Conference of the Australian Science Education Research Association (13th, Macquarie University, Sydney, Australia, May 1982).

    ERIC Educational Resources Information Center

    Rattray-Wood, Laurie, Ed.; Ferguson, Peter, Ed.

    1982-01-01

    This publication contains a selection of science education research papers, beginning with an overview of trends in science education cognitive developmental research and theory in the United Kingdom. Papers that follow focus on developments in studies of thinking and reasoning, including work on concept mapping and conceptual change. Closely…

  2. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  3. Carl Woese, Dick Young, and the roots of astrobiology.

    PubMed

    Rummel, John D

    2014-03-01

    The beginning of the space age in the late 1950s gave rise to innovative and interdisciplinary research concepts and perspectives, including the concept of "exobiology" as a way to approach the fundamental aspects of biology through a study of life outside of the Earth, if it existed. This concept was embodied by NASA into its formal Exobiology Program and into the philosophy of the program both before and after the Viking missions that were launched to Mars to search for signs of life in 1975. Due to both management flexibility and an acceptance of the interdisciplinary nature of the problem of "life in the universe," NASA program managers, and particularly Richard S Young who ran the Exobiology Program beginning 1967, have made some excellent investments in paradigm altering science of great use both on Earth and on future space missions. The work of Carl Woese is one such example, which has revolutionized our understanding of the microbial world and the relationships of all life on Earth. PMID:24572623

  4. Carl Woese, Dick Young, and the roots of astrobiology

    PubMed Central

    Rummel, John D

    2014-01-01

    The beginning of the space age in the late 1950s gave rise to innovative and interdisciplinary research concepts and perspectives, including the concept of “exobiology” as a way to approach the fundamental aspects of biology through a study of life outside of the Earth, if it existed. This concept was embodied by NASA into its formal Exobiology Program and into the philosophy of the program both before and after the Viking missions that were launched to Mars to search for signs of life in 1975. Due to both management flexibility and an acceptance of the interdisciplinary nature of the problem of “life in the universe,” NASA program managers, and particularly Richard S Young who ran the Exobiology Program beginning 1967, have made some excellent investments in paradigm altering science of great use both on Earth and on future space missions. The work of Carl Woese is one such example, which has revolutionized our understanding of the microbial world and the relationships of all life on Earth. PMID:24572623

  5. Genetic Science Learning Center

    MedlinePLUS

    Genetic Science Learning Center Making science and health easy for everyone to understand ASTE 2015 Paper Home News Our Team What ... Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  6. Detecting and Identifying Organic Molecules in Space - The AstroBiology Explorer (ABE) MIDEX Mission Concept

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.

    2001-01-01

    Infrared spectroscopy in the 2.5-16 micron (4000-625/cm) range is a principle means by which organic compounds are detected and identified in space. Ground-based, airborne, and spaceborne IR spectral studies have already demonstrated that a significant fraction of the carbon in the interstellar medium (ISM) resides in the form of complex organic molecular species. Unfortunately, neither the distribution of these materials nor their genetic and evolutionary relationships with each other or their environments are well understood. The Astrobiology Explorer (ABE) is a MIDEX (Medium-class Explorer) mission concept currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corporation. ABE will conduct IR spectroscopic observations to address outstanding important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding (1) the evolution of ices and organic matter in dense molecular clouds and young forming stellar systems, (2) the chemical evolution of organic molecules in the ISM as they transition from AGB outflows to planetary nebulae to the general diffuse ISM to H II regions and dense clouds, (3) the distribution of organics in the diffuse ISM, (4) the nature of organics in the Solar System (in comets, asteroids, satellites), and (5) the nature and distribution of organics in local galaxies. Both the scientific goals of the mission and how they would be achieved will be discussed.

  7. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  8. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  9. EXPOSE-E: an ESA astrobiology mission 1.5 years in space.

    PubMed

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, André; Panitz, Corinna; Horneck, Gerda; von Heise-Rotenburg, Ralf; Hoppenbrouwers, Tom; Willnecker, Rainer; Baglioni, Pietro; Demets, René; Dettmann, Jan; Reitz, Guenther

    2012-05-01

    The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space. PMID:22680684

  10. First International Conference between West and East—Leonardo and Lao-Tze. Western Science Meets Eastern Wisdom. Experiences of Scientists and Intellectuals for the Creation of a New Paradigm of Modern Science

