Science.gov

Sample records for astrophysically triggered searches

  1. Astrophysically Triggered Searches for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa

    2010-02-01

    Many expected sources of gravitational waves are observable in more traditional channels, via gamma rays, X-rays, optical, radio, or neutrino emission. Some of these channels are already being used in searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network, and others are currently being incorporated into new or planned searches. Astrophysical targets include gamma-ray bursts, soft-gamma repeaters, supernovae, and glitching pulsars. The observation of electromagnetic or neutrino emission simultaneously with gravitational waves could be crucial for the first direct detection of gravitational waves. Information on the progenitor, such as trigger time, direction and expected frequency range, can enhance our ability to identify gravitational wave signatures with amplitude close to the noise floor of the detector. Furthermore, combining gravitational waves with electromagnetic and neutrino observations will enable the extraction of scientific insight that was hidden from us before. We will discuss the status for astrophysically triggered searches with the LIGO-GEO600-Virgo network and the science goals and outlook for the second and third generation gravitational wave detector era. )

  2. Open questions in astrophysically triggered gravitational wave searches

    NASA Astrophysics Data System (ADS)

    Márka, S.; LIGO Scientific Collaboration; Virgo Collaboration

    2010-08-01

    Sources of gravitational waves are often expected to also be observable through several other messengers, such as gamma rays, X-rays, optical, radio, and/or neutrino emission. Some of these channels are already being used in searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network, and others are currently being incorporated into new searches. Astrophysical targets include gamma-ray bursts, soft-gamma repeaters, supernovae, and glitching pulsars. The simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves. Information on the progenitor, such as trigger time, direction and expected frequency range, can enhance our ability to identify gravitational wave signatures with amplitudes close to the noise floor of the detector. Furthermore, combining gravitational waves with electromagnetic and neutrino observations will enable the extraction of scientific insight that was hidden from us before. The paper discusses the status of transient multimessenger detection efforts as well as intriguing questions that might be resolved in the future by advanced and third generation gravitational wave detectors.

  3. SEARCH FOR ASTROPHYSICAL NEUTRINO POINT SOURCES AT SUPER-KAMIOKANDE

    SciTech Connect

    Thrane, E.; Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.

    2009-10-10

    It has been hypothesized that large fluxes of neutrinos may be created in astrophysical 'cosmic accelerators'. The primary background for a search for astrophysical neutrinos comes from atmospheric neutrinos, which do not exhibit the pointlike directional clustering that characterizes a distant astrophysical signal. We perform a search for neutrino point sources using the upward-going muon data from three phases of operation (SK-I, SK-II, and SK-III) spanning 2623 days of live time taken from 1996 April 1 to 2007 August 11. The search looks for signals from suspected galactic and extragalactic sources, transient sources, and uncataloged sources. While we find interesting signatures from two objects-RX J1713.7-3946 (97.5% CL) and GRB 991004D (95.3% CL)-these signatures lack compelling statistical significance given trial factors. We set limits on the flux and fluence of neutrino point sources above energies of 1.6 GeV.

  4. Gravitational wave triggered searches for failed supernovae

    NASA Astrophysics Data System (ADS)

    Annis, James; Dark Energy Survey Collaboration

    2016-03-01

    Stellar core collapses occur to all stars of sufficiently high mass and often result in supernovae. A small fraction of supergiant stars, however, are thought to collapse directly into black holes without producing supernovae. A survey of such ``failed'' supernovae would require monitoring millions of supergiants for several years. That is very challenging even for current surveys. With the start of the Advanced LIGO science run, we investigate the possibility of detecting failed supernovae by looking for missing supergiants associated with gravitational wave triggers. We use the Dark Energy Camera (DECam). Our project is a joint effort between the community and the Dark Energy Survey (DES) collaboration. In this talk we report on our ongoing efforts and discuss prospects for future searches.

  5. Galactic dark matter search via phenomenological astrophysics modeling

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyuan; Enßlin, Torsten; Selig, Marco

    2016-04-01

    Previous searches for the γ-ray signatures of annihilating galactic dark matter used predefined spatial templates to describe the background of γ-ray emission from astrophysical processes like cosmic ray interactions. In this work, we aim to establish an alternative approach, in which the astrophysical components are identified solely by their spectral and morphological properties. To this end, we adopt the recent reconstruction of the diffuse γ-ray sky from Fermi data by the D3PO algorithm and the fact that more than 90% of its flux can be represented by only two spectral components, resulting form the dense and dilute interstellar medium. Under these presumptions, we confirm the reported DM annihilation-like signal in the inner Galaxy and derive upper limits for dark matter annihilation cross sections. We investigate whether the DM signal could be a residual of the simplified modeling of astrophysical emission by inspecting the morphology of the regions, which favor a dark matter component. The central galactic region favors strongest for such a component with the expected spherically symmetric and radially declining profile. However, astrophysical structures, in particular sky regions which seem to host most of the dilute interstellar medium, obviously would benefit from a DM annihilation-like component {as well}. Although these regions do not drive the fit, they warn that a more detailed understanding of astrophysical γ-ray emitting processes in the galactic center region are necessary before definite claims about a DM annihilation signal can be made. The regions off the Galactic plane actually disfavor the best fit DM annihilation cross section from the inner Galactic region unless the radial decline of the Galactic DM density profile in the outer regions is significantly steeper than that usually assumed.

  6. A Search for Astrophysical Meter Wavelength Radio Transients

    NASA Astrophysics Data System (ADS)

    Cutchin, Sean; Simonetti, John; Kavic, Michael

    2011-10-01

    Astrophysical phenomena such as exploding primordial black holes (PBHs), gamma-ray bursts (GRBs), compact object mergers, and supernovae are expected to produce a single pulse of electromagnetic radiation detectable in the low-frequency end of the radio spectrum. Detection of any of these pulses would be significant for the study of the objects themselves, their host environments, and the interstellar/intergalactic medium. Furthermore, a positive detection of an exploding PBH could be a signature of an extra spatial dimension, which would drastically alter our perception of spacetime. However, even upper limits on the existence of PBHs, from searches, would be important to discussions of cosmology. We describe a method to carry out an agnostic single dispersed pulse search, and apply it to data collected with ETA. Applying the single pulse search procedure to 30 hours worth ETA data yielded no compelling detections with S/N >=6. However, with 8 hours of interference free data, we find an observational upper limit to the rate of exploding PBHs r 8 x10-8 ,pc-3,y-1 for a PBH with a fireball Lorentz factor γf= 10^4.3.

  7. Taming astrophysical bias in direct dark matter searches

    SciTech Connect

    Pato, Miguel; Strigari, Louis E.; Trotta, Roberto; Bertone, Gianfranco E-mail: strigari@stanford.edu E-mail: gf.bertone@gmail.com

    2013-02-01

    We explore systematic biases in the identification of dark matter in future direct detection experiments and compare the reconstructed dark matter properties when assuming a self-consistent dark matter distribution function and the standard Maxwellian velocity distribution. We find that the systematic bias on the dark matter mass and cross-section determination arising from wrong assumptions for its distribution function is of order ∼ 1σ. A much larger systematic bias can arise if wrong assumptions are made on the underlying Milky Way mass model. However, in both cases the bias is substantially mitigated by marginalizing over galactic model parameters. We additionally show that the velocity distribution can be reconstructed in an unbiased manner for typical dark matter parameters. Our results highlight both the robustness of the dark matter mass and cross-section determination using the standard Maxwellian velocity distribution and the importance of accounting for astrophysical uncertainties in a statistically consistent fashion.

  8. A method for comparing non-nested models with application to astrophysical searches for new physics

    NASA Astrophysics Data System (ADS)

    Algeri, Sara; Conrad, Jan; van Dyk, David A.

    2016-05-01

    Searches for unknown physics and decisions between competing astrophysical models to explain data both rely on statistical hypothesis testing. The usual approach in searches for new physical phenomena is based on the statistical likelihood ratio test and its asymptotic properties. In the common situation, when neither of the two models under comparison is a special case of the other i.e. when the hypotheses are non-nested, this test is not applicable. In astrophysics, this problem occurs when two models that reside in different parameter spaces are to be compared. An important example is the recently reported excess emission in astrophysical γ-rays and the question whether its origin is known astrophysics or dark matter. We develop and study a new, simple, generally applicable, frequentist method and validate its statistical properties using a suite of simulations studies. We exemplify it on realistic simulated data of the Fermi-Large Area Telescope γ-ray satellite, where non-nested hypotheses testing appears in the search for particle dark matter.

  9. Searches for Point-like Sources of Astrophysical Neutrinos with the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Feintzeig, Jacob

    Cosmic rays are accelerated to high energies in astrophysical objects, and create neutrinos when interacting with matter or photons. Observing a point source of high-energy astro-physical neutrinos would therefore be a smoking gun signature of cosmic ray acceleration. While evidence for a diffuse flux of astrophysical neutrinos was recently found, the origin of this flux is not yet known. We present three analyses searching for neutrino point sources with the IceCube Neutrino Observatory, a cubic kilometer Cherenkov detector located at the geographic South Pole. The analyses target astrophysical sources emitting neutrinos of all flavors, and cover energies from TeV to EeV. The first analysis searches point source emission of muon neutrinos using throughgoing muon tracks. The second analysis searches for spatial clustering among high-energy astrophysical neutrino candidate events, and is sensitive to neutrinos of all three flavors. The third analysis selects starting track events, muon neutrinos with interactions vertices inside the detector, to lower the energy threshold in the southern hemisphere. In each analysis, an un-binned likelihood method tests for spatial clustering of events anywhere in the sky as well as for neutrinos correlated with known gamma-ray sources. All results are consistent with the background-only hypothesis, and the resulting upper limits on E-2 neutrino emission are the most stringent throughout the entire sky. In the northern hemisphere, the upper limits are beginning to constrain emission models. In the southern hemisphere, the upper limits in the 100 TeV energy range are an order of magnitude lower than previous IceCube results, but are not yet probing predicted flux levels. By comparing the point source limits to the observed diffuse astrophysical neutrino flux, we also constrain the minimum number of neutrino sources and investigate the properties of potential source populations contributing to the diffuse flux. Additionally, an a

  10. The Search for Transient Astrophysical Neutrino Emission with IceCube-DeepCore

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Smith, M. W. E.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-01-01

    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5^\\circ \\lt δ \\lt 90^\\circ ) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae.

  11. Search for astrophysical tau neutrinos in three years of IceCube data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Smith, M. W. E.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-01-01

    The IceCube Neutrino Observatory has observed a diffuse flux of TeV-PeV astrophysical neutrinos at 5.7 σ significance from an all-flavor search. The direct detection of tau neutrinos in this flux has yet to occur. Tau neutrinos become distinguishable from other flavors in IceCube at energies above a few hundred TeV, when the cascade from the tau neutrino charged current interaction becomes resolvable from the cascade from the tau lepton decay. This paper presents results from the first dedicated search for tau neutrinos with energies between 214 TeV and 72 PeV in the full IceCube detector. The analysis searches for IceCube optical sensors that observe two separate pulses in a single event—one from the tau neutrino interaction and a second from the tau decay. No candidate events were observed in three years of IceCube data. For the first time, a differential upper limit on astrophysical tau neutrinos is derived around the PeV energy region, which is nearly 3 orders of magnitude lower in energy than previous limits from dedicated tau neutrino searches.

  12. Search for Coincidences in Time and Arrival Direction of Auger Data with Astrophysical Transients

    SciTech Connect

    Anchordoqui, Luis; Collaboration, for the Pierre Auger

    2007-06-01

    The data collected by the Pierre Auger Observatory are analyzed to search for coincidences between the arrival directions of high-energy cosmic rays and the positions in the sky of astrophysical transients. Special attention is directed towards gamma ray observations recorded by NASA's Swift mission, which have an angular resolution similar to that of the Auger surface detectors. In particular, we check our data for evidence of a signal associated with the giant flare that came from the soft gamma repeater 1806-20 on December 27, 2004.

  13. Systematic search of triggered and ambient tectonic tremor in Southern California

    NASA Astrophysics Data System (ADS)

    Yang, H.; Peng, Z.

    2013-12-01

    Tectonic tremor has been extensively observed along the Parkfield-Cholame section of the San Andreas Fault in central California. In contrast, observations of either triggered or ambient tremor in southern California are quite sparse to date. In this study we conduct a systematic search of tectonic tremor around the Simi Valley (SV), the San Gabriel Mountain (SGM), and the San Jacinto Fault (SJF). We focus on these regions, mainly because of previous observations of triggered tremor at the SV and SJF, and evidence of near-lithostatic fluid under the SGM and deep creep along the SJF. We first search for tremor triggered by distant large earthquakes around the SV and the SGM in southern California. Out of 59 large earthquakes between 2000 and 2013, only the 2002 Mw 7.9 Denali Fault earthquake triggered clear tremor in the region. The observed travel times of the triggered tremors are consistent with theoretical predictions from tremor sources that are spatially clustered in the SV, close to the rupture zone of the 1994 Mw 6.7 Northridge earthquake. We also estimate the triggering stress threshold as ˜12 KPa from measuring the peak ground velocities near the tremor source. The lack of clear tremor beneath the SGM provides a 'negative' example for a region where tremor is expected to occur because of clear evidence of fluid-rich zones at the middle crust. The results imply that the necessary conditions for tremor to occur are more than fluid-induced low effective normal stress. In addition to tremor in the SV, we also investigate tremor along the SJF, where tremor was triggered by the 2002 Mw7.9 Denali Fault and the 2011 Mw9.1 Tohoku-Oki earthquakes. These triggered tremors provide natural templates of the low frequency earthquakes that can be used to perform matched-filter detection to search for additional tremors along the SJF. In addition, there are strain transients following the March 11, 2013, Mw 4.7 earthquake that are captured by PBO strainmeters near the SJF

  14. A search for a diffuse flux of astrophysical muon neutrinos with the IceCube Neutrino Observatory in the 40-string configuration

    NASA Astrophysics Data System (ADS)

    Grullon, Sean

    Neutrinos have long been important in particle physics and are now practical tools for astronomy. Neutrino Astrophysics is expected to help answer longstanding astrophysical problems such as the origin of cosmic rays and the nature of cosmic accelerators. The IceCube Neutrino Observatory is a 1 km3 detector currently under construction at the South Pole and will help answer some of these fundamental questions. Searching for high energy neutrinos from unresolved astrophysical sources is one of the main analysis techniques used in the search for astrophysical neutrinos with IceCube. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could contribute to form a detectable signal above the atmospheric neutrino background. Since astrophysical neutrinos are expected to have a harder energy spectrum than atmospheric neutrinos, a reliable method of estimating the energy of the neutrino-induced lepton is crucial. This analysis uses data from the IceCube detector collected in its half completed configuration between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos across the entire northern sky.

  15. Rotational frequencies of transition metal hydrides for astrophysical searches in the far-infrared

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Beaton, Stuart P.; Evenson, Kenneth M.

    1993-01-01

    Accurate frequencies for the lowest rotational transitions of five transition metal hydrides (CrH, FeH, CoH, NiH, and CuH) in their ground electronic states are reported to help the identification of these species in astrophysical sources from their far-infrared spectra. Accurate frequencies are determined in two ways: for CuH, by calculation from rotational constants determined from higher J transitions with an accuracy of 190 kHz; for the other species, by extrapolation to zero magnetic field from laser magnetic resonance spectra with an accuracy of 0.7 MHz.

  16. Searching for inflation in simple string theory models: An astrophysical perspective

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Tegmark, Max; Kachru, Shamit; Shelton, Jessie; Özcan, Onur

    2007-11-01

    Attempts to connect string theory with astrophysical observation are hampered by a jargon barrier, where an intimidating profusion of orientifolds, Kähler potentials, etc. dissuades cosmologists from attempting to work out the astrophysical observables of specific string theory solutions from the recent literature. We attempt to help bridge this gap by giving a pedagogical exposition with detailed examples, aimed at astrophysicists and high energy theorists alike, of how to compute predictions for familiar cosmological parameters when starting with a 10-dimensional string theory action. This is done by investigating inflation in string theory, since inflation is the dominant paradigm for how early universe physics determines cosmological parameters. We analyze three explicit string models from the recent literature, each containing an infinite number of vacuum solutions. Our numerical investigation of some natural candidate inflatons, the so-called “moduli fields,” fails to find inflation. We also find in the simplest models that, after suitable field redefinitions, vast numbers of these vacua differ only in an overall constant multiplying the effective inflaton potential, a difference which affects neither the potential’s shape nor its ability to support slow-roll inflation. This illustrates that even having an infinite number of vacua does not guarantee having inflating ones. This may be an artifact of the simplicity of the models that we study. Instead, more complicated string theory models appear to be required, suggesting that identifying the inflating subset of the string landscape will be challenging.

  17. A multi-messenger search for the origin of high-energy astrophysical neutrinos with VERITAS and Fermi

    NASA Astrophysics Data System (ADS)

    Santander, Marcos

    2016-04-01

    The astrophysical flux of TeV-PeV neutrinos discovered by the IceCube observatory is likely to originate in hadronic interactions at or near cosmic-ray accelerators. While no point-sources of neutrinos have been identified so far, it may be possible to detect them indirectly by searching for the emission of pion-decay gamma rays produced in such interactions. The sensitivity of present gamma-ray instruments, such as the Fermi space telescope and the VERITAS air Cherenkov telescope array, can be used to search for a GeV-TeV gamma-ray signature from the neutrino directions. We present preliminary results from 2 years of VERITAS observations of muon-neutrino event positions detected by IceCube and discuss current plans to implement prompt follow-up observations of these events. We also report on the analysis of Fermi-LAT data for these events which enhances the sensitivity of this search to fast transient sources.

  18. Future Experiments in Astrophysics

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2002-01-01

    The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.

  19. Searching for Carrington-like events and their signatures and triggers

    NASA Astrophysics Data System (ADS)

    Saiz, Elena; Guerrero, Antonio; Cid, Consuelo; Palacios, Judith; Cerrato, Yolanda

    2016-01-01

    The Carrington storm in 1859 is considered to be the major geomagnetic disturbance related to solar activity. In a recent paper, Cid et al. (2015) discovered a geomagnetic disturbance case with a profile extraordinarily similar to the disturbance of the Carrington event at Colaba, but at a mid-latitude observatory, leading to a reinterpretation of the 1859 event. Based on those results, this paper performs a deep search for other "Carrington-like" events and analyses interplanetary observations leading to the ground disturbances which emerged from the systematic analysis. The results of this study based on two Carrington-like events (1) reinforce the awareness about the possibility of missing hazardous space weather events as the large H-spike recorded at Colaba by using global geomagnetic indices, (2) argue against the role of the ring current as the major current involved in Carrington-like events, leaving field-aligned currents (FACs) as the main current involved and (3) propose abrupt southward reversals of IMF along with high solar wind pressure as the interplanetary trigger of a Carrington-like event.

  20. Search for GLAST gamma ray burst triggers due to particle precipitation in the South Atlantic Anomaly

    SciTech Connect

    Augusto, C. R. A.; Navia, C. E.; Tsui, K. H.

    2008-10-15

    When GLAST is in the South Atlantic Anomaly (SAA), the rate of charged particles is too high to be efficiently filtered out. Moreover the high rate can cause saturation effects in the readout electronics and the sensors must be turned off. The SAA area relative to the total area of GLAST's orbit is approximately 12.5% and GLAST spends 18% of the time in it. In spite of these cares, we show in this work that, due to drift processes, particle precipitation can still trigger GLAST when it is close to the SAA region. Here, we report two GLAST gamma ray burst monitor (GBM) triggers, trigger 239895229 and trigger 239913100, on August, 08, 2008 whose characteristics are similar to the ones observed in the Swift-BAT noise triggers (due to particle precipitation in the SAA region). Both GLAST triggers happened during a plentiful particle precipitation in the SAA region, observed by Tupi telescopes at the ground with their trigger coordinates close to the field of view of the telescopes. Details of these results are reported.

