Science.gov

Sample records for astronomical image mosaicking

  1. Toward Real Time Uavs' Image Mosaicking

    NASA Astrophysics Data System (ADS)

    Mehrdad, S.; Satari, M.; Safdary, M.; Moallem, P.

    2016-06-01

    Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs' data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs' image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV's sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.

  2. Double regions growing algorithm for automated satellite image mosaicking

    NASA Astrophysics Data System (ADS)

    Tan, Yihua; Chen, Chen; Tian, Jinwen

    2011-12-01

    Feathering is a most widely used method in seamless satellite image mosaicking. A simple but effective algorithm - double regions growing (DRG) algorithm, which utilizes the shape content of images' valid regions, is proposed for generating robust feathering-line before feathering. It works without any human intervention, and experiment on real satellite images shows the advantages of the proposed method.

  3. Robust Mosaicking of Uav Images with Narrow Overlaps

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kim, T.; Shin, D.; Kim, S. H.

    2016-06-01

    This paper considers fast and robust mosaicking of UAV images under a circumstance that each UAV images have very narrow overlaps in-between. Image transformation for image mosaicking consists of two estimations: relative transformations and global transformations. For estimating relative transformations between adjacent images, projective transformation is widely considered. For estimating global transformations, panoramic constraint is widely used. While perspective transformation is a general transformation model in 2D-2D transformation, this may not be optimal with weak stereo geometry such as images with narrow overlaps. While panoramic constraint works for reliable conversion of global transformation for panoramic image generation, this constraint is not applicable to UAV images in linear motions. For these reasons, a robust approach is investigated to generate a high quality mosaicked image from narrowly overlapped UAV images. For relative transformations, several transformation models were considered to ensure robust estimation of relative transformation relationship. Among them were perspective transformation, affine transformation, coplanar relative orientation, and relative orientation with reduced adjustment parameters. Performance evaluation for each transformation model was carried out. The experiment results showed that affine transformation and adjusted coplanar relative orientation were superior to others in terms of stability and accuracy. For global transformation, we set initial approximation by converting each relative transformation to a common transformation with respect to a reference image. In future work, we will investigate constrained relative orientation for enhancing geometric accuracy of image mosaicking and bundle adjustments of each relative transformation model for optimal global transformation.

  4. Optimal seamline detection for multiple image mosaicking via graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Li; Yao, Jian; Lu, Xiaohu; Tu, Jinge; Shan, Jie

    2016-03-01

    While mosaicking images, especially captured from the scenes of large depth differences with respective to cameras at varying locations, the detection of seamlines within overlap regions is a key issue for creating seamless and pleasant image mosaics. In this paper, we propose a novel algorithm to efficiently detect optimal seamlines for mosaicking aerial images captured from different viewpoints and for mosaicking street-view panoramic images without a precisely common center in a graph cuts energy minimization framework. To effectively ensure that the seamlines are optimally detected in the laterally continuous regions with high image similarity and low object dislocation to magnificently conceal the parallax between images, we fuse the information of image color, gradient magnitude, and texture complexity into the data and smooth energy terms in graph cuts. Different from the traditional frame-to-frame optimization for sequentially detecting seamlines for mosaicking multiple images, our method applies a novel multi-frame joint optimization strategy to find seamlines within multi-overlapped images at one time. In addition, we propose simple but effective strategies to semi-automatically guide the seamlines by exploiting simple human-computer interaction strongly constraining the image regions that the seamlines will or won't pass through, which is often ignored by many existing seamline detection methods. Experimental results on a large set of aerial, oblique and street-view panoramic images show that the proposed method is capable of creating high-quality seamlines for multiple image mosaicking, while not crossing majority of visually obvious foreground objects and most of overlap regions with low image similarity to effectively conceal the image parallax at different extents.

  5. Mosaicking of NEAR MSI Color Image Sequences

    NASA Astrophysics Data System (ADS)

    Digilio, J. G.; Robinson, M. S.

    2004-05-01

    Of the over 160,000 frames of 433 Eros captured by the NEAR-Shoemaker spacecraft, 21,936 frames are components of 226 multi-spectral image sequences. As part of the ongoing NEAR Data Analysis Program, we are mosaicking (and delivering via a web interface) all color sequences in two versions: I/F and photometrically normalized I/F (30° incidence, 0° emission). Multi-spectral sets were acquired with varying bandpasses depending on mission constraints, and all sets include 550-nm, 760-nm, and 950-nm (32% of the sequences are all wavelengths except 700-nm clear filter). Resolutions range from 20 m/pixel down to 3.5 m/pixel. To support color analysis and interpretation we are co-registering the highest resolution black and white images to match each of the color mosaics. Due to Eros's highly irregular shape, the scale of a pixel can vary by almost a factor of 2 within a single frame acquired in the 35-km orbit. Thus, map-projecting requires a pixel-by-pixel correction for local topography [1]. Scattered light problems with the NEAR Multi-Spectral Imager (MSI) required the acquisition of ride along zero exposure calibration frames. Without correction, scattered light artifacts within the MSI were larger than the subtle color differences found on Eros [see details in 2]. Successful correction requires that the same region of the surface (within a few pixels) be in the field-of-view of the zero-exposure frame as when the normal frame was acquired. Due to engineering constraints the timing of frame acquisition was not always optimal for the scattered light correction. During the co-registration process we are tracking apparent ground motion during a sequence to estimate the efficacy of the correction, and thus integrity of the color information. Currently several web-based search and browse tools allow interested users to locate individual MSI frames from any spot on the asteroid using various search criteria (cps.earth.northwestern.edu). Final color and BW map products

  6. Efficient Mosaicking of Spitzer Space Telescope Images

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  7. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  8. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    NASA Astrophysics Data System (ADS)

    Song, Huaibo; Yang, Chenghai; Zhang, Jian; Hoffmann, Wesley Clint; He, Dongjian; Thomasson, J. Alex

    2016-01-01

    Images captured from airborne imaging systems can be mosaicked for diverse remote sensing applications. The objective of this study was to identify appropriate mosaicking techniques and software to generate mosaicked images for use by aerial applicators and other users. Three software packages-Photoshop CC, Autostitch, and Pix4Dmapper-were selected for mosaicking airborne images acquired from a large cropping area. Ground control points were collected for georeferencing the mosaicked images and for evaluating the accuracy of eight mosaicking techniques. Analysis and accuracy assessment showed that Pix4Dmapper can be the first choice if georeferenced imagery with high accuracy is required. The spherical method in Photoshop CC can be an alternative for cost considerations, and Autostitch can be used to quickly mosaic images with reduced spatial resolution. The results also showed that the accuracy of image mosaicking techniques could be greatly affected by the size of the imaging area or the number of the images and that the accuracy would be higher for a small area than for a large area. The results from this study will provide useful information for the selection of image mosaicking software and techniques for aerial applicators and other users.

  9. SIMPLE Imaging and Mosaicking PipeLinE

    NASA Astrophysics Data System (ADS)

    Wang, W.-H.

    2010-12-01

    The SIMPLE Imaging and Mosaicking PipeLinE (SIMPLE) is an Interactive Data Language based data reduction environment designed for processing optical and near-IR data obtained from wide-field mosaic cameras. It has standard functions for flat fielding, sky subtraction, distortion correction, and photometric and astrometric calibrations. One of the key features of SIMPLE is the ability to correct for image distortion from a set of dithered exposures without relying on any external information (e.g., distortion function of the optics, or an external astrometric catalog). This is achieved by deriving the first-order derivatives of the distortion function directly out of the dithered images. This greatly help to produce accurate astrometry as well as to preserve image sharpness in the mosaicked/stacked image. Although SIMPLE is designed toward a general reduction environment, the current distribution of SIMPLE has two highly optimized packages, one for the Wide-field InfraRed Camera on the Canada-France-Hawaii Telescope and the other for the Multi-Object InfraRed Camera and Spectrograph on the Subaru Telescope. Future SIMPLE distributions will include more optimized reduction packages for different instruments.

  10. A probabilistic approach for color correction in image mosaicking applications.

    PubMed

    Oliveira, Miguel; Sappa, Angel Domingo; Santos, Vitor

    2015-02-01

    Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures. PMID:25438315

  11. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  12. MOSK - AUTOMATED MOSAICKING ALGORITHM FOR GENERATION OF SPACEBORNE SAR IMAGE

    NASA Technical Reports Server (NTRS)

    Curlander, J. C.

    1994-01-01

    Spaceborne Synthetic Aperture Radar (SAR) images are useful for planetary mapping and Earth sciences investigations. However, swath widths rarely exceed 100 Kilometers, and images must be patched together to create a mosaic in order to analyze larger areas. The primary function of this program is to generate large digital mosaics of SAR imagery without manually marked tiepoints. MOSK can produce multiframe mosaics by combining images in the along-track, adjacent cross-track swaths, or ascending and descending passes. Geocoded map registered images, such as the ones produced by MAPJTC (NPO-17718), are required as input. The output is a geocoded mosaic on a standard map grid which permits easy registration with other geocoded data sets. Mosaicking of geocoded SAR imagery involves three steps. First, a match point is selected at the center of the overlapping area, then an image patch around the match point is extracted from both images and cross-correlation is done on this area. Then, images with their refined match points are merged together to form a mosaic. To handle the large data volume of overlapping intermediate stages, large mosaics are divided into equal size quadrants with each quadrant cut from an intermediate mosaic. The full mosaic can then be assembled from the individual quadrants. Finally, radiometric disparities at the image seams are smoothed by a "feathering" technique. The automatic mosaic system generates output with minimal operator interaction. However, manual tiepointing is required in cases of a large registration error or two images with smooth surfaces such as ocean images. MOSK is implemented on a DEC VAX 11/785 running VMS 4.5. Most subroutines are in FORTRAN, but three are in MAXL and one is in APAL. The program requires 1 Mb of memory and a Floating Point Systems AP-5210 array processor. The system memory usage is approximately 1000 pages and the requirement of page file size is 2000 blocks. MOSK was developed in 1988.

  13. Image mosaicking based on feature points using color-invariant values

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Chang; Kwon, Oh-Seol; Ko, Kyung-Woo; Lee, Ho-Young; Ha, Yeong-Ho

    2008-02-01

    In the field of computer vision, image mosaicking is achieved using image features, such as textures, colors, and shapes between corresponding images, or local descriptors representing neighborhoods of feature points extracted from corresponding images. However, image mosaicking based on feature points has attracted more recent attention due to the simplicity of the geometric transformation, regardless of distortion and differences in intensity generated by camera motion in consecutive images. Yet, since most feature-point matching algorithms extract feature points using gray values, identifying corresponding points becomes difficult in the case of changing illumination and images with a similar intensity. Accordingly, to solve these problems, this paper proposes a method of image mosaicking based on feature points using color information of images. Essentially, the digital values acquired from a real digital color camera are converted to values of a virtual camera with distinct narrow bands. Values based on the surface reflectance and invariant to the chromaticity of various illuminations are then derived from the virtual camera values and defined as color-invariant values invariant to changing illuminations. The validity of these color-invariant values is verified in a test using a Macbeth Color-Checker under simulated illuminations. The test also compares the proposed method using the color-invariant values with the conventional SIFT algorithm. The accuracy of the matching between the feature points extracted using the proposed method is increased, while image mosaicking using color information is also achieved.

  14. Blanket illumination vs scanned-mosaicking imaging schemes for wide-area photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Barber, Quinn; Harrison, Tyler; Zemp, Roger J.

    2015-03-01

    We compare scanned-mosaicking and blanket illumination schemes for wide-field photoacoustic tomography with potential applications to breast imaging. For each illumination, a locally high-SNR image patch is reconstructed then mosaicked with image patches from other illuminations. Because the beam is not diffused over the entire area, the fluence of the beam can be maximized, therefore maximizing the signal generated. Moreover, the imaging can potentially still be done fast enough within a breath-hold. A Monte Carlo simulation as a function of beam-spot size and depth is performed to quantify this signal gain. We experimentally test both schemes using a 256-element Imasonic ring array on a tissue-mimicking phantom. We were able to verify the simulated signal gain of 2.9x under 0.5 cm of tissue with the experimental data, and measured the signal gain decrease expected when imaging deeper into the tissue. We also measured the effectiveness of averaging the diffused beam versus the scanned-mosaicking approach, and observed that for the same scan times and limited laser power output, scanned-mosaicking was able to produce a higher SNR than the blanket illumination approach. We have shown that this technique will allow wide-area PAT to utilize the maximum SNR available from any system while minimizing the number of acquisitions to reach this SNR.

  15. A robust mosaicking procedure for high spatial resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Hui, Nian; Shen, Huanfeng; Fu, Yunjie; Zhang, Liangpei

    2015-11-01

    With the rapid development of sensor manufacturing technology, high spatial resolution (HR) images are becoming more easily acquired and more widely used. However, it is common that a region of interest (ROI) cannot be completely acquired from a single image. Image mosaicking can resolve the problem by creating a new large-area image from multiple images with overlapping areas. A typical mosaicking procedure for HR remote sensing images includes three successive steps: tonal adjustment, seamline detection, and image blending. In this paper, we propose a robust mosaicking procedure featuring novel ideas in all three steps, which is aimed at processing HR remote sensing images of urban areas. Firstly, the tonal adjustment is realized by a local moment matching (LMM) algorithm, which solves the nonlinear photometric correlation problem between adjacent images. Secondly, an automatic piecewise dynamic program (APDP) algorithm for seamline detection is proposed to detect the optimal seamline on the overlapped area. Last but not least, we propose a cosine distance weighted blending (CDWB) method to ensure that the seamline is as invisible as possible. Compared to the state-of-the-art methods, the proposed method was proved to be effective in experiments with high resolution aerial and satellite images.

  16. Consistent Tonal Correction for Multi-View Remote Sensing Image Mosaicking

    NASA Astrophysics Data System (ADS)

    Xia, Menghan; Yao, Jian; Li, Li; Xie, Renping; Liu, Yahui

    2016-06-01

    In this paper, we propose an effective approach for consistent tonal correction of multi-view images during mosaicking. Our method is specifically designed for mosaicking multi-view remote sensing images acquired under different conditions and/or presenting inconsistent tone. To avoid the correlation of three channels in original RGB images, we convert them to an orthogonal color space lαβ in advance. First of all, the tones of sequential images are transferred from an example image reasonably via our improved color transfer algorithm. Secondly, the more refined adjustments take place in the luminance channel l and color channels α and β, independently. In the luminance channel, the global gain compensation is applied to minimize the luminance difference between pairs of images by the least square estimator. In the color channels, the specifically designed stepwise histogram adjustments make all the images consistent tone as a whole, including the initial correction transferring the color characteristics of the automatically selected reference subset to other images in an optimal order and the consistent correction readjusting each image by referring all their neighbors based on the overlaps. Thirdly, we creatively transfer the original structures to the previously corrected images by a local linear model, which can preserve the local structures of the original images. Finally, several groups of convincing experiments on both challenged synthetic and real data demonstrate the validity of our proposed approach.

  17. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  18. Automatic registration and mosaicking of technical images of Old Master paintings

    NASA Astrophysics Data System (ADS)

    Conover, Damon M.; Delaney, John K.; Loew, Murray H.

    2015-06-01

    The registration of technical art conservation images of Old Master paintings presents unique challenges. Specifically, X-radiographs and reflective infrared (1000-2500 nm) images reveal shifted, or new, compositional elements not visible on the surface of artworks. Here, we describe a new multimodal registration and mosaicking algorithm that is capable of providing accurate alignment of a variety of types of images, such as the registration of multispectral reflective infrared images, X-radiographs, hyperspectral image cubes, and X-ray fluorescence image cubes to reference color images taken at high spatial sampling (300-500 pixels per inch), even when content differences are present, and a validation study has been performed to quantify the algorithm's accuracy. Key to the algorithm's success is the use of subsets of wavelet images to select control points and a novel method for filtering candidate control-point pairs. The algorithm has been used to register more than 100 paintings at the National Gallery of Art, D.C. and The Art Institute of Chicago. Many of the resulting registered datasets have been published in online catalogues, providing scholars additional information to further their understanding of the paintings and the working methods of the artists who painted them.

  19. Generating Mosaics of Astronomical Images

    NASA Technical Reports Server (NTRS)

    Bergou, Attila; Berriman, Bruce; Good, John; Jacob, Joseph; Katz, Daniel; Laity, Anastasia; Prince, Thomas; Williams, Roy

    2005-01-01

    "Montage" is the name of a service of the National Virtual Observatory (NVO), and of software being developed to implement the service via the World Wide Web. Montage generates science-grade custom mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. "Science-grade" in this context signifies that terrestrial and instrumental features are removed from images in a way that can be described quantitatively. "Custom" refers to user-specified parameters of projection, coordinates, size, rotation, and spatial sampling. The greatest value of Montage is expected to lie in its ability to analyze images at multiple wavelengths, delivering them on a common projection, coordinate system, and spatial sampling, and thereby enabling further analysis as though they were part of a single, multi-wavelength image. Montage will be deployed as a computation-intensive service through existing astronomy portals and other Web sites. It will be integrated into the emerging NVO architecture and will be executed on the TeraGrid. The Montage software will also be portable and publicly available.

  20. Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images

    USGS Publications Warehouse

    Chavez, P.S., Jr.; Isbrecht, J.; Galanis, P.; Gabel, G.L.; Sides, S.C.; Soltesz, D.L.; Ross, S.L.; Velasco, M.G.

    2002-01-01

    Sidescan-sonar imaging systems with digital capabilities have now been available for approximately 20 years. In this paper we present several of the various digital image processing techniques developed by the U.S. Geological Survey (USGS) and used to apply intensity/radiometric and geometric corrections, as well as enhance and digitally mosaic, sidescan-sonar images of the Monterey Bay region. New software run by a WWW server was designed and implemented to allow very large image data sets, such as the digital mosaic, to be easily viewed interactively, including the ability to roam throughout the digital mosaic at the web site in either compressed or full 1-m resolution. The processing is separated into the two different stages: preprocessing and information extraction. In the preprocessing stage, sensor-specific algorithms are applied to correct for both geometric and intensity/radiometric distortions introduced by the sensor. This is followed by digital mosaicking of the track-line strips into quadrangle format which can be used as input to either visual or digital image analysis and interpretation. An automatic seam removal procedure was used in combination with an interactive digital feathering/stenciling procedure to help minimize tone or seam matching problems between image strips from adjacent track-lines. The sidescan-sonar image processing package is part of the USGS Mini Image Processing System (MIPS) and has been designed to process data collected by any 'generic' digital sidescan-sonar imaging system. The USGS MIPS software, developed over the last 20 years as a public domain package, is available on the WWW at: http://terraweb.wr.usgs.gov/trs/software.html.

  1. A hand-held mosaicked multispectral imaging device for early stage pressure ulcer detection.

    PubMed

    Qi, Hairong; Kong, Linghua; Wang, Chao; Miao, Lidan

    2011-10-01

    The use of a custom filter mosaic overlaying a CMOS/CCD sensor represents a novel idea to multispectral imaging. The innovation provides simple, miniaturized, low cost instrumentation that has many potential biological applications which require a hand-held detector. This makes it extremely adaptable and can serve as an integrated component to distributed diagnosis and home healthcare (D2H2). A mosaicked sensor is a monolithic array of many sensors, arranged in a geometric pattern with each sensor covered by an optical filter sensitive to a specified wavelength. In this way, only one spectral component is sensed at each pixel and the other spectral components must be estimated from neighbors. Although with great potential, one challenge faced by this device, however, is the reconstruction of the high-resolution full-spectral image from the low-resolution input. Due to the physical limitations in fabrication and the usage of the multispectral filter mosaic, two types of degradations exist, including filter misalignment and the missing spectral components, that must be corrected using intelligent algorithms to take full advantage of the hardware capability of the device. In this paper, we first describe a custom geometric correction method to restore the image from the misalignment distortion. We then present a binary tree-based generic demosaicking algorithm to efficiently estimate the missing special components and reconstruct a high-resolution full-spectral image. We choose early detection of pressure ulcer as a targeting area as early stage pressure ulcers and other subcutaneous lesions are nearly invisible in clinical settings, particularly so for dark pigmented skin. We show how the geometric correction and demosaicking algorithms successfully reconstruct a full-spectral image from which apparent contrast enhancement between damaged skin and the normal skin is observed. PMID:20703688

  2. Fundus image mosaicking for information augmentation in computer-assisted slit-lamp imaging.

    PubMed

    Richa, Rogério; Linhares, Rodrigo; Comunello, Eros; von Wangenheim, Aldo; Schnitzler, Jean-Yves; Wassmer, Benjamin; Guillemot, Claire; Thuret, Gilles; Gain, Philippe; Hager, Gregory; Taylor, Russell

    2014-06-01

    Laser photocoagulation is currently the standard treatment for sight-threatening diseases worldwide, namely diabetic retinopathy and retinal vein occlusions. The slit lamp biomicroscope is the most commonly used device for this procedure, specially for the treatment of the eye periphery. However, only a small portion of the retina can be visualized through the biomicroscope, complicating the task of localizing and identifying surgical targets, increasing treatment duration and patient discomfort. In order to assist surgeons, we propose a method for creating intraoperative retina maps for view expansion using a slit-lamp device. Based on the mosaicking method described by Richa et al, 2012, the proposed method is a combination of direct and feature-based methods, suitable for the textured nature of the human retina. In this paper, we describe three major enhancements to the original formulation. The first is a visual tracking method using local illumination compensation to cope with the challenging visualization conditions. The second is an efficient pixel selection scheme for increased computational efficiency. The third is an entropy-based mosaic update method to dynamically improve the retina map during exploration. To evaluate the performance of the proposed method, we conducted several experiments on human subjects with a computer-assisted slit-lamp prototype. We also demonstrate the practical value of the system for photo documentation, diagnosis and intraoperative navigation. PMID:24718569

  3. Astronomical context coder for image compression

    NASA Astrophysics Data System (ADS)

    Pata, Petr; Schindler, Jaromir

    2015-10-01

    Recent lossless still image compression formats are powerful tools for compression of all kind of common images (pictures, text, schemes, etc.). Generally, the performance of a compression algorithm depends on its ability to anticipate the image function of the processed image. In other words, a compression algorithm to be successful, it has to take perfectly the advantage of coded image properties. Astronomical data form a special class of images and they have, among general image properties, also some specific characteristics which are unique. If a new coder is able to correctly use the knowledge of these special properties it should lead to its superior performance on this specific class of images at least in terms of the compression ratio. In this work, the novel lossless astronomical image data compression method will be presented. The achievable compression ratio of this new coder will be compared to theoretical lossless compression limit and also to the recent compression standards of the astronomy and general multimedia.

  4. Software Helps Extract Information From Astronomical Images

    NASA Technical Reports Server (NTRS)

    Hartley, Booth; Ebert, Rick; Laughlin, Gaylin

    1995-01-01

    PAC Skyview 2.0 is interactive program for display and analysis of astronomical images. Includes large set of functions for display, analysis and manipulation of images. "Man" pages with descriptions of functions and examples of usage included. Skyview used interactively or in "server" mode, in which another program calls Skyview and executes commands itself. Skyview capable of reading image data files of four types, including those in FITS, S, IRAF, and Z formats. Written in C.

  5. Philosophy for the Creation of Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, T.; Levay, Z. G.; Frattare, L. M.; English, J.; Pu'Uohau-Pummill, K.

    2005-12-01

    The quality of modern astronomical data, the power of modern computers and the agility of current image-processing software enable the creation of high-quality images in a purely digital form. The combination of these technological advancements has created a new ability to make colour astronomical images. These programs use a layering metaphor that allows for an unlimited number of astronomical datasets to be combined in any desired colour scheme, creating an immense parameter space to be explored. A philosophy is presented on how to use scaling, colour and composition to create images that simultaneously highlight scientific detail and are aesthetically appealing. This philosophy is necessary because most datasets do not correspond to the wavelength range of sensitivity of the human eye. The use of visual grammar, defined as the elements that affect the interpretation of an image, can maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image cannot show intrinsically, such as depth, motion and energy. In addition, composition can be used to engage viewers and keep them interested for a longer period of time. The use of these techniques can result in a striking image that will effectively convey the science within the image to scientists and to the public. Details of the pictorial examples used are presented in the conference web-proceedings and webcast.

  6. Seam-line determination for image mosaicking: A technique minimizing the maximum local mismatch and the global cost

    NASA Astrophysics Data System (ADS)

    Chon, Jaechoon; Kim, Hyongsuk; Lin, Chun-Shin

    2010-01-01

    This paper presents a novel algorithm that selects seam-lines for mosaicking image patches. This technique uses Dijkstra's algorithm to find a seam-line with the minimal objective function. Since a segment of seam-line with significant mismatch, even if it is short, is more visible than a lengthy one with small differences, a direct summation of the mismatch scores is inadequate. Limiting the level of the maximum difference along a seam-line should be part of the objective in the seam-line selection process. Our technique first determines this desired level of maximum difference, then applies Dijkstra's algorithm to find the best seam-line. A quantitative measure to evaluate a seam-line is proposed. The measure is defined as the sum of a fixed number of top mismatch scores. The proposed algorithm is compared with other techniques quantitatively and visually about various types of images.

  7. Astronomical imaging with InSb arrays

    NASA Astrophysics Data System (ADS)

    Pipher, Judith L.

    Ten years ago, Forrest presented the first astronomical images with a Santa Barbara Research Center (SBRC) 32 x 32 InSb array camera at the first NASA-Ames Infrared Detector Technology Work-shop. Soon after, SBRC began development of 58 x 62 InSb arrays, both for ground-based astronomy and for the Space Infrared Telescope Facility (SIRTF). By the time of the 1987 Hilo workshop 'Ground-based Astronomical Observations with Infrared Array Dectectors' astronomical results from cameras based on SBRC 32 x 32 and 58 x 62 InSb arrays, a CE linear InSb array, and a French 32 x 32 InSb charge injection device (CID) array were presented. And at the Tucson 1990 meeting 'Astrophysics with Infrared Arrays', it was clear that this new technology was no longer the province of 'IR pundits', but provided a tool for all astronomers. At this meeting, the first astronomical observations with SBRC's new, gateless passivation 256 x 256 InSb arrays will be presented: they perform spectacularly] In this review, I can only broadly brush on the interesting science completed with InSb array cameras. Because of the broad wavelength coverage (1-5.5 micrometer) of InSb, and the extremely high performance levels throughout the band, InSb cameras are used not only in the near IR, but also from 3-5.5 micrometer, where unique science is achieved. For example, the point-like central engines of active galactic nuclei (AGN) are delineated at L' and M', and Bra and 3.29 micrometer dust emission images of galactic and extragalactic objects yield excitation conditions. Examples of imaging spectroscopy, high spatial resolution imaging, as well as deep, broad-band imaging with InSb cameras at this meeting illustrate the power of InSb array cameras.

  8. Astronomical image denoising using dictionary learning

    NASA Astrophysics Data System (ADS)

    Beckouche, S.; Starck, J. L.; Fadili, J.

    2013-08-01

    Astronomical images suffer a constant presence of multiple defects that are consequences of the atmospheric conditions and of the intrinsic properties of the acquisition equipment. One of the most frequent defects in astronomical imaging is the presence of additive noise which makes a denoising step mandatory before processing data. During the last decade, a particular modeling scheme, based on sparse representations, has drawn the attention of an ever growing community of researchers. Sparse representations offer a promising framework to many image and signal processing tasks, especially denoising and restoration applications. At first, the harmonics, wavelets and similar bases, and overcomplete representations have been considered as candidate domains to seek the sparsest representation. A new generation of algorithms, based on data-driven dictionaries, evolved rapidly and compete now with the off-the-shelf fixed dictionaries. Although designing a dictionary relies on guessing the representative elementary forms and functions, the framework of dictionary learning offers the possibility of constructing the dictionary using the data themselves, which provides us with a more flexible setup to sparse modeling and allows us to build more sophisticated dictionaries. In this paper, we introduce the centered dictionary learning (CDL) method and we study its performance for astronomical image denoising. We show how CDL outperforms wavelet or classic dictionary learning denoising techniques on astronomical images, and we give a comparison of the effects of these different algorithms on the photometry of the denoised images. The current version of the code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A132

  9. Shift-and-add for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Ribak, Erez; Hege, E. Keith; Strobel, Nicolas V.; Christou, Julian C.

    1989-01-01

    Diffraction-limited astronomical images have been obtained utilizing a variant of the shift-and-add method. It is shown that the matched filter approach for extending the weighted shift-and-add method reduces specklegrams from extended objects and from an object dominated by photon noise. The method is aberration-insensitive and yields very high dynamic range results. The iterative method for arriving at the matched filter does not automatically converge in the case of photon-noisy specklegrams for objects with more than one maximum.

  10. Automated object detection for astronomical images

    NASA Astrophysics Data System (ADS)

    Orellana, Sonny; Zhao, Lei; Boussalis, Helen; Liu, Charles; Rad, Khosrow; Dong, Jane

    2005-10-01

    Sponsored by the National Aeronautical Space Association (NASA), the Synergetic Education and Research in Enabling NASA-centered Academic Development of Engineers and Space Scientists (SERENADES) Laboratory was established at California State University, Los Angeles (CSULA). An important on-going research activity in this lab is to develop an easy-to-use image analysis software with the capability of automated object detection to facilitate astronomical research. This paper presented a fast object detection algorithm based on the characteristics of astronomical images. This algorithm consists of three steps. First, the foreground and background are separated using histogram-based approach. Second, connectivity analysis is conducted to extract individual object. The final step is post processing which refines the detection results. To improve the detection accuracy when some objects are blocked by clouds, top-hat transform is employed to split the sky into cloudy region and non-cloudy region. A multi-level thresholding algorithm is developed to select the optimal threshold for different regions. Experimental results show that our proposed approach can successfully detect the blocked objects by clouds.

  11. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  12. Tip--tilt compensation for astronomical imaging

    SciTech Connect

    Olivier, S.S. ); Gavel, D.T. )

    1994-01-01

    We present a performance analysis of tip--tilt-compensation systems that use natural stars as tilt references. Taking into account properties of the atmosphere and of the galactic stellar populations, we optimize operating parameters over the system to determine performance limits for several varieties of tip--tilt-compensation system operating on a 10-m telescope on Mauna Kea, Hawaii. We find that, for systems that use a single tilt reference star, if the image of the star is uncorrected, a one-axis root-mean-square tilt residual of less than 190 nrad can be obtained for at least 99% of all astronomical objects, whereas if the image of the tilt reference star is fully corrected this limit drops to 90 nrad. For systems that use two tilt reference stars the limits drop to 160 nrad if the images of the stars are uncorrected and to 60 nrad if the images of the stars are fully corrected. These residual tilt levels would permit [ital V]-band images with long-exposure resolution of 8.5, 4.2, 7.3, and 2.9 times the diffraction limit, respectively, where the diffraction-limited resolution in the [ital V] band is 0.011 arcsec. These results may be compared with the typical seeing of 0.75 arcsec.

  13. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Images captured from airborne imaging systems have the advantages of relatively low cost, high spatial resolution, and real/near-real-time availability. Multiple images taken from one or more flight lines could be used to generate a high-resolution mosaic image, which could be useful for diverse rem...

  14. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  15. Radiation events in astronomical CCD images

    NASA Astrophysics Data System (ADS)

    Smith, Alan R.; McDonald, Richard J.; Hurley, D. C.; Holland, Steven E.; Groom, Donald E.; Brown, William E.; Gilmore, David K.; Stover, Richard J.; Wei, Mingzhi

    2002-04-01

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. 'Cosmic rays' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons ('worms'). Beta emitters inside the dewar, for example high-potassium glasses such as BK7 , also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by- products of 40K decay and the U and Th decay chains; these elements commonly appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to have significantly lower rates than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude fights does not appear to be a problem. Our conclusion are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  16. Radiation events in astronomical CCD images

    SciTech Connect

    Smith, A.R.; McDonald, R.J.; Hurley, D.L.; Holland, S.E.; Groom, D.E.; Brown, W.E.; Gilmore, D.K.; Stover, R.J.; Wei, M.

    2001-12-18

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. ''Cosmic rays'' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons (''worms''). Beta emitters inside the dewar, for example high-potassium glasses such as BK7, also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by-products of the U and Th decay chains; these elements always appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to be significantly cleaner than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude flights does not appear to be a problem. Our conclusions are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  17. a Modified Projective Transformation Scheme for Mosaicking Multi-Camera Imaging System Equipped on a Large Payload Fixed-Wing Uas

    NASA Astrophysics Data System (ADS)

    Jhan, J. P.; Li, Y. T.; Rau, J. Y.

    2015-03-01

    In recent years, Unmanned Aerial System (UAS) has been applied to collect aerial images for mapping, disaster investigation, vegetation monitoring and etc. It is a higher mobility and lower risk platform for human operation, but the low payload and short operation time reduce the image collection efficiency. In this study, one nadir and four oblique consumer grade DSLR cameras composed multiple camera system is equipped on a large payload UAS, which is designed to collect large ground coverage images in an effective way. The field of view (FOV) is increased to 127 degree, which is thus suitable to collect disaster images in mountainous area. The synthetic acquired five images are registered and mosaicked as larger format virtual image for reducing the number of images, post processing time, and for easier stereo plotting. Instead of traditional image matching and applying bundle adjustment method to estimate transformation parameters, the IOPs and ROPs of multiple cameras are calibrated and derived the coefficients of modified projective transformation (MPT) model for image mosaicking. However, there are some uncertainty of indoor calibrated IOPs and ROPs since the different environment conditions as well as the vibration of UAS, which will cause misregistration effect of initial MPT results. Remaining residuals are analysed through tie points matching on overlapping area of initial MPT results, in which displacement and scale difference are introduced and corrected to modify the ROPs and IOPs for finer registration results. In this experiment, the internal accuracy of mosaic image is better than 0.5 pixels after correcting the systematic errors. Comparison between separate cameras and mosaic images through rigorous aerial triangulation are conducted, in which the RMSE of 5 control and 9 check points is less than 5 cm and 10 cm in planimetric and vertical directions, respectively, for all cases. It proves that the designed imaging system and the proposed scheme

  18. Evaluating Commercial Scanners for Astronomical Image Digitization

    NASA Astrophysics Data System (ADS)

    Simcoe, R. J.

    2009-08-01

    Many organizations have been interested in understanding if commercially available scanners are adequate for scientifically useful digitization. These scanners range in price from a few hundred to a few tens of thousands of dollars (USD), often with little apparent difference in performance specifications. This paper describes why the underlying technology used in flatbed scanners tends to effectively limit resolutions to the 600-1200 dots per inch (dpi) range and how the overall system Modulation Transfer Function (MTF) can be used to evaluate the quality of the digitized data for the small feature sizes found in astronomical images. Two scanners, the Epson V750 flatbed scanner and the Nikon Cool Scan 9000ED film strip scanner, are evaluated through their Modulation Transfer Functions (MTF). The MTF of the Harvard DASCH scanner is also shown for comparison. The particular goal of this evaluation was to understand if the scanners could be used for digitizing spectral plates at the University of Toronto. The plates of primary interest were about 15 mm (5/8 inch) wide by 180 mm (7~inches) long and ˜50 mm x 80 mm (2 x 3 inches). The results of the MTF work show that the Epson scanner, despite claims of high resolution, is of limited value for scientific imaging of feature sizes below about 50 μm and therefore not a good candidate for digitizing the spectral plates and problematic for scanning direct plates. The Nikon scanner is better and, except for some frustrating limitations in its software, its performance seems to hold promise as a digitizer for spectral plates in the University of Toronto collection.

  19. Application of digital image processing techniques to astronomical imagery 1977

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.; Lynn, D. J.

    1978-01-01

    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  20. The application of interferometry to optical astronomical imaging.

    PubMed

    Baldwin, John E; Haniff, Christopher A

    2002-05-15

    In the first part of this review we survey the role optical/infrared interferometry now plays in ground-based astronomy. We discuss in turn the origins of astronomical interferometry, the motivation for its development, the techniques of its implementation, examples of its astronomical significance, and the limitations of the current generation of interferometric arrays. The second part focuses on the prospects for ground-based astronomical imaging interferometry over the near to mid-term (i.e. 10 years) at optical and near-infrared wavelengths. An assessment is made of the astronomical and technical factors which determine the optimal designs for imaging arrays. An analysis based on scientific capability, technical feasibility and cost argues for an array of large numbers of moderate-sized (2 m class) telescopes rather than one comprising a small number of much larger collectors. PMID:12804289

  1. Digital image centering. II. [for astronomical photography

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Van Altena, W. F.

    1978-01-01

    Digital image centering algorithms were compared in a test involving microdensitometer raster scans of a refractor parallax series consisting of 22 stars on 26 plates. The highest accuracy in determining stellar image positions was provided by an algorithm which involved fitting of a symmetric Gaussian curve and a flat background to the image marginal density distributions. Algorithms involving transmission marginals instead of density marginals were found to be less accurate. The repeatability and computational efficiency of the digital image centering technique were also studied.

  2. The CAPRI Project: Coordinates for Astronomical Press Release Images

    NASA Astrophysics Data System (ADS)

    Frattare, Lisa M.; Ferguson, B. A.; Summers, F.; Levay, Z. G.

    2009-01-01

    The beauty and splendor of astronomical press release images has made an enormously positive impact with the media and public alike. As a leading provider of astronomical imagery and a major contributor of Hubble Space Telescope press release images, the outreach division of Space Telescope Science Institute (STScI) recognizes the importance of making press release images compliant with virtual observatory standards for inclusion in databases and repositories. Our goal is to make outreach images accessible by virtual observatory applications by calculating World Coordinate System (WCS) data for these images. We provide updated and improved software that allows observatories to easily and accurately transform coordinates on their astronomical press release images, using reference FITS files. The resultant metadata conforms to the Simple Image Access (SIA) protocol established by the International Virtual Observatory Alliance and has been used by popular end users such as Google Sky and World Wide Telescope. Several hundred images from the STScI Office of Public Outreach NewsCenter database have been processed, and their coordinates and other relevant metadata are accessible through an SIA-compliant web service.

  3. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    NASA Astrophysics Data System (ADS)

    Schindler, J.; Páta, P.; Klíma, M.; Fliegel, K.

    This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties -- high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System) has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei) and the optical transient of GRB (gamma ray bursts) searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric) point of view. The first method is based on a statistical approach, using the Karhunen-Loève transform (KLT) with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC) coder based on adaptive median regression.

  4. Sharing Images Intelligently: The Astronomical Visualization Metadata Standard

    NASA Astrophysics Data System (ADS)

    Hurt, Robert L.; Christensen, L.; Gauthier, A.

    2006-12-01

    The astronomical education and public outreach (EPO) community plays a key role in conveying the results of scientific research to the general public. A key product of EPO development is a variety of non-scientific public image resources, both derived from scientific observations and created as artistic visualizations of scientific results. This refers to general image formats such as JPEG, TIFF, PNG, GIF, not scientific FITS datasets. Such resources are currently scattered across the internet in a variety of galleries and archives, but are not searchable in any coherent or unified way. Just as Virtual Observatory standards open up all data archives to a common query engine, the EPO community will benefit greatly from a similar mechanism for image search and retrieval. A new standard has been developed for astronomical imagery defining a common set of content fields suited for the needs of astronomical visualizations. This encompasses images derived from data, artist's conceptions, simulations, photography, and can be ultimately extensible to video products. The first generation of tools are now available to tag images with this metadata, which can be embedded with the image file using an XML-based format that functions similarly to a FITS header. As image collections are processed to include astronomy visualization metadata tags, extensive information providing educational context, credits, data sources, and even coordinate information will be readily accessible for uses spanning casual browsing, publication, and interactive media systems.

  5. ASTRiDE: Automated Streak Detection for Astronomical Images

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Won

    2016-05-01

    ASTRiDE detects streaks in astronomical images using a "border" of each object (i.e. "boundary-tracing" or "contour-tracing") and their morphological parameters. Fast moving objects such as meteors, satellites, near-Earth objects (NEOs), or even cosmic rays can leave streak-like traces in the images; ASTRiDE can detect not only long streaks but also relatively short or curved streaks.

  6. Content-based retransmission with error concealment for astronomical images

    NASA Astrophysics Data System (ADS)

    Thienphrapa, Paul; Boussalis, Helen; Liu, Charles; Rad, Khosrow; Dong, Jane

    2005-10-01

    The James Webb Space Telescope (JWST) is expected to produce a vast amount of images that are valuable for astronomical research and education. To support research activities related to JWST mission, NASA has provided funds to establish the Structures Pointing and Control Engineering (SPACE) Laboratory at the California State University, Los Angeles (CSULA). One of the research activities in SPACE lab is to design an effective and efficient transmission system to disseminate JWST images across the Internet. This paper presents a prioritized transmission method to provide the best quality of the transferred image based on the joint-optimization of content-based retransmission and error concealment. First, the astronomical image is compressed using a scalable wavelet-based approach, then packetized into independently decodable packets. To facilitate the joint-optimization of two mutually dependent error control methods, a novel content index is declared to represent the significance of the packet content as well as its importance in error concealment. Based on the defined content index, the optimal retransmission schedule is determined to maximize the quality of the received image under delay constraint with the given error concealment method. Experimental results demonstrate that the proposed approach is very effective to combat the packet loss during transmission to achieve a desirable quality of the received astronomical images.

  7. Ten Challenges of Producing an Astronomical Gigapixel Image

    NASA Astrophysics Data System (ADS)

    Jäger, M.; Christensen, L. L.

    2015-06-01

    Public outreach involves developing new methods, testing new technologies and integrating new ideas. Sometimes, the craft of outreach even leads into completely unknown territory. This is the story of a project that led into astronomical and technological terra incognita. It is about the production of a mosaic of the central parts of the Milky Way made with ESO's VISTA telescope as part of the VVV survey. The outreach system at ESO was tested to its limits, and beyond, by the production of what is still likely to be the largest astronomical image in the world. Several significant challenges had to be overcome, extensive hardware and software upgrades were undertaken and compromises had to be made to produce this stunning image for the public.

  8. Astronomical imaging Fourier spectroscopy at far-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Brad G.; van der Wiel, Matthijs H. D.; Makiwa, Gibion

    2013-11-01

    The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach–Zehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel–SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.

  9. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  10. Astronomical Coma Image Restoration Through the Use of Localized Deconvolution

    NASA Astrophysics Data System (ADS)

    Gifford, Steve

    2008-05-01

    This paper discusses an image restoration technique to effectively post-process astronomical images to remove coma artifacts. Coma is a common problem for imprecise optical systems that manifest its self as distortions that worsen near the edge of the image. Conventional full-image deconvolution techniques will not remove this artifact because the coma exhibits a positionally variant distortion of the image, i.e., the optical point spread function (PSF) varies as a function of position at the focal plane. Coma repair is accomplished by partitioning the image into small blocks, estimating the PSF of the block, applying the Richardson-Lucy deconvolution algorithm to each block and then reassembly of the blocks into the final image.

  11. Lossless Astronomical Image Compression and the Effects of Random Noise

    NASA Technical Reports Server (NTRS)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  12. ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES

    SciTech Connect

    Lang, Dustin; Mierle, Keir; Roweis, Sam; Hogg, David W.; Blanton, Michael

    2010-05-15

    We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the 'lost in space' problem in which nothing-not even the image scale-is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists. This is the first step in a program of making it possible to trust calibration meta-data for astronomical data of arbitrary provenance.

  13. MOPEX: a software package for astronomical image processing and visualization

    NASA Astrophysics Data System (ADS)

    Makovoz, David; Roby, Trey; Khan, Iffat; Booth, Hartley

    2006-06-01

    We present MOPEX - a software package for astronomical image processing and display. The package is a combination of command-line driven image processing software written in C/C++ with a Java-based GUI. The main image processing capabilities include creating mosaic images, image registration, background matching, point source extraction, as well as a number of minor image processing tasks. The combination of the image processing and display capabilities allows for much more intuitive and efficient way of performing image processing. The GUI allows for the control over the image processing and display to be closely intertwined. Parameter setting, validation, and specific processing options are entered by the user through a set of intuitive dialog boxes. Visualization feeds back into further processing by providing a prompt feedback of the processing results. The GUI also allows for further analysis by accessing and displaying data from existing image and catalog servers using a virtual observatory approach. Even though originally designed for the Spitzer Space Telescope mission, a lot of functionalities are of general usefulness and can be used for working with existing astronomical data and for new missions. The software used in the package has undergone intensive testing and benefited greatly from effective software reuse. The visualization part has been used for observation planning for both the Spitzer and Herschel Space Telescopes as part the tool Spot. The visualization capabilities of Spot have been enhanced and integrated with the image processing functionality of the command-line driven MOPEX. The image processing software is used in the Spitzer automated pipeline processing, which has been in operation for nearly 3 years. The image processing capabilities have also been tested in off-line processing by numerous astronomers at various institutions around the world. The package is multi-platform and includes automatic update capabilities. The software

  14. Hybrid CMOS SiPIN detectors as astronomical imagers

    NASA Astrophysics Data System (ADS)

    Simms, Lance Michael

    Charge Coupled Devices (CCDs) have dominated optical and x-ray astronomy since their inception in 1969. Only recently, through improvements in design and fabrication methods, have imagers that use Complimentary Metal Oxide Semiconductor (CMOS) technology gained ground on CCDs in scientific imaging. We are now in the midst of an era where astronomers might begin to design optical telescope cameras that employ CMOS imagers. The first three chapters of this dissertation are primarily composed of introductory material. In them, we discuss the potential advantages that CMOS imagers offer over CCDs in astronomical applications. We compare the two technologies in terms of the standard metrics used to evaluate and compare scientific imagers: dark current, read noise, linearity, etc. We also discuss novel features of CMOS devices and the benefits they offer to astronomy. In particular, we focus on a specific kind of hybrid CMOS sensor that uses Silicon PIN photodiodes to detect optical light in order to overcome deficiencies of commercial CMOS sensors. The remaining four chapters focus on a specific type of hybrid CMOS Silicon PIN sensor: the Teledyne Hybrid Visible Silicon PIN Imager (HyViSI). In chapters four and five, results from testing HyViSI detectors in the laboratory and at the Kitt Peak 2.1m telescope are presented. We present our laboratory measurements of the standard detector metrics for a number of HyViSI devices, ranging from 1k×1k to 4k×4k format. We also include a description of the SIDECAR readout circuit that was used to control the detectors. We then show how they performed at the telescope in terms of photometry, astrometry, variability measurement, and telescope focusing and guiding. Lastly, in the final two chapters we present results on detector artifacts such as pixel crosstalk, electronic crosstalk, and image persistence. One form of pixel crosstalk that has not been discussed elsewhere in the literature, which we refer to as Interpixel Charge

  15. Detection and removal of artifacts in astronomical images

    NASA Astrophysics Data System (ADS)

    Desai, S.; Mohr, J. J.; Bertin, E.; Kümmel, M.; Wetzstein, M.

    2016-07-01

    Astronomical images from optical photometric surveys are typically contaminated with transient artifacts such as cosmic rays, satellite trails and scattered light. We have developed and tested an algorithm that removes these artifacts using a deep, artifact free, static sky coadd image built up through the median combination of point spread function (PSF) homogenized, overlapping single epoch images. Transient artifacts are detected and masked in each single epoch image through comparison with an artifact free, PSF-matched simulated image that is constructed using the PSF-corrected, model fitting catalog from the artifact free coadd image together with the position variable PSF model of the single epoch image. This approach works well not only for cleaning single epoch images with worse seeing than the PSF homogenized coadd, but also the traditionally much more challenging problem of cleaning single epoch images with better seeing. In addition to masking transient artifacts, we have developed an interpolation approach that uses the local PSF and performs well in removing artifacts whose widths are smaller than the PSF full width at half maximum, including cosmic rays, the peaks of saturated stars and bleed trails. We have tested this algorithm on Dark Energy Survey Science Verification data and present performance metrics. More generally, our algorithm can be applied to any survey which images the same part of the sky multiple times.