    PubMed Central

    2008-01-01

    The Conference was organized and supported by: Nei Dan School (European School of Internal Martial Arts), NIB (Laboratory of Molecular Biology and Stem Cell Bioengineering, National Institute of Biostructures and Biosystems, Institute of Cardiology, S.Orsola-Malpighi Hospital, Bologna), WACIMA (Worldwide Association Chinese Internal Martial Arts), Arti D’Oriente (Magazine of Eastern culture and traditions), Nuovo Orizzonte (Taiji Quan School in Florence), Samurai (Journal on Martial Arts), and Pinus (First National Institute for the Unification of Medical Strategies). Nei Dan School (www.taichineidan.com, neidan@libero.it) was in charge of the organization. Future meetings of the Centro studi ‘Tao and Science’ will take place in spring 2007 in Firenze and in October 2007 in Bologna. For information: E-mail: neidan@libero.it; web site: www.taichineidan.com, www.taoandscience.com PMID:18317548

  11. 02/02 NASA JSC Astrobiology: Fingerprints of Life Searching for Life: Mars Critters 1 Mars Critters

    E-print Network

    Waliser, Duane E.

    might be life in space or extremophile(organismslivingin extreme environments). They must identify02/02 NASA JSC Astrobiology: Fingerprints of Life Searching for Life: Mars Critters 1 Activity 3 of the life form and its livingconditions. Background To construct a critter model, students must know about

  12. arXiv:1206.3467v1[astro-ph.IM]15Jun2012 Astrobiological Complexity with Probabilistic Cellular

    E-print Network

    Masci, Frank

    Belgrade-74, Serbia E-mail: bvukotic@aob.rs Abstract Search for extraterrestrial life and intelligence--Galaxy: evolution-- extraterrestrial intelligence PACS number(s): 87.18.-h, 89.75.Fb, 89.90.+n, 02.70.-c 1 a cautious rationale for continuation of practical SETI searches. Keywords: astrobiology--methods: numerical

  13. PREFACE: Quark Matter 2006 Conference

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The scientific program of the conference began with an overview of high energy nuclear physics in China by Professor Wenqing Shen, vice president of the National Natural Science Foundation of China. Professor Shen highlighted many contributions made by the Chinese scientists in both theory and experiment. Dr Nick Samios, former director of Brookhaven National Laboratory (BNL), gave a vivid account of the early years of RHIC and recent accomplishments. Highlights of the conference include new results from RHIC at BNL and SPS (Super Proton Synchrotron) at CERN (European Organization for Nuclear Research). Many experimental results reported at the conference support the notion that the quark-gluon matter at RHIC behaves like a perfect liquid with minimum viscosity to entropy ratio. There were 15 plenary sessions which covered 54 plenary talks, 12 parallel sessions and 1 poster session. A total of 320 abstracts were submitted to the conference out of which 124 were selected for oral presentation and the rest were assigned to the poster session. Talks and posters in the conference covered a broad range of experimental and theoretical progress in ultra-relativistic heavy-ion collisions, which includes new evidence of sQGP, jet quenching and heavy quark energy loss, heavy-ion collision phenomenology, quantum field theory at finite temperature and/or density, and relevant areas of astrophysics and plasma physics. The Quark Matter 2006 conference coincided with the 80th birthday of Professor T D Lee. A special reception was held in the banquet hall of the Shanghai Grand Theatre to celebrate Professor Lee's birthday and to honor his great contributions to physics, in particular, to the development of high energy nuclear physics research in China. We would like to thank the members of the International Advisory Committee for providing valuable advice on a variety of matters, from the general structure of the conference to the selection of the plenary speakers and selection of abstracts for oral presentations. Professors T Hemmick, H Satz, D T Son and N Xu gave excellent pedagogical

  14. Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences 7 11 October 2007, Paris, FRANCE

    E-print Network

    Voldman, Joel

    CELLS VIA FUSION WITH EMBRYONIC STEM CELLS: A MASSIVELY PARALLEL DEVICE FOR CELL FUSION Alison M Engineering and Computer Science, MIT, USA ABSTRACT Controlled fusion between an embryonic stem cell a significant improvement over current technologies. Keywords: Embryonic stem cell, cell fusion, cell

  15. THE EVOLVING GENRE OF ELECTRONIC THESES AND DISSERTATIONS for the 1999 HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES

    E-print Network

    Beex, A. A. "Louis"

    Libraries, gailmac@vt.edu from the proceedings prepared with Edward A. Fox (Department of Computer Science been ordered enough times (>7) to warrant a royalty payment to the author. Through the Online Computer Library Center, OCLC, library catalog records for more than two million theses and dissertations

  16. Post-Bayesian strategies to optimize astrobiology instrument suites: lessons from Antarctica and the Pilbara

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, Michael C.