  1. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  2. An FPGA-based trigger system for the search of μ+→e++γ decay in the MEG experiment

    NASA Astrophysics Data System (ADS)

    Galli, L.; Cei, F.; Galeotti, S.; Magazzù, C.; Morsani, F.; Nicolò, D.; Signorelli, G.; Grassi, M.

    2013-01-01

    The MEG experiment at PSI aims at investigating the μ+ → e+ + γ decay with improved sensitivity on the branching ratio (BR) by two orders of magnitude with respect to the previous experimental limit (BR(μ+ → e+ + γ) ≈ 10-13). The use of the most intense continuous muon beam world wide ( ≈ 108μ/s) to search for such a rare event must be accompanied by an efficient trigger system, able to suppress the huge beam-related background to sustainable rates while preserving the efficiency on signal close to unity. In order to accomplish both objectives, a digital approach was exploited by means of Field Programmable Gate Arrays (FPGA), working as a real-time processors of detector signals to perform an accurate event reconstruction within a 450 ns latency. This approach eventually turned out to be flexible enough to allow us to record calibration events in parallel with the main data acquisition and monitor the detector behavior throughout the data taking. We describe here the hardware implementation of the trigger and its main features as well: signal digitization, online waveform processing, reconstruction algorithms. A detailed description is given of the system architecture, the feature of the boards and their use. The trigger algorithms will be described in details in a dedicated article to be published afterwards.

  3. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  4. Software Trigger Algorithms to Search for Magnetic Monopoles with the NO$\

    SciTech Connect

    Wang, Z.; Dukes, E.; Ehrlich, R.; Frank, M.; Group, C.; Norman, A.

    2014-01-01

    The NOvA far detector, due to its surface proximity, large size, good timing resolution, large energy dynamic range, and continuous readout, is sensitive to the detection of magnetic monopoles over a large range of velocities and masses. In order to record candidate magnetic monopole events with high efficiency we have designed a software-based trigger to make decisions based on the data recorded by the detector. The decisions must be fast, have high efficiency, and a large rejection factor for the over 100,000 cosmic rays that course through the detector every second. In this paper we briefly describe the simulation of magnetic monopoles, including the detector response, and then discuss the algorithms applied to identify magnetic monopole candidates. We also present the results of trigger efficiency and purity tests using simulated samples of magnetic monopoles with overlaid cosmic backgrounds and electronic noise.

  5. The Fermilab Particle Astrophysics Center

    SciTech Connect

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  6. LIGO Triggered Search for Coincidence with High Energy Photon Survey Missions

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2009-01-01

    LIGO is about to begin a new, higher sensitivity science run, where gravitational detection is plausible. A possible candidate for detection is a compact binary merger, which would also be likely to emit a high energy electromagnetic signal. Coincident observation of the gw signal from a compact merger with an x-ray or gamma-ray signal would add considerable weight to the claim for gw detection. In this talk I will consider the possibility of using LIGO triggers with time and sky position to perform a coincident analysis of EM signals from the RXTE, SWIFT, and FERMI missions.

  7. PANDAS: the search for environmental triggers of pediatric neuropsychiatric disorders. Lessons from rheumatic fever.

    PubMed

    Garvey, M A; Giedd, J; Swedo, S E

    1998-09-01

    Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) is a relatively new diagnostic construct applied to children or adolescents who develop, and have repeated exacerbations of, tic disorders and/or obsessive-compulsive disorder following group A beta-hemolytic streptococcal infections. The proposed pathophysiology is that the group A beta-hemolytic streptococcal bacteria trigger antibodies that cross-react with the basal ganglia of genetically susceptible hosts leading to obsessive-compulsive disorder and/or tics. This is similar to the etiologic mechanisms proposed for Sydenham's chorea, in which group A beta-hemolytic streptococcal antibodies cross-react with the basal ganglia and result in abnormal behavior and involuntary movements. When first proposed, there was much controversy about the idea that streptococcal infections were etiologically related to rheumatic fever. In a like manner, discussion has arisen about the concept of infection-triggered obsessive-compulsive disorder and tic disorders. We review the historical background to these controversies, give an update on the findings provided by research on PANDAS, and address areas of future study. PMID:9733286

  8. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  9. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  10. Search for a Threatening Target Triggers Limbic Guidance of Spatial Attention

    PubMed Central

    Mohanty, Aprajita; Egner, Tobias; Monti, Jim M.; Mesulam, M.-Marsel

    2015-01-01

    The ability to actively locate potential threats in our environment is highly adaptive. To investigate mediating neural mechanisms, we designed a visual search task in which central cues signaled future location and emotional expression (angry or neutral) of a target face. Cues predicting angry targets accelerated subsequent attention shifts, indicating that endogenous signals predicting threatening events can prime the spatial attention network. Functional imaging showed that spatially informative cues activated the fusiform gyrus (FG) as well as frontoparietal components of the spatial attention network, including intraparietal sulcus (IPS) and frontal eye field (FEF), whereas cues predicting angry faces also activated limbic areas, including the amygdala. Anatomically overlapping, additive effects of spatial and emotional cuing were identified in the IPS, FEFs, and FG, regions that also displayed augmented connectivity with the amygdala after cues predicting angry faces. These data highlight a key role for the frontoparietal spatial attention network in the compilation of a salience map that combines the spatial coordinates of an event with its motivational relevance. Furthermore, they suggest that active search for a threatening stimulus elicits amygdala input to the spatial attention network and inferotemporal visual areas, facilitating the rapid detection of upcoming motivationally significant events. PMID:19710309

  11. Search for a threatening target triggers limbic guidance of spatial attention.

    PubMed

    Mohanty, Aprajita; Egner, Tobias; Monti, Jim M; Mesulam, M-Marsel

    2009-08-26

    The ability to actively locate potential threats in our environment is highly adaptive. To investigate mediating neural mechanisms, we designed a visual search task in which central cues signaled future location and emotional expression (angry or neutral) of a target face. Cues predicting angry targets accelerated subsequent attention shifts, indicating that endogenous signals predicting threatening events can prime the spatial attention network. Functional imaging showed that spatially informative cues activated the fusiform gyrus (FG) as well as frontoparietal components of the spatial attention network, including intraparietal sulcus (IPS) and frontal eye field (FEF), whereas cues predicting angry faces also activated limbic areas, including the amygdala. Anatomically overlapping, additive effects of spatial and emotional cuing were identified in the IPS, FEFs, and FG, regions that also displayed augmented connectivity with the amygdala after cues predicting angry faces. These data highlight a key role for the frontoparietal spatial attention network in the compilation of a salience map that combines the spatial coordinates of an event with its motivational relevance. Furthermore, they suggest that active search for a threatening stimulus elicits amygdala input to the spatial attention network and inferotemporal visual areas, facilitating the rapid detection of upcoming motivationally significant events. PMID:19710309

  12. Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Atlee, D. W.; Bahcall, J. N.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; de Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feser, T.; Filimonov, K.; Fox, B. D.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grullon, S.; Groß, A.; Gunasingha, R. M.; Gurtner, M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Harenberg, T.; Hart, J. E.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Hülß, J.-P.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karle, A.; Kawai, H.; Kelley, J. L.; Kestel, M.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Kowalski, M.; Köpke, L.; Krasberg, M.; Kuehn, K.; Landsman, H.; Leich, H.; Leier, D.; Leuthold, M.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Ögelman, H.; Olivas, A.; Patton, S.; Peña-Garay, C.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Roth, P.; Rott, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Seckel, D.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.

    2007-05-01

    We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Φ0=((E)/(1TeV))γ·(dΦ)/(dE) to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Φνμ+ν¯μ0+Φντ+ν¯τ0=11.1×10-11TeV-1cm-2s-1, in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Φνμ+ν¯μ0/Φντ+ν¯τ0=1 and assuming a spectral index γ=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Φνμ+ν¯μ0=5.5×10-11TeV-1cm-2s-1. A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties.

  13. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  14. Astrophysics today

    SciTech Connect

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more.

  15. Systematic Search of Non-Volcanic Tremors Triggered by Regional Earthquakes Along the Parkfield-Cholame Section of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Guilhem, A.; Peng, Z.; Nadeau, R. M.

    2009-12-01

    Recent studies have shown that surface waves from large teleseismic earthquakes can instantaneously trigger non-volcanic tremor along the San Andreas Fault (SAF) in California, around the major subduction zones in Japan and Cascadia, and beneath the Central Range in Taiwan. In addition, Nadeau and Guilhem (Science, 2009) found that the 2003 M6.5 San Simeon and 2004 M6.0 Parkfield earthquakes have significantly changed the tremor rate in the surrounding regions along the Parkfield-Cholame section of the SAF. However, it is still not clear whether earthquakes occurring at regional distances could trigger tremor and/or change the tremor rate. Rubinstein et al. (JGR, 2009) explored the potential trigger effects of regional earthquakes on the tremor activity in the Vancouver Island but no conclusive results were drawn because of the similar frequency content of the tremor and energy radiated from regional earthquakes. Here we conduct a systematic search of regionally triggered tremor in the Parkfield-Cholame section of the SAF. A total of 47 M5+ earthquakes occurring within the distance range of 100-1200 km from Parkfield-Cholame, CA were selected from the ANSS catalog. By filtering the continuous seismic records at a variety of frequency bands, we are able to separate the seismic energy from the regional earthquakes and local tremor. So far we have identified 3 regional events that have triggered tremors during the large-amplitude surface waves. In addition, we also find several cases of tremor occurring late in/or after the passage of the surface waves. The next step is to locate the triggered tremor, and examine the triggering relationship with the surface waves. Finally, we plan to combine our observations with those triggered by teleseismic events in the same region (Peng et al., JGR, 2009) to quantify the tremor-triggering threshold as a function of amplitude and frequency. Updated results will be presented at the meeting.

  16. Search for the Galactic Disk and Halo Components in the Arrival Directions of High-Energy Astrophysical Neutrinos

    NASA Astrophysics Data System (ADS)

    Troitsky, S. V.

    2015-12-01

    The arrival directions of 40 neutrino events with energies ≳100 TeV, observed by the IceCube experiment, are studied. Their distribution in the Galactic latitude and in the angular distance to the Galactic Center allow searching for the Milky-Way disk and halo-related components, respectively. No statistically significant evidence for the disk component is found, though even 100% disk origin of the flux is allowed at the 90% confidence level. Contrary, the Galactic Center-Anticenter dipole anisotropy, specific for dark-matter decays (annihilation) or for interactions of cosmic rays with the extended halo of the circumgalactic gas, is clearly favored over the isotropic distribution (the probability of fluctuation of the isotropic signal is ~2%).

  17. Astrophysical symmetries

    PubMed Central

    Trimble, Virginia

    1996-01-01

    Astrophysical objects, ranging from meteorites to the entire universe, can be classified into about a dozen characteristic morphologies, at least as seen by a blurry eye. Some patterns exist over an enormously wide range of distance scales, apparently as a result of similar underlying physics. Bipolar ejection from protostars, binary systems, and active galaxies is perhaps the clearest example. The oral presentation included about 130 astronomical images which cannot be reproduced here. PMID:11607715

  18. Particle astrophysics

    SciTech Connect

    Sadoulet, B. |

    1992-12-31

    In the last few years, particle astrophysics has emerged as a new field at the frontier between high energy astrophysics, cosmology, and particle physics. Two spectacular achievements of this new field in the last decade have been the establishment of neutrino astronomy with the detection of solar neutrinos by two independent experiments and the spectacular observation of the neutrinos from the supernova SN1987A. In addition, the field has produced tantalizing hints of new physics beyond the standard models of astrophysics and particle physics, generating enthusiastic attempts to confirm these potential effects. This new field involves some two hundred experimentalists and a similar number of theorists, most of them coming from particle and nuclear physics, and as scientist will see, their effort is to a large extent complementary to accelerator based high energy physics. This review attempts, at the beginning of this workshop, to capture the excitement of this new field. Summary talks will describe in more detail some of the topics discussed in the study groups.

  19. Fermi GBM Early Trigger Characteristics

    SciTech Connect

    Connaughton, Valerie; Briggs, Michael; Paciesas, Bill; Meegan, Charles

    2009-05-25

    Since the launch of the Fermi observatory on June 11 2008, the Gamma-ray Burst Monitor (GBM) has seen approximately 250 triggers of which about 150 were cosmic gamma-ray bursts (GRBs). GBM operates dozens of trigger algorithms covering various energy bands and timescales and is therefore sensitive to a wide variety of phenomena, both astrophysical and not.

  20. Laboratory astrophysics

    SciTech Connect

    Springer, P.T.; Goldstein, W.H.; Iglesias, C.A.; Wilson, B.G.; Rogers, F.J.; Stewart, R.E.

    1995-05-01

    We propose an experiment to test opacity models for stellar atmospheres. Particularly important is to perform experiments at very low density and temperature where line shape treatments give large differences in Rosseland mean opacities for astrophysical mixtures, and to test the range of validity for the unresolved transition array treatments. Experimental requirements are ultra high spectral resolution combined with large homogenous plasma sources lasting tens of nanoseconds, and with Planckian radiation fields. These requirements dovetail nicely with emerging pulsed power capabilities. We propose a high resolution measurement of the frequency dependent opacity, for ultra low density iron plasmas in radiatively driven equilibrium plasmas.

  1. Astrophysical cosmology

    SciTech Connect

    Bardeen, J.M.

    1986-01-01

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe. 47 refs.

  2. Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Astsatryan, H. V.

    2015-07-01

    Present astronomical archives that contain billions of objects, both Galactic and extragalactic, and the vast amount of data on them allow new studies and discoveries. Astrophysical Virtual Observatories (VO) use available databases and current observing material as a collection of interoperating data archives and software tools to form a research environment in which complex research programs can be conducted. Most of the modern databases give at present VO access to the stored information, which makes possible also a fast analysis and managing of these data. Cross-correlations result in revealing new objects and new samples. Very often dozens of thousands of sources hide a few very interesting ones that are needed to be discovered by comparison of various physical characteristics. VO is a prototype of Grid technologies that allows distributed data computation, analysis and imaging. Particularly important are data reduction and analysis systems: spectral analysis, SED building and fitting, modelling, variability studies, cross correlations, etc. Computational astrophysics has become an indissoluble part of astronomy and most of modern research is being done by means of it.

  3. A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California

    NASA Astrophysics Data System (ADS)

    Smith, Emily F.; Gomberg, Joan

    2009-12-01

    We test the hypothesis that, as in subduction zones, slow slip facilitates triggered and ambient tremor in the transform boundary setting of California. Our study builds on the study of Peng et al. (2009) of triggered and ambient tremor near Parkfield, California during time intervals surrounding 31, potentially triggering, M ≥ 7.5 teleseismic earthquakes; waves from 10 of these triggered tremor and 29 occurred in periods of ambient tremor activity. We look for transient slow slip during 3-month windows that include 11 of these triggering and nontriggering teleseisms, using continuous strain data recorded on two borehole Gladwin tensor strainmeters (GTSM) located within the distribution of tremor epicenters. We model the GTSM data assuming only tidal and "drift" signals are present and find no detectable slow slip, either ongoing when the teleseismic waves passed or triggered by them. We infer a conservative detection threshold of about 5 nanostrain for abrupt changes and about twice this for slowly evolving signals. This could be lowered slightly by adding analyses of other data types, modeled slow slip signals, and GTSM data calibration. Detection of slow slip also depends on the slipping fault's location and size, which we describe in terms of equivalent earthquake moment magnitude, M. In the best case of the GTSM above a very shallow slipping fault, detectable slip events must exceed M˜2, and if the slow slip is beneath the seismogenic zone (below ˜15 km depth), even M˜5 events are likely to remain hidden.

  4. A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California

    USGS Publications Warehouse

    Smith, E.F.; Gomberg, J.

    2009-01-01

    We test the hypothesis that, as in subduction zones, slow slip facilitates triggered and ambient tremor in the transform boundary setting of California. Our study builds on the study of Peng et al. (2009) of triggered and ambient tremor near Parkfield, California during time intervals surrounding 31, potentially triggering, M ≥ 7.5 teleseismic earthquakes; waves from 10 of these triggered tremor and 29 occurred in periods of ambient tremor activity. We look for transient slow slip during 3-month windows that include 11 of these triggering and nontriggering teleseisms, using continuous strain data recorded on two borehole Gladwin tensor strainmeters (GTSM) located within the distribution of tremor epicenters. We model the GTSM data assuming only tidal and “drift” signals are present and find no detectable slow slip, either ongoing when the teleseismic waves passed or triggered by them. We infer a conservative detection threshold of about 5 nanostrain for abrupt changes and about twice this for slowly evolving signals. This could be lowered slightly by adding analyses of other data types, modeled slow slip signals, and GTSM data calibration. Detection of slow slip also depends on the slipping fault's location and size, which we describe in terms of equivalent earthquake moment magnitude, M. In the best case of the GTSM above a very shallow slipping fault, detectable slip events must exceed M~2, and if the slow slip is beneath the seismogenic zone (below ~15 km depth), even M~5 events are likely to remain hidden.

  5. Particle astrophysics

    NASA Technical Reports Server (NTRS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    1991-01-01

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  6. Molecular astrophysics

    NASA Astrophysics Data System (ADS)

    Herzberg, G.

    1989-01-01

    A brief history of Molecular Astrophysics is presented. The first molecules in space were identified in the 1920s in comets followed soon after by those in planetary atmospheres. The recent identification by MCKELLAR of the dimer of H 2, that is, (H 2) 2 in the atmosphere of Jupiter as well as the discovery, by DROSSART, MAILLARD, WATSON and others, of the H 3+ ion in the auroral zone of Jupiter are described. In this laboratory there is a continuing interest in interstellar molecules. Several molecules and molecular ions were observed by collaboration of laboratory spectroscopists and astronomers. Only the most recent ones are discussed. Also a few of the molecules not yet observed but likely to be observed are mentioned.

  7. Particle astrophysics

    NASA Astrophysics Data System (ADS)

    Sadoulet, Bernard; Cronin, James; Aprile, Elena; Barish, Barry C.; Beier, Eugene W.; Brandenberger, Robert; Cabrera, Blas; Caldwell, David; Cassiday, George; Cline, David B.

    The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Highest scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.

  8. Molecular Astrophysics

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.