  16. PRAIA - Platform for Reduction of Astronomical Images Automatically

    NASA Astrophysics Data System (ADS)

    Assafin, M.; Vieira Martins, R.; Camargo, J. I. B.; Andrei, A. H.; Da Silva Neto, D. N.; Braga-Ribas, F.

    2011-06-01

    PRAIA performs high precision differential photometry and astrometry on digitized images (CCD frames, Schmidt plate surveys, etc). The package main characteristics are automation, accuracy and processing speed. Written in FORTRAN 77, it can run in scripts and interact with any visualization and analysis software. PRAIA is in cope with the ever growing amount of observational data available from private and public sources, including data mining and next generation fast telescope all sky surveys, like SDSS, Pan-STARRS and others. PRAIA was officially assigned as the astrometric supporting tool for participants in the GAIA-FUNSSO activities and will be freely available for the astronomical community.

  17. Automating sky object classification in astronomical survey images

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Doyle, Richard J.; Weir, Nicholas; Djorgovski, S. G.

    1992-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomer Observatory Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 10(exp 7) galaxies and 10(exp 8) stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. The size of this data set precludes manual analysis. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3* and O-BTree, two inductive learning techniques, learn classification decision trees from examples. These classifiers will be used to process the rest of the data. This paper gives an overview of the machine learning techniques used, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our approach is well-suited to the problem. The primary benefits of the approach are increased data reduction throughput and consistency of classification. The classification rules which are the product of the inductive learning techniques will form an object, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically cataloged

  18. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  19. Dynamic support region-based astronomical image deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Geng, Ze-xun; Chen, Bo; Xu, Qing; Zhang, Bao-ming; Gong, Zhi-hui

    2008-07-01

    The performance of high-resolution imaging with large optical instruments is severely limited by atmospheric turbulence, and an image deconvolution is required for reaching the diffraction limit. A new astronomical image deconvolution algorithm is proposed, which incorporates dynamic support region and improved cost function to NAS-RIF algorithm. The enhanced NAS-RIF (ENAS-RIF) method takes into account the noise in the image and can dynamically shrink support region (SR) in application. In restoration process, initial SR is set to approximate counter of the true object, and then SR automatically contracts with iteration going. The approximate counter of interested object is detected by means of beamlet transform detecting edge. The ENAS-RIF algorithm is applied to the restorations of in-door Laser point source and long exposure extended object images. The experimental results demonstrate that the ENAS-RIF algorithm works better than classical NAS-RIF algorithm in deconvolution of the degraded image with low SNR and convergence speed is faster.

  20. More flexibility in representing geometric distortion in astronomical images

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir

    2012-09-01

    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  1. Imfit: A Fast, Flexible Program for Astronomical Image Fitting

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2014-08-01

    Imift is an open-source astronomical image-fitting program specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. Its object-oriented design allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include Sersic, exponential, and Gaussian galaxy decompositions along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or the Cash statistic; the latter is particularly appropriate for cases of Poisson data in the low-count regime. The C++ source code for Imfit is available under the GNU Public License.

  2. Deconvolution of astronomical images using SOR with adaptive relaxation.

    PubMed

    Vorontsov, S V; Strakhov, V N; Jefferies, S M; Borelli, K J

    2011-07-01

    We address the potential performance of the successive overrelaxation technique (SOR) in image deconvolution, focusing our attention on the restoration of astronomical images distorted by atmospheric turbulence. SOR is the classical Gauss-Seidel iteration, supplemented with relaxation. As indicated by earlier work, the convergence properties of SOR, and its ultimate performance in the deconvolution of blurred and noisy images, can be made competitive to other iterative techniques, including conjugate gradients, by a proper choice of the relaxation parameter. The question of how to choose the relaxation parameter, however, remained open, and in the practical work one had to rely on experimentation. In this paper, using constructive (rather than exact) arguments, we suggest a simple strategy for choosing the relaxation parameter and for updating its value in consecutive iterations to optimize the performance of the SOR algorithm (and its positivity-constrained version, +SOR) at finite iteration counts. We suggest an extension of the algorithm to the notoriously difficult problem of "blind" deconvolution, where both the true object and the point-spread function have to be recovered from the blurred image. We report the results of numerical inversions with artificial and real data, where the algorithm is compared with techniques based on conjugate gradients. In all of our experiments +SOR provides the highest quality results. In addition +SOR is found to be able to detect moderately small changes in the true object between separate data frames: an important quality for multi-frame blind deconvolution where stationarity of the object is a necesessity. PMID:21747506

  3. IMFIT: A Fast, Flexible New Program for Astronomical Image Fitting

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2015-02-01

    I describe a new, open-source astronomical image-fitting program called IMFIT, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriented design that allows new types of image components (two-dimensional surface-brightness functions) to be easily written and added to the program. Image functions provided with IMFIT include the usual suspects for galaxy decompositions (Sérsic, exponential, Gaussian), along with Core-Sérsic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through three-dimensional luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard χ2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-signal-to-noise ratio galaxy images using χ2 minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.

  4. IMFIT: A FAST, FLEXIBLE NEW PROGRAM FOR ASTRONOMICAL IMAGE FITTING

    SciTech Connect

    Erwin, Peter

    2015-02-01

    I describe a new, open-source astronomical image-fitting program called IMFIT, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriented design that allows new types of image components (two-dimensional surface-brightness functions) to be easily written and added to the program. Image functions provided with IMFIT include the usual suspects for galaxy decompositions (Sérsic, exponential, Gaussian), along with Core-Sérsic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through three-dimensional luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard χ{sup 2} statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-signal-to-noise ratio galaxy images using χ{sup 2} minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.

  5. Advances in infrared and imaging fibres for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Haynes, Roger; McNamara, Pam; Marcel, Jackie; Jovanovic, Nemanja

    2006-06-01

    Optical fibres have already played a huge part in ground based astronomical instrumentation, however, with the revolution in photonics currently taking place new fibre technologies and integrated optical devices are likely to have a profound impact on the way we manipulate light in the future. The Anglo Australian Observatory, along with partners at the Optical Fibre Technology Centre of the University of Sydney, is investigating some of the developing technologies as part of our Astrophotonics programme2. In this paper we discuss the advances that have been made with infrared transmitting fibre, both conventional and microstructured, in particular those based on fluoride glasses. Fluoride glasses have a particularly wide transparent region from the UV through to around 7μm, whereas silica fibres, commonly used in astronomy, only transmit out to about 2μm. We discuss the impact of advances in fibre manufacture that have greatly improved the optical, chemical resistance and physical properties of the fluoride fibres. We also present some encouraging initial test results for a modern imaging fibre bundle and imaging fibre taper.

  6. MEMS Deformable Mirrors for Adaptive Optics in Astronomical Imaging

    NASA Astrophysics Data System (ADS)

    Cornelissen, S.; Bierden, P. A.; Bifano, T.

    We report on the development of micro-electromechanical (MEMS) deformable mirrors designed for ground and space-based astronomical instruments intended for imaging extra-solar planets. Three different deformable mirror designs, a 1024 element continuous membrane (32x32), a 4096 element continuous membrane (64x64), and a 331 hexagonal segmented tip-tilt-piston are being produced for the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) program, the Gemini Planet Imaging Instrument, and the visible nulling coronograph developed at JPL for NASA's TPF mission, respectively. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that was pioneered at Boston University and has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors will have an active aperture of up to 25.2mm consisting of thin silicon membrane mirror supported by an array of 1024 to 4096 electrostatic actuators exhibiting no hysteresis and sub-nanometer repeatability. The continuous membrane deformable mirrors, coated with a highly reflective metal film, will be capable of up to 4μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. The segmented device will have a range of motion of 1um of piston and a 600 arc-seconds of tip/tilt simultaneously and a surface finish of 1nm RMS. The individual mirror elements in this unique device, are designed such that they will maintain their flatness throughout the range of travel. New design features and fabrication processes are combined with a proven device architecture to achieve the desired performance and high reliability. Presented in this paper are device characteristic and performance results of these devices.

  7. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    NASA Astrophysics Data System (ADS)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  8. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  9. Video Mosaicking for Inspection of Gas Pipelines

    NASA Technical Reports Server (NTRS)

    Magruder, Darby; Chien, Chiun-Hong

    2005-01-01

    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable

  10. Track extraction of moving targets in astronomical images based on the algorithm of NCST-PCNN

    NASA Astrophysics Data System (ADS)

    Du, Lin; Sun, Huayan; Zhang, Tinghua; Xu, Taohu

    2015-10-01

    Space targets in astronomical images such as spacecraft and space debris are always in the low level of brightness and hold a small amount of pixels, which are difficult to distinguish from fixed stars. Because of the difficulties of space target information extraction, dynamic object monitoring plays an important role in the military, aerospace and other fields, track extraction of moving targets in short-exposure astronomical images holds great significance. Firstly, capture the interesting stars by region growing method in the sequence of short-exposure images and extract the barycenter of interesting star by gray weighted method. Secondly, use adaptive threshold method to remove the error matching points and register the sequence of astronomical images. Thirdly, fuse the registered images by NCST-PCNN image fusion algorithm to hold the energy of stars in the images. Fourthly, get the difference of fused star image and final star image by subtraction of brightness value in the two images, the interesting possible moving targets will be captured by energy accumulation method. Finally, the track of moving target in astronomical images will be extracted by judging the accuracy of moving targets by track association and excluding the false moving targets. The algorithm proposed in the paper can effectively extract the moving target which is added artificially from three images or four images respectively, which verifies the effectiveness of the algorithm.

  11. Block iterative restoration of astronomical images with the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.

  12. IMAGE EXPLORER: Astronomical Image Analysis on an HTML5-based Web Application

    NASA Astrophysics Data System (ADS)

    Gopu, A.; Hayashi, S.; Young, M. D.

    2014-05-01

    Large datasets produced by recent astronomical imagers cause the traditional paradigm for basic visual analysis - typically downloading one's entire image dataset and using desktop clients like DS9, Aladin, etc. - to not scale, despite advances in desktop computing power and storage. This paper describes Image Explorer, a web framework that offers several of the basic visualization and analysis functionality commonly provided by tools like DS9, on any HTML5 capable web browser on various platforms. It uses a combination of the modern HTML5 canvas, JavaScript, and several layers of lossless PNG tiles producted from the FITS image data. Astronomers are able to rapidly and simultaneously open up several images on their web-browser, adjust the intensity min/max cutoff or its scaling function, and zoom level, apply color-maps, view position and FITS header information, execute typically used data reduction codes on the corresponding FITS data using the FRIAA framework, and overlay tiles for source catalog objects, etc.

  13. Toyz: A framework for scientific analysis of large datasets and astronomical images

    NASA Astrophysics Data System (ADS)

    Moolekamp, F.; Mamajek, E.

    2015-11-01

    As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it ​a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.

  14. Toyz: A framework for scientific analysis of large datasets and astronomical images

    NASA Astrophysics Data System (ADS)

    Moolekamp, F.; Mamajek, E.

    2015-11-01

    As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it ​a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.

  15. Straight to the Source: Detecting Aggregate Objects in Astronomical Images with Proper Error Control.

    PubMed

    Friedenberg, David A; Genovese, Christopher R

    2013-07-01

    The next generation of telescopes, coming on-line in the next decade, will acquire terabytes of image data each night. Collectively, these large images will contain billions of interesting objects, which astronomers call sources. One critical task for astronomers is to construct from the image data a detailed source catalog that gives the sky coordinates and other properties of all detected sources. The source catalog is the primary data product produced by most telescopes and serves as an important input for studies that build and test new astrophysical theories. To construct an accurate catalog, the sources must first be detected in the image. A variety of effective source detection algorithms exist in the astronomical literature, but few if any provide rigorous statistical control of error rates. A variety of multiple testing procedures exist in the statistical literature that can provide rigorous error control over pixelwise errors, but these do not provide control over errors at the level of sources, which is what astronomers need. In this paper, we propose a technique that is effective at source detection while providing rigorous control on source-wise error rates. We demonstrate our approach with data from the Chandra X-ray Observatory Satellite. Our method is competitive with existing astronomical methods, even finding two new sources that were missed by previous studies, while providing stronger performance guarantees and without requiring costly follow up studies that are commonly required with current techniques. PMID:24068849

  16. Straight to the Source: Detecting Aggregate Objects in Astronomical Images with Proper Error Control

    PubMed Central

    Friedenberg, David A.; Genovese, Christopher R.

    2013-01-01

    The next generation of telescopes, coming on-line in the next decade, will acquire terabytes of image data each night. Collectively, these large images will contain billions of interesting objects, which astronomers call sources. One critical task for astronomers is to construct from the image data a detailed source catalog that gives the sky coordinates and other properties of all detected sources. The source catalog is the primary data product produced by most telescopes and serves as an important input for studies that build and test new astrophysical theories. To construct an accurate catalog, the sources must first be detected in the image. A variety of effective source detection algorithms exist in the astronomical literature, but few if any provide rigorous statistical control of error rates. A variety of multiple testing procedures exist in the statistical literature that can provide rigorous error control over pixelwise errors, but these do not provide control over errors at the level of sources, which is what astronomers need. In this paper, we propose a technique that is effective at source detection while providing rigorous control on source-wise error rates. We demonstrate our approach with data from the Chandra X-ray Observatory Satellite. Our method is competitive with existing astronomical methods, even finding two new sources that were missed by previous studies, while providing stronger performance guarantees and without requiring costly follow up studies that are commonly required with current techniques. PMID:24068849

  17. RC3 mosaicking pipeline: Creating mosaics for the RC3 Catalogue

    NASA Astrophysics Data System (ADS)

    Lee, Jung Lin

    2014-11-01

    The RC3 mosaicking pipeline creates color composite images and scientifically-calibrated FITS mosaics in all SDSS imaging bands for all the RC3 galaxies that lie within the survey’s footprint and on photographic plates taken by the Digitized Palomar Observatory Sky Survey (DPOSS) for the B, R, IR bands. The pipeline uses SExtractor (ascl:1010.064) for extraction and STIFF (ascl:1110.006) to generating color images. The mosaicking program uses a recursive algorithm for positional update first to correct the positional inaccuracy inherent in the RC3 catalog, then conducts the mosaicking procedure using the Astropy (ascl:1304.002) wrapper to IPAC's Montage (ascl:1010.036) software. The program is generalized into a pipeline that can be easily extended to future survey data or other source catalogs; an online interface is available at http://lcdm.astro.illinois.edu/data/rc3/search.html.

  18. Toyz: Large datasets and astronomical images analysis framework

    NASA Astrophysics Data System (ADS)

    Moolekamp, Fred

    2015-07-01

    Toyz is a python web framework that allows scientists to interact with large images and data sets stored on a remote server. A web application is run on the server containing the data and clients are run from web browsers on the user's computer. Toyz displays large FITS images also also renders any image format supported by Pillow (a fork of the Python Imaging Library), contains a GUI to interact with linked plots, and offers a customizable framework that allows students and researchers to create their own work spaces inside a Toyz environment. Astro-Toyz extends the features of the Toyz image viewer, allowing users to view world coordinates and align images based on their WCS.

  19. Optimum synthetic-aperture imaging of extended astronomical objects.

    PubMed

    van der Avoort, Casper; Pereira, Silvania F; Braat, Joseph J M; den Herder, Jan-Willem

    2007-04-01

    In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demonstrated the working principles of two new approaches: densified pupil imaging and wide field-of-view (FOV) coaxial imaging using a staircase-shaped mirror. We develop a common mathematical formulation for direct comparison of the resolution and noise sensitivity of these four telescope configurations for combining beams from multiple apertures for interferometric synthetic aperture, wide-FOV imaging. Singular value decomposition techniques are used to compare the techniques and observe their distinct signal-to-noise ratio behaviors. We conclude that for a certain chosen stellar object, clear differences in performance of the imagers are identifiable. PMID:17361290

  20. Generic MSFA mosaicking and demosaicking for multispectral cameras

    NASA Astrophysics Data System (ADS)

    Miao, Lidan; Qi, Hairong; Ramanath, Rajeev

    2006-02-01

    In this paper, we investigate the potential application of the multispectral filter array (MSFA) techniques in multispectral imaging for reasons like low cost, exact registration, and strong robustness. In both human and many animal visual systems, different types of photoreceptors are organized into mosaic patterns. This behavior has been emulated in the industry to develop the so-called color filter array (CFA) in the manufacture of digital color cameras. In this way, only one color component is measured at each pixel, and the sensed image is a mosaic of different color bands. We extend this idea to multispectral imaging by developing generic mosaicking and demosaicking algorithms. The binary tree-driven MSFA design process guarantees that the pixel distributions of different spectral bands are uniform and highly correlated. These spatial features facilitate the design of the generic demosaicking algorithm based on the same binary tree, which considers three interrelated issues: band selection, pixel selection and interpolation. We evaluate the reconstructed images from two aspects: better reconstruction and better target classification. The experimental results demonstrate that the mosaicking and demosaicking process preserves the image quality effectively, which further supports that the MSFA technique is a feasible solution for multispectral cameras.

  1. Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information

    NASA Technical Reports Server (NTRS)

    Pence, William D.; White, R. L.; Seaman, R.

    2010-01-01

    We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.

  2. Atmospheric isoplanatism and astronomical image reconstruction on Mauna Kea

    SciTech Connect

    Cowie, L.L.; Songaila, A.

    1988-07-01

    Atmospheric isoplanatism for visual wavelength image-reconstruction applications was measured on Mauna Kea in Hawaii. For most nights the correlation of the transform functions is substantially wider than the long-exposure transform function at separations up to 30 arcsec. Theoretical analysis shows that this is reasonable if the mean Fried parameter is approximately 30 cm at 5500 A. Reconstructed image quality may be described by a Gaussian with a FWHM of lambda/s/sub 0/. Under average conditions, s/sub 0/ (30 arcsec) exceeds 55 cm at 7000 A. The results show that visual image quality in the 0.1--0.2 arcsec range is obtainable over much of the sky with large ground-based telescopes on this site.

  3. Application of digital image processing techniques to astronomical imagery, 1979

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.

    1979-01-01

    Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.

  4. Infrared Astronomical Satellite (IRAS) image reconstruction and restoration

    NASA Technical Reports Server (NTRS)

    Gonsalves, R. A.; Lyons, T. D.; Price, S. D.; Levan, P. D.; Aumann, H. H.

    1987-01-01

    IRAS sky mapping data is being reconstructed as images, and an entropy-based restoration algorithm is being applied in an attempt to improve spatial resolution in extended sources. Reconstruction requires interpolation of non-uniformly sampled data. Restoration is accomplished with an iterative algorithm which begins with an inverse filter solution and iterates on it with a weighted entropy-based spectral subtraction.

  5. Center determination for trailed sources in astronomical observation images

    NASA Astrophysics Data System (ADS)

    Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu

    2014-11-01

    Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.

  6. Astronomical imaging by processing stellar speckle interferometry data

    NASA Astrophysics Data System (ADS)

    Fienup, J. R.; Feldkamp, G. B.

    1980-01-01

    Diffraction-limited images, of resolution many times finer than what is ordinarily obtainable through large earth-bound telescopes, can be obtained by first measuring the modulus of the Fourier transform of an object by the method of Labeyrie's stellar speckle interferometry, and then reconstructing the object by an iterative method. Before reconstruction is performed, it is first necessary to compensate for weighting functions and noise in order to arrive at a good estimate of the object's Fourier modulus. A simple alternative to Worden's method of compensation for the MTF of the speckle process is described. Experimental reconstruction results are shown for the binary star system SAO 94163.

  7. Astronomical imaging by filtered weighted-shift-and-add technique

    NASA Technical Reports Server (NTRS)

    Ribak, Erez

    1986-01-01

    The weighted-shift-and-add speckle imaging technique is analyzed using simple assumptions. The end product is shown to be a convolution of the object with a typical point-spread function (psf) that is similar in shape to the telescope psf and depends marginally on the speckle psf. A filter can be applied to each data frame before locating the maxima, either to identify the speckle locations (matched filter) or to estimate the instantaneous atmospheric psf (Wiener filter). Preliminary results show the power of the technique when applied to photon-limited data and to extended objects.

  8. AWAIC: A WISE Astronomical Image Co-adder

    NASA Astrophysics Data System (ADS)

    Masci, Frank J.; Fowler, J. W.; Cutri, R. M.

    2009-05-01

    The Wide-field Infrared Survey Explorer (WISE) is a NASA Midex mission launching in late 2009 that will survey the entire sky at 3.3, 4.7, 12, and 23 microns with sensitivities up to three orders of magnitude beyond those achieved with IRAS. One of its products is a digital Image Atlas that will combine survey exposures within predefined tiles on the sky. To support this, we have developed a generic frame co-addition tool, AWAIC, for execution in the automated pipeline. We review AWAIC's algorithms, functions and products. The software includes preparatory steps such as frame background matching and outlier detection. Frame co-addition is based on using the detector's Point Response Function (PRF) as an interpolation kernel. This kernel reduces the impact of prior-masked pixels; enables the creation of an optimal matched filtered product for point source detection; and most important, it allows for optional resolution enhancement (HiRes) to yield a "model" of the sky that is consistent with the measurements within their uncertainties. This is accomplished through a Richardson-Lucy like procedure, extended to include non-isoplanatic PRFs, prior noise weighting, variance estimation, and ringing suppression. HiRes is not in the WISE automated processing plan. Ancillary products include images of uncertainties, depth-of-coverage, and outlier locations. AWAIC supports the FITS standard with all common projections and coordinate systems. It will be made portable in the near future.

  9. AWAIC: A WISE Astronomical Image Co-adder

    NASA Astrophysics Data System (ADS)

    Masci, Franck J.; Fowler, J.; Cutri, R.; Science Data Center, WISE

    2009-01-01

    The Wide-field Infrared Survey Explorer (WISE) is a NASA Midex mission launching in late 2009 that will survey the entire sky at 3.3, 4.7, 12, and 23 microns with sensitivities up to three orders of magnitude beyond those achieved with IRAS. One of its products is a digital Image Atlas that will combine survey exposures within predefined tiles on the sky. To support this, we have developed a generic frame co-addition tool, AWAIC, for execution in the automated pipeline. Here we describe AWAIC's algorithms, functionality, and products. The software includes preparatory steps such as frame background matching and outlier detection. Frame co-addition is based on using the detector's Point Response Function (PRF) as an interpolation kernel. This kernel reduces the impact of prior-masked pixels; enables the creation of an optimal matched filtered product for point source detection; and most important, it allows for resolution enhancement (HiRes) to yield a "model" of the sky that is consistent with the observations within their uncertainties. This is accomplished through a Richardson-Lucy like procedure, extended to include non-isoplanatic PRFs, prior noise weighting, variance estimation, and ringing-artifact suppression. HiRes is not in the WISE automated processing plan. Ancillary products include images of uncertainties, depth-of-coverage, and outlier locations. AWAIC supports the FITS standard with all common projections and coordinate systems, and will be made portable in the near future.

  10. Gender Differences in Turkish Primary Students' Images of Astronomical Scientists: A Preliminary Study with 21st Century Style

    ERIC Educational Resources Information Center

    Korkmaz, Hunkar

    2009-01-01

    This study investigated the images of astronomical scientists held by Turkish primary students by gender. The Draw an Astronomical Scientist Test was administered to 472 students from an urban area. A Chi-Square Test of Independence was used to test for statistically significant differences between gender groups. Significant differences were found…

  11. Youpi: A Web-based Astronomical Image Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Monnerville, M.; Sémah, G.

    2010-12-01

    Youpi stands for “YOUpi is your processing PIpeline”. It is a portable, easy to use web application providing high level functionalities to perform data reduction on scientific FITS images. It is built on top of open source processing tools that are released to the community by Terapix, in order to organize your data on a computer cluster, to manage your processing jobs in real time and to facilitate teamwork by allowing fine-grain sharing of results and data. On the server side, Youpi is written in the Python programming language and uses the Django web framework. On the client side, Ajax techniques are used along with the Prototype and script.aculo.us Javascript librairies.

  12. Astronomical image segmentation by self-organizing neural networks and wavelets.

    PubMed

    Núñez, Jorge; Llacer, Jorge

    2003-01-01

    Standard image segmentation methods may not be able to segment astronomical images because their special nature. We present an algorithm for astronomical image segmentation based on self-organizing neural networks and wavelets. We begin by performing wavelet decomposition of the image. The segmentation process has two steps. In the first we separate the stars and other prominent objects using the second plane (w(2)) of the wavelet decomposition, which has little noise but retains enough signal to represent those objects. This method was as least as effective as the traditional source extraction methods in isolating bright objects both from the background and from extended sources. In the second step the rest of the image (extended sources and background) is segmented using a self-organizing neural network. The result is a predetermined number of clusters, which we associate with extended regions plus a small region for each star or bright object. We have applied the algorithm to segment images of both galaxies and planets. The results show that the simultaneous use of all the scales in the self-organizing neural network helps the segmentation process, since it takes into account not only the intensity level, but also both the high and low frequencies present in the image. The connectivity of the regions obtained also shows that the algorithm is robust in the presence of noise. The method can also be applied to restored images. PMID:12672436

  13. Improving Resolution and Depth of Astronomical Observations via Modern Mathematical Methods for Image Analysis

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Ottaviani, D.; Fontana, A.; Merlin, E.; Pilo, S.; Falcone, M.

    2015-09-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  14. Analysis the application of several denoising algorithm in the astronomical image denoising

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Geng, Ze-xun; Bao, Yong-qiang; Wei, Xiao-feng; Pan, Ying-feng

    2014-02-01

    Image denoising is an important method of preprocessing, it is one of the forelands in the field of Computer Graphic and Computer Vision. Astronomical target imaging are most vulnerable to atmospheric turbulence and noise interference, in order to reconstruct the high quality image of the target, we need to restore the high frequency signal of image, but noise also belongs to the high frequency signal, so there will be noise amplification in the reconstruction process. In order to avoid this phenomenon, join image denoising in the process of reconstruction is a feasible solution. This paper mainly research on the principle of four classic denoising algorithm, which are TV, BLS - GSM, NLM and BM3D, we use simulate data for image denoising to analysis the performance of the four algorithms, experiments demonstrate that the four algorithms can remove the noise, the BM3D algorithm not only have high quality of denosing, but also have the highest efficiency at the same time.

  15. Staring/focusing lobster-eye hard x-ray imaging for non-astronomical objects

    NASA Astrophysics Data System (ADS)

    Gertsenshteyn, Michael; Jannson, Tomasz; Savant, Gajendra

    2005-08-01

    A new approach to hard X-ray imaging is proposed, based on staring optics consisting of a lobster-eye lens. This new Staring Imaging Lobster-Eye X-Ray approach is especially suited to X-ray lobster-eye imaging of non-astronomical objects at finite distances, because the staring optics replacing the standard scanning optics, result in an extremely efficient power budget, making possible not only the use of low-efficiency Compton backscattering but also operation with low-flux X-ray beams, increasing operator safety. The lobster-eye optics, consisting of square-cross-section microchannels, transmit an X-ray beam by total external reflection. This mode of operation has already been verified for viewing astronomical objects. Its major challenge is minimizing image defocusing by apodization. For this purpose, a new lens imaging equation is derived, and a new local optical axis concept is defined. Applications include medical imaging, cargo inspection, non-destructive testing, industrial and security safeguards, and surveillance.

  16. The measurement of astronomical parallaxes with CCD imaging cameras on small telescopes

    SciTech Connect

    Ratcliff, S.J. ); Balonek, T.J. ); Marschall, L.A. ); DuPuy, D.L. ); Pennypacker, C.R. ); Verma, R. ); Alexov, A. ); Bonney, V. )

    1993-03-01

    Small telescopes equipped with charge-coupled device (CCD) imaging cameras are well suited to introductory laboratory exercises in positional astronomy (astrometry). An elegant example is the determination of the parallax of extraterrestrial objects, such as asteroids. For laboratory exercises suitable for introductory students, the astronomical hardware needs are relatively modest, and, under the best circumstances, the analysis requires little more than arithmetic and a microcomputer with image display capabilities. Results from the first such coordinated parallax observations of asteroids ever made are presented. In addition, procedures for several related experiments, involving single-site observations and/or parallaxes of earth-orbiting artificial satellites, are outlined.

  17. The WX-32193, a new 70 mm SEC image tube for astronomical application. [Secondary Electron Conduction

    NASA Technical Reports Server (NTRS)

    Pietrzyk, J. P.

    1978-01-01

    The new SEC image camera tube is designed for astronomical application. Its large target allows a wide viewing angle with excellent resolution and little distortion, as the tube is magnetically focussed. The target is able to store information over several days and with proper cooling integration of weak light signals is possible over several hours. A sequential writing - reading slow scan mode is suggested for most effective application. The window is transmissive far into the vacuum UV-spectrum. Zooming with a fourfold magnification has been successfully demonstrated employing a magnetic lens in front of the image section. The tube construction is ruggedized to withstand the shock and vibration requirements of rocket launch.

  18. Detection of Orthoimage Mosaicking Seamlines by Means of Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Pyka, K.

    2016-06-01

    The detection of orthoimage mosaicking seamlines by means of wavelet transform was examined. Radiometric alignment was omitted, giving priority to the issue of seamlines which bypass locations where there is a parallax between orthoimages. The importance of this issue is particularly relevant for images with very high resolution. In order to create a barrier image between orthoimages, the redundant wavelet transform variant known as MODWT-MRA was used. While more computationally complex than the frequently used DWT, it enables very good multiresolution edge detection. An IT prototype was developed on the basis of the described concept, and several cases of seamline detection were tested on the basis of data with a resolution of 10 cm to 1 m. The correct seamline location was obtained for each test case. This result opens the door to future expansion of the radiometric alignment method, which is also based on wavelets.

  19. ComEst: A completeness estimator of source extraction on astronomical imaging

    NASA Astrophysics Data System (ADS)

    Chiu, I.; Desai, S.; Liu, J.

    2016-07-01

    The completeness of source detection is critical for analyzing the photometric and spatial properties of the population of interest observed by astronomical imaging. We present a software package ComEst, which calculates the completeness of source detection on charge-coupled device (CCD) images of astronomical observations, especially for the optical and near-infrared (NIR) imaging of galaxies and point sources. The completeness estimator ComEst is designed for the source finder SExtractor used on the CCD images saved in the Flexible Image Transport System (FITS) format. Specifically, ComEst estimates the completeness of the source detection by deriving the detection rate of synthetic point sources and galaxies simulated on the observed CCD images. In order to capture any observational artifacts or noise properties while deriving the completeness, ComEst directly carries out the detection of simulated sources on the observed images. Given an observed CCD image saved in FITS format, ComEst derives the completeness of the source detection from end to end as a function of source flux (or magnitude) and CCD position. In addition, ComEst can also estimate the purity of the source detection by comparing the catalog of the detected sources to the input catalogs of the simulated sources. We run ComEst on the images from Blanco Cosmology Survey (BCS) and compare the derived completeness as a function of magnitude to the limiting magnitudes derived by using the Signal-to-Noise ratio (SNR) and number count histogram of the detected sources. ComEst is released as a Python package with an easy-to-use syntax and is publicly available at https://github.com/inonchiu/ComEst.

  20. Novel optical designs for consumer astronomical telescopes and their application to professional imaging

    NASA Astrophysics Data System (ADS)

    Wise, Peter; Hodgson, Alan

    2006-06-01

    Since the launch of the Hubble Space Telescope there has been widespread popular interest in astronomy. A further series of events, most notably the recent Deep Impact mission and Mars oppositions have served to fuel further interest. As a result more and more amateurs are coming into astronomy as a practical hobby. At the same time more sophisticated optical equipment is becoming available as the price to performance ratio become more favourable. As a result larger and better optical telescopes are now in use by amateurs. We also have the explosive growth in digital imaging technologies. In addition to displacing photographic film as the preferred image capture modality it has made the capture of high quality astronomical imagery more accessible to a wider segment of the astronomy community. However, this customer requirement has also had an impact on telescope design. There has become a greater imperative for wide flat image fields in these telescopes to take advantage of the ongoing advances in CCD imaging technology. As a result of these market drivers designers of consumer astronomical telescopes are now producing state of the art designs that result in wide, flat fields with optimal spatial and chromatic aberrations. Whilst some of these designs are not scalable to the larger apertures required for professional ground and airborne telescope use there are some that are eminently suited to make this transition.

  1. Proper coaddition of astronomical images - One image that contains the information from all the images

    NASA Astrophysics Data System (ADS)

    Ofek, Eran; Zackay, Barak; Gal-Yam, Avishay

    2016-01-01

    We present image coaddition methods for source detection and flux measurement under both the background- and source-dominated noise regimes, that are optimized to achieve the highest possible signal-to-noise ratio (S/N). We also derive a coaddition method, which provides a sufficient statistic for any further signal processing of the data, such as source detection, star/galaxy separation or shape measurements, in the background-noise dominated case. This means that any hypothesis testing or measurement that can be done on all the individual images simultaneously, can be equivalently performed on the coadded image without any loss of information, leading to significant reduction in data storage and transmission requirements. In addition, our method produces an image with a PSF which is typically narrower than that of the highest quality image in the original ensemble, and its noise is Gaussian white noise. For seeing-limited surveys, we argue thatby using these methods an increase of between a few percents to 20% in survey speed is possible relative to simple weighted coaddition techniques. We demonstrate this claim using simulated data as well as data from the Palomar Transient Factory data release 2. This method has important implications for multi-epoch seeing-limited deep surveys, weak lensing, galaxy shape measurements, and diffraction-limited imaging via speckle observations.

  2. Precise topographic surface measurements of warm and cold large image detectors for astronomical instrumentations

    NASA Astrophysics Data System (ADS)

    Deiries, Sebastian; Iwert, Olaf; Stroebele, Stefan

    2014-07-01

    This paper describes ESO's surface measurement device for large image detectors in astronomy. The machine was equipped with a sub-micrometer laser displacement sensor and is fully automated with LabView. On the example of newly developed curved CCDs, which are envisaged for future astronomical instruments, it was demonstrated that this machine can exactly determine the topographic surfaces of detectors. This works even at cryogenic temperatures through a dewar window. Included is the calculation of curvature radii from these cold curved CCDs after spherical fitting with MATLAB. In addition (and interesting for calibration of instruments) the micro-movements of the detector inside the cryostat are mapped.

  3. Iterative methods for the reconstruction of astronomical images with high dynamic range

    NASA Astrophysics Data System (ADS)

    Anconelli, B.; Bertero, M.; Boccacci, P.; Carbillet, M.; Lanteri, H.

    2007-01-01

    In most cases astronomical images contain objects with very different intensities such as bright stars combined with faint nebulae. Since the noise is mainly due to photon counting (Poisson noise), the signal-to-noise ratio may be very different in different regions of the image. Moreover, the bright and faint objects have, in general, different angular scales. These features imply that the iterative methods which are most frequently used for the reconstruction of astronomical images, namely the Richardson-Lucy Method (RLM), also known in tomography as Expectation Maximization (EM) method, and the Iterative Space Reconstruction Algorithm (ISRA) do not work well in these cases. Also standard regularization approaches do not provide satisfactory results since a kind of adaptive regularization is required, in the sense that one needs a different regularization for bright and faint objects. In this paper we analyze a number of regularization functionals with this particular kind of adaptivity and we propose a simple modification of RLM and ISRA which takes into account these regularization terms. The preliminary results on a test object are promising.

  4. Robust endoscopic pose estimation for intraoperative organ-mosaicking

    NASA Astrophysics Data System (ADS)

    Reichard, Daniel; Bodenstedt, Sebastian; Suwelack, Stefan; Wagner, Martin; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2016-03-01

    The number of minimally invasive procedures is growing every year. These procedures are highly complex and very demanding for the surgeons. It is therefore important to provide intraoperative assistance to alleviate these difficulties. For most computer-assistance systems, like visualizing target structures with augmented reality, a registration step is required to map preoperative data (e.g. CT images) to the ongoing intraoperative scene. Without additional hardware, the (stereo-) endoscope is the prime intraoperative data source and with it, stereo reconstruction methods can be used to obtain 3D models from target structures. To link reconstructed parts from different frames (mosaicking), the endoscope movement has to be known. In this paper, we present a camera tracking method that uses dense depth and feature registration which are combined with a Kalman Filter scheme. It provides a robust position estimation that shows promising results in ex vivo and in silico experiments.

  5. High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking

    PubMed Central

    Hughes, Michael; Yang, Guang-Zhong

    2015-01-01

    A significant limitation of fiber bundle endomicroscopy systems is that the field of view tends to be small, usually only several hundred micrometers in diameter. Image mosaicking techniques can increase the effective image size, but require careful manipulation of the probe to ensure sufficient overlap between adjacent frames. For confocal endomicroscopes, which typically have frame rates on the order of 10 fps, this is particularly challenging. In this paper we demonstrate that line-scanning confocal endomicroscopy can, by use of a high speed linear CCD camera, achieve a frame rate of 120 fps while maintaining sufficient resolution and signal-to-noise ratio to allow imaging of topically stained gastrointestinal tissues. This leads to improved performance of a cross-correlation based mosaicking algorithm when compared with lower frame-rate systems. PMID:25909008

  6. SGM-based seamline determination for urban orthophoto mosaicking

    NASA Astrophysics Data System (ADS)

    Pang, Shiyan; Sun, Mingwei; Hu, Xiangyun; Zhang, Zuxun

    2016-02-01

    Mosaicking is a key step in the production of digital orthophoto maps (DOMs), especially for large-scale urban orthophotos. During this step, manual intervention is commonly involved to avoid the case where the seamline crosses obvious objects (e.g., buildings), which causes geometric discontinuities on the DOMs. How to guide the seamline to avoid crossing obvious objects has become a popular topic in the field of photogrammetry and remote sensing. Thus, a new semi-global matching (SGM)-based method to guide seamline determination is proposed for urban orthophoto mosaicking in this study, which can greatly eliminate geometric discontinuities. The approximate epipolar geometry of the orthophoto pairs is first derived and proven, and the approximate epipolar image pair is then generated by rotating the two orthorectified images according to the parallax direction. A SGM algorithm is applied to their overlaps to obtain the corresponding pixel-wise disparity. According to a predefined disparity threshold, the overlap area is identified as the obstacle and non-obstacle areas. For the non-obstacle regions, Hilditch thinning algorithm is used to obtain the skeleton line, followed by Dijkstra's algorithm to search for the optimal path on the skeleton network as the seamline between two orthophotos. A whole seamline network is constructed based on the strip information recorded in flight. In the experimental section, the approximate epipolar geometric theory of the orthophoto is first analyzed and verified, and the effectiveness of the proposed method is then validated by comparing its results with the results of the geometry-based, OrthoVista, and orthoimage elevation synchronous model (OESM)-based methods.

  7. Profile Detection in Medical and Astronomical Images by Means of the Hough Transform of Special Classes of Curves

    NASA Astrophysics Data System (ADS)

    Massone, A. M.; Perasso, A.; Campi, C.; Beltrametti, M. C.

    2015-02-01

    We develop a formal procedure for the automated recognition of rational and elliptic curves in medical and astronomical images. The procedure is based on the extension of the Hough transform concept to the definition of Hough transform of special classes of algebraic curves. We first introduce a catalogue of curves that satisfy the conditions to be automatically extracted from an image and the recognition algorithm, then we illustrate the power of this method to identify skeleton profiles in clinical X-ray tomography maps and front ends of solar eruptions in astronomical images provided by the NASA solar dynamics observatory satellite.

  8. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    SciTech Connect

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  9. AIRY: a complete tool for the simulation and the reconstruction of astronomical images

    NASA Astrophysics Data System (ADS)

    La Camera, Andrea; Carbillet, Marcel; Olivieri, Chiara; Boccacci, Patrizia; Bertero, Mario

    2012-07-01

    The Software Package AIRY (acronym for Astronomical Image Restoration in interferometrY) is a software tool designed to perform simulation and/or deconvolution of images of Fizeau interferometers as well as of any kind of optical telescopes. AIRY is written in IDL and is a Software Package of the CADS Problem Solving Environment (PSE): it is made of a set of modules, each one representing a specific task. We present here the last version of the software, arrived at its sixth release after 10 years of development. This version of AIRY summarizes the work done in recent years by our group, both on AIRY and on AIRY-LN, the version of the software dedicated to the image restoration of LINC-NIRVANA (LN), the Fizeau interferometer of the Large Binocular Telescope (LBT). AIRY v.6.0 includes a renewed deconvolution module implementing regularizations, accelerations, and stopping criteria of standard algorithms, such as OSEM and Richardson-Lucy. Several modules of AIRY have been improved and, in particular, the one used for the extraction and extrapolatioThe Software Package AIRY (acronym for Astronomical Image Restoration in interferometrY) is a software tool designed to perform simulation and/or deconvolution of images of Fizeau interferometers as well as of any kind of optical telescopes. AIRY is written in IDL and is a Software Package of the CAOS Problem Solving Environment (PSE): it is made of a set of modules, each one representing a speci_c task. We present here the last version of the software, arrived at its sixth release after 10 years of development. This version of AIRY summarizes the work done in recent years by our group, both on AIRY and on AIRY-LN, the version of the software dedicated to the image restoration of LINC-NIRVANA (LN), the Fizeau interferometer of the Large Binocular Telescope (LBT). AIRY v.6.0 includes a renewed deconvolution module implementing regularizations, accelerations, and stopping criteria of standard algorithms, such as OSEM and

  10. A Visible, Spatially-Modulated Imaging Fourier Transform Spectrometer (SMIFTS) for Astronomical Applications

    NASA Astrophysics Data System (ADS)

    Rafert, J. B.; Holbert, E. T.; Rusk, E. T.; Durham, S. E.; Caudill, E.; Keating, D.; Newby, H.

    1992-12-01

    We have constructed several visible, Spatially-Modulated Imaging Fourier Transform Spectrometers (SMIFTS) for spatially resolved spectral imaging in the visible wavelength region based on work by several authors including Yoshihara and Kitade (1967), Okamoto et al. (1984), Barnes (1985) and Smith and Schempp (1991). Our spectrometers require no moving parts, are compact and enjoy a number of advantages over the other spectral data collection technologies. The unique combination of characteristics define an important niche for astronomical, remote sensing, and reconnaissance spectral data acquisition. Our SMIFTS simultaneously acquires hundreds or thousands of spectral bands for hundreds or thousands of spectral channesl. This type of sensor has been called a "hyperspectral" sensor to emphasize the major quantitative difference between this type of sensor and multispectral imagers which collect only a few spectral bands. The SMIFTS consists of input optics (a telescope), a field limiting aperture, a beamsplitter which divides the input beam into two paths, two mirrors which redirect the split beams through the same path, a collimating lens which forms the interferogram of the input aperture on the detector plane, and a cylindrical imaging lens. Thus on the detector array one axis contains spatial information and the other axis contains the spectral information for each point of the spatial axis. The result of this arrangement is that each row of the detector array contains the interferogram of the corresponding point on the aperture or slit. This slit can be fixed upon the target, or the slit can be scanned across the target to build up a second axis of spatial information resulting in a data set with four dimensions: two spatial, one spectral, and one temporal. We present sample data for both astronomical and remote sensing applications taken with the Malabar SMIFTS. Barnes, T.H. "Photodiode Array Fourier Transform Spectrometer with Improved Dynamic Range", Appl

  11. High Speed Optical Imaging Photon Counting Microchannel Plate Detectors for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; McPhate, J.; Rogers, D.

    In recent years we have implemented a variety of high-resolution, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, SSULI, HST-COS, rocket, and shuttle payloads as well as sensors for ground based Astronomy, reconnaissance and biology. These detectors can meet many of the challenging imaging and timing demands of applications including astronomy of transient and time-variable sources, Earth atmospheric imaging and spectroscopy for real time space weather monitoring, biological single-molecule fluorescence lifetime microscopy, airborne and space situational awareness, and optical night-time/reconnaissance. Our recent work on high performance photon counting imaging readouts enables significant advancements over previous detector systems used for these applications. We have developed novel Cross-Strip and Cross-Delay-Line anode structures that can, in combination with small pore MCP's in sealed tube detectors, can achieve high spatial resolution (better than 10 um FWHM) with self triggered ~1 ns timing accuracy at up to 10 MHz event rates. Sealed tubes with formats, of 18mm, and 25mm with efficient S25 photocathodes have been built and are being used in several applications. The detectors and their properties will be discussed in this paper. Our installation and astronomical commissioning of one of these detectors at the South African Astronomical Observatory, South African Large Telescope (SALT) 10m telescope will be described. Our photometer is positioned in an auxiliary instrument port of the SALT. This is a stand-alone instrument that includes our detector system with two filter wheels (neutral density and U, B, V), an iris, and all the control modules necessary to operate the system. This instrument gives us access to the southern sky with significant sensitivity and unprecedented time resolution (microsec). High time resolution astronomy is still in its infancy, such that high cadence observations of the variable

  12. Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations

    NASA Astrophysics Data System (ADS)

    Rafert, J. Bruce; Sellar, R. Glenn; Holbert, Eirik; Blatt, Joel H.; Tyler, David W.; Durham, Susan E.; Newby, Harold D.

    1994-06-01

    The Florida Institue of Technology and the Phillips Laboratory have developed several advanced visible (0.4-0.8 micrometers ) imaging fourier transform spectrometer (IFTS) brassboards, which simultaneously acquire one spatial and one spectral dimension of the hyperspectral image cube. The initial versions of these instruments may be scanned across a scene or configured with a scan mirror to pick up the second spatial dimension of the image cube. The current visible hyperspectral imagers possess a combination of features, including (1) low to moderate spectral resolution for hundreds/thousands of spectral channels, (2) robust design, with no moving parts, (3) detector limited free spectral range, (4) detector-limited spatial and spectral resolution, and (5) field widened operation. The utility of this type of instrument reaches its logical conclusion however, with an instrument designed to acquire all three dimensions of the hyperspectral image cube (both spatial and one spectral) simultaneously. In this paper we present the (1) detailed optical system designs for the brassboard instruments, (2) the current data acquisition system, (3) data reduction and analysis techniques unique to hyperspectral sensor systems which operate with photometric accuracy, and (4) several methods to modify the basic instrument design to allow simultaneous acquistion of the entire hyperspectral image cube. The hyperspectral sensor systems which are being developed and whose utility is being pioneered by Florida Tech and the Phillips Laboratory are applicable to numerous DoD and civil applications including (1) space object identification, (2) radiometrically correct satellite image and spectral signature database observations, (3) simultaneous spactial/spectral observations of booster plumes for strategic and surrogate tactical missile signature identification, and (4) spatial/spectral visible and IR astronomical observations with photometric accuracy.