    2005-09-01

    Artificial neural networks patterned on fundamental neurological features of the human perceptual system have been shown to produce Bayesian probabilistic classifications of galaxies1-3, identify biotic and abiotic alteration of subsurface basalts4, distinguish terrestrial fossils from their background rock matrix5, and detect areas of Archean hydrothermal alteration6. Data inputs for these classification tasks have varied from astronomical or high altitude images and spectra, to sub-micron resolution elemental abundances. However, Bayesian theory assumes an absence of statistical and interpretive ambiguity in a target signal, the antithesis of the problems facing remote and human exploration of extreme environments on Earth and extraterrestrial sites such as Mars, comets, and the icy moons of Jupiter and Saturn. Fundamental to our certainty about the classification of geobiological targets on Earth is a long scientific history of familiarization both with the geochemical evolution of our planet and the reliability and discriminating power of particular instruments. Reduction of the uncertainty associated with a putative extraterrestrial biosignature derived from a single probe is most often attempted by deploying a suite of instruments, each one interrogating distinct morphological and chemical phenomena in a target7. But understanding the relative weighting appropriate for merging disparate signals or distinct data sets is not a trivial issue8. And, as we have most recently seen in the case of ALH84001, strategies relying on the cumulative statistical power of multiple probes often crumble when subsequent review of abiotic physicochemical phenomena reveals even a single abiotic mechanism, no matter how improbable, capable of replicating the putative biotic signal. Finally, for extend extraterrestrial missions or work in remote environments on Earth, the fundamental "fewest moving parts" reliability rule must come into play. This communication highlights the minimum requirements for an astrobiological instrument suite for remote or human exploration of extreme environments both here on Earth and in our local and neighboring planetary systems. Critical items of concern include obtaining co-registered data characterizing target morphology, metabolism, and mobility; the face validity and familiarity of the instrumentation to the scientific community, and the choice of instrumentation sufficiently inexpensive and easy to use that it might find wide spread usage within the astrobiology community prior to mission deployment. Preliminary indications are that such an instrument can be implemented for a cost accessible to high school, college, and graduate students interested in geobiological and astrobiological research in extreme or hazardous environments.

  17. Microbicides: an emerging science of HIV-1 prevention in women-15th Conference on Retroviruses and Opportunistic Infections, Boston, USA, 3-6 February 2008.

    PubMed

    Saïdi, Héla

    2009-03-01

    Women account for almost 60% of human immunodeficiency virus type 1 (HIV-1) infections in Sub-Saharan Africa. HIV-1 prevention tools such as condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are anti-microbial medications formulated for topical administration to prevent the sexual transmission of HIV-1 and other pathogens. Ideally, they will afford bidirectional protection to both men and women who are engaged in vaginal or anal sex. Since the use of condom is often difficult or impossible, this multifunctional role of microbicides will be crucial in the fight against AIDS. The 15th Conference on Retroviruses and Opportunistic Infections (CROI) was recently held in Boston, USA, where one of the most interesting subject area discussed by researchers from all around the world was the latest developments and understandings in microbicide-related basic science and pre-clinical product development as well as in product manufacturing and formulation that address the issue of user adherence. PMID:19086006

  18. Research in Science Education. Volume 14. Selections of Papers from the Annual Conference of the Australian Science Education Research Association (15th, Victoria, Australia, May 1984).

    ERIC Educational Resources Information Center

    Tisher, Richard P., Ed.

    1984-01-01

    This publication contains studies which focus on students' science concepts and the alternative frameworks they use to interpret natural phenomena. Among the specific areas investigated are: conceptions held by Year 11 chemistry students about stoichiometry; how some 9-year-old students interpret the word "solid" to mean hard, unbreakable,…

  19. Cognitive Science mailing list

    NSDL National Science Digital Library

    1997-01-01

    COGSCI is an open, unmoderated discussion list about Cognitive Science. Topics including artificial intelligence, linguistics, philosophy, connectionism, psychology, conferences, lectures, and publications.

  20. College of Science, Engineering & Food Science Annual Graduate

    E-print Network

    Schellekens, Michel P.

    Conference at UCC 39 Talented Bacteria make Food Poisoning Unpredictable 40 School of Engineering ConferencesCollege of Science, Engineering & Food Science Annual Graduate Newsletter & Report Issue No. 4 KEEPING YOU IN TOUCH WITH DEVELOPMENTS IN SCIENCE, ENGINEERING AND FOOD SCIENCE AT UCC August 2011 #12