    2005-07-01

    Part I. Molecular Clouds and the Distribution of Molecules in the Milky Way and Other Galaxies: 1. Molecular clouds in the Milky Way P. Friberg and A. Hjalmarson; 2. Molecules in galaxies L. Blitz; Part II. Diffuse Molecular Clouds: 3. Diffuse cloud chemistry E. F. Van Dishoeck; 4. Observations of velocity and density structure in diffuse clouds W. D. Langer; 5. Shock chemistry in diffuse clouds T. W. Hartquist, D. R. Flower and G. Pineau des Forets; Part III. Quiescent Dense Clouds: 6. Chemical modelling of quiescent dense interstellar clouds T. J. Millar; 7. Interstellar grain chemistry V. Buch; 8. Large molecules and small grains in astrophysics S. H. Lepp; Part IV. Studies of Molecular Processes: 9. Molecular photoabsorption processes K. P. Kirby; 10. Interstellar ion chemistry: laboratory studies D. Smith, N. G. Adams and E. E. Ferguson; 11. Theoretical considerations on some collisional processes D. R. Bates; 12. Collisional excitation processes E. Roueff; 13. Neutral reactions at Low and High Temperatures M. M. Graff; Part V. Atomic Species in Dense Clouds: 14. Observations of atomic species in dense clouds G. J. Melnick; 15. Ultraviolet radiation in molecular clouds W. G. Roberge; 16. Cosmic ray induced photodissociation and photoionization of interstellar molecules R. Gredel; 17. Chemistry in the molecular cloud Barnard 5 S. B. Charnley and D. A. Williams; 18. Molecular cloud structure, motions, and evolution P. C. Myers; Part VI. H in Regions of Massive Star Formation: 19. Infrared observations of line emission from molecular hydrogen T. R. Geballe; 20. Shocks in dense molecular clouds D. F. Chernoff and C. F. McKee; 21. Dissociative shocks D. A. Neufeld; 22. Infrared molecular hydrogen emission from interstellar photodissociation regions A. Sternberg; Part VII. Molecules Near Stars and in Stellar Ejecta: 23. Masers J. M. Moran; 24. Chemistry in the circumstellar envelopes around mass-losing red giants M. Jura; 25. Atoms and molecules in supernova 1987a R

  9. Trends in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Schatz, Hendrik

    2016-06-01

    Nuclear astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  10. Theoretical Particle Astrophysics

    SciTech Connect

    Kamionkowski, Marc

    2013-08-07

    Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  11. Multimessenger astrophysics: When gravitational waves meet high energy neutrinos

    NASA Astrophysics Data System (ADS)

    Di Palma, Irene

    2014-04-01

    With recent development of experimental techniques that have opened new windows of observation of the cosmic radiation in all its components, multi-messenger astronomy is entering an exciting era. Many astrophysical sources and cataclysmic cosmic events with burst activity can be plausible sources of concomitant gravitational waves (GWs) and high-energy neutrinos (HENs). Such messengers could reveal hidden and new sources that are not observed by conventional photon astronomy, in particular at high energy. Requiring consistency between GW and HEN detection channels enables new searches and a detection would yield significant additional information about the common source. We present the results of the first search for gravitational wave bursts associated with high energy neutrino triggers, detected by the underwater neutrino telescope ANTARES in its 5 line configuration, during the fifth LIGO science run and first Virgo science run. No evidence for coincident events was found. We place a lower limit on the distance to GW sources associated with every HEN trigger. We are able to rule out the existence of coalescing binary neutron star systems and black hole-neutron star systems up to distances that are typically 5 Mpc and 10 Mpc respectively.

  12. Numerical Relativity and Astrophysics

    NASA Astrophysics Data System (ADS)

    Lehner, Luis; Pretorius, Frans

    2014-08-01

    Throughout the Universe many powerful events are driven by strong gravitational effects that require general relativity to fully describe them. These include compact binary mergers, black hole accretion, and stellar collapse, where velocities can approach the speed of light and extreme gravitational fields (ΦNewt/c2≃1) mediate the interactions. Many of these processes trigger emission across a broad range of the electromagnetic spectrum. Compact binaries further source strong gravitational wave emission that could directly be detected in the near future. This feat will open up a gravitational wave window into our Universe and revolutionize our understanding of it. Describing these phenomena requires general relativity, and—where dynamical effects strongly modify gravitational fields—the full Einstein equations coupled to matter sources. Numerical relativity is a field within general relativity concerned with studying such scenarios that cannot be accurately modeled via perturbative or analytical calculations. In this review, we examine results obtained within this discipline, with a focus on its impact in astrophysics.

  13. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  14. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  15. Astrophysical implications of periodicity

    NASA Technical Reports Server (NTRS)

    Muller, Richard A.

    1988-01-01

    Two remarkable discoveries of the last decade have profound implications for astrophysics and for geophysics. These are the discovery by Alvarez et al., that certain mass extinctions are caused by the impact on the earth of a large asteroid or comet, and the discovery by Raup and Sepkoski that such extinctions are periodic, with a cycle time of 26 to 30 million years. The validity of both of these discoveries is assumed and the implications are examined. Most of the phenomena described depend not on periodicity, but just on the weaker assumption that the impacts on the earth take place primarily in showers. Proposed explanations for the periodicity include galactic oscillations, the Planet X model, and the possibility of Nemesis, a solar companion star. These hypotheses are critically examined. Results of the search for the solar companion are reported. The Deccan flood basalts of India have been proposed as the impact site for the Cretaceous impact, but this hypotheisis is in contradiction with the conclusion of Courtillot et al., that the magma flow began during a period of normal magnetic field. A possible resolution of this contradiction is proposed.

  16. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; Barthelmy, S. D.; Coutu, S.; DeYoung, T.; Falcone, A. D.; Gao, Shan; Hashemi, B.; Homeier, A.; Marka, S.; Owen, B. J.; Taboada, I.

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  17. Astrophysics and Space Science

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  18. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  19. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  20. Astrophysical Institute, Potsdam

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Built upon a tradition of almost 300 years, the Astrophysical Institute Potsdam (AIP) is in an historical sense the successor of one of the oldest astronomical observatories in Germany. It is the first institute in the world which incorporated the term `astrophysical' in its name, and is connected with distinguished scientists such as Karl Schwarzschild and Albert Einstein. The AIP constitutes on...

  1. Theoretical Astrophysics - Volume 1, Astrophysical Processes

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    2000-12-01

    Preface; 1. Order-of-magnitude astrophysics; 2. Dynamics; 3. Special relativity, electrodynamics and optics; 4. Basics of electromagnetic radiation; 5. Statistical mechanics; 6. Radiative processes; 7. Spectra; 8. Neutral fluids; 9. Plasma physics; 10. Gravitational dynamics; 11. General theory of relativity; 12. Basics of nuclear physics; Notes and References; Index.

  2. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (ESTSC)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  3. SPAN: Astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian

    1987-01-01

    The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.

  4. Astrophysics and cosmic physics

    NASA Astrophysics Data System (ADS)

    Siuniaev, R. A.

    Recent astrophysical studies undertaken in the Soviet Union are surveyed. Papers are presented on the role of observations of galactic clusters in cosmological studies; photometric observations of active nuclei; investigations of the fine structure of radio sources; and interstellar molecules. Also considered are Type I supernovae, gamma-ray bursts, the motion of the sun in the interstellar medium, and astrophysical observations on Mt. Maidanak in Central Asia.

  5. Arcetri Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Arcetri Astrophysical Observatory, a government research institute founded in 1972, is located close to the villa where Galileo spent the last 11 years of his life. Under the directorship of Giorgio Abetti (1921-53) it became the growth point of Italian astrophysics with emphasis on solar physics; a tradition continued by his successor Guglielmo Righini (1953-78). Since 1978 the activities ha...

  6. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  7. Triggering for charm, beauty, and truth

    SciTech Connect

    Appel, J.A.

    1982-02-01

    As the search for more and more rare processes accelerates, the need for more and more effective event triggers also accelerates. In the earliest experiments, a simple coincidence often sufficed not only as the event trigger, but as the complete record of an event of interest. In today's experiments, not only has the fast trigger become more sophisticated, but one or more additional level of trigger processing precedes writing event data to magnetic tape for later analysis. Further search experiments will certainly require further expansion in the number of trigger levels required to filter those rare events of particular interest.

  8. Triggering Klystrons

    SciTech Connect

    Stefan, Kelton D.; /Purdue U. /SLAC

    2010-08-25

    To determine if klystrons will perform to the specifications of the LCLS (Linac Coherent Light Source) project, a new digital trigger controller is needed for the Klystron/Microwave Department Test Laboratory. The controller needed to be programmed and Windows based user interface software needed to be written to interface with the device over a USB (Universal Serial Bus). Programming the device consisted of writing logic in VHDL (VHSIC (Very High Speed Integrated Circuits) hardware description language), and the Windows interface software was written in C++. Xilinx ISE (Integrated Software Environment) was used to compile the VHDL code and program the device, and Microsoft Visual Studio 2005 was used to compile the C++ based Windows software. The device was programmed in such a way as to easily allow read/write operations to it using a simple addressing model, and Windows software was developed to interface with the device over a USB connection. A method of setting configuration registers in the trigger device is absolutely necessary to the development of a new triggering system, and the method developed will fulfill this need adequately. More work is needed before the new trigger system is ready for use. The configuration registers in the device need to be fully integrated with the logic that will generate the RF signals, and this system will need to be tested extensively to determine if it meets the requirements for low noise trigger outputs.

  9. Astrophysics Source Code Library

    NASA Astrophysics Data System (ADS)

    Allen, A.; DuPrie, K.; Berriman, B.; Hanisch, R. J.; Mink, J.; Teuben, P. J.

    2013-10-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, is a free on-line registry for source codes of interest to astronomers and astrophysicists. The library is housed on the discussion forum for Astronomy Picture of the Day (APOD) and can be accessed at http://ascl.net. The ASCL has a comprehensive listing that covers a significant number of the astrophysics source codes used to generate results published in or submitted to refereed journals and continues to grow. The ASCL currently has entries for over 500 codes; its records are citable and are indexed by ADS. The editors of the ASCL and members of its Advisory Committee were on hand at a demonstration table in the ADASS poster room to present the ASCL, accept code submissions, show how the ASCL is starting to be used by the astrophysics community, and take questions on and suggestions for improving the resource.

  10. Gamma-ray astrophysics with AGILE

    NASA Astrophysics Data System (ADS)

    Tavani, M.

    2003-09-01

    Gamma-ray astrophysics above 30 MeV will soon be revitalized by a new generation of high-energy detectors in space. We discuss here the AGILE Mission that will be dedicated to gamma-ray astrophysics above 30 MeV during the period 2005-2006. The main characteristics of AGILE are: (1) excellent imaging and monitoring capabilities both in the γ-ray (30 MeV - 30 GeV) and hard X-ray (10-40 keV) energy ranges (reaching an arcminute source positioning), (2) very good timing (improving by three orders of magnitude the instrumental deadtime for γ-ray detection compared to previous instruments), and (3) excellent imaging and triggering capability for Gamma-Ray Bursts. The AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.

  11. Surprises in astrophysical gasdynamics.

    PubMed

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject. PMID:27116247

  12. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  13. Augmented Reality in astrophysics

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Shingles, Luke J.

    2013-09-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss possible future trends for Augmented Reality applications in astrophysics, and explore the current limitations associated with the technology. This Augmented Article, the first of its kind, is designed to allow the reader to directly experiment with this technology.

  14. Astrophysics: An Integrative Course

    ERIC Educational Resources Information Center

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  15. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  16. Surprises in astrophysical gasdynamics

    NASA Astrophysics Data System (ADS)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  17. Extreme Scale Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2009-11-01

    We live in extraordinary times. With increasingly sophisticated observatories opening up new vistas on the universe, astrophysics is becoming more complex and data-driven. The success in understanding astrophysical systems that are inherently multi-physical, nonlinear systems demands realism in our models of the phenomena. We cannot hope to advance the realism of these models to match the expected sophistication of future observations without extreme-scale computation. Just one example is the advent of gravitational wave astronomy. Detectors like LIGO are about to make the first ever detection of gravitational waves. The gravitational waves are produced during violent events such as the merger of two black holes. The detection of these waves or ripples in the fabric of spacetime is a formidable undertaking, requiring innovative engineering, powerful data analysis tools and careful theoretical modeling. I will discuss the computational and theoretical challenges ahead in our new understanding of physics and astronomy where gravity exhibits its strongest grip on our spacetime.

  18. Nuclear Astrophysics with LUNA

    NASA Astrophysics Data System (ADS)

    Broggini, Carlo

    2016-04-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions which power the stars and synthesize the chemical elements. Deep underground in the Gran Sasso Laboratory the cross section of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The main results obtained during the 'solar' phase of LUNA are reviewed and their influence on our understanding of the properties of the neutrino and of the Sun is discussed. We then describe the current LUNA program mainly devoted to the study of the nucleosynthesis of the light elements in AGB stars and Classical Novae. Finally, the future of LUNA towards the study of helium and carbon burning with a new 3.5 MV accelerator is outlined.

  19. Nuclear astrophysics at DRAGON

    SciTech Connect

    Hager, U.

    2014-05-02

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented.

  20. LUNA: Nuclear astrophysics underground

    SciTech Connect

    Best, A.

    2015-02-24

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions.

  1. CASPAR - Nuclear Astrophysics Underground

    NASA Astrophysics Data System (ADS)

    Strieder, Frank; Robertson, Daniel; Couder, Manoel; Greife, Uwe; Wells, Doug; Wiescher, Michael

    2015-10-01

    The work of the LUNA Collaboration at the Laboratori Nationali del Gran Sasso demonstrated the research potential of an underground accelerator for the field of nuclear astrophysics. Several key reactions could be studied at LUNA, some directly at the Gamow peak for solar hydrogen burning. The CASPAR (Compact Accelerator System for Performing Astrophysical Research) Collaboration will implement a high intensity 1 MV accelerator at the Sanford Underground Research Facility (SURF) and overcome the current limitation at LUNA. The installation of the accelerator in the recently rehabilitated underground cavity at SURF started in Summer 2015 and first beam should be delivered by the end of the year. This project will primarily focus on the neutron sources for the s-process, e.g. 13C(α , n) 16O and 22Ne(α , n) 25Mg , and lead to unprecedented measurements compared to previous studies. A detailed overview of the science goals of CASPAR will be presented.

  2. Astrophysical terms in Armenian

    NASA Astrophysics Data System (ADS)

    Yeghikian, A. G.

    2015-07-01

    There are quite a few astrophysical textbooks (to say nothing about monographs) in Armenian, which are, however out of date and miss all the modern terms concerning space sciences. Many terms have been earlier adopted from English and, especially, from Russian. On the other hand, teachers and lecturers in Armenia need scientific terms in Armenian adequately reproducing either their means when translating from other languages or (why not) creating new ones. In short, a permanently updated astrophysical glossary is needed to serve as explanation of such terms. I am not going here to present the ready-made glossary (which should be a task for a joint efforts of many professionals) but instead just would like to describe some ambiguous examples with comments where possible coming from my long-year teaching, lecturing and professional experience. A probable connection between "iron" in Armenian as concerned to its origin is also discussed.

  3. Birth of Neutrino Astrophysics

    ScienceCinema

    None

    2011-10-06

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  4. Birth of Neutrino Astrophysics

    SciTech Connect

    2010-05-07

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  5. Astrophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2016-06-01

    These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  6. The Nuclear Astrophysics Explorer

    NASA Technical Reports Server (NTRS)

    Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.

    1989-01-01

    The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.

  7. Astrophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  8. Getting Astrophysical Information from LISA Data

    NASA Technical Reports Server (NTRS)

    Stebbins, R. T.; Bender, P. L.; Folkner, W. M.

    1997-01-01

    Gravitational wave signals from a large number of astrophysical sources will be present in the LISA data. Information about as many sources as possible must be estimated from time series of strain measurements. Several types of signals are expected to be present: simple periodic signals from relatively stable binary systems, chirped signals from coalescing binary systems, complex waveforms from highly relativistic binary systems, stochastic backgrounds from galactic and extragalactic binary systems and possibly stochastic backgrounds from the early Universe. The orbital motion of the LISA antenna will modulate the phase and amplitude of all these signals, except the isotropic backgrounds and thereby give information on the directions of sources. Here we describe a candidate process for disentangling the gravitational wave signals and estimating the relevant astrophysical parameters from one year of LISA data. Nearly all of the sources will be identified by searching with templates based on source parameters and directions.

  9. The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  10. Studying Nuclear Astrophysics at NIF

    SciTech Connect

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic science. We will focus on

  11. Firearm trigger assembly

    DOEpatents

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  12. Structure Formation in Astrophysics

    NASA Astrophysics Data System (ADS)

    Chabrier, Gilles

    2009-01-01

    Part I. Physical Processes and Numerical Methods Common to Structure Formations in Astrophysics: 1. The physics of turbulence E. Levêque; 2. The numerical simulation of turbulence W. Schmidt; 3. Numerical methods for radiation magnetohydrodynamics in astrophysics R. Klein and J. Stone; 4. The role of jets in the formation of planets, stars, and galaxies R. Banerjee, R. Pudritz and R. Ouyed; 5. Advanced numerical methods in astrophysical fluid dynamics A. Hujeirat and F. Heitsch; Part II. Structure and Star Formation in the Primordial Universe: 6. New frontiers in cosmology and galaxy formation challenges for the future R. Ellis and J. Silk; 7. Galaxy formation physics T. Abel, G. Bryan and R. Teyssier; 8. First stars formation, evolution, feedback effects V. Bromm, A. Ferrara and A. Heger; Part III. Contemporary Star and Brown Dwarf Formation: a) Cloud Formation and Fragmentation: 9. Diffuse interstellar medium and the formation of molecular clouds P. Hennebelle, M. Mac Low and E. Vazquez-Semadeni; 10. The formation of distributed and clustered stars in molecular clouds T. Megeath, Z. -Y. Li and A. Nordlund; b) Core Fragmentation and Star Formation: 11. The formation and evolution of prestellar cores P. André, S. Basu and S. Inutsuka; 12. Models for the formation of massive stars; Part IV. Protoplanetary Disks and Planet Formation M. Krumholz and I. Bonnell: 13. Observational properties of disks and young stellar objects G. Duchêne, F. Ménard, J. Muzzerolle and S. Mohanty; 14. Structure and dynamics of protoplanetary disks C. Dullemond, R. Durisen and J. Papaloizou; 15. Planet formation and evolution theory and observation Y. Alibert, I. Baraffe, W. Benz, G. Laughlin and S. Udry; 16. Planet formation assembling the puzzle G. Wurm and T. Guillot; Part V. Summary: 17. Open issues in small- and large-scale structure formation R. Klessen and M. Mac Low; 18. Final word E. Salpeter.

  13. Structure Formation in Astrophysics

    NASA Astrophysics Data System (ADS)

    Chabrier, Gilles

    2011-02-01

    Part I. Physical Processes and Numerical Methods Common to Structure Formations in Astrophysics: 1. The physics of turbulence E. Levêque; 2. The numerical simulation of turbulence W. Schmidt; 3. Numerical methods for radiation magnetohydrodynamics in astrophysics R. Klein and J. Stone; 4. The role of jets in the formation of planets, stars, and galaxies R. Banerjee, R. Pudritz and R. Ouyed; 5. Advanced numerical methods in astrophysical fluid dynamics A. Hujeirat and F. Heitsch; Part II. Structure and Star Formation in the Primordial Universe: 6. New frontiers in cosmology and galaxy formation challenges for the future R. Ellis and J. Silk; 7. Galaxy formation physics T. Abel, G. Bryan and R. Teyssier; 8. First stars formation, evolution, feedback effects V. Bromm, A. Ferrara and A. Heger; Part III. Contemporary Star and Brown Dwarf Formation: a) Cloud Formation and Fragmentation: 9. Diffuse interstellar medium and the formation of molecular clouds P. Hennebelle, M. Mac Low and E. Vazquez-Semadeni; 10. The formation of distributed and clustered stars in molecular clouds T. Megeath, Z. -Y. Li and A. Nordlund; b) Core Fragmentation and Star Formation: 11. The formation and evolution of prestellar cores P. André, S. Basu and S. Inutsuka; 12. Models for the formation of massive stars; Part IV. Protoplanetary Disks and Planet Formation M. Krumholz and I. Bonnell: 13. Observational properties of disks and young stellar objects G. Duchêne, F. Ménard, J. Muzzerolle and S. Mohanty; 14. Structure and dynamics of protoplanetary disks C. Dullemond, R. Durisen and J. Papaloizou; 15. Planet formation and evolution theory and observation Y. Alibert, I. Baraffe, W. Benz, G. Laughlin and S. Udry; 16. Planet formation assembling the puzzle G. Wurm and T. Guillot; Part V. Summary: 17. Open issues in small- and large-scale structure formation R. Klessen and M. Mac Low; 18. Final word E. Salpeter.

  14. Perspectives in astrophysical databases

    NASA Astrophysics Data System (ADS)

    Frailis, Marco; de Angelis, Alessandro; Roberto, Vito

    2004-07-01

    Astrophysics has become a domain extremely rich of scientific data. Data mining tools are needed for information extraction from such large data sets. This asks for an approach to data management emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Moreover, clustering and classification techniques on large data sets pose additional requirements in terms of computation and memory scalability and interpretability of results. In this study we review some possible solutions.

  15. Astrophysical blast wave data

    SciTech Connect

    Riley, Nathan; Geissel, Matthias; Lewis, Sean M; Porter, John L.

    2015-03-01

    The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.