  13. An automated system for mosaicking spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1990-01-01

    An automated system has been developed for mosaicking spaceborne synthetic aperture radar (SAR) imagery. The system is capable of producing multiframe mosaics for large-scale mapping by combining images in both the along-track direction and adjacent cross-track swaths from ascending and descending passes. The system requires no operator interaction and is capable of achieving high registration accuracy. The output product is a geocoded mosaic on a standard map grid such as UTM or polar stereographic. The procedure described in detail in this paper consists essentially of remapping the individual image frames into these standard grids, frame-to-frame image registration and radiometric smoothing of the seams. These procedures are directly applicable to both the Magellan Venus Mapper and a scanning SAR design such as Radarsat, Eos SAR in addition to merging image frames from traditional SAR systems such as SEASAT and SIR-B. With minor modifications, it may also be applied to spaceborne optical sensor data to generate large-scale mosaics efficiently and with a high degree of accuracy. The system has been tested with SEASAT, SIR-B and Landsat TM data. Examples presented in this paper include a 38-frame mosaic of the Yukon River basin in central Alaska, a 33-frame mosaic of southern California and a three-frame terrain-corrected geocoded mosaic of the Wind River basin in Wyoming.

  14. Mosaicking Mexico - the Big Picture of Big Data

    NASA Astrophysics Data System (ADS)

    Hruby, F.; Melamed, S.; Ressl, R.; Stanley, D.

    2016-06-01

    The project presented in this article is to create a completely seamless and cloud-free mosaic of Mexico at a resolution of 5m, using approximately 4,500 RapidEye images. To complete this project in a timely manner and with limited operators, a number of processing architectures were required to handle a data volume of 12 terabytes. This paper will discuss the different operations realized to complete this project, which include, preprocessing, mosaic generation and post mosaic editing. Prior to mosaic generation, it was necessary to filter the 50,000 RapidEye images captured over Mexico between 2011 and 2014 to identify the top candidate images, based on season and cloud cover. Upon selecting the top candidate images, PCI Geomatics' GXL system was used to reproject, color balance and generate seamlines for the output 1TB+ mosaic. This paper will also discuss innovative techniques used by the GXL for color balancing large volumes of imagery with substantial radiometric differences. Furthermore, post-mosaicking steps, such as, exposure correction, cloud and cloud shadow elimination will be presented.

  15. Facing "the Curse of Dimensionality": Image Fusion and Nonlinear Dimensionality Reduction for Advanced Data Mining and Visualization of Astronomical Images

    NASA Astrophysics Data System (ADS)

    Pesenson, Meyer; Pesenson, I. Z.; McCollum, B.

    2009-05-01

    The complexity of multitemporal/multispectral astronomical data sets together with the approaching petascale of such datasets and large astronomical surveys require automated or semi-automated methods for knowledge discovery. Traditional statistical methods of analysis may break down not only because of the amount of data, but mostly because of the increase of the dimensionality of data. Image fusion (combining information from multiple sensors in order to create a composite enhanced image) and dimension reduction (finding lower-dimensional representation of high-dimensional data) are effective approaches to "the curse of dimensionality,” thus facilitating automated feature selection, classification and data segmentation. Dimension reduction methods greatly increase computational efficiency of machine learning algorithms, improve statistical inference and together with image fusion enable effective scientific visualization (as opposed to mere illustrative visualization). The main approach of this work utilizes recent advances in multidimensional image processing, as well as representation of essential structure of a data set in terms of its fundamental eigenfunctions, which are used as an orthonormal basis for the data visualization and analysis. We consider multidimensional data sets and images as manifolds or combinatorial graphs and construct variational splines that minimize certain Sobolev norms. These splines allow us to reconstruct the eigenfunctions of the combinatorial Laplace operator by using only a small portion of the graph. We use the first two or three eigenfunctions for embedding large data sets into two- or three-dimensional Euclidean space. Such reduced data sets allow efficient data organization, retrieval, analysis and visualization. We demonstrate applications of the algorithms to test cases from the Spitzer Space Telescope. This work was carried out with funding from the National Geospatial-Intelligence Agency University Research Initiative

  16. Photometric Lambert Correction for Global Mosaicking of HRSC Data

    NASA Astrophysics Data System (ADS)

    Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas

    2015-04-01

    The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each

  17. Automatic Reacquisition of Satellite Positions by Detecting Their Expected Streaks in Astronomical Images

    NASA Astrophysics Data System (ADS)

    Levesque, M.

    Artificial satellites, and particularly space junk, drift continuously from their known orbits. In the surveillance-of-space context, they must be observed frequently to ensure that the corresponding orbital parameter database entries are up-to-date. Autonomous ground-based optical systems are periodically tasked to observe these objects, calculate the difference between their predicted and real positions and update object orbital parameters. The real satellite positions are provided by the detection of the satellite streaks in the astronomical images specifically acquired for this purpose. This paper presents the image processing techniques used to detect and extract the satellite positions. The methodology includes several processing steps including: image background estimation and removal, star detection and removal, an iterative matched filter for streak detection, and finally false alarm rejection algorithms. This detection methodology is able to detect very faint objects. Simulated data were used to evaluate the methodology's performance and determine the sensitivity limits where the algorithm can perform detection without false alarm, which is essential to avoid corruption of the orbital parameter database.

  18. Automated Mosaicking of Multiple 3d Point Clouds Generated from a Depth Camera

    NASA Astrophysics Data System (ADS)

    Kim, H.; Yoon, W.; Kim, T.

    2016-06-01

    In this paper, we propose a method for automated mosaicking of multiple 3D point clouds generated from a depth camera. A depth camera generates depth data by using ToF (Time of Flight) method and intensity data by using intensity of returned signal. The depth camera used in this paper was a SR4000 from MESA Imaging. This camera generates a depth map and intensity map of 176 x 44 pixels. Generated depth map saves physical depth data with mm of precision. Generated intensity map contains texture data with many noises. We used texture maps for extracting tiepoints and depth maps for assigning z coordinates to tiepoints and point cloud mosaicking. There are four steps in the proposed mosaicking method. In the first step, we acquired multiple 3D point clouds by rotating depth camera and capturing data per rotation. In the second step, we estimated 3D-3D transformation relationships between subsequent point clouds. For this, 2D tiepoints were extracted automatically from the corresponding two intensity maps. They were converted into 3D tiepoints using depth maps. We used a 3D similarity transformation model for estimating the 3D-3D transformation relationships. In the third step, we converted local 3D-3D transformations into a global transformation for all point clouds with respect to a reference one. In the last step, the extent of single depth map mosaic was calculated and depth values per mosaic pixel were determined by a ray tracing method. For experiments, 8 depth maps and intensity maps were used. After the four steps, an output mosaicked depth map of 454x144 was generated. It is expected that the proposed method would be useful for developing an effective 3D indoor mapping method in future.

  19. Radio astronomical image formation using constrained least squares and Krylov subspaces

    NASA Astrophysics Data System (ADS)

    Mouri Sardarabadi, Ahmad; Leshem, Amir; van der Veen, Alle-Jan

    2016-04-01

    Aims: Image formation for radio astronomy can be defined as estimating the spatial intensity distribution of celestial sources throughout the sky, given an array of antennas. One of the challenges with image formation is that the problem becomes ill-posed as the number of pixels becomes large. The introduction of constraints that incorporate a priori knowledge is crucial. Methods: In this paper we show that in addition to non-negativity, the magnitude of each pixel in an image is also bounded from above. Indeed, the classical "dirty image" is an upper bound, but a much tighter upper bound can be formed from the data using array processing techniques. This formulates image formation as a least squares optimization problem with inequality constraints. We propose to solve this constrained least squares problem using active set techniques, and the steps needed to implement it are described. It is shown that the least squares part of the problem can be efficiently implemented with Krylov-subspace-based techniques. We also propose a method for correcting for the possible mismatch between source positions and the pixel grid. This correction improves both the detection of sources and their estimated intensities. The performance of these algorithms is evaluated using simulations. Results: Based on parametric modeling of the astronomical data, a new imaging algorithm based on convex optimization, active sets, and Krylov-subspace-based solvers is presented. The relation between the proposed algorithm and sequential source removing techniques is explained, and it gives a better mathematical framework for analyzing existing algorithms. We show that by using the structure of the algorithm, an efficient implementation that allows massive parallelism and storage reduction is feasible. Simulations are used to compare the new algorithm to classical CLEAN. Results illustrate that for a discrete point model, the proposed algorithm is capable of detecting the correct number of sources

  20. Hierarchical progressive surveys. Multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes

    NASA Astrophysics Data System (ADS)

    Fernique, P.; Allen, M. G.; Boch, T.; Oberto, A.; Pineau, F.-X.; Durand, D.; Bot, C.; Cambrésy, L.; Derriere, S.; Genova, F.; Bonnarel, F.

    2015-06-01

    Context. Scientific exploitation of the ever increasing volumes of astronomical data requires efficient and practical methods for data access, visualisation, and analysis. Hierarchical sky tessellation techniques enable a multi-resolution approach to organising data on angular scales from the full sky down to the individual image pixels. Aims: We aim to show that the hierarchical progressive survey (HiPS) scheme for describing astronomical images, source catalogues, and three-dimensional data cubes is a practical solution to managing large volumes of heterogeneous data and that it enables a new level of scientific interoperability across large collections of data of these different data types. Methods: HiPS uses the HEALPix tessellation of the sphere to define a hierarchical tile and pixel structure to describe and organise astronomical data. HiPS is designed to conserve the scientific properties of the data alongside both visualisation considerations and emphasis on the ease of implementation. We describe the development of HiPS to manage a large number of diverse image surveys, as well as the extension of hierarchical image systems to cube and catalogue data. We demonstrate the interoperability of HiPS and multi-order coverage (MOC) maps and highlight the HiPS mechanism to provide links to the original data. Results: Hierarchical progressive surveys have been generated by various data centres and groups for ˜200 data collections including many wide area sky surveys, and archives of pointed observations. These can be accessed and visualised in Aladin, Aladin Lite, and other applications. HiPS provides a basis for further innovations in the use of hierarchical data structures to facilitate the description and statistical analysis of large astronomical data sets.

  1. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  2. A convergent blind deconvolution method for post-adaptive-optics astronomical imaging

    NASA Astrophysics Data System (ADS)

    Prato, M.; La Camera, A.; Bonettini, S.; Bertero, M.

    2013-06-01

    In this paper, we propose a blind deconvolution method which applies to data perturbed by Poisson noise. The objective function is a generalized Kullback-Leibler (KL) divergence, depending on both the unknown object and unknown point spread function (PSF), without the addition of regularization terms; constrained minimization, with suitable convex constraints on both unknowns, is considered. The problem is non-convex and we propose to solve it by means of an inexact alternating minimization method, whose global convergence to stationary points of the objective function has been recently proved in a general setting. The method is iterative and each iteration, also called outer iteration, consists of alternating an update of the object and the PSF by means of a fixed number of iterations, also called inner iterations, of the scaled gradient projection (SGP) method. Therefore, the method is similar to other proposed methods based on the Richardson-Lucy (RL) algorithm, with SGP replacing RL. The use of SGP has two advantages: first, it allows one to prove global convergence of the blind method; secondly, it allows the introduction of different constraints on the object and the PSF. The specific constraint on the PSF, besides non-negativity and normalization, is an upper bound derived from the so-called Strehl ratio (SR), which is the ratio between the peak value of an aberrated versus a perfect wavefront. Therefore, a typical application, but not a unique one, is to the imaging of modern telescopes equipped with adaptive optics systems for the partial correction of the aberrations due to atmospheric turbulence. In the paper, we describe in detail the algorithm and we recall the results leading to its convergence. Moreover, we illustrate its effectiveness by means of numerical experiments whose results indicate that the method, pushed to convergence, is very promising in the reconstruction of non-dense stellar clusters. The case of more complex astronomical targets is

  3. The Astronomical League

    NASA Astrophysics Data System (ADS)

    Stevens, J. A.; Stevens, B. L.

    2000-10-01

    Founded over fifty years ago, the League is the largest general astronomy society in the world. It is a recognized non-profit, educational organization, promoting the science of astronomy. This includes astronomical education, research, individual observing of the heavens and coordination between the amateur and professional astronomy communities. The Astronomical League publishes a quarterly newsletter, the "Reflector", which details amateur activities and amateur collaboration with professional astronomers. The League's Observing Clubs hone the skills of the amateur astronomer in using their telescopes. These clubs provide awards to encourge observing and learning the sky. More general awards are presented to encourage amateur astronomy and the science of astronomy. These include the National Young Astronomer Award, amd the Horkheimer Planetary Imaging Award. They also sponsor conventions on both the National and Regional levels. This year's national is in Ventura, California, next year, near Washington, D.C.

  4. Reconstructing color images of astronomical objects using black and white spectroscopic emulsions

    NASA Technical Reports Server (NTRS)

    Dufour, R. I.; Martins, D. H.

    1976-01-01

    A color photograph of the peculiar elliptical galaxy NGC 5128 (Centaurus A) has been reconstructed from three Kodak 103a emulsion type photographs by projecting positives of the three B&W plates through appropriate filters onto a conventional color film. The resulting photograph shows color balance and latitude characteristics superior to color photographs of similar astronomical objects made with commercially available conventional color film. Similar results have been obtained for color reconstructed photographs of the Large and Small Magellanic Clouds. These and other results suggest that these projection-reconstruction techniques can be used to obtain high-quality color photographs of astronomical objects which overcome many of the problems associated with the use of conventional color film for the long exposures required in astronomy.

  5. A novel mosaicking algorithm for in vivo full-field thickness mapping of the human tympanic membrane using low coherence interferometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pande, Paritosh; Shelton, Ryan L.; Monroy, Guillermo L.; Nolan, Ryan M.; Boppart, Stephen A.

    2016-02-01

    Tympanic membrane (TM) thickness can provide crucial information for diagnosing several middle ear pathologies. An imaging system integrating low coherence interferometry (LCI) with the standard video otoscope has been shown as a promising tool for quantitative assessment of in-vivo TM thickness. The small field-of-view (FOV) of TM surface images acquired by the combined LCI-otoscope system, however, makes the spatial registration of the LCI imaging sites and their location on the TM difficult to achieve. It is therefore desirable to have a tool that can map the imaged points on to an anatomically accurate full-field surface image of the TM. To this end, we propose a novel automated mosaicking algorithm for generating a full-field surface image of the TM with co-registered LCI imaging sites from a sequence of multiple small FOV images and corresponding LCI data. Traditional image mosaicking techniques reported in the biomedical literature, mostly for retinal imaging, are not directly applicable to TM image mosaicking because unlike retinal images, which have several distinctive features, TM images contain large homogeneous areas lacking in sharp features. The proposed algorithm overcomes these challenges of TM image mosaicking by following a two-step approach. In the first step, a coarse registration based on the correlation of gross image features is performed. Subsequently, in the second step, the coarsely registered images are used to perform a finer intensity-based co-registration. The proposed algorithm is used to generate, for the first time, full-field thickness distribution maps of in-vivo human TMs.

  6. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  7. Blind Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  8. The Astronomers' Data Manifesto

    NASA Astrophysics Data System (ADS)

    Norris, R. P.

    2006-08-01

    A draft manifesto is presented for discussion. The manifesto sets out guidelines to which the astronomical community should aspire to maximise the rate and cost-effectiveness of scientific discovery. The challenges are not underestimated, but can still be overcome if astronomers, observatories, journals, data centres, and the Virtual Observatory Alliance work together to overcome the hurdles. The key points of the manifesto are: 1. All major tables, images, and spectra published in journals should appear in the astronomical data centres. 2. All data obtained with publicly-funded observatories should, after appropriate proprietary periods, be placed in the public domain. 3. In any new major astronomical construction project, the data processing, storage, migration, and management requirements should be built in at an early stage of the project plan, and costed along with other parts of the project. 4. Astronomers in all countries should have the same access to astronomical data and information. 5. Legacy astronomical data can be valuable, and high-priority legacy data should be preserved and stored in digital form in the data centres. 6. The IAU should work with other international organisations to achieve our common goals and learn from our colleagues in other fields.

  9. Women Astronomers.

    ERIC Educational Resources Information Center

    Warner, Deborah Jean

    1979-01-01

    Traces the role of women in the scientific community in the United States since the mid-nineteenth century. Specific concern is directed towards the education and career opportunities of female astronomers. (MA)

  10. Contributions by Amateur Astronomers to Support Radar Imaging of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Benner, L. A. M.

    2004-05-01

    Amateur astronomers can support radar observations of near-Earth asteroids (NEAs) principally by obtaining astrometry for objects with poorly-determined orbits and by obtaining lightcurves to estimate rotation periods and pole directions. The number of NEAs observed by radar has accelerated sharply in the last few years and the need for support has increased significantly. Optical astrometry is necessary for radar targets when the 3-sigma plane-of- sky pointing uncertainty is larger than about 15 arcseconds because the Are- cibo and Goldstone radar telescopes have narrow beam widths. Astrometry is particularly important for newly-discovered targets-of-opportunity, which of- ten have large plane-of-sky, Doppler, and range uncertainties. Photometric observations assist radar observations of asteroids in several important ways: 1. The rotation period and pole direction are very helpful for planning radar observations. We use the spin vector to estimate signal-to-noise ratios and to compute longitude and latitude coverage, which help justify requests for telescope time. 2. If the spin vector is available, it greatly facilitates inverting delay- Doppler radar data to construct an asteroid's three-dimensional shape. This is probably the most important way that photometry can support radar observations. 3. Lightcurves can be used with radar data (and independently) to reconstruct asteroid shapes and spin states. 4. Lightcurve observations can discover and characterize the orbital and ro- tation periods of binary NEAs and can complement sparse radar observa- tions. Combined radar + lightcurve observations can yield binary NEA orb- ital parameters, masses, and bulk densities. 5. For asteroids with irregular shapes and well-determined spin states, photometric and radar observations during future close approaches may re- veal changes in the spin state due to thermal torques caused by absorption and and re-emission of sunlight (the "YORP" effect). If detected, the magnitude of

  11. Real-time visual mosaicking and navigation on the seafloor

    NASA Astrophysics Data System (ADS)

    Richmond, Kristof

    -reckoned navigation information in a framework allowing the creation and updating of large, locally consistent mosaics. These mosaics are used as maps in which the vehicle can navigate and localize itself with respect to points in the environment. The system achieves real-time performance in several ways. First, wherever possible, direct sensing of motion parameters is used in place of extracting them from visual data. Second, trajectories are chosen to enable a hierarchical search for side-to-side links which limits the amount of searching performed without sacrificing robustness. Finally, the map estimation is formulated as a sparse, linear information filter allowing rapid updating of large maps. The visual navigation enabled by the work in this thesis represents a new capability for remotely operated vehicles, and an enabling capability for a new generation of autonomous vehicles which explore and interact with remote, unknown and unstructured underwater environments. The real-time mosaic can be used on current tethered vehicles to create pilot aids and provide a vehicle user with situational awareness of the local environment and the position of the vehicle within it. For autonomous vehicles, the visual navigation system enables precise environment-relative positioning and mapping, without requiring external navigation systems, opening the way for ever-expanding autonomous exploration capabilities. The utility of this system was demonstrated in the field at sites of scientific interest using the ROVs Ventana and Tiburon operated by the Monterey Bay Aquarium Research Institute. A number of sites in and around Monterey Bay, California were mosaicked using the system, culminating in a complete imaging of the wreck site of the USS Macon , where real-time visual mosaics containing thousands of images were generated while navigating using only sensor systems on board the vehicle.

  12. Astronomical kaleidoscope

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    2005-10-01

    The entry contains two Moon eclipses (a picture of a total eclipse and a photo of a penumbral one), photographs of monuments of few greatest astronomers: Nikolay Kopernik, Tiho Brahe and Johannes Kepler, a photo from the JENAM-1995 (Catania, Sicily) as well as photographs of few astronomers related with Moldova and Romania: V. Grigorevskii, N. Donitch, V.Nadolschi, D. Mangeron, two nice clocks in Prague, as well as a map of the Sanctuary in Orheiul -Vechi (Bessarabia) with an supposed ancient calendar.

  13. A New Image Denoising Algorithm that Preserves Structures of Astronomical Data

    NASA Astrophysics Data System (ADS)

    Bressert, Eli; Edmonds, P.; Kowal Arcand, K.

    2007-05-01

    We have processed numerous x-ray data sets using several well-known algorithms such as Gaussian and adaptive smoothing for public related image releases. These algorithms are used to denoise/smooth images and retain the overall structure of observed objects. Recently, a new PDE algorithm and program, provided by Dr. David Tschumperle and referred to as GREYCstoration, has been tested and is in the progress of being implemented into the Chandra EPO imaging group. Results of GREYCstoration will be presented and compared to the currently used methods for x-ray and multiple wavelength images. What demarcates Tschumperle's algorithm from the current algorithms used by the EPO imaging group is its ability to preserve the main structures of an image strongly, while reducing noise. In addition to denoising images, GREYCstoration can be used to erase artifacts accumulated during observation and mosaicing stages. GREYCstoration produces results that are comparable and in some cases more preferable than the current denoising/smoothing algorithms. From our early stages of testing, the results of the new algorithm will provide insight on the algorithm's initial capabilities on multiple wavelength astronomy data sets.

  14. Astronomical Microdensitometry Conference

    NASA Technical Reports Server (NTRS)

    Klinglesmith, D. A. (Editor)

    1984-01-01

    The status of the current microdensitometers used for digitizing astronomical imagery is discussed. The tests and improvements that have and can be made to the Photometric Data System PDS microdensitometer are examined. The various types of microdensitometers that currently exist in the world are investigated. Papers are presented on the future needs and the data processing problems associated with digitizing large images.

  15. Astronomical Ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  16. The interactive astronomical data analysis facility - image enhancement techniques to Comet Halley

    NASA Astrophysics Data System (ADS)

    Klinglesmith, D. A.

    1981-10-01

    PDP 11/40 computer is at the heart of a general purpose interactive data analysis facility designed to permit easy access to data in both visual imagery and graphic representations. The major components consist of: the 11/40 CPU and 256 K bytes of 16-bit memory; two TU10 tape drives; 20 million bytes of disk storage; three user terminals; and the COMTAL image processing display system. The application of image enhancement techniques to two sequences of photographs of Comet Halley taken in Egypt in 1910 provides evidence for eruptions from the comet's nucleus.

  17. The interactive astronomical data analysis facility - image enhancement techniques to Comet Halley

    NASA Technical Reports Server (NTRS)

    Kinglesmith, D. A., III

    1981-01-01

    PDP 11/40 computer is at the heart of a general purpose interactive data analysis facility designed to permit easy access to data in both visual imagery and graphic representations. The major components consist of: the 11/40 CPU and 256 K bytes of 16-bit memory; two TU10 tape drives; 20 million bytes of disk storage; three user terminals; and the COMTAL image processing display system. The application of image enhancement techniques to two sequences of photographs of Comet Halley taken in Egypt in 1910 provides evidence for eruptions from the comet's nucleus.

  18. The structure of the inner heliosphere as revealed by amateur astronomers' images of comets

    NASA Astrophysics Data System (ADS)

    Ramanjooloo, Y.; Jones, G. H.; Coates, A. J.

    2011-12-01

    Y. Ramanjooloo (1, 2), G. H. Jones (1,2), A. J. Coates (1,2) (1) Mullard Space Science Laboratory, Department of Space & Climate Physics, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK, (yr2@mssl.ucl.ac.uk) (2) The Centre for Planetary Science at UCL/Birkbeck, Gower Street, London, WC1E 6BT, UK. Comets' plasma (type I) tails have been studied as natural probes of the solar wind since the mid-20th century. The appearance, structure, and orientation of a comet's plasma tail are primarily controlled by local solar wind conditions. When the observing geometry is ideal, the direction and dynamics of the plasma tail can reveal temporal and spatial variations in the solar wind flow local to the comet. The plasma tail is generally oriented away from the solar radial direction due to the comet's orbital motion. Many tail features, such as condensations, kinks, and disconnection events can usually be directly related to changes in the local solar wind. Amateur images of comets obtained with modern equipment and sensors are arguably better in quality than professional images obtained only 2-3 decades ago. We have studied amateur images of several comets, primarily using images of comet C/2001 Q4 (NEAT), from December 2003 to December 2004, and comet C/2004 Q2 (Machholz), between September 2004 and June 2005. For these comets, we compared the aberration angle of their plasma tails with observed and modelled values of near-Earth solar wind data and other heliospheric events. The changing orientation and disturbances in the plasma tail of comet Machholz, NEAT and other comets are used to test the validity of amateur images of comets as a diagnostic tool to understand the temporal and spatial variability of the solar wind in the inner heliosphere. We summarise the results of the study. This analysis technique also offers an opportunity to investigate historical images of comets, thus providing snapshots of the variability of solar wind conditions over

  19. Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors

    NASA Technical Reports Server (NTRS)

    Allen, Ronald J.

    2004-01-01

    The requirements on station-keeping for constellations of free-flying collectors coupled as (future) imaging arrays in space for astrophysics applications are discussed. The typical knowledge precision required in the plane of the array depends on the angular size of the targets of interest; it is generally at a level of tens of centimeters for typical stellar targets, becoming of order centimeters only for the widest attainable fields of view. In the "piston" direction, perpendicular to the array, the typical knowledge precision required depends on the bandwidth of the signal, and is at a level of tens of wavelengths for narrow approx. 1% signal bands, becoming of order one wavelength only for the broadest bandwidths expected to be useful. The significance of this result is that, at this level of precision, it may be possible to provide the necessary knowledge of array geometry without the use of signal photons, thereby allowing observations of faint targets. "Closure-phase" imaging is a technique which has been very successfully applied to surmount instabilities owing to equipment and to the atmosphere, and which appears to be directly applicable to space imaging arrays where station-keeping drifts play the same role as (slow) atmospheric and equipment instabilities.

  20. Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes

    NASA Astrophysics Data System (ADS)

    Prato, M.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.

    2012-03-01

    Context. The Richardson-Lucy method is the most popular deconvolution method in astronomy because it preserves the number of counts and the non-negativity of the original object. Regularization is, in general, obtained by an early stopping of Richardson-Lucy iterations. In the case of point-wise objects such as binaries or open star clusters, iterations can be pushed to convergence. However, it is well-known that Richardson-Lucy is an inefficient method. In most cases and, in particular, for low noise levels, acceptable solutions are obtained at the cost of hundreds or thousands of iterations, thus several approaches to accelerating Richardson-Lucy have been proposed. They are mainly based on Richardson-Lucy being a scaled gradient method for the minimization of the Kullback-Leibler divergence, or Csiszár I-divergence, which represents the data-fidelity function in the case of Poisson noise. In this framework, a line search along the descent direction is considered for reducing the number of iterations. Aims: A general optimization method, referred to as the scaled gradient projection method, has been proposed for the constrained minimization of continuously differentiable convex functions. It is applicable to the non-negative minimization of the Kullback-Leibler divergence. If the scaling suggested by Richardson-Lucy is used in this method, then it provides a considerable increase in the efficiency of Richardson-Lucy. Therefore the aim of this paper is to apply the scaled gradient projection method to a number of imaging problems in astronomy such as single image deconvolution, multiple image deconvolution, and boundary effect correction. Methods: Deconvolution methods are proposed by applying the scaled gradient projection method to the minimization of the Kullback-Leibler divergence for the imaging problems mentioned above and the corresponding algorithms are derived and implemented in interactive data language. For all the algorithms, several stopping rules

  1. Time-Varying Speckle Phenomena in Astronomical Imaging and in Laser Scattering.

    NASA Astrophysics Data System (ADS)

    O'Donnell, Kevin Arthur

    The properties of time-varying speckle phenomena in stellar imaging through turbulence and in laser scattering from moving diffusers are examined in both theory and experiment. It is found that the space-time correlation properties of stellar speckle images are important in stellar speckle interferometry, a method of obtaining diffraction limited information through the atmosphere. A theoretical study of exposure time effects in speckle interferometry reveals that the optimum exposure time is dependent on the space -time properties of the stellar image. A method of space -time speckle interferometry that may overcome exposure time effects of standard methods is also proposed. An experimental investigation of the space-time intensity correlation functions of the speckle image at two observing sites reveals rather different correlation structure. At Mees Observatory in Bristol Springs, New York, the image correlations indicate that translation of pupil turbulence was significant, while measurements at Mauna Kea Observatory in Hawaii suggest that boiling of turbulence rather than translation was the predominant effect. An analogous effect in laser scattering from moving diffusers is studied in some detail. In the experiment considered a translating diffuser is placed in the pupil of a lens and the time-varying speckle in the focal plane is studied. In this case the moving diffuser in front of the lens is analogous to wind-driven turbulence translating across the telescope objective. The theoretical space -time intensity correlation functions are calculated in the gaussian scattered amplitude limit and are found to be rather similar to those measured at Mees Observatory. Experimental measurements of the time-varying laser speckle are presented and excellent agreement with the theory is obtained. The detection of small amounts of aberrations and measurements of the lens modulation transfer function are possible applications of this phenomenon. A theoretical study of the

  2. Astronomical instruments.

    NASA Astrophysics Data System (ADS)

    Rai, R. N.

    Indian astronomers have devised a number of instruments and the most important of these is the armillary sphere. The earliest armillary spheres were very simple instruments. Ptolemy in his Almagest enumerates at least three. The simplest of all was the equinoctial armilla. They had also the solstitial armilla which was a double ring, erected in the plane of the meridian with a rotating inner circle. This was used to measure the solar altitude.

  3. Astronomical superhighways

    NASA Astrophysics Data System (ADS)

    Leach, D. C.

    1995-08-01

    The expansion of data supply has been prolific over the past decade. Publishers of text are only just beginning to consider what the aim of their publications should be in the light of competition from computer databases. Increasingly sources of data are becoming linked into a global network. The modem has revolutionised the way many astronomers interact with the outside world and each other. Access to data sources world wide can now be undertaken with a simple telephone call and a desktop computer.

  4. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina

  5. Laser Guidestar Satellite for Ground-based Adaptive Optics Imaging of Geosynchronous Satellites and Astronomical Targets

    NASA Astrophysics Data System (ADS)

    Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.

    2015-12-01

    Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x

  6. Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging.

    PubMed

    Ceus, Damien; Tonello, Alessandro; Grossard, Ludovic; Delage, Laurent; Reynaud, François; Herrmann, Harald; Sohler, Wolfgang

    2011-04-25

    This paper demonstrates the use of a nonlinear upconversion process to observe an infrared source through a telescope array detecting the interferometric signal in the visible domain. We experimentally demonstrate the possibility to retrieve information on the phase of the object spectrum of an infrared source by using a three-arm upconversion interferometer. We focus our study on the acquisition of phase information of the complex visibility by means of the phase closure technique. In our experimental demonstration, a laboratory binary star with an adjustable photometric ratio is used as a test source. A real time comparison between a standard three-arm interferometer and our new concept using upconversion by sum-frequency generation demonstrates the preservation of phase information which is essential for image reconstruction. PMID:21643113

  7. Visualizing Astronomical Data with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2013-06-01

    Astronomical data take on a multitude of forms—catalogs, data cubes, images, and simulations. The availability of software for rendering high-quality three-dimensional graphics lends itself to the paradigm of exploring the incredible parameter space afforded by the astronomical sciences. The software program Blender gives astronomers a useful tool for displaying data in a manner used by three-dimensional (3D) graphics specialists and animators. The interface to this popular software package is introduced with attention to features of interest in astronomy. An overview of the steps for generating models, textures, animations, camera work, and renders is outlined. An introduction is presented on the methodology for producing animations and graphics with a variety of astronomical data. Examples from subfields of astronomy with different kinds of data are shown with resources provided to members of the astronomical community. An example video showcasing the outlined principles and features is provided along with scripts and files for sample visualizations.

  8. D Hyperspectral Frame Imager Camera Data in Photogrammetric Mosaicking

    NASA Astrophysics Data System (ADS)

    Mäkeläinen, A.; Saari, H.; Hippi, I.; Sarkeala, J.; Soukkamäki, J.

    2013-08-01

    A new 2D hyperspectral frame camera system has been developed by VTT (Technical Research Center of Finland) and Rikola Ltd. It contains frame based and very light camera with RGB-NIR sensor and it is suitable for light weight and cost effective UAV planes. MosaicMill Ltd. has converted the camera data into proper format for photogrammetric processing, and camera's geometrical accuracy and stability are evaluated to guarantee required accuracies for end user applications. MosaicMill Ltd. has also applied its' EnsoMOSAIC technology to process hyperspectral data into orthomosaics. This article describes the main steps and results on applying hyperspectral sensor in orthomosaicking. The most promising results as well as challenges in agriculture and forestry are also described.

  9. Fully digital image sensor employing delta-sigma indirect feedback ADC with high-sensitivity to low-light illuminations for astronomical imaging applications

    NASA Astrophysics Data System (ADS)

    Maricic, Danijel; Ignjatovic, Zeljko; Figer, Donald F.; Ashe, Brian; Hanold, Brandon J.; Montagliano, Thomas; Stauffer, Don; Nikzad, Shouleh

    2010-07-01

    We describe a CMOS image sensor with column-parallel delta-sigma (ΔΣ) analog-to-digital converter (ADC). The design employs three transistor pixels (3T1) where the unique configuration of the ΔΣ ADC reduces the noise contribution of the readout transistor. A 128 x 128 pixel image sensor prototype is fabricated in 0.35μm TSMC technology. The reset noise and the offset fixed pattern noise (FPN) are removed in the digital domain. The measured readout noise is 37.8μV for an exposure time of 33ms. The low readout noise allows an improved low light response in comparison to other state-of-art designs. The design is suitable for applications demanding excellent low-light response such as astronomical imaging. The sensor has a measured intra-scene dynamic range (DR) of 91 dB, and a peak signal-to-noise ratio (SNR) of 54 dB.

  10. The ERA2 facility: towards application of a fibre-based astronomical spectrograph for imaging spectroscopy in life sciences

    NASA Astrophysics Data System (ADS)

    Roth, Martin M.; Zenichowski, Karl; Tarcea, Nicolae; Popp, Jürgen; Adelhelm, Silvia; Stolz, Marvin; Kelz, Andreas; Sandin, Christer; Bauer, Svend-Marian; Fechner, Thomas; Jahn, Thomas; Popow, Emil; Roth, Bernhard; Singh, Paul; Srivastava, Mudit; Wolter, Dieter

    2012-09-01

    Astronomical instrumentation is most of the time faced with challenging requirements in terms of sensitivity, stability, complexity, etc., and therefore leads to high performance developments that at first sight appear to be suitable only for the specific design application at the telescope. However, their usefulness in other disciplines and for other applications is not excluded. The ERA2 facility is a lab demonstrator, based on a high-performance astronomical spectrograph, which is intended to explore the innovation potential of fiber-coupled multi-channel spectroscopy for spatially resolved spectroscopy in life science, material sciences, and other areas of research.

  11. Astronomers without borders

    NASA Astrophysics Data System (ADS)

    Simmons, Mike

    2011-06-01

    ``Astronomers Without Borders'' is a new global organisational dedicated to furthering understanding and goodwill across national and cultural boundaries using the universal appeal of astronomy and space science. A growing network of affiliate organisations brings together clubs, magazines and other organizations involved in astronomy and space science. Forums, galleries, video conferences and other interactive technologies are used to connect participants around the world. Sharing of resources and direct connections through travel programs are also planned. One project, ``The World at Night'' (TWAN), has become an Special Project of IYA2009. TWAN creates wide-angle images of the night sky in important natural and historic settings around the world, dramatically demonstrating the universal nature and appeal of the night sky. ``Astronomers Without Borders'' is also a leader of the 100 Hours of Astronomy IYA2009 Global Cornerstone Project.

  12. Performance evaluation of optimization methods for super-resolution mosaicking on UAS surveillance videos

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; He, Qiang; Palaniappan, K.

    2012-06-01

    Unmanned Aircraft Systems (UAS) have been widely applied into military reconnaissance and surveillance by exploiting the information collected from the digital imaging payload. However, the data analysis of UAS videos is frequently limited by motion blur; the frame-to-frame movement induced by aircraft roll, wind gusts, and less than ideal atmospheric conditions; and the noise inherent within the image sensors. Therefore, the super-resolution mosaicking on low-resolution UAS surveillance video frames, becomes an important task for UAS video processing and is a pre-step for further effective image understanding. Here we develop a novel super-resolution framework which does not require the construction of sparse matrices. This method applied image operators in spatial domain and adopted an iterated back-projection method to conduct super-resolution mosaics from UAS surveillance video frames. The Steepest Descent method, Conjugate Gradient method and Levenberg Marquardt algorithm are used to numerically solve the nonlinear optimization problem in the modeling of super-resolution mosaic. A quantity comparison in computation time and visual performance of the super-resolution using the three numerical methods is performed. The Levenberg Marquardt algorithm provides a numerical solution to the least squares curve fitting, which avoids the time-consuming computation of the inverse of the pseudo Hessian matrix in regular singular value decomposition (SVD). The Levenberg Marquardt method, interpolating between the Gauss-Newton algorithm (GNA) and the method of gradient descent, is efficient, robust, and easy to implement. The results obtained in our simulations shows a great improvement of the resolution of the low resolution mosaic of up to 47.54 dB for synthetic images, and a considerable visual improvement in sharpness and visual details for real UAS surveillance frames. The convergence is generally reached in no more than ten iterations.

  13. Interference in astronomical speckle patterns

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1976-01-01

    Astronomical speckle patterns are examined in an atmospheric-optics context in order to determine what kind of image quality is to be expected from several different imaging techniques. The model used to describe the instantaneous complex field distribution across the pupil of a large telescope regards the pupil as a deep phase grating with a periodicity given by the size of the cell of uniform phase or the refractive index structure function. This model is used along with an empirical formula derived purely from the physical appearance of the speckle patterns to discuss the orders of interference in astronomical speckle patterns.

  14. Images of the future - Two decades in astronomy

    NASA Technical Reports Server (NTRS)

    Weistrop, D.

    1982-01-01

    Future instruments for the 100-10,000 A UV-wavelength region will require detectors with greater quantum efficiency, smaller picture elements, a greater wavelength range, and greater active area than those currently available. After assessing the development status and performance characteristics of vidicons, image tubes, electronographic cameras, digicons, silicon arrays and microchannel plate intensifiers presently employed by astronomical spacecraft, attention is given to such next-generation detectors as the Mosaicked Optical Self-scanned Array Imaging Camera, which consists of a photocathode deposited on the input side of a microchannel plate intensifier. The problems posed by the signal processing and data analysis requirements of the devices foreseen for the 21st century are noted.

  15. Astronomical observatory for shuttle. Phase A study

    NASA Technical Reports Server (NTRS)

    Guthals, D. L.

    1973-01-01

    The design, development, and configuration of the astronomical observatory for shuttle are discussed. The characteristics of the one meter telescope in the spaceborne observatory are described. A variety of basic spectroscopic and image recording instruments and detectors which will permit a large variety of astronomical observations are reported. The stDC 37485elines which defined the components of the observatory are outlined.

  16. Side-scan sonar mapping: Pseudo-real-time processing and mosaicking techniques

    SciTech Connect

    Danforth, W.W.; Schwab, W.C.; O'Brien, T.F. ); Karl, H. )

    1990-05-01

    The US Geological Survey (USGS) surveyed 1,000 km{sup 2} of the continental shelf off San Francisco during a 17-day cruise, using a 120-kHz side-scan sonar system, and produced a digitally processed sonar mosaic of the survey area. The data were processed and mosaicked in real time using software developed at the Lamont-Doherty Geological Observatory and modified by the USGS, a substantial task due to the enormous amount of data produced by high-resolution side-scan systems. Approximately 33 megabytes of data were acquired every 1.5 hr. The real-time sonar images were displayed on a PC-based workstation and the data were transferred to a UNIX minicomputer where the sonar images were slant-range corrected, enhanced using an averaging method of desampling and a linear-contrast stretch, merged with navigation, geographically oriented at a user-selected scale, and finally output to a thermal printer. The hard-copy output was then used to construct a mosaic of the survey area. The final product of this technique is a UTM-projected map-mosaic of sea-floor backscatter variations, which could be used, for example, to locate appropriate sites for sediment sampling to ground truth the sonar imagery while still at sea. More importantly, reconnaissance surveys of this type allow for the analysis and interpretation of the mosaic during a cruise, thus greatly reducing the preparation time needed for planning follow-up studies of a particular area.

  17. Astronomical Images from the Very Large Array (VLA) FIRST Survey Images from the STScI Archive (Faint Images of the Radio Sky at Twenty-cm)

    DOE Data Explorer

    FIRST, Faint Images of the Radio Sky at Twenty-Centimeters was a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North Galactic Cap. Using the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA) in its B-configuration, the Survey acquired 3-minute snapshots covering a hexagonal grid. The binary data are available in detailed source catalogs, but the full images themselves, developed through special techniques, are also available for public access. Note that the images are fairly large, typically 1150x1550 pixels. Access to the images is simple through the search interface; the images are also available via anonymous ftp at ftp://archive.stsci.edu/pub/vla_first/data. Another convenient way to obtain images is through the FIRST Cutout Server, which allows an image section to be extracted from the coadded image database at a user-specified position. The cutout server is also linked to the FIRST Search Engine, so that the catalog can be searched for sources of interest and then images can be obtained for those objects. All images taken through 2011 are available through the cutout server at http://third.ucllnl.org/cgi-bin/firstcutout.

  18. Astronomical Institute of Athens

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Astronomical Institute of Athens is the oldest research institute of modern Greece (it faces the Parthenon). The Astronomical Institute (AI) of the National Observatory of Athens (NOA) started its observational projects in 1847. The modern computer and research center are housed at the Penteli Astronomical Station with major projects and international collaborations focused on extragalactic ...

  19. Astronomical pipeline processing using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Shamir, Lior; Nemiroff, Robert J. Nemiroff

    2008-01-01

    Fundamental astronomical questions on the composition of the universe, the abundance of Earth-like planets, and the cause of the brightest explosions in the universe are being attacked by robotic telescopes costing billions of dollars and returning vast pipelines of data. The success of these programs depends on the accuracy of automated real time processing of images never seen by a human, and all predicated on fast and accurate automatic identifications of known astronomical objects and new astronomical transients. In this paper the needs of modern astronomical pipelines are discussed in the light of fuzzy-logic based decision-making. Several specific fuzzy-logic algorithms have been develop for the first time for astronomical purposes, and tested with excellent results on a test pipeline of data from the existing Night Sky Live sky survey.

  20. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  1. Armenian Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2014-10-01

    A review is given on the Armenian Astronomical Heritage from ancient times to nowadays. Armenian ancient astronomy includes the division of the skies into constellations, rock art, ancient Armenian calendar, ancient observatories (such as Metsamor and Karahunge), records of astronomical events (such as Halley's Comet recorded on Tigranes the Great's coin), ancient names of celestial bodies (planets, stars, constellations), etc. The Medieval Armenian astronomy includes two more calendars, Anania Shirakatsi's scientific heritage, the record of 1054 Supernova, sky maps by Luca Vanandetsi and Mkhitar Sebastatsi, etc. Modern Armenian astronomical heritage first of all consists of the famous Byurakan Astrophysical Observatory founded in 1946 by Viktor Ambartsumian, as well as Yerevan Astronomical Observatory, Armenian Astronomical Society, Armenian Virtual Observatory, Yerevan State University Department of Astrophysics, Astrofizika journal, and brilliant young students who systematically win high positions at International Astronomical Olympiads.

  2. Exploring the Hidden Structure of Astronomical Images: A "Pixelated" View of Solar System and Deep Space Features!

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Sienkiewicz, Frank; Sadler, Philip; Antonucci, Paul; Miller, Jaimie

    2013-01-01

    We describe activities created to help student participants in Project ITEAMS (Innovative Technology-Enabled Astronomy for Middle Schools) develop a deeper understanding of picture elements (pixels), image creation, and analysis of the recorded data. ITEAMS is an out-of-school time (OST) program funded by the National Science Foundation (NSF) with…

  3. Hubble repair and more wins astronomers' acclaim.

    PubMed

    Travis, J

    1994-01-28

    The repaired Hubble Space Telescope overshadowed everything else at the American Astronomical Society (AAS) Meeting earlier this month in Alexandria, Virginia. The nearly 2000 astronomers who turned out for the society's largest meeting yet provided plenty of "oohs" and "aahs" for every new image. But, in between, some astronomers caught word of a new proposal about how to tell whether the universe is open or closed, more data about mysterious gamma ray bursts, and the crowning of the "Galaxy of the Year." PMID:17754874

  4. A dimensionless relative trajectory estimation algorithm for autonomous imaging of a small astronomical body in a close distance flyby

    NASA Astrophysics Data System (ADS)

    Ariu, Kaito; Inamori, Takaya; Funase, Ryu; Nakasuka, Shinichi

    2016-08-01

    The world's first micro-spacecraft, "Proximate Object Close flYby with Optical Navigation" (PROCYON) has the advanced mission to approach an asteroid in dozen km (a one-order closer imaging distance compared with previous probes). In such a close distance encounter, the estimation of the relative trajectory of the target is necessary to perform autonomous imaging. However, the estimation is difficult owing to rapid changes of the line-of-sight direction of the target body. To overcome this problem, a novel dimensionless or direction only relative trajectory estimation algorithm, which uses a least square method, is proposed. The evaluation function for the least square method coincides with the error property of picture information to enable all of its calculations to be recursive and linear. It is suited for the implementation on the limited on-board computer. Numerical simulation results indicate that the proposed algorithm should enable the one-order closer flyby observation.

  5. Good imaging with very fast paraboloidal primaries - An optical solution and some applications. [performance improvement of astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.; Epps, N. W.

    1982-01-01

    Attention is given to the imaging performance improvement obtainable in telescopes with fast parabolic primaries by means of two-mirror correctors of the Paul-Baker type. Images with 80 percent of the energy concentrated within 0.2 arcsec are projected for an f/1 primary relaying to an f/2 final focus, over a 1 deg-diameter field. It is noted that the mechanical structure and enclosure of a large telescope built with these fast optics should be significantly smaller and less expensive than those for conventional optics. The application of the Paul-Baker corrector system is explored for such diverse telescope types as those employing six off-axis primary mirrors, UV astronomy telescopes with no chromatic aberration, a low emissivity IR astronomy instrument with an off-axis f/1 parent primary mirror part, and thin rectangular aperture telescopes which are useful for spectroscopy and photometry.

  6. Utilizing Dynamic Form Generation and Image Map Techniques to Construct an Interface to an Astronomical and Geophysical INGRES Database

    NASA Astrophysics Data System (ADS)

    Dorland, B. N.; Snyder, W. A.; Jones, R. D.; Heinicke, S.; Becker, D. A.

    The Backgrounds Data Center (BDC), located in the Space Sciences Division (SSD) of the Naval Research Laboratory (NRL), is the designated archive for celestial and earth backgrounds data collected by Ballistic Missile Defense Organization (BMDO) science research programs, including the upcoming Midcourse Space Experiment (MSX) data set. We extract and populate relational database catalogs with metadata and these catalogs to locate archived data products which our users request. The advent of Jason Ng's (NCSA) GSQL protocols have allowed us to construct World-Wide Wed interfaces to our catalogs, greatly improving their utility to users. We have modified these scripts to work with our INGRES RDBMS. We have enhanced the standard GSQL interface by incorporating the use of 'on the fly' form and graphical image construction. With dynamic forms, users generate their own forms by pre-selecting those query parameters they wish to use to search on databases. Users can also select query complexity ranging from rank novice to direct interaction with Standard Query Language (SQL). Dynamic image mapping adds a graphical layer to the WWW forms interface, and permits users to select data by interacting with images only. These techniques allow for an uncluttered and intuitive representation of the catalog databases to users.

  7. Nicolaus Copernicus Astronomical Center

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nicolaus Copernicus Astronomical Center is the largest astronomical institution in Poland, located in Warsaw and founded in 1956. At present it is a government-funded research institute supervised by the Polish Academy of Sciences and licensed by the government of Poland to award PhD and doctor habilitatus degrees in astronomy and astrophysics. In September 1999 staff included 21 senior scientist...