  16. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  17. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, L.; Holdridge, David V.; Norris, J. (Technical Monitor)

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  18. Astrophysics Source Code Library -- Now even better!

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Schmidt, Judy; Berriman, Bruce; DuPrie, Kimberly; Hanisch, Robert J.; Mink, Jessica D.; Nemiroff, Robert J.; Shamir, Lior; Shortridge, Keith; Taylor, Mark B.; Teuben, Peter J.; Wallin, John F.

    2015-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) is a free online registry of codes used in astronomy research. Indexed by ADS, it now contains nearly 1,000 codes and with recent major changes, is better than ever! The resource has a new infrastructure that offers greater flexibility and functionality for users, including an easier submission process, better browsing, one-click author search, and an RSS feeder for news. The new database structure is easier to maintain and offers new possibilities for collaboration. Come see what we've done!

  19. Frontier Research in Astrophysics

    NASA Astrophysics Data System (ADS)

    Giovanelli, Franco; Sabau-Graziati, Lola

    We want to join about 90 colleagues from the whole world involved in various topics of modern Astrophysics and Particle Physics in order to discuss the most recent experimental and theoretical results for an advance in the comprehension of the Physics governing our Universe. For reaching the aim of the workshop the idea is to use ground- and space-based experimental developments, theoretical developments AND the coming out science results which have already resulted OR WILL result into high impact science papers. The following items will be reviewed: Cosmology: Cosmic Background, Dark Matter, Dark Energy, Clusters of Galaxies. Physics of the Diffuse Cosmic Sources. Physics of Cosmic Rays. Physics of Discrete Cosmic Sources. Extragalactic Sources: Active Galaxies, Normal Galaxies, Gamma-Ray Bursts. Galactic Sources: Star Formation, Pre-Main-Sequence and Main-Sequence Stars, Cataclysmic Variables and Novae, Supernovae and SNRs, X-Ray Binary Systems, Pulsars, Black Holes, Gamma-Ray Sources, Nucleosynthesis. Future Physics and Astrophysics: Ongoing and Planned Ground- and Space-based Experiments. The workshop will include few 40-minute general review talks to introduce the current problems, and typically 20-minute talks discussing new experimental and theoretical results. A series of 15-minute talks will discuss the ongoing and planned ground- and space-based experiments. The cadence of the workshop will be biennial. The participation will be only by invitation. Editors: Franco Giovannelli and Lola Sabau-Graziati

  20. Search for hydraulic connectivity between surface reservoirs and surrounding aquifers in the reservoir-triggered seismic environment (Koyna region, India) using hydrochemical and isotopic signatures

    NASA Astrophysics Data System (ADS)

    Reddy, D. V.; Nagabhushanam, P.

    2016-01-01

    Triggered seismicity is an accepted hypothesis in the present days. However, detailed hydrogeological investigations are lacking in the well-known reservoir-triggered seismic (RTS) zones. Here, we made an attempt to understand the direct linkage between the well-known Koyna-Warna reservoirs believed to be under the RTS zone (situated in the Deccan volcanic province (DVP), India) and the surrounding groundwater system up to 250 m deep from the ground surface. Seismic activity in the region started soon after the impoundment of water in the Koyna reservoir and being continued over the last four and a half decades. Though researchers have carried out numerous studies on the Koyna seismicity, no hydrogeological investigations were attempted. Hence, hydrogeological, hydrochemical, and isotopic investigations were carried out for 7 years on groundwaters from 15 deep bore wells (up to 250 m) and two surface reservoir waters to elucidate the direct hydraulic connectivity between them. No appreciable seasonal change was observed in piezometric heads of the artesian wells, but the semi-artesian wells did show fluctuation of ~2 to 12 m during different years, which did not have any relation with the reservoir water levels. No considerable seasonal change in hydrochemistry was observed in individual wells due to the confined nature of the aquifers. The hydrochemical and δ18O data of the studied deep groundwaters and reservoir waters, being different from each other, rule out the possibility of direct hydraulic connectivity between them and surrounding groundwater (up to 250 m), even though favorable topographic conditions exist for linkage. The radiocarbon ages, being incomparable between different well waters, support the inference drawn from hydrochemistry and stable isotope data.

  1. Gravitational microlensing I: A unique astrophysical tool

    NASA Astrophysics Data System (ADS)

    Rahvar, Sohrab

    2015-04-01

    In this paper, we review the astrophysical application of gravitational microlensing. After introducing the history of gravitational lensing, we present the key equations and concept of microlensing. The most frequent microlensing events are single-lens events and historically it has been used for searching dark matter in the form of compact astrophysical halo objects in the Galactic halo. We discuss about the degeneracy problem in the parameters of lens and perturbation effects that can partially break the degeneracy between the lens parameters. The rest of paper is about the astrophysical applications of microlensing. One of the important applications is in the stellar physics by probing the surface of source stars in the high magnification microlensing events. The astrometric and polarimetric observations will be complimentary for probing the atmosphere and stellar spots on the surface of source stars. Finally we discuss about the future projects as space-based telescopes for parallax and astrometry observations of microlensing events. With this project, we would expect to produce a complete stellar and remnant mass function and study the structure of Galaxy in term of distribution of stars along our line of sight towards the center of galaxy.

  2. The Astrophysics Science Division Annual Report 2009

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  3. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  4. The SAO/NASA Astrophysics Data System: A Gateway to the Planetary Sciences Literature

    NASA Astrophysics Data System (ADS)

    Henneken, E. A.; Accomazzi, A.; Grant, C. S.; Kurtz, M. J.; Thompson, D.; Bohlen, E.; Murray, S. S.

    2009-03-01

    The SAO/NASA Astrophysics Data System (ADS) provides various free services for finding, accessing, and managing bibliographic data, including a basic search form, the myADS notification service, and private libraries, plus access to scanned published articles.

  5. Recognition of compact astrophysical objects

    NASA Technical Reports Server (NTRS)

    Ogelman, H. (Editor); Rothschild, R. (Editor)

    1977-01-01

    NASA's Laboratory for High Energy Astrophysics and the Dept. of Physics and Astrophysics at the Univ. of Md. collaberated on a graduate level course with this title. This publication is an edited version of notes used as the course text. Topics include stellar evolution, pulsars, binary stars, X-ray signatures, gamma ray sources, and temporal analysis of X-ray data.

  6. Learning Astrophysics through Mobile Gaming

    NASA Astrophysics Data System (ADS)

    Massimino, P.; Costa, A.; Becciani, U.; Krokos, M.; Bandieramonte, M.; Petta, C.; Pistagna, C.; Riggi, S.; Sciacca, E.; Vitello, F.

    2013-10-01

    SpaceMission is a mobile application (iOS) offering hands-on experience of astrophysical concepts using scientific simulations. The application is based on VisIVO which is a suite of software tools for visual discovery through 3D views generated from astrophysical datasets.

  7. Important plasma problems in astrophysics

    SciTech Connect

    Kulsrud, R.M.

    1995-01-01

    In astrophysics, plasmas occur under very extreme conditions. For example there are ultra strong magnetic fields in neutron stars) relativistic plasmas around black holes and in jets, extremely energetic particles such as cosmic rays in the interstellar medium, extremely dense plasmas in accretion disks, and extremely large magnetic Reynold`s numbers in the interstellar medium. These extreme limits for astrophysical plasmas make plasma phenomena much simpler to analyze in astrophysics than in the laboratory. An understanding of such phenomena often results in an interesting way, by simply taking the extreme limiting case of a known plasma theory. I will describe one of the more exciting examples. I will attempt to convey the excitement I felt when I was first exposed to it. However, not all plasma astrophysical phenomena are so simple. There are certain important plasma phenomena in astrophysics, which have not been so easily resolved. In fact a resolution of them is blocking significant progress in astrophysical research. They have not yet yielded to attacks by theoretical astrophysicists nor to extensive numerical simulation. I will attempt to describe one of the more important of these plasma-astrophysical problems, and discuss why its resolution is so important to astrophysics. This significant example is fast, magnetic reconnection. Another significant example is the large-magnetic-Reynold`s-number MHD dynamos.

  8. Astrophysics with MILAGRO

    SciTech Connect

    Not Available

    1993-01-01

    This paper describes how data from a new type of air shower detector, MILAGRO can shed light on a variety of interesting problems in astrophysics. MILAGRO has the capability to make observations of VHE/UHE emission from the recently discovered TeV gamma-ray source Markarian 421, an Active Galactic Nucleus (AGN). An observation of the attenuation of this signal in the range of 1--20 TeV can be used to make the first measurement of the intergalactic infrared radiation. We will also describe how MILAGRO can improve the existing limits on the density of Primordial Black Holes (PBH) by three orders of magnitude. Finally, we will discuss how this instrument can be used to measure the diffuse galactic emission of gamma-rays which must come from the disk.

  9. Relativistic astrophysics explorer

    NASA Astrophysics Data System (ADS)

    Kaaret, P.

    2004-01-01

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m 2 equal to 10 times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  10. The Relativistic Astrophysics Explorer

    NASA Astrophysics Data System (ADS)

    Kaaret, P.

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 60,000 cm2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  11. Astrophysics with MILAGRO

    SciTech Connect

    The MILAGRO Collaboration

    1993-05-01

    This paper describes how data from a new type of air shower detector, MILAGRO can shed light on a variety of interesting problems in astrophysics. MILAGRO has the capability to make observations of VHE/UHE emission from the recently discovered TeV gamma-ray source Markarian 421, an Active Galactic Nucleus (AGN). An observation of the attenuation of this signal in the range of 1--20 TeV can be used to make the first measurement of the intergalactic infrared radiation. We will also describe how MILAGRO can improve the existing limits on the density of Primordial Black Holes (PBH) by three orders of magnitude. Finally, we will discuss how this instrument can be used to measure the diffuse galactic emission of gamma-rays which must come from the disk.

  12. Black-hole astrophysics

    SciTech Connect

    Bender, P.; Bloom, E.; Cominsky, L.

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  13. Astrophysics. A primer

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang

    For a quantitative understanding of the physics of the universe - from the solar system through the Milky Way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be aware of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize.

  14. Theoretical Astrophysics at Fermilab

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  15. Photoneutron reactions in astrophysics

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A.

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  16. Rossby Wave Instability in Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard; Li, Hui

    2014-10-01

    A brief review is given of the Rossby wave instability in astrophysical disks. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disk surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (proportional to Exp[im ϕ], m = 1,2,...) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in protoplanetary disks. The Rossby vortices in the disks around stars and black holes may cause the observed quasi-periodic modulations of the disk's thermal emission. Stirling Colgate's long standing interest in all types of vortices - particularly tornados - had an important part in stimulating the research on the Rossby wave instability.

  17. GRB Astrophysics with LOBSTER

    SciTech Connect

    Hudec, R.; Pina, L.; Sveda, L.; Inneman, A.

    2006-05-19

    We refer on the recent developments of LOBSTER project suggesting novel wide-field Lobster-Eye type of X-ray All Sky Monitor to detect and to analyze GRBs including XRF and X-ray rich GRBs. The triggers can be detected and localized by their X-ray emission in the 0.1 - 8 keV energy range. The system exhibits fine detecting sensitivities of order of 10-12 ergcm-2s-1 and the localization accuracy is of order of a few arcmin. The LOBSTER is expected to contribute significantly to analyses of GRBs and especially the XRFs.

  18. Atomic processes for astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Badnell, N. R.; Del Zanna, G.; Fernández-Menchero, L.; Giunta, A. S.; Liang, G. Y.; Mason, H. E.; Storey, P. J.

    2016-05-01

    In this review we summarize the recent calculations and improvements of atomic data that we have carried out for the analysis of astrophysical spectroscopy within the atomic processes for astrophysical plasmas network. We briefly discuss the various methods used for the calculations, and highlight several issues that we have uncovered during such extensive work. We discuss the completeness and accuracy of the cross sections for ionic excitation by electron impact for the main isoelectronic sequences, which we have obtained with large-scale calculations. Given its astrophysical importance, we emphasize the work on iron. Some examples on the significant improvement that has been achieved over previous calculations are provided.

  19. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  20. Nuclear and particle astrophysics

    SciTech Connect

    Glendenning, N.K.

    1990-10-31

    We discuss the physics of matter that is relevant to the structure of compact stars. This includes nuclear, neutron star matter and quark matter and phase transitions between them. Many aspects of neutron star structure and its dependance on a number of physical assumptions about nuclear matter properties and hyperon couplings are investigated. We also discuss the prospects for obtaining constraints on the equation of state from astrophysical sources. Neuron star masses although few are known at present, provide a very direct constraint in as much as the connection to the equation of state involves only the assumption that Einstein's general of theory of relativity is correct at the macroscopic scale. Supernovae simulations involve such a plethora of physical processes including those involved in the evolution of the precollapse configuration, not all of them known or understood, that they provide no constraint at the present time. Indeed the prompt explosion, from which a constraint had been thought to follow, is now believed not to be mechanism by which most, if any stars, explode. In any case the nuclear equation of state is but one of a multitude on uncertain factors, and possibly one of the least important. The rapid rotation of pulsars is also discussed. It is shown that for periods below a certain limit it becomes increasingly difficult to reconcile them with neutron stars. Strange stars are possible if strange matter is the absolute ground state. We discuss such stars and their compatibility with observation. 112 refs., 37 figs., 6 tabs.

  1. Relativistic jets in astrophysics

    NASA Astrophysics Data System (ADS)

    Derishev, E. V.; Zheleznyakov, V. V.; Koryagin, S. A.; Kocharovsky, Vl. V.

    The properties of the plasma state of matter are determined by the motion and the electromagnetic emission of the non-bound electrically charged particles --- electrons, positrons, protons and ions. It is not easy to create plasma in a laboratory. However this state is typical for the cosmic conditions --- at the stars and in the interstellar space. The properties of the laboratory as well as the space plasma are investigated at the Institute of Applied Physics of the Russian Academy of Sciences. The research is focused on the mechanisms of generation and propagation of the electromagnetic radiation --- from the radio waves to the gamma-rays --- in the planetary and stellar atmospheres and at the other astrophysical objects. The extreme physical conditions for a plasma are realized near the compact objects like black holes, neutron stars and collapsing nuclei of the massive stars. The plasma could be strongly non-equlibrium and can produce strong electromagnetic fields. Its bulk motion as well as the chaotic motion of the constituting particles can be relativistic, i. e. the motion can achieve velocities close to the speed of light. The relativistic plasma is frequently observed in the form of jets.

  2. Particle Astrophysics Using Balloons

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays, energetic particles coming from outer space, bring us information about the physical processes that accelerate particles to relativistic energies, about the effects of those particles in driving dynamical processes in our Galaxy, and about the distribution of matter and fields in interstellar space. Cosmic rays were discovered in the early twentieth century using a balloon-borne electroscope. Balloons are currently being used for answering fundamental questions about the cosmos: (1) Is the Universe symmetric, and if so where is the antimatter? (2) What is the dark matter? (3) How do cosmic rays get their enormous energies? (4) Can the entire energy spectrum of cosmic rays result from a single acceleration mechanism? (5) Are supernovae really the sources of cosmic rays? (6) What is the history of cosmic rays in the Galaxy? (7) What is the origin of the "knee" in the cosmic ray energy spectrum? etc. The status of results from past balloon-borne measurements and expected results from ongoing and planned future balloon-borne particle astrophysics experiments will be reviewed.

  3. Neutron reactions in astrophysics

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Lederer, C.; Käppeler, F.

    2014-05-01

    The quest for the origin of matter in the Universe had been the subject of philosophical and theological debates over the history of mankind, but quantitative answers could be found only by the scientific achievements of the last century. A first important step on this way was the development of spectral analysis by Kirchhoff and Bunsen in the middle of the 19th century, which provided first insight in the chemical composition of the sun and the stars. The energy source of the stars and the related processes of nucleosynthesis, however, could be revealed only with the discoveries of nuclear physics. A final break-through came eventually with the compilation of elemental and isotopic abundances in the solar system, which reflect the various nucleosynthetic processes in detail. This review focuses on the mass region above iron, where the formation of the elements is dominated by neutron capture, mainly in the slow (s) and rapid (r) processes. Following a brief historic account and a sketch of the relevant astrophysical models, emphasis is put on the nuclear physics input, where status and perspectives of experimental approaches are presented in some detail, complemented by the indispensable role of theory.

  4. Time-Dependent Searches for Neutrino Point Sources with the IceCube Observatory

    NASA Astrophysics Data System (ADS)

    Baker, Michael Francis

    The IceCube Neutrino Observatory is a km³ detector which recently completed construction at the geographic South Pole. Here we present four searches for flaring point-sources sources of neutrinos using IceCube data using maximum-likelihood techniques. For the first time, a search is performed over the entire parameter space of energy, direction and time with sensitivity to neutrino flares lasting between 20 mus and a year duration from astrophysical sources. This work is also an important step for the IceCube experiment in utilizing a multi-messenger approach, driving IceCube neutrino analysis with information from photon observatories. The use of time information is useful since integrated searches over time are less sensitive to flares as they are affected by a larger background of atmospheric neutrinos and moons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei and gamma-ray bursts, are promising candidate neutrino emitters. One search is "untriggered" in the sense that it looks for any possible flare in the entire sky. The other two searches are triggered by multi-wavelength information on flares. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. A search for periodic emission of neutrinos is also performed on binary systems in the galaxy which are thought to be sources of particle acceleration. The searches use data taken by 40 strings of IceCube between Apr 5, 2008 and May 20, 2009 and by 59 strings of IceCube between May 20, 2009 and May 31, 2010. The results from all searches are compatible with a fluctuation of the background.

  5. Radiative capture reactions in astrophysics

    SciTech Connect

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  6. Neutrinos in astrophysics and cosmology

    NASA Astrophysics Data System (ADS)

    Balantekin, A. B.

    2016-06-01

    Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.

  7. Highlights of Spanish Astrophysics VII

    NASA Astrophysics Data System (ADS)

    Guirado, J. C.; Lara, L. M.; Quilis, V.; Gorgas, J.

    2013-05-01

    "Highlights of Astronomy and Astrophysics VII" contains the Proceedings of the biannual meeting of the Spanish Astronomical Society held in Valencia from July 9 to 13, 2012. Over 300 astronomer, both national and international researchers, attended to the conference covering a wide variety of astrophysical topics: Galaxies and Cosmology, The Milky Way and Its Components, Planetary Sciences, Solar Physics, Instrumentation and Computation, and Teaching and Outreach of Astronomy.

  8. Minicourses in Astrophysics, Modular Approach, Vol. I.

    ERIC Educational Resources Information Center

    Illinois Univ., Chicago.

    This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…

  9. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  10. Solar astrophysical fundamental parameters

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Hauchecorne, A.

    2014-08-01

    The accurate determination of the solar photospheric radius has been an important problem in astronomy for many centuries. From the measurements made by the PICARD spacecraft during the transit of Venus in 2012, we obtained a solar radius of 696,156±145 kilometres. This value is consistent with recent measurements carried out atmosphere. This observation leads us to propose a change of the canonical value obtained by Arthur Auwers in 1891. An accurate value for total solar irradiance (TSI) is crucial for the Sun-Earth connection, and represents another solar astrophysical fundamental parameter. Based on measurements collected from different space instruments over the past 35 years, the absolute value of the TSI, representative of a quiet Sun, has gradually decreased from 1,371W.m-2 in 1978 to around 1,362W.m-2 in 2013, mainly due to the radiometers calibration differences. Based on the PICARD data and in agreement with Total Irradiance Monitor measurements, we predicted the TSI input at the top of the Earth's atmosphere at a distance of one astronomical unit (149,597,870 kilometres) from the Sun to be 1,362±2.4W.m-2, which may be proposed as a reference value. To conclude, from the measurements made by the PICARD spacecraft, we obtained a solar photospheric equator-to-pole radius difference value of 5.9±0.5 kilometres. This value is consistent with measurements made by different space instruments, and can be given as a reference value.

  11. Hierarchical trigger of the ALICE calorimeters

    NASA Astrophysics Data System (ADS)

    Muller, Hans; Awes, Terry C.; Novitzky, Norbert; Kral, Jiri; Rak, Jan; Schambach, Jo; Wang, Yaping; Wang, Dong; Zhou, Daicui

    2010-05-01

    The trigger of the ALICE electromagnetic calorimeters is implemented in 2 hierarchically connected layers of electronics. In the lower layer, level-0 algorithms search shower energy above threshold in locally confined Trigger Region Units (TRU). The top layer is implemented as a single, global trigger unit that receives the trigger data from all TRUs as input to the level-1 algorithm. This architecture was first developed for the PHOS high pT photon trigger before it was adopted by EMCal also for the jet trigger. TRU units digitize up to 112 analogue input signals from the Front End Electronics (FEE) and concentrate their digital stream in a single FPGA. A charge and time summing algorithm is combined with a peakfinder that suppresses spurious noise and is precise to single LHC bunches. With a peak-to-peak noise level of 150 MeV the linear dynamic range above threshold spans from MIP energies at 215 up to 50 GeV. Local level-0 decisions take less than 600 ns after LHC collisions, upon which all TRUs transfer their level-0 trigger data to the upstream global trigger module which searches within the remaining level-1 latency for high pT gamma showers (PHOS) and/or for Jet cone areas (EMCaL).

  12. Astrophysics of Life

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Reid, I. Neill; Sparks, William B.

    2011-03-01

    1. A voyage from dark clouds to the early Earth P. Ehrenfreund, S. B. Charnley and O. Botta; 2. Galactic environment of the Sun and stars: interstellar and interplanetary material P. C. Frisch, H. R. Muller, G. P. Zank and C. Lopate; 3. Transits R. L. Gilliland; 4. Planet migration E. W. Thommes and J. J. Lissauer; 5. Organic synthesis in space S. A. Sandford; 6. The Vegetation Red Edge Spectroscopic Feature as a surface biomarker S. Seager and E. B. Ford; 7. Search for extra-solar planets through gravitational microlensing K. C. Sahu; 8. The galactic habitable zone G. Gonzalez; 9. Cosmology and life M. Livio.

  13. Astrophysics of Life

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Reid, I. Neill; Sparks, William B.

    2005-01-01

    1. A voyage from dark clouds to the early Earth P. Ehrenfreund, S. B. Charnley and O. Botta; 2. Galactic environment of the Sun and stars: interstellar and interplanetary material P. C. Frisch, H. R. Muller, G. P. Zank and C. Lopate; 3. Transits R. L. Gilliland; 4. Planet migration E. W. Thommes and J. J. Lissauer; 5. Organic synthesis in space S. A. Sandford; 6. The Vegetation Red Edge Spectroscopic Feature as a surface biomarker S. Seager and E. B. Ford; 7. Search for extra-solar planets through gravitational microlensing K. C. Sahu; 8. The galactic habitable zone G. Gonzalez; 9. Cosmology and life M. Livio.

  14. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2003-05-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  15. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2008-02-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  16. Exotic nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2012-07-01

    Recently the academic community has marked several anniversaries connected with discoveries that played a significant role in the development of astrophysical investigations. The year 2009 was proclaimed by the United Nations the International Year of Astronomy. This was associated with the 400th anniversary of Galileo Galilei's discovery of the optical telescope, which marked the beginning of regular research in the field of astronomy. An important contribution to not only the development of physics of the microcosm, but also to the understanding of processes occurring in the Universe, was the discovery of the atomic nucleus made by E. Rutherford 100 years ago. Since then the investigations in the fields of physics of particles and atomic nuclei have helped to understand many processes in the microcosm. Exactly 80 years ago, K. Yanski used a radio-telescope in order to receive the radiation from cosmic objects for the first time, and at the present time this research area of physics is the most efficient method for studying the properties of the Universe. Finally, the April 12, 1961 (50 years ago) launching of the first sputnik into space with a human being onboard, the Russian cosmonaut Yuri Gagarin, marked the beginning of exploration of the Universe with the direct participation of man. All these achievements considerably extended our ideas about the Universe. This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclear-physics methods for studying cosmic objects and properties of the Universe. The results of

  17. Okayama astrophysical observatory wide field camera

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Kenshi; Shimizu, Yasuhiro; Okita, Kiichi; Kuroda, Daisuke; Koyano, Hisashi; Tsutsui, Hironori; Toda, Hiroyuki; Izumiura, Hideyuki; Yoshida, Michitoshi; Ohta, Kouji; Kawai, Nobuyuki; Yamamuro, Tomoyasu

    2014-08-01

    Okayama Astrophysical Observatory Wide Field Camera: OAOWFC is a near-infrared (0.9-2.5 μm) survey telescope, whose aperture is 0.91m. It works at Y, J, H, and Ks bands. The optics are consisted of forward Cassegrain and quasi Schmidt which yield the image circle of Φ 52 mm or Φ 1.3 deg at the focal plane. The overall F-ratio is F/2.51 which is one of the fastest among near infrared imagers in the world. A HAWAII-1 detector array placed at the focal plane cuts the central 0.48 deg. x 0.48 deg. with a pixel scale of 1.67 arcsec/pix. It will be used to survey the Galactic plane for variability and search for transients such as Gamma-ray burst afterglows optical counterpart of gravitational wave sources.

  18. Myofascial trigger point pain.

    PubMed

    Jaeger, Bernadette

    2013-01-01

    Myofascial trigger point pain is an extremely prevalent cause of persistent pain disorders in all parts of the body, not just the head, neck, and face. Features include deep aching pain in any structure, referred from focally tender points in taut bands of skeletal muscle (the trigger points). Diagnosis depends on accurate palpation with 2-4 kg/cm2 of pressure for 10 to 20 seconds over the suspected trigger point to allow the referred pain pattern to develop. In the head and neck region, cervical muscle trigger points (key trigger points) often incite and perpetuate trigger points (satellite trigger points) and referred pain from masticatory muscles. Management requires identification and control of as many perpetuating factors as possible (posture, body mechanics, psychological stress or depression, poor sleep or nutrition). Trigger point therapies such as spray and stretch or trigger point injections are best used as adjunctive therapy. PMID:24864393

  19. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    SciTech Connect

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C{sub 4}H{sub 4}N{sub 2}) in H{sub 2}O-rich ice mixtures that contain NH{sub 3}, CH{sub 3}OH, or CH{sub 4} leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H{sub 2}O, CH{sub 3}OH, and NH{sub 3}, with or without CH{sub 4}, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  20. The new worlds observer: The astrophysics strategic mission concept study

    NASA Astrophysics Data System (ADS)

    Cash, W.

    2011-07-01

    We present some results of the Astrophysics Strategic Mission Concept Study for the New Worlds Observer (NWO). We show that the use of starshades is the most effective and affordable path to mapping and understanding our neighboring planetary systems, to opening the search for life outside our solar system, while serving the needs of the greater astronomy community. A starshade-based mission can be implemented immediately with a near term program of technology demonstration.

  1. A particle astrophysics magnet spectrometer facility for Space Station

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Israel, M. H.; Mewaldt, R.; Wiedenbeck, M.

    1987-01-01

    Planning for and design tradeoff studies related to the particle astrophysics magnet spectrometer known as Astromag are presented. This facility is being planned for the Space Station Freedom and address questions regarding the origin and acceleration of cosmic rays, explore the synthesis of elements by making detailed measurements of cosmic ray isotopic composition, and search for evidence of antimatter and other cosmologically significant particles. This work was supported by an international study team which includes particle physicists and cosmic ray physicists.

  2. High Energy Density Laboratory Astrophysics

    SciTech Connect

    Remington, B A

    2004-11-11

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we will review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  3. The Next Century Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1991-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.

  4. The Tapestry of Modern Astrophysics

    NASA Astrophysics Data System (ADS)

    Shore, Steven N.

    2002-10-01

    The scope of modern astrophysics is the entire cosmos and everything in it. As and substantial as its subject, The Tapestry of Modern Astrophysics provides advanced undergraduates or graduate-level students with a comprehensive introduction to the subject. Avoiding axiomatic presentations, the author combines extensive qualitative discussions with analytical treatments so that students develop physical intuition the combination of observations and theoretical "horse sense" that is necessary for research in the field. The text is particularly distinguished by its deep and broad coverage, showing the way apparently different parts of astrophysics are intimately connected. Emphasizing the physical basis of the astrophysical phenomena along with the interpretation of data, Shore covers: The physical processes common to all cosmic bodies gravitation, thermal physics, and the gas laws. Special topics include statistical mechanics of stellar systems, rate equations, and General Relativity

  5. Overview of instrumentation and data analysis methods including calibration, instrumentation, and image formation and reconstruction Radiative transfer and physical processes in stellar and planetary atmospheres. Special topics include spectral classification and techniques for treating scattering Stellar structure and evolution, energy sources, and nucleosynthesis The interstellar medium with a general introduction to radiative and hydrodynamical processes The Milky Way as a galaxy, emphasizing the connection between locally observed phenomena and broader properties of extragalactic systems, active galaxies, and clusters of galaxies Cosmology and structure formation STEVEN N. SHORE is Professor of Physics and Astronomy at Indiana University South Bend. He is a scientific editor of the Astrophysical Journal and a visiting professor at Osservatorio Astrofisico di Arcetri, University of Pisa, University of Notre Dame, and Arizona State University. He is

  6. Planetary rings and astrophysical discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik

    2016-05-01

    Disks are ubiquitous in astrophysics and participate in some of its most important processes. Of special interest is their role in star, planet and moon formation, the growth of supermassive black holes, and the launching of jets. Although astrophysical disks can be up to ten orders of magnitude larger than planetary rings and differ hugely in composition, all disks share to some extent the same basic dynamics and many physical phenomena. This review explores these areas of overlap. Topics covered include disk formation, accretion, collisions, instabilities, and satellite-disk interactions.

  7. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  8. Heavy elements in astrophysical nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sun, Bao-Hua; Niu, Zhong-Ming

    With the many successes of covariant density functional theory (CDFT) as seen in the previous chapters, there has been growing interest over the last years to examine directly their applicability in astrophysical nucleosynthesis simulations. This chapter thus concentrates on the very recent applications of CDFT in astrophysics nucleosynthesis, ranging from the calculations of nuclear physics inputs -- masses and beta-decay half-lives -- for rapid-neutron (r-) and rapid-proton (rp-) capture processes, to the nucleosynthesis studies that employed these inputs and to nuclear cosmochronology. The concepts of nucleosynthesis process and formulas on beta-decays are sketched briefly.

  9. The Astrophysics of the Sun

    NASA Astrophysics Data System (ADS)

    Zirin, H.

    1998-06-01

    This is an entirely new edition of Harold Zirin's classic text on the solar atmosphere. Combining an introductory course in astrophysics with a comprehensive treatment of the theoretical and observational aspects of our present knowledge of the sun, the book has been completely updated. It includes a large number of spectacular new photographs, including many of the best solar pictures from the world's observatories. Professor Zirin is one of the leading scientists in his field. His lucid writing style, combined with considerable teaching experience, has resulted in a valuable and important textbook of astrophysics.

  10. Novel laboratory simulations of astrophysical jets

    NASA Astrophysics Data System (ADS)

    Brady, Parrish Clawson

    This thesis was motivated by the promise that some physical aspects of astrophysical jets and collimation processes can be scaled to laboratory parameters through hydrodynamic scaling laws. The simulation of astrophysical jet phenomena with laser-produced plasmas was attractive because the laser- target interaction can inject energetic, repeatable plasma into an external environment. Novel laboratory simulations of astrophysical jets involved constructing and using the YOGA laser, giving a 1064 nm, 8 ns pulse laser with energies up to 3.7 + 0.2 J . Laser-produced plasmas were characterized using Schlieren, interferometry and ICCD photography for their use in simulating jet and magnetosphere physics. The evolution of the laser-produced plasma in various conditions was compared with self-similar solutions and HYADES computer simulations. Millimeter-scale magnetized collimated outflows were produced by a centimeter scale cylindrically symmetric electrode configuration triggered by a laser-produced plasma. A cavity with a flared nozzle surrounded the center electrode and the electrode ablation created supersonic uncollimated flows. This flow became collimated when the center electrode changed from an anodeto a cathode. The plasma jets were in axially directed permanent magnetic fields with strengths up to 5000 Gauss. The collimated magnetized jets were 0.1-0. 3 cm wide, up to 2.0 cm long, and had velocities of ~4.0 × 10 6 cm/s. The dynamics of the evolution of the jet were compared qualitatively and quantitatively with fluxtube simulations from Bellan's formulation [6] giving a calculated estimate of ~2.6 × 10 6 cm/s for jet evolution velocity and evidence for jet rotation. The density measured with interferometry was 1.9 ± 0.2 × 10 17 cm -3 compared with 2.1 × 10 16 cm -3 calculated with Bellan's pressure balance formulation. Kinks in the jet column were produced consistent with the Kruskal-Shafranov condition which allowed stable and symmetric jets to form with

  11. Asthma triggers (image)

    MedlinePlus

    ... asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes. ... asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes.

  12. Asthma triggers (image)

    MedlinePlus

    ... common asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes. ... common asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes.

  13. Triggered Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1985-01-01

    Certain Jovian radio emissions seem to be triggered from outside, by much weaker radio waves from the sun. Recently found in the Voyager observations near Jupiter, such triggering occurs at hectometric wavelengths during the arrival of solar radio bursts, with the triggered emissions lasting sometimes more than an hour as they slowly drifted toward higher frequencies. Like the previous discovery of similar triggered emissions at the earth, this suggests that Jupiter's emissions might also originate from natural radio lasers.

  14. Astrophysical Probes of Dark Matter Interactions

    NASA Astrophysics Data System (ADS)

    Reece, Matthew

    The majority of matter in the universe is dark matter, made up of some particle beyond those in the Standard Model of particle physics. So far we have very little information about what dark matter is and how it interacts, except through gravity. Constraints from halo shapes and the Bullet Cluster give upper bounds on the self-interaction strength of dark matter, but these bounds are very weak: roughly the same size as nuclear physics cross sections, which are very large by the standards of particle physics. Given how little we know about dark matter, it is important to search for it in as broad a context as possible. Existing direct and indirect detection analyses are typically motivated by simple particle physics models like WIMP dark matter. This research will aim to widen the scope of searches for dark matter by considering a more complete range of particle physics models, working out their implications for astrophysical data, and interpreting existing data in terms of these new models. New models of dark matter can affect searches in a variety of ways. Signals may show up in conventional indirect detection searches, e.g. in gamma rays detected by Fermi-LAT or in antiprotons detected by AMS-02. The new particle physics content of the models could be reflected in surprising spectral shapes or other features of such signals, or in gamma rays with a different profile on the sky than expected in typical models. The PI has worked, for example, on a model in which signals may arise from a dark disk, which is just one of many possibilities. Signals of new dark matter models might also arise in more subtle ways. Structure in the dark sector could influence the development of structure in the visible sector, indirectly. For instance, a dark matter disk or other dark structures could alter the orbits of stars in the galaxy and may be detectable through detailed studies of the kinematics of stellar populations. Dark accretion disks could exist around astrophysical objects

  15. Astrophysical Bounds on Particle Properties

    NASA Astrophysics Data System (ADS)

    Raffelt, G.; Murdin, P.

    2000-11-01

    Ever since NEWTON proposed that the Moon on its orbit follows the same laws of motion as an apple falling from a tree, the heavens have been a favorite laboratory for testing the fundamental laws of physics, notably Newton's and EINSTEIN's theories of gravity. More recently, astrophysics and cosmology have become crucial testing grounds for the microcosm of elementary particles. This area of scie...

  16. Astronomy and Astrophysics in India

    NASA Astrophysics Data System (ADS)

    Narlikar, J.; Murdin, P.

    2001-07-01

    The growth in astronomy and astrophysics (A&A) in India has been mostly since the country achieved independence in 1947. The present work is carried out in a few select research institutes and in some university departments. The Astronomical Society of India has around 300 working A&A scientists as members, with another 50-60 graduate students....

  17. Indirect methods in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-04-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  18. Condensation Processes in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Hill, Hugh G. M.

    2002-01-01

    Astrophysical systems present an intriguing set of challenges for laboratory chemists. Chemistry occurs in regions considered an excellent vacuum by laboratory standards and at temperatures that would vaporize laboratory equipment. Outflows around Asymptotic Giant Branch (AGB) stars have timescales ranging from seconds to weeks depending on the distance of the region of interest from the star and, on the way significant changes in the state variables are defined. The atmospheres in normal stars may only change significantly on several billion-year timescales. Most laboratory experiments carried out to understand astrophysical processes are not done at conditions that perfectly match the natural suite of state variables or timescales appropriate for natural conditions. Experimenters must make use of simple analog experiments that place limits on the behavior of natural systems, often extrapolating to lower-pressure and/or higher-temperature environments. Nevertheless, we argue that well-conceived experiments will often provide insights into astrophysical processes that are impossible to obtain through models or observations. This is especially true for complex chemical phenomena such as the formation and metamorphism of refractory grains under a range of astrophysical conditions. Data obtained in our laboratory has been surprising in numerous ways, ranging from the composition of the condensates to the thermal evolution of their spectral properties. None of this information could have been predicted from first principals and would not have been credible even if it had.

  19. The Wisconsin Plasma Astrophysics Laboratory

    NASA Astrophysics Data System (ADS)

    Forest, C. B.; Flanagan, K.; Brookhart, M.; Clark, M.; Cooper, C. M.; Désangles, V.; Egedal, J.; Endrizzi, D.; Khalzov, I. V.; Li, H.; Miesch, M.; Milhone, J.; Nornberg, M.; Olson, J.; Peterson, E.; Roesler, F.; Schekochihin, A.; Schmitz, O.; Siller, R.; Spitkovsky, A.; Stemo, A.; Wallace, J.; Weisberg, D.; Zweibel, E.

    2015-10-01

    > provide an ideal testbed for a range of astrophysical experiments, including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds and more. This article describes the capabilities of WiPAL, along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.

  20. Astrophysics on the Lab Bench

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2010-01-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a…

  21. Astronomy & Astrophysics: an international journal

    NASA Astrophysics Data System (ADS)

    Bertout, C.

    2011-07-01

    After a brief historical introduction, we review the scope, editorial process, and production organization of A&A, one of the leading journals worldwide dedicated to publishing the results of astrophysical research. We then briefly discuss the economic model of the Journal and some current issues in scientific publishing.

  1. Time Ordered Astrophysics Scalable Tools

    Energy Science and Technology Software Center (ESTSC)

    2011-12-14

    This software package provides tools for astrophysical experiments which record data in the form of individual time streams from discrete detectors. TOAST provides tools from meta-data manipulation and job set up, I/O operation, telescope pointing reconstruction, and map-making. It also provides tools for constructing simulated observations.

  2. Symposium on Recent Results in Infrared Astrophysics

    NASA Technical Reports Server (NTRS)

    Dyal, P. (Editor)

    1977-01-01

    Abstracts of papers presented at a symposium titled Recent Results in Infrared Astrophysics are set forth. The abstracts emphasize photometric, spectroscopic, polarization, and theoretical results on a broad range of current topics in infrared astrophysics.

  3. Introducing Astrophysics Research to High School Students.

    ERIC Educational Resources Information Center

    Etkina, Eugenia; Lawrence, Michael; Charney, Jeff

    1999-01-01

    Presents an analysis of an astrophysics institute designed for high school students. Investigates how students respond cognitively in an active science-learning environment in which they serve as apprentices to university astrophysics professors. (Author/CCM)

  4. International Olympiad on Astronomy and Astrophysics

    ERIC Educational Resources Information Center

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  5. Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Nesaraja, C. D.; Hix, W. R.; Bardayan, D. W.; Blackmon, J. C.; Chae, K.; Guidry, M. W.; Hard, C. C.; Sharp, J. E.; Kozub, R. L.; Meyer, R. A.