  8. Astronomers Working in Industry.

    ERIC Educational Resources Information Center

    Bless, Robert C.; King, Ivan R.

    1981-01-01

    Four scientists, trained as astronomers, describe their astronomical training and present careers in non-astronomy, industrial jobs. They recount some of the differences, positive and negative, between industrial and academic employment, and comment on some of the attitudes they perceive academic and industrial scientists hold toward each other.…

  9. American Astronomical Society (AAS)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Founded in 1899, the AAS is a non-profit scientific society created to promote the advancement of astronomy and closely related branches of science. Its membership consists primarily of professional researchers in the astronomical sciences, but also includes educators, students and others interested in the advancement of astronomical research. About 85% of the membership is drawn from North Ame...

  10. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Payne, H.; Hayes, J.

    1998-01-01

    This is the final report on the development of the Astronomical Software Directory Service (ASDS), a distributable, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URL's indexed for full-text searching.

  11. Station-Keeping Requirements for Constellations of Free-Flying Collectors Used for Astronomical Imaging in Space

    NASA Astrophysics Data System (ADS)

    Allen, Ronald J.

    2007-08-01

    The accuracy requirements on station-keeping for constellations of free-flying collectors that are coupled as (future) imaging arrays in space for astrophysics applications are examined. The basic imaging element of these arrays is the two-element interferometer. Accurate knowledge of two quantities is required: the ``projected baseline length,'' which is the distance between the two interferometer elements projected on the plane transverse to the line of sight to the target, and the ``optical path difference,'' which is the difference in the distances from that transverse plane to the beam combiner. Rules of thumb are determined for the typical accuracy required on these parameters. The requirement on the projected baseline length is a ``knowledge'' requirement and depends on the angular size of the targets of interest. It is generally at a level of half a meter for typical stellar targets, decreasing to perhaps a few centimeters only for the widest attainable fields of view. The requirement on the optical path difference is a ``control'' requirement and is much tighter, depending on the bandwidth of the signal. It is at a level of half a wavelength for narrow (few percent) signal bands, decreasing to ~0.2 λ for the broadest bandwidths expected to be useful. Translation of these requirements into engineering requirements on station-keeping accuracy depends on the specific details of the collector constellation geometry. Several examples are provided to guide future application of the criteria presented here. Some implications for the design of such collector constellations and for the methods used to transform the information acquired into images are discussed.

  12. Automatic registration and mosaicking system for remotely sensed imagery

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitry V.; Fonseca, Leila M. G.; Kenney, Charles; Manjunath, Bangalore S.

    2003-03-01

    Image registration is an important operation in remote sensing applications that basically involves the identification of many control points in the images. As the manual identification of control points may be time-consuming and tedious several automatic techniques have been developed. This paper describes a system for automatic registration and mosaic of remote sensing images under development at the Division of Image Processing (National Institute for Space Research - INPE) and the Vision Lab (Electrical & Computer Engineering department, UCSB). Three registration algorithms, which showed potential for multisensor or temporal image registration, have been implemented. The system is designed to accept different types of data and information provided by the user which speed up the processing or avoid mismatched control points. Based on a statistical procedure used to characterize good and bad registration, the user can stop or modify the parameters and continue the processing. Extensive algorithm tests have been performed by registering optical, radar, multi-sensor, high-resolution images and video sequences. Furthermore, the system has been tested by remote sensing experts at INPE using full scene Landsat, JERS-1, CBERS-1 and aerial images. An online demo system, which contains several examples that can be carried out using web browser, is available.

  13. Odessa Astronomical Calendar-2003

    NASA Astrophysics Data System (ADS)

    Karetnikov, V. G.; Mihalchuk, V. V.; Bazey, A. A.; Andronov, I. L.; Volyanskaya, M. Yu.; Garbuzov, G. A.; Komarov, N. S.; Koshkin, N. I.; Pozigun, V. A.; Ryabov, M. I.

    2002-10-01

    The Odessa Astronomical Calendar is intended for a wide range of readers, who are interested in the problems of astronomy and in the applications of the astronomical data. The items, of information, assembled in the Calendar may be useful to professional workers requiring a definition of time of sets and rises of the Sun and the Moon and approach of twilights, as well as to the amateurs astronomers and other citizens. The Calendar may be used for astronomical education at schools, hymnasia, lycea, colleges and institutes. In this issue of the Calendar, besides a description of the main astronomical events of the year and the tables of the positions of celestial bodies and time of observations of astronomical events on the celestial sphere, there are also included sketches on interesting problems of astronomy and, as the appendix, the instruction on observations of comets. The Odessa Astronomical Calendar is published in Russian and is intended for the inhabitants of southern region of Ukraine. The Calendar is published every year with a constant part and series of articles, which change every year.

  14. The Lifetimes of Astronomers

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2015-08-01

    For members of the American Astronomical Society, I collected data on their lifetimes from (1) 489 obituaries published in 1991-2015, (2) about 127 members listed as deceased but without published obituaries, and (3) a sample of AAS members without obituaries or not known to the AAS as being deceased. These show that the most frequent lifetimes is 85 years. Of 674 deceased members with known lifetimes, 11.0 ± 1.3% lived to be 90 or more years. In comparison to the astronomers, the most frequent lifetime for the general population is 77 years, showing that astronomers live an average of 8 years longer than the general population.

  15. America's foremost early astronomer

    NASA Astrophysics Data System (ADS)

    Rubincam, David Parry; Rubincam, Milton, II

    1995-05-01

    The life of 18th century astronomer, craftsman, and patriot David Rittenhouse is detailed. As a craftsman, he distinguished himself as one of the foremost builders of clocks. He also built magnetic compasses and surveying instruments. The finest examples of his craftsmanship are considered two orreries, mechanical solar systems. In terms of astronomical observations, his best-known contribution was his observation of the transit of Venus in 1769. Rittenhouse constructed the first diffraction grating. Working as Treasurer of Pennsylvania throughout the Revolution, he became the first director of the Mint in 1792. Astronomical observations in later life included charting the position of Uranus after its discovery.

  16. 400th Anniversary of Marius's Book with the First Image of an Astronomical Telescope and of Orbits of Jovian Moons

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Leich, Pierre

    2015-01-01

    Simon Mayr's (Marius's) Mundus Iovialis Anno M·DC·IX Detectus Ope Perspicilli Belgici (The World of Jupiter...) was published in Nuremberg in 1614; Marius was the Ansbach court mathematician. The frontispiece includes not only a portrait of Marius (1573-1624) himself but also, in the foreground, a long tube labelled "perspicillum," the first known image of a telescopic device used for astronomy; the name "telescope" came later. A schematic diagram of Jupiter with four moons orbiting appears at upper left; Marius, following a suggestion from Kepler, gave these Galilean satellites the names now still in use: Io, Europa. Ganymede, and Callisto. The title continues Hoc est, Quatuor Joviali cum Planetarum, cum Theoria, tum Tabulae, Propriis Observationibus Maxime Fundate.... A pair of conferences was held in Germany in 2014 to commemorate the 400th anniversary of Marius's book and to discuss Marius's work and its relation to Galileo's work (http://www.simon-marius.net; http://www.simon-marius.net/index.php?lang=en&menu=1 28 languages are available). Marius (Mayr) had independently discovered the four satellites of Jupiter, apparently one day after Galileo, on December 29 O.S., 1609; by the time he published his work four years later (a local-circulation publication had appeared in Nuremberg in 1611 in Prognosticon Astrologicum auf das Jahr 1612), Galileo had gained fame and priority, and Galileo accused Marius of plagiarism in Il Saggiatore (1623). With his Belgian telescope, Marius also noted the tilt of the orbital plane of Jupiter's moons, sunspots (1611), and the Andromeda Nebula (1612). He claimed to have worked out a system of cosmology similar to the Tychonic system in 1596, contemporaneously to Kepler's Mysterium Cosmographicum. A crater, the Marius Hills, and the Rima Marius on the Moon are named for him by the I.A.U., as well as, to celebrate the quadricentennial, a main-belt asteroid, now (7984) Marius. Acknowledgment: JMP thanks Seth Fagen, PRPH Books in

  17. Parallel blind deconvolution of astronomical images based on the fractal energy ratio of the image and regularization of the point spread function

    NASA Astrophysics Data System (ADS)

    Jia, Peng; Cai, Dongmei; Wang, Dong

    2014-11-01

    A parallel blind deconvolution algorithm is presented. The algorithm contains the constraints of the point spread function (PSF) derived from the physical process of the imaging. Additionally, in order to obtain an effective restored image, the fractal energy ratio is used as an evaluation criterion to estimate the quality of the image. This algorithm is fine-grained parallelized to increase the calculation speed. Results of numerical experiments and real experiments indicate that this algorithm is effective.

  18. Decoding Astronomical Concepts

    ERIC Educational Resources Information Center

    Durisen, Richard H.; Pilachowski, Catherine A.

    2004-01-01

    Two astronomy professors, using the Decoding the Disciplines process, help their students use abstract theories to analyze light and to visualize the enormous scale of astronomical concepts. (Contains 5 figures.)

  19. An astronomical murder?

    NASA Astrophysics Data System (ADS)

    Belenkiy, Ari

    2010-04-01

    Ari Belenkiy examines the murder of Hypatia of Alexandria, wondering whether problems with astronomical observations and the date of Easter led to her becoming a casualty of fifth-century political intrigue.

  20. Women Astronomers: Australia: Women astronomers in Australia

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2001-08-01

    Ragbir Bhathal summarizes the role played by women astronomers in Australia's astronomy, now and in the past. Australia has a great tradition in astronomy, from the early observations of Aboriginal people through the colonial drive to explore and understand, culminating in the established excellence of research there today. Women have contributed to this achievement in no small way, yet their contribution has been unremarked, if not ignored. Here I summarize the historical and present state of affairs and look forward to a brighter and more equitable future.

  1. Aligning Astronomical Telescopes via Identification of Stars

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2010-01-01

    A proposed method of automated, precise alignment of a ground-based astronomical telescope would eliminate the need for initial manual alignment. The method, based on automated identification of known stars and other celestial objects in the telescope field of view, would also eliminate the need for an initial estimate of the aiming direction. The method does not require any equipment other than a digital imaging device such as a charge-coupled-device digital imaging camera and control computers of the telescope and camera, all of which are standard components in professional astronomical telescope systems and in high-end amateur astronomical telescope systems. The method could be implemented in software running in the telescope or camera control computer or in an external computer communicating with the telescope pointing mount and camera control computers.

  2. Design of a multifunction astronomical CCD camera

    NASA Astrophysics Data System (ADS)

    Yao, Dalei; Wen, Desheng; Xue, Jianru; Chen, Zhi; Wen, Yan; Jiang, Baotan; Xi, Jiangbo

    2015-07-01

    To satisfy the requirement of the astronomical observation, a novel timing sequence of frame transfer CCD is proposed. The multiple functions such as the adjustments of work pattern, exposure time and frame frequency are achieved. There are four work patterns: normal, standby, zero exposure and test. The adjustment of exposure time can set multiple exposure time according to the astronomical observation. The fame frequency can be adjusted when dark target is imaged and the maximum exposure time cannot satisfy the requirement. On the design of the video processing, offset correction and adjustment of multiple gains are proposed. Offset correction is used for eliminating the fixed pattern noise of CCD. Three gains pattern can improve the signal to noise ratio of astronomical observation. Finally, the images in different situations are collected and the system readout noise is calculated. The calculation results show that the designs in this paper are practicable.

  3. The New Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as

  4. NRAO Astronomer Honored by American Astronomical Society

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Dr. Scott Ransom, an astronomer at the National Radio Astronomy Observatory (NRAO), received the American Astronomical Society's (AAS) Helen B. Warner Prize on January 11, at the society's meeting in Seattle, Washington. The prize is awarded annually for "a significant contribution to observational or theoretical astronomy during the five years preceding the award." Presented by AAS President Debra Elmegreen, the prize recognized Ransom "for his astrophysical insight and innovative technical leadership enabling the discovery of exotic, millisecond and young pulsars and their application for tests of fundamental physics." "Scott has made landmark contributions to our understanding of pulsars and to using them as elegant tools for investigating important areas of fundamental physics. We are very proud that his scientific colleagues have recognized his efforts with this prize," said NRAO Director Fred K.Y. Lo. A staff astronomer at the NRAO since 2004, Ransom has led efforts using the National Science Foundation's Green Bank Telescope and other facilities to study pulsars and use them to make advances in areas of frontier astrophysics such as gravitational waves and particle physics. In 2010, he was on a team that discovered the most massive pulsar yet known, a finding that had implications for the composition of pulsars and details of nuclear physics, gravitational waves, and gamma-ray bursts. Ransom also is a leader in efforts to find and analyze rapidly-rotating millisecond pulsars to make the first direct detection of the gravitational waves predicted by Albert Einstein. In other work, he has advanced observational capabilities for finding millisecond pulsars in globular clusters of stars and investigated how millisecond pulsars are formed. A graduate of the United States Military Academy at West Point, NY, Ransom served as an artillery officer in the U.S. Army. After leaving the Army, he earned a Ph.D. at Harvard University in 2001, and was a postdoctoral fellow

  5. astLib: Tools for research astronomers

    NASA Astrophysics Data System (ADS)

    Hilton, Matt; Boada, Steven

    2016-07-01

    astLib is a set of Python modules for performing astronomical plots, some statistics, common calculations, coordinate conversions, and manipulating FITS images with World Coordinate System (WCS) information through PyWCSTools, a simple wrapping of WCSTools (ascl:1109.015).

  6. Astronomical education in Mongolia

    NASA Astrophysics Data System (ADS)

    Dulmaa, A.; Tsolmon, R.; Lkhagvajav, Ch.; Jargalsuren, Sh.; Bayartungalag, B.; Zaya, M.

    2011-06-01

    The history, current situation, education and future directions of modern Mongolian space science and astronomy is reviewed. This paper discusses recent efforts to develop astronomy education and research capacity in Mongolia with cooperation of the International Astronomical Union. Various capacity-building initiatives in space science including remote sensing in Mongolia are discussed.

  7. Ancient Chinese Astronomical Technologies

    NASA Astrophysics Data System (ADS)

    Walsh, Jennifer Robin

    2004-05-01

    I am interested in the astronomical advances of the Ancient Chinese in measuring the solar day. Their development of gnomon & ruler, sundial, and water clock apparatuses enabled Chinese astronomers to measure the annual solar orbit and solar day more precisely than their contemporaries. I have built one of each of these devices to use in collecting data from Olympia, Washington. I will measure the solar day in the Pacific Northwest following the methodology of the ancient Chinese. I will compare with my data, the available historical Chinese astronomical records and current records from the United States Naval Observatory Master Clock. I seek to understand how ancient Chinese investigations into solar patterns enabled them to make accurate predictions about the movement of the celestial sphere and planets, and to develop analytic tests of their theories. Mayall, R. Newton; Sundials: their construction and use. Dover Publications 2000 North, John; The Norton History of Astronomy and Cosmology W.W. Norton& Co. 1995 Zhentao Xu, David W. Pankenier, Yaotiao Jiang; East Asian archaeoastronomy : historical records of astronomical observations of China, Japan and Korea Published on behalf of the Earth Space Institute by Gordon and Breach Science Publishers, c2000

  8. Misconceptions of Astronomical Distances

    ERIC Educational Resources Information Center

    Miller, Brian W.; Brewer, William F.

    2010-01-01

    Previous empirical studies using multiple-choice procedures have suggested that there are misconceptions about the scale of astronomical distances. The present study provides a quantitative estimate of the nature of this misconception among US university students by asking them, in an open-ended response format, to make estimates of the distances…

  9. Poznan acute Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    This Poznan acute Astronomical Observatory is a unit of the Adam Mickiewicz University, located in Poznan acute, Poland. From its foundation in 1919, it has specialized in astrometry and celestial mechanics (reference frames, dynamics of satellites and small solar system bodies). Recently, research activities have also included planetary and stellar astrophysics (asteroid photometry, catalysmic b...

  10. Svetloe Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  11. Zelenchukskaya Radio Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  12. Korean Astronomical Calendar, Chiljeongsan

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  13. The Knorre astronomers' dynasty

    NASA Astrophysics Data System (ADS)

    Pinigin, G.

    2009-06-01

    We attempt to throw light upon the poorly known astronomical dynasty of Knorre and describe its contribution to astronomy. The founder of the dynasty, Ernst Christoph Friedrich Knorre (1759-1810), was born in Germany in 1759, and since 1802 he was a Professor of Mathematics at the Tartu University, and observer at its temporary observatory. He determined the first coordinates of Tartu by stellar observations. Karl Friedrich Knorre (1801-1883) was the first director of the Naval Observatory in Nikolaev since the age of 20, provided the Black Sea navy with accurate time and charts, trained mariners in astronomical navigation, and certified navigation equipment. He compiled star maps and catalogues, and determined positions of comets and planets. He also participated in Bessel's project of the Academic Star Charts, and was responsible for Hora 4, published by the Berlin Academy of Sciences. This sheet permitted to discover two minor planets, Astraea and Flora. Viktor Knorre (1840-1919) was born in Nikolaev. In 1862 he left for Berlin to study astronomy. After defending his thesis for a doctor's degree, he went to Pulkovo as an astronomical calculator in 1867. Since 1873 Viktor worked as an observer of the Berlin Observatory Fraunhofer refractor. His main research focussed on minor planets, comets and binary stars. He discovered the minor planets Koronis, Oenone, Hypatia and Penthesilea. Viktor Knorre also worked on improving astronomical instrumentation, e.g. the Knorre / Heele equatorial telescope mounting.

  14. The League of Astronomers

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Brandel, A.; Paat, A. M.; Schmitz, D.; Sharma, R.; Trujillo, J.; Laws, C. S.

    2014-01-01

    The League of Astronomers is committed to engaging the University of Washington (UW) and the greater Seattle communities through outreach, research, and events. Since its re-founding two years ago, the LOA has provided a clear connection between the UW Astronomy Department, undergraduate students, and members of the public. Weekly outreach activities such as public star parties and planetarium talks in both the UW Planetarium and the Mobile Planetarium have connected enthusiastic LOA volunteers with hundreds of public observers. In addition, collaboration with organizations like the Seattle Astronomical Society and the UW Society of Physics Students has allowed the LOA to reach an even greater audience. The club also provides opportunities for undergraduate students to participate in research projects. The UW Student Radio Telescope (SRT) and the Manastash Ridge Observatory (MRO) both allow students to practice collecting their own data and turning it into a completed project. Students have presented many of these research projects at venues like the UW Undergraduate Research Symposium and meetings of the American Astronomical Society. For example, the LOA will be observing newly discovered globular clusters at the Dominion Astrophysical Observatory (DAO) in Victoria, B.C. and constructing color-magnitude diagrams. The LOA also helps engage students with the Astronomy major through a variety of events. Bimonthly seminars led by graduate students on their research and personal experiences in the field showcase the variety of options available for students in astronomy. Social events hosted by the club encourage peer mentoring and a sense of community among the Astronomy Department’s undergraduate and graduate students. As a part of one of the nation’s largest undergraduate astronomy programs, members of the League of Astronomers have a unique opportunity to connect and interact with not only the Seattle public but also the greater astronomical community.

  15. Thomas Kuhn's Influence on Astronomers.

    ERIC Educational Resources Information Center

    Shipman, Harry L.

    2000-01-01

    Surveys the astronomical community on their familiarity with the work of Thomas Kuhn. Finds that for some astronomers, Kuhn's thought resonated well with their picture of how science is done and provided perspectives on their scientific careers. (Author/CCM)

  16. High School Teachers as Astronomers

    ERIC Educational Resources Information Center

    Sather, Robert

    1977-01-01

    Discusses a joint research program between several high school teachers and solar system astronomers in which data were collected on photoelectric observations of asteroids and minor planets via astronomical telescopes. (MLH)

  17. The Automated Astronomic Positioning System (AAPS)

    NASA Technical Reports Server (NTRS)

    Williams, O. N.

    1973-01-01

    Two prototype systems of The Automated Astronomic Positioning System (AAPS) have been delivered to Defense Mapping Agency (DMA). The AAPS was developed to automate and expedite the determination of astronomic positions (latitude and longitude). This equipment is capable of defining astronomic positions to an accuracy sigma = 0.3 in each component within a two hour span of stellar observations which are acquired automatically. The basic concept acquires observations by timing stellar images as they cross a series of slits, comparing these observations to a stored star catalogue, and automatically deducing position and accuracy by least squares using pre-set convergence criteria. An exhaustive DMA operational test program has been initiated to evaluate the capabilities of the AAPS in a variety of environments (both climatic and positional). Status of the operational test is discussed.

  18. Custom Sky-Image Mosaics from NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David

    2005-01-01

    yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user

  19. Misconceptions about astronomical magnitudes

    NASA Astrophysics Data System (ADS)

    Schulman, Eric; Cox, Caroline V.

    1997-10-01

    The present system of astronomical magnitudes was created as an inverse scale by Claudius Ptolemy in about 140 A.D. and was defined to be logarithmic in 1856 by Norman Pogson, who believed that human eyes respond logarithmically to the intensity of light. Although scientists have known for some time that the response is instead a power law, astronomers continue to use the Pogson magnitude scale. The peculiarities of this system make it easy for students to develop numerous misconceptions about how and why to use magnitudes. We present a useful exercise in the use of magnitudes to derive a cosmologically interesting quantity (the mass-to-light ratio for spiral galaxies), with potential pitfalls pointed out and explained.

  20. Astronomers as Software Developers

    NASA Astrophysics Data System (ADS)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  1. Astronomical Fourier spectropolarimetry

    NASA Technical Reports Server (NTRS)

    Forbes, F. F.; Fymat, A. L.

    1974-01-01

    Spectra of the Stokes polarization parameters of Venus (resolution 0.5 per cm) are presented. They were obtained at the Cassegrain focus of the 154-cm telescope of the National Mexican Observatory, Baja California, Mexico, July 12 and 13, 1972, with the Fourier Interferometer Polarimeter (FIP). A preliminary, limited analysis of four spectral features and of the CO2 rotational band structures at 6080 and 6200 per cm has demonstrated that spectral polarization is indeed present. These experimental results, confirmed by two series of observations, provide substantiation for this theoretically predicted phenomenon. They also tend to show that the FIP represents a novel astronomical tool for variable spectral resolution studies of both the intensity and the state of polarization of astronomical light sources.

  2. Microcomputers and astronomical navigation.

    NASA Astrophysics Data System (ADS)

    Robin-Jouan, Y.

    1996-04-01

    Experienced navigators remember ancient astronomical navigation and its limitations. Using microcomputers in small packages and selecting up-to-date efficient methods will overcome many of these limitations. Both features lead to focus on observations, and encourage an increase in their numbers. With no intention of competing with satellite navigation, sextant navigation in the open sea can then be accessed again by anybody. It can be considered for demonstrative use or as a complement to the GPS.

  3. Astrobiology: An astronomer's perspective

    SciTech Connect

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  4. On Tokugawa Bakufu's astronomical officials

    NASA Astrophysics Data System (ADS)

    Yamada, Keiji

    2005-06-01

    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  5. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, Robert J.; Payne, Harry; Hayes, Jeffrey

    1997-01-01

    With the support of NASA's Astrophysics Data Program (NRA 92-OSSA-15), we have developed the Astronomical Software Directory Service (ASDS): a distributed, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URLs indexed for full-text searching. Users are performing about 400 searches per month. A new aspect of our service is the inclusion of telescope and instrumentation manuals, which prompted us to change the name to the Astronomical Software and Documentation Service. ASDS was originally conceived to serve two purposes: to provide a useful Internet service in an area of expertise of the investigators (astronomical software), and as a research project to investigate various architectures for searching through a set of documents distributed across the Internet. Two of the co-investigators were then installing and maintaining astronomical software as their primary job responsibility. We felt that a service which incorporated our experience in this area would be more useful than a straightforward listing of software packages. The original concept was for a service based on the client/server model, which would function as a directory/referral service rather than as an archive. For performing the searches, we began our investigation with a decision to evaluate the Isite software from the Center for Networked Information Discovery and Retrieval (CNIDR). This software was intended as a replacement for Wide-Area Information Service (WAIS), a client/server technology for performing full-text searches through a set of documents. Isite had some additional features that we considered attractive, and we enjoyed the cooperation of the Isite developers, who were happy to have ASDS as a demonstration project. We ended up staying with the software throughout the project, making modifications to take advantage of new features as they came along, as well as

  6. Recent developments in digital image processing at the Image Processing Laboratory of JPL.

    NASA Technical Reports Server (NTRS)

    O'Handley, D. A.

    1973-01-01

    Review of some of the computer-aided digital image processing techniques recently developed. Special attention is given to mapping and mosaicking techniques and to preliminary developments in range determination from stereo image pairs. The discussed image processing utilization areas include space, biomedical, and robotic applications.

  7. On astronomical drawing [1846

    NASA Astrophysics Data System (ADS)

    Smyth, Charles Piazzi

    Reprinted from the Memoirs of the Royal Astronomical Society 15, 1846, pp. 71-82. With annotations and illustrations added by Klaus Hentschel. The activities of the Astronomer Royal for Scotland, Charles Piazzi Smyth (1819-1900), include the triangulation of South African districts, landscape painting, day-to-day or tourist sketching, the engraving and lithographing of prominent architectural sites, the documentary photography of the Egyptian pyramids or the Tenerife Dragon tree, and `instant photographs' of the clouds above his retirement home in Clova, Ripon. His colorful records of the aurora polaris, and solar and terrestrial spectra all profited from his trained eye and his subtle mastery of the pen and the brush. As his paper on astronomical drawing, which we chose to reproduce in this volume, amply demonstrates, he was conversant in most of the print technology repertoire that the 19th century had to offer, and carefully selected the one most appropriate to each sujet. For instance, he chose mezzotint for the plates illustrating Maclear's observations of Halley's comet in 1835/36, so as to achieve a ``rich profundity of shadows, the deep obscurity of which is admirably adapted to reproduce those fine effects of chiaroscuro frequently found in works where the quantity of dark greatly predominates.'' The same expertise with which he tried to emulate Rembrandt's chiaroscuro effects he applied to assessing William and John Herschel's illustrations of nebulae, which appeared in print between 1811 and 1834. William Herschel's positive engraving, made partly by stippling and partly by a coarse mezzotint, receives sharp admonishment because of the visible ruled crossed lines in the background and the fact that ``the objects, which are also generally too light, [have] a much better definition than they really possess.'' On the other hand, John Herschel's illustration of nebulae and star clusters, given in negative, ``in which the lights are the darkest part of the

  8. Astronomical Fourier spectrometer.

    PubMed

    Connes, P; Michel, G

    1975-09-01

    A high resolution near ir Fourier spectrometer with the same general design as previously described laboratory instruments has been built for astronomical observations at a coudé focus. Present spectral range is 0.8-3.5 microm with PbS and Ge detectors and maximum path difference 1 m. The servo system can accommodate various recording modes: stepping or continuous scan, path difference modulation, sky chopping. A real time computer is incorporated into the system, which has been set up at the Hale 500-cm telescope on Mount Palomar. Samples of the results are given. PMID:20154966

  9. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  10. XXXVI Polish Astronomical Society Meeting

    NASA Astrophysics Data System (ADS)

    Różańska, Agata; Bejger, Michał

    2014-12-01

    XXXVI meeting of Polish Astronomical Society was held in Warsaw on Sept. 11-14, 2013. The conference brought together 150 astronomers working in different institutes in Poland and abroad. The highlight of the Congress was the first awarding of the Paczynski's Medal. The first laureate of the Medal is Professor Martin Rees from University of Cambridge. Medal was given by the President of the Polish Astronomical Society prof. Bozena Czerny.

  11. Strasbourg's "First" astronomical observatory

    NASA Astrophysics Data System (ADS)

    Heck, André

    2011-08-01

    The turret lantern located at the top of the Strasbourg Hospital Gate is generally considered as the first astronomical observatory of the city, but such a qualification must be treated with caution. The thesis of this paper is that the idea of a tower-observatory was brought back by a local scholar, Julius Reichelt (1637-1717), after he made a trip to Northern Europe around 1666 and saw the "Rundetårn" (Round Tower) recently completed in Copenhagen. There, however, a terrace allowed (and still allows) the full viewing of the sky, and especially of the zenith area where the atmospheric transparency is best. However, there is no such terrace in Strasbourg around the Hospital Gate lantern. Reichelt had also visited Johannes Hevelius who was then developing advanced observational astronomy in Gdansk, but nothing of the kind followed in Strasbourg. Rather, the Hospital Gate observatory was built essentially for the prestige of the city and for the notoriety of the university, and the users of this observing post did not make any significant contributions to the progress of astronomical knowledge. We conclude that the Hospital Gate observatory was only used for rudimentary viewing of bright celestial objects or phenomena relatively low on the horizon.

  12. Really Bad Astronomers

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2009-01-01

    What happens when even Percival Lowell stops believing in your Mars observations? History can be troubling. This I learned while editing the Biographical Encyclopedia of Astronomers (Springer, 2007). There have been astronomers who do not fit our commonly held, and clung to, conceptual model: a sociological system that sifts out generally like-minded and sensible colleagues. I refer to those individuals who (for at least a time) successfully entered the mainstream profession, but now disturb our worldview that says prosperity as a scientist usually is achieved by a rational being holding certain common values. My List of Shame includes examples from each of the last four centuries. Not "crack pot” cosmologists, these were hard-working observers for whom the end justified the means. And they all got away with it. Each person I discuss was vetted by the professional establishment of the day. Yet you will learn how to be fired from a major observatory, banned from prominent journals. But only after damage to the science is done. Be afraid.

  13. Grigor Narekatsi's astronomical insights

    NASA Astrophysics Data System (ADS)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  14. Astronomer's Proposal Tool

    NASA Technical Reports Server (NTRS)

    Krueger, Tony

    2005-01-01

    Astronomer's Proposal Tool (APT) is a computer program that assists astronomers in preparing their Phase 1 and Phase 2 Hubble Space Telescope science programs. APT is a successor to the Remote Proposal Submission System 2 (RPS2) program, which has been rendered obsolete by more recent advances in computer software and hardware. APT exploits advances associated with widespread use of the Internet, multiplatform visual development software tools, and overall increases in the power of desktop computer hardware, all in such a way as to make the preparation and submission of proposals more intuitive and make observatory operations less cumbersome. APT provides documentation and help that are friendly, up to date, and easily accessible to users of varying levels of expertise, while defining an extensible framework that is responsive to changes in both technology and observatory operations. APT consists of two major components: (1) a set of software tools that are intuitive, visual, and responsive and (2) an integrated software environment that unifies all the tools and makes them interoperable. The APT tools include the Visual Target Tuner, Proposal Editor, Exposure Planner, Bright Object Checker, and Visit Planner.

  15. Professional Ethics for Astronomers

    NASA Astrophysics Data System (ADS)

    Marvel, K. B.

    2005-05-01

    There is a growing recognition that professional ethics is an important topic for all professional scientists, especially physical scientists. Situations at the National Laboratories have dramatically proven this point. Professional ethics is usually only considered important for the health sciences and the legal and medical professions. However, certain aspects of the day to day work of professional astronomers can be impacted by ethical issues. Examples include refereeing scientific papers, serving on grant panels or telescope allocation committees, submitting grant proposals, providing proper references in publications, proposals or talks and even writing recommendation letters for job candidates or serving on search committees. This session will feature several speakers on a variety of topics and provide time for questions and answers from the audience. Confirmed speakers include: Kate Kirby, Director Institute for Theoretical Atomic and Molecular Physics - Professional Ethics in the Physical Sciences: An Overview Rob Kennicutt, Astrophysical Journal Editor - Ethical Issues for Publishing Astronomers Peggy Fischer, Office of the NSF Inspector General - Professional Ethics from the NSF Inspector General's Point of View

  16. Getting Astronomers Involved in the IYA: Astronomer in the Classroom

    NASA Astrophysics Data System (ADS)

    Koenig, Kris

    2008-05-01

    The Astronomer in the Classroom program provides professional astronomers the opportunity to engage with 3rd-12th grade students across the nation in grade appropriate discussions of their recent research, and provides students with rich STEM content in a personalized forum, bringing greater access to scientific knowledge for underserved populations. 21st Century Learning and Interstellar Studios, the producer of the 400 Years of the Telescope documentary along with their educational partners, will provide the resources necessary to facilitate the Astronomer in the Classroom program, allowing students to interact with astronomers throughout the IYA2009. PROGRAM DESCRIPTION One of hundreds of astronomers will be available to interact with students via live webcast daily during Spring/Fall 2009. The astronomer for the day will conduct three 20-minute discussions (Grades 3-5 /6-8/9-12), beginning with a five-minute PowerPoint on their research or area of interest. The discussion will be followed by a question and answer period. The students will participate in real-time from their school computer(s) with the technology provided by 21st Century Learning. They will see and hear the astronomer on their screen, and pose questions from their keyboard. Teachers will choose from three daily sessions; 11:30 a.m., 12:00 p.m., 12:30 p.m. Eastern Time. This schedule overlaps all US time zones, and marginalizes bandwidth usage, preventing technological barriers to web access. The educational partners and astronomers will post materials online, providing easy access to information that will prepare teachers and students for the chosen discussion. The astronomers, invited to participate from the AAS and IAU, will receive a web cam shipment with instructions, a brief training and conductivity test, and prepaid postage for shipment of the web cam to the next astronomer on the list. The anticipated astronomer time required is 3-hours, not including the time to develop the PowerPoint.

  17. Commission 5: Documentation and Astronomical Data

    NASA Astrophysics Data System (ADS)

    Norris, Raymond P.; Ohishi, Masatoshi; Genova, Françoise; Grothkopf, Uta; Malkov, Oleg Yu.; Pence, William D.; Schmitz, Marion; Hanisch, Robert J.; Zhou, Xu

    IAU Commission 5 deals with data management issues, and its working groups and task groups deal specifically with information handling, with data centres and networks, with technical aspects of collection, archiving, storage and dissemination of data, with designations and classification of astronomical objects, with library services, editorial policies, computer communications, ad hoc methodologies, and with various standards, reference frames, etc., FITS, astronomys Flexible Image Transport System, the major data exchange format, is controlled, maintained and updated by the Working Group FITS.

  18. Immanuel Halton, the astronomer

    NASA Astrophysics Data System (ADS)

    Barber, P. M.

    1996-02-01

    Immanuel Halton was born in Cumberland, studied at Grays Inn, London during the later stages of the English Civil War and, during the Commonwealth, entered the service of Henry Howard, later 6th Duke of Norfolk. He pursued his mathematical and astronomical interests while auditor to the Duke of Norfolk. He met with John Flamsteed, encouraged the latter's interest in mathematics and astronomy and became his first patron, as well as contributing observations to Flamsteed's published works. Immanuel ended his days at Wingfield Manor, Derbyshire. A short biographical piece on Immanuel Halton appeared in the Journal in the early 1950s, consisting mostly of quotations from Flamsteed's 'Self Inspections' and Baily's 'Life of Flamsteed'. 1996 is the 350th anniversary of Flamsteed's birth, and it is hoped that this fuller account will flesh out the bones of his first patron.

  19. Astronomers against Newton.

    PubMed

    Higgitt, Rebekah

    2004-03-01

    Francis Baily's publication of the manuscripts of John Flamsteed, the first Astronomer Royal, provoked a furious response. Flamsteed had quarrelled with Isaac Newton, and described him in terms unforgivable to those who claimed him as a paragon of all virtues, both moral and scientific. Baily was condemned for putting Flamsteed's complaints in the public sphere. However, his supporters saw his work as a critique of the excessive hero-worship accorded to Newton. Written when the word 'scientist' had been newly coined, this work and the debates it provoked gives us an insight into contemporary views of the role of the man of science and of the use of science to back political, religious and moral positions. PMID:15036924

  20. Astronomical tides and earthquakes

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Mao, Wei; Huang, Yong

    2001-03-01

    A review on the studies of correlation between astronomical tides and earthquakes is given in three categories, including (1) earthquakes and the relative locations of the sun, the moon and the earth, (2) earthquakes and the periods and phases of tides and (3) earthquakes and the tidal stress. The first two categories mainly investigate whether or not there exist any dominant pattern of the relative locations of the sun, the moon and the earth during earthquakes, whether or not the occurrences of earthquakes are clustered in any special phase during a tidal period, whether or not there exists any tidal periodic phenomenon in seismic activities, By empasizing the tidal stress in seismic focus, the third category investigates the relationship between various seismic faults and the triggering effects of tidal stress, which reaches the crux of the issue. Possible reasons to various inconsistent investigation results by using various methods and samples are analyzed and further investigations are proposed.

  1. The Amateur Astronomer

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    This 2000 Edition of Sir Patrick Moore’s classic book has been completely revised in the light of changes in technology. Not only do these changes include commercially available astronomical telescopes and software, but also what we know and understand about the universe. There are many new photographs and illustrations. Writing in the easy-going style that made him famous as a writer and broadcaster, Sir Patrick introduced astronomy and amateur observing together, so that his reader gets an idea of what he is observing at the same time as how to observe. Almost half the book is Appendices. These are hugely comprehensive and provide hints and tips, as well as data (year 2000 onwards) for pretty well every aspect of amateur astronomy. This is probably the only book in which all this information is collected in one place.

  2. East Asian astronomical records

    NASA Astrophysics Data System (ADS)

    Stephenson, F. Richard

    Chinese, Japanese and Korean celestial observations have made major contributions to Applied Historical Astronomy, especially in the study of supernovae, comets, Earth's rotation (using eclipses) and solar variability (via sunspots and aurorae). Few original texts now survive; almost all extant records exist only in printed versions, often with the loss of much detail. The earliest Chinese astronomical observations extend back to before 1000 BC. However, fairly systematic records are only available since 200 BC - and even these have suffered losses through wars, etc. By around AD 800, many independent observations are available from Japan and Korea and these provide a valuable supplement to the Chinese data. Throughout East Asia dates were expressed in terms of a luni-solar calendar and conversion to the Julian or Gregorian calendar can be readily effected.

  3. Astronomers Unveiling Life's Cosmic Origins

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for

  4. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  5. Astronomical surveys and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    Recent all-sky and large-area astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from γ -rays to radio waves, are reviewed, including such as Fermi-GLAST and INTEGRAL in γ -ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and POSS II-based catalogues (APM, MAPS, USNO, GSC) in the optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio range, and many others, as well as the most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS), and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). An overall understanding of the coverage along the whole wavelength range and comparisons between various surveys are given: galaxy redshift surveys, QSO/AGN, radio, Galactic structure, and Dark Energy surveys. Astronomy has entered the Big Data era, with Astrophysical Virtual Observatories and Computational Astrophysics playing an important role in using and analyzing big data for new discoveries.

  6. Real Explorations in Astronomical Learning

    NASA Astrophysics Data System (ADS)

    Wilhelm, Jennifer; Wilhelm, R.

    2007-12-01

    Real Explorations in Astronomical Learning (REAL) is an innovative and new approach to student learning that thoughtfully integrates the excitement of space science discovery with science and mathematics. Students explore NASA images of planetary surfaces using the contexts of crater density, cratering rates, and surface age while developing critical thinking skills in science and mathematics that can be applied to any number of real life situations. Project REAL participants develop, implement, and evaluate an integrated astronomy curriculum designed for middle level students that focuses on the tools necessary for astronomy research concerning the origins and evolution of surface features on planetary bodies within our Solar System. Through the REAL curriculum, students experience the excitement of exploration by becoming authentic space science researchers. Students are provided with opportunities to: • Engage in hands-on space science research • Both quantitatively and qualitatively understand the phases of the Moon, and the origins and evolution of specific features on the surfaces of planetary bodies within our Solar System • Communicate their own scientific thinking and to understand others’ scientific thinking We present year one's findings concerning the state and effectiveness of this REAL curriculum funded by a NASA-IDEAS grant.

  7. XEphem: Interactive Astronomical Ephemeris

    NASA Astrophysics Data System (ADS)

    Downey, Elwood Charles

    2011-12-01

    XEphem is a scientific-grade interactive astronomical ephemeris package for UNIX-like systems. Written in C, X11 and Motif, it is easily ported to systems. Among other things, XEphem: computes heliocentric, geocentric and topocentric information for all objects; has built-in support for all planets; the moons of Mars, Jupiter, Saturn, Uranus and Earth; central meridian longitude of Mars and Jupiter; Saturn's rings; and Jupiter's Great Red Spot; allows user-defined objects including stars, deepsky objects, asteroids, comets and Earth satellites; provides special efficient handling of large catalogs including Tycho, Hipparcos, GSC; displays data in configurable tabular formats in conjunction with several interactive graphical views; displays a night-at-a-glance 24 hour graphic showing when any selected objects are up; displays 3-D stereo Solar System views that are particularly well suited for visualizing comet trajectories; quickly finds all close pairs of objects in the sky; and sorts and prints all catalogs with very flexible criteria for creating custom observing lists. Its capabilities are listed more fully in the user manual introduction.

  8. Virtual Astronomical Pipelines

    NASA Astrophysics Data System (ADS)

    Dave, R.; Protopapas, P.; Lehner, M.

    2007-10-01

    The sheer magnitude of databases and data rates in new surveys makes it hard to develop pipelines to enable both the analysis of data and the federation of these databases for correlation and followup. There is thus a compelling need to facilitate the creation and management of dynamic workflow pipelines that enable correlating data between separate, parallel streams; changing the workflow in response to an event; using the NVO to obtain additional needed information from databases; and modifying the observing program of a primary survey to follow-up a transient or moving object. This paper describes such a Virtual Astronomical Pipeline (VAP) system which is running in the TAOS project. The software enables components in the pipeline to react to events encapsulated in XML messages, modifying and subsequently routing these messages to multiple other components. This architecture allows for the bootstrapping of components individually in the development process and for dynamic reconfiguration of the pipeline as a response to external and internal events. The software will be extended for future work in combining the results of surveys and followups into a global virtual pipeline.

  9. Computer version of astronomical ephemerides.

    NASA Astrophysics Data System (ADS)

    Choliy, V. Ya.

    A computer version of astronomical ephemerides for bodies of the Solar System, stars, and astronomical phenomena was created at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine and the Astronomy and Cosmic Physics Department of the Taras Shevchenko National University. The ephemerides will be distributed via INTERNET or in the file form. This information is accessible via the web servers space.ups.kiev.ua and alfven.ups.kiev.ua or the address choliy@astrophys.ups.kiev.ua.

  10. Astronomical Significance of Ancient Monuments

    NASA Astrophysics Data System (ADS)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  11. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  12. Annotations of a Public Astronomer

    NASA Astrophysics Data System (ADS)

    Adamo, A.

    2011-06-01

    Angelo Adamo is an Italian astronomer and artist interested in inspiring people with scientifically-based tales. He has recently published two illustrated books exploring the relationships between mankind and cosmos through physics, art, literature, music, cartoons, and movies.

  13. AWOB: A Collaborative Workbench for Astronomers

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lemson, G.; Bulatovic, N.; Makarenko, V.; Vogler, A.; Voges, W.; Yao, Y.; Kiefl, R.; Koychev, S.

    2015-09-01

    We present the Astronomers Workbench (AWOB1), a web-based collaboration and publication platform for a scientific project of any size, developed in collaboration between the Max-Planck institutes of Astrophysics (MPA) and Extra-terrestrial Physics (MPE) and the Max-Planck Digital Library (MPDL). AWOB facilitates the collaboration between geographically distributed astronomers working on a common project throughout its whole scientific life cycle. AWOB does so by making it very easy for scientists to set up and manage a collaborative workspace for individual projects, where data can be uploaded and shared. It supports inviting project collaborators, provides wikis, automated mailing lists, calendars and event notification and has a built in chat facility. It allows the definition and tracking of tasks within projects and supports easy creation of e-publications for the dissemination of data and images and other resources that cannot be added to submitted papers. AWOB extends the project concept to larger scale consortia, within which it is possible to manage working groups and sub-projects. The existing AWOB instance has so far been limited to Max-Planck members and their collaborators, but will be opened to the whole astronomical community. AWOB is an open-source project and its source code is available upon request. We intend to extend AWOB's functionality also to other disciplines, and would greatly appreciate contributions from the community.

  14. Sixteenth Century Astronomical Telescopy

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    2001-12-01

    Ophelia in Shakespeare's Hamlet is named for the ``moist star" which in mythology is the partner of Hamlet's royal Sun. Together the couple seem destined to rule on earth just as their celestial counterparts rule the heavens, but the tragedy is that they are afflicted, just as the Sun and Moon are blemished. In 1.3 Laertes lectures Ophelia on love and chastity, describing first Cytherean phases (crescent to gibbous) and then Lunar craters. Spots mar the Sun (1.1, 3.1). Also reported are Jupiter's Red Spot (3.4) and the resolution of the Milky Way into stars (2.2). These interpretations are well-founded and support the cosmic allegory. Observations must have been made with optical aid, probably the perspective glass of Leonard Digges, father of Thomas Digges. Notably absent from Hamlet is mention of the Galilean moons, owing perhaps to the narrow field-of-view of the telescope. That discovery is later celebrated in Cymbeline, published soon after Galileo's Siderius Nuncius in 1610. In 5.4 of Cymbeline the four ghosts dance ``in imitation of planetary motions" and at Jupiter's behest place a book on the chest of Posthumus Leonatus. His name identifies the Digges father and son as the source of data in Hamlet since Jupiter's moons were discovered after the deaths of Leonard (``leon+hart") and Thomas (the ``lion's whelp"). Lines in 5.4 urge us not to read more into the book than is contained between its covers; this is understandable because Hamlet had already reported the other data in support of heliocentricism and the cosmic model discussed and depicted by Thomas Digges in 1576. I conclude therefore that astronomical telescopy began in England before the last quarter of the sixteenth century.

  15. Amateur astronomers in support of observing campaigns

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P.

    2014-07-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding

  16. Clementine High Resolution Camera Mosaicking Project. Volume 2; CL 6002; 0 deg S to 80 deg S Latitude, 0 deg E to 30 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  17. Clementine High Resolution Camera Mosaicking Project. Volume 15; CL 6015; 0 deg S to 80 deg S Latitude, 270 deg E to 300 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  18. Clementine High Resolution Camera Mosaicking Project. Volume 16; CL 6016; 0 deg N to 80 deg N Latitude, 300 deg E to 330 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  19. Clementine High Resolution Camera Mosaicking Project. Volume 3; CL 6003; 0 deg N to 80 deg N Latitude, 30 deg E to 60 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  20. Clementine High Resolution Camera Mosaicking Project. Volume 18; CL 6018; 80 deg N to 80 deg S Latitude, 330 deg E to 360 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  1. Clementine High Resolution Camera Mosaicking Project. Volume 12; CL 6012; 0 deg N to 80 deg N Latitude, 240 deg to 270 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  2. Clementine High Resolution Camera Mosaicking Project. Volume 7; CL 6007; 80 deg N to 80 deg S Latitude, 120 deg E to 150 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  3. Clementine High Resolution Camera Mosaicking Project. Volume 7; CL 6007; 80 deg N to 80 deg S Latitude; 120 deg E to 150 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  4. Clementine High Resolution Camera Mosaicking Project. Volume 17; CL 6017; 0 deg to 80 deg S Latitude, 330 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  5. Clementine High Resolution Camera Mosaicking Project. Volume 5; CL 6005, 80 deg N to 80 deg S Latitude, 60 deg E to 90 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  6. Clementine High Resolution Camera Mosaicking Project. Volume 9; CL 6009; 80 deg N to 80 deg S Latitude, 180 deg to 210 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  7. Clementine High Resolution Camera Mosaicking Project. Volume 1; CL 6001; 0 deg N to 80 deg N Latitude, 0 deg E to 30 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  8. Clementine High Resolution Camera Mosaicking Project. Volume 6; CL 6006; 80 deg N to 80 deg S Latitude, 90 deg E to 120 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  9. Clementine High Resolution Camera Mosaicking Project. Volume 14; CL 6014; 0 deg N to 80 deg N Latitude, 270 deg E to 300 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  10. Clementine High Resolution Camera Mosaicking Project. Volume 4; CL 6004; 0 deg S to 80 deg S Latitude, 30 deg E to 60 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  11. Clementine High Resolution Camera Mosaicking Project. Volume 10; CL 6010; 0 deg N to 80 deg N Latitude, 210 deg E to 240 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  12. Clementine High Resolution Camera Mosaicking Project. Volume 13; CL 6013; 0 deg S to 80 deg S Latitude, 240 deg to 270 deg E Longitude; 1

    NASA Technical Reports Server (NTRS)

    Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)

    1998-01-01

    This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES

  13. Astronomical dilettante or misunderstood genius? On Johann Hieronymus Schroeter's image in the history of science. (German Title: Astronomischer Dilettant oder verkanntes Genie? Zum Bild Johann Hieronymus Schroeters in der Wissenschaftsgeschichte)

    NASA Astrophysics Data System (ADS)

    Oestmann, Günther

    The paper deals with contemporary assessments of Johann Hieronymus Schroeter's (1745-1816) astronomical works - especially by Wilhelm Olbers and Carl Friedrich Gauß - and also later judgements of the scientific importance and significance of his observations voiced by astronomers and historians.