    2004-12-01

    The Computational Infrastructure for Nuclear Astrophysics is a platform-independent, online suite of computer codes developed by the ORNL Nuclear Data Project that makes a rapid connection between laboratory nuclear physics results and astrophysical models. It enables users to evaluate cross sections, process them into thermonuclear reaction rates, and parameterize (with a few percent accuracy) these rates that vary by up to 30 orders of magnitude over the temperatures of interest. Users can then properly format these rates for input into astrophysical computer simulations, create and manipulate libraries of rates, as well as run and visualize sample post-processing nucleosynthesis calculations. For example, we have developed animated nuclide charts that show how predicted abundances (represented by a user-defined color scale) change in time. With this unique suite, users can within a very short time quantify the astrophysical impact of a newly measured or calculated cross section, or a newly created customized reaction rate library, and then document and share their results with the scientific community. The suite has a straightforward interface with a "Windows Wizard" motif whereby users progress through complicated calculations in a step-by-step fashion. Users can upload their own files for processing and save their work on our server, as well as work with files that other users wish to share. These tools are currently being used to investigate novae and X-ray bursts. The suite is available through nucastrodata.org, a website that also hyperlinks available nuclear data sets relevant for nuclear astrophysics research. New features are continually being added to this software, which is funded by the U.S. Department of Energy Low Energy Nuclear Physics and Nuclear Data Programs. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  6. Radiative Magnetic Reconnection in Astrophysics

    NASA Astrophysics Data System (ADS)

    Uzdensky, D. A.

    In this chapter we review a new and rapidly growing area of research in high-energy plasma astrophysics—radiative magnetic reconnection, defined here as a regime of reconnection where radiation reaction has an important influence on the reconnection dynamics, energetics, and/or nonthermal particle acceleration. This influence be may be manifested via a variety of radiative effects that are critical in many high-energy astrophysical applications. The most notable radiative effects in astrophysical reconnection include radiation-reaction limits on particle acceleration, radiative cooling, radiative resistivity, braking of reconnection outflows by radiation drag, radiation pressure, viscosity, and even pair creation at highest energy densities. The self-consistent inclusion of these effects into magnetic reconnection theory and modeling sometimes calls for serious modifications to our overall theoretical approach to the problem. In addition, prompt reconnection-powered radiation often represents our only observational diagnostic tool available for studying remote astrophysical systems; this underscores the importance of developing predictive modeling capabilities to connect the underlying physical conditions in a reconnecting system to observable radiative signatures. This chapter presents an overview of our recent theoretical progress in developing basic physical understanding of radiative magnetic reconnection, with a special emphasis on astrophysically most important radiation mechanisms like synchrotron, curvature, and inverse-Compton. The chapter also offers a broad review of key high-energy astrophysical applications of radiative reconnection, illustrated by multiple examples such as: pulsar wind nebulae, pulsar magnetospheres, black-hole accretion-disk coronae and hot accretion flows in X-ray Binaries and Active Galactic Nuclei and their relativistic jets, magnetospheres of magnetars, and Gamma-Ray Bursts. Finally, this chapter discusses the most critical

  7. Toward Understanding Astrophysical Phenomena

    NASA Astrophysics Data System (ADS)

    Luan, Jing

    2015-06-01

    algorithm also has the flexibility to trigger electromagnetic (EM) observation before the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method. (Abstract shortened by UMI.).

  8. The Invisible Messengers: the 2007 Data Search Between Gravitational Waves and High Energy Neutrinos

    NASA Astrophysics Data System (ADS)

    di Palma, Irene

    2015-01-01

    Many astrophysical sources and cataclysmic phenomena are expected to produce gravitational waves and high-energy cosmic radiation in our Universe, in the form of photons, hadrons and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) can escape very dense media and travel unabsorbed over cosmological distances, carrying information from the innermost regions of the astrophysical sources. Requiring consistency between GW and HEN detection channels enables new searches and a detection would yield significant additional information about the common source. We performed the first triggered analysis by combining GW data from the LIGO and Virgo interferometers around the time of neutrino triggers revealed from ANTARES neutrino telescope. No evidence for coincident events was found. We place a lower limit on the distance to GW sources associated with every HEN trigger. We are able to rule out the existence of coalescing binary neutron star systems and black hole-neutron star systems up to distances that are typically 5 Mpc and 10 Mpc, respectively. For generic waveforms, given certain assumptions, typical distance limits can be as high as 17 Mpc.

  9. GeV excess and phenomenological astrophysics modeling

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyuan; Enßlin, Torsten; Selig, Marco

    2016-05-01

    Predefined spatial templates to describe the background of γ-ray emission from astrophysical processes, like cosmic ray interactions, are used in previous searches for the γ-ray signatures of annihilating galactic dark matter. In this proceeding, we investigate the GeV excess in the inner Galaxy using an alternative approach, in which the astrophysical components are identified solely by their spectral and morphological properties. We confirm the reported GeV excess and derive related parameters for dark matter interpretation, which are consistent with previous results. We investigate the morphology of this spectral excess as preferred by the data only. This emission component exhibits a central Galaxy cusp as expected for a dark matter annihilation signal. However, Galactic disk regions with a morphology of that of the hot interstellar medium also host such a spectral component. This points to a possible astrophysical origin of the excess and requests a more detailed understanding of astrophysical γ-ray emitting processes in the galactic center region before definite claims about a dark matter annihilation signal can be made.

  10. Updated THM Astrophysical Factor of the 19F(p, α)16O Reaction and Influence of New Direct Data at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Palmerini, S.; Spitaleri, C.; Indelicato, I.; Mukhamedzhanov, A. M.; Lombardo, I.; Trippella, O.

    2015-06-01

    Fluorine nucleosynthesis represents one of the most intriguing open questions in nuclear astrophysics. It has triggered new measurements which may modify the presently accepted paradigm of fluorine production and establish fluorine as an accurate probe of the inner layers of asymptotic giant branch (AGB) stars. Both direct and indirect measurements have attempted to improve the recommended extrapolation to astrophysical energies, showing no resonances. In this work, we will demonstrate that the interplay between direct and indirect techniques represents the most suitable approach to attain the required accuracy for the astrophysical factor at low energies, {{E}c.m.}≲ 300 keV, which is of interest for fluorine nucleosynthesis in AGB stars. We will use the recently measured direct 19F{{(p,α )}16}O astrophysical factor in the 600 keV≲ {{E}c.m.}≲ 800 keV energy interval to renormalize the existing Trojan Horse Method (THM) data spanning the astrophysical energies, accounting for all identified sources of uncertainty. This has a twofold impact on nuclear astrophysics. It shows the robustness of the THM approach even in the case of direct data of questionable quality, as normalization is extended over a broad range, minimizing systematic effects. Moreover, it allows us to obtain more accurate resonance data at astrophysical energies, thanks to the improved 19F{{(p,α )}16}O direct data. Finally, the present work strongly calls for more accurate direct data at low energies, so that we can obtain a better fitting of the direct reaction mechanism contributing to the 19F{{(p,α )}16}O astrophysical factor. Indeed, this work points out that the major source of uncertainty affecting the low-energy S(E) factor is the estimate of the non-resonant contribution, as the dominant role of the 113 keV resonance is now well established.

  11. Laboratory Astrophysics White Paper: Summary of Laboratory Astrophysics Needs

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Laboratory Astrophysics Workshop (NASA LAW) met at NASA Ames Research Center from 1-3 May 2002 to assess the role that laboratory astrophysics plays in the optimization of NASA missions, both at the science conception level and at the science return level. Space missions provide understanding of fundamental questions regarding the origin and evolution of galaxies, stars, and planetary systems. In all of these areas the interpretation of results from NASA's space missions relies crucially upon data obtained from the laboratory. We stress that Laboratory Astrophysics is important not only in the interpretation of data, but also in the design and planning of future missions. We recognize a symbiosis between missions to explore the universe and the underlying basic data needed to interpret the data from those missions. In the following we provide a summary of the consensus results from our Workshop, starting with general programmatic findings and followed by a list of more specific scientific areas that need attention. We stress that this is a 'living document' and that these lists are subject to change as new missions or new areas of research rise to the fore.

  12. BOOK REVIEW: Astrophysics (Advanced Physics Readers)

    NASA Astrophysics Data System (ADS)

    Kibble, Bob

    2000-07-01

    Here is a handy and attractive reader to support students on post-16 courses. It covers the astrophysics, astronomy and cosmology that are demanded at A-level and offers anyone interested in these fields an interesting and engaging reference book. The author and the production team deserve credit for producing such an attractive book. The content, in ten chapters, covers what one would expect at this level but it is how it is presented that struck me as the book's most powerful asset. Each chapter ends with a summary of key ideas. Line drawings are clear and convey enough information to make them more than illustrations - they are as valuable as the text in conveying information. Full colour is used throughout to enhance illustrations and tables and to lift key sections of the text. A number of colour photographs complement the material and serve to maintain interest and remind readers that astrophysics is about real observable phenomena. Included towards the end is a set of tables offering information on physical and astronomical data, mathematical techniques and constellation names and abbreviations. This last table puzzled me as to its value. There is a helpful bibliography which includes society contacts and a website related to the text. Perhaps my one regret is that there is no section where students are encouraged to actually do some real astronomy. Astrophysics is in danger of becoming an armchair and calculator interest. There are practical projects that students could undertake either for school assessment or for personal interest. Simple astrophotography to capture star trails, observe star colours and estimate apparent magnitudes is an example, as is a simple double-star search. There are dozens more. However, the author's style is friendly and collaborative. He befriends the reader as they journey together through the ideas. There are progress questions at the end of each chapter. Their style tends to be rather closed and they emphasize factual recall

  13. Stay away from asthma triggers

    MedlinePlus

    Asthma triggers - stay away from; Asthma triggers - avoiding; Reactive airway disease - triggers; Bronchial asthma - triggers ... to them. Have someone who does not have asthma cut the grass, or wear a facemask if ...

  14. Astrophysical Applications of Fractional Calculus

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander A.

    The paradigm of fractional calculus occupies an important place for the macroscopic description of subdiffusion. Its advance in theoretical astrophysics is expected to be very attractive too. In this report we discuss a recent development of the idea to some astrophysical problems. One of them is connected with a random migration of bright points associated with magnetic fields at the solar photosphere. The transport of the bright points has subdiffusive features that require the fractional generalization of the Leighton's model. Another problem is related to the angular distribution of radio beams, being propagated through a medium with random inhomogeneities. The peculiarity of this medium is that radio beams are trapped because of random wave localization. This idea can be useful for the diagnostics of interplanetary and interstellar turbulent media.

  15. Astrophysical processes on the Sun

    PubMed Central

    Parnell, Clare E.

    2012-01-01

    Over the past two decades, there have been a series of major solar space missions, namely Yohkoh, SOHO, TRACE, and in the past 5 years, STEREO, Hinode and SDO, studying various aspects of the Sun and providing images and spectroscopic data with amazing temporal, spatial and spectral resolution. Over the same period, the type and nature of numerical models in solar physics have been completely revolutionized as a result of widespread accessibility to parallel computers. These unprecedented advances on both observational and theoretical fronts have led to significant improvements in our understanding of many aspects of the Sun's behaviour and furthered our knowledge of plasma physics processes that govern solar and other astrophysical phenomena. In this Theme Issue, the current perspectives on the main astrophysical processes that shape our Sun are reviewed. In this Introduction, they are discussed briefly to help set the scene. PMID:22665891

  16. The trigger card system for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Thompson, William; Anderson, John; Howe, Mark; Meijer, Sam; Wilkerson, John; Majorana Collaboration

    2014-09-01

    The aim of the MAJORANA DEMONSTRATOR is to demonstrate the feasibility of providing low enough background levels to search for neutrinoless double-beta decay (0 νββ) in an array of germanium detectors enriched to 87% in 76Ge. Currently, it is unknown if this decay process occurs; however, observation of such a decay process would show that lepton number is violated, confirm that neutrinos are Majorana particles, and yield information on the absolute mass scale of the neutrino. With current experimental results indicating a half-life greater than 2 x 1025 years for this decay, the minimization of background events is of critical importance. Utilizing time correlation, coincidence testing is able to reject multi-detector events that may otherwise be mistaken for 0 νββ when viewed independently. Here, we present both the hardware and software of the trigger card system, which provides a common clock to all digitizers and the muon veto system, thereby enabling the rejection of background events through coincidence testing. Current experimental results demonstrate the accuracy of the distributed clock to be within two clock pulses (20 ns) across all system components. A test system is used to validate the data acquisition system. The aim of the MAJORANA DEMONSTRATOR is to demonstrate the feasibility of providing low enough background levels to search for neutrinoless double-beta decay (0 νββ) in an array of germanium detectors enriched to 87% in 76Ge. Currently, it is unknown if this decay process occurs; however, observation of such a decay process would show that lepton number is violated, confirm that neutrinos are Majorana particles, and yield information on the absolute mass scale of the neutrino. With current experimental results indicating a half-life greater than 2 x 1025 years for this decay, the minimization of background events is of critical importance. Utilizing time correlation, coincidence testing is able to reject multi-detector events that may

  17. Plasma phenomenology in astrophysical systems: Radio-sources and jets

    SciTech Connect

    Montani, Giovanni; Petitta, Jacopo

    2014-06-15

    We review the plasma phenomenology in the astrophysical sources which show appreciable radio emissions, namely Radio-Jets from Pulsars, Microquasars, Quasars, and Radio-Active Galaxies. A description of their basic features is presented, then we discuss in some details the links between their morphology and the mechanisms that lead to the different radio-emissions, investigating especially the role played by the plasma configurations surrounding compact objects (Neutron Stars, Black Holes). For the sake of completeness, we briefly mention observational techniques and detectors, whose structure set them apart from other astrophysical instruments. The fundamental ideas concerning angular momentum transport across plasma accretion disks—together with the disk-source-jet coupling problem—are discussed, by stressing their successes and their shortcomings. An alternative scenario is then inferred, based on a parallelism between astrophysical and laboratory plasma configurations, where small-scale structures can be found. We will focus our attention on the morphology of the radio-jets, on their coupling with the accretion disks and on the possible triggering phenomena, viewed as profiles of plasma instabilities.

  18. Optical Quantum Entanglement in Astrophysics

    NASA Astrophysics Data System (ADS)

    Gómez, J.; Peimbert, A.; Echevarría, J.

    2009-10-01

    The theories of quantum entanglement between two distant particles, which clearly confirm the non-local nature of Quantum Mechanics, are applied to naturally produced particles in astrophysical objects. We study the production and reception of the cases of optical quantum entanglement most feasible to be observed: the two-photon spontaneous transition of the hydrogen 2 ^{2}S_{1/2} metastable level, which is known to be one of the components of the continuous spectra of ionized regions. We obtain the two-photon emission rate for four astrophysical objects: the Orion Nebula, two nearby planetary nebulae IC 2149 and NGC 7293, and the solar corona. The production of entangled pairs per second is 5.80×10^48, 9.39×10^45, 9.77×10^44, and 1.46×10^16 respectively. The distribution of the propagation directions of both emitted photons does not vanish at any angle; therefore it is possible to observe the entangled pair at an angles θ ≈ 0°. Because the number of two-photon coincidences goes as the fourth power of the ratio between the detector size and the distance from the astrophysical object, coincidences are scarce; for its detection we require receivers much larger than those currently available.

  19. Astrophysics with Microarcsecond Accuracy Astrometry

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  20. Using Visual Analytics to Maintain Situation Awareness in Astrophysics

    SciTech Connect

    Aragon, Cecilia R.; Poon, Sarah S.; Aldering, Gregory S.; Thomas, Rollin C.; Quimby, Robert

    2008-07-01

    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists needing to analyze heterogeneous, complex data under time pressure, and then make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes severalnovel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in use for over eighteen months by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture, and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley?s three levels of situation awareness.

  1. Sunfall: a collaborative visual analytics system for astrophysics

    SciTech Connect

    Aragon, Cecilia R.; Aragon, Cecilia R.; Bailey, Stephen J.; Poon, Sarah; Runge, Karl; Thomas, Rollin C.

    2008-07-07

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.

  2. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Tumino, A.

    2014-05-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  3. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    SciTech Connect

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  4. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  5. AMY trigger system

    SciTech Connect

    Sakai, Yoshihide

    1989-04-01

    A trigger system of the AMY detector at TRISTAN e{sup +}e{sup -} collider is described briefly. The system uses simple track segment and shower cluster counting scheme to classify events to be triggered. It has been operating successfully since 1987.

  6. High-energy spectroscopic astrophysics

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel; Walter, Roland

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  7. Astrophysics Source Code Library Enhancements

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.; Allen, A.; Berriman, G. B.; DuPrie, K.; Mink, J.; Nemiroff, R. J.; Schmidt, J.; Shamir, L.; Shortridge, K.; Taylor, M.; Teuben, P. J.; Wallin, J.

    2015-09-01

    The Astrophysics Source Code Library (ASCL)1 is a free online registry of codes used in astronomy research; it currently contains over 900 codes and is indexed by ADS. The ASCL has recently moved a new infrastructure into production. The new site provides a true database for the code entries and integrates the WordPress news and information pages and the discussion forum into one site. Previous capabilities are retained and permalinks to ascl.net continue to work. This improvement offers more functionality and flexibility than the previous site, is easier to maintain, and offers new possibilities for collaboration. This paper covers these recent changes to the ASCL.

  8. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  9. Astrophysics on the lab bench

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.

    2010-05-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a type II supernova explosion. In another experiment, students roll marbles up and down a double ramp in an attempt to get a marble to enter a tube halfway up the slope, which illustrates quantum tunnelling in stellar cores. The experiments are reasonably low cost to either purchase or manufacture.

  10. Astrophysics and Cosmology: International Partnerships

    NASA Astrophysics Data System (ADS)

    Blandford, Roger

    2016-03-01

    Most large projects in astrophysics and cosmology are international. This raises many challenges including: --Aligning the sequence of: proposal, planning, selection, funding, construction, deployment, operation, data mining in different countries --Managing to minimize cost growth through reconciling different practices --Communicating at all levels to ensure a successful outcome --Stabilizing long term career opportunities. There has been considerable progress in confronting these challenges. Lessons learned from past collaborations are influencing current facilities but much remains to be done if we are to optimize the scientific and public return on the expenditure of financial and human resources.

  11. Astrophysical constraints on dark energy

    NASA Astrophysics Data System (ADS)

    Ho, Chiu Man; Hsu, Stephen D. H.

    2016-02-01

    Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which grows linearly with distance and which can have astrophysical consequences. For example, the dark energy force overcomes the gravitational attraction from an isolated object (e.g., dwarf galaxy) of mass 107M⊙ at a distance of 23 kpc. Observable velocities of bound satellites (rotation curves) could be significantly affected, and therefore used to measure or constrain the dark energy density. Here, isolated means that the gravitational effect of large nearby galaxies (specifically, of their dark matter halos) is negligible; examples of isolated dwarf galaxies include Antlia or DDO 190.

  12. Astrophysics and Cosmology: International Partnerships

    NASA Astrophysics Data System (ADS)

    Blandford, Roger

    2015-04-01

    Most large projects in astrophysics and cosmology are international. This raises many challenges including: • Aligning the sequence of: proposal, planning, selection, funding, construction, deployment, operation, data mining in different countries • Managing to minimize cost growth through reconciling different practices • Communicating at all levels to ensure a successful outcome • Stabilizing long term career opportunities. There has been considerable progress in confronting these challenges. Lessons learned from past collaborations are influencing current facilities but much remains to be done if we are to optimize the scientific and public return on the expenditure of financial and human resources.

  13. Liquid xenon detectors for particle physics and astrophysics

    SciTech Connect

    Aprile, E.; Doke, T.

    2010-07-15

    This article reviews the progress made over the last 20 years in the development and applications of liquid xenon detectors in particle physics, astrophysics, and medical imaging experiments. A summary of the fundamental properties of liquid xenon as radiation detection medium, in light of the most current theoretical and experimental information is first provided. After an introduction of the different type of liquid xenon detectors, a review of past, current, and future experiments using liquid xenon to search for rare processes and to image radiation in space and in medicine is given. Each application is introduced with a survey of the underlying scientific motivation and experimental requirements before reviewing the basic characteristics and expected performance of each experiment. Within this decade it appears likely that large volume liquid xenon detectors operated in different modes will contribute to answering some of the most fundamental questions in particle physics, astrophysics, and cosmology, fulfilling the most demanding detection challenges. From detectors based solely on liquid xenon (LXe) scintillation, such as in the MEG experiment for the search of the rare ''{mu}{yields}e{gamma}'' decay, currently the largest liquid xenon detector in operation, and in the XMASS experiment for dark matter detection, to the class of time projection chambers which exploit both scintillation and ionization of LXe, such as in the XENON dark matter search experiment and in the Enriched Xenon Observatory for neutrinoless double beta decay, unrivaled performance and important contributions to physics in the next few years are anticipated.

  14. THE HIGH ENERGY TRANSIENT EXPLORER TRIGGERING ALGORITHM

    SciTech Connect

    E. FENIMORE; M. GALASSI

    2001-05-01

    The High Energy Transient Explorer uses a triggering algorithm for gamma-ray bursts that can achieve near the statistical limit by fitting to several background regions to remove trends. Dozens of trigger criteria run simultaneously covering time scales from 80 msec to 10.5 sec or longer. Each criteria is controlled by about 25 constants which gives the flexibility to search wide parameter spaces. On orbit, we have been able to operate at 6{sigma}, a factor of two more sensitive than previous experiments.

  15. The Astrophysics Data System Web Services

    NASA Astrophysics Data System (ADS)

    Eichhorn, G.; Accomazzi, A.; Demleitner, M.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    1999-12-01

    The Astrophysics Data System is a central part of the Distributed Digital Library for Astronomy. It provides access to most of the astronomical literature, as well as links to many different on-line information sources. The ADS Abstract Service provides a search interface to over 1.5 million references. The ADS Article Service provides access to the full journal articles for all major and most smaller journals, most of them back to volume 1. Links to on-line catalogs, electronic articles, astronomical object information and other data allow the user to quickly find on-line information. A reference and citation database provides information about article citations. We are currently working on greatly expanding the reference/citations database by including reference lists from the journals and by OCRing scanned reference lists. Between reference lists from the publishers and OCRd reference lists we have recently added almost 1 million reference-citation pairs to the database. OCRing of the abstracts from scanned journal article allowed us to include over 20,000 abstracts to the searchable database. Both these efforts will continue to add more data to our database. In the near future we will scan microfilms of publications from astronomical observatories, produced by a preservation project at the Harvard Library. This will provide unrestricted access to a large part of the 19th century astronomical literature.

  16. The Electronic Astrophysical Journal Letters Project

    NASA Astrophysics Data System (ADS)

    Dalterio, H. J.; Boyce, P. B.; Biemesderfer, C.; Warnock, A., III; Owens, E.; Fullton, J.

    The American Astronomical Society has developed a comprehensive system for the electronic dissemination of refereed astronomical research results. Our current focus is the production of an electronic version of the Astrophysical Journal Letters. With the help of a recent National Science Foundation grant, we have developed a system that includes: LATEX-based manuscript preparation, electronic submission, peer review, production, development of a database of SGML-tagged manuscripts, collection of page charges and other fees, and electronic manuscript storage and delivery. Delivery options include World-Wide Web access through HTML browsers such as Mosaic and Netscape, an email gateway, and a stand-alone client accessible through astronomical software packages such as IRAF. Our goal is to increase the access and usefulness of the journal by providing enhanced features such as faster publication, advanced search capabilities, forward and backward referencing, links to underlying data and links to adjunct materials in a variety of media. We have based our journal on open standards and freely available network tools wherever possible.

  17. LHCb Topological Trigger Reoptimization

    NASA Astrophysics Data System (ADS)

    Likhomanenko, Tatiana; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael

    2015-12-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays.

  18. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, L. (Editor)

    1997-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  19. Working Papers: Astronomy and Astrophysics Panel Reports

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Beichman, Charles A.; Canizares, Claude; Cronin, James; Heeschen, David; Houck, James; Hunten, Donald; Mckee, Christopher F.; Noyes, Robert; Ostriker, Jeremiah P.

    1991-01-01

    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities.

  20. High-Energy Astrophysics: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  1. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  2. Astrophysics of the 21st Century - Exploring the Extreme Universe

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.

    2006-01-01

    This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will use and in the spacecraft that will carry those instruments.

  3. Astrophysical effects of scalar dark matter miniclusters

    NASA Astrophysics Data System (ADS)

    Zurek, Kathryn M.; Hogan, Craig J.; Quinn, Thomas R.

    2007-02-01

    We model the formation, evolution and astrophysical effects of dark compact Scalar Miniclusters (“ScaMs”). These objects arise when a scalar field, with an axion-like or Higgs-like potential, undergoes a second-order phase transition below the QCD scale. Such a scalar field may couple too weakly to the standard model to be detectable directly through particle interactions, but may still be detectable by gravitational effects, such as lensing and baryon accretion by large, gravitationally bound miniclusters. The masses of these objects are shown to be constrained by the Lyα power spectrum to be less than ˜104M⊙, but they may be as light as classical axion miniclusters, of the order of 10-12M⊙. We simulate the formation and nonlinear gravitational collapse of these objects around matter-radiation equality using an N-body code, estimate their gravitational lensing properties, and assess the feasibility of studying them using current and future lensing experiments. Future MACHO-type variability surveys of many background sources can reveal either high-amplification, strong-lensing events, or measure density profiles directly via weak-lensing variability, depending on ScaM parameters and survey depth. However, ScaMs, due to their low internal densities, are unlikely to be responsible for apparent MACHO events already detected in the Galactic halo. As a result, in the entire window between 10-7M⊙ and 102M⊙ covered by the galactic scale lensing experiments, ScaMs may in fact compose all the dark matter. A simple estimate is made of parameters that would give rise to early structure formation; in principle, early stellar collapse could be triggered by ScaMs as early as recombination, and significantly affect cosmic reionization.

  4. Libstatmech and applications to astrophysics

    NASA Astrophysics Data System (ADS)

    Yu, Tianhong

    In this work an introduction to Libstatmech is presented and applications especially to astrophysics are discussed. Libstatmech is a C toolkit for computing the statistical mechanics of fermions and bosons, written on top of libxml and gsl (GNU Scientific Library). Calculations of Thomas-Fermi Screening model and Bose-Einstein Condensate based on libstatmech demonstrate the expected results. For astrophysics application, a simple Type Ia Supernovae model is established to run the network calculation with weak reactions, in which libstatmech contributes to compute the electron chemical potential and allows the weak reverse rates to be calculated from detailed balance. Starting with pure 12C and T9=1.8, we find that at high initial density (rho~ 9x 109 g/cm3) there are relatively large abundances of neutron-rich iron-group isotopes (e.g. 66Ni, 50Ti, 48Ca) produced during the explosion, and Y e can drop to ~0.4, which indicates that the rare, high density Type Ia supernovae may help to explain the 48Ca and 50Ti effect in FUN CAIs.

  5. The next century astrophysics program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1992-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of flagship and intermediate missions that are presently under study for possible launch during the next 20 years. These missions and tentative schedules, referred to as the Astrotech 21 Mission Set, are summarized. The missions are in three groups corresponding to the cognizant science branch within the Astrophysics Division. Phase C/D refers to the pre-launch construction and delivery of the spacecraft, and the Operations Phase refers to the period when the mission is active in space. Approximately 1.5 years before the start of Phase C/D, a non-advocate review (NAR) is held to ensure that the mission/system concept and the requisite technology are at an appropriate stage of readiness for full scale development to begin. Therefore, technology development is frozen (usually) as of the date of a successful NAR. An overview of the technology advances required for each of the three wavelength groups is provided in the following paragraphs, along with a brief description of the individual missions.

  6. Analytic studies in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Pizzochero, Pierre

    Five studies are presented in nuclear astrophysics, which deal with different stages of stellar evolution and which use analytic techniques as opposed to numerical ones. Two problems are described in neutrino astrophysics: the solar-neutrino puzzle is analyzed in the framework of the MSW mechanism for the enhancement of neutrino oscillations in matter; and the cooling of neutron stars is studied by calculating the neutrino emissivity from strangeness condensation. Radiative transfer is then examined as applied to SN1987A: its early spectrum and bolometric corrections are calculated by developing an analytic model which can describe both the extended nature of the envelope and the non-LTE state of the radiation field in the scattering-dominated early atmosphere; and a model-independent relation is derived between mass and kinetic energy for the hydrogen envelope of SN1987A, using only direct observations of its luminosity and photospheric velocity. Finally, an analytic approach is presented to relate the softness of the EOS of dense nuclear matter in the core of a supernova, the hydrostatic structure of such core and the initial strength of the shock wave.

  7. The digital trigger system for the RED-100 detector

    NASA Astrophysics Data System (ADS)

    Naumov, P. P.; Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Efremenko, Yu. V.; Kaplin, V. A.

    2015-12-01

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides a high efficiency of response even to low-energy events are considered.

  8. The digital trigger system for the RED-100 detector

    SciTech Connect

    Naumov, P. P. Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Efremenko, Yu. V.; Kaplin, V. A.

    2015-12-15

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides a high efficiency of response even to low-energy events are considered.

  9. General Astrophysics and Comparative Planetology with the Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J. (Editor)

    2005-01-01

    This document discusses the potential of the Terrestrial Planet Finder (TPF) for general astrophysics beyond its base mission, focusing on science obtainable with no or minimal modifications to the mission design, but also exploring possible modifications of TPF with high scientific merit and no impact on the basic search for extrasolar Earth analogs.

  10. Recent astrophysical applications of the Trojan Horse Method to nuclear astrophysics

    SciTech Connect

    Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Fu, C.; Tribble, R.; Banu, A.; Al-Abdullah, T.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-05-21

    The Trojan Horse Method (THM) is an unique indirect technique allowing to measure astrophysical rearrangement reactions down to astrophysical relevant energies. The basic principle and a review of the recent applications of the Trojan Horse Method are presented. The applications aiming to the extraction of the bare astrophysical S{sub b}(E) for some two-body processes are discussed.

  11. Common Asthma Triggers

    MedlinePlus

    ... your bedding on the hottest water setting. Outdoor Air Pollution Outdoor air pollution can trigger an asthma attack. This pollution can ... your newspaper to plan your activities for when air pollution levels will be low. Cockroach Allergen Cockroaches and ...

  12. Dealing with Asthma Triggers

    MedlinePlus

    ... smell given off by paint or gas, and air pollution. If you notice that an irritant triggers your ... or other tobacco products around you. If outdoor air pollution is a problem, running the air conditioner or ...

  13. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  14. Calorimetry Triggering in ATLAS

    SciTech Connect

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; /UC, Irvine /AGH-UST, Cracow /Birmingham U. /Barcelona, IFAE /CERN /Birmingham U. /Rutherford /Montreal U. /Santa Maria U., Valparaiso /DESY /DESY, Zeuthen /Geneva U. /City Coll., N.Y. /Barcelona, IFAE /CERN /Birmingham U. /Kirchhoff Inst. Phys. /Birmingham U. /Lisbon, LIFEP /Rio de Janeiro Federal U. /City Coll., N.Y. /Birmingham U. /Copenhagen U. /Copenhagen U. /Brookhaven /Rutherford /Royal Holloway, U. of London /Pennsylvania U. /Montreal U. /SLAC /CERN /Michigan State U. /Chile U., Catolica /City Coll., N.Y. /Oxford U. /La Plata U. /McGill U. /Mainz U., Inst. Phys. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Queen Mary, U. of London /CERN /Rutherford /Rio de Janeiro Federal U. /Birmingham U. /Montreal U. /CERN /Kirchhoff Inst. Phys. /Liverpool U. /Royal Holloway, U. of London /Pennsylvania U. /Kirchhoff Inst. Phys. /Geneva U. /Birmingham U. /NIKHEF, Amsterdam /Rutherford /Royal Holloway, U. of London /Rutherford /Royal Holloway, U. of London /AGH-UST, Cracow /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Birmingham U. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Kirchhoff Inst. Phys. /Michigan State U. /Stockholm U. /Stockholm U. /Birmingham U. /CERN /Montreal U. /Stockholm U. /Arizona U. /Regina U. /Regina U. /Rutherford /NIKHEF, Amsterdam /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /City Coll., N.Y. /University Coll. London /Humboldt U., Berlin /Queen Mary, U. of London /Argonne /LPSC, Grenoble /Arizona U. /Kirchhoff Inst. Phys. /Birmingham U. /Antonio Narino U. /Hamburg U. /DESY /DESY, Zeuthen /Kirchhoff Inst. Phys. /Birmingham U. /Chile U., Catolica /Indiana U. /Manchester U. /Kirchhoff Inst. Phys. /Rutherford /City Coll., N.Y. /Stockholm U. /La Plata U. /Antonio Narino U. /Queen Mary, U. of London /Kirchhoff Inst. Phys. /Antonio Narino U. /Pavia U. /City Coll., N.Y. /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Pennsylvania U. /Barcelona, IFAE /Barcelona, IFAE /Chile U., Catolica /Genoa U. /INFN, Genoa /Rutherford /Barcelona, IFAE /Nevis Labs, Columbia U. /CERN /Antonio Narino U. /McGill U. /Rutherford /Santa Maria U., Valparaiso /Rutherford /Chile U., Catolica /Brookhaven /Oregon U. /Mainz U., Inst. Phys. /Barcelona, IFAE /McGill U. /Antonio Narino U. /Antonio Narino U. /Kirchhoff Inst. Phys. /Sydney U. /Rutherford /McGill U. /McGill U. /Pavia U. /Genoa U. /INFN, Genoa /Kirchhoff Inst. Phys. /Kirchhoff Inst. Phys. /Mainz U., Inst. Phys. /Barcelona, IFAE /SLAC /Stockholm U. /Moscow State U. /Stockholm U. /Birmingham U. /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /Birmingham U. /Geneva U. /Oregon U. /Barcelona, IFAE /University Coll. London /Royal Holloway, U. of London /Birmingham U. /Mainz U., Inst. Phys. /Birmingham U. /Birmingham U. /Oregon U. /La Plata U. /Geneva U. /Chile U., Catolica /McGill U. /Pavia U. /Barcelona, IFAE /Regina U. /Birmingham U. /Birmingham U. /Kirchhoff Inst. Phys. /Oxford U. /CERN /Kirchhoff Inst. Phys. /UC, Irvine /UC, Irvine /Wisconsin U., Madison /Rutherford /Mainz U., Inst. Phys. /CERN /Geneva U. /Copenhagen U. /City Coll., N.Y. /Wisconsin U., Madison /Rio de Janeiro Federal U. /Wisconsin U., Madison /Stockholm U. /University Coll. London

    2011-12-08

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  15. Dynamic Triggering Stress Modeling

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Velasco, A. A.

    2008-12-01

    It has been well established that static (permanent) stress changes can trigger nearby earthquakes, within a few fault lengths from the causative event, whereas triggering by dynamic (transient) stresses carried by seismic waves both nearby and at remote distances has not been as well documented nor understood. An analysis of the change in the local stress caused by the passing of surfaces waves is important for the understanding of this phenomenon. In this study, we modeled the change in the stress that the passing of Rayleigh and Loves waves causes on a fault plane of arbitrary orientation, and applied a Coulomb failure criteria to calculate the potential of these stress changes to trigger reverse, normal or strike-slip failure. We preliminarily test these model results with data from dynamically triggering earthquakes in the Australian Bowen Basin. In the Bowen region, the modeling predicts a maximum triggering potential for Rayleigh waves arriving perpendicularly to the strike of the reverse faults present in the region. The modeled potentials agree with our observations, and give us an understanding of the dynamic stress orientation needed to trigger different type of earthquakes.

  16. Overview of NASA Astrophysics Program Analysis Groups

    NASA Astrophysics Data System (ADS)

    Sanders, Wilton T.; Sambruna, Rita M.; Perez, Mario R.; Hudgins, Douglas M.

    2015-01-01

    NASA Astrophysics Program Analysis Groups (PAGs) are responsible for facilitating and coordinating community input into the development and execution of NASAs three astrophysics science themes: Cosmic Origins (COPAG), Exoplanet Exploration (ExoPAG), and Physics of the Cosmos (PhysPAG). The PAGs provide a community-based, interdisciplinary forum for analyses that support and inform planning and prioritization of activities within the Astrophysics Division programs. Operations and structure of the PAGs are described in their Terms of Reference (TOR), which can be found on the three science theme Program Office web pages. The Astrophysics PAGs report their input and findings to NASA through the Astrophysics Subcommittee of the NASA Advisory Council, of which all the PAG Chairs are members. In this presentation, we will provide an overview of the ongoing activities of NASAs Astrophysics PAGs in the context of the opportunities and challenges currently facing the Astrophysics Division. NASA Headquarters representatives for the COPAG, ExoPAG, and PhysPAG will all be present and available to answer questions about the programmatic role of the Astrophysics PAGs.

  17. Overview of NASA Astrophysics Program Analysis Groups

    NASA Astrophysics Data System (ADS)

    Garcia, Michael R.; Hudgins, D. M.; Sambruna, R. M.

    2014-01-01

    NASA Astrophysics Program Analysis Groups (PAGs) are responsible for facilitating and coordinating community input into the developmentand execution of NASAs three astrophysics science themes: Cosmic Origins (COPAG), Exoplanet Exploration (ExoPAG), and Physics of the Cosmos (PhysPAG). The PAGs provide a community-based, interdisciplinary forum for analyses that support and inform planning and prioritization of activities within the Astrophysics Division programs. Operations and structure of the PAGs are described in the Terms of Reference (TOR) which can be found on the three science theme Program Office web pages. The Astrophysics PAGs report their input and findings to NASA through the Astrophysics Subcommittee of the NASA Advisory Council, of which all the PAG Chairs are members. In this presentation, we will provide an overview of the ongoing activities of NASAs Astrophysics PAGs in the context of the opportunities and challenges currently facing the Astrophysics Division. NASA Headquarters representatives for the COPAG, ExoPAG, and PhysPAG will all be present and available to answer questions about the programmatic role of the Astrophysics PAGs.

  18. Astrophysics at the Highest Energy Frontiers

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    I discuss recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. I also discuss the connections between these topics.

  19. Nuclear Astrophysics with the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Lamia, L.; Pizzone, R. G.; Cherubini, S.; Gulino, M.; La Cognata, M.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-01-01

    The Trojan Horse Method (THM) represents the indirect path to determine the bare nucleus astrophysical S(E) factor for reactions between charged particles at astrophysical energies. This is done by measuring the quasi free cross section of a suitable three body process. The basic features of the THM will be presented together with some applications to demonstrate its practical use.

  20. Flexible, Mastery-Oriented Astrophysics Sequence.

    ERIC Educational Resources Information Center

    Zeilik, Michael, II

    1981-01-01

    Describes the implementation and impact of a two-semester mastery-oriented astrophysics sequence for upper-level physics/astrophysics majors designed to handle flexibly a wide range of student backgrounds. A Personalized System of Instruction (PSI) format was used fostering frequent student-instructor interaction and role-modeling behavior in…

  1. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Weck, Phillippe F. (Editor); Kwong, Victor H. S. (Editor); Salama, Farid (Editor)

    2006-01-01

    This report is a collection of papers presented at the 2006 NASA Workshop on Laboratory Astrophysics held in the University of Nevada, Las Vegas (UNLV) from February 14 to 16, 2006. This workshop brings together producers and users of laboratory astrophysics data so that they can understand each other's needs and limitations in the context of the needs for NASA's missions. The last NASA-sponsored workshop was held in 2002 at Ames Research Center. Recent related meetings include the Topical Session at the AAS meeting and the European workshop at Pillnitz, Germany, both of which were held in June 2005. The former showcased the importance of laboratory astrophysics to the community at large, while the European workshop highlighted a multi-laboratory approach to providing the needed data. The 2006 NASA Workshop on Laboratory Astrophysics, sponsored by the NASA Astrophysics Division, focused on the current status of the field and its relevance to NASA. This workshop attracted 105 participants and 82 papers of which 19 were invited. A White Paper identifying the key issues in laboratory astrophysics during the break-out sessions was prepared by the Scientific Organizing Committee, and has been forwarded to the Universe Working Group (UWG) at NASA Headquarters. This White Paper, which represented the collective inputs and opinions from experts and stakeholders in the field of astrophysics, should serve as the working document for the future development of NASA's R&A program in laboratory astrophysics.