  14. Enthusiastic Little Astronomers

    NASA Astrophysics Data System (ADS)

    Novak, Ines

    2016-04-01

    Younger primary school students often show great interest in the vast Universe hiding behind the starry night's sky, but don't have a way of learning about it and exploring it in regular classes. Some of them would search children's books, Internet or encyclopedias for information or facts they are interested in, but there are those whose hunger for knowledge would go unfulfilled. Such students were the real initiators of our extracurricular activity called Little Astronomers. With great enthusiasm they would name everything that interests them about the Universe that we live in and I would provide the information in a fun and interactive yet acceptable way for their level of understanding. In our class we learn about Earth and its place in the Solar System, we learn about the planets and other objects of our Solar System and about the Sun itself. We also explore the night sky using programs such as Stellarium, learning to recognize constellations and name them. Most of our activities are done using a PowerPoint presentation, YouTube videos, and Internet simulations followed by some practical work the students do themselves. Because of the lack of available materials and funds, most of materials are hand made by the teacher leading the class. We also use the school's galileoscope as often as possible. Every year the students are given the opportunity to go to an observatory in a town 90 km away so that they could gaze at the sky through the real telescope for the first time. Our goal is to start stepping into the world of astronomy by exploring the secrets of the Universe and understanding the process of rotation and revolution of our planet and its effects on our everyday lives and also to become more aware of our own role in our part of the Universe. The hunger for knowledge and enthusiasm these students have is contagious. They are becoming more aware of their surroundings and also understanding their place in the Universe that helps them remain humble and helps

  15. Commission 5: Documentation and Astronomical Data

    NASA Astrophysics Data System (ADS)

    Ohishi, Masatoshi; Hanisch, Robert J.; Norris, Ray P.; Andernach, Heinz; Bishop, Marsha; Griffin, Elizabeth; Kembhavi, Ajit; Murphy, Tara; Pasian, Fabio

    2012-04-01

    IAU Commission 5 (http://www.nao.ac.jp/IAU/Com5/) deals with data management issues, and its working groups and task group deal specifically with information handling, with data centers and networks, with technical aspects of collection, archiving, storage and dissemination of data, with designations and classification of astronomical objects, with library services, editorial policies, computer communications, ad hoc methodologies, and with various standards, reference frames, etc. FITS (Flexible Image Transport System), the major data exchange format in astronomy, has been standardized, maintained and updated by the FITS working group under Commission 5.

  16. ASPRO 2: Astronomical Software to PRepare Observations

    NASA Astrophysics Data System (ADS)

    Bourgès, Laurent; Mella, Guillaume; Lafrasse, Sylvain; Duvert, Gilles

    2013-10-01

    ASPRO 2 (Astronomical Software to PRepare Observations) is an observation preparation tool for interferometric observations with the VLTI or other interferometers such as CHARA and SUSI. It is a Java standalone program that provides a dynamic graphical interface to simulate the projected baseline evolution during observations (super-synthesis) and derive visibilities for targets (i.e., single star, binaries, user defined FITS image). It offers other useful functions such as the ability to load and save your observation settings and generate Observing Blocks.

  17. Hosting an `Ask the Astronomer' Site on the Internet

    NASA Astrophysics Data System (ADS)

    Odenwald, S. F.

    1996-12-01

    Since 1995, the World Wide Web has explosively evolved into a significant medium for dispensing astronomical information to the general public. In addition to the numerous image archives that have proliferated, an increasing number of sites invite visitors to pose questions about astronomy and receive answers provided by professional astronomers. In this paper, I describe the operation of an Ask the Astronomer site that was opened on the WWW during August, 1995 as part of an astronomy education resource area called the "Astronomy Cafe" (URL=http://www2.ari.net/home/odenwald/cafe.html). The Astronomy Cafe includes a number of documents describing: a career in astronomy; how research papers are written; essays about cosmology, hyperspace and infrared astronomy; and the results from a 100-question, just for fun, personality test which distinguishes astronomers from non-astronomers. The Ask the Astronomer site is operated by a single astronomer through private donations and is now approaching its 500th day of operation. It contains over 2000+ questions and answers with a growth rate of 5 - 10 questions per day. It has attracted 70,000 visitors who are responsible for nearly 1 million 'hits' during the site's lifetime. The monthly statistics provide a unique survey of the kinds of individuals and organizations who visit Ask the Astronomer-type web sites, moreover, the accumulated questions provide a diagnostic X-ray into the public mind in the area of astronomy. I will present an analysis of the user demographics, and the types of questions that appear to be the most frequently asked. A paper copy of the complete index of these questions will be available for inspection.

  18. Initial Lab and Sky Test Results for the Teledyne Imaging System's H4RG-10 CMOS-Hybrid 4k Visible Array for Use in Ground- and Space-based Astronomical and SSA Applications

    NASA Astrophysics Data System (ADS)

    Dorland, B.; Hennessy, G.; Zacharias, N.; Gaume, R.; Shu, P.; Miko, L.; Rollins, C.; Waczynski, A.

    We report on the first set of laboratory and telescope tests of the Teledyne Imaging System's (TIS) H4RG-10 CMOS-Hybrid visible focal plane array (FPA). This family of detectors has been chosen as the baseline for USNO's proposed J-MAPS space astrometry mission to close a number of capability gaps. While this FPA has been designed for precision astrometry, it has potentially significant Space Situational Awareness (SSA) applications. Because of the hybrid design, which consists of separate readout and detector layers connected by Indium bump-bonds, this FPA has the readout flexibility of advanced CMOS readout integrated circuits (ROICs), including non-destructive readout, random access windowing and selective reset, and near-CCD performance in terms of fill factor, quantum efficiency, read noise and dark current. Our laboratory testing, performed at Goddard Space Flight Center's Detector Characterization Lab, includes measures of absolute spectral quantum efficiency, flat-field response uniformity, read noise, dark current as a function of operating temperature, inter-pixel crosstalk, and persistence. Sky testing, performed at Naval Observatory Flagstaff Station, consists of astrometric and photometric performance characterization. We discuss implications for the use of this detector in future ground- and space-based astrometric, astronomical and SSA applications.

  19. Astropix: Everyone's New Portal to the Universe of Astronomical Imagery

    NASA Astrophysics Data System (ADS)

    Hurt, Robert L.; Squires, G. K.; Llamas, J.; Rosenthal, C.; Brinkworth, C. S.

    2012-01-01

    Astropix is a new online repository for astronomical imagery that is now available for everyone to use. Currently in a beta development state, Astropix provides powerful ways to browse, search, and download images, diagrams, artwork, and photographs from many astronomical missions. The site is built around the Astronomical Visualization Metadata (AVM) standard developed by the Virtual Astronomy Multimedia Project (VAMP) that captures all the key descriptive information for a public image, including color representations and astronomical and sky coordinates. Existing image galleries containing AVM-tagged images can easily supply them to Astropix, which downloads them, extracts the metadata into its database, and generates versions of the images at a variety of common sizes. Visitors to Astropix can search the database using simple free-text queries, or use a structured search (similar to "Smart Playlists" found in iTunes, for example). The Astropix archive also features an Xquery-based method for posting http queries and retrieving XML lists of matching imagery, allowing for scripted access to the site. Current assets include imagery from Spitzer, Chandra, ESO, Galex, Herschel, Hubble, Spitzer, and WISE, with more on the way. Website: astropix.ipac.caltech.edu

  20. American Astronomical Society Honors NRAO Scientist

    NASA Astrophysics Data System (ADS)

    2005-01-01

    The American Astronomical Society (AAS) has awarded its prestigious George Van Biesbroeck Prize to Dr. Eric Greisen of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The society cited Greisen's quarter-century as "principal architect and tireless custodian" of the Astronomical Image Processing System (AIPS), a massive software package used by astronomers around the world, as "an invaluable service to astronomy." Dr. Eric Greisen Dr. Eric Greisen CREDIT: NRAO/AUI/NSF (Click on image for larger version) The Van Biesbroeck Prize "honors a living individual for long-term extraordinary or unselfish service to astronomy, often beyond the requirements of his or her paid position." The AAS, with about 7,000 members, is the major organization of professional astronomers in North America. " The Very Large Array (VLA) is the most productive ground-based telescope in the history of astronomy, and most of the more than 10,000 observing projects on the VLA have depended upon the AIPS software to produce their scientific results," said Dr. James Ulvestad, NRAO's Director of New Mexico Operations. "This same software package also has been the principal tool for scientists using the Very Long Baseline Array and numerous other radio telescopes around the world," Ulvestad added. Greisen, who received a Ph.D in astronomy from the California Institute of Technology, joined the NRAO in 1972. He moved from the observatory's headquarters in Charlottesville, Virginia, to its Array Operations Center in Socorro in 2000. Greisen, who learned of the award in a telephone call from the AAS President, Dr. Robert Kirschner of Harvard University, said, "I'm pleased for the recognition of AIPS and also for the recognition of the contributions of radio astronomy to astronomy as a whole." He added that "it wasn't just me who did AIPS. There were many others." The AIPS software package grew out of the need for an efficient tool for producing images with the VLA, which was being

  1. Some Problems of Creation of Modern Astronomical Television Measuring System

    NASA Astrophysics Data System (ADS)

    Strygin, N. Z.; Prokof'eva, V. V.; Sukhov, P. P.; Karpenko, G. F.

    Some problems of creation interactive television astronomical measuring systems (ATMS) for observation satellites for example black-and-white halftone ATMS with digital image processing. Separation of purpose and the functions they perform. ATMS is close to Radio Data System information extraction - passive radar stations in the optical range. Features of development methodology. The concept of a point object, background in astronomy. Arbitrariness in determining the area of objects in digital images. How to describe or characterize the image. The concept of "image quality", "quality measurements on the image." The task of identifying stars in the sequence of images on TV stars catalog

  2. The Tractor: Probabilistic astronomical source detection and measurement

    NASA Astrophysics Data System (ADS)

    Lang, Dustin; Hogg, David W.; Mykytyn, David

    2016-04-01

    The Tractor optimizes or samples from models of astronomical objects. The approach is generative: given astronomical sources and a description of the image properties, the code produces pixel-space estimates or predictions of what will be observed in the images. This estimate can be used to produce a likelihood for the observed data given the model: assuming the model space actually includes the truth (it doesn’t, in detail), then if we had the optimal model parameters, the predicted image would differ from the actually observed image only by noise. Given a noise model of the instrument and assuming pixelwise independent noise, the log-likelihood is the negative chi-squared difference: (image - model) / noise.

  3. Using Astronomical Photographs to Investigate Misconceptions about Galaxies and Spectra: Question Development for Clicker Use

    ERIC Educational Resources Information Center

    Lee, Hyunju; Schneider, Stephen E.

    2015-01-01

    Many topics in introductory astronomy at the college or high-school level rely implicitly on using astronomical photographs and visual data in class. However, students bring many preconceptions to their understanding of these materials that ultimately lead to misconceptions, and research about students' interpretation of astronomical images has…

  4. Astronomical Limiting Magnitude at Langkawi Observatory

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mohd. Zambri; Loon, Chin Wei; Harun, Saedah

    2010-07-01

    Astronomical limiting magnitude is an indicator for astronomer to conduct astronomical measurement at a particular site. It gives an idea to astronomer of that site what magnitude of celestial object can be measured. Langkawi National Observatory (LNO) is situated at Bukit Malut with latitude 6°18' 25'' North and longitude 99°46' 52'' East in Langkawi Island. Sky brightness measurement has been performed at this site using the standard astronomical technique. The value of the limiting magnitude measured is V = 18.6+/-1.0 magnitude. This will indicate that astronomical measurement at Langkawi observatory can only be done for celestial objects having magnitude less than V = 18.6 magnitudes.

  5. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  6. Simple Astronomical Theory of Climate.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1979-01-01

    The author derives, applying perturbation theory, from a simple astronomical model the approximate periods of secular variation of some of the parameters of the Earth's orbit and relates these periods to the past climate of the Earth, indicating the difficulties in predicting the climate of the future. (GA)

  7. An Astronomical Data Analyzing Monitor

    NASA Astrophysics Data System (ADS)

    Teuber, D.

    ThP need for exchange of programmes and data between astronomical facilities is generally recognized, but practicable concepts concerning its realization are rare. Standardization of data formats through FITS is widely accepted; for (interactive) programs, however, identical hardware configurations seem to be the favoured solution. As an alternative, a software approach to the problem is presented.

  8. Astronomical searches for nitrogen heterocycles

    NASA Astrophysics Data System (ADS)

    Charnley, Steven B.; Kuan, Yi-Jehng; Huang, Hui-Chun; Botta, Oliver; Butner, Harold M.; Cox, Nick; Despois, Didier; Ehrenfreund, Pascale; Kisiel, Zbigniew; Lee, Ying-Ying; Markwick, Andrew J.; Peeters, Zan; Rodgers, Steven D.

    We have conducted extensive astronomical searches for the N-bearing ring molecules pyridine, quinoline and isoquinoline towards the circumstellar envelopes of carbon-rich stars, and for interstellar pyrimidine in hot molecular cores. Here we report the derived upper limits on the column densities of these molecules, and summarize the current status of these observations.

  9. Astronomical Photography for the Classroom.

    ERIC Educational Resources Information Center

    Hulme, Kenneth S.

    1981-01-01

    Describes class projects involving astronomical photography. Includes a description of how to make an astrocamera or convert a pocket camera into one suitable for astrophotography, film choices, and phenomena to photograph, such as star trails, meteors, the sun, and the moon. (DS)

  10. Australian sites of astronomical heritage

    NASA Astrophysics Data System (ADS)

    Stevenson, T.; Lomb, N.

    2015-03-01

    The heritage of astronomy in Australia has proven an effective communication medium. By interpreting science as a social and cultural phenomenon new light is thrown on challenges, such as the dispersal of instruments and problems identifying contemporary astronomy heritage. Astronomers are asked to take note and to consider the communication of astronomy now and in the future through a tangible heritage legacy.

  11. John Couch Adams, the astronomer.

    NASA Astrophysics Data System (ADS)

    Foster, N.

    1989-03-01

    The planet Neptune was discovered more than 140 years ago. The circumstances of the discovery gave rise to great controversy, and very nearly led to an international incident between Britain and France, but this was only one of John Couch Adams' many contributions to astronomical science.

  12. Image processing techniques for digital orthophotoquad production

    USGS Publications Warehouse

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  13. Astronomers meet in phoenix, recount a stellar year.

    PubMed

    Flam, F

    1993-01-22

    Despite a tightening of the National Aeronautics and Space Administration's budget and the trouble with the Hubble Space Telescope, astronomers were starry-eyed over their latest findings, presented at the major annual meeting of the American Astronomical Society, (AAS) January 3 to 7. New images and measurements of stars, galaxies, cosmic microwaves, and mysterious gamma rays, along with an exciting nova explosion, made it a bright year for those working with existing orbiting satellites and ground-based telescopes, though uncertain funding clouds the future. PMID:17734156

  14. DENALI IMAGE MAP.

    USGS Publications Warehouse

    Binnie, Douglas R.; Colvocoresses, Alden P.

    1987-01-01

    The Denali National Park and Preserve 1:250,000-scale image map has been prepared and published as part of the US Geological Survey's (USGS) continuing research to improve image mapping techniques. Nine multispectral scanner (MSS) images were geometrically corrected, digitally mosaicked, and enhanced at the National Mapping Division's (NMD) EROS Data Center (EDC). This process involves ground control and digital resampling to the Universal Tranverse Mercator (UTM) projection. This paper specifically discusses the preparation of the digital mosaic and the production peculiarities associated with the Denali National Park and Preserve image map.

  15. Engaging Students through Astronomically Inspired Music

    NASA Astrophysics Data System (ADS)

    Whitehouse, M.

    2011-09-01

    This paper describes a lesson outline in which astronomically inspired musical compositions are used to teach astronomical concepts via an introductory activity, close listening, and critical/creative reflection.

  16. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  17. Astronomical Heritage in the National Culture

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.; Mickaelian, A. M.; Parsamian, E. S.

    2014-10-01

    The book contains Proceedings of the Archaeoastronomical Meeting "Astronomical Heritage in the National Culture" Dedicated to Anania Shirakatsi's 1400th Anniversary and XI Annual Meeting of the Armenian Astronomical Society. It consists of 3 main sections: "Astronomical Heritage", "Anania Shirakatsi" and "Modern Astronomy", as well as Literature about Anania Shirakatsi is included. The book may be interesting for astronomers, historians, archaeologists, linguists, students and other readers.

  18. Astronomical Surveys, Catalogs, Databases, and Archives

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-06-01

    All-sky and large-area astronomical surveys and their cataloged data over the whole range of electromagnetic spectrum are reviewed, from γ-ray to radio, such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and II based catalogues (APM, MAPS, USNO, GSC) in optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio and many others, as well as most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS) and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). Most important astronomical databases and archives are reviewed as well, including Wide-Field Plate DataBase (WFPDB), ESO, HEASARC, IRSA and MAST archives, CDS SIMBAD, VizieR and Aladin, NED and HyperLEDA extragalactic databases, ADS and astro-ph services. They are powerful sources for many-sided efficient research using Virtual Observatory tools. Using and analysis of Big Data accumulated in astronomy lead to many new discoveries.

  19. The Research Tools of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  20. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald

    2015-01-01

    The path of the total solar eclipse across the United States on August 21, 2017 crosses the Pisgah Astronomical Research Institute (PARI) located in western North Carolina. The partial eclipse begins at about 17:08 UT, followed by the nearly 2 minute total eclipse which begins at about 18:37 UT. The PARI campus includes radio and optical telescopes, as well as earth science instruments that include a seismometer, geomagnetometer, EarthScope Plate Boundary Observatory, time standards, and several weather stations. The instruments stream data to the PARI website and will be available for the eclipse. In anticipation of the 2017 solar eclipse, we present the instruments and infrastructure of the PARI campus. We invite astronomers to explore the use of the PARI campus as a site for their own instruments and/or the use of instruments already located at PARI.

  1. Recent progress on CCDs for astronomical imaging

    SciTech Connect

    Groom, D.E.

    2000-02-28

    We review recent progress in the field, using as a framework a partial list of present limitations and problems: CCD and mosaic size, packing fraction in mosaics, red response and fringing, and intrinsic point-spread function due to lateral charge diffusion. Related topics such as orthogonal-transfer CCDs and the special requirements of adaptive-optics wavefront sensors are also discussed. Only cursory attention is given to other relevant issues, such as readout speed and anti-blooming techniques.

  2. Astronomical imaging with infrared array detectors.

    PubMed

    Gatley, I; Depoy, D L; Fowler, A M

    1988-12-01

    History shows that progress in astronomy often stems directly from technological innovation and that each portion of the electromagnetic spectrum offers unique insights into the nature of the universe. Most recently, the widespread availability of infrared-sensitive two-dimensional array detectors has led to dramatic improvements in the capabilities of conventional ground-based observatories. The impact of this new technology on our understanding of a wide variety of phenomena is illustrated here by infrared pictures of star-forming regions, of nebulae produced by the late stages of stellar evolution, of the nucleus of our own galaxy(the Milky Way), and of activity in other galaxies. PMID:17817072

  3. Directory of astronomical data files

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This Directory of Astronomical Data Files was prepared by the Data Task Force of the Interagency Coordination Committee for Astronomy (ICCA) in cooperation with the National Space Science Data Center (NSSDC). The purpose of the Directory is to provide a listing which will enable a user to locate stellar and extragalactic data sources keyed along with sufficient descriptive information to permit him to assess the value of the files for his use as well as the status and availability of the compilations.

  4. Armenian Astronomical Society Annual Activities in 2014

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    A report is given on the achievements of the Armenian astronomy during the last year and on the present activities of the Armenian Astronomical Society (ArAS). ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, annual meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, summer schools, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, astronomy outreach and ArAS further projects are discussed. The present meeting, BAO Science Camp, ArAS School lectures are among 2014 events as well.

  5. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  6. Conceptual approach to astronomical problems

    NASA Astrophysics Data System (ADS)

    Skvortsov, N. A.; Avvakumova, E. A.; Bryukhov, D. O.; Vovchenko, A. E.; Vol'nova, A. A.; Dluzhnevskaya, O. B.; Kaigorodov, P. V.; Kalinichenko, L. A.; Kniazev, A. Yu.; Kovaleva, D. A.; Malkov, O. Yu.; Pozanenko, A. S.; Stupnikov, S. A.

    2016-01-01

    New technical capabilities have brought about the sweeping growth of the amount of data acquired by the astronomers from observations with different instruments in various parts of the electromagnetic spectrum. We consider conceptual approach to be a promising tool to efficiently deal with these data. It uses problem domain knowledge to formulate the tasks and develop problem-solving algorithms and data analysis methods in terms of domain concepts without reference to particular data sources, and thereby allows solving certain problems in general form. We demonstrate the benefits of conceptual approach by using it to solve problems related to search for secondary photometric standard candidates, determination of galaxy redshifts, creation of a binary and multiple star repository based on inhomogeneous databases, and classification of eclipsing binaries.We formulate and solve these problems over specifications of astronomical knowledge units such as photometric systems, astronomical objects, multiple stars, etc., and define them in terms of the corresponding problem domains independently of the existing data resources.

  7. PyXel: A Python Package for Astronomical X-ray Data Modeling

    NASA Astrophysics Data System (ADS)

    Ogrean, Georgiana

    2016-06-01

    PyXel is an new Python package for modeling astronomical X-ray imaging data. It is built on NumPy, SciPy, matplotlib, and Astropy, and distributed under an open-source license. The package aims to provide a common set of image analysis tools for astronomers working with extended X-ray sources. I will present an overview of its existing and planned features, and analysis examples based on public Chandra data.

  8. AstroVis: Visualizing astronomical data cubes

    NASA Astrophysics Data System (ADS)

    Finniss, Stephen; Tyler, Robin; Questiaux, Jacques

    2016-08-01

    AstroVis enables rapid visualization of large data files on platforms supporting the OpenGL rendering library. Radio astronomical observations are typically three dimensional and stored as data cubes. AstroVis implements a scalable approach to accessing these files using three components: a File Access Component (FAC) that reduces the impact of reading time, which speeds up access to the data; the Image Processing Component (IPC), which breaks up the data cube into smaller pieces that can be processed locally and gives a representation of the whole file; and Data Visualization, which implements an approach of Overview + Detail to reduces the dimensions of the data being worked with and the amount of memory required to store it. The result is a 3D display paired with a 2D detail display that contains a small subsection of the original file in full resolution without reducing the data in any way.

  9. GPU accelerated processing of astronomical high frame-rate videosequences

    NASA Astrophysics Data System (ADS)

    Vítek, Stanislav; Švihlík, Jan; Krasula, Lukáš; Fliegel, Karel; Páta, Petr

    2015-09-01

    Astronomical instruments located around the world are producing an incredibly large amount of possibly interesting scientific data. Astronomical research is expanding into large and highly sensitive telescopes. Total volume of data rates per night of operations also increases with the quality and resolution of state-of-the-art CCD/CMOS detectors. Since many of the ground-based astronomical experiments are placed in remote locations with limited access to the Internet, it is necessary to solve the problem of the data storage. It mostly means that current data acquistion, processing and analyses algorithm require review. Decision about importance of the data has to be taken in very short time. This work deals with GPU accelerated processing of high frame-rate astronomical video-sequences, mostly originating from experiment MAIA (Meteor Automatic Imager and Analyser), an instrument primarily focused to observing of faint meteoric events with a high time resolution. The instrument with price bellow 2000 euro consists of image intensifier and gigabite ethernet camera running at 61 fps. With resolution better than VGA the system produces up to 2TB of scientifically valuable video data per night. Main goal of the paper is not to optimize any GPU algorithm, but to propose and evaluate parallel GPU algorithms able to process huge amount of video-sequences in order to delete all uninteresting data.

  10. Astronomical observations with an infrared array camera

    SciTech Connect

    Tresch-Fienberg, R.M.

    1985-01-01

    Astronomical observations with an infrared array camera demonstrate that arrays are excellent for high spatial resolution photometric mapping of celestial objects. The author describes a a 16 x 16 pixel array camera system based on a bismuth-doped silicon charge injection device optimized for use in the 8-13 micron atmospheric window. Observing techniques and image processing algorithms that are unique to the use of an array detector are also discussed. Multi-wavelength, 1-2 arcsec resolution images of three different celestial objects are presented. For the galactic center, maps of the infrared color temperature and emission optical depth are derived. The results are consistent with a model in which a low density region with a massive luminosity source at its center is encircled by a ring of gas and dust from which material may be infalling toward the nucleus. Multiple luminosity sources are not required to explain the infrared appearance of the galactic center. Images of Seyfert galaxy NGC 1068 are the first to resolve the infrared structure of the nucleus and show that it is similar to that at optical and radio wavelengths. Infrared emission extended northeast of the nucleus is identified with the radio jet. Combined with optical spectra and charge coupled device images, the new data imply a causal relationship between the Seyfert activity in the nucleus and the starburst in the disk.

  11. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  12. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  13. Quasi-random array imaging collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-20

    A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  14. Digital mapping of side-scan sonar data with the Woods Hole Image Processing System software

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    Since 1985, the Branch of Atlantic Marine Geology has been involved in collecting, processing and digitally mosaicking high and low resolution sidescan sonar data. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. Recent development of a UNIX-based image-processing software system includes a series of task specific programs for pre-processing sidescan sonar data. To extend the capabilities of the UNIX-based programs, development of digital mapping techniques have been developed. This report describes the initial development of an automated digital mapping procedure. Included is a description of the programs and steps required to complete the digital mosaicking on a UNIXbased computer system, and a comparison of techniques that the user may wish to select.

  15. The Application of ElasticSearch in the Massive Astronomical Data Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Wang, F.; Deng, H.; Liu, Y. B.

    2016-03-01

    Astronomical observational data are the fundamental element for modern astronomical researches. However, with the rapid increase of astronomical data, the traditional centralized retrieval methods are hard to meet the requirements of high- performance data retrieval. In the study, we present a novel method which is based on the ElasticSearch distributed retrieval engine and River mechanism to create data indexes, and provide high performance data retrieval for massive FITS (Flexible Image Transport System) data. We discuss the key technologies of the nearly real-time retrieval and query. The experimental results show that the method is capable of obtaining high retrieval performance especially for the cases in which the number of the FITS data exceeds millions or even tens of millions. Meanwhile, the method can be easily integrated into the current astronomical data archiving systems, and completely meet the archive requirements of all kinds of astronomical telescope systems.

  16. Glacial cycles and astronomical forcing

    SciTech Connect

    Muller, R.A.; MacDonald, G.J.

    1997-07-11

    Narrow spectral features in ocean sediment records offer strong evidence that the cycles of glaciation were driven by astronomical forces. Two million years ago, the cycles match the 41,000-year period of Earth`s obliquity. This supports the Croll/Milankovitch theory, which attributes the cycles to variations in insolation. But for the past million years, the spectrum is dominated by a single 100,000-year feature and is a poor match to the predictions of insolation models. The spectrum can be accounted for by a theory that derives the cycles of glaciation from variations in the inclination of Earth`s orbital plane.

  17. How I Became an Astronomer

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    2001-01-01

    Life as an astronomer has taken me to view eclipses of the Sun from the Gaspe' Peninsula to the Pacific Ocean and the China and Coral Seas, and to observe the stars at observatories across the USA and as far south as Chile. I've also enjoyed working with NASA's telescopes in space, including the Hubble Space Telescope and the International Ultraviolet Explorer. It seems funny to reflect that it all began in the Sixth Grade by a fluke - the consequence of a hoax letter whose author I never identified.

  18. astroplan: Observation Planning for Astronomers

    NASA Astrophysics Data System (ADS)

    Morris, Brett

    2016-03-01

    Astroplan is an observation planning package for astronomers. It is an astropy-affiliated package which began as a Google Summer of Code project. Astroplan facilitates convenient calculation of common observational quantities, like target altitudes and azimuths, airmasses, and rise/set times. Astroplan also computes when targets are observable given various extensible observing constraints, for example: within a range of airmasses or altitudes, or at a given separation from the Moon. Astroplan is taught in the undergraduate programming for astronomy class, and enables observational Pre- MAP projects at the University of Washington. In the near future, we plan to implement scheduling capabilities in astroplan on top of the constraints framework.

  19. Visualizing Astronomical Data with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2014-01-01

    We present methods for using the 3D graphics program Blender in the visualization of astronomical data. The software's forte for animating 3D data lends itself well to use in astronomy. The Blender graphical user interface and Python scripting capabilities can be utilized in the generation of models for data cubes, catalogs, simulations, and surface maps. We review methods for data import, 2D and 3D voxel texture applications, animations, camera movement, and composite renders. Rendering times can be improved by using graphic processing units (GPUs). A number of examples are shown using the software features most applicable to various kinds of data paradigms in astronomy.

  20. Citizen Astronomers... Yesterday, Today, and Tomorrow

    NASA Astrophysics Data System (ADS)

    DiIulio, Ron

    2015-05-01

    While our understanding of the Universe seems to be expanding much like the Big Bang, there seem to be fewer and fewer new people dedicated to gathering, interpreting, and disseminating scientific astronomical data. In this paper I present a plan to create "Certified Citizen Astronomers", i.e., the development of a curriculum where people of all ages and backgrounds can develop robust photometric, astrometric, and spectroscopic techniques so that they can participate more fully in the astronomical adventure.

  1. Topics in Machine Learning for Astronomers

    NASA Astrophysics Data System (ADS)

    Cisewski, Jessi

    2016-01-01

    As astronomical datasets continue to increase in size and complexity, innovative statistical and machine learning tools are required to address the scientific questions of interest in a computationally efficient manner. I will introduce some tools that astronomers can employ for such problems with a focus on clustering and classification techniques. I will introduce standard methods, but also get into more recent developments that may be of use to the astronomical community.

  2. LGBT Workplace Issues for Astronomers

    NASA Astrophysics Data System (ADS)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  3. The League of Astronomers: Outreach

    NASA Astrophysics Data System (ADS)

    Paat, Anthony; Brandel, A.; Schmitz, D.; Sharma, R.; Thomas, N. H.; Trujillo, J.; Laws, C. S.; Astronomers, League of

    2014-01-01

    The University of Washington League of Astronomers (LOA) is an organization comprised of University of Washington (UW) undergraduate students. Our main goal is to share our interest in astronomy with the UW community and with the general public. The LOA hosts star parties on the UW campus and collaborates with the Seattle Astronomical Society (SAS) on larger Seattle-area star parties. At the star parties, we strive to teach our local community about what they can view in our night sky. LOA members share knowledge of how to locate constellations and use a star wheel. The relationship the LOA has with members of SAS increases both the number of events and people we are able to reach. Since the cloudy skies of the Northwest prevent winter star parties, we therefore focus our outreach on the UW Mobile Planetarium, an inflatable dome system utilizing Microsoft’s WorldWide Telescope (WWT) software. The mobile planetarium brings astronomy into the classrooms of schools unable to travel to the UW on-campus planetarium. Members of the LOA volunteer their time towards this project and we make up the majority of the Mobile Planetarium volunteers. Our outreach efforts allow us to connect with the community and enhance our own knowledge of astronomy.

  4. Astronomers in the Chemist's War

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-01-01

    World War II, with radar, rockets, and "atomic" bombs was the physicists' war. And many of us know, or think we know, what our more senior colleagues did during it, with Hubble and Hoffleit at Aberdeen; M. Schwarzschild on active duty in Italy; Bondi, Gold, and Hoyle hunkered down in Dunsfeld, Surrey, talking about radar, and perhaps steady state; Greenstein and Henyey designing all-sky cameras; and many astronomers teaching navigation. World War I was The Chemists' War, featuring poison gases, the need to produce liquid fuels from coal on one side of the English Channel and to replace previously-imported dyesstuffs on the other. The talke will focus on what astronomers did and had done to them between 1914 and 1919, from Freundlich (taken prisoner on an eclipse expedition days after the outbreak of hostilities) to Edwin Hubble, returning from France without ever having quite reached the front lines. Other events bore richer fruit (Hale and the National Research Council), but very few of the stories are happy ones. Most of us have neither first nor second hand memories of The Chemists' War, but I had the pleasure of dining with a former Freundlich student a couple of weeks ago.

  5. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  6. Integrated Access of Distributed and Heterogeneous Astronomical Data Resources

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Tian, Hai-Jun; Gao, Dan; Yang, Yang; Lu, Yong; Cui, Chen-Zhou; Zhao, Yong-Heng

    2008-06-01

    Astronomical data resources have features of long-term accumulation, high volume, distributed storage, and managed by diverse database software. One of the important goals in Virtual Observatory (VO) is to provide a uniform way to access these distributed and heterogeneous data resources for astronomers. A grid solution (Virtual Observatory Data Access Service, VO-DAS) is designed in this paper. Astronomical catalogue data, image data and spectroscopy data, which have different metadata, are wrapped by Open Grid Service Architecture - Database Access and Integration [OGSA-DAI] (DataNode). VO-DAS implements automatic discovery of DataNodes and supports federation data access upon them. This makes it possible for multi-band cross matching of astronomical objects. VO-DAS supports related specifications published by International Virtual Observatory Alliance (IVOA) so that interoperability is achieved. A series of simple and efficient application interfaces are designed for developing versatile high-level applications based on VO-DAS. Two science cases based on VO-DAS confirm its feasibility.

  7. Old Star's "Rebirth" Gives Astronomers Surprises

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the

  8. Combined ultraviolet studies of astronomical sources

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Sonderblom, D. R.

    1985-01-01

    Ultraviolet studies of various astronomical entities are reported. Among the specific phenomena examined were supernova remnants, dwarf novae, red giant stars, stellar winds, binary stars, and galaxies.

  9. San Marcos Astronomical Project and Doctoral Prospectus

    NASA Astrophysics Data System (ADS)

    Aguilar, M. L.

    2009-05-01

    The Universidad Nacional Mayor de San Marcos, UNMSM, in Lima, Perú, is the only Peruvian institution working for the peruvian astronomical development as a career since 1970. We are conforming a network with international friend astronomers to invite them as Visiting Lectures to assure the academic level for the future doctoral studies in the UNMSM. The Chancellor of UNMSM has decided that the Astronomical Project is a UNMSM Project, to encourage and advance in this scientific and strategical area, to impulse the modernity of Peru, the major effort will be the building of the San Marcos Astronomical Observatory, with a telescope of 1 meter aperture.

  10. Amateur Astronomers: Secret Agents of EPO

    NASA Astrophysics Data System (ADS)

    Berendsen, M.; White, V.; Devore, E.; Reynolds, M.

    2008-06-01

    Amateur astronomers prime the public to be more interested, receptive, and excited about space science, missions, and programs. Through recent research and targeted programs, amateur astronomy outreach is being increasingly recognized by professional astronomers, educators, and other amateurs as a valued and important service. The Night Sky Network program, administered by the ASP, is the first nationwide research-based program specifically targeted to support outreach by amateur astronomers. This Network of trained and informed amateur astronomers can provide a stimulating introduction to your EPO programs as Network members share the night sky with families, students, and youth groups.

  11. Astronomical Symbolism in Australian Aboriginal Rock Art

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Hamacher, Duane W.

    2011-05-01

    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  12. ISO Results Presented at International Astronomical Union

    NASA Astrophysics Data System (ADS)

    1997-08-01

    Some of the work being presented is collected in the attached ESA Information Note N 25-97, ISO illuminates our cosmic ancestry. A set of six colour images illustrating various aspects have also been released and are available at http://www.estec.esa.nl/spdwww/iso1808.htm or in hard copy from ESA Public Relations Paris (fax:+33.1.5369.7690). These pictures cover: 1. Distant but powerful infrared galaxies 2. A scan across the milky way 3. Helix nebula: the shroud of a dead star 4. Supernova remnant Cassiopeia A 5. Trifid nebula: a dusty birthplace of stars 6. Precursors of stars and planets The International Astronomical Union provides a forum where astronomers from all over the world can develop astronomy in all its aspects through international co-operation. General Assemblies are held every three years. It is expected that over 1600 astronomers will attend this year's meeting, which is being held in Kyoto, Japan from 18-30 August. Further information on the meeting can be found at: www.tenmon.or.jp/iau97/ . ISO illuminates our cosmic ancestry The European Space Agency's Infrared Space Observatory, ISO, is unmatched in its ability to explore and analyse many of the universal processes that made our existence possible. We are children of the stars. Every atom in our bodies was created in cosmic space and delivered to the Sun's vicinity in time for the Earth's formation, during a ceaseless cycle of birth, death and rebirth among the stars. The most creative places in the sky are cool and dusty, and opaque even to the Hubble Space Telescope. Infrared rays penetrating the dust reveal to ISO hidden objects, and the atoms and molecules of cosmic chemistry. "ISO is reading Nature's recipe book," says Roger Bonnet, ESA's director of science. "As the world's only telescope capable of observing the Universe over a wide range of infrared wavelengths, ISO plays an indispensable part in astronomical discoveries that help to explain how we came to exist." This Information Note

  13. BOOK REVIEW: The Wandering Astronomer

    NASA Astrophysics Data System (ADS)

    Swinbank, Elizabeth

    2000-09-01

    Fans of Patrick Moore will like this book. I enjoyed it more than I expected, having anticipated a collection of personal anecdotes of the type favoured by certain tedious after-dinner speakers. Some of the 41 short items it contains do tend towards that category, but there are also some nuggets which might enliven your physics teaching. For example, did you know that, in a murder trial in 1787, the defendant's belief that the Sun was inhabited was cited as evidence of his insanity? This was despite his views being shared by many astronomers of the day including William Herschel. Or that Clyde Tombaugh had a cat called Pluto after the planet he discovered, which was itself named by an eleven-year-old girl? Another gem concerns a brief flurry, in the early 1990s, over a suspected planet orbiting a pulsar; variations in the arrival time of its radio pulses indicated the presence of an orbiting body. These shifts were later found to arise from an error in a computer program that corrected for the Earth's motion. The programmer had assumed a circular orbit for the Earth whereas it is actually elliptical. The book is clearly intended for amateur astronomers and followers of Patrick Moore's TV programmes. There is plenty of astronomy, with an emphasis on the solar system, but very little astrophysics. The author's metricophobia means that quantities are given in imperial units throughout, with metric equivalents added in brackets (by an editor, I suspect) which can get irritating, particularly as powers-of-ten notation is avoided. It is quite a novelty to see the temperature for hydrogen fusion quoted as 18 000 000 °F (10 000 000 °C). By way of contrast, astronomical terms are used freely - ecliptic, first-magnitude star, and so on. Such terms are defined in a glossary at the end, but attention is not drawn to this and I only stumbled across it by chance. Patrick Moore obviously knows his public, and this book will serve them well. For physics teachers and students

  14. First Visiting Astronomers at VLT KUEYEN

    NASA Astrophysics Data System (ADS)

    2000-04-01

    A Deep Look into the Universal Hall of Mirrors Starting in the evening of April 1, 2000, Ghislain Golse and Francisco Castander from the Observatoire Midi-Pyrénées (Toulouse, France) [1] were the first "visiting astronomers" at Paranal to carry out science observations with the second 8.2-m VLT Unit Telescope, KUEYEN . Using the FORS2 multi-mode instrument as a spectrograph, they measured the distances to a number of very remote galaxies, located far out in space behind two clusters of galaxies. Such observations may help to determine the values of cosmological parameters that define the geometry and fate of the Universe. After two nights of observations, the astronomers came away from Paranal with a rich harvest of data and a good feeling. "We are delighted that the telescope performed so well. It is really impressive how far out one can reach with the VLT, compared to the `smaller' 4-meter telescopes with which we previously observed. It opens a new window towards the distant, early Universe. Now we are eager to start reducing and analysing these data!" , Francisco Castander said. Measuring the Geometry of the Universe with Multiple Images in Cluster Lenses The present programme is typical of the fundamental cosmological studies that are now being undertaken with the ESO Very Large Telescope (VLT). Clusters of galaxies are very massive objects. Their gravitational fields intensify ("magnify") and distort the images of galaxies behind them. The magnification factor for the faint background galaxy population seen within a few arcminutes of the centre of a massive cluster at intermediate distance (redshift z ~ 0.2 - 0.4, i.e., corresponding to a look-back time of approx. 2 - 4 billion years) is typically larger than 2, and occasionally much larger. The clusters thus function as gravitational lenses . They may be regarded as "natural telescopes" that help us to see fainter objects further out into space than would otherwise be possible with our own telescopes. In a

  15. Ancient Astronomical Monuments of Athens

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  16. Detecting bimodality in astronomical datasets

    NASA Technical Reports Server (NTRS)

    Ashman, Keith A.; Bird, Christina M.; Zepf, Stephen E.

    1994-01-01

    We discuss statistical techniques for detecting and quantifying bimodality in astronomical datasets. We concentrate on the KMM algorithm, which estimates the statistical significance of bimodality in such datasets and objectively partitions data into subpopulations. By simulating bimodal distributions with a range of properties we investigate the sensitivity of KMM to datasets with varying characteristics. Our results facilitate the planning of optimal observing strategies for systems where bimodality is suspected. Mixture-modeling algorithms similar to the KMM algorithm have been used in previous studies to partition the stellar population of the Milky Way into subsystems. We illustrate the broad applicability of KMM by analyzing published data on globular cluster metallicity distributions, velocity distributions of galaxies in clusters, and burst durations of gamma-ray sources. FORTRAN code for the KMM algorithm and directions for its use are available from the authors upon request.

  17. IAU Public Astronomical Organisations Network

    NASA Astrophysics Data System (ADS)

    Canas, Lina; Cheung, Sze Leung

    2015-08-01

    The Office for Astronomy Outreach has devoted intensive means to create and support a global network of public astronomical organisations around the world. Focused on bringing established and newly formed amateur astronomy organizations together, providing communications channels and platforms for disseminating news to the global community and the sharing of best practices and resources among these associations around the world. In establishing the importance that these organizations have for the dissemination of activities globally and acting as key participants in IAU various campaigns social media has played a key role in keeping this network engaged and connected. Here we discuss the implementation process of maintaining this extensive network, the processing and gathering of information and the interactions between local active members at a national and international level.

  18. Astronomical Software---A Review

    NASA Astrophysics Data System (ADS)

    Shortridge, K.

    It is now impossible to imagine `doing astronomy' without using software. Sometimes it is hard to remember that it has not always been like this. Over a timescale now measured in decades, the art (or science) of astronomical programming has evolved. Once it involved the squeezing of hand-crafted assembler routines into insufficient memory. Now it includes the design of ambitiously large frameworks for data acquisition and reduction. The organisation required for the production of such software has had to grow to match these new ambitions. This review looks back on the path taken by this fascinating evolutionary process, in the hope that it can provide a background that may let us imagine where the next years will lead.

  19. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  20. Astronomical Data in Undergraduate courses

    NASA Astrophysics Data System (ADS)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  1. Aristotle University Astronomical Station at Mt. Holomon

    NASA Astrophysics Data System (ADS)

    Avdellidou, C.; Ioannidis, P.; Kouroubatzakis, K.; Nitsos, A.; Vakoulis, J.; Seiradakis, J. H.

    2012-01-01

    The Aristotle University Astronomical Station was established seven years ago in order to fulfill the educational needs of its students. Astronomical observations are undertaken using three fully equipped small telescopes. Some interesting results are presented below, including the study of asteroids and flare stars, the detection of optical emission from supernovae remnants and follow up observations in extra solar planets.

  2. Conceptual Astronomy Knowledge among Amateur Astronomers

    ERIC Educational Resources Information Center

    Berendsen, Margaret L.

    2005-01-01

    Amateur astronomers regularly serve as informal astronomy educators for their communities. This research inquires into the level of knowledge of basic astronomy concepts among amateur astronomers and examines factors related to amateur astronomy that affect that knowledge. Using the concept questions from the Astronomy Diagnostic Test Version 2,…

  3. COMMISSION 5: Documentation and Astronomical Data

    NASA Astrophysics Data System (ADS)

    Genova, Françoise; Norris, Raymond P.; Bessel, M. S.; Dluzhnevskaia, O.; Jenkner, H.; Malkov, O.; Murtagh, F.; Nakajima, K.; Ochsenbein, F.; Pence, W.; Schmitz, M.; Wielen, R.; Zhao, Y. H.

    2007-03-01

    The triennial report of Commission V Documentation and Astronomical Data/Documentation et Données Astronomiques covers 2002-2005 activities, and in particular the activities of the five Working Groups: Working Group Astronomical Data; Working Group Designations; Working Group Libraries; Working Group FITS; Working Group Virtual Observatories; and of Task Force for the Preservation and Digitization of Photographic Plates.

  4. ISO Results Presented at International Astronomical Union

    NASA Astrophysics Data System (ADS)

    1997-08-01

    Some of the work being presented is collected in the attached ESA Information Note N 25-97, ISO illuminates our cosmic ancestry. A set of six colour images illustrating various aspects have also been released and are available at http://www.estec.esa.nl/spdwww/iso1808.htm or in hard copy from ESA Public Relations Paris (fax:+33.1.5369.7690). These pictures cover: 1. Distant but powerful infrared galaxies 2. A scan across the milky way 3. Helix nebula: the shroud of a dead star 4. Supernova remnant Cassiopeia A 5. Trifid nebula: a dusty birthplace of stars 6. Precursors of stars and planets The International Astronomical Union provides a forum where astronomers from all over the world can develop astronomy in all its aspects through international co-operation. General Assemblies are held every three years. It is expected that over 1600 astronomers will attend this year's meeting, which is being held in Kyoto, Japan from 18-30 August. Further information on the meeting can be found at: www.tenmon.or.jp/iau97/ . ISO illuminates our cosmic ancestry The European Space Agency's Infrared Space Observatory, ISO, is unmatched in its ability to explore and analyse many of the universal processes that made our existence possible. We are children of the stars. Every atom in our bodies was created in cosmic space and delivered to the Sun's vicinity in time for the Earth's formation, during a ceaseless cycle of birth, death and rebirth among the stars. The most creative places in the sky are cool and dusty, and opaque even to the Hubble Space Telescope. Infrared rays penetrating the dust reveal to ISO hidden objects, and the atoms and molecules of cosmic chemistry. "ISO is reading Nature's recipe book," says Roger Bonnet, ESA's director of science. "As the world's only telescope capable of observing the Universe over a wide range of infrared wavelengths, ISO plays an indispensable part in astronomical discoveries that help to explain how we came to exist." This Information Note

  5. Astronomical catalog desk reference, 1994 edition

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Astronomical Catalog Desk Reference is designed to aid astronomers in locating machine readable catalogs in the Astronomical Data Center (ADC) archives. The key reference components of this document are as follows: A listing of shortened titles for all catalogs available from the ADC (includes the name of the lead author and year of publication), brief descriptions of over 300 astronomical catalogs, an index of ADC catalog numbers by subject keyword, and an index of ADC catalog numbers by author. The heart of this document is the set of brief descriptions generated by the ADC staff. The 1994 edition of the Astronomical Catalog Desk Reference contains descriptions for over one third of the catalogs in the ADC archives. Readers are encouraged to refer to this section for concise summaries of those catalogs and their contents.

  6. Astronomers Find Enormous Hole in the Universe

    NASA Astrophysics Data System (ADS)

    2007-08-01

    Astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies, and gas, and the mysterious, unseen "dark matter." While earlier studies have shown holes, or voids, in the large-scale structure of the Universe, this new discovery dwarfs them all. Void Illustration Hole in Universe revealed by its effect on Cosmic Microwave Background radiation. CREDIT: Bill Saxton, NRAO/AUI/NSF, NASA Click on image for page of graphics and detailed information "Not only has no one ever found a void this big, but we never even expected to find one this size," said Lawrence Rudnick of the University of Minnesota. Rudnick, along with Shea Brown and Liliya R. Williams, also of the University of Minnesota, reported their findings in a paper accepted for publication in the Astrophysical Journal. Astronomers have known for years that, on large scales, the Universe has voids largely empty of matter. However, most of these voids are much smaller than the one found by Rudnick and his colleagues. In addition, the number of discovered voids decreases as the size increases. "What we've found is not normal, based on either observational studies or on computer simulations of the large-scale evolution of the Universe," Williams said. The astronomers drew their conclusion by studying data from the NRAO VLA Sky Survey (NVSS), a project that imaged the entire sky visible to the Very Large Array (VLA) radio telescope, part of the National Science Foundation's National Radio Astronomy Observatory (NRAO). Their careful study of the NVSS data showed a remarkable drop in the number of galaxies in a region of sky in the constellation Eridanus. "We already knew there was something different about this spot in the sky," Rudnick said. The region had been dubbed the "WMAP Cold Spot," because it stood out in a map of the Cosmic Microwave Background (CMB) radiation made by the Wilkinson Microwave Anisotopy Probe (WMAP) satellite

  7. Astronomers Gain Clues About Fundamental Physics

    NASA Astrophysics Data System (ADS)

    2005-12-01

    An international team of astronomers has looked at something very big -- a distant galaxy -- to study the behavior of things very small -- atoms and molecules -- to gain vital clues about the fundamental nature of our entire Universe. The team used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to test whether the laws of nature have changed over vast spans of cosmic time. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) "The fundamental constants of physics are expected to remain fixed across space and time; that's why they're called constants! Now, however, new theoretical models for the basic structure of matter indicate that they may change. We're testing these predictions." said Nissim Kanekar, an astronomer at the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. So far, the scientists' measurements show no change in the constants. "We've put the most stringent limits yet on some changes in these constants, but that's not the end of the story," said Christopher Carilli, another NRAO astronomer. "This is the exciting frontier where astronomy meets particle physics," Carilli explained. The research can help answer fundamental questions about whether the basic components of matter are tiny particles or tiny vibrating strings, how many dimensions the Universe has, and the nature of "dark energy." The astronomers were looking for changes in two quantities: the ratio of the masses of the electron and the proton, and a number physicists call the fine structure constant, a combination of the electron charge, the speed of light and the Planck constant. These values, considered fundamental physical constants, once were "taken as time independent, with values given once and forever" said German particle physicist Christof Wetterich. However, Wetterich explained, "the viewpoint of modern particle theory has changed in recent years," with ideas such as

  8. Using mosaicked airborne imagery to assess cotton root rot infection on a regional basis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot is a serious and destructive disease in many of the cotton production areas in Texas. Since 2012, many cotton growers in Texas have used the Topguard fungicide to control this disease in their fields under Section 18 emergency exemptions. Airborne images have been used to monitor the...

  9. Orthorectification, mosaicking, and analysis of sub-decimeter resolution UAV imagery for rangeland monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) offer an attractive platform for acquiring imagery for rangeland monitoring. UAVs can be deployed quickly and repeatedly, and they can obtain sub-decimeter resolution imagery at lower image acquisition costs than with piloted aircraft. Low flying heights result in ima...

  10. The Astronomical Telescope of New York: a new 12-meter astronomical telescope

    NASA Astrophysics Data System (ADS)

    Sebring, T.; Junquist, R.; Stutzki, C.; Sebring, P.; Baum, S.

    2012-09-01

    The Astronomical Corporation of New York has commissioned a study of a 12-meter class telescope to be developed by a group of NY universities. The telescope concept builds on the basic principles established by the Keck telescopes; segmented primary mirror, Ritchey Chretien Nasmyth instrument layout, and light weight structures. New, lightweight, and low cost approaches are proposed for the primary mirror architecture, dome structure and mechanisms, telescope mount approach, and adaptive optics. Work on the design is supported by several NY based corporations and universities. The design offers a substantially larger aperture than any existing Visible/IR wavelength telescope at historically low cost. The concept employs an adaptive secondary mirror and laser guide star adaptive optics. Two First Light instruments are proposed; A High resolution near infrared spectrograph and a near infrared Integral field spectrograph/imager.

  11. An intelligent object recognizer and classification system for astronomical use

    NASA Technical Reports Server (NTRS)

    Bernat, Andrew P.; Mcgraw, John T.

    1986-01-01

    An account is given of an image-processing system based on AI concepts, which allows input images produced by the CCT/Transit Instrument to be compared with a standard-object hierarchylike network of prototypes presented within the computer as 'frames'. Each frame contains information concerning either a standard object or the links among such objects. This method, by comparison to conventional, statistically-based pattern recognition systems, classifies data as an astronomer would and thereby lends credibility to its conclusions; it also furnishes a natural avenue for the machine's serendipitous discovery of new classes of objects.

  12. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    SciTech Connect

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A. E-mail: russo@strw.leidenuniv.nl

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  13. A Survey of Astronomical Research: A Baseline for Astronomical Development

    NASA Astrophysics Data System (ADS)

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A.

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in "astronomical development" with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  14. Learning from FITS: Limitations in use in modern astronomical research

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.; Kitaeff, S.; Fay, J.; Laurino, O.; Alexov, A.; Landry, W.; Masters, J.; Brazier, A.; Schaaf, R.; Edwards, K.; Redman, R. O.; Marsh, T. R.; Streicher, O.; Norris, P.; Pascual, S.; Davie, M.; Droettboom, M.; Robitaille, T.; Campana, R.; Hagen, A.; Hartogh, P.; Klaes, D.; Craig, M. W.; Homeier, D.

    2015-09-01

    The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships.

  15. AstroNomical Information System at CeSAM

    NASA Astrophysics Data System (ADS)

    Gimenez, S.; Moreau, C.; Agneray, F.; Roehlly, Y.

    2014-05-01

    AstroNomical Information System (ANIS), developed by the Centre de donnéeS Astrophysique de Marseille (CeSAM), is a generic tool aimed at facilitating and homogenizing the implementation of astronomical data of various kinds and in dedicated Information Systems. ANIS provides high level services like: search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces, as well as download of catalogs and complete datasets. With ANIS, the CeSAM offers web access to VO compliant Information Systems for different projects VVDS, HeDAM, ExoDat, HST-COSMOS, etc.), including ancillary data that are cross-matched before ingestion.

  16. Young Galaxy's Magnetism Surprises Astronomers

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Astronomers have made the first direct measurement of the magnetic field in a young, distant galaxy, and the result is a big surprise. Looking at a faraway protogalaxy seen as it was 6.5 billion years ago, the scientists measured a magnetic field at least 10 times stronger than that of our own Milky Way. They had expected just the opposite. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The scientists made the discovery using the National Science Foundation's ultra-sensitive Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. "This new measurement indicates that magnetic fields may play a more important role in the formation and evolution of galaxies than we have realized," said Arthur Wolfe, of the University of California-San Diego (UCSD). At its great distance, the protogalaxy is seen as it was when the Universe was about half its current age. According to the leading theory, cosmic magnetic fields are generated by the dynamos of rotating galaxies -- a process that would produce stronger fields with the passage of time. In this scenario, the magnetic fields should be weaker in the earlier Universe, not stronger. The new, direct magnetic-field measurement comes on the heels of a July report by Swiss and American astronomers who made indirect measurements that also implied strong magnetic fields in the early Universe. "Our results present a challenge to the dynamo model, but they do not rule it out," Wolfe said. There are other possible explanations for the strong magnetic field seen in the one protogalaxy Wolfe's team studied. "We may be seeing the field close to the central region of a massive galaxy, and we know such fields are stronger toward the centers of nearby galaxies. Also, the field we see may have been amplified by a shock wave caused by the collision of two galaxies," he said. The protogalaxy studied with the GBT, called DLA-3C286, consists of gas with little or no star formation occurring in it. The astronomers suspect that

  17. Nikolay N. Donitch - the astronomer

    NASA Astrophysics Data System (ADS)

    Gaina, Alex B.; Volyanskaya, M. Yu.

    1999-08-01

    The article is devoted to milestones of life and scientific activity of the eminent astronomer Nikolay Nikolaevich Donitch (Nicolae N. Donici) (1874-1956), a graduate from the Odessa (Novorossiski) university. He was a wellknown expert in the field of reseacrh of objects of Solar system. A person highly cultured, which built the first in Bessarabia (actually a part of the Republic of Moldova) observatory. He was borne in Kishinev (Chisinau) in a nobles family of notable Moldavian landersmen. N.D. graduated from the Richelieu lyceym in Odessa and afterwards, in 1897, graduated from the Odessa (Novorossiysky) University. A.K. Kononovich (1850-1910)headed the chair of astronomy and the Observatory at that time - a foremost authority in the field of astrophysics and stellar astronomy. Many of his disciples became eminent scientists of their time. N. Donitch was among them. N.D. worked till 1918 at Pulkovo Observatory and became a master in the field of studying of such phenomena as solar and lunar eclipses. To observe the Sun N.D., could afford to design and manufacture a spectroheliograph, the first in Russia, with the assistance of a famous Odessa mechanic J.A. Timchenko. This instrument enabled him to obtain topquality photos of the Sun's surface and prominences. It was mounted together with coelostat in the private observatory of N.D. , built in the village Staryie Doubossary in 1908. Besides the heliograoph, the observatory was equiped with a five inch refractor-equatorial with numerous instruments for various observations. Of the other instruments should be mentioned : "a comet triplet" - an instrument consisting of guiding refractor, a photographic camera and a spectrograph with an objective prism. N.D. was lucky enough to observe rare astronomical phenomena. He observed the transit of Mercury through the disk of the Sun on November 14, 1907 and showed the athmosphere absence around this planet, observed the Halley's comet in 1910, the bright Pons-Winneke comet

  18. Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline

    NASA Technical Reports Server (NTRS)

    Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor

    2010-01-01

    Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.

  19. First use of a HyViSI H4RG for Astronomical Observations

    SciTech Connect

    Simms, Lance M.; Figer, Donald F.; Hanold, Brandon J.; Kerr, Daniel J.; Gilmore, D.Kirk; Kahn, Steven M.; Tyson, J.Anthony; /UC, Davis

    2007-09-25

    We present the first astronomical results from a 4K2 Hybrid Visible Silicon PIN array detector (HyViSI) read out with the Teledyne Scientific and Imaging SIDECAR ASIC. These results include observations of astronomical standards and photometric measurements using the 2.1m KPNO telescope. We also report results from a test program in the Rochester Imaging Detector Laboratory (RIDL), including: read noise, dark current, linearity, gain, well depth, quantum efficiency, and substrate voltage effects. Lastly, we highlight results from operation of the detector in window read out mode and discuss its potential role for focusing, image correction, and use as a telescope guide camera.

  20. As-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets

    PubMed Central

    Saalfeld, Stephan; Cardona, Albert; Hartenstein, Volker; Tomančák, Pavel

    2010-01-01

    Motivation: Tiled serial section Transmission Electron Microscopy (ssTEM) is increasingly used to describe high-resolution anatomy of large biological specimens. In particular in neurobiology, TEM is indispensable for analysis of synaptic connectivity in the brain. Registration of ssTEM image mosaics has to recover the 3D continuity and geometrical properties of the specimen in presence of various distortions that are applied to the tissue during sectioning, staining and imaging. These include staining artifacts, mechanical deformation, missing sections and the fact that structures may appear dissimilar in consecutive sections. Results: We developed a fully automatic, non-rigid but as-rigid-as-possible registration method for large tiled serial section microscopy stacks. We use the Scale Invariant Feature Transform (SIFT) to identify corresponding landmarks within and across sections and globally optimize the pose of all tiles in terms of least square displacement of these landmark correspondences. We evaluate the precision of the approach using an artificially generated dataset designed to mimic the properties of TEM data. We demonstrate the performance of our method by registering an ssTEM dataset of the first instar larval brain of Drosophila melanogaster consisting of 6885 images. Availability: This method is implemented as part of the open source software TrakEM2 (http://www.ini.uzh.ch/∼acardona/trakem2.html) and distributed through the Fiji project (http://pacific.mpi-cbg.de). Contact: tomancak@mpi-cbg.de PMID:20529937

  1. Analysis of Infrared Astronomical Sources

    NASA Astrophysics Data System (ADS)

    Ivezic, Zeljko

    Many Galactic objects are surrounded by dust which processes their radiation, shifting the spectral energy distribution to infrared wavelengths. Here we present systematic modeling of this phenomenon and analyze the resulting infrared emission for various Galactic objects. A major new result is the recognition that the radiative transfer problem possesses scaling properties. For a given dust chemical composition, the solution depends only on overall optical depth and the functional form of the radial dust distribution. We show that distribution of Galactic sources in the Infrared Astronomical Satellite (IRAS) color -color diagrams indeed can be understood in terms of these parameters. These methods are employed in a detailed analysis of late-type stars which are a subset of Galactic infrared objects. Dynamical structure and infrared emission of winds around these stars are studied in a self-consistent model that couples the equations of motion and radiative transfer. Thanks to its scaling properties, both the dynamics and IR spectrum of the solution are fully characterized by tauF, the flux averaged optical depth of the wind. Five types of dust grains are considered: astronomical silicate, crystalline olivine, graphite, amorphous carbon and SiC, as well as mixtures. Both dynamics and properties of infrared emission are in good agreement with observations, and show that virtually all IRAS point sources located in the relevant regions of the color-color diagrams can be explained as late-type stars. Because of general scaling properties, the angular profiles of surface brightness are essentially determined by overall optical depth and self-similarly scaled by the size of the dust condensation zone. We find that mid-IR is the best wavelength range to directly measure the size of this zone and identify the 15 best candidates for such future observations. We also show that the infrared emission should display time variability because of cyclical changes in overall

  2. User extensibility of the Firefly astronomical visualization software

    NASA Astrophysics Data System (ADS)

    Dubois-Felsmann, Gregory P.; Goldina, Tatiana; Ly, Loi; Roby, William; Wu, Xiuqin; Zhang, Lijun

    2016-01-01

    We have developed mechanisms for extending the functionality of the open-source Firefly astronomical visualization software with user-supplied code. Firefly is a toolkit for the construction of Web-based applications for visualizing astronomical images and tabular data, with the software distribution also including a basic general-purpose pre-built application. The Firefly tools are the base for NASA's IRSA archive as well as other web applications developed at IPAC.Recent releases include new public APIs allowing the extension of Firefly functionality in various ways. New Javascript APIs allow customization of the interface presented in the browser, including the ability to define buttons for custom actions that can be performed on points, lines, and regions in images. New Python APIs allow the invocation of operations in a Firefly-based application, allowing it to serve as a display engine for FITS images and other astronomical data. In addition, the Firefly web server side has been enhanced with the ability to invoke user-supplied processes that can produce either image or tabular results based on operations on data from the application or external sources. For instance, the user can define an operation to perform source detection on a graphically selected region in an image and return the results for display as a table and/or x-y plot. User processes can be defined in any language supported on the server host; our current efforts have focused on Python. This mechanism has been used to support the integration of Firefly with the LSST project's software stack, with reusable "tasks" from the LSST stack configurable as extensions to Firefly.

  3. MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Hartzell, A. L.; Stewart, J. B.; Bifano, T. G.; Bierden, P. A.

    2010-07-01

    We report on the development of high actuator count, micro-electromechanical (MEMS) deformable mirrors designed for high order wavefront correction in ground and space-based astronomical adaptive optics instruments. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors have an active aperture of up to 25.2mm consisting of a thin silicon membrane mirror supported by an array of 140 to 4092 electrostatic actuators which exhibit no hysteresis and have sub-nanometer repeatability making them well suited for open-loop control applications such as Multi-Object Adaptive Optics (MOAO). The continuous membrane deformable mirrors, coated with a highly reflective metal film, are capable of up to 6μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. Presented in this paper are device characteristics and performance test results, as well as reliability test data and device lifetime predictions that show that trillions of actuator cycles can be achieved without failures.

  4. Improving Infrared Astronomical Satellite Data Products

    NASA Astrophysics Data System (ADS)

    Melis, Carl

    The InfraRed Astronomical Satellite (IRAS) revolutionized astrophysics when it surveyed the sky at mid- and far-infrared wavelengths for the first time. Since then other missions have built upon the legacy of IRAS, but none have surpassed its far-infrared dataset. It is unlikely that a new all-sky far-infrared survey will fly any time in the near future thus making IRAS data a valuable commodity as the most sensitive and complete all-sky survey at far-infrared wavelengths that will likely remain so for at least another decade. Given its importance, it is prudent to make any attempt to extend the IRAS dataset to its limits. Using advanced image processing techniques we believe it is possible to improve IRAS data both in sensitivity and resolution by an order of magnitude or more. We will use revised IRAS data products to explore dusty circumstellar material, especially its temporal evolution, with an emphasis on protoplanetary and debris disks. Before embarking on a full-scale re-analysis of all IRAS survey data, we first propose a pilot survey in which we will validate our methodology. The proposal goals are well- aligned with the scope of the Astrophysics Data Analysis program and directly inform the NASA Science Mission Directorate to understand our cosmic origins, especially to determine how planets form around young stars, and will likely have broader impacts in all areas of astrophysics much like the original IRAS survey did.

  5. The Blue Comet: A Railroad's Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2009-01-01

    Between 1929 February 21 and 1941 September 27, the Central New Jersey Railroad operated a luxury passenger train between Jersey City and Atlantic City. Named The Blue Comet, the locomotive, tender, and coaches sported a unique royal blue paint scheme designed to evoke images of celestial bodies speeding through space. Inside each car were etched window panes and lampshades featuring stars and comets. And each coach sported the name of a famous comet on its side; these comets were of course named for their discoverers. Some of the astronomers honored in this unique fashion remain famous to this day, or at least their comets do. The names D'Arrest, Barnard, Encke, Faye, Giacobini, Halley, Olbers, Temple, Tuttle, and Westphal are familiar ones. But Biela, Brorsen, deVico, Spitaler, and Winnecke have now largely faded into obscurity; their stories are recounted here. Although more than sixty years have elapsed since its last run, The Blue Comet, perhaps the most famous passenger train in American history, lives on in the memories of millions of passengers and railfans. This famous train returned to the attention of millions of television viewers on the evening of 2007 June 3, in an episode of the HBO series The Sopranos. This work was supported by a faculty development grant from Valdosta State University.

  6. Reporting Astronomical Discoveries: Past, Now, and Future

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Green, Daniel W. E.; Samus, Nikolai N.; West, Richard

    2015-08-01

    Many new astronomical objects have been discovered over the years by amateur astronomers, and this continues to be the case. They have traditionally reported them (as have professional astronomers) to the Central Bureau for Astronomical Telegrams (CBAT), which was established in the 19th century. This procedure has worked very well throughout the 20th century, moving under the umbrella of the newly established IAU in 1920. The discoverers have been honored by the formal announcement of their discoveries in the publications of the CBAT.In recent years, some professional research groups have established other ways of announcing their discoveries of explosive objects such as novae and supernovae; some do not now report their discoveries or spectroscopic confirmations of the transients to the CBAT, including often spectroscopic reports of objects posted to the CBAT "Transient Objects Confirmation Page" -- the highly successful TOCP webpage, which assigns official positional designations to new transients posted there by approved, registered users. This leads to a delay in formal announcements of discoveries by amateur astronomers in many cases, as well as inconsistent designations being put into use by individual groups. Amateur astronomers are feeling frustrated about this situation, and they hope that the IAU will help to settle the situation.We have proposed the new IAU commission NC-52, which will treat these phenomena in a continuation of Commission 6, through the CBAT. We hope to continuously support the reporting of the discoveries by amateur astronomers, as well as professional astronomers, who all deserve and desire proper recognition. Our strategy will maintain the firm trust between the amateur and professional astronomers, which is necessary for true collaboration. The plan is for the CBAT to work with collaborators to assure that discoveries posted on the TOCP are promptly designated and announced by the CBAT, even when confirmations are made elsewhere

  7. Ultraviolet observations of astronomical sources

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.

    1994-01-01

    The final report on 'Ultraviolet Observations of Astronomical Sources,' which ran for a total of three years, roughly between 1 July 1988 and 14 Feb. 1993 is presented. During the first year, I worked at Indiana University; since October, 1989, I have been at Tennessee State University. This grant has supported my studies of archival International Ultraviolet Explorer (IUE) observations of zeta Aur binaries, cool stars that are paired with hot stars in binary systems. Such systems are important as a source of detailed knowledge about the structures of chromospheres and winds in cool giant and supergiant stars, since the hot star serves as a probe of many lines of sight through the cool supergiant star's outer atmosphere. By determining the physical conditions along many such lines of sight, a detailed two-dimensional map of the chromosphere and wind may be constructed. The grant grew out of my analysis of archival IUE observations of 31 Cyg in which I analyzed five epochs of an atmospheric eclipse that occurred in 1982. I fit the attenuation spectra of atmospheric eclipse throughout the ultraviolet (lambda(lambda)1175-1950 and lambda(lambda)2500-3100) with theoretically calculated spectra, thereby determining the physical properties of gas (mass column density of absorbers, temperature, and velocity spread) along each observed line of sight. A similar analysis for other such zeta Aur binaries was accomplished and theoretical models for the chromospheres of these stars based on my observations were constructed.

  8. Astronomical Knowledge in Holy Books

    NASA Astrophysics Data System (ADS)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2015-08-01

    We investigate religious myths related to astronomy from different cultures in an attempt to identify common subjects and characteristics. The paper focuses on astronomy in religion. The initial review covers records from Holy books about sky related superstitious beliefs and cosmological understanding. The purpose of this study is to introduce sky related religious and national traditions (particularly based on different calendars; Solar or Lunar). We carried out a comparative study of astronomical issues contained in a number of Holy books: Ancient Egyptian Religion (Pyramid Texts), Zoroastrianism (Avesta), Hinduism (Vedas), Buddhism (Tipitaka), Confucianism (Five Classics), Sikhism (Guru Granth Sahib), Christianity (Bible), Islam (Quran), Druidism (Mabinogion) and Maya Religion (Popol Vuh). These books include various information on the creation of the Universe, Sun and Moon, the age of the Universe, Cosmic sizes, understanding about the planets, stars, Milky Way and description of the Heavens in different religions. We come to the conclusion that the perception of celestial objects varies from culture to culture, and from religion to religion and preastronomical views had a significant impact on humankind, particularly on religious diversities. We prove that Astronomy is the basis of cultures, and that national identity and mythology and religion were formed due to the special understanding of celestial objects.

  9. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  10. Chrysanthos Notaras as an Astronomer

    NASA Astrophysics Data System (ADS)

    Rovithis, P.

    The aim of the present work is to emphasize the contribution of Chrysanthos Notaras (16??-1731) in the dispersion of Astronomy in the begining of the eighteenth century. Chysanthos Notaras, Partiarch of Jerusalem (1707-1731), is included among the most educated Greeks of his epoch. Although his first studies were suitable for ecclesiastic offices and religion, (since he studied ecclesiastic low, at Patavio, Italy), he continued at Paris for additional studies in Astronomy and Geography (1700). He became student of G.D. Cassini, who was the Director of Paris Observatory at that time, and he served as observer and astronomical instruments constructor, under Cassini's supervision. Chrysanthos Notaras included the teaching of "Astronomy" as a lesson in the schools of the Holy Sepulchre, in order to disperse the new ideas and knowledge about the earth and the universe among the young students. He published the first International Map (of the known world) in the Greek language in 1700 and in 1716 his book "Intoduction in Geography and Sphericals" was published in Paris. This book, written before 1707, was mainly an introduction to Astronomy and was used by the afterwards authors as an essential and basic manual and offered a lot to the enlightenment of the enslavement Greeks.

  11. A Future Astronomical Software Environment

    NASA Astrophysics Data System (ADS)

    Grosböl, P.; Tody, D.; Paioro, L.; Granet, Y.; Garilli, B.; Surace, C.; Opticon Fase Network

    2012-09-01

    Analyzing data sets in astronomy has become more and more complex and has driven the development of specific tools, functions and tasks. In order to integrate these tools in a global environment and thereby preserving them, the OPTICON Network 9.2 in coordination with US-VAO has outlined requirements, defined an architectural concept and developed a prototype of a Future Astronomical Software Environment (FASE). Important features are support for user scripting (e.g. Python), access to legacy applications (e.g. IRAF, MIDAS), integration with the Virtual Observatory (VO) for access to remote data and computation, and scalability supporting desktops to distributed cluster systems. A first prototype has been implemented and demonstrates the feasibility by offering access to numerous applications (e.g. ds9, ESO CPL pipelines, MIDAS, topcat) from a Python or Unix shell using VO-SAMP as a software bus. A simple packaging system is also provided to allow easy definition and sharing of applications at a Web portal.

  12. Lunar astronomical observatories - Design studies

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.

    1990-01-01

    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  13. America's foremost early astronomer. [David Rittenhouse

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Rubincam, Milton, II

    1995-01-01

    The life of 18th century astronomer, craftsman, and partriot David Rittenhouse is detailed. As a craftsman, he distinguished himself as one of the foremost builders of clocks. He also built magnetic compasses and surveying instruments. The finest examples of his craftsmanship are considered two orreries, mechanical solar systems. In terms of astronomical observations, his best-known contribution was his observation of the transit of Venus in 1769. Rittenhouse constructed the first diffraction grating. Working as Treasurer of Pennsylvania throughout the Revolution, he became the first director of the Mint in 1792. Astronomical observations in later life included charting the position of Uranus after its discovery.

  14. Astronomical Site Characterization at the Canarian Observatories

    NASA Astrophysics Data System (ADS)

    Muñoz-Tuñón, C.; Varela, A. M.; Castro-Almazán, J. A.

    2015-04-01

    Roque de los Muchachos Observatory (La Palma) and Teide Observatory (Tenerife) are prime astronomical sites, as confirmed by more than 30 years of intensive site-testing campaigns. The IAC has long been aware of the importance of promoting initiatives for the characterization and protection of the Canarian Observatories. For this purpose, in the late ’80s a Sky Team was created to measure the atmospheric parameters relating to astronomical observations, to design and develop new instruments and techniques for astronomical site testing, and to improve and maintain a high level of instrumentation in site characterization. New instruments and techniques are welcomed by the Observatories.

  15. Franklin Edward Kameny (1925-2011, Astronomer)

    NASA Astrophysics Data System (ADS)

    Wright, Jason

    2012-01-01

    Dr. Frank Kameny is best known today as one of the most important members of the gay rights movement in the United States, but he was also a PhD astronomer. In fact, it was his firing from his civil service position as astronomer for the US Army Map Service on the grounds of homosexuality that sparked his lifelong career of activism. Here, I explore some aspects of his short but interesting astronomical career and the role of the AAS in his life.

  16. Towards Fast Morphological Mosaicking of High-Resolution Multi-Spectral Products - on Improvements of Seamlines

    NASA Astrophysics Data System (ADS)

    Storch, Tobias; Fischer, Peter; Fast, Sebastian; Serr, Philipp; Krauß, Thomas; Müller, Rupert

    2016-06-01

    The complex process of fully automatically establishing seamlines for the fast production of high-quality mosaics with high-amount of high-resolution multi-spectral images is detailed and improved in this paper. The algorithm is analyzed and a quasi-linear runtime in the number of considered pixels is proven for all situations. For typical situations the storage is even essentially smaller from a complexity theoretical perspective. Improvements from algorithm practical perspective are specified, too. The influence of different methods for the determination of seamlines based on gradients is investigated in detail for three Sentinel-2 products. The studied techniques cover well-known ones normally based on a single band. But also more sophisticated techniques based on multiple bands or even taking additional external geo-information data are taken into account. Based on the results a larger area covered by Image2006 orthorectified products with data of the Resourcesat-1 mission is regarded. The feasibility of applying advanced subordinated methods for improving the mosaic such as radiometric harmonization is examined. This also illustrates the robustness of the improved seamline determination approaches.

  17. Astronomers Discover Fastest-Spinning Pulsar

    NASA Astrophysics Data System (ADS)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  18. The PACA Project: When Amateur Astronomers Become Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-12-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers

  19. High resolution VESTA LAMO atlas derived from Dawn FC images.

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Cris T.

    2013-04-01

    Introduction: NASA's Dawn spacecraft entered orbit of the inner main belt asteroid 4 Vesta on July 16, 2011, and spent about one year in orbit to characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Vesta before it departed to asteroid 1 Ceres in late 2012. One of the major goals of the mission was a global mapping of Vesta. Data: The DAWN mission was mapping Vesta from three different orbit heights during Survey orbit (3100 km altitude), HAMO (High Altitude Mapping Orbit, 700 km altitude), and LAMO (Low Altitude Mapping Orbit, 210 km altitude) [1]. The Dawn mission is equipped with a framing camera (FC) [2] which was the prime instrument during the LAMO phase. DAWN orbited Vesta during LAMO in 21 cycles between December 2011 and end of April 2012. The framing camera took about 10,000 clear filter images with a resolution of about 20 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected about 8,000 images for the global coverage of Vesta. Data Processing: The first step of the processing chain is to ortho rectify the images to the proper scale and map projection type. This process requires detailed high-resolution information of the local topography of Vesta. The global topgraphy was calculated during the stereo processing of the HAMO images [3] and was used here. The shape model was used for the calculation of the ray intersection points while the map projection itself was done onto a sphere with a mean radius of 255 km. The next step was the mosaicking of all images to one global mosaic of Vesta, the so called basemap. Vesta map tiles: The Vesta atlas was produced in a scale of 1:200,000 and consists of 30 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4] and is used for example for mapping Mars in a scale of 1:5,000,000. A map scale of 1:200,000 guarantees a mapping at the highest available DAWN

  20. Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    This meeting marks the the International Year of Astronomy by reviewing the extent to which astronomers are achieving the optimal rate of astronomical discovery. Can we identify and overcome the limits to progress? What steps can be taken to accelerate the rate of expansion of astronomical knowledge? What lessons can be learnt both from the recent and distant past? As the public announcements regarding the 2009 IYA have emphasized, new astronomical discoveries are currently being made at an extraordinary rate, while the invention of the telescope ushered in an equally momentous "golden age of discovery" 400 years ago. The meeting addresses a range of potential limits to progress-paradigmatic, technological, organizational, and political-examining each issue both from modern and historical perspectives, and drawing lessons to guide future progress. The program focusses on how astronomy actually progresses, using careful historical studies and real data, rather than anecdotes and folklore.

  1. Astronomical education in Tajikistan. Project TAJASTRO

    NASA Astrophysics Data System (ADS)

    Ibadinov, Khursandkul I.; Rahmonov, A. A.

    2011-06-01

    The centre of astronomy in Tajikistan is the Institute of Astrophysics of the Academy of Sciences of Tajikistan. This institute carries out scientific research and contributes to the preparation of the astronomical staff and to astronomical education. The reform of education in Tajikistan continues and now astronomy is studied in schools (together with physics) and at universities. The Tajik State Pedagogical University resumed in 2007 the training of teachers in physics and astronomy. Since 1999 the Tajik National University (TNU) offers a a specialty in astronomy. In 2006 is restored the Small Academy of Sciences (SAS) of Tajikistan. There is a planetarium in Khujand and in 2006 the Institute of Astrophysics, TNU and the Astronomical Society of Tajikistan, along with the support IBSP/UNESCO, organised the Training Methodical Center (TMC) ``TAJASTRO'' at the Hisar astronomical observatory for students, graduate students, young scientists, and teachers at secondary schools.

  2. Astronomical data bases and retrieval systems

    NASA Technical Reports Server (NTRS)

    Mead, J. M.; Nagy, T. A.; Warren, W. H., Jr.

    1981-01-01

    The status of the development of machine-readable stellar and extragalactic data bases is summarized, including several examples of astronomical applications using these data sets. The creation of a computerized bibliographical data base for cometary research is described.

  3. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Astrophysics Data System (ADS)

    Castellano, T.; Laughlin, G.

    2002-05-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary tran- sits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software proce- dures developed by scientists at NASA's Ames Research Center and the Univer- sity of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the "solar" planet Uranus.

  4. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Laughlin, Greg; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary transits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software procedures developed by scientists at NASA's Ames Research Center and the University of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the 'solar' planet Uranus.

  5. ALE: Astronomical LIDAR for Extinction

    NASA Astrophysics Data System (ADS)

    Zimmer, Peter C.; McGraw, J. T.; Gimmestad, G.; Roberts, D.; Stewart, J.; Dawsey, M.; Fitch, J.; Smith, J.; Townsend, A.; Black, B.

    2006-12-01

    The primary impediment to precision all-sky photometry is the scattering or absorption of incoming starlight by the aerosols suspended in, and the molecules of, the Earth's atmosphere. The University of New Mexico (UNM) and the Georgia Tech Research Institute (GTRI) are currently developing the Astronomical LIDAR (LIght Detection And Ranging) for Extinction (ALE), which is undergoing final integration and initial calibration at UNM. ALE is based upon a 527nm laser operated at a pulse repetition rate of 1500 pps, and rendered eyesafe by expanding its beam through a 32cm diameter transmitter. The alt-az mounted ALE will operate in multiple modes, including mapping the sky to obtain a quantitative measurement of extinction sources, measuring a monochromatic extinction coefficient by producing Langely plots, and monitoring extinction in the direction in which a telescope is observing. A primary goal is to use the Rayleigh scattered LIDAR return from air above 20km as a quasi-constant illumination source. Air above this altitude is generally free from aerosols and the variations in density are relatively constant over intervals of a few minutes. When measured at several zenith angles, the integrated line-of-sight extinction can be obtained from a simple model fit of these returns. The 69 microjoule exit pulse power and 0.6m aperture receiver will allow ALE to collect approximately one million photons per minute from above 20km, enough to enable measurements of the monochromatic vertical extinction to better than 1% under photometric conditions. Along the way, ALE will also provide a plethora of additional information about the vertical and horizontal distributions of low-lying aerosols, dust or smoke in the free troposphere, and high cirrus, as well as detect the passage of boundary layer atmospheric gravity waves. This project is funded by NSF Grant 0421087.

  6. Astronomers and the Media: What Reporters Expect

    NASA Astrophysics Data System (ADS)

    Siedgfried, Tom; Witze, Alexandra

    2006-01-01

    Journalists writing about astronomy bring varying levels of knowledge to the task. Most rely on astronomers for help. To be most helpful, astronomers should familiarize themselves with the practices and needs of journalists and learn effective methods for presenting astronomy via news releases, interviews and news conferences. In all aspects of communicating with the media, the ability to express technical findings in plain language is essential.

  7. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  8. Automatic generation of 360 degree panorama from image sequences

    NASA Astrophysics Data System (ADS)

    Ho, Sean; David, Philip

    2008-08-01

    Recently, there has been an increasing interest in using panoramic images in surveillance and target tracking applications. With the wide availability of off-the-shelf web-based pan-tilt-zoom (PTZ) cameras and the advances of CPUs and GPUs, object tracking using mosaicked images that cover a scene of 360° in near real-time has become a reality. This paper presents a system that automatically constructs and maps full view panoramic mosaics to a cube-map from images captured from an active PTZ camera with 1-25x optical zoom. A hierarchical approach is used in storing and mosaicking multi-resolution images captured from a PTZ camera. Techniques based on scale-invariant local features and probabilistic models for verification are used in the mosaicking process. Our algorithm is automatic and robust in mapping each incoming image to one of the six faces of a cube with no prior knowledge of the scene structure. This work can be easily integrated to a surveillance system that wishes to track moving objects in its 360° surrounding.

  9. Astronomical Data Center Bulletin, volume 1, no. 1

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr. (Editor); Nagy, T. A. (Editor); Mead, J. M. (Editor)

    1980-01-01

    Information about work in progress on astronomical catalogs is presented. In addition to progress reports, an upadated status list for astronomical catalogs available at the Astronomical Data Center is included. Papers from observatories and individuals involved with astronomical data are also presented.

  10. Book Review: Scientific Writing for Young Astronomers

    NASA Astrophysics Data System (ADS)

    Uyttenhove, Jos

    2011-12-01

    EDP Sciences, Les Ulis, France. Part 1 : 162 pp. € 35 ISBN 978-2-7598-0506-8 Part 2 : 298 pp. € 60 ISBN 978-2-7598-0639-3 The journal Astronomy & Astrophysics (A&A) and EDP Sciences decided in 2007 to organize a School on the various aspects of scientific writing and publishing. In 2008 and 2009 Scientific Writing for Young Astronomers (SWYA) Schools were held in Blankenberge (B) under the direction of Christiaan Sterken (FWO-VUB). These two books (EAS publication series, Vol. 49 and 50) reflect the outcome of these Schools. Part 1 contains a set of contributions that discuss various aspects of scientific publication; it includes A&A Editors' view of the peer review and publishing process. A very interesting short paper by S.R. Pottasch (Kapteyn Astronomical Institute, Groningen, and one of the two first Editors-in Chief of A&A) deals with the history of the creation of the journal Astronomy & Astrophysics. Two papers by J. Adams et al. (Observatoire de Paris) discuss language editing, including a detailed guide for any non-native user of the English language. In 2002 the Board of Directors decided that all articles in A&A must be written in clear and correct English. Part 2 consists of three very extensive and elaborated papers by Christiaan Sterken, supplying guidelines to PhD students and postdoctoral fellows to help them compose scientific papers for different forums (journals, proceedings, thesis, etc.). This part is of interest not only for young astronomers but it is very useful for scholars of all ages and disciplines. Paper I "The writing process" (60 pp.) copes with the preparation of manuscripts, with communicating with editors and referees and with avoiding common errors. Delicate problems on authorship, refereeing, revising multi-authored papers etc. are treated in 26 FAQ's. Paper II "Communication by graphics" (120 pp.) is entirely dedicated to the important topic of communication with images, graphs, diagrams, tables etc. Design types of graphs

  11. An expert system approach to astronomical data analysis

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1987-01-01

    Expert systems technology has much to offer to the problem of astronomical data analysis, where large data volumes and sophisticated analysis goals have caused a variety of interesting problems to arise. The construction of a prototype expert system whose target domain is CCD image calibration, is reported. The prototype is designed to be extensible to different and more complex problems in a straighforward way, and to be largely independent of the details of the specific data analysis system which executes the plan it generates.

  12. Superluminal Sweeping Spot Pair Events in Astronomical Settings

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2015-01-01

    Sweeping beams of light can cast spots that move superluminally across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are not particle pair events -- they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Astronomical settings where superluminal spot pairs might be found include Earth's Moon, passing asteroids, pulsars, and variable nebula. Potentially recoverable information includes three dimensional imaging, relative geometric size factors, and distances.

  13. The North American Astronomical Photographic Plate Center: Phase I.

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Crowley, T.; Griffin, E.; Osborn, W.

    2004-05-01

    Astronomical photographic plates constitute an important and, for the large part, unrepeatable resource for research. International pressure is mounting to preserve and catalog scientifically valuable plate collections and capture their information through digitization. At the same time, many institutions holding plates now lack the space, funds and expertise to adequately preserve this important material. In response, the Pisgah Astronomical Research Institute has established the North American Photographic Plate Center (NAPPC). NAPPC is intended as a long-term repository for direct and objective prism plate collections currently stored in North America. PARI is a natural location for such a center. It offers physically secure and abundant environmentally controlled space for plate storage as well as Internet 2 infrastructure and instrument space necessary for the eventual digitization and Internet distribution of images. Phase I of this initiative is to collect unwanted plate collections, store them in an appropriate manner, prepare catalogues of their relevant information and establish a laboratory for on-site examination or measurement of the plates. This is currently underway. Phase II will be the eventual digitization and development of a public web accessible database of images. We will describe the procedures for placing plate collections in NAPPC, the infrastructure in place for plate storage and measurement, and our preliminary plans for making the plate archive a public image library with Internet access.

  14. World's fastest and most sensitive astronomical camera

    NASA Astrophysics Data System (ADS)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  15. Astronomers debate diamonds in space

    NASA Astrophysics Data System (ADS)

    1999-04-01

    This is not the first time the intriguing carbonaceous compound has been detected in space. A peculiar elite of twelve stars are known to produce it. The star now added by ISO to this elite is one of the best representatives of this exclusive family, since it emits a very strong signal of the compound. Additionally ISO found a second new member of the group with weaker emission, and also observed with a spectral resolution never achieved before other already known stars in this class. Astronomers think these ISO results will help solve the mystery of the true nature of the compound. Their publication by two different groups, from Spain and Canada, has triggered a debate on the topic, both in astronomy institutes and in chemistry laboratories. At present, mixed teams of astrophysicists and chemists are investigating in the lab compounds whose chemical signature or "fingerprint" matches that detected by ISO. Neither diamonds nor fullerenes have ever been detected in space, but their presence has been predicted. Tiny diamonds of pre-solar origin --older than the Solar System-- have been found in meteorites, which supports the as yet unconfirmed theory of their presence in interstellar space. The fullerene molecule, made of 60 carbon atoms linked to form a sphere (hence the name "buckyball"), has also been extensively searched for in space but never found. If the carbonaceous compound detected by ISO is a fullerene or a diamond, there will be new data on the production of these industrially interesting materials. Fullerenes are being investigated as "capsules" to deliver new pharmaceuticals to the body. Diamonds are commonly used in the electronics industry and for the development of new materials; if they are formed in the dust surrounding some stars, at relatively low temperatures and conditions of low pressure, companies could learn more about the ideal physical conditions to produce them. A textbook case The latest star in which the compound has been found is

  16. European astronomers observe first evaporating planet

    NASA Astrophysics Data System (ADS)

    2003-03-01

    The scorched planet called HD 209458b orbits ‘only’ 7 million kilometres from its yellow Sun-like star. By comparison, Jupiter, the closest gas giant in our Solar System, orbits 780 million kilometres from our Sun. NASA/ESA Hubble Space telescope observations reveal a hot and puffed-up evaporating hydrogen atmosphere surrounding the planet. This huge envelope of hydrogen resembles a comet with a tail trailing behind the planet. The planet circles the parent star in a tight 3.5-day orbit. Earth also has an extended atmosphere of escaping hydrogen gas, but the loss rate is much lower. A mainly European team led by Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) reports this discovery in the 13 March edition of Nature. "We were astonished to see that the hydrogen atmosphere of this planet extends over 200 000 kilometres," says Vidal-Madjar. Studying extrasolar planets, especially if they are very close to their parent stars, is not easy because the starlight is usually too blinding. The planet was also too close to the star for Hubble to photograph directly in this case. However, astronomers were able to observe the planet indirectly since it blocks light from a small part of the star during transits across the disc of the star, thereby dimming it slightly. Light passing through the atmosphere around the planet is scattered and acquires a signature from the atmosphere. In a similar way, the Sun’s light is reddened as it passes obliquely through the Earth’s atmosphere at sunset. Astronomers used Hubble’s space telescope imaging spectrograph (STIS) to measure how much of the planet's atmosphere filters light from the star. They saw a startling drop in the star's hydrogen emission. A huge, puffed-up atmosphere can best explain this result. What is causing the atmosphere to escape? The planet’s outer atmosphere is extended and heated so much by the nearby star that it starts to escape the planet's gravity. Hydrogen boils off in the

  17. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  18. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Astronomy Data Centre, Canadian

    2014-01-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  19. Astronomical Applications for a Quadrant Detector Instrument

    NASA Astrophysics Data System (ADS)

    Ries, Paul A.; Hunter, Todd R.; Ghigo, Frank

    2009-01-01

    The quadrant detector (QD) instrument on the 100m Green Bank Telescope (GBT) is designed to detect the motions of the feedarm. Feedarm motions are thought to be one of the main causes of dynamic pointing errors under windy conditions. The quadrant detector should therefore be able to predict the contributions of the feedarm to pointing error at any given time. The purpose of this paper is to provide a calibration of the quadrant detector so that it can be used to provide real-time pointing errors of the telescope. A number of methods were tried to determine this calibration including using a model based purely on engineering surveys of the telescope and a model based on observing astronomical sources with half power tracks. Half power tracks consist of moving a bright point source to the half power point of the telescope's beam in order to infer pointing errors from the changes in the observed flux. To determine the effectiveness of this calibration, it was checked by a number of methods. First, the calibration had to be reliable in additional half power tracks. Second, the calibration was used to try to enhance images reconstructed from the MUSTANG bolometer array. Third, the QD was used to try to correct the received flux from a source distorted by feedarm motions. Lastly, the QD was checked against qualitative constraints based on the geometry of its location. The QD passed all of these tests and was shown to successfully predict the GBT pointing error when the pointing errors inferred from the QD were greater than two arcseconds. Therefore, the QD can be used in a number of practical manners both during observations and afterwards, such as for flagging bad data, correcting pointing for MUSTANG data reduction, and performing archival analysis on how frequently the telescope has a certain pointing accuracy.

  20. Astronomical Applications for a Quadrant Detector Instrument

    NASA Astrophysics Data System (ADS)

    Ries, Paul A.; Hunter, Todd R.; Ghigo, Frank D.; Mason, Brian S.

    2009-01-01

    The quadrant detector (QD) instrument on the 100m Green Bank Telescope (GBT) is designed to detect the motions of the feedarm. Feedarm motions are thought to be one of the main causes of dynamic pointing errors under windy conditions. The quadrant detector should therefore be able to predict the contributions of the feedarm to pointing error at any given time. The purpose of this paper is to provide a calibration of the quadrant detector so that it can be used to provide real-time pointing errors of the telescope. A number of methods were tried to determine this calibration including using a model based purely on engineering surveys of the telescope and a model based on observing astronomical sources with half-power tracks. Half-power tracks consist of moving a bright point source to the half power point of the telescope's beam in order to infer pointing errors from the changes in the observed flux. To determine the effectiveness of this calibration, it was checked by a number of methods. First, the calibration had to be reliable in additional half power tracks. Second, the calibration was used to try to enhance images reconstructed from the MUSTANG bolometer array. Third, the QD was used to try to correct the received flux from a source distorted by feedarm motions. Lastly, the QD was checked against qualitative constraints based on the geometry of its location. The QD passed all of these tests and was shown to successfully predict the GBT pointing error when the pointing errors inferred from the QD were greater than two arcseconds. Therefore, the QD can be used in a number of practical manners both during observations and afterwards, such as for flagging bad data, correcting pointing for MUSTANG data reduction, and performing archival analysis on how frequently the telescope has a certain pointing accuracy.

  1. Woods Hole Image Processing System Software implementation; using NetCDF as a software interface for image processing

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.

  2. He2-90'S APPEARANCE DECEIVES ASTRONOMERS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them. The Hubble picture at top shows a centrally bright object with jets, appearing like strings of beads, emanating from both sides of center. (The other streaks of light running diagonally from He2-90 are artificial effects of the telescope's optical system.) Each jet possesses at least six bright clumps of gas, which are speeding along at rates estimated to be at least 375,000 miles an hour (600,000 kilometers an hour). These gaseous salvos are being ejected into space about every 100 years, and may be caused by periodic instabilities in He2-90's accretion disk. The jets from very young stars behave in a similar way. Deep images taken from terrestrial observatories show each jet extending at least 100,000 astronomical units (one astronomical unit equals the Earth-Sun distance, 93 million miles). The jets' relatively modest speed implies that one member of the duo is a white dwarf. Observations by the Compton Gamma-Ray Observatory, however, discovered a

  3. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  4. Large astronomical catalog management for telescope operations

    NASA Astrophysics Data System (ADS)

    Baruffolo, Andrea; Benacchio, Leopoldo

    1998-07-01

    Large astronomical catalogues containing from a million up to hundreds of millions records are currently available, even larger catalogues will be released in the near future. They will have an important operational role since they will be used throughout the observing cycle of next generation large telescopes, for proposal and observation preparation, telescope scheduling, selection of guide stars, etc. These large databases pose new problems for fast and general access. Solutions based on custom software or on customized versions of specific catalogues have been proposed, but the problem will benefit from a more general database approach. While traditional database technologies have proven to be inadequate for this task, new technologies are emerging, in particular that of Object Relational DBMSs, that seem to be suitable to solve the problem. In this paper we describe our experiences in experimenting with ORDBMSs for the management of large astronomical catalogues. We worked especially on the database query language and access methods. In the first field to extend the database query language capabilities with astronomical functionalities and to support typical astronomical queries.In the second, to speed up the execution of queries containing astronomical predicates.

  5. Astronomers celebrate a year of new Hubble results

    NASA Astrophysics Data System (ADS)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  6. Astronomers Discover New Star-Forming Regions in Milky Way

    NASA Astrophysics Data System (ADS)

    2010-05-01

    Astronomers studying the Milky Way have discovered a large number of previously-unknown regions where massive stars are being formed. Their discovery provides important new information about the structure of our home Galaxy and promises to yield new clues about the chemical composition of the Galaxy. "We can clearly relate the locations of these star-forming sites to the overall structure of the Galaxy. Further studies will allow us to better understand the process of star formation and to compare the chemical composition of such sites at widely different distances from the Galaxy's center," said Thomas Bania, of Boston University. Bania worked with Loren Anderson of the Astrophysical Laboratory of Marseille in France, Dana Balser of the National Radio Astronomy Observatory (NRAO), and Robert Rood of the University of Virginia. The scientists presented their findings to the American Astronomical Society's meeting in Miami, Florida. The star-forming regions the astronomers sought, called H II regions, are sites where hydrogen atoms are ionized, or stripped of their electrons, by the intense radiation of the massive, young stars. To find these regions hidden from visible-light detection by the Milky Way's gas and dust, the researchers used infrared and radio telescopes. "We found our targets by using the results of infrared surveys done with NASA's Spitzer Space Telescope and of surveys done with the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope," Anderson said. "Objects that appear bright in both the Spitzer and VLA images we studied are good candidates for H II regions," he explained. The astronomers then used the NSF's giant Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, an extremely sensitive radio telescope. With the GBT, they were able to detect specific radio frequencies emitted by electrons as they recombined with protons to form hydrogen. This evidence of recombination confirmed that the regions contained ionized

  7. Digital image processing of earth observation sensor data

    NASA Technical Reports Server (NTRS)

    Bernstein, R.

    1976-01-01

    This paper describes digital image processing techniques that were developed to precisely correct Landsat multispectral earth observation data and gives illustrations of the results achieved, e.g., geometric corrections with an error of less than one picture element, a relative error of one-fourth picture element, and no radiometric error effect. Techniques for enhancing the sensor data, digitally mosaicking multiple scenes, and extracting information are also illustrated.

  8. Internal calibration of astronomical photographs

    NASA Astrophysics Data System (ADS)

    Bunclark, P. S.

    Photographic plates have enormous advantages over other two-dimensional detectors in that they have largely uniform sensitivity over a large area. Unfortunately they are dogged by lack of dynamic range and complex response functions. This paper describes a successful method of internal calibration (ie. using only information contained in the images on the plate) which for stars gives a dynamic range of fourteen magnitudes and allows correct photometry of those extended objects which are not saturated.

  9. International Astronomical Search Collaboration -- Astronomical Discovery Program for High School and College Students

    NASA Astrophysics Data System (ADS)

    Miller, Patrick

    2012-01-01

    Centered at Hardin-Simmons University (Abilene, TX) the International Astronomical Search Collaboration (IASC) has conducted successful student-based asteroid search programs, called campaigns. Since 2006 these campaigns have engaged 3,000 high school and college students per year. These students come from 300 schools worldwide located in more than 40 countries on 5 continents. Students have made thousands of observations of near-Earth objects and >300 provisional discoveries of Main Belt asteroids, both reported to the Minor Planet Center (Harvard). To date students have 15 numbered discoveries, catalogued by the IAU and currently being named by the student discoverers. The first telescope of the Panoramic Survey and Rapid Response System (PS1, University of Hawaii) is conducting the largest optical survey ever attempted. In support of education and public outreach, Pan-STARRS collaborated with IASC in 2010-2012 to use the PS1 images in the student asteroid search and discovery campaigns. The PS1 images are wide field with 7o FOV and 1.4 Gpix in size. These were partitioned into 144 sub-images and distributed to 40 high schools in Texas, Hawaii, Washington, Germany, Taiwan, Poland, Brazil, and Bulgaria. In two 6-week campaigns per year, students from these schools made 1000 preliminary asteroid discoveries. This poster presents the results of the first and second year of the IASC-PS1 campaigns plus other asteroid search campaigns conducted by IASC. Also, plans will be described for future campaigns. These future campaigns will reach 500 schools in 2012 and 1,000 high schools within the coming 36 months.

  10. A Journal for the Astronomical Computing Community?

    NASA Astrophysics Data System (ADS)

    Gray, N.; Mann, R. G.

    2011-07-01

    One of the Birds of a Feather (BoF) discussion sessions at ADASS XX considered whether a new journal is needed to serve the astronomical computing community. In this paper we discuss the nature and requirements of that community, outline the analysis that led us to propose this as a topic for a BoF, and review the discussion from the BoF session itself. We also present the results from a survey designed to assess the suitability of astronomical computing papers of different kinds for publication in a range of existing astronomical and scientific computing journals. The discussion in the BoF session was somewhat inconclusive, and it seems likely that this topic will be debated again at a future ADASS or in a similar forum.

  11. The associate principal astronomer telescope operations model

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John; Swanson, Keith; Edgington, Will; Henry, Greg

    1994-01-01

    This paper outlines a new telescope operations model that is intended to achieve low operating costs with high operating efficiency and high scientific productivity. The model is based on the existing Principal Astronomer approach used in conjunction with ATIS, a language for commanding remotely located automatic telescopes. This paper introduces the notion of an Associate Principal Astronomer, or APA. At the heart of the APA is automatic observation loading and scheduling software, and it is this software that is expected to help achieve efficient and productive telescope operations. The purpose of the APA system is to make it possible for astronomers to submit observation requests to and obtain resulting data from remote automatic telescopes, via the Internet, in a highly-automated way that minimizes human interaction with the system and maximizes the scientific return from observing time.

  12. DVD Database Astronomical Manuscripts in Georgia

    NASA Astrophysics Data System (ADS)

    Simonia, I.; Simonia, Ts.; Abuladze, T.; Chkhikvadze, N.; Samkurashvili, L.; Pataridze, K.

    2016-06-01

    Little known and unknown Georgian, Persian, and Arabic astronomical manuscripts of IX-XIX centuries are kept in the centers, archives, and libraries of Georgia. These manuscripts has a form of treaties, handbooks, texts, tables, fragments, and comprises various theories, cosmological models, star catalogs, calendars, methods of observations. We investigated this large material and published DVD database Astronomical Manuscripts in Georgia. This unique database contains information about astronomical manuscripts as original works. It contains also descriptions of Georgian translations of Byzantine, Arabic and other sources. The present paper is dedicated to description of obtained results and DVD database. Copies of published DVD database are kept in collections of the libraries of: Ilia State University, Georgia; Royal Observatory, Edinburgh, UK; Congress of the USA, and in other centers.

  13. Hartung's Astronomical Objects for Southern Telescopes

    NASA Astrophysics Data System (ADS)

    Malin, David; Frew, David J.

    1995-10-01

    Many of the most spectacular astronomical objects are found in the southern skies. With this up-to-date, superbly illustrated handbook, both the amateur with binoculars and the expert with a telescope can make discoveries about new and interesting objects. Professor E. J. Hartung first produced his comprehensive and highly respected guide in 1968. Now the book has been greatly expanded and thoroughly revised, enhancing its character as an indispensable information source. With over 150 illustrations, new material is included on constellations and celestial coordinate systems as well as more modern descriptions of stars, nebulae and galaxies. The authors have included a new "southern Messier" list of objects. The authors' passion for their subject make this a unique and inspirational book. Many of the beautiful photographs were taken by David Malin, the world's leading astronomical photographer. The result will fascinate active and armchair astronomers alike.

  14. Astronomers Without Borders: A Global Astronomy Community

    NASA Astrophysics Data System (ADS)

    Simmons, M.

    2011-10-01

    Astronomers Without Borders (AWB) brings together astronomy enthusiasts of all types - amateur astronomers, educators, professionals and "armchair" astronomers for a variety of online and physicalworld programs. The AWB web site provides social networking and a base for online programs that engage people worldwide in astronomy activities that transcend geopolitical and cultural borders. There is universal interest in astronomy, which has been present in all cultures throughout recorded history. Astronomy is also among the most accessible of sciences with the natural laboratory of the sky being available to people worldwide. There are few other interests for which people widely separated geographically can engage in activities involving the same objects. AWB builds on those advantages to bring people together. AWB also provides a platform where projects can reach a global audience. AWB also provides unique opportunities for multidisciplinary collaboration in EPO programs. Several programs including The World at Night, Global Astronomy Month and others will be described along with lessons learned.

  15. ORCID Uptake in the Astronomical Community

    NASA Astrophysics Data System (ADS)

    Holmquist, Jane

    2015-08-01

    The IAU General Assembly provides librarians with a unique opportunity to interact with astronomers from all over the world. From the perspective of an ORCID Ambassador, the Focus Group Meeting on "Scholarly Publication in Astronomy" also provides an opportunity to demonstrate the cooperation and collaboration needed by individual astronomers, societies, librarians, publishers and bibliographic database providers to achieve universal adoption of ORCID, a standard unique identifier for authors, just as the DOI (digital object identifier) has been adopted for each journal article published.I propose to 1) present at the Focus Group Meeting an update on the uptake of ORCID by members of the astronomical community and 2) set up a small station (TBA) near the IAU registration area where librarians can show researchers how to register for an ORCID in 30 seconds.

  16. On Astronomical Records of Dangun Chosun Period

    NASA Astrophysics Data System (ADS)

    La, Daile; Park, Changbom

    1993-10-01

    Events of eclipses as well as other major astronomical events observable in the eastern sector of Asian continent are computed and checked with astronomical records of antiquity. Particular attention was given to two types of the events recorded in remaining records of Dangun Chosun Period (DCP): (1) concentration of major planets near the constellation of Nu-Sung (Beta Aries) and (2) a large ebb-tide. We find them most likely to have occurred in real time. i.e., when the positions of the sun, moon, and planets happen to be aligned in the most appropriate position. For solar eclipses data, however, we find among 10 solar eclipse events recorded, only 6 of them are correct up to months, implying its statistical significance is no less insignificant. We therefore conclude that the remaining history books of DCP indeed contains important astronomical records, thereby the real antiquity of the records of DCP cannot be disproved.

  17. Education Efforts of the International Astronomical Union

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.

    2006-08-01

    I describe the education activities of the International Astronomical Union, particularly the work of Commission 46 on Education and Development. We are most interested in education in schools and for general university education rather than for pre-professional training or graduate schools. We have over 75 National Liaisons, mostly from member countries of the I.A.U. but some from nonmembers or regional groupings. We operate through 10 program groups, which are described at our Website at http://www.astronomyeducation.org. We also organize Special Sessions at General Assemblies of the International Astronomical Union, such as this Special Session 2 on Innovation in Teaching/ Learning Astronomy Methods, organized by Rosa Ros and me, and Special Session 5 on Astronomy for the Developing World, organized by John Hearnshaw. A modified version of our Special Session from the 2003 Sydney General Assembly was published as Teaching and Learning Astronomy: Effective Strategies for Educators Worldwide (Jay M. Pasachoff and John R. Percy, eds., Cambridge University Press, 2005). Michele Gerbaldi and Ed Guinan run the International Schools for Young Astronomers. Jay White heads the Teaching Astronomy for Development Program Group. John Hearnshaw runs the Program Group for the Worldwide Development of Astronomy. Charles Tolbert and John Percy run an Exchange of Astronomers program with a limited number of grants for stays of over three months between astronomers in developing countries and established astronomical institutions. Barrie Jones, as vice-president, aided by Tracey Moore, runs the Newsletter and keeps track of the National Liaisons list. I run the Program group of Public Education at the Times of Solar Eclipses.

  18. Next VLT Instrument Ready for the Astronomers

    NASA Astrophysics Data System (ADS)

    2000-02-01

    FORS2 Commissioning Period Successfully Terminated The commissioning of the FORS2 multi-mode astronomical instrument at KUEYEN , the second FOcal Reducer/low dispersion Spectrograph at the ESO Very Large Telescope, was successfully finished today. This important work - that may be likened with the test driving of a new car model - took place during two periods, from October 22 to November 21, 1999, and January 22 to February 8, 2000. The overall goal was to thoroughly test the functioning of the new instrument, its conformity to specifications and to optimize its operation at the telescope. FORS2 is now ready to be handed over to the astronomers on April 1, 2000. Observing time for a six-month period until October 1 has already been allocated to a large number of research programmes. Two of the images that were obtained with FORS2 during the commissioning period are shown here. An early report about this instrument is available as ESO PR 17/99. The many modes of FORS2 The FORS Commissioning Team carried out a comprehensive test programme for all observing modes. These tests were done with "observation blocks (OBs)" that describe the set-up of the instrument and telescope for each exposure in all details, e.g., position in the sky of the object to be observed, filters, exposure time, etc.. Whenever an OB is "activated" from the control console, the corresponding observation is automatically performed. Additional information about the VLT Data Flow System is available in ESO PR 10/99. The FORS2 observing modes include direct imaging, long-slit and multi-object spectroscopy, exactly as in its twin, FORS1 at ANTU . In addition, FORS2 contains the "Mask Exchange Unit" , a motorized magazine that holds 10 masks made of thin metal plates into which the slits are cut by means of a laser. The advantage of this particular observing method is that more spectra (of more objects) can be taken with a single exposure (up to approximately 80) and that the shape of the slits can be

  19. Digital processing of side-scan sonar data with the Woods Hole image processing system software

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    Since 1985, the Branch of Atlantic Marine Geology has been involved in collecting, processing and digitally mosaicking high and low-resolution side-scan sonar data. Recent development of a UNIX-based image-processing software system includes a series of task specific programs for processing side-scan sonar data. This report describes the steps required to process the collected data and to produce an image that has equal along- and across-track resol

  20. Brazilian Participations in the International Astronomical Search Collaboration

    NASA Astrophysics Data System (ADS)

    Rojas, G. A.; Dalla-Costa, L. J.; Kalmus, A. T.; Kroth, E. C.; Matos, M. F.; Silva, A. L.; Silva, G. G.

    2014-10-01

    International Astronomical Search Collaboration (IASC) is an international educational project between universities, schools, observatories and research institutions. Its main objective is to enroll high school and college students in the monitoring and discovery of asteroids and Near Earth Objects (NEOs), especially Potentially Hazardous Asteroids. The methodology consists in the analysis of astronomical images obtained in several observatories in North America and Hawaii. The images are distributed throughout the school network and the results must be delivered in a 72-hour timeframe. Since 2010 Brazilian universities and schools have joined IASC, resulting in over a dozen new asteroids found (3 of them NEOs), and hundreds of measurements for already known asteroids. A major event in this collaboration was the All-Brazil Asteroid Search Campaign, which was conducted in September 2012. 2013 marks the fourth year of Brazilian participations in IASC, with one important milestone: the third straight appearance of a Brazilian institution in the Pan-STARRS campaign, which uses the PS1 telescope in Haleakala, Hawaii. We will present a summary of the overall results, as well as the latest news from 2013 campaigns. We will discuss the impact promoted by the past events, such as how the interest in astronomy changed before and after the campaigns, and it has helped the students to choose their future careers.

  1. Astronomers gossip about the (cosmic) neighborhood.

    PubMed

    Jayawardhana, R

    1994-09-01

    The Hague, Netherlands, last month welcomed 2000 astronomers from around the world for the 22nd General Assembly of the International Astronomical Union (IAU). From 15 to 27 August, they participated in symposia and discussions on topics ranging from the down-to-Earth issue of light and radio-frequency pollution to the creation of elements at the farthest reaches of time and space, in the big bang. Some of the most striking news, however, came in new findings from our galaxy and its immediate surroundings. PMID:17801522

  2. Formation and structure of neutrino astronomical objects

    NASA Astrophysics Data System (ADS)

    Lu, Tan; Luo, Liao-fu; Yang, Gou-chen

    1981-12-01

    Neutrinos with non-zero mass could gather to form a new kind of astronomical bodies: the Neutrino Astronomical Objects (NAO). We have investigated the mechanism of their formation and the relation of this formation to that of the galaxies, ascertained their e, p, He 4 content, whose presence should produce a series of observable effects. NAOs are a peculiar kind of heavenly bodies with many new properties. They have a linear size of the order of 100 pc, a total neutrino content of the order of 10 14M⊙ and an e, p, He 4 content of the order of 10 9M⊙.

  3. Johann and Elizabeth Hevelius, astronomers of Danzig.

    PubMed

    Cook, A

    2000-01-01

    Elizabeth Hevelius (1647-1693) was the second wife of Johann Hevelius, the renowned astronomer of Danzig, and assisted with his observations from the first years of her marriage. Hevelius wrote of her in his books as an able collaborator and she is portrayed in one of them observing with him. She brought out his final, posthumous work. With Johann, she received many notable visitors (including Edmond Halley) and observed with some of them at Danzig. She is the first woman astronomer of whom we have any record. PMID:10824438

  4. He2-90'S APPEARANCE DECEIVES ASTRONOMERS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers using NASA's Hubble Space Telescope have stumbled upon a mysterious object that is grudgingly yielding clues to its identity. A quick glance at the Hubble picture at top shows that this celestial body, called He2-90, looks like a young, dust-enshrouded star with narrow jets of material streaming from each side. But it's not. The object is classified as a planetary nebula, the glowing remains of a dying, lightweight star. But the Hubble observations suggest that it may not fit that classification, either. The Hubble astronomers now suspect that this enigmatic object may actually be a pair of aging stars masquerading as a single youngster. One member of the duo is a bloated red giant star shedding matter from its outer layers. This matter is then gravitationally captured in a rotating, pancake-shaped accretion disk around a compact partner, which is most likely a young white dwarf (the collapsed remnant of a sun-like star). The stars cannot be seen in the Hubble images because a lane of dust obscures them. The Hubble picture at top shows a centrally bright object with jets, appearing like strings of beads, emanating from both sides of center. (The other streaks of light running diagonally from He2-90 are artificial effects of the telescope's optical system.) Each jet possesses at least six bright clumps of gas, which are speeding along at rates estimated to be at least 375,000 miles an hour (600,000 kilometers an hour). These gaseous salvos are being ejected into space about every 100 years, and may be caused by periodic instabilities in He2-90's accretion disk. The jets from very young stars behave in a similar way. Deep images taken from terrestrial observatories show each jet extending at least 100,000 astronomical units (one astronomical unit equals the Earth-Sun distance, 93 million miles). The jets' relatively modest speed implies that one member of the duo is a white dwarf. Observations by the Compton Gamma-Ray Observatory, however, discovered a

  5. The Astronomical Photographic Data Archive at the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Castelaz, M. W.

    2009-08-01

    Astronomical photographic data constitute an enormously important and, for the large part, unrepeatable resource for astronomical research. To answer the need for rescue, preservation and digitization of astronomical photographic data, the Astronomical Photographic Data Archive (APDA) was established at Pisgah Astronomical Research Institute (PARI). APDA is essential both for the health of astronomical science and for credibility of the current generation of astronomers as guardians of its unique heritage. The basic facility requirements met at PARI for APDA include: a secure area with controlled access; several thousand square feet of floor space with a solid foundation; a clean, dust-free environment with controlled humidity and temperature; protection from sunlight; office and lab space for high-resolution scanners and with internet access. APDA development is focused on collections in danger of disposal or extreme damage. Beyond this essential salvage effort, PARI is currently working to establish the physical archives environment, collection development plan, and standard finding aids for the archive. This essay describes the current set of collections, status for access, research resulting from the collections, and future direction of APDA.

  6. Multi-aperture foveated imaging.

    PubMed

    Carles, Guillem; Chen, Shouqian; Bustin, Nicholas; Downing, James; McCall, Duncan; Wood, Andrew; Harvey, Andrew R

    2016-04-15

    Foveated imaging, such as that evolved by biological systems to provide high angular resolution with a reduced space-bandwidth product, also offers advantages for man-made task-specific imaging. Foveated imaging systems using exclusively optical distortion are complex, bulky, and high cost, however. We demonstrate foveated imaging using a planar array of identical cameras combined with a prism array and superresolution reconstruction of a mosaicked image with a foveal variation in angular resolution of 5.9:1 and a quadrupling of the field of view. The combination of low-cost, mass-produced cameras and optics with computational image recovery offers enhanced capability of achieving large foveal ratios from compact, low-cost imaging systems. PMID:27082366

  7. Young Astronomers' Observe with ESO Telescopes

    NASA Astrophysics Data System (ADS)

    1995-11-01

    Today, forty 16-18 year old students and their teachers are concluding a one-week, educational `working visit' to the ESO Headquarters in Garching (See ESO Press Release 14/95 of 8 November 1995). They are the winners of the Europe-wide contest `Europe Towards the Stars', organised by ESO with the support of the European Union, under the auspices of the Third European Week for Scientific and Technological Culture. From November 14-20, they have worked with professional ESO astronomers in order to get insight into the methods and principles of modern astronomy and astrophysics, as carried out at one of the world's foremost international centres. This included very successful remote observations with the ESO 3.5-m New Technology Telescope (NTT) and the 1.4-m Coude Auxiliary Telescope (CAT) via a satellite link between the ESO Headquarters and the La Silla observatory in Chile, 12,000 kilometres away. After a general introduction to modern astronomy on the first day of the visit, the participants divided into six teams, according to their interests. Some chose to observe distant galaxies, others prefered to have a closer look on binary stars, and one team decided to investigate a star which is thought to be surrounded by a proto-planetary system. Each team was supported by an experienced ESO astronomer. Then followed the observations at the remote consoles during three nights, the first at the NTT and the following at the CAT. Each team had access to the telescope during half a night. Although the work schedule - exactly as in `real' science - was quite hard, especially during the following data reduction and interpretative phase, all teams managed extremely well and in high spirits. The young astronomers' observations were favoured by excellent atmospheric conditions. At the NTT, the seeing was better than 0.5 arcsecond during several hours, an exceptional value that allows very good images to be obtained. All observations represent solid and interesting science, and

  8. Astronomers Win Protection for Key Part of Radio Spectrum

    NASA Astrophysics Data System (ADS)

    2000-06-01

    International Telecommunication Union meet to painstakingly parcel out the radio frequency spectrum between radio-based applications such as personal communications, satellite broadcasting, GPS and amateur radio, and the sciences of radio astronomy, earth exploration and deep space research. The WRC also coordinates sharing between services in the same radio bands. WRC decisions are incorporated into the Radio Regulations that govern radio services worldwide. The new spectrum allocations for radio astronomy are the first since 1979. Millimeter-wave astronomy was then in its infancy and many of its needs were not yet known. As astronomers began to explore this region of the spectrum they found spectral lines from many interesting molecules in space. Many of those lines had not fallen into the areas originally set aside for astronomy, but most will be under the new allocations. "It's a win for millimeter-wave science," said Dr. John Whiteoak of the Australia Telescope National Facility, Australian delegate to WRC-00. "This secures its future." The protection is a significant step for both existing millimeter-wave telescopes and new ones such as the Atacama Large Millimeter Array (ALMA) now being planned by a U.S.-European consortium. Even at its isolated site in Chile's Atacama desert, ALMA would be vulnerable to interference from satellite emissions. Sensitive radio astronomy receivers are blinded by these emissions, just as an optical telescope would be by a searchlight. "There is more energy at millimeter and sub-millimeter wavelengths washing through the Universe than there is of light or any other kind of radiation," said ALMA Project Scientist, Dr. Al Wootten of the National Radio Astronomy Observatory. "Imaging the sources of this energy can tell us a great deal about the formation of stars and galaxies, and even planets." "But the Earth's atmosphere isn't very kind to us - it has only a few windows at these frequencies, and not very transparent ones at that. They are

  9. Crowd Sourcing as a Means of Collecting Astronomical Data

    NASA Astrophysics Data System (ADS)

    Childs, Linda; Burke, Todd; Gorjian, Varoujan; Odden, Caroline; Orgul, Sarp; Strasburger, David; Tambara, Kevin

    2015-01-01

    The discovery of previously unknown, extreme sources of infrared excess was a highly engaging activity for five teachers, a veteran astronomer, and more than 30 students in the NITARP program (NASA/IPAC Teacher Archive Research Program). Beginning with over one million sources culled from Spitzer Enhanced Imaging Products (SEIP) archive, the group used color-color plots to identify just over one hundred sources that appeared to exhibit extreme infrared excess. The team then developed a computer selection system that allowed group members to rate the reliability of each source based on cutout images from the SEIP server. The crowd sourcing proved to be an integral part of the process. Decisions on which objects qualified for further review were based on the results of this crowdsourcing exercise. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  10. Recent astronomical detector development at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Lesser, Michael

    2012-07-01

    The University of Arizona Imaging Technology Laboratory (ITL) has been developing back illuminated detectors and detector technologies for several astronomical projects in recent years. These projects include the WIYN telescope One Degree Imager (ODI) mosaic of Orthogonal Transfer Array CCDs, the VIRUS detectors for the University of Texas' Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), detector and packaging development for the Large Synoptic Survey Telescope (LSST), and 10kx10k and 4kx4k CCDs for several instruments. In this paper we discuss these projects with an emphasis on backside processing issues and detector characterization results which may be relevant to other groups. We will also focus packaging techniques and metrology for achieving very flat and stable focal planes. Results will include device flatness at cryogenic temperatures, process yield, photo-response non-uniformity and cosmetics, quantum efficiency, read noise, linearity, charge transfer efficiency, and photon transfer data.

  11. Combined ultraviolet studies of astronomical sources

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Giampapa, M. S.; Huchra, J. P.; Noyes, R. W.; Hartmann, L. W.; Raymond, J. C.

    1982-01-01

    Ultraviolet studies of astronomical sources are discussed. Some studies utilized IVE data. Non-radiative shock at the edge of the Cygnses Loop, stellar flares, local interestellar medium, hot galaxies, stellar mass ejection, contact binaries, double quasars, and stellar chromosphere and coronae are discussed.

  12. Public software for the astronomer - An overview

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Murtagh, Fionn

    1992-01-01

    Sources of public software are described that are available over wide-area research networks in journals and from government sources which may be valuable to the astronomer and astrophysicist. A very large amount of high-quality public software is accessible at all times. Locations with material useful for research are emphasized with practical suggestions regarding access.

  13. Professional Astronomers in Service to the AAVSO

    NASA Astrophysics Data System (ADS)

    Saladyga, Michael; Waagen, E. O.

    2011-05-01

    Throughout its 100-year history, the American Association of Variable Star Observers (AAVSO) has welcomed professional astronomers to its membership ranks, and has encouraged their participation as organization leaders. The AAVSO has been fortunate to have many distinguished professionals serve as officers (Directors, Presidents, Council), and as participants in its various scientific and organizational committees.

  14. Professional Astronomers in Service to the AAVSO

    NASA Astrophysics Data System (ADS)

    Saladyga, M.; Waagen, E. O.

    2012-06-01

    (Abstract only) Throughout its 100-year history, the American Association of Variable Star Observers (AAVSO) has welcomed professional astronomers to its membership ranks, and has encouraged their participation as organization leaders. The AAVSO has been fortunate to have over 60 distinguished professionals serve as officers (Directors, Presidents, Council), and as participants in its various scientific and organizational committees.

  15. The Virtual Astronomical Observatory Users Forum

    NASA Astrophysics Data System (ADS)

    Muench, August A.; Emery Bunn, S.; Astronomical Observatory, Virtual

    2013-01-01

    We present the online forum astrobabel.com, which has the goal of being a gathering place for the collective community intelligence about astronomical computing. The audience for this forum is anyone engaged in the analysis of astronomical or planetary data, whether that data be observational or theoretical. It is a free, community driven site where discussions are formulated primarily around the "question and answer" format. Current topics on the forum range from “Is there a photometry package in Python?” to “Where are the support forums for astronomy software packages?” and “Why is my SDSS SkyQuery query missing galaxies?” The poster will detail the full scope of discussions in the forum, and provide some basic guidelines for ensuring high quality forum posts. We will highlight the ways astronomers can discover and participate in discussions. Further, we view this as an excellent opportunity to gather feedback and feature requests from AAS221 attendees. Acknowledgement: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  16. An Astronomical Observatory in the Classroom

    NASA Astrophysics Data System (ADS)

    Lara, L.; Gallego, T.; de La Torre, A.

    We describe a project developed at the University of Granada in collaboration with the Instituto de Astrofísica de Andalucía aimed at using a remote telescope for live astronomical observations from the classroom. Available instrumentation, software and activities are presented.

  17. Kepler as astronomical observer in Prague

    NASA Astrophysics Data System (ADS)

    Bialas, Volker

    Official histories of science have consistently perpetuated the rumour that Kepler's poor eyesight prevented him from undertaking astronomical observations. However the condition of his eyesight could not have been so serious for in 1582, when his father made it possible for him to see a lunar eclipse, Kepler saw the moon emerge clearly. We find quite a lot of his astronomical observations especially of the years in Prague, mostly left in his manuscripts and unpublished until now. They will be edited in Vol. XXI.1 of the Kepler-Edition in the next future. Kepler's astronomical observations in Prague were mostly initiated by spectacular phenomena in the sky. He was self-critical enough to know, that his observations could not compete with those of the best observers of his time. It was not necessary for him to come up to highest standard of accuracy, and it was not possible to do so because he did not possess proper astronomical instruments. But nevertheless it was important for him as a theorist of astronomy and as a philosopher of nature to take a view of the phenomena which he wished to study carefully.

  18. Astronomía en la cultura

    NASA Astrophysics Data System (ADS)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  19. Prospective Science Teachers' Conceptions about Astronomical Subjects

    ERIC Educational Resources Information Center

    Küçüközer, Hüseyin

    2007-01-01

    The main objective of this study was to identify prospective science teachers' conceptions on basic astronomical phenomena. A questionnaire consisting of nine open-ended questions was administered to 327 prospective science teachers. The questionnaire was constructed after extensive review of the literature and took into consideration the reported…

  20. Astronomical Data Bank: The Solar System.

    ERIC Educational Resources Information Center

    Morrison, David

    1983-01-01

    Provided are two tables which contain the latest orbital and physical characteristics of the planets and their main satellites. These tables are part of a series of information materials available from the Astronomical Society of the Pacific, 1290 24th Avenue, San Francisco, CA 94122. (JN)

  1. Astroquery: querying astronomical web forms and databases

    NASA Astrophysics Data System (ADS)

    Sipocz, Brigitta

    2016-03-01

    Astroquery is an Astropy affiliated package for a set of tools for querying astronomical web forms and databases. In this lightning talk I give an overview of the available services and the usage of the package including a live demo of a typical use case.

  2. Polarization Aberrations in Astronomical Telescopes: The Point Spread Function

    NASA Astrophysics Data System (ADS)

    Breckinridge, James B.; Lam, Wai Sze T.; Chipman, Russell A.

    2015-05-01

    Detailed knowledge of the image of the point spread function (PSF) is necessary to optimize astronomical coronagraph masks and to understand potential sources of errors in astrometric measurements. The PSF for astronomical telescopes and instruments depends not only on geometric aberrations and scalar wave diffraction but also on those wavefront errors introduced by the physical optics and the polarization properties of reflecting and transmitting surfaces within the optical system. These vector wave aberrations, called polarization aberrations, result from two sources: (1) the mirror coatings necessary to make the highly reflecting mirror surfaces, and (2) the optical prescription with its inevitable non-normal incidence of rays on reflecting surfaces. The purpose of this article is to characterize the importance of polarization aberrations, to describe the analytical tools to calculate the PSF image, and to provide the background to understand how astronomical image data may be affected. To show the order of magnitude of the effects of polarization aberrations on astronomical images, a generic astronomical telescope configuration is analyzed here by modeling a fast Cassegrain telescope followed by a single 90° deviation fold mirror. All mirrors in this example use bare aluminum reflective coatings and the illumination wavelength is 800 nm. Our findings for this example telescope are: (1) The image plane irradiance distribution is the linear superposition of four PSF images: one for each of the two orthogonal polarizations and one for each of two cross-coupled polarization terms. (2) The PSF image is brighter by 9% for one polarization component compared to its orthogonal state. (3) The PSF images for two orthogonal linearly polarization components are shifted with respect to each other, causing the PSF image for unpolarized point sources to become slightly elongated (elliptical) with a centroid separation of about 0.6 mas. This is important for both astrometry

  3. An introduction to the Indian Astronomical Observatory, Hanle

    NASA Astrophysics Data System (ADS)

    Cowsik, R.; Srinivasan, R.; Prabhu, T. P.

    2002-03-01

    Situated in the high-altitude cold desert of Changthang Ladakh bordering Himachal Pradesh and Tibet, Indian Astronomical Observatory, Hanle (32o46m46sN, 78o57'51''E; 4500 m above msl), provides excellent opportunities for developing astronomical facilities at a variety of frequencies. In addition, it provides environment and logistics for a range of scientific experiments which be nefit from its unique location. Indian Institute of Astrophysics has built this observatory around a modest 2-m aperture optical/infrared telescope. A 0.5 m telescope will soon be added. A large facility (6.5-8.5 m class infrared/optical telescope) is under consid eration. A 2-m telescope of new advanced technology design has been installed at the observatory in what probably is a record in the speed of execution. The site development, fabrication and installation of the telescope has been accomplished in just about 3 years. The telescope saw its first light on the night of September 26/27 2000 and has been operating with a CCD imager. A larger CCD imager, a faint object spectrograph camera, and a JHK imager are under fabrication. A 1-5 micron imager spectrograph is planned as the next generation instrument. The telescope will be remotely operable from the Centre for Research and Education in Science & Technology of IIA at Hosakote near Bangalore over the next few months. All the necessary infrastructure including 20 kw/h power through generators, 1 Mbps dedicated satellite communication link (to be upgarded to 2 Mbps and a 128 kbps redundant link to be established), liquid nitrogen plant, etc. have been already developed. The Government of Jammu & Kashmir has transferred over 600 acres of land to the observatory. The infrastructure developed for the observatory is already being used for other scientific experiments by national and international institutions. The experiments include determination of atmospheric opcaity at mm wavelengths, geodynamic and seismological experiments, aerosol

  4. Sociological profile of astronomers in Spain.

    NASA Astrophysics Data System (ADS)

    de Ussel, J. I.; Trinidad, A.; Ruíz, D.; Battaner, E.; Delgado, A. J.; Rodríguez-Espinosa, J. M.; Salvador-Solé, E.; Torrelles, J. M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of astronomy in Spain in comparison with that of other European countries.

  5. Sociological Profile of Astronomers in Spain

    NASA Astrophysics Data System (ADS)

    Iglesias de Ussel, Julio; Trinidad, Antonio; Ruiz, Diego; Battaner, Eduardo; Delgado, Antonio J.; Rodriguez-Espinosa, José M.; Salvador-Solé, Eduard; Torrelles, José M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of Astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish Astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of Astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines Astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of Astronomy in Spain in comparison with that of other European countries.

  6. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    NASA Astrophysics Data System (ADS)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  7. Astronomical Data Center Bulletin, volume 1, number 2

    NASA Technical Reports Server (NTRS)

    Nagy, T. A.; Warren, W. H., Jr.; Mead, J. M.

    1981-01-01

    Work in progress on astronomical catalogs is presented in 16 papers. Topics cover astronomical data center operations; automatic astronomical data retrieval at GSFC; interactive computer reference search of astronomical literature 1950-1976; formatting, checking, and documenting machine-readable catalogs; interactive catalog of UV, optical, and HI data for 201 Virgo cluster galaxies; machine-readable version of the general catalog of variable stars, third edition; galactic latitude and magnitude distribution of two astronomical catalogs; the catalog of open star clusters; infrared astronomical data base and catalog of infrared observations; the Air Force geophysics laboratory; revised magnetic tape of the N30 catalog of 5,268 standard stars; positional correlation of the two-micron sky survey and Smithsonian Astrophysical Observatory catalog sources; search capabilities for the catalog of stellar identifications (CSI) 1979 version; CSI statistics: blue magnitude versus spectral type; catalogs available from the Astronomical Data Center; and status report on machine-readable astronomical catalogs.

  8. Digital Images on the DIME

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With NASA on its side, Positive Systems, Inc., of Whitefish, Montana, is veering away from the industry standards defined for producing and processing remotely sensed images. A top developer of imaging products for geographic information system (GIS) and computer-aided design (CAD) applications, Positive Systems is bucking traditional imaging concepts with a cost-effective and time-saving software tool called Digital Images Made Easy (DIME(trademark)). Like piecing a jigsaw puzzle together, DIME can integrate a series of raw aerial or satellite snapshots into a single, seamless panoramic image, known as a 'mosaic.' The 'mosaicked' images serve as useful backdrops to GIS maps - which typically consist of line drawings called 'vectors' - by allowing users to view a multidimensional map that provides substantially more geographic information.

  9. Astronomical black holes as an exciting tool and object for teaching relativistic physics

    NASA Astrophysics Data System (ADS)

    Karas, V.

    2006-08-01

    Einstein's theory of relativity attracts science students to theoretical physics and astronomy. Black holes give us a clear example of cosmic objects where effects of strong gravity dominate and where mathematics is essential for their proper description and understanding. After three decades of astonishing discoveries, astronomers are finding black holes in numerous stellar systems: these objects may have been critical to the formation of structure in the early universe as well as to violent explosions at late evolutionary stages of massive stars. We describe an introductory course in gravitational physics that has been carried out in Prague Astronomical Institute. During the course, basic concepts and physical processes are discussed and interesting recent results are mentioned, including images of astronomical objects. We also mention modern techniques that have been employed to obtain these results. Supplementary notes are available to students for download from the Web.

  10. Imaging sciences workshop

    SciTech Connect

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Astronomical Association of Queensland Program of Measurements of Seven Southern Multiple Stars

    NASA Astrophysics Data System (ADS)

    Jenkinson, Graeme

    2016-04-01

    This paper presents the results of a mid-2014 program of the Astronomical Association of Queensland of photographic measurements of seven southern multiple stars. The images were obtained using a Meade DSI CCD camera in conjunction with an equatorially mounted 150mm F8 refractor. For each target pair, either a 2x or 5x barlow lens was used as required. Image processing was carried out using Losse's REDUC software.

  12. Public perception of astronomers Revered, reviled and ridiculed

    NASA Astrophysics Data System (ADS)

    West, Michael J.

    2011-06-01

    Society's view of astronomers has changed over time and from culture to culture. This review discusses some of the many ways that astronomers have been perceived by their societies and suggests ways that astronomers can influence public perception of ourselves and our profession in the future.

  13. Biographies and Portraits of British and Other Astronomers

    NASA Astrophysics Data System (ADS)

    Hingley, Peter; Chibnall, Mary I.; Howarth, Ian; Lane, John; Mitton, Jacqueline; Penston, Margaret; Ridpath, Ian; Murdin, Paul

    2013-01-01

    This paper originated as a document intended to serve as a general guide to the sources of biographies and portraits of astronomers for historians of astronomy and other researchers, particularly British astronomers. It was first compiled by the Librarian of the Royal Astronomical Society, Peter Hingley (1921-2012).

  14. The Precision Projector Laboratory: Detector Characterization and Astronomical Emulation

    NASA Astrophysics Data System (ADS)

    Shapiro, Charles

    2015-08-01

    The growing statistical power of large astronomical surveys is putting increasingly strict requirements on detector measurement errors. In particular, surveys for “weak" gravitational lensing — the subtle distortion of galaxy images by large-scale gravitational fields — require millions or billions of galaxy shapes to be measured with systematic errors in ellipticity mitigated to about 0.01%. At this level, common assumptions about detector stability and pixel uniformity must be explicitly tested to avoid risking shape measurement biases. Such issues can be overlooked by conventional detector characterizations (relying on darks and flats), which do not emulate the actual science measurements crucial to mission success.In order to investigate the impact of detector effects on science measurements, Jet Propulsion Laboratory and Caltech Optical Observatories have jointly formed the Precision Projector Laboratory (PPL). Our principal instrument - an Offner-based re-imaging system ("the projector") - emulates astronomical data such as stars, galaxies, or spectra in order to explicitly validate detectors for their scientific applications (e.g. shape measurement, astrometry, photometry, spectroscopy, guiding). The projector is designed to rapidly characterize the full width of large format UV-VIS-NIR imaging arrays. Its versatility, stability, and simple point-spread-function (PSF) enable diverse characterizations and emulations.I will discuss the various capabilities and applications of the PPL and the multiple projects that have leveraged it, including the Wide Field Infrared Survey Telescope (WFIRST), Euclid, and the James Webb Space Telescope. I will focus on preliminary results from our emulation of weak gravitational lensing measurements with a Teledyne Hawaii-2RG, an infrared detector similar to those planned for WFIRST. We place upper limits on shape correlation biases induced by the detector that are two orders of magnitude smaller than the expected

  15. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the Micro

  16. Distinguished Astronomer Awarded Jansky Lectureship

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Associated Universities, Inc. (AUI), and the National Radio Astronomy Observatory (NRAO) have awarded the 2008 Karl G. Jansky Lectureship to Dr. Arthur M. Wolfe of the University of California, San Diego (UCSD). The Jansky Lectureship is an honor established by the trustees of AUI to recognize outstanding contributions to the advancement of radio astronomy. Dr. Arthur M. Wolfe Dr. Arthur M. Wolfe CREDIT: UCSD Click on image for high-resolution file Dr. Wolfe has made major contributions in several areas of astronomy. Along with Rainer Sachs, he predicted the Sachs-Wolfe Effect, a phenomenon which forms the basis for modern precision cosmology using the background radio emission left over from the Big Bang. In the 1970s, he discovered that light emitted by very distant galaxies is absorbed by hydrogen atoms in previously-undetected intervening gas clouds. From the 1980s until the present, he used optical light emitted by distant quasars to show that these clouds are the progenitors of stars found in modern galaxies. This phenomenon has since been used extensively to study the production of heavy elements and history of star formation in the Universe. He also did landmark research on whether the fundamental constants of nature, such as the charge of the electron and the masses of elementary particles, do, in fact, remain constant through cosmological time. Dr. Wolfe was the Director of the Center for Astrophysics and Space Sciences at UCSD from 1997 to 2007. He joined UCSD as a Professor of Physics and Astronomy in 1989, leaving the University of Pittsburgh, where he had taught since 1973. He holds the Chancellor's Associates Chair of Physics at UCSD. Dr. Wolfe received his Ph.D from the University of Texas at Austin. He is a Fellow of the American Academy of Arts and Sciences, and received the Sackler Fellowship of the Institute of Astronomy at the University of Cambridge, UK, in 2004. As Jansky Lecturer, Wolfe will give a presentation entitled, Finding the Gas that

  17. Astronomical dating in the 19th century

    NASA Astrophysics Data System (ADS)

    Hilgen, Frederik J.

    2010-01-01

    Today astronomical tuning is widely accepted as numerical dating method after having revolutionised the age calibration of the geological archive and time scale over the last decades. However, its origin is not well known and tracing its roots is important especially from a science historic perspective. Astronomical tuning developed in consequence of the astronomical theory of the ice ages and was repeatedly used in the second half of the 19th century before the invention of radio-isotopic dating. Building upon earlier ideas of Joseph Adhémar, James Croll started to formulate his astronomical theory of the ice ages in 1864 according to which precession controlled ice ages occur alternatingly on both hemispheres at times of maximum eccentricity of the Earth's orbit. The publication of these ideas compelled Charles Lyell to revise his Principles of Geology and add Croll's theory, thus providing an alternative to his own geographical cause of the ice ages. Both Croll and Lyell initially tuned the last glacial epoch to the prominent eccentricity maximum 850,000 yr ago. This age was used as starting point by Lyell to calculate an age of 240 million years for the beginning of the Cambrium. But Croll soon revised the tuning to a much younger less prominent eccentricity maximum between 240,000 and 80,000 yr ago. In addition he tuned older glacial deposits of late Miocene and Eocene ages to eccentricity maxima around 800,000 and 2,800,000 yr ago. Archibald and James Geikie were the first to recognize interglacials during the last glacial epoch, as predicted by Croll's theory, and attempted to tune them to precession. Soon after Frank Taylor linked a series of 15 end-moraines left behind by the retreating ice sheet to precession to arrive at a possible age of 300,000 yr for the maximum glaciation. In a classic paper, Axel Blytt (1876) explained the scattered distribution of plant groups in Norway to precession induced alternating rainy and dry periods as recorded by the

  18. Automated microdensitometer for digitizing astronomical plates

    NASA Technical Reports Server (NTRS)

    Angilello, J.; Chiang, W. H.; Elmegreen, D. M.; Segmueller, A.

    1984-01-01

    A precision microdensitometer was built under control of an IBM S/1 time-sharing computer system. The instrument's spatial resolution is better than 20 microns. A raster scan of an area of 10x10 sq mm (500x500 raster points) takes 255 minutes. The reproducibility is excellent and the stability is good over a period of 30 hours, which is significantly longer than the time required for most scans. The intrinsic accuracy of the instrument was tested using Kodak standard filters, and it was found to be better than 3%. A comparative accuracy was tested measuring astronomical plates of galaxies for which absolute photoelectric photometry data were available. The results showed an accuracy excellent for astronomical applications.

  19. Physicists, Mathematicians and Astronomers- communists (Part 2)

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    The second part is continuig the edition of communists (physicists, mathematicians, astronomers), which were not included in the reference books by Yu.A. Hramov, A. N. Bogoliubov, I.G. Kolchinskii et al.. The author is discussing here also the relation between business and Communist party, especially in the Post Soviet Russia. A discussion of the biographies of Soviet scientists included in the Britannica is given, as well as a list of Russian scientists included in the Oxford Dictionary of Physics is given. Another part of the paper is pointing out the defficiencies of the last edition of the Great Russian Encyclopedic Dictionary (Drofa Eds, Moscow, 2009) in what concerns physicists, mathematicians and astronomers. A great number of Nobel Prize Winners was ommited in the edition of 2009.

  20. Lunar orbital photography of astronomical phenomena.

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.; Dunkelman, L.; Ross, C. L.; Worden, A.

    1972-01-01

    This paper reports further progress on photography of faint astronomical and geophysical phenomena accomplished during the recent Apollo missions. Command module pilots have been able to photograph such astronomical objects as the solar corona, zodiacal light-corona transition region, lunar libration region, and portions of the Milky Way. The methods utilized for calibration of the film by adaptation of the High Altitude Observatory sensitometer are discussed. Kodak 2485 high-speed recording film was used in both 35-mm and 70-mm formats. The cameras used were Nikon f/1.2 55-mm focal length and Hasselblad f/2.8 80-mm focal length. Preflight and postflight calibration exposures were included on both the flight and control films, corresponding to luminances extending from the inner solar corona to as faint as 1/10 of the luminance of the light of the night sky. The photographs obtained from unique vantage points available during lunar orbit are discussed.

  1. The origins of Ptolemy's astronomical tables.

    NASA Astrophysics Data System (ADS)

    Newton, R. R.

    Following the line set by his earlier book 'The crime of Claudius Ptolemy' the author discusses here the numerous astronomical tables in Ptolemy's work that have been calculated with the aid of trigonometric tables, as well as a few that are nonlinear but that do not involve trigonometry. The purpose in this study is to determine, if possible, whether Ptolemy calculated these tables or whether he copied them from now-lost original works. The conclusion isthat Ptolemy made few if any original contributions to astronomy, either observational or computational.Contents: 1. Introduction; thetable of chords. 2. The tables of the latitude and of gnomon shadows.3. Tables of the Sun. 4. Astronomical geography. 5. The tables of theMoon. 6. Eclipse tables. 7. Tables of the planets. 8. The empirical basis for Hipparchus's mean motions of the Moon. 9. Summary and conclusions.

  2. Carriers of the astronomical 2175 ? extinction feature

    SciTech Connect

    Bradley, J; Dai, Z; Ernie, R; Browning, N; Graham, G; Weber, P; Smith, J; Hutcheon, I; Ishii, H; Bajt, S; Floss, C; Stadermann, F

    2004-07-20

    The 2175 {angstrom} extinction feature is by far the strongest spectral signature of interstellar dust observed by astronomers. Forty years after its discovery the origin of the feature and the nature of the carrier remain controversial. The feature is enigmatic because although its central wavelength is almost invariant its bandwidth varies strongly from one sightline to another, suggesting multiple carriers or a single carrier with variable properties. Using a monochromated transmission electron microscope and valence electron energy-loss spectroscopy we have detected a 5.7 eV (2175 {angstrom}) feature in submicrometer-sized interstellar grains within interplanetary dust particles (IDPs) collected in the stratosphere. The carriers are organic carbon and amorphous silicates that are abundant and closely associated with one another both in IDPs and in the interstellar medium. Multiple carriers rather than a single carrier may explain the invariant central wavelength and variable bandwidth of the astronomical 2175 {angstrom} feature.

  3. Future Astronomical Observatories on the Moon

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)

    1988-01-01

    Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.

  4. Astronomical Publication in the Near Future

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2000-11-01

    A study is made of the number of astronomical papers, number of pages, mean paper lengths, authors per paper, and international authorship in recent decades, and this produces predictions for the coming decade or two. The first significant result is that the number of published research papers worldwide shows no abrupt changes due to increased technical and scientific capabilities, such as major increases in equipment sensitivity, new telescopes, breakthroughs in computing and publication techniques, or our ability to generate huge amounts of data. The second major result is that the number of papers is a function only of the number of astronomers. This Essay is one of a series of invited contributions which will appear in the PASP throughout the year 2000 to mark the upcoming millennium. (Eds.)

  5. Recruitment and Retention of LGBTIQ Astronomers

    NASA Astrophysics Data System (ADS)

    Dixon, William Van Dyke

    2012-01-01

    While lesbian, gay, bisexual, transgender, intersex, or questioning (LGBTIQ) astronomers face many of the same workplace challenges as women and racial/ethnic minorities, from implicit bias to overt discrimination, other challenges are unique to this group. An obvious example is the absence at many institutions of health insurance and other benefits for the same-sex domestic partners of their employees. More subtle is the psychological toll paid by LGBTIQ astronomers who remain "in the closet," self-censoring every statement about their personal lives. Paradoxically, the culture of the physical sciences, in which sexuality, gender identity, and gender expression are considered irrelevant, can discourage their discussion, further isolating LGBTIQ researchers. Addressing these challenges is not just a matter of fairness; it is an essential tool in the recruitment and retention of the brightest researchers and in assuring their productivity. We will discuss these issues and what individuals and departments can to make their institutions more welcoming to their LGBTIQ colleagues.

  6. Astronomía Mocoví

    NASA Astrophysics Data System (ADS)

    López, A.; Giménez Benitez, S.; Fernández, L.

    El presente trabajo, es una revisión crítica de la astronomía en la cultura Mocoví, aportando a lo realizado previamente por Lehmann Nistche (Lehmann Nistche, 1924 y 1927) el resultado de nuestro trabajo de campo. Un mayor conocimiento de las cosmovisiones de las etnias de esta área es fundamental para una mejor comprensión de la dispersión de las ideas cosmológicas entre los pueblos aborígenes americanos, dada la importancia del corredor chaqueño como conexión entre las altas culturas andinas, la mesopotamia y la región pampeana (Susnik, 1972). Para ello se realiza una comparación con otras cosmovisiones del área americana. Nuestro aporte se enmarca dentro de las actuales líneas de trabajo mundialmente en desarrollo en Astronomía en la Cultura.

  7. Identifying seasonal stars in Kaurna astronomical traditions

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2015-03-01

    Early ethnographers and missionaries recorded Aboriginal languages and oral traditions across Australia. Their general lack of astronomical training resulted in misidentifications, transcription errors and omissions in these records. In western Victoria and southeast South Australia many astronomical traditions were recorded but, cur- iously, some of the brightest stars in the sky were omitted. Scholars claimed these stars did not feature in Aboriginal traditions. This continues to be repeated in the literature, but current research shows that these stars may in fact feature in Aboriginal traditions and could be seasonal calendar markers. This paper uses established techniques to identify seasonal stars in the traditions of the Kaurna Aboriginal people of the Adelaide Plains, South Australia.

  8. Near Infrared Astronomical Observing During the Daytime

    NASA Astrophysics Data System (ADS)

    Tinn Chee Jim, Kevin; Pier, Edward Alan; Cognion, Rita L.

    2015-08-01

    Ground-based, near-infrared astronomy has been mostly restriced to nighttime observing with occasional, bright solar system objects observed during the daytime. But for astronomical phenomena that are time-varying on timescales of less than a day, it would be advantageous to be able to gather data during the day and night. We explore some of the limitations of observing in the J, H, and K bands during the daytime. Atmospheric radiative transfer simulations show that K is the optimal common astronomical filter for daytime observations on Mauna Kea, but the J and H filters can also be used. Observations from Mauna Kea show that it is possible to observe objects at least as faint as K=15.5 during the early afternoon, with photometric accuracies only slightly worse than those obtained at night.

  9. Query driven visualization of astronomical catalogs

    NASA Astrophysics Data System (ADS)

    Buddelmeijer, Hugo; Valentijn, Edwin A.

    2013-01-01

    Interactive visualization of astronomical catalogs requires novel techniques due to the huge volumes and complex structure of the data produced by existing and upcoming astronomical surveys. The creation as well as the disclosure of the catalogs can be handled by data pulling mechanisms (Buddelmeijer et al. 2011). These prevent unnecessary processing and facilitate data sharing by having users request the desired end products. In this work we present query driven visualization as a logical continuation of data pulling. Scientists can request catalogs in a declarative way and set process parameters directly from within the visualization. This results in profound interoperation between software with a high level of abstraction. New messages for the Simple Application Messaging Protocol are proposed to achieve this abstraction. Support for these messages are implemented in the Astro-WISE information system and in a set of demonstrational applications.

  10. Division B Commission 6: Astronomical Telegrams

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Green, D. W. E.; Samus, N. N.; Aksnes, K.; Gilmore, A. C.; Nakano, S.; Sphar, T.; Tichá, J.; Williams, G. V.

    2016-04-01

    IAU Commission 6 ``Astronomical Telegrams'' had a single business meeting during Honolulu General Assembly of the IAU. It took place on Tuesday, 11 August 2015. The meeting was attended by Hitoshi Yamaoka (President), Daniel Green (Director of the Central Bureau for Astronomical Telegrams, CBAT, via Skype), Steven Chesley (JPL), Paul Chodas (JPL), Alan Gilmore (Canterbury University), Shinjiro Kouzuma (Chukyo University), Paolo Mazzali (Co-Chair of the Supernova Working Group), Elena Pian (Scuola Normale Superiore di Pisa), Marion Schmitz (chair IAU Working Group Designations + NED), David Tholen (University of Hawaii), Jana Ticha (Klet Observatory), Milos Tichy (Klet Observatory), Giovanni Valsecchi (INAF\\slash Italy), Gareth Williams (Minor Planet Center). Apologies: Nikolai Samus (General Catalogue of Variable Stars, GCVS).

  11. Revista Mexicana de Astronomía y Astrofísica, a real option for astronomical publication

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, S.; Allen, C.

    2011-10-01

    We present statistical data about the Revista Mexicana de Astronomía y Astrofísica. We consider that this journal is well positioned in the international astronomical literature. Similarly we present information about the Serie de Conferencias, which also has a wide level of acceptance by the astronomical community.

  12. Towards Good Statistical Practices in Astronomical Studies

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric

    2014-06-01

    Astronomers do not receive strong training in statistical methodology and are therefore sometimes prone to analyze data in ways that are discouraged by modern statisticians. A number of such cases are reviewed involving the Kolmogorov-Smirnov test, histograms and other binned statistics, various issues with regression, model selection with the likelihood ratio test, over-reliance on `3-sigma' criteria, under-use of multivariate clustering algorithms, and other issues.

  13. The la Plata Astronomical Data Center

    NASA Astrophysics Data System (ADS)

    Marraco, H. G.

    1990-11-01

    RESUMEN. El Centro de Datos Astron6micos tiene su sede en la Facuitad de Ciencias Astron6micas y Geofisicas d la Universidad Nacional de La Plata y funciona por convenio entre esta facultad y el Centre des Stellaires de la Universite' Louis Pasteur en Estrasburgo (CDS), Francia. La finalidad de este centro es la de proveer a los astr6nomos del area con copias de los alrededor de 500 acumulados y/o preparados por el CDS a la vez que promover la producci6n y/o acumulaci6n de en el rea. Para la realizaci6n de esta tarea se cuenta con el apoyo del Centro Superior para el Procesamiento de la Informaci6n (CESPI) de la UNLP cuyos equipos se describen. Las tareas que se estan realizando incluyen la distribuci6n de SIMBAD a los astr6nomos argentinos y se efectuan ensayos de distribuci6n en linea de CD-ROM TEST DISK del Astronomical Data Center (ADC) de la NASA que contiene los 31 mas solicitados por los astr6nomos de todo el mundo. ABSTRACl The La Plata Astronomical Data Center operates by an agreement between the Facultad de Ciencias Astron6micas y Geofisicas at La Plata University and the Centre des Donnees Stellaires of Louis Pasteur University at Strasbourg (CDS), France. The purpose of the Center is to provide to the area astronomers with copies of the catalogs they need amongst those stored and/or prepared at CDS. At the same time the center will act of the astronomical data produced within its area. K words: DATA ANALYSIS

  14. Source detection for the infrared astronomical satellite

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Hibbard, T. N.; Moyd, K. I.

    1980-01-01

    A recursive algorithm is described which detects and characterizes point sources and extended sources in the data obtained from the Infrared Astronomical Satellite (IRAS) in the presence of non-stationary noise. The analysis of tests using simulated data indicates that the performance of the point source detector is very close to that expected from a matched filter with stationary gaussian noise. The false alarm rate of the extended source detector tends to be higher than expected at a given SNR.

  15. How do earth tides affect astronomers?

    NASA Technical Reports Server (NTRS)

    Sasao, T.

    1978-01-01

    Earth tides affect astronomical observations of the Earth's rotation in the following two ways: (1) verticals are deflected; and (2) the polar moment of inertia of the Earth is changed causing periodic variations in the rotation rate. The diurnal and semidiurnal tides and nutation were examined in periodic variations. Results indicate little change occured in the polar motions. Nutation observations were disturbed rather seriously by the diurnal tides.

  16. ASTROPHYSICS: Astronomers Spot Their First Carbon Bomb.

    PubMed

    Irion, R

    2000-11-17

    Carbon on the surface of an ultradense star detonated in a 3-hour thermonuclear explosion, according to a report at a meeting here last week of the American Astronomical Society's High Energy Astrophysics Division. If confirmed, the burst would be the first known cosmic explosion fueled solely by carbon rather than hydrogen or helium and could verify or revise models of carbon combustion. PMID:17787227

  17. Astronomical Orientations in Sanctuaries of Daunia

    NASA Astrophysics Data System (ADS)

    Antonello, E.; Polcaro, V. F.; Sisto, A. M. Tunzi; Zupone, M. Lo

    2015-05-01

    Prehistoric sanctuaries of Daunia date back several thousand years. During the Neolithic and Bronze Ages the farmers in that region dug hypogea and holes whose characteristics suggest a ritual use. In the present article we summarize the results of the astronomical analysis of the orientation of the rows of holes in three different sites, and we point out the possible use of the setting of the stars of Centaurus. An interesting archaeological confirmation of an archaeoastronomical prediction is also reported.

  18. Cave of the Astronomers at Xochicalco

    NASA Astrophysics Data System (ADS)

    Lebeuf, Arnold

    The chimney built in the roof of the artificial large cave at Xochicalco, known as "Cave of the astronomers", has been interpreted as a solar zenithal observation tube. Nevertheless, different elements and especially the latitude of the site itself led the author to present a lunar hypothesis. Precise measurements of the impact of light inside the cave show the degree of precision that can be obtained in this camera obscura.

  19. A website for astronomical news in Spanish

    NASA Astrophysics Data System (ADS)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  20. Encyclopedias of Astronomical Biographies - Status and Prospects --

    NASA Astrophysics Data System (ADS)

    Dick, W. R.

    Simple requests for biographies of famous astronomers can easily be satisfied. Short accounts of their lives are to be found in many books and encyclopedias. However, most of these sources are very incomplete, i. e.\\ do not provide information on less famous persons, and are not up to scientific standards. The most comprehensive sources of scientific biographies, Poggendorffs Biographisch-Literarisches Handwoerterbuch and Dictionary of Scientific Biography, are also not complete, partly not up-to-date and for most users not easily accessible. The most recent and most comprehensive dictionary of astronomical biography, containing 500 short entries, was written in Russian. Although a lot of information on biographies is available in publications, these are spread over thousands of volumes. There is no bibliography of these papers and books. During the last three years, short biographies of astronomers were also published in the World Wide Web. Some of these are on a very high scientific level. The author's collection of links to such WWW pages (http://www.astro.uni-bonn.de/~pbrosche/hist\\_astr/ ha\\_pers.html}) contains currently several thousand entries for more than 1200 persons related to the history of astronomy. This electronic ``encyclopedia'' in distributed form is now the most comprehensive and concentrated source for astronomical biographies. However, there are several problems arising from the electronic form of publication and from the uncoordinated and not always qualified efforts of the authors. The paper will discuss proposals, plans and first results of filling the gaps and increasing the quality, as well as some principal problems of writing short biographies and making them available to the public.

  1. Learning from FITS: Limitations in use in modern astronomical research

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.; Kitaeff, S.; Fay, J.; Laurino, O.; Alexov, A.; Landry, W.; Masters, J.; Brazier, A.; Schaaf, R.; Edwards, K.; Redman, R. O.; Marsh, T. R.; Streicher, O.; Norris, P.; Pascual, S.; Davie, M.; Droettboom, M.; Robitaille, T.; Campana, R.; Hagen, A.; Hartogh, P.; Klaes, D.; Craig, M. W.; Homeier, D.

    2015-09-01

    The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships. There are members of the community today who find some or all of these limitations unworkable, and have decided to move ahead with storing data in other formats. If this fragmentation continues, we risk abandoning the advantages of broad interoperability, and ready archivability, that the FITS format provides for astronomy. In this paper we detail some selected important problems which exist within the FITS standard today. These problems may provide insight into deeper underlying issues which reside in the format and we provide a discussion of some lessons learned. It is not our intention here to prescribe specific remedies to these issues; rather, it is to call attention of the FITS and greater astronomical computing communities to these problems in the hope that it will spur action to address them. Of course, objects in astronomy are more likely to involve things like observations, instruments, celestial coordinates and actual astronomical objects such as stars. Likely properties one will encounter in a FITS file include things like observational parameters (start/end times), astronomical

  2. Cosmic Blasts Much More Common, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova

  3. AAS Publishing News: Astronomical Software Citation Workshop

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.

  4. The Future Astronomical Software Environment progress .

    NASA Astrophysics Data System (ADS)

    Paioro, L.; Garilli, B.; Grosböl, P.; Tody, D.; Surace, C.; Fenouillet, T.; Franzetti, P.; Fumana, M.; Scodeggio, M.

    The OPTICON working group 3.6 in collaboration with international partners and in coordination with the Virtual Observatory, has already identified the high level requirements and the main architectural concepts for a future software environment for astronomical data reduction and analysis (Future Astronomical Software Environment). A special attention has been payed to: a) scalability, to allow the reduction of huge data volumes exploiting the hardware and software parallel architecture, b) interoperability, in order to guarantee the interaction between software coming from different sources and make easy the access to the Virtual Observatory, c) and modularity, to separate the adopted software technology from the specific computational algorithm and allow an independent evolution of the two areas. The proposed concepts have been widely discussed and shared by the astronomical community; however a lot of work still remains to do, mainly: a) the definition of open standards, b) the verification of such standards thanks to at least one reference implementation and practical user cases, c) and the whole must be supported at least by the major international organizations that develop data reduction and analysis software. All this work has led up to the definition of a new proposal for FP7 within OPTICON (where ESO, INAF, LAM-OAMP and NRAO/NVO are actively involved) which we present describing the project in detail and adding a description of the European FASE prototype, developed by INAF-IASF Milano in collaboration with LAM-OAMP (Marseille).

  5. Hydroxide catalysis bonding for astronomical instruments

    NASA Astrophysics Data System (ADS)

    van Veggel, Anna-Maria A.; Killow, Christian J.

    2014-06-01

    Hydroxide catalysis bonding (HCB) as a jointing technique has been under development for astronomical applications since ˜1998 (patented by D.-H. Gwo). It uses an aqueous hydroxide solution to form a chemical bond between oxide or oxidisable materials (e.g., SiO2, sapphire, silicon and SiC). It forms strong, extremely thin bonds, and is suitable for room temperature bonding, precision alignment, operation in ultra-low vacuum and down to temperatures of 2.5 K. It has been applied in the NASA satellite mission Gravity Probe B and in the ground-based gravitational wave (GW) detector GEO600. It will soon fly again on the ESA LISA Pathfinder mission and is currently being implemented in the Advanced LIGO and Virgo ground-based GW detectors. This technique is also of considerable interest for use in other astronomical fields and indeed more broadly, due to its desirable, and adjustable, combination of properties. This paper gives an overview of how HCB has been and can be applied in astronomical instruments, including an overview of the current literature on the properties of hydroxide catalysis bonds.

  6. GalileoMobile: Astronomical activities in schools

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  7. Preserving and Archiving Astronomical Photographic Plates

    NASA Astrophysics Data System (ADS)

    Castelaz, M. W.; Cline, J. D.

    2005-05-01

    Astronomical objects change with time. New observations complement past observations recorded on photographic plates. Analyses of changes provide essential routes to information about an object's formation, constitution and evolution. Preserving a century of photographic plate observations is thus of paramount importance. Plate collections are presently widely dispersed; plates may be stored in poor conditions, and are effectively inaccessible to both researchers and historians. We describe a planned project at Pisgah Astronomical Research Institute to preserve the collections of astronomical plates in the United States by gathering them into a single storage location. Collections will be sorted, cleaned, and cataloged on-line so as to provide access to researchers. Full scientific and historic use of the material then requires the observations themselves to be accessible digitally. The project's goal will be the availability of these data as a unique, fully-maintained scientific and educational resource. The new archive will support trans-disciplinary research such as the chemistry of the Earth's atmosphere, library information science, trends in local weather patterns, and impacts of urbanization on telescope use, while the hand-written observatory logs will be a valuable resource for science historians and biographers.

  8. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  9. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    NASA Astrophysics Data System (ADS)

    Hanzalová, K.; Klokočník, J.; Kostelecký, J.

    2014-06-01

    This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993). He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005) deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007) documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices), which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation

  10. Video detection and analysis techniques of transient astronomical phenomena

    NASA Technical Reports Server (NTRS)

    Clifton, K. S.; Reese, R., Jr.; Davis, C. W.

    1979-01-01

    Low-light-level television systems have been utilized to gain information on meteors, aurorae, and other faint, transient astronomical phenomena. Such phenomena change not only their position as a function of time, but also their photometric and spectral characteristics in as little as 1/60 second, thus requiring unique methods of analysis. Data observed with television systems and recorded on video tape have been analyzed with a system utilizing both analog and digital techniques. Both off-the-shelf equipment and inhouse developments are used to isolate sequences of moving images and to store them in a form suitable for photometric and spectral reduction. Current emphasis of the analysis effort is directed at the measurement of the first-order emission lines of meteor spectra, the results of which will yield important compositional information concerning the nature of the impinging meteoroid.

  11. Improved upper winds models for several astronomical observatories.

    PubMed

    Roberts, Lewis C; Bradford, L William

    2011-01-17

    An understanding of wind speed and direction as a function of height are critical to the proper modeling of atmospheric turbulence. We have used radiosonde data from launch sites near significant astronomical observatories and created averaged profiles of wind speed and direction and have also computed Richardson number profiles. Using data from the last 30 years, we confirm a 1977 Greenwood wind profile, and extend it to include parameters that show seasonal variations and differences in location. The added information from our models is useful for the design of adaptive optics systems and other imaging systems. Our analysis of the Richardson number suggests that persistent turbulent layers may be inferred when low values are present in our long term averaged data. Knowledge of the presence of these layers may help with planning for adaptive optics and laser communications. PMID:21263622

  12. Manufacture of large glass honeycomb mirrors. [for astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Hill, J. M.

    1982-01-01

    The problem of making very large glass mirrors for astronomical telescopes is examined, and the advantages of honeycomb mirrors made of borosilicate glass are discussed. Thermal gradients in the glass that degrade the figure of thick borosilicate mirrors during use can be largely eliminated in a honeycomb structure by internal ventilation (in air) or careful control of the radiation environment (in space). It is expected that ground-based telescopes with honeycomb mirrors will give better images than those with solid mirrors. Materials, techniques, and the experience that has been gained making trial mirrors and test castings as part of a program to develop 8-10-m-diameter lightweight mirrors are discussed.

  13. US Gateway to SIMBAD Astronomical Database

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.

    1998-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. User registration is required by the SIMBAD project in France. Currently, there are almost 3000 US users registered. We also provide user support by answering questions from users and handling requests for lost passwords. We have worked with the CDS SIMBAD project to provide access to the SIMBAD database to US users on an Internet address basis. This will allow most US users to access SIMBAD without having to enter passwords. This new system was installed in August, 1998. The SIMBAD mirror database at SAO is fully operational. We worked with the CDS to adapt it to our computer system. We implemented automatic updating procedures that update the database and password files daily. This mirror database provides much better access to the US astronomical community. We also supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We shipped computer equipment to the meeting and provided support for the demonstration activities at the SIMBAD booth. We continued to improve the cross-linking between the SIMBAD project and the Astro- physics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative called Urania. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers.

  14. A Lead Astronomical Neutrino Detector: LAND

    NASA Astrophysics Data System (ADS)

    Hargrove, C. K.; Batkin, I.; Sundaresan, M. K.; Dubeau, J.

    1996-08-01

    The development of a sensitive detector for neutrinos of astronomical origin (simply called astronomical neutrinos hereafter) would make possible detailed investigation of supernovae (SN) and open the way for the discovery of new astronomical phenomena. The neutrino weak interaction cross section at energies less than 100 MeV increases with Z due to correlated nucleon effects and the nuclear Coulomb factor (Fermi function). Therefore neutrino detection based on high Z materials will give the largest possible cross sections and best possible neutrino detection efficiency. This physics argument motivated us to study lead as a detector of SN. The neutrino cross section for neutron production on lead through the reaction Pb(νe,μ,τ, ln)X is ≈ 10-40 cm2, for energies up to 50 MeV, where X refers to Pb, Bi or Tl, the product nuclei of the reactions, l refers to the scattered lepton, and n refers to neutrons. Neutron production will occur for all types of neutrinos and the neutrons can be detected easily and efficiently. The detector is uniquely sensitive to all neutrinos but #x003BD;e. We show that a SN at the centre of the galaxy produces about 1000 neutrons in a 1 kiloton detector. This large number will make it possible to measure the mass of νμ and ντ neutrinos between 10 and 100 eV with a precision of 10 eV. Further, we describe a possible detector in which one also detects the associated electromagnetic energy in coincidence with the neutrons. The coincidence makes this detector essentially background free. It is possible to expand such a detector to a size which will reach SN well beyond our galaxy. We calculate the ν-Pb cross section, discuss the design, neutrino mass resolution, neutron detection efficiency and signal to noise ratio aspects of these detectors.

  15. Community College Class Devoted to Astronomical Research

    NASA Astrophysics Data System (ADS)

    Genet, R. M.; Genet, C. L.

    2002-05-01

    A class at a small community college, Central Arizona College, was dedicated to astronomical research. Although hands-on research is usually reserved for professionals or graduate students, and occasionally individual undergraduate seniors, we decided to introduce community college students to science by devoting an entire class to research. Nine students were formed into three closely cooperating teams. The class as a whole decided that all three teams would observe Cepheid stars photometrically using a robotic telescope at the Fairborn Observatory. Speaker-phone conference calls were made to Kenneth E. Kissell for help on Cepheid selection, Michael A. Seeds for instructions on the use of the Phoenix-10 robotic telescope, and Douglas S. Hall for assitance in selecting appropriate comparison and check stars. The students obtained critical references on past observations from Konkoly Observatory via airmail. They spent several long night sessions at our apartment compiling the data, making phase calculations, and creating graphs. Finally, the students wrote up their results for publication in a forthcoming special issue of the international journal on stellar photometry, the IAPPP Communication. We concluded that conducting team research is an excellent way to introduce community college students to science, that a class devoted to cooperation as opposed to competition was refreshing, and that group student conference calls with working astronomers were inspiring. A semester, however, is a rather short time to initiate and complete research projects. The students were Sally Baldwin, Cory Bushnell, Bryan Dehart, Pamela Frantz, Carl Fugate, Mike Grill, Jessica Harger, Klay Lapa, and Diane Wiseman. We are pleased to acknowledge the assistance provided by the astronomers mentioned above, James Stuckey (Campus Dean), and our Union Institute and University doctoral committee members Florence Pittman Matusky, Donald S. Hayes, and Karen S. Grove.

  16. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  17. An Integrative Object-Based Image Analysis Workflow for Uav Images

    NASA Astrophysics Data System (ADS)

    Yu, Huai; Yan, Tianheng; Yang, Wen; Zheng, Hong

    2016-06-01

    In this work, we propose an integrative framework to process UAV images. The overall process can be viewed as a pipeline consisting of the geometric and radiometric corrections, subsequent panoramic mosaicking and hierarchical image segmentation for later Object Based Image Analysis (OBIA). More precisely, we first introduce an efficient image stitching algorithm after the geometric calibration and radiometric correction, which employs a fast feature extraction and matching by combining the local difference binary descriptor and the local sensitive hashing. We then use a Binary Partition Tree (BPT) representation for the large mosaicked panoramic image, which starts by the definition of an initial partition obtained by an over-segmentation algorithm, i.e., the simple linear iterative clustering (SLIC). Finally, we build an object-based hierarchical structure by fully considering the spectral and spatial information of the super-pixels and their topological relationships. Moreover, an optimal segmentation is obtained by filtering the complex hierarchies into simpler ones according to some criterions, such as the uniform homogeneity and semantic consistency. Experimental results on processing the post-seismic UAV images of the 2013 Ya'an earthquake demonstrate the effectiveness and efficiency of our proposed method.

  18. The Impact of Historical Chinese Astronomical Records

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Ru

    2006-12-01

    The impact of Chinese historical astronomical records is important in the study of astronomy today. In particular, the impact of the Chinese records related to historical supernovae have made important contributions to modern astronomy, contributing to the rapid progress of space sciences and high-energy astrophysics made in the recent two decades. These historical records could also be of assistance in the future. In this connection, the main topics discussed in this paper are the great new star which occurred in the 14th century Before Christ (BC), the historical supernovae Anno Domini (AD) 185 and AD 393, and the new concept of the “Po star” and its application.

  19. Division XII: Commission 6: Astronomical Telegrams

    NASA Astrophysics Data System (ADS)

    Samus, N. N.; Yamaoka, H.; Gilmore, A. C.; Aksnes, K.; Green, D. W. E.; Marsden, B. G.; Nakano, S.; Lara, Martin; Pitjeva, Elena V.; Sphar, T.; Ticha, J.; Williams, G.

    2015-08-01

    IAU Commission 6 ``Astronomical Telegrams'' had a single business meeting during the Beijing General Assembly of the IAU. It took place on Friday, August 24, 2012. The meeting was attended by five C6 members (N. N. Samus; D. W. E. Green; S. Nakano; J. Ticha; and H. Yamaoka). Also present was Prof. F. Genova as a representative of the IAU Division B. She told the audience about the current restructuring of IAU Commissions and Divisions and consequences for the future of C6.

  20. Astronomical analysis of the taosi observatory site

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.

    2009-01-01

    An ancient observatory was unearthed recently at Taosi site. This paper discussed the figure of the relic, analyzed the relationship between the 12 backsights and calendar date using astronomical method, and compared the simulated observation with theoretic computation. The investigation shows that backsight E2---E12 indicated the directions of sunrise in the whole year, which were roughly equally distributed and offered an unequal calendar system. The backsight E1 indicated the south-end of the moonrise, giving a time symbol of 18---19 years. This building must be a complex of solar observation, time service, solar worship, and sacrificial ritual

  1. Contamination control of the Infrared Astronomical Satellite

    NASA Technical Reports Server (NTRS)

    Andreozzi, L. C.; Irace, W. R.; Maag, C. R.

    1980-01-01

    The Infrared Astronomical Satellite, to be launched in August 1981, will perform an all-sky survey in the 8-120 micron wavelength region. High sensitivity to thermal radiation and the low operating temperature of optics and thermal control surfaces make the IRAS telescope extremely vulnerable to contamination. Four special topics of importance are discussed in this paper: (1) deposition of atmospheric gases; (2) sighting of particles released from the satellite; (3) functions of a deployable aperture cover; and (4) degradation of a radiatively cooled sunshade from spacecraft outgassing. These topics demonstrate how mission strategy, ground cleaning and handling, and hardware design are used to avoid contamination which would degrade telescope performance.

  2. Astronomical search for origins: Are we alone?

    NASA Astrophysics Data System (ADS)

    Breckinridge, James B.

    2004-02-01

    Recent advances in astronomical research have led to a much-improved understanding of the evolution of the physical Universe. Recent advances in biology and genetics have led to a much-improved understanding of our biological Universe. Scientists now believe that we have the research tools to begin to answer one of man"s two most compelling research questions: Are we alone? and How did we get here? This paper reviews the requirements and challenges we face to engineer and build the large space-based systems of interferometers and innovative single-aperture telescopes to detect and characterize in detail earth type planets around stars other than our sun.

  3. Astronomical Beliefs in Medieval Georgia: Innovative Approaches

    NASA Astrophysics Data System (ADS)

    Sauter, Jefferson; Orchiston, W.; Stephenson, F.

    2014-01-01

    Written sources from medieval Georgia show, among other things, how astronomical ideas were adapted on the periphery of the Byzantine and Islamic worlds. In this paper, we investigate a number of Georgian beliefs about the heavens from a calendrical work and a celestial prognostication text, but also from less expected sources including the medieval life of a saint and an epic poem. For the most part, these sources were derived from Byzantine or Persian models. We show the extent to which the sources nevertheless conform to a specifically Georgian view of the cosmos. We argue that, in so doing, medieval Georgian authors employed several innovative approaches hitherto unnoticed by modern scholars.

  4. Middleware for Astronomical Data Analysis Pipelines

    SciTech Connect

    Abdulla, G; Liu, D; Garlick, J; Miller, M; Nikolaev, S; Cook, K; Brase, J

    2005-01-26

    In this paper the authors describe the approach to research, develop, and evaluate prototype middleware tools and architectures. The developed tools can be used by scientists to compose astronomical data analysis pipelines easily. They use the SuperMacho data pipelines as example applications to test the framework. they describe their experience from scheduling and running these analysis pipelines on massive parallel processing machines. they use MCR a Linux cluster machine with 1152 nodes and Luster parallel file system as the hardware test-bed to test and enhance the scalability of the tools.

  5. The Astronomical Orientation of Ancient Greek Temples

    PubMed Central

    Salt, Alun M.

    2009-01-01

    Despite its appearing to be a simple question to answer, there has been no consensus as to whether or not the alignments of ancient Greek temples reflect astronomical intentions. Here I present the results of a survey of archaic and classical Greek temples in Sicily and compare them with temples in Greece. Using a binomial test I show strong evidence that there is a preference for solar orientations. I then speculate that differences in alignment patterns between Sicily and Greece reflect differing pressures in the expression of ethnic identity. PMID:19936239

  6. In Brief: Astronomer honored with a mineral

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-06-01

    ``I have always been very intrigued by minerals, so it is great to be one,'' commented NASA Stardust mission principal investigator and University of Washington astronomer Donald Brownlee, AGU member, after learning the International Mineralogical Association had named a new mineral in his honor. Brownleeite, a combination of manganese and silicon, is the first mineral discovered in a particle from a comet. The mineral was found inside a particle collected by a high-altitude NASA aircraft from a dust stream that entered Earth's atmosphere in 2003. A team led by NASA scientist Keiko Nakamura-Messenger found the particle and had requested that it be named for Brownlee.

  7. Advanced astronomical interference filters from SCHOTT technology

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Reichel, Steffen; Brauneck, Ulf; Bourquin, Sebastien; Marin-Franch, Antoni

    2016-01-01

    Developing precision interference filters for astronomical radiometry often requires simultaneous solutions to very difficult requirements. SCHOTT's 80-year legacy methods with interference filters and 9,200-m2 facility dedicated to filters and optical fabrication bring multiple disciplines together to simultaneously solve requirements that include: narrow-band high-transmission, steep-edge bandpasses, extremely high out-of-band rejection across Si response, sizes accommodating large fields-of-view, precision mechanical filter assemblies and both spectral uniformity and excellent transmitted wavefront across the field. We discuss solutions as satisfied for Spain's state-of-the-art new fast LOCAL UNIVERSE 3° wide-field survey telescope.

  8. Algorithms for classification of astronomical object spectra

    NASA Astrophysics Data System (ADS)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  9. Science with Indian Astronomical Observatory, Hanle

    NASA Astrophysics Data System (ADS)

    Prabhu, T. P.; Anupama, G. C.

    Indian Astronomical Observatory, Hanle, is the high altitude (4500 m above msl) observatory operated by the Indian Institute of Astrophysics, Bangalore. The 2-m Himalayan Chandra Telescope (HCT) installed in the autumn of 2000 as a first step towards a national large telescope is operated remotely from Bangalore. HCT data has resulted in 70 research publications till date, with average citations of 9.2 per paper. Some of the results are described in this brief review. The development of this high altitude site has also attracted other facilities in the area of Very High Energy gamma ray astronomy using atmospheric Čerenkov technique, and also in earth sciences.

  10. Surveys, Fields, and Collections in the Astronomical Photographic Data Archive at PARI

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.; Barker, T.

    2014-01-01

    A diverse set of photometric, astrometric, spectral and surface brightness data exist on more than 100 years of photographic glass plates. About 20 percent of the plates in North America are located in the Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI). APDA was established in November 2007 and is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and PARI continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data available in a digital format. APDA currently has 50 collections with more than 250,000 plates taken for QSO identification, parallax measurements, spectral classification and monitoring, Magellanic Cloud studies, H-alpha emission star surveys, novae evolution, and astrometry of asteroids, outer planet satellites and Pluto. Some examples of collections include the complete set of the Henize H-alpha Southern Survey plates taken between 1949 and 1952 (Henize 1954, AJ, 59, 325), the Case Western Objective Prism All Sky Survey from 1958-1976 (e.g. Pesch, Sanduleak, and Stephenson 1996, ApJS, 103, 513), and QSO Survey from 1980 to 1991 (e.g. Pesch and Stephenson 1983, ApJS, 51, 171). We feature the contents of the APDA collections to provide the opportunity to the astronomical community to advance new and established areas of study.

  11. Astronomical Observing Conditions at Xinglong Observatory from 2007 to 2014

    NASA Astrophysics Data System (ADS)

    Zhang, Ji-Cheng; Ge, Liang; Lu, Xiao-Meng; Cao, Zi-Huang; Chen, Xu; Mao, Yong-Na; Jiang, Xiao-Jun

    2015-12-01

    Xinglong Observatory of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC), is one of the major optical observatories in China, which hosts nine optical telescopes including the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and the 2.16 m reflector. Scientific research from these telescopes is focused on stars, galaxies, and exoplanets using multicolor photometry and spectroscopic observations. Therefore, it is important to provide the observing conditions of the site, in detail, to the astronomers for an efficient use of these facilities. In this article, we present the characterization of observing conditions at Xinglong Observatory based on the monitoring of meteorology, seeing and sky brightness during the period from 2007 to 2014. Meteorological data were collected from a commercial Automatic Weather Station (AWS), calibrated by China Meteorological Administration. Mean and median wind speed are almost constant during the period analyzed and ranged from 1.0 to 3.5 m s-1. However, high wind speed (>=15 m s-1) interrupts observations, mainly, during the winter and spring. Statistical analysis of air temperature showed the temperature difference between daytime and nighttime, which can be solved by opening the ventilation device and the slit of the dome at least 1 hr before observations. Analysis resulted in average percentage of photometric nights and spectroscopic nights are 32% and 63% per year, respectively. The distribution of photometric nights and spectroscopic nights has a significant seasonal tendency, worse in summer due to clouds, dust, and high humidity. Seeing measurements were obtained using the Differential Image Motion Monitor (DIMM). Mean and median values of seeing over 1 year are around 1.9'' and 1.7'', respectively. Eighty percent of nights with seeing values are below 2.6'', whereas the distribution peaks around 1.8''. The measurements of sky brightness are acquired from the Sky Quality Meter (SQM

  12. Virtual Astronomy: The Legacy of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, J.; Szalay, A. S.; Fabbiano, G.; Plante, R. L.; McGlynn, T. A.; Evans, J.; Emery Bunn, S.; Claro, M.; VAO Project Team

    2014-01-01

    Over the past ten years, the Virtual Astronomical Observatory (VAO, http://usvao.org) and its predecessor, the National Virtual Observatory (NVO), have developed and operated a software infrastructure consisting of standards and protocols for data and science software applications. The Virtual Observatory (VO) makes it possible to develop robust software for the discovery, access, and analysis of astronomical data. Every major publicly funded research organization in the US and worldwide has deployed at least some components of the VO infrastructure; tens of thousands of VO-enabled queries for data are invoked daily against catalog, image, and spectral data collections; and groups within the community have developed tools and applications building upon the VO infrastructure. Further, NVO and VAO have helped ensure access to data internationally by co-founding the International Virtual Observatory Alliance (IVOA, http://ivoa.net). The products of the VAO are being archived in a publicly accessible repository. Several science tools developed by the VAO will continue to be supported by the organizations that developed them: the Iris spectral energy distribution package (SAO), the Data Discovery Tool (STScI/MAST, HEASARC), and the scalable cross-comparison service (IPAC). The final year of VAO is focused on development of the data access protocol for data cubes, creation of Python language bindings to VO services, and deployment of a cloud-like data storage service that links to VO data discovery tools (SciDrive). We encourage the community to make use of these tools and services, to extend and improve them, and to carry on with the vision for virtual astronomy: astronomical research enabled by easy access to distributed data and computational resources. Funding for VAO development and operations has been provided jointly by NSF and NASA since May 2010. NSF funding will end in September 2014, though with the possibility of competitive solicitations for VO-based tool

  13. Conducting Original, Hands-On Astronomical Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Corneau, M. J.

    2009-12-01

    teachers to convey moderately complex computer science, optical, geographic, mathematical, informational and physical principles through hands-on telescope operations. In addition to the general studies aspects of classroom internet-based astronomy, Tzec Maun supports real science by enabling operators precisely point telescopes and acquire extremely faint, magnitude 19+ CCD images. Thanks to the creative Team of Photometrica (photometrica.org), my teams now have the ability to process and analyze images online and produce results in short order. Normally, astronomical data analysis packages cost greater than thousands of dollars for single license operations. Free to my team members, Photometrica allows students to upload their data to a cloud computing server and read precise photometric and/or astrometric results. I’m indebted to Michael and Geir for their support. The efficacy of student-based research is well documented. The Council on Undergraduate Research defines student research as, "an inquiry or investigation conducted by an undergraduate that makes an original intellectual or creative contribution to the discipline." (http://serc.carleton.edu/introgeo/studentresearch/What. Teaching from Tzec Maun in the classroom is the most original teaching research I can imagine. I very much look forward to presenting this program to the convened body.

  14. Enhancements to Ginga: a Python Package for Building Astronomical Data Viewers

    NASA Astrophysics Data System (ADS)

    Jeschke, E.; Inagaki, T.; Kackley, R.

    2015-09-01

    Ginga is a toolkit for building astronomical image viewers. The package is available under a BSD license at github.com and has undergone continuous development since its introduction at ADASS 2012. The package may may be of interest to software developers who are looking for a solution for integrating FITS or numpy-based data visualization into their python programs and end users interested in FITS viewers (via the example reference viewer). We present the updates and enhanced capabilities of the package, including: support for additional GUI toolkits, WCS-based image mosaicing, image overlays, customizable user interface bindings, support for python3 and more.

  15. Indirect Imaging

    NASA Astrophysics Data System (ADS)

    Kundu, Mukul R.

    This book is the Proceedings of an International Symposium held in Sydney, Australia, August 30-September 2, 1983. The meeting was sponsored by the International Union of Radio Science and the International Astronomical Union.Indirect imaging is based upon the principle of determining the actual form of brightness distribution in a complex case by Fourier synthesis, using information derived from a large number of Fourier components. The main topic of the symposium was how to get the best images from data obtained from telescopes and other similar imaging instruments. Although the meeting was dominated by radio astronomers, with the consequent dominance of discussion of indirect imaging in the radio domain, there were quite a few participants from other disciplines. Thus there were some excellent discussions on optical imaging and medical imaging.

  16. Bucharest-Nikolaev Astronomical Observatories' Collaboration in Astronomy

    NASA Astrophysics Data System (ADS)

    Pinigin, Gennadiy; Stavinschi, Magda

    2008-09-01

    Scientific collaboration between Bucharest Observatory of the Astronomical Institute (Romania) and Nikolaev Astronomical Observatory (Ukraine), based on the similar research directions and scientific traditions from the beginning of 1990s. The main research field was positional astronomy with compilation of catalogues of star positions in the fields around selected ERS from the CCD observations in Nikolaev and photographical observations in the Bucharest Observatory. Many conferences and workshops, mutual visits of astronomers from both observatories were organized and held in Nikolaev and Bucharest.

  17. The formation and the structure of the neutrino astronomical objects

    NASA Astrophysics Data System (ADS)

    Lu, T.; Luo, L.-F.; Yang, G.-C.

    1981-06-01

    The neutrinos with non-zero mass could gather to form a new kind of astronomical objects: the neutrino astronomical object (denoted as NAO). This is a peculiar astronomical object, 100 pc in size and 10 to the 14th solar masses, in mass, containing approximately 10 to the 9th solar masses of electrons, protons, and He-4. These matters contained in NAO could produce a lot of observational effects, some are characteristics for identifying NAO.

  18. Amateur and professional astronomers meet at Mill Hill

    NASA Astrophysics Data System (ADS)

    Poyner, G.

    2000-12-01

    Nearly forty professional and amateur astronomers from around the UK converged on the Mill Hill Observatory of University College, London, on Saturday September 16, for a meeting set up by the Royal Astronomical Society and The Astronomer to promote and exchange ideas on professional?amateur collaboration in astronomy. Fields discussed included variable star research, gamma ray bursters, supernova searching, spectroscopy and minor planet and meteor work.

  19. Harvey Butcher: a passion for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2014-11-01

    This paper covers some aspects of the scientific life of Harvey Butcher who was the Director of the Research School for Astronomy and Astrophysics at the Australian National University in Canberra from September 2007 to January 2013. He has made significant contributions to research on the evolution of galaxies, nucleosynthesis, and on the design and implementation of advanced astronomical instrumentation including LOFAR (Low Frequency Array Radio telescope). He is well known for his discovery of the Butcher-Oemler effect. Before coming to Australia he was the Director of the Netherlands Foundation for Research in Astronomy from September 1991 to January 2007. In 2005 he was awarded a Knighthood in the Order of the Netherlands Lion for contributions to interdisciplinary science, innovation and public outreach.This paper is based on an interview conducted by the author with Harvey Butcher for the National Project on Significant Australian Astronomers sponsored by the National Library of Australia. Except otherwise stated, all quotations used in this paper are from the Butcher interview which has been deposited in the Oral History Archives of the National Library.

  20. Digitization of Archives of Astronomical Plates

    NASA Astrophysics Data System (ADS)

    Omizzolo, Alessandro; Cesare, Barbieri; Blanco, Carlo; Bucciarelli, Beatrice; di Paola, Andrea; Nesci, Roberto

    The photographic plate archives of telescopes around the world contain a veritable treasury of astronomical data. Unfortunately the emulsion is a volatile support and full exploitation of the scientific content is more and more difficult. A large-scale two-year project to digitize the archive of plates of the Italian Astronomical Observatories and of the Specola Vaticana has been started in 2002 with funds from the Ministry of the University and Research following a pilot program funded by the University of Padova in 2001. Identical systems composed by a high quality commercial scanner plus dedicated personal computers and acquisition software (developed initially at DLR Berlin) have been installed in all participating Institutes. Three main goals make up the total project: to provide high quality photometric sequences with the Campo Imperatore telescopes to be used on the scanned plates to perform astrometric measures taking advantage of the large span of time covered by the plates and to distribute the digitized information to all interested researchers via the international Web. This paper presents some of the activities carried out and results obtained so far