  2. Dark matter triggers of supernovae

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Rajendran, Surjeet; Varela, Jaime

    2015-09-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to 1.25 M⊙ rules out primordial black holes with masses ˜1019- 1020 gm as a dominant constituent of the local dark matter density. Black holes with masses as large as 1024 gm will be excluded if recent observations by the NuStar Collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range 1020- 1022 gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large spacetime volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.

  3. Axions in astrophysics and cosmology

    SciTech Connect

    Sikivie, P.

    1984-07-01

    Axion models often have a spontaneously broken exact discrete symmetry. In that case, they have discretely degenerate vacua and hence domain walls. The properties of the domain walls, the cosmological catastrophe they produce and the ways in which this catastrophe may be avoided are explained. Cosmology and astrophysics provide arguments that imply the axion decay constant should lie in the range 10/sup 8/ GeV less than or equal to f/sub a/ less than or equal to 10/sup 12/ GeV. Reasons are given why axions are an excellent candidate to constitute the dark matter of galactic halos. Using the coupling of the axions to the electromagnetic field, detectors are described to look for axions floating about in the halo of our galaxy and for axions emitted by the sun. (LEW)

  4. Reaction models in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Descouvemont, Pierre

    2016-05-01

    We present different reaction models commonly used in nuclear astrophysics, in particular for the nucleosynthesis of light elements. Pioneering works were performed within the potential model, where the internal structure of the colliding nuclei is completely ignored. Significant advances in microscopic cluster models provided the first microscopic description of the 3He(α,&gamma)7 Be reaction more than thirty years ago. In this approach, the calculations are based on an effective nucleon-nucleon interaction, but the cluster approximation should be made to simplify the calculations. Nowadays, modern microscopic calculations are able to go beyond the cluster approximation, and aim at finding exact solutions of the Schrödinger equation with realistic nucleon-nucleon interactions. We discuss recent examples on the d+d reactions at low energies.

  5. Transfer reactions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  6. Atoms and molecules in astrophysics

    SciTech Connect

    Lepp, S.

    1993-05-01

    In 1987 supernova was observed in the Large Magellanic Cloud. The supernova, the explosion of a massive star following core collapse, releases a expanding cloud of gas called the ejecta. Because this supernova occured so close to our own galaxy it was the first chance to get high resolution spectra from a supernova ejecta. There have been a few molecular species (CO and SiO) and many more atomic species observed in the ejecta of Supernova 1987a. The ejecta represents an evolving laboratory for atomic and molecular physics. This paper will review models of the ejecta of Supernova 1987a and some other astrophysical objects with a particular emphasis on the atomic and molecular processes involved.

  7. Astrophysically Interesting Resonances; Another Approach

    NASA Astrophysics Data System (ADS)

    Austin, Roby; Jenkins, David

    2008-10-01

    R.A.E. Austin, R. Kanungo, A. Campbell, S. Colosimo, S. Reeve Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, University of York, UK; P.J. Woods T. Davinson University of Edinburgh; C.-Y. Wu A. Hurst J.A. Becker Lawrence Livermore National Laboratory; G.C. Ball M. Djongolov G. Hackman A.C. Morton, C. Pearson, S.J. Williams TRIUMF; A.A. Phillips, M. Schumaker, University of Guelph H.Boston, A. Grint, D. Oxley, University of Liverpool; D. Cline, A. Hayes, University of Rochester; We describe a prototype experiment to measure resonances of interest in astrophysical reactions. We use the TIGRESS to detect gamma rays in coincidence with charged particles, inelastically scattered in inverse kinematics. The particles are detected with the Bambino detector modified to a δE-E silicon telescope spanning 15-40 degrees in the lab.

  8. Underground Nuclear Astrophysics at LUNA

    SciTech Connect

    Junker, Matthias

    2008-01-24

    Nuclear cross sections play a key role in understanding stellar evolution and elemental synthesis. Also in the field of astroparticle physics precise knowledge on thermonuclear cross sections is needed to extract the particle properties from the experimental data. While it is desirable to directly measure the relevant cross sections in the energy range of interest for the specific stellar environment this proves to be difficult, if not impossible, due to the effect of the Coulomb barrier, which causes an exponential drop of the cross sections at stellar energies. Consequently direct measurements are hampered by low counting rates and background caused by cosmic rays and environmental radioactivity. In addition background induced by the beam or the target itself can disturb the measurements.In this contribution I will discuss some of the reactions studied by LUNA in the past years to illustrate important aspects underground nuclear astrophysics.

  9. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  10. NASA Announces 2009 Astronomy and Astrophysics Fellows

    NASA Astrophysics Data System (ADS)

    2009-02-01

    WASHINGTON -- NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's post-doctoral fellowships will conduct independent research at institutions around the country. "The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers." Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009. "I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Cassiopeia A Comes Alive Across Time and Space A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include

  11. Overview of the Astrophysics Data System

    NASA Technical Reports Server (NTRS)

    Good, John C.; Pomphrey, Richard B.

    1990-01-01

    The Astrophysics Division of NASA has built a geographically- and logically-distributed heterogeneous information system for the dissemination and coordinated multispectral analysis of data from astrophysics missions. The Astrophysics Data System (ADS) is a truly distributed system in which the data and the required processing are physically distributed. To accommodate the anticipated growth and changes in both requirements and technology, the ADS employs a server/client architecture which allows services and data to be added or replaced without having to change the basic architecture or interfaces. Current datasets accessible through the system include all the tabular astronomical data available at each of six existing astrophysics data centers. Additional data nodes, at both NASA data centers and academic institutions, will be added shortly. The future evolution of the system will be driven in large part by user services mounted both by the ADS project itself and by members of the astrophysics community.

  12. Overview of the Astrophysics Data System

    NASA Technical Reports Server (NTRS)

    Good, John C.; Pomphrey, Richard B.

    1991-01-01

    The Astrophysics Division of NASA has built a geographically and logically distributed heterogeneous information system for the dissemination and coordinated multispectral analysis of data from astrophysics missions. The Astrophysics Data System (ADS) is a truly distributed system in which the data and the required processing are physically distributed. To accommodate the anticipated growth and changes in both requirements and technology, the ADS employs a server/client architecture which allows services and data to be added or replaced without having to change the basic architecture or interfaces. Current datasets accessible through the system include all the tabular astronomical data available at each of six existing astrophysics data centers. Additional data nodes, at both NASA data centers and academic institutions, will be added shortly. The future evolution of the system will be driven in large part by user services mounted both by the ADS project itself and by members of the astrophysics community.

  13. Large-Scale Astrophysical Visualization on Smartphones

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  14. The Time-of-Flight trigger at CDF

    SciTech Connect

    Bauer, G.; Mulhearn, M.J.; Paus, Ch.; Schieferdecker, P.; Tether, S.; Lewis, J.D.; Shaw, T.; Acosta, D.; Konigsberg, J.; Madorsky, A.; /Florida U.

    2006-05-01

    The Time-of-Flight (TOF) detector measures the arrival time and deposited energy of charged particles reaching scintillator bars surrounding the central tracking region of the CDF detector. Requiring high ionization in the TOF system provides a unique trigger capability, which has been used for a magnetic monopole search. Other uses, with smaller pulse height thresholds, include a high-multiplicity charged-particle trigger useful for QCD studies and a much improved cosmic ray trigger for calibrating other detector components. Although not designed as input to CDF's global Level 1 trigger, the TOF system has been easily adapted to this role by the addition of 24 cables, new firmware, and four custom TOF trigger boards (TOTRIBs). This article describes the TOF trigger.

  15. Dynamic Triggering of Deep Earthquakes—a Global Perspective

    NASA Astrophysics Data System (ADS)

    Zhan, Z.; Shearer, P. M.

    2014-12-01

    Dynamic triggering has been robustly observed for shallow earthquakes and tremor. Understanding this phenomenon provides important constraints on earthquake dynamics, such as earthquake nucleation, fault frictional properties, slow slip, and stress distributions. Tibi et al. (2003) reported examples of dynamic triggering in deep earthquakes and pointed out their potential to constrain the still-enigmatic faulting mechanisms of deep earthquakes. Here we analyze global earthquake catalogs to systematically search for statistically significant dynamic triggering at depths greater than 300 km. We find that dynamic triggering of deep earthquakes is most pronounced within 3 hours after the master events, and is limited in depth (i.e., triggering of and by shallow earthquakes is not observed). We also observed a significant downward triggering bias. We suggest that these characteristics may be related to deep earthquake rupture directivity and meta-stable olivine wedge structures inside subducted slabs.

  16. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  17. Cygnus Trigger System

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, C. Mitton

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two radiographic sources (Cygnus 1, Cygnus 2) each with a dose rating of 4 rads at 1 m, and a 1-mm diameter spot size. The electrical specifications are: 2.25 MV, 60 kA, 60 ns. This facility is located in an underground environment at the Nevada Test Site (NTS). These sources were developed as a primary diagnostic for subcritical tests, which are single-shot, high-value events. In such an application there is an emphasis on reliability and reproducibility. A robust, low-jitter trigger system is a key element for meeting these goals. The trigger system was developed with both commercial and project-specific equipment. In addition to the traditional functions of a trigger system there are novel features added to protect the investment of a high-value shot. Details of the trigger system, including elements designed specifically for a subcritical test application, will be presented. The individual electronic components have their nominal throughput, and when assembled have a system throughput with a measured range of jitter. The shot-to-shot jitter will be assessed both individually and in combination. Trigger reliability and reproducibility results will be presented for a substantial number of shots executed at the NTS.

  18. Trigger mechanism for engines

    SciTech Connect

    Clark, L.R.

    1989-02-28

    A trigger mechanism is described for a blower-vacuum apparatus having a trigger mounted within a handle and a small engine comprising: a throttle; a ''L'' shaped lever having first and second legs mounted for rotation about an intermediate pivot within the handle when the trigger is depressed, interconnecting the trigger and the throttle, the second leg having first teeth defined therein, the lever further having idle, full throttle and stop positions; a normally raised latch means adapted to be rotated and axially depressed, the latch means having second teeth situated on a cam to engage the first teeth for holding the lever in an intermediate position between the idle and full throttle positions when the latch means is rotated. The latch means further are cam teeth into potential engagement with the lever teeth when the trigger is depressed, lever is biased to the stop position; and idle adjusting means means for intercepting the second leg for preventing the second leg from reaching the stop position when the latch means is raised.

  19. THE XO PLANETARY SURVEY PROJECT: ASTROPHYSICAL FALSE POSITIVES

    SciTech Connect

    Poleski, Radosaw; McCullough, Peter R.; Valenti, Jeff A.; Burke, Christopher J.; Machalek, Pavel; Janes, Kenneth

    2010-07-15

    Searches for planetary transits find many astrophysical false positives as a by-product. There are four main types analyzed in the literature: a grazing-incidence eclipsing binary (EB) star, an EB star with a small radius companion star, a blend of one or more stars with an unrelated EB star, and a physical triple star system. We present a list of 69 astrophysical false positives that had been identified as candidates of transiting planets of the on-going XO survey. This list may be useful in order to avoid redundant observation and characterization of these particular candidates that have been independently identified by other wide-field searches for transiting planets. The list may be useful for those modeling the yield of the XO survey and surveys similar to it. Subsequent observations of some of the listed stars may improve mass-radius relations, especially for low-mass stars. From the candidates exhibiting eclipses, we report three new spectroscopic double-line binaries and give mass function estimations for 15 single-line spectroscopic binaries.

  20. Searching for Simpler Models of Astrophysical Pattern Formation

    NASA Astrophysics Data System (ADS)

    Cangi, Eryn; Abrams, Daniel M.

    2016-01-01

    While theories of synchronization in two- or three-body astronomical systems are well understood, a generalization to many-bodied systems remains largely unexplored. Historically, problems of resonant capture among astronomical bodies have been treated primarily using methods from conservative classical mechanics. We investigate the possibility of using nonconservative models together with perturbation theory and numerical methods to understand the phenomenon of resonant capture in large-scale structures such as rings, planetary systems and galactic spiral arms. In particular, we focus on N-body dissipative systems such as circumplanetary discs and use methods drawn from the study of coupled oscillators. One such method is inspired by the Kuramoto model, which describes mean-field behavior in large ensembles of coupled nonlinear oscillators. The Kuramoto model can be modified to allow for non-mean-field coupling, leading to the existence of chimera states, in which most of the oscillators synchronize. These chimera states can appear as clusters or spirals of synced oscillators, and may be suggestive of objects in astronomical contexts. As an illustrative example, we develop a mean-field model for N small particles in a dust ring around a massive planet and integrate it numerically using code developed in MATLAB and Python. Preliminary results show promise that this approach will yield new insight into astronomical synchronization phenomena across a wide range of length scales.

  1. A-STAR: The All-Sky Transient Astrophysics Reporter

    NASA Astrophysics Data System (ADS)

    Osborne, J. P.; O'Brien, P.; Evans, P.; Fraser, G. W.; Martindale, A.; Atteia, J.-L.; Cordier, B.; Mereghetti, S.

    2013-07-01

    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.

  2. Swift heavy ion modifications of astrophysical water ice

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Rothard, H.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J.-J.; Kamalou, O.; Lv, X.-Y.; da Silveira, E. Frota; Thomas, J.-C.; Pino, T.; Mejia, C.; Godard, M.; de Barros, A. L. F.

    2015-12-01

    In the relatively shielded environments provided by interstellar dense clouds in our Galaxy, infrared astronomical observations have early revealed the presence of low temperature (10-100 K) ice mantles covering tiny grain "cores" composed of more refractory material. These ices are of specific interest because they constitute an interface between a solid phase under complex evolution triggered by energetic processes and surface reactions, with a rich chemistry taking place in the gas phase. The interstellar ice mantles present in these environments are immersed, in addition to other existing radiations fields, in a flux of cosmic ray particles that can produce new species via radiolysis processes, but first affects their structure, which may change and also induces desorption of molecules and radicals from these grains. Theses cosmic rays are simulated by swift ions in the laboratory for a better understanding of astrophysical processes.

  3. Tau Trigger at the ATLAS Experiment

    SciTech Connect

    Benslama, K.; Kalinowski, A.; Belanger-Champange, C.; Brenner, R.; Bosman, M.; Casado, P.; Osuna, C.; Perez, E.; Vorwerk, V.; Czyczula, Z.; Dam, M.; Xella, S.; Demers, S.; Farrington, S.; Igonkina, O.; Kanaya, N.; Tsuno, S.; Ptacek, E.; Reinsch, A.; Strom, David M.; Torrence, E.; /Oregon U. /Sydney U. /Lancaster U. /Birmingham U.

    2011-11-09

    Many theoretical models, like the Standard Model or SUSY at large tan({beta}), predict Higgs bosons or new particles which decay more abundantly to final states including tau leptons than to other leptons. At the energy scale of the LHC, the identification of tau leptons, in particular in the hadronic decay mode, will be a challenging task due to an overwhelming QCD background which gives rise to jets of particles that can be hard to distinguish from hadronic tau decays. Equipped with excellent tracking and calorimetry, the ATLAS experiment has developed tau identification tools capable of working at the trigger level. This contribution presents tau trigger algorithms which exploit the main features of hadronic tau decays and describes the current tau trigger commissioning activities. Many of the SM processes being investigated at ATLAS, as well as numerous BSM searches, contain tau leptons in their final states. Being able to trigger effectively on the tau leptons in these events will contribute to the success of the ATLAS experiment. The tau trigger algorithms and monitoring infrastructure are ready for the first data, and are being tested with the data collected with cosmic muons. The development of efficiency measurements methods using QCD and Z {yields} {tau}{tau} events is well advanced.

  4. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  5. Investigation of Remotely Triggered Tremor and Earthquakes in Latin America

    NASA Astrophysics Data System (ADS)

    Gonzalez-Huizar, H.; Velasco, A. A.

    2014-12-01

    It has been shown that non-volcanic tremor (NVT) as well as small to moderate size earthquakes can be triggered by the seismic waves from distant earthquakes; however, little is understood about the triggering mechanisms. Investigating cases of remote triggering offers the opportunity to improve our knowledge about the physical mechanisms of earthquake interaction and nucleation. Furthermore, the similarities observed between remotely triggered NVT and those related to slow slip events, suggest that investigating triggered NVT may give us important insights into the mechanisms involved in slow slip events and their potential role in the earthquake cycle. In this work we present new results and the techniques we employ in identifying, locating and modeling cases of triggered earthquakes and NVT in Latin America and the Caribbean. In particular, we use global and regional seismic networks to perform an intensive search for triggered seismicity in Mexico, Cuba, Nicaragua, Costa Rica, Colombia, Ecuador, Peru, Bolivia, and Chile. Our results suggest that seismicity can be triggered in a broad variety of tectonic environments, depending strongly on the triggering dynamic stress amplitude and orientation. This investigation will help to define the regions where remote triggering occurs and their susceptibility to undergo an important increase in seismicity after the occurrence of a distant large earthquake.

  6. Video Event Trigger

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.; Lichter, Michael J.

    1994-01-01

    Video event trigger (VET) processes video image data to generate trigger signal when image shows significant change like motion or appearance, disappearance, change in color, change in brightness, or dilation of object. System aids in efficient utilization of image-data-storage and image-data-processing equipment in applications in which many video frames show no changes and are wasteful to record and analyze all frames when only relatively few frames show changes of interest. Applications include video recording of automobile crash tests, automated video monitoring of entrances, exits, parking lots, and secure areas.

  7. TOTEM Trigger System Firmware

    NASA Astrophysics Data System (ADS)

    Kopal, Josef

    2014-06-01

    This paper describes the TOTEM Trigger System Firmware that is operational at LHC since 2009. The TOTEM experiment is devoted to the forward hadronic physics at collision energy from 2.7 to 14TeV. It is composed of three different subdetectors that are placed at 9, 13.5, and 220m from the Interaction Point 5. A time-critical-logic firmware is implemented inside FPGA circuits to review collisions and to select the relevant ones to be stored by the Data Acquisition (DAQ). The Trigger system has been modified in the 2012-2013 LHC runs allowing the experiment to take data in cooperation with CMS.

  8. Multi-Messenger Astronomy and Astrophysics with Gravitational-Wave Transients

    NASA Astrophysics Data System (ADS)

    Shawhan, Peter

    2010-02-01

    The successful construction and operation of the LIGO, GEO600 and Virgo detectors has not yet been rewarded with the detection of a gravitational-wave signal. Nevertheless, searches for gravitational-wave inspirals and more general burst signals are already providing meaningful constraints on the population and characteristics of sources, and in particular on the astrophysics of events which are observed by other means, such as gamma-ray bursts and soft gamma repeater flares. I will present and interpret the results from searches that have been completed, and then describe the ways in which this effort is currently being extended to include more types of astrophysical events observed with different ``messengers'' and more modes of utilizing the gravitational-wave data. Besides the direct outcomes from these searches in the near term, we are building the capability to extract significant astronomical information from the signals which will be detected by Advanced LIGO and Advanced Virgo in the coming decade. )

  9. Astrophysics at RIA (ARIA) Working Group

    SciTech Connect

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-07-12

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.

  10. Astrophysics at RIA (ARIA) Working Group

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-07-01

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities.