Sample records for asymmetric m-b velocity

  1. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lei; Department of Medical Physics, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017; Li, Yu-Xian

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structuresmore » as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.« less

  2. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malík, M., E-mail: michal.malik@tul.cz; Primas, J.; Kopecký, V.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measuredmore » value are compared. The authors found a good agreement between the results of both approaches.« less

  3. B decays in an asymmetric left-right model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Hayreter, Alper; Turan, Ismail

    2010-08-01

    Motivated by recently observed disagreements with the standard model predictions in B decays, we study b{yields}d, s transitions in an asymmetric class of SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} models, with a simple one-parameter structure of the right-handed mixing matrix for the quarks, which obeys the constraints from kaon physics. We use experimental constraints on the branching ratios of b{yields}s{gamma}, b{yields}ce{nu}{sub e}, and B{sub d,s}{sup 0}-B{sub d,s}{sup 0} mixing to restrict the parameters of the model: g{sub R}/g{sub L}, M{sub W{sub 2}}, M{sub H}{sup {+-}}, tan{beta} as well as the elements of the right-handed quark mixing matrix V{sub CKM}{sup R}. We presentmore » a comparison with the more commonly used (manifest) left-right symmetric model. Our analysis exposes the parameters most sensitive to b transitions and reveals a large parameter space where left- and right-handed quarks mix differently, opening the possibility of observing marked differences in behavior between the standard model and the left-right model.« less

  4. Regional difference of microcirculation in patients with asymmetric hypertrophic cardiomyopathy: transthoracic Doppler coronary flow velocity reserve analysis.

    PubMed

    Tesic, Milorad; Djordjevic-Dikic, Ana; Beleslin, Branko; Trifunovic, Danijela; Giga, Vojislav; Marinkovic, Jelena; Petrovic, Olga; Petrovic, Milan; Stepanovic, Jelena; Dobric, Milan; Vukcevic, Vladan; Stankovic, Goran; Seferovic, Petar; Ostojic, Miodrag; Vujisic-Tesic, Bosiljka

    2013-07-01

    To evaluate, by noninvasive coronary flow velocity reserve (CFVR), whether patients with asymmetric hypertrophic cardiomyopathy (HC), with or without left ventricular outflow tract obstruction, demonstrate significant regional differences of CFVR. We evaluated 61 patients with HC (27 men; mean age 49 ± 16 years), including 20 patients with hypertrophic obstructive cardiomyopathy (HOCM) and 41 patients without obstruction (HCM). The control group included 20 age- and sex-matched subjects. Transthoracic Doppler echocardiography CFVR of the left anterior descending coronary artery (LAD) and the posterior descending coronary artery (PD) were performed, including calculation of relative CFVR as the ratio between CFVR LAD and CFVR PD. Compared with the controls, all the patients with HC had lower CFVR LAD (2.12 ± 0.53 vs 3.34 ± 0.67; P < .001) and CFVR PD (2.29 ± 0.49 vs 3.21 ± 0.65; P < .001). CFVR LAD in HOCM group in comparison with the HCM group was significantly lower (1.93 ± 0.42 vs 2.22 ± 0.55; P = .047), due to higher basal diastolic coronary flow velocities (0.40 ± 0.09 vs 0.33 ± 0.07 m/sec; P = .002), with similar hyperemic diastolic flow velocities (0.71 ± 0.16 vs 0.76 ± 0.19 m/sec; P = .330), respectively. There was no significant difference in CFVR PD between patients with HOCM and those with HCM (2.33 ± 0.46 vs 2.27 ± 0.50; P = .636), respectively. Relative CFVR was lower in the HOCM group compared with the HCM group (0.84 ± 0.16 vs 0.98 ± 0.14; P = .001). By multivariable regression analysis, left ventricular outflow tract gradient was the independent predictor of CFVR LAD (B = -0.24; P = .008) and relative CFVR (B = -0.34; P = .016). CFVR LAD and relative CFVR were significantly lower in patients with HOCM compared with patients with HCM. Regional differences of CFVR are present only in patients with significant left ventricular outflow tract obstruction, which suggests that obstruction per se, by increasing wall stress in basal conditions

  5. Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Nadeem, S.; Khan, Zafar Hayat

    2014-10-01

    Peristaltic flow is used to study the flow and heat transfer of carbon nanotubes in an asymmetric channel with thermal and velocity slip effects. Two types of carbon nanotubes, namely, single- and multi-wall carbon nanotubes are utilized to see the analysis with water as base fluids. Empirical correlations are used for the thermo-physical properties of carbon nanotubes (CNTs) in terms of solid volume fraction of CNTs. The governing equations are simplified using long wavelength and low Reynolds number approximation. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of CNTs and temperature profile. The effects of various flow parameters, i.e. Hatmann number M, the solid volume fraction of the nanoparticles ϕ, Grashof number G, velocity slip parameter β, thermal slip parameter γ and Prandtl number P r are presented graphically for both single- (SWCNT) and multi-wall carbon nanotubes (MWCNT).

  6. Asymmetric mass models of disk galaxies. I. Messier 99

    NASA Astrophysics Data System (ADS)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

  7. Asymmetric total synthesis of 6-Tuliposide B and its biological activities against tulip pathogenic fungi.

    PubMed

    Shigetomi, Kengo; Omoto, Shoko; Kato, Yasuo; Ubukata, Makoto

    2011-01-01

    The structure-activity relationship was investigated to evaluate the antifungal activities of tuliposides and tulipalins against tulip pathogenic fungi. 6-Tuliposide B was effectively synthesized via the asymmetric Baylis-Hillman reaction. Tuliposides and tulipalins showed antifungal activities against most of the strains tested at high concentrations (2.5 mM), while Botrytis tulipae was resistant to tuliposides. Tulipalin formation was involved in the antifungal activity, tulipalin A showed higher inhibitory activity than 6-tuliposide B and tulipalin B. Both the tuliposides and tulipalins showed pigment-inducing activity against Gibberella zeae and inhibitory activity against Fusarium oxysporum f. sp tulipae. These activities were induced at a much lower concentration (0.05 mM) than the antifungal MIC values.

  8. Particle identification at an asymmetric B Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.; Eigen, G.; Hitlin, D.

    1991-09-01

    Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B{sup 0} decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distributionmore » as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R D conclude the chapter. 56 refs., 64 figs., 13 tabs.« less

  9. Asymmetric orbital distribution near mean motion resonance: Application to planets observed by Kepler and radial velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ji-Wei, E-mail: jwxie@nju.edu.cn, E-mail: jwxie@astro.utoronto.ca

    2014-05-10

    Many multiple-planet systems have been found by the Kepler transit survey and various radial velocity (RV) surveys. Kepler planets show an asymmetric feature, namely, there are small but significant deficits/excesses of planet pairs with orbital period spacing slightly narrow/wide of the exact resonance, particularly near the first order mean motion resonance (MMR), such as 2:1 and 3:2 MMR. Similarly, if not exactly the same, an asymmetric feature (pileup wide of 2:1 MMR) is also seen in RV planets, but only for massive ones. We analytically and numerically study planets' orbital evolutions near and in the MMR. We find that theirmore » orbital period ratios could be asymmetrically distributed around the MMR center regardless of dissipation. In the case of no dissipation, Kepler planets' asymmetric orbital distribution could be partly reproduced for 3:2 MMR but not for 2:1 MMR, implying that dissipation might be more important to the latter. The pileup of massive RV planets just wide of 2:1 MMR is found to be consistent with the scenario that planets formed separately then migrated toward the MMR. The location of the pileup infers a K value of 1-100 on the order of magnitude for massive planets, where K is the damping rate ratio between orbital eccentricity and semimajor axis during planet migration.« less

  10. Dark matter particle spectroscopy at the LHC: generalizing M T2 to asymmetric event topologies

    NASA Astrophysics Data System (ADS)

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun

    2010-04-01

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M T2 variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different “children” particles. In this more general approach, the endpoint M T2( max) of the M T2 distribution now gives the mass {tilde M_p}left( {tilde M_c^{(a)},tilde M_c^{(b)}} right) of the parent particles as a function of two input children masses tilde M_c^{(a)} and tilde M_c^{(b)} . We propose two methods for an independent determination of the individual children masses M ( a) c and M ( b) c . First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M_p}left( {tilde M_c^{(a)},tilde M_c^{(b)},{P_{text{UTM}}}} right) is independent of PUTM at precisely the right values of the children masses. Second, the previously discussed M T2 “kink” is now generalized to a “ridge” on the 2-dimensional surface {tilde M_p}left( {tilde M_c^{(a)},tilde M_c^{(b)}} right) . As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  11. On the study of angular velocity in mass asymmetry nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    Using isospin-dependent quantum molecular dynamics (IQMD) model, the role of angular velocity (Wy) has been explored by changing the mass asymmetric content of the colliding nuclei at the incident energy of 50 MeV/nucleon for centrality 0.25<b/bmax< 0.45. It has been investigated that the angular velocity is greatly influenced by the mass-asymmetry as well as by the different rapidity regions. In addition to this, transverse component of angular velocity behaves differently for participant and spectators too.

  12. VizieR Online Data Catalog: Radial velocities in M3, M13, and M92 (Kamann+, 2014)

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Wisotzki, L.; Roth, M. M.; Gerssen, J.; Husser, T.-O.; Sandin, C.; Weilbacher, P.

    2014-04-01

    Radial velocity data are presented for three Galactic globular clusters, M3, M13, and M92. The provided catalogues include several hundreds of stars in each cluster that cover a wide range of distances to the cluster centres. Besides the measured radial velocities, the catalogues contain measurement uncertainties, identifiers, world coordinates and variability information for each star. The velocities for stars near the centres of the clusters were obtained using PMAS integral field spectroscopy (IFS). Note that in order to facilitate future variability studies, for each star the individual velocity measurements are provided instead of a single combined velocity. The PMAS data are complemented with velocities reported in various literature studies for stars at larger distances to the centres. (6 data files).

  13. Effects of spoilers and gear on B-747 wake vortex velocities

    NASA Technical Reports Server (NTRS)

    Luebs, A. B.; Bradfute, J. G.; Ciffone, D. L.

    1976-01-01

    Vortex velocities were measured in the wakes of four configurations of a 0.61-m span model of a B-747 aircraft. The wakes were generated by towing the model underwater in a ship model basin. Tangential and axial velocity profiles were obtained with a scanning laser velocimeter as the wakes aged to 35 span lengths behind the model. A 45 deg deflection of two outboard flight spoilers with the model in the landing configuration resulted in a 36 percent reduction in wake maximum tangential velocity, altered velocity profiles, and erratic vortex trajectories. Deployment of the landing gear with the inboard flaps in the landing position and outboard flaps retracted had little effect on the flap vortices to 35 spans, but caused the wing tip vortices to have: (1) more diffuse velocity profiles; (2) a 27 percent reduction in maximum tangential velocity; and (3) a more rapid merger with the flap vortices.

  14. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konar, Partha; /Florida U.; Kong, Kyoungchul

    2012-04-03

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{submore » c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.« less

  15. The Effects of Barycentric and Asymmetric Transverse Velocities on Eclipse and Transit Times

    NASA Astrophysics Data System (ADS)

    Conroy, Kyle E.; Prša, Andrej; Horvat, Martin; Stassun, Keivan G.

    2018-02-01

    It has long been recognized that the finite speed of light can affect the observed time of an event. For example, as a source moves radially toward or away from an observer, the path length and therefore the light travel time to the observer decreases or increases, causing the event to appear earlier or later than otherwise expected, respectively. This light travel time effect has been applied to transits and eclipses for a variety of purposes, including studies of eclipse timing variations and transit timing variations that reveal the presence of additional bodies in the system. Here we highlight another non-relativistic effect on eclipse or transit times arising from the finite speed of light—caused by an asymmetry in the transverse velocity of the two eclipsing objects, relative to the observer. This asymmetry can be due to a non-unity mass ratio or to the presence of external barycentric motion. Although usually constant, this barycentric and asymmetric transverse velocity (BATV) effect can vary between sequential eclipses if either the path length between the two objects or the barycentric transverse velocity varies in time. We discuss this BATV effect and estimate its magnitude for both time-dependent and time-independent cases. For the time-dependent cases, we consider binaries that experience a change in orbital inclination, eccentric systems with and without apsidal motion, and hierarchical triple systems. We also consider the time-independent case which, by affecting the primary and secondary eclipses differently, can influence the inferred system parameters, such as the orbital eccentricity.

  16. Hummingbirds control turning velocity using body orientation and turning radius using asymmetrical wingbeat kinematics

    PubMed Central

    Read, Tyson J. G.; Segre, Paolo S.; Middleton, Kevin M.; Altshuler, Douglas L.

    2016-01-01

    Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left–right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. PMID:27030042

  17. Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons

    NASA Astrophysics Data System (ADS)

    Wang, Tianju; Zhong, Zhong; Wang, Ju

    2018-05-01

    Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.

  18. Radial velocities of stars in the globular cluster M4 and the cluster distance

    NASA Technical Reports Server (NTRS)

    Peterson, R. C.; Rees, Richard F.; Cudworth, Kyle M.

    1995-01-01

    The internal stellar velocity distribution of the globular cluster M4 is evaluated from nearly 200 new radial velocity measurements good to 1 km/s and a rederivation of existing proper motions. The mean radial velocity of the cluster is 70.9 +/- 0.6 km/s. The velocity dispersion is 3.5 +/- 0.3 km/s at the core, dropping marginally towards the outskirts. Such a low internal dispersion is somewhat at odds with the cluster's orbit, for which the perigalacticon is sufficiently close to the galactic center that the probability of cluster disruption is high; a tidal radius two-thirds the currently accepted value would eliminate the discrepancy. The cluster mass-to-light ratio is also small, M/L(sub V) = 1.0 +/- 0.4 in solar units. M4 thus joins M22 as a cluster of moderate and concentration with a mass-to-light ratio among the lowest known. The astrometric distance to the cluster is also smaller than expected, 1.72 +/- 0.14 kpc. This is only consistent with conventional estimates of the luminosity of horizontal branch stars provided an extinction law R = A(sub V)/E(B-V) approximately 4 is adopted, as has been suggested recently by several authors.

  19. Symmetric Decomposition of Asymmetric Games.

    PubMed

    Tuyls, Karl; Pérolat, Julien; Lanctot, Marc; Ostrovski, Georg; Savani, Rahul; Leibo, Joel Z; Ord, Toby; Graepel, Thore; Legg, Shane

    2018-01-17

    We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.

  20. High-Velocity Clouds in M 83 and M 51

    NASA Astrophysics Data System (ADS)

    Miller, E. D.; Bregman, J. N.

    2005-06-01

    Various scenarios have been proposed to explain the origin of the Galactic high-velocity clouds, predicting different distances and implying widely varying properties for the Galaxy's gaseous halo. To eliminate the difficulties of studying the Galactic halo from within, we have embarked on a program to study anomalous neutral gas in external galaxies, and here we present the results for two nearby, face-on spiral galaxies, M 83 and M 51. Significant amounts of anomalous-velocity H I are detected in deep VLA 21-cm observations, including an extended, slowly rotating disk and several discrete H I clouds. Our detection algorithm reaches a limiting H I source mass of 7×105 M⊙, and it allows for detailed statistical analysis of the false detection rate. We use this to place limits on the HVC mass distributions in these galaxies and the Milky Way; if the HVC populations are similar, then the Galacto-centric HVC distances must be less than about 25 kpc.

  1. Feasibility Study for an Asymmetric B Factory Based on PEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattapadhyay, A.; Hitlin, D.; Porter, F.

    This report addresses the feasibility of designing and constructing an asymmetric B-factory based on the PEP storage ring at SLAC that can ultimately reach a luminosity of 1 X 10{sup 34} cm{sup -2}s{sup -1}. Such a facility, operating at the {gamma}(4S) resonance, could be used to study mixing, rate decays, and CP violation in the B{bar B} system, and could also study tau and charm physics. The essential accelerator physics, engineering, and technology issues that must be addressed to successfully build this exciting and challenging facility are identified, and possible solutions, or R and D that will reasonable lead tomore » such solutions, are described.« less

  2. THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgasser, Adam J.; Logsdon, Sarah E.; Gagné, Jonathan

    2015-09-15

    Radial velocity measurements are presented for 85 late M- and L-type very low-mass stars and brown dwarfs obtained with the Magellan Echellette spectrograph. Targets primarily have distances within 20 pc of the Sun, with more distant sources selected for their unusual spectral energy distributions. We achieved precisions of 2–3 km s{sup −1}, and combined these with astrometric and spectrophotometric data to calculate UVW velocities. Most are members of the thin disk of the Galaxy, and velocity dispersions indicate a mean age of 5.2 ± 0.2 Gyr for sources within 20 pc. We find signficantly different kinematic ages between late-M dwarfsmore » (4.0 ± 0.2 Gyr) and L dwarfs (6.5 ± 0.4 Gyr) in our sample that are contrary to predictions from prior simulations. This difference appears to be driven by a dispersed population of unusually blue L dwarfs which may be more prevalent in our local volume-limited sample than in deeper magnitude-limited surveys. The L dwarfs exhibit an asymmetric U velocity distribution with a net inward flow, similar to gradients recently detected in local stellar samples. Simulations incorporating brown dwarf evolution and Galactic orbital dynamics are unable to reproduce the velocity asymmetry, suggesting non-axisymmetric perturbations or two distinct L dwarf populations. We also find the L dwarfs to have a kinematic age-activity correlation similar to more massive stars. We identify several sources with low surface gravities, and two new substellar candidate members of nearby young moving groups: the astrometric binary DENIS J08230313–4912012AB, a low-probability member of the β Pictoris Moving Group; and 2MASS J15104786–2818174, a moderate-probability member of the 30–50 Myr Argus Association.« less

  3. Kinematics of nearby K-M dwarfs: first results .

    NASA Astrophysics Data System (ADS)

    Upgren, A. R.; Boyle, R. P.; Sperauskas, J.; Bartašiūtė, S.

    The lists of stars selected spectroscopically by Vyssotsky at the McCormick Observatory and the 4th version of the Catalogue of Nearby Stars (CNS4) are two major sources of nearby K-M dwarfs, which complement each other and provide a kinematically unbiased sample of about 1400 such stars. With the addition of Hipparcos and Tycho astrometry, this stellar sample offers perhaps best insight on the kinematical properties of the lower main sequence stars in the immediate solar neighborhood. Until recently, however, the main limitation in observational data for this sample was the lack of well determined radial velocities, especially for fainter magnitude stars. Therefore our first goal was to perform radial velocity observations for one-third of the sample stars which had no accurate or any radial velocity data. Using the CORAVEL spectrometer of Vilnius University Observatory, attached to the 1.5-m NASA and 1.6-m Kuiper telescopes at Steward Observatory, US, and the 1.6-m telescope at Molėtai Observatory, Lithuania, radial velocities have been recently measured for 475 K-M dwarfs. These observations, together with previous radial-velocity data and available astrometry, are used to derive complete kinematical information on the sample stars. Preliminary analysis shows the presence of different age populations which dominate in different regions of the asymmetric drift: from the young disk component, showing no lag behind the rotational motion of the Sun, to the thick disk stars which make up an extended asymmetric tail. Assuming that the U and W velocity components have zero motion relative to the LSR, and that the asymmetric drift is proportional to sigma 2_U, we find the peculiar motion of the Sun relative to the LSR (U_⊙, V_⊙, W_⊙)= (9.3± 1.3, 5.9± 0.8, 6.9±0.7) km s-1. No attempt was made at this stage of work to determine V_⊙ directly from the mean V-motion of the young disk stars. After completion of the radial-velocity program, the next step will be to

  4. Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential.

    PubMed

    Ai, Bao-quan; Liu, Liang-gang

    2007-10-01

    Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.

  5. Impulse excitation scanning acoustic microscopy for local quantification of Rayleigh surface wave velocity using B-scan analysis

    NASA Astrophysics Data System (ADS)

    Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.

    2018-01-01

    A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.

  6. Global Structure of HIV-1 Neutralizing Antibody IgG1 b12 is Asymmetric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashish, F.; Solanki, A; Boone, C

    2010-01-01

    Human antibody IgG1 b12 is one of the four antibodies known to neutralize a broad range of human immunodeficiency virus-1. The crystal structure of this antibody displayed an asymmetric disposition of the Fab arms relative to its Fc portion. Comparison of structures solved for other IgG1 antibodies led to a notion that crystal packing forces entrapped a 'snap-shot' of different conformations accessible to this antibody. To elucidate global structure of this unique antibody, we acquired small-angle X-ray scattering data from its dilute solution. Data analysis indicated that b12 adopts a bilobal globular structure in solution with a radius of gyrationmore » and a maximum linear dimension of {approx}54 and {approx}180 {angstrom}, respectively. Extreme similarity between its solution and crystal structure concludes that non-flexible, asymmetric shape is an inherent property of this rare antibody.« less

  7. Radio-frequency measurement of an asymmetric single electron transistor

    NASA Astrophysics Data System (ADS)

    Ji, Zhongqing; Xue, Weiwei; Rimberg, A. J.

    2007-03-01

    Since the invention of the radio-frequency single-electron transistor (RF-SET) by Schoelkopf et al.,[1] most measurements have focused on the symmetric single electron transistor. It has been shown, however, that the symmetric SET has a rather low measurement efficiency in its normal working regime.[2][3] Recently, it has been pointed out that an asymmetric SET can be considerably more efficient than a symmetric SET as a quantum amplifier. In this case the measurement efficiency of the asymmetric SET becomes similar to that of the quantum point contact (QPC) detector which can approach the quantum limit. We investigate the asymmetric SET by fabricating Al/AlOx SETs with junction areas 40x40 nm^2 and 40x80nm^2 and total resistance of about 25kφ. The results of RF and DC characterization of such asymmetric SETs will be discussed. [1] R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, D. E. Prober, Science, 280, 1242 (1998). [2] A. N. Korotkov, Phys. Rev. B, 63, 085312 (2001); 63, 115403 (2001). [3] D. Mozyrsky, I. Martin, and M. B. Hastings, Phys. Rev. Lett., 92, 018303 (2004). [4] S. A. Gurvitz and G. P. Berman, Phys. Rev. B, 72 , 073303(2005).

  8. KECK NIRSPEC RADIAL VELOCITY OBSERVATIONS OF LATE-M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Angelle; White, Russel; Bailey, John

    2012-11-15

    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s{sup -1} for our late-M dwarfs over a one- to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s{sup -1}. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface ofmore » M dwarfs, we can place upper limits of <40 M{sub J} sin i on the masses of any companions around those two M dwarfs with RV variations of <160 m s{sup -1} at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0-2.4 {mu}m to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.« less

  9. Determination of the functioning parameters in asymmetrical flow field-flow fractionation with an exponential channel.

    PubMed

    Déjardin, P

    2013-08-30

    The flow conditions in normal mode asymmetric flow field-flow fractionation are determined to approach the high retention limit with the requirement d≪l≪w, where d is the particle diameter, l the characteristic length of the sample exponential distribution and w the channel height. The optimal entrance velocity is determined from the solute characteristics, the channel geometry (exponential to rectangular) and the membrane properties, according to a model providing the velocity fields all over the cell length. In addition, a method is proposed for in situ determination of the channel height. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Radial velocities of K-M dwarfs and local stellar kinematics

    NASA Astrophysics Data System (ADS)

    Sperauskas, J.; Bartašiūtė, S.; Boyle, R. P.; Deveikis, V.; Raudeliūnas, S.; Upgren, A. R.

    2016-12-01

    Aims: The goal of this paper is to present complete radial-velocity data for the spectroscopically selected McCormick sample of nearby K-M dwarfs and, based on these and supplementary data, to determine the space-velocity distributions of late-type stars in the solar neighborhood. Methods: We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. Combining radial-velocity data with Hipparcos/Tycho-2 astrometry we calculated the space-velocity components and parameters of the galactic orbits in a three-component model potential for the stars in the sample, that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. Results: We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability, along with the catalog of U,V,W velocities and Galactic orbital parameters for a total of 1088 K-M stars which are used in the present kinematic analysis. Of these, 146 stars were identified as possible candidate members of the known nearby kinematic groups and suspected subgroups. The distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction ( 3%) of stars with the thick disk kinematics. The kinematic structure gives evidence that the bulk of K-M type stars in the immediate solar vicinity represents a dynamically relaxed stellar population. The star MCC 869 is found to be on a retrograde Galactic orbit (V = -262 km s-1) of low inclination (4°) and can be a member of stellar stream of some dissolved structure. The Sun's velocity with respect to the Local

  11. A Model for Determining the Effect of the Wind Velocity on 100 m Sprinting Performance.

    PubMed

    Janjic, Natasa; Kapor, Darko; Doder, Dragan; Petrovic, Aleksandar; Doder, Radoslava

    2017-06-01

    This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10 -3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10 -2 m/s and cannot be neglected.

  12. A Model for Determining the Effect of the Wind Velocity on 100 m Sprinting Performance

    PubMed Central

    Janjic, Natasa; Kapor, Darko; Doder, Dragan; Petrovic, Aleksandar; Doder, Radoslava

    2017-01-01

    Abstract This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10-3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10-2 m/s and cannot be neglected. PMID:28713468

  13. VizieR Online Data Catalog: WOCS. LXVI. Radial velocity survey in M35 (Leiner+, 2015)

    NASA Astrophysics Data System (ADS)

    Leiner, E. M.; Mathieu, R. D.; Gosnell, N. M.; Geller, A. M.

    2015-09-01

    In this second paper (see also Geller et al. 2010, cat. J/AJ/139/1383) in a series studying the dynamical state of the young (150Myr) open cluster M35 we present an updated version of our complete radial velocity database for the cluster. Our sample is selected to cover the range of the M35 main sequence from 0.8 to 1.6Mȯ out to 30' from cluster center. In the 17 years that we have observed M35, we have gathered ~8000 moderate-precision (σi=0.5km/s) spectra of ~1300 stars. We find 418 of these to be confirmed radial velocity cluster members or likely members. Within our sample of 418 cluster members or likely members, we detect 64 velocity-variable stars. We present orbital solutions for 52 (see Tables 5 and 7) of these 64 systems, in addition to 28 (see Tables 6 and 8) completed orbital solutions for non-member binaries in our field of view. The binaries are drawn from a sample initially derived from the photometry of T. von Hippel taken at KPNO on the Burrell Schmidt telescope. Observations were taken on 1993 November 18-19, and include B and V photometry down to a magnitude of V=17 lying within a 70'*70' field of view. Subsequently, we updated this photometry for 74% of our sources with more precise BV photometry from C. P. Deliyannis (2006, private communication; Sarrazine et al., 2000AAS...197.4107S). This new photometry was taken on the WIYN 0.9m telescope with the S2KB imager and covers a 40'*40' field of view. See Geller et al. 2010 (cat. J/AJ/139/1383) for more information on these two sets of photometry. Beginning in 1997 September, we have obtained spectra for the stars in our sample at the WIYN 3.5m telescope at KPNO using the Hydra Multi-Object Spectrograph (MOS). For a detailed description of our observing and data reduction procedure see Geller et al. 2008 (cat. J/AJ/135/2264). In short, we typically use Hydra's blue sensitive fibers and an echelle grating providing a resolution of R~20000. These spectra are centered on 512.5nm, and span a ~25nm

  14. Brownian motion and thermophoresis effects on Peristaltic slip flow of a MHD nanofluid in a symmetric/asymmetric channel

    NASA Astrophysics Data System (ADS)

    Sucharitha, G.; Sreenadh, S.; Lakshminarayana, P.; Sushma, K.

    2017-11-01

    The slip and heat transfer effects on MHD peristaltic transport of a nanofluid in a non-uniform symmetric/asymmetric channel have studied under the assumptions of elongated wave length and negligible Reynolds number. From the simplified governing equations, the closed form solutions for velocity, stream function, temperature and concentrations are obtained. Also dual solutions are discussed for symmetric and asymmetric channel cases. The effects of important physical parameters are explained graphically. The slip parameter decreases the fluid velocity in middle of the channel whereas it increases the velocity at the channel walls. Temperature and concentration are decreasing and increasing functions of radiation parameter respectively. Moreover, velocity, temperature and concentrations are high in symmetric channel when compared with asymmetric channel.

  15. Asymmetric Mach-Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection.

    PubMed

    Chalyan, Tatevik; Guider, Romain; Pasquardini, Laura; Zanetti, Manuela; Falke, Floris; Schreuder, Erik; Heideman, Rene G; Pederzolli, Cecilia; Pavesi, Lorenzo

    2016-01-06

    In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si₃N₄ Asymmetric Mach-Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab'). We measured a best volumetric sensitivity of 10⁴ rad/RIU, leading to a Limit of Detection below 5 × 10(-7) RIU. On sensors functionalized with Fab', we performed specific and non-specific sensing measurements at various toxin concentrations. Reproducibility of the measurements and re-usability of the sensor were also investigated.

  16. Asymmetric bursting of Taylor bubble in inclined tubes

    NASA Astrophysics Data System (ADS)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  17. Unidirectional flow over asymmetric and symmetric ripples

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Nelson, Jonathan M.

    1992-08-01

    An LDV-equipped flume has yielded detailed measurements of velocity and turbulence over fixed sets of two-dimensional symmetric and asymmetric ripples. The measured velocities over the ripples are compared with the Nelson and Smith (1989)results for flow over larger-scale dunes; the new results are larger in the outer region of the flow, and the velocity profiles exhibit no sharp inflection at the top of the lowest wake. A model for flow over bedforms which has yielded excellent agreement with dune measurements is presently modified to better represent the observed flow over ripples.

  18. Comparison of accelerator physics issues for symmetric and asymmetric B-factory rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tigner, M.

    1990-10-10

    A systematic comparison of accelerator physics issues from the beam-beam interaction to single particle stability including ring and IR layout, synchrotron radiation and lost particle backgrounds, and single and multi-bunch instabilities is given. While some practical handicap probably accrues to the asymmetric design because of its extra constraints, the differences in the two approaches tend to be obscured by larger issues such as how to achieve the enormous increases in luminosity demanded of a b-factory.

  19. Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Chen, L.-J.; Wilder, F. D.; Ahmadi, N.; Eriksson, S.; Usanova, M. E.; Goodrich, K. A.; Holmes, J. C.; Sturner, A. P.; Malaspina, D. M.; Newman, D. L.; Torbert, R. B.; Argall, M. R.; Lindqvist, P.-A.; Burch, J. L.; Webster, J. M.; Drake, J. F.; Price, L.; Cassak, P. A.; Swisdak, M.; Shay, M. A.; Graham, D. B.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Dorelli, J. C.; Gershman, D.; Avanov, L.; Hesse, M.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Goldman, M. V.; Stawarz, J. E.; Schwartz, S. J.; Eastwood, J. P.; Hwang, K.-J.; Nakamura, R.; Wang, S.

    2017-04-01

    Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude ( 100 mV/m) E|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.

  20. Learning to Adapt to Asymmetric Threats

    DTIC Science & Technology

    2005-08-01

    College, Carlisle, PA, September 2003. Book, Howard, “Gauge your Awareness,” Inside the Mind of the Leader, January 2004, pp. 32 Bourke , Canice...biblio/b-explrn.htm, February 8, 2005. Lambakis, Steven J., “Reconsidering Asymmetric Warfare,” JFQ, issue 36, Spring 2005. Latour, Sharon M., (USAF...Sword: What if Sun Tzu and John Boyd did a National Defense Review?,” Washington, DC, Center for Defense Information, February 2003. Riedel, Sharon L

  1. Order, viscoelastic, and dielectric properties of symmetric and asymmetric alkyl[1]benzothieno[3,2-b][1]benzothiophenes.

    PubMed

    Grigoriadis, Christos; Niebel, Claude; Ruzié, Christian; Geerts, Yves H; Floudas, George

    2014-02-06

    The morphology, the viscoelastic, the dielectric properties and the dynamics of phase transformation are studied in symmetrically and asymmetrically substituted alkyl[1]benzothieno[3,2-b][1]benzothiophenes (C8-BTBT) by X-ray scattering, rheology, and dielectric spectroscopy. The interlayer spacing reflects the molecular and supramolecular ordering, respectively, in the symmetrically and asymmetrically substituted BTBTs. In the asymmetric BTBT, the core layer is double in size with a broader network of intermolecular interactions though the increased S-S contacts that is prerequisite for the development of high performance OFET devices. Two crystal states with elastic and viscoelastic responses were identified in the symmetric compound. In contrast, the SmA phase in the asymmetric compound is a viscoelastic solid. A path-dependent dielectric environment with a switchable dielectric permittivity was found in both compounds by cooling below 0 °C with possible implications to charge transport. The kinetics of phase transformation to the crystalline and SmA phases revealed a nucleation and growth mechanism with rates dominated by the low activation barriers.

  2. VizieR Online Data Catalog: Radial velocities of K-M dwarfs (Sperauskas+, 2016)

    NASA Astrophysics Data System (ADS)

    Sperauskas, J.; Bartasiute, S.; Boyle, R. P.; Deveikis, V.; Raudeliunas, S.; Upgren, A. R.

    2016-09-01

    We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability. Of these, 776 stars are from the MCC sample and 173 stars are K-M dwarfs from the CNS4. The catalog consists of two parts: Table 2 lists the mean radial velocities, and Table 2a contains individual measurements. Our radial velocities agree with the best published standard stars to within 0.7km/s in precision. Combining these and supplementary radial-velocity data with Hipparcos/Tycho-2 astrometry (Table 4 summarizes input observational data) we calculated the space velocity components and parameters of the galactic orbits in a three-component model potential by Johnston K.V. et al. (1995ApJ...451..598J) for a total of 1088 K-M dwarfs (Table 5), that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. We identified 146 stars as possible candidate members of the classical moving groups and known or suspected subgroups (Table 7). We show that the distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane for nearby K-M dwarfs are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction (3%) of stars with the thick disk kinematics. (7 data files).

  3. Asymmetric Hybrid Polymer-Lipid Giant Vesicles as Cell Membrane Mimics.

    PubMed

    Peyret, Ariane; Ibarboure, Emmanuel; Le Meins, Jean-François; Lecommandoux, Sebastien

    2018-01-01

    Lipid membrane asymmetry plays an important role in cell function and activity, being for instance a relevant signal of its integrity. The development of artificial asymmetric membranes thus represents a key challenge. In this context, an emulsion-centrifugation method is developed to prepare giant vesicles with an asymmetric membrane composed of an inner monolayer of poly(butadiene)- b -poly(ethylene oxide) (PBut- b -PEO) and outer monolayer of 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine (POPC). The formation of a complete membrane asymmetry is demonstrated and its stability with time is followed by measuring lipid transverse diffusion. From fluorescence spectroscopy measurements, the lipid half-life is estimated to be 7.5 h. Using fluorescence recovery after photobleaching technique, the diffusion coefficient of 1,2-dioleoyl- sn -glycero-3-phosphoethanolamine- N -(lissamine rhodamine B sulfonyl) (DOPE-rhod, inserted into the POPC leaflet) is determined to be about D = 1.8 ± 0.50 μm 2 s -1 at 25 °C and D = 2.3 ± 0.7 μm 2 s -1 at 37 °C, between the characteristic values of pure POPC and pure polymer giant vesicles and in good agreement with the diffusion of lipids in a variety of biological membranes. These results demonstrate the ability to prepare a cell-like model system that displays an asymmetric membrane with transverse and translational diffusion properties similar to that of biological cells.

  4. Asymmetric behavior of the B(E2↑;0+ → 2+) values in 104-130Sn and generalized seniority

    NASA Astrophysics Data System (ADS)

    Maheshwari, Bhoomika; Jain, Ashok Kumar; Singh, Balraj

    2016-08-01

    We present freshly evaluated B (E 2 ↑ ;0+ →2+) values across the even-even Sn-isotopes which confirm the presence of an asymmetric behavior as well as a dip in the middle of the full valence space. We explain these features by using the concept of generalized seniority. The dip in the B (E 2) values near 116Sn is understood in terms of a change in the dominant orbits before and after the mid shell, which also explains the presence of asymmetric peaks in the B (E 2) values. This approach helps in deciding the most active valence spaces for a given set of isotopes, and single out the most useful truncation scheme for Large Scale Shell Model (LSSM) calculations. The LSSM calculations so guided by generalized seniority are also able to reproduce the experimental data on B (E 2) ↑ values quite well.

  5. Experimental study of the free surface velocity field in an asymmetrical confluence

    NASA Astrophysics Data System (ADS)

    Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom

    2017-04-01

    The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows

  6. Symmetrical and Asymmetrical separations about a yawed cone

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Owen, F. K.; Higuchi, H.

    1979-01-01

    Three-dimensional flow separations about a 5 degree (semiapex angle, theta sub C), 1.4 m long, circular cone up to moderately high relative incidence, alpha/theta sub C approximately 5, were studied in the Mach number range 0.3 M sub infinity 1.8. The cone was tested in the Ames 1.8 by 1.8 m wind tunnel at Reynolds numbers, R sub L infinity, based on the cone length, L, from 4.5 times 10 to the 6th power to 13.5 times 10 to the 6th power, under nominally zero heat transfer conditions. Overall forces and mean surface pressures were compared with earlier measurements. Supportive three-dimensional laser velocimeter measurements of mean and fluctuating velocity in a slightly asymmetric vortex wake about a slender tangent ogive cylinder at incidence having respective nose and overall body fineness ratios of 3.5 and 12, are included.

  7. Comparison of vertical E × B drift velocities and ground-based magnetometer observations of DELTA H in the low latitude under geomagnetically disturbed conditions

    NASA Astrophysics Data System (ADS)

    Prabhu, M.; Unnikrishnan, K.

    2018-04-01

    In the present work, we analyzed the daytime vertical E × B drift velocities obtained from Jicamarca Unattended Long-term Ionosphere Atmosphere (JULIA) radar and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca, and Piura in Peru for 22 geomagnetically disturbed events in which either SC has occurred or Dstmax < -50 nT during the period 2006-2011. The ΔH component of geomagnetic field is measured as the differences in the magnitudes of horizontal H component between magnetometer placed directly on the magnetic equator and one displaced 6-9° away. It will provide a direct measure of the daytime electrojet current, due to the eastward electric field. This will in turn gives the magnitude of vertical E × B drift velocity in the F region. A positive correlation exists between peak values of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of the events. It was observed that 45% of the events have daytime vertical E × B drift velocity peak in the magnitude range 10-20 m/s and 20-30 m/s and 20% have peak ΔH in the magnitude range 50-60 nT and 80-90 nT. It was observed that the time of occurrence of the peak value of both the vertical E × B drift velocity and the ΔH have a maximum (40%) probability in the same time range 11:00-13:00 LT. We also investigated the correlation between E × B drift velocity and Dst index and the correlation between delta H and Dst index. A strong positive correlation is found between E × B drift and Dst index as well as between delta H and Dst Index. Three different techniques of data analysis - linear, polynomial (order 2), and polynomial (order 3) regression analysis were considered. The regression parameters in all the three cases were calculated using the Least Square Method (LSM), using the daytime vertical E × B drift velocity and ΔH. A formula

  8. Estimating V̄s(30) (or NEHRP site classes) from shallow velocity models (depths < 30 m)

    USGS Publications Warehouse

    Boore, David M.

    2004-01-01

    The average velocity to 30 m [V??s(30)] is a widely used parameter for classifying sites to predict their potential to amplify seismic shaking. In many cases, however, models of shallow shear-wave velocities, from which V??s(30) can be computed, do not extend to 30 m. If the data for these cases are to be used, some method of extrapolating the velocities must be devised. Four methods for doing this are described here and are illustrated using data from 135 boreholes in California for which the velocity model extends to at least 30 m. Methods using correlations between shallow velocity and V??s(30) result in significantly less bias for shallow models than the simplest method of assuming that the lowermost velocity extends to 30 m. In addition, for all methods the percent of sites misclassified is generally less than 10% and falls to negligible values for velocity models extending to at least 25 m. Although the methods using correlations do a better job on average of estimating V??s(30), the simplest method will generally result in a lower value of V??s(30) and thus yield a more conservative estimate of ground motion [which generally increases as V??s(30) decreases].

  9. Empirical approach for estimating the ExB velocity from VTEC map

    NASA Astrophysics Data System (ADS)

    Ao, Xi

    For the development of wireless communication, the Earth's ionosphere is very critical. A Matlab program is designed to improve the techniques for monitoring and forecasting the conditions of the Earth's ionosphere. The work in this thesis aims to modeling of the dependency between the equatorial anomaly gap (EAP) in the Earth's ionosphere and the crucial driver, ExB velocity, of the Earth's ionosphere. In this thesis, we review the mathematics of the model in the eleventh generation of the International Geomagnetic Reference Field (IGRF) and an enhancement version of Global Assimilative Ionospheric Model (GAIM), GAIM++ Model. We then use the IGRF Model and a Vertical Total Electron Content (VTEC) map from GAIM++ Model to determine the EAP in the Earth's ionosphere. Then, by changing the main parameters, the 10.7cm solar radio flux (F10.7) and the planetary geomagnetic activity index (AP), we compare the different value of the EAP in the Earth's ionosphere and the ExB velocity of the Earth's ionosphere. At last, we demonstrate that the program can be effective in determining the dependency between the EAP in the Earth's ionosphere and the ExB velocity of the Earth's ionosphere.

  10. Experimental study on the ejecta-velocity distributions caused by low-velocity impacts on quartz sand

    NASA Astrophysics Data System (ADS)

    Tsujido, S.; Arakawa, M.; Suzuki, A. I.; Yasui, M.

    2014-07-01

    , iron, titanium, zirconia, alumina, glass, and nylon (11.3-1.1 g/cm^3). The projectile shape was spherical with a diameter 2a = 3 mm. The projectile was launched at the impact velocity, V_i, from 24 to 217 m/s. We made impact experiments using 8 types of projectiles and observed each ejecta grain by using a high-speed digital video camera taken at 2000-10000 FPS. Then, we measured the ejection velocity and ejection angle of each grain varying with the initial position. We successfully obtained the relationship between the initial position and the initial ejection velocity for the quartz sand grains and the glass beads. Results: From the high-speed camera observation, we found that, for higher projectile density, the angle of ejecta curtain from the horizontal plane increases from 50° for nylon to 58° for zirconia. The ejection angle of each grain was observed to change with the initial position, x, from 50° near the impact point to 40° near the crater rim, and this relationship does not depend on the projectile density. Thus, the ejection angle of each grain cannot explain the change in the angle of ejecta curtain for each projectile. When the ejecta velocity distribution, V_e, is written in the form of V_e/V_i=c(x/a)^{-b}, c is seen to somewhat change in each projectile. Meanwhile, b depends on the projectile density, and it was revealed that, for increasing projectile densities, b decreases from 0.43 of nylon to 0.68 of zirconia. It is assumed that b depending on the projectile density could cause the difference of ejecta curtain formed by each projectile. When comparing the results of Housen and Holsapple (2011), who made experiments for a quartz sand target at high speeds of 1000-1900 m/s, with the results of this study for quartz sand or 500 μ m glass beads target at low velocities of 24-217 m/s, the two sets of results were found to be consistent, even though our velocity range was an order of magnitude smaller than their velocity range. In addition, when the

  11. Morphology of a highly asymmetric double crystallizable poly(ɛ-caprolactone-b-ethylene oxide) block copolymer

    NASA Astrophysics Data System (ADS)

    Li, Liangbin; Meng, Fenghua; Zhong, Zhiyuan; Byelov, Dmytro; de Jeu, Wim H.; Feijen, Jan

    2007-01-01

    The morphology of a highly asymmetric double crystallizable poly(ɛ-caprolactone-b-ethylene oxide) (PCL-b-PEO) block copolymer has been studied with in situ simultaneously small and wide-angle x-ray scattering as well as atomic force microscopy. The molecular masses Mn of the PCL and PEO blocks are 24 000 and 5800, respectively. X-ray scattering and rheological measurements indicate that no microphase separation occurs in the melt. Decreasing the temperature simultaneously triggers off a crystallization of PCL and microphase separation between the PCL and PEO blocks. Coupling and competition between microphase separation and crystallization results in a morphology of PEO spheres surrounded by PCL partially crystallized in lamella. Further decreasing temperature induces the crystallization of PEO spheres, which have a preferred orientation due to the confinements from hard PCL crystalline lamella and from soft amorphous PCL segments in different sides. The final morphology of this highly asymmetric block copolymer is similar to the granular morphology reported for syndiotactic polypropylene and other (co-) polymers. This implies a similar underlying mechanism of coupling and competition of various phase transitions, which is worth further exploration.

  12. Performance of an asymmetric short annular diffuser with a nondiverging inner wall using suction. [control of radial profiles of diffuser exit velocity

    NASA Technical Reports Server (NTRS)

    Juhasz, A.

    1974-01-01

    The performance of a short highly asymmetric annular diffuser equipped with wall bleed (suction) capability was evaluated at nominal inlet Mach numbers of 0.188, 0.264, and 0.324 with the inlet pressure and temperature at near ambient values. The diffuser had an area ratio of 2.75 and a length- to inlet-height ratio of 1.6. Results show that the radial profiles of diffuser exit velocity could be controlled from a severely hub peaked to a slightly tip biased form by selective use of bleed. At the same time, other performance parameters were also improved. These results indicate the possible application of the diffuser bleed technique to control flow profiles to gas turbine combustors.

  13. Crystal Structure of a Human IκB Kinase β Asymmetric Dimer

    PubMed Central

    Liu, Shenping; Misquitta, Yohann R.; Olland, Andrea; Johnson, Mark A.; Kelleher, Kerry S.; Kriz, Ron; Lin, Laura L.; Stahl, Mark; Mosyak, Lidia

    2013-01-01

    Phosphorylation of inhibitor of nuclear transcription factor κB (IκB) by IκB kinase (IKK) triggers the degradation of IκB and migration of cytoplasmic κB to the nucleus where it promotes the transcription of its target genes. Activation of IKK is achieved by phosphorylation of its main subunit, IKKβ, at the activation loop sites. Here, we report the 2.8 Å resolution crystal structure of human IKKβ (hIKKβ), which is partially phosphorylated and bound to the staurosporine analog K252a. The hIKKβ protomer adopts a trimodular structure that closely resembles that from Xenopus laevis (xIKKβ): an N-terminal kinase domain (KD), a central ubiquitin-like domain (ULD), and a C-terminal scaffold/dimerization domain (SDD). Although hIKKβ and xIKKβ utilize a similar dimerization mode, their overall geometries are distinct. In contrast to the structure resembling closed shears reported previously for xIKKβ, hIKKβ exists as an open asymmetric dimer in which the two KDs are further apart, with one in an active and the other in an inactive conformation. Dimer interactions are limited to the C-terminal six-helix bundle that acts as a hinge between the two subunits. The observed domain movements in the structures of IKKβ may represent trans-phosphorylation steps that accompany IKKβ activation. PMID:23792959

  14. Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles

    NASA Astrophysics Data System (ADS)

    Silveira, M.; Pontes, B. R.; Balthazar, J. M.

    2014-03-01

    In this study the behaviour of two different types of shock absorbers, symmetrical (linear) and asymmetrical (nonlinear) is compared for use on passenger vehicles. The analyses use different standard road inputs and include variation of the severity parameter, the asymmetry ratio and the velocity of the vehicle. Performance indices and acceleration values are used to assess the efficacy of the asymmetrical systems. The comparisons show that the asymmetrical system, with nonlinear characteristics, tends to have a smoother and more progressive performance, both for vertical and angular movements. The half-car front asymmetrical system was introduced, and the simulation results show that the use of the asymmetrical system only at the front of the vehicle can further diminish the angular oscillations. As lower levels of acceleration are essential for improved ride comfort, the use of asymmetrical systems for vibrations and impact absorption can be a more advantageous choice for passenger vehicles.

  15. Effects of Magnetic field on Peristalsis transport of a Carreau Fluid in a tapered asymmetric channel

    NASA Astrophysics Data System (ADS)

    Prakash, J.; Balaji, N.; Siva, E. P.; Kothandapani, M.; Govindarajan, A.

    2018-04-01

    The paper is concerned with effects of a uniform applied magnetic field on a Carreau fluid flow in a tapered asymmetric channel with peristalsis. The channel non-uniform & asymmetry are formed by choosing the peristaltic wave train on the tapered walls to have different amplitude and phase (ϕ). The governing equations of the Carreau model in two - dimensional peristaltic flow phenomena are constructed under assumptions of long wave length and low Reynolds number approximations. The simplified non - linear governing equations are solved by regular perturbation method. The expressions for pressure rise, frictional force, velocity and stream function are determined and the effects of different parameters like non-dimensional amplitudes walls (a and b), non - uniform parameter (m), Hartmann number (M), phase difference (ϕ),power law index (n) and Weissenberg numbers (We) on the flow characteristics are discussed. It is viewed that the rheological parameter for large (We), the curves of the pressure rise are not linear but it behaves like a Newtonian fluid for very small Weissenberg number.

  16. Radial Velocity and Metallicity Determinations for Remote Globular Clusters in M31 and M33

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette; Barmby, Pauline; Cote, Pat; Harris, Bill; Huxor, Avon; Mackey, Dougal; Puzia, Thomas

    2009-08-01

    We propose to determine radial velocities and metallicities for a sample of ~ 20 remote globular clusters (GCs) which we have discovered in the outer halos of the Local Group galaxies M31 and M33. Most of these objects have been uncovered in the course of the PAndAs survey, an international collaboration which is using CFHT/MegaPrime to map more than 300 square degrees in the g and i bands around M31 and M33. The target clusters, all of which have been identified from high- quality imaging (typically ≲ 0.8'' seeing), lie at projected radii of up to 130 kpc from M31 and 30 kpc from M33 and thus lie significantly beyond all previously-known GCs in these systems. Rather intriguingly, many of the new discoveries exhibit either possible associations with halo tidal streams, or show unusual spatial anisotropies with respect to their host galaxy. Velocity and metallicity data for these objects will provide a detailed characterization of the ensemble properties of the outer halo GC populations, and, through the search for kinematic and metallicity correlations within groups of GCs, help determine what fraction of these objects can be attributed to either late or ongoing accretion events. Ultimately, these data will also provide a basis for improved dynamical mass estimates of both galaxies.

  17. The detection of high-velocity outflows from M8E-IR

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Allen, Mark; Beer, Reinhard; Dekany, Richard; Huntress, Wesley

    1988-01-01

    A high-resolution (0.059/cm) M band (4.6 micron) spectrum of the embedded young stellar object M8E-IR is presented and discussed. The spectrum shows strong absorption to large blueshifts in the rotational lines of the fundamental vibrational band, v = 1-0, of CO. The absorption is interpreted as being due to gas near to, and flowing from, the central object. The outflowing gas is warm (95-330 K) and consists of discrete velocity components with the very high velocities of 90, 130, 150, and 160 km/s. On the basis of a simple model, it is estimated that the observed outflows are less than 100 yr old.

  18. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    NASA Astrophysics Data System (ADS)

    Sedarsky, David; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard

    2013-02-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ˜100 m/s can be observed between the `fast' and `slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the `fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.

  19. Near-infrared metallicities, radial velocities, and spectral types for 447 nearby M dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan

    We present metallicities, radial velocities, and near-infrared (NIR) spectral types for 447 M dwarfs determined from moderate resolution (R ≈ 2000) NIR spectra obtained with the NASA Infrared Telescope Facility (IRTF)/SpeX. These M dwarfs are primarily targets of the MEarth Survey, a transiting planet survey searching for super Earths around mid-to-late M dwarfs within 33 pc. We present NIR spectral types for each star and new spectral templates for the IRTF in the Y, J, H, and K-bands, created using M dwarfs with near-solar metallicities. We developed two spectroscopic distance calibrations that use NIR spectral type or an index basedmore » on the curvature of the K-band continuum. Our distance calibration has a scatter of 14%. We searched 27 NIR spectral lines and 10 spectral indices for metallicity sensitive features, taking into account correlated noise in our estimates of the errors on these parameters. We calibrated our relation using 36 M dwarfs in common proper pairs with an F-, G-, or K-type star of known metallicity. We validated the physical association of these pairs using proper motions, radial velocities, and spectroscopic distance estimates. Our resulting metallicity calibration uses the sodium doublet at 2.2 μm as the sole indicator for metallicity. It has an accuracy of 0.12 dex inferred from the scatter between the metallicities of the primaries and the estimated metallicities of the secondaries. Our relation is valid for NIR spectral types from M1V to M5V and for –1.0 dex < [Fe/H] < +0.35 dex. We present a new color-color metallicity relation using J – H and J – K colors that directly relates two observables: the distance from the M dwarf main sequence and equivalent width of the sodium line at 2.2 μm. We used radial velocities of M dwarf binaries, observations at different epochs, and comparison between our measurements and precisely measured radial velocities to demonstrate a 4 km s{sup –1} accuracy.« less

  20. The Small-Scale Structure of High-Velocity Na I Absorption Toward M81

    NASA Astrophysics Data System (ADS)

    Roth, K. C.; Meyer, D. M.; Lauroesch, J. T.

    2000-12-01

    We present high-resolution (R=20,000) integral field spectra of the Na I absorption toward the nucleus of the nearby spiral galaxy M81 (NGC 3031) obtained in April 2000 with the WIYN 3.5-m telescope and the DensePak fiber optic bundle. Our DensePak map covers the central 27 x 43 arcsec of M81 at a spatial resolution of 4 arcsec which corresponds to a projected length scale of 63 pc at the distance of the galaxy (3.25 Mpc). These data were intended to explore the spatial extent of high-velocity (v = 110-130 km/s) gas seen in Na I, Mg I and Mg II absorption toward SN 1993J by Bowen et al. (1994), which they proposed is due to tidal material associated with interactions between M81 and nearby M82 (Yun, Ho & Lo 1993). No H I gas at these velocities has been detected in 21 cm interferometry maps near the position of SN 1993J (2.6 arcmin SW of the M81 nucleus). Our Na I map of the M81 core shows no evidence of the strong absorption seen at v = 110-130 km/s toward SN 1993J. However, our map does reveal a strong Na I component at v = 220 km/s in several fibers that appears to trace a filamentary structure running from the SW to the NE across the M81 nuclear region. The origin and distance of this filament are unknown. No H I gas at v = 220 km/s has previously been detected in 21 cm studies of the core. At the location of SN 1993J, Bowen et al. measured weak Mg II absorption at this velocity but found no evidence of corresponding Na I absorption. The only known H I gas that corresponds to this velocity in the M81 group are the H I streamers found around M82 by Yun, Ho, & Lo that they interpreted as tidally disrupted M82 disk material.

  1. Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers.

    PubMed

    Ebbens, Stephen; Tu, Mei-Hsien; Howse, Jonathan R; Golestanian, Ramin

    2012-02-01

    The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes. © 2012 American Physical Society

  2. Performance prediction of asymmetrical bladed H-Darrieus VAWT rotors in low wind speed condition using CFD

    NASA Astrophysics Data System (ADS)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Biswas, Agnimitra; Sharma, Kaushal Kumar

    2018-04-01

    Wind energy is an essential and carbon free form of renewable energy resources. Energy can be easily extracted from wind with the use of Horizontal axis and Vertical axis wind turbine(VAWT). The performance of turbine depends on airfoil shape. The present work emphasizes the aerodynamics of different asymmetrical airfoils used in VAWT rotors. This investigation is conducted for the selection of efficient asymmetrical bladed H-Darrieus VAWT rotor. Five numbers of thick and cambered asymmetrical airfoil is considered for this investigation. A free stream velocity of 6.0 m/s is considered to simulate 2D CFD analysis using k-ɛ turbulence model. The power coefficient (Cp) of all H-Darrieus VAWT rotor increase with increase in TSR value to a certain limit and after it starts decrease with further increase of TSR. In the present investigation the Cp and TSR of NACA 63415 (RT-30%) are found to be higher among all considered asymmetrical airfoils. Moreover, Ct values of NACA 63415 (RT-30%) are also high corresponding to all TSR values. This is due to the long duration of attachment of flow with blade surroundings. Hence, NACA 63415 (RT- 30%) airfoil may be considered as an efficient airfoil among S818, GOE 561, GU25-5(11)8, and KENNEDY AND MARSDEN (kenmar) asymmetrical airfoils.

  3. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  4. Design and testing of a novel piezoelectric micro-motor actuated by asymmetrical inertial impact driving principle.

    PubMed

    Zeng, Ping; Sun, Shujie; Li, Li'an; Xu, Feng; Cheng, Guangming

    2014-03-01

    In this paper, an asymmetrical inertial impact driving principle is first proposed, and accordingly a novel piezoelectrically actuated linear micro-motor is developed. It is driven by the inertial impact force generated by piezoelectric smart cantilever (PSC) with asymmetrical clamping locations during a driving cycle. When the PSC is excited by typical harmonic voltage signals, different equivalent stiffness will be induced due to its asymmetrical clamping locations when it is vibrating back and forth, leading to a tiny displacement difference on the two opposite directions in a cycle, and then the accumulation of tiny displacement difference will allow directional movements. A prototype of the proposed motor has been developed and investigated by means of experimental tests. The motion and dynamics characteristics of the prototype are well studied. The experimental results demonstrate that the resolution of the micro-motor is 0.02 μm, the maximum velocity is 16.87 mm/s, and the maximum loading capacity can reach up to 1 kg with a voltage of 100 V and 35 Hz.

  5. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meng; Mao, Haiyang; Li, Zhigang

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequencymore » interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.« less

  6. Spherization of the remnants of asymmetrical SN explosions in a uniform medium

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Blinnikov, S. I.

    A 'snow-plow' approximation is used to project a spherical shape for a supernova remnant (SNR) after a shock wave has traveled through a uniform medium following an asymmetrical SN explosion. The asymmetry arises as magnetorotation causes the explosion. It is assumed that the main part of the mass remains in a thin layer after the explosion and that the layer can be described by 1,5-dimensional hydrodynamics. The cavity pressure inside the shock is assumed much greater than the pressure of the outside medium. The snow-plow model accounts for asymmetrical particle velocities in the expanding layer and the tangential velocity averaged across the shock. The equations are configured to conserve mass and momentum and have specific initial conditions. The calculations are in agreement with observations of Cas A.

  7. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities formore » each plasma flow are determined.« less

  8. Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat.

    PubMed

    Clemente-Suárez, Vicente J; Robles-Pérez, José J

    2013-09-01

    In current theaters of operation, soldiers had to face a different situation as symmetrical (defined battlefield) and asymmetrical combat (non-defined battlefield), especially in urban areas. The mechanical and organic responses of soldiers in these combats are poorly studied in specific literature. This research aimed to analyze physical, mechanical, and physiological parameters during symmetrical and asymmetrical combat simulations. We analyzed 20 soldiers from the Spanish Army and Spanish Forces and Security Corps (34.5 ± 4.2 years; 176.4 ± 8.4 cm; 74.6 ± 8.7 kg; 63.3 ± 8.0 kg muscular mass; 7.6 ± 3.2 kg fat mass) during a symmetric combat (traditional combat simulation) and during an asymmetrical combat (urban combat simulation). Heart rate (HR), speed, sprints, distances, impact, and body load parameters were measured by a GPS system and a HR belt. Results showed many differences between symmetrical and asymmetrical combat. Asymmetrical combat presented higher maximum velocity movement, number of sprints, sprint distance, and average HR. By contrary, symmetric combat presented higher number of impact and body load. This information could be used to improve specific training programs for each type of combat.

  9. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  10. Defect-free ultrahigh flux asymmetric membranes

    DOEpatents

    Pinnau, Ingo; Koros, William J.

    1990-01-01

    Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.

  11. Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products

    NASA Astrophysics Data System (ADS)

    Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand

    2005-06-01

    A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.

  12. Propulsion of a molecular machine by asymmetric distribution of reaction products.

    PubMed

    Golestanian, Ramin; Liverpool, Tanniemola B; Ajdari, Armand

    2005-06-10

    A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.

  13. Treadmill locomotion of the mouse lemur (Microcebus murinus); kinematic parameters during symmetrical and asymmetrical gaits.

    PubMed

    Herbin, Marc; Hommet, Eva; Hanotin-Dossot, Vicky; Perret, Martine; Hackert, Rémi

    2018-06-01

    The gaits of the adult grey mouse lemur Microcebus murinus were studied during treadmill locomotion over a large range of velocities. The locomotion sequences were analysed to determine the gait and the various spatiotemporal gait parameters of the limbs. We found that velocity adjustments are accounted for differently by stride frequency and stride length depending on whether the animal showed a symmetrical or an asymmetrical gait. When using symmetrical gaits the increase in velocity is associated with a constant contribution of the stride length and stride frequency; the increase of the stride frequency being always lower. When using asymmetrical gaits, the increase in velocity is mainly assured by an increase in the stride length which tends to decrease with increasing velocity. A reduction in both stance time and swing time contributed to the increase in stride frequency for both gaits, though with a major contribution from the decrease in stance time. The pattern of locomotion obtained in a normal young adult mouse lemurs can be used as a template for studying locomotor control deficits during aging or in different environments such as arboreal ones which likely modify the kinematics of locomotion.

  14. BCL11B Regulates Epithelial Proliferation and Asymmetric Development of the Mouse Mandibular Incisor

    PubMed Central

    Kyrylkova, Kateryna; Kyryachenko, Sergiy; Biehs, Brian; Klein, Ophir; Kioussi, Chrissa; Leid, Mark

    2012-01-01

    Mouse incisors grow continuously throughout life with enamel deposition uniquely on the outer, or labial, side of the tooth. Asymmetric enamel deposition is due to the presence of enamel-secreting ameloblasts exclusively within the labial epithelium of the incisor. We have previously shown that mice lacking the transcription factor BCL11B/CTIP2 (BCL11B hereafter) exhibit severely disrupted ameloblast formation in the developing incisor. We now report that BCL11B is a key factor controlling epithelial proliferation and overall developmental asymmetry of the mouse incisor: BCL11B is necessary for proliferation of the labial epithelium and development of the epithelial stem cell niche, which gives rise to ameloblasts; conversely, BCL11B suppresses epithelial proliferation, and development of stem cells and ameloblasts on the inner, or lingual, side of the incisor. This bidirectional action of BCL11B in the incisor epithelia appears responsible for the asymmetry of ameloblast localization in developing incisor. Underlying these spatio-specific functions of BCL11B in incisor development is the regulation of a large gene network comprised of genes encoding several members of the FGF and TGFβ superfamilies, Sprouty proteins, and Sonic hedgehog. Our data integrate BCL11B into these pathways during incisor development and reveal the molecular mechanisms that underlie phenotypes of both Bcl11b−/− and Sprouty mutant mice. PMID:22629441

  15. Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    McGuire, Ryan

    2009-01-01

    Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae R.B. McGuire, C.M. Steele, B.J. Hrivnak, W. Lu, D. Bohlender, C.D. Scarfe We present new contemporaneous light and velocity observations of seven proto-planetary nebulae obtained over the past two years. Proto-planetary nebulae are objects evolving between the AGB and planetary nebula phases. In these seven objects, the central star is bright (V= 7-10), surrounded by a faint nebula. We knew from past monitoring that the light from each of these varied by a few tenths of a magnitude over intervals of 30-150 days and that the velocity varied by 10 km/s. These appear to be due to pulsation. With these new contemporaneous observations, we are able to measure the correlation between the brightness, color, and velocity, which will constrain the pulsation models. This is an ongoing project with the light monitoring being carried out with the Valparaiso University 0.4 m telescope and CCD camera and the radial velocity observations being carried out with the Dominion Astrophysical Observatory 1.8 m telescope and spectrograph. This research is partially supported by NSF grant 0407087 and the Indiana Space Grant Consortium.

  16. Direct CP Violation in Charmless Hadronic B-Meson Decays at the PEP-II Asymmetric B-Meson Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telnov, Alexandre Valerievich; /UC, Berkeley

    2005-05-06

    The study of the quark transition b {yields} s{bar s}s, which is a pure loop-level (''penguin'') process leading to several B-meson-decay final states, most notably {phi}K, is arguably the hottest topic in B-meson physics today. The reason is the sensitivity of the amplitudes and the CP-violating asymmetries in such processes to physics beyond the Standard Model. By performing these measurements, we improve our understanding of the phenomenon of combined-parity (CP) violation, which is believed to be responsible for the dominance of matter over antimatter in our Universe. Here, we present measurements of branching fractions and charge asymmetries in the decaysmore » B{sup +} {yields} {phi}K{sup +} and B{sup 0} {yields} {phi}K{sup 0} in a sample of approximately 89 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy B-meson Factory at SLAC. We determine {Beta}(B{sup +} {yields} {phi}K{sup +}) = (10.0{sub -0.8}{sup +0.9} {+-} 0.5) x 10{sup -6} and {Beta}(B{sup 0} {yields} {phi}K{sup 0}) = (8.4{sub -1.3}{sup +1.5} {+-} 0.5) x 10{sup -6}, where the first error is statistical and the second is systematic. Additionally, we measure the CP-violating charge asymmetry {Alpha}{sub CP}(B{sup {+-}} {yields} {phi}K{sup {+-}}) = 0.04 {+-} 0.09 {+-} 0.01, with a 90% confidence-level interval of [-0.10, 0.18], and set an upper limit on the CKM- and color-suppressed decay B{sup +} {yields} {phi}{pi}{sup +}, {Beta}(B{sup +} {yields} {phi}{pi}{sup +}) < 0.41 x 10{sup -6} (at the 90% confidence level). Our results are consistent with the Standard Model, which predicts {Alpha}{sub CP}(B{sup {+-}} {yields} {phi}K{sup {+-}}) {approx}< 1% and {Beta}(B {yields} {phi}{tau}) << 10{sup -7}. Since many models of physics beyond the Standard Model introduce additional loop diagrams with new heavy particles and new CP-violating phases that would contribute to these decays, potentially making {Alpha}{sub CP} (B{sup {+-}} {yields} {phi}K{sup {+-}}) and {Beta}(B

  17. Operating length and velocity of human M. vastus lateralis fascicles during vertical jumping

    PubMed Central

    Nikolaidou, Maria Elissavet; Marzilger, Robert; Bohm, Sebastian; Mersmann, Falk

    2017-01-01

    Humans achieve greater jump height during a counter-movement jump (CMJ) than in a squat jump (SJ). However, the crucial difference is the mean mechanical power output during the propulsion phase, which could be determined by intrinsic neuro-muscular mechanisms for power production. We measured M. vastus lateralis (VL) fascicle length changes and activation patterns and assessed the force–length, force–velocity and power–velocity potentials during the jumps. Compared with the SJ, the VL fascicles operated on a more favourable portion of the force–length curve (7% greater force potential, i.e. fraction of VL maximum force according to the force–length relationship) and more disadvantageous portion of the force–velocity curve (11% lower force potential, i.e. fraction of VL maximum force according to the force–velocity relationship) in the CMJ, indicating a reciprocal effect of force–length and force–velocity potentials for force generation. The higher muscle activation (15%) could therefore explain the moderately greater jump height (5%) in the CMJ. The mean fascicle-shortening velocity in the CMJ was closer to the plateau of the power–velocity curve, which resulted in a greater (15%) power–velocity potential (i.e. fraction of VL maximum power according to the power–velocity relationship). Our findings provide evidence for a cumulative effect of three different mechanisms—i.e. greater force–length potential, greater power–velocity potential and greater muscle activity—for an advantaged power production in the CMJ contributing to the marked difference in mean mechanical power (56%) compared with SJ. PMID:28573027

  18. Simultaneous mixing and pumping using asymmetric microelectrodes

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Jae; Yoon, Sang Youl; Sung, Hyung Jin; Smith, Charles G.

    2007-10-01

    This study proposes ideas for simultaneous mixing and pumping using asymmetric microelectrode arrays. The driving force of the mixing and pumping was based on electroosmotic flows induced by alternating current (ac) electric fields on asymmetric microelectrodes. The key idea was to bend/incline the microelectrodes like diagonal/herringbone shapes. Four patterns of the asymmetric electrode arrays were considered depending on the shape of electrode arrays. For the diagonal shape, repeated and staggered patterns of the electrode arrays were studied. For the herringbone shape, diverging and converging patterns were examined. These microelectrode patterns forced fluid flows in the lateral direction leading to mixing and in the channel direction leading to pumping. Three-dimensional numerical simulations were carried out using the linear theories of ac electro-osmosis. The performances of the mixing and pumping were assessed in terms of the mixing efficiency and the pumping flow rate. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls.

  19. External combustion engine having an asymmetrical CAM

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1994-11-01

    An external combustion engine having an asymmetrical cam is the focus of this patent. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel and an even number of cylinders for receiving sequentially the energized gas through the rotary valve, the gas performing work on a piston disposed within each cylinder. The pistons transfer energy to a drive shaft through a connection to the asymmetrically shaped cam. The cam is shaped having two identical halves, each half having a power and an exhaust stroke. The identical halves provide that opposing cylinders are in thermodynamic balance, thus reducing rocking vibrations and torque pulsations. Having opposing pistons within the same thermodynamic cycle allows piston stroke to be reduced while maintaining displacement comparable to an engine having individual cycle positions. The reduced stroke diminishes gas flow velocity thus reducing flow induced noise. The power and exhaust strokes within each identical half of the cam are asymmetrical in that the power stroke is of greater duration than the exhaust stroke. The shape and length of the power stroke is optimized for increased efficiency.

  20. Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor

    PubMed Central

    Du, Yongzhao

    2016-01-01

    For asymmetric laser beams, the values of beam quality factor Mx2 and My2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor Mx2 and My2 in the x-direction and y-direction, respectively; but also introduces a curve of Mxα2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts. PMID:27916845

  1. Discovery of ^{13}CCC in SgrB2(M)

    NASA Astrophysics Data System (ADS)

    Giesen, Thomas; Mookerjea, Bhaswati; Stutzki, Jürgen; Breier, Alexander A.; Buechling, Thomas; Fuchs, Guido W.

    2017-06-01

    Small carbon chain molecules like linear C_3 are thought to play a crucial role in the formation of larger, complex molecules, including pre-biotic species. The formation pathways of organic molecules with carbon chains as backbones is by far not well understood. Studies of isotope fractionation have proven to be a useful tool of tracing chemical reaction pathways and to elucidate formation and destruction processes of interstellar molecules. Recent velocity-resolved observations in the far-infrared have resulted in the detection of C_3 ro-vibrational transitions in the warm envelopes of star-forming hot cores W31C, W49N and DR21(OH). Multiple far-infrared transitions of C_3 have also been detected towards the Galactic center molecular clouds SgrB2(M) and Sgr B2(N). Since C^+ is involved in an important step of the formation route of the C_3 molecule, it is likely that effects of isotopic fractionation of C^+ will manifest itself in the ^{12}C_3/^{13}CCC and ^{12}C_3/C^{13}CC ratios as well. Based on high resolution THz- laboratory measurements of C_3 and its ^{13}C-isotopologues conducted at the Kassel laboratories, we used the GREAT-receiver onboard SOFIA for a first ever detection of ^{13}CCC towards SgrB2(M). In this talk we present results and possible implications of the observation.

  2. EC 10246-2707: an eclipsing subdwarf B + M dwarf binary

    NASA Astrophysics Data System (ADS)

    Barlow, B. N.; Kilkenny, D.; Drechsel, H.; Dunlap, B. H.; O'Donoghue, D.; Geier, S.; O'Steen, R. G.; Clemens, J. C.; LaCluyze, A. P.; Reichart, D. E.; Haislip, J. B.; Nysewander, M. C.; Ivarsen, K. M.

    2013-03-01

    We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multicolour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.118 507 9936 ± 0.000 000 0009 d, or about 3 h. Analysis of our time series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km s-1 for the sdB and best-fitting atmospheric parameters of Teff = 28 900 ± 500 K, log g = 5.64 ± 0.06 and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique solution from modelling the light curve, the best-fitting model has an sdB mass of 0.45 M⊙ and a cool companion mass of 0.12 M⊙. These results are roughly consistent with a canonical-mass sdB and M dwarf separated by a ˜ 0.84 R⊙. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to <0.08 per cent. Using 15 yr of eclipse timings, we construct an observed minus calculated (O - C) diagram but find no statistically significant period changes; we rule out |dot{P}| > 7.2 × 10^{-12}. If EC 10246-2707 evolves into a cataclysmic variable, its period should fall below the famous cataclysmic variable period gap.

  3. Spectra of Cas A's Highest Velocity Ejecta

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Milisavljevic, Dan

    2010-08-01

    The young age and close distance of the Galactic supernova remnant Cassiopeia A (Cas A) make it perhaps our best case study and clearest look at the explosion dynamics of a core-collapse supernova (CCSN). Interestingly, Cas A exhibits two nearly opposing streams of high velocity ejecta or `jets' in its NE and SW regions racing outward at speeds more than twice that of the main shell. The nature of these jets, however, and their possible association with an aspherical supernova explosion mechanism is controversial. A handful of existing low-resolution spectra of outer knots in the NE jet display chemical abundances hinting at an origin from the S-Si-Ca- Ar rich layer deep inside the progenitor. If these abundances could be firmly established in both the NE and SW jets, it would be very strong evidence in support of a highly asymmetrical explosion engine for Cas A's progenitor and, in turn, for CCSNe in general. We request KPNO 4m telescope + MARS time to obtain high quality multi-object spectroscopy of Cas A's highest velocity ejecta to measure their nitrogen, sulfur, oxygen, calcium, and argon abundances. These spectra will be analyzed with the metal-rich shock models of J. Raymond and then compared to current sets of CCSN models paying particular attention to knot composition vs. ejection velocity and ejecta mixing.

  4. VizieR Online Data Catalog: Radial velocities of HD 133131A and HD 133131B (Teske+, 2016)

    NASA Astrophysics Data System (ADS)

    Teske, J. K.; Shectman, S. A.; Vogt, S. S.; Diaz, M.; Butler, R. P.; Crane, J. D.; Thompson, I. B.; Arriagada, P.

    2017-05-01

    The radial velocity observations of HD133131A and B are part of the large Magellan Planet Search Program, which began in 2002 and is surveying a sample of ~500 of the nearest stars (<100pc). The survey was started with observations from the Magellan Inamori Kyocera Echelle (MIKE) echelle spectrograph, mounted for a limited time on the Magellan I (Baade), but mostly on Magellan II (Clay), 6.5m telescopes at Las Campanas Observatory. In 2010, the survey switched to using the Carnegie Planet Finder Spectrograph (PFS), a temperature-controlled high-resolution echelle spectrograph built for precision radial velocity observations, on Magellan II. Only HD133131A observations from MIKE are included here. Using a 0.35*5'' slit, MIKE provides spectra with R~70000 in the blue and ~50000 in the red and covers 3900-6200Å. Only the red MIKE orders are used for radial velocity determination, while the blue orders provide coverage of the CaIIH and K lines for monitoring stellar activity. The MIKE observations of HD133131A span 2003 June to 2009 July, with total exposure times ranging from 150 to 600s, depending on observing conditions. Both HD133131A and B were observed with PFS, the former observations ranging from 2010 February to 2015 September, and the latter from 2010 August to 2015 September. PFS has a more limited wavelength range than MIKE (3880-6680Å), but still covers the entire iodine wavelength region, CaIIH and K, and Hα. We use a 0.5*2.5'' slit for target observations, providing R~80000 in the iodine region. The total exposure times for the A component range from 285 to 720s, and for the B component range from 282 to 800s. (6 data files).

  5. Correcting Velocity Dispersion Measurements for Inclination and Implications for the M-Sigma Relation

    NASA Astrophysics Data System (ADS)

    Bellovary, Jillian M.; Holley-Bockelmann, Kelly; Gultekin, Kayhan; Christensen, Charlotte; Governato, Fabio

    2015-01-01

    The relation between central black hole mass and stellar spheroid velocity dispersion (the M-Sigma relation) is one of the best-known correlations linking black holes and their host galaxies. However, there is a large amount of scatter at the low-mass end, indicating that the processes that relate black holes to lower-mass hosts are not straightforward. Some of this scatter can be explained by inclination effects; contamination from disk stars along the line of sight can artificially boost velocity dispersion measurements by 30%. Using state of the art simulations, we have developed a correction factor for inclination effects based on purely observational quantities. We present the results of applying these factors to observed samples of galaxies and discuss the effects on the M-Sigma relation.

  6. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling.

    PubMed

    Chen, Xiao-Hong; Wang, Xiao-Ting; Lou, Wen-Yong; Li, Ying; Wu, Hong; Zong, Min-Hua; Smith, Thomas J; Chen, Xin-De

    2012-09-04

    The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4'-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4'-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for

  7. An Asymmetric Furan/Thieno[3,2-b]Thiophene Diketopyrrolopyrrole Building Block for Annealing-Free Green-Solvent Processable Organic Thin-Film Transistors.

    PubMed

    Ding, Shang; Ni, Zhenjie; Hu, Mengxiao; Qiu, Gege; Li, Jie; Ye, Jun; Zhang, Xiaotao; Liu, Feng; Dong, Huanli; Hu, Wenping

    2018-06-21

    A new asymmetric furan and thieno[3,2-b]thiophene flanked diketopyrrolopyrrole (TTFDPP) building block for conjugated polymers is designed and used to generate a donor-acceptor semiconducting polymer, poly[3-(furan-2-yl)-2,5-bis(2-octyldodecyl)-6-(thieno[3,2-b]thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-thieno[3,2-b]thiophene] (abbreviated to PTTFDPP-TT), consisting of TTFDPP unit copolymerized with thieno[3,2-b]thiophene comonomer (TT), which is further synthesized. Results demonstrate that PTTFDPP-TT-based thin-film transistors in a bottom-gate bottom-contact device configuration exhibit typical hole-transporting property, with weak temperature dependence for charge carrier mobility from room temperature to 200 °C. In addition, the good solubility of PTTFDPP-TT due to the incorporation of a polar furan unit and an asymmetric conjugated structure makes it able to be solution processed with a less toxic nonchlorinated solvent such as toluene, demonstrating comparable performance with that prepared from chlorinated solution. These results suggest PTTFDPP-TT as a promising organic semiconductor candidate for annealing-free, environmentally benign, and less energy-consuming applications in large-area flexible organic electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Asymmetrical electrically induced injury of rabbit ventricular myocytes.

    PubMed

    Knisley, S B; Grant, A O

    1995-05-01

    Strong defibrillation-type electric field stimulation may injure myocytes when transmembrane potentials during the pulse exceed the threshold for membrane permeabilization. The location of injury may depend on intrinsic transmembrane potential or influx of calcium by "electro-osmosis" during the stimulation pulse in addition to the transmembrane potential changes induced by the pulse. We have studied injury by examining contracture and changes in transmembrane potential-sensitive dye fluorescence induced by electric field stimulation (St) with a duration of 20 ms and strength of 16-400 V/cm in isolated rabbit ventricular myocytes. St of 100-150 V/cm produced injury in myocytes oriented parallel to the St field frequently without injuring myocytes oriented perpendicular to the field. Injury required calcium in the solution and was asymmetric, occurring first at the myocyte and facing the St anode in 100% of injured myocytes in normal Tyrode's solution. Injury depended significantly on whether the product of the electric field strength and myocyte length exceeded a threshold of 1.1 V (P < 0.05). Asymmetric injury at the end facing the anode was still present in 96% of injured myocytes for stimulation after depolarization by an action potential or 20 mM or 125 mM potassium, suggesting that intrinsic transmembrane potential is not responsible for asymmetry. In 125 mM potassium, eliminating calcium from the bathing solution during the St pulse and introducing calcium after the pulse decreased the fraction of injured myocytes in which injury occurred at the end facing the anode to 62%, suggesting that calcium influx by "electro-osmosis" at the myocyte end facing the anode contributes to asymmetry. Asymmetric injury at the end facing the anode was still present in 100% of injured myocytes after adding 1 mM tetraethylammonium chloride, indicating that asymmetry is not sensitive to the potassium channel blockade. For stimulation pulses stronger than 50 V/cm given after

  9. Super Star Cluster Velocity Dispersions and Virial Masses in the M82 Nuclear Starburst

    NASA Astrophysics Data System (ADS)

    McCrady, Nate; Graham, James R.

    2007-07-01

    We use high-resolution near-infrared spectroscopy from Keck Observatory to measure the stellar velocity dispersions of 19 super star clusters (SSCs) in the nuclear starburst of M82. The clusters have ages on the order of 10 Myr, which is many times longer than the crossing times implied by their velocity dispersions and radii. We therefore apply the virial theorem to derive the kinematic mass for 15 of the SSCs. The SSCs have masses of 2×105 to 4×106 Msolar, with a total population mass of 1.4×107 Msolar. Comparison of the loci of the young M82 SSCs and old Milky Way globular clusters in a plot of radius versus velocity dispersion suggests that the SSCs are a population of potential globular clusters. We present the mass function for the SSCs and find a power-law fit with an index of γ=-1.91+/-0.06. This result is nearly identical to the mass function of young SSCs in the Antennae galaxies. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models

    NASA Astrophysics Data System (ADS)

    Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Murphy, B. W.; Seitzer, P. O.; Callanan, P. J.; Rutten, R. G. M.; Charles, P. A.

    1997-05-01

    We report a new measurement of the velocity dispersion profile within 1' (3 pc) of the center of the globular cluster M15 (NGC 7078), using long-slit spectra from the 4.2 m William Herschel Telescope at La Palma Observatory. We obtained spatially resolved spectra for a total of 23 slit positions during two observing runs. During each run, a set of parallel slit positions was used to map out the central region of the cluster; the position angle used during the second run was orthogonal to that used for the first. The spectra are centered in wavelength near the Ca II infrared triplet at 8650 Å, with a spectral range of about 450 Å. We determined radial velocities by cross-correlation techniques for 131 cluster members. A total of 32 stars were observed more than once. Internal and external comparisons indicate a velocity accuracy of about 4 km s-1. The velocity dispersion profile rises from about σ = 7.2 +/- 1.4 km s-1 near 1' from the center of the cluster to σ = 13.9 +/- 1.8 km s-1 at 20". Inside of 20", the dispersion remains approximately constant at about 10.2 +/- 1.4 km s-1 with no evidence for a sharp rise near the center. This last result stands in contrast with that of Peterson, Seitzer, & Cudworth who found a central velocity dispersion of 25 +/- 7 km s-1, based on a line-broadening measurement. Our velocity dispersion profile is in good agreement with those determined in the recent studies of Gebhardt et al. and Dubath & Meylan. We have developed a new set of Fokker-Planck models and have fitted these to the surface brightness and velocity dispersion profiles of M15. We also use the two measured millisecond pulsar accelerations as constraints. The best-fitting model has a mass function slope of x = 0.9 (where 1.35 is the slope of the Salpeter mass function) and a total mass of 4.9 × 105 M⊙. This model contains approximately 104 neutron stars (3% of the total mass), the majority of which lie within 6" (0.2 pc) of the cluster center. Since the

  11. Asymmetric dimethylarginine contributes to retinal neovascularization of diabetic retinopathy through EphrinB2 pathway.

    PubMed

    Du, Mei-Rong; Yan, Li; Li, Nian-Sheng; Wang, Yu-Jie; Zhou, Ting; Jiang, Jun-Lin

    2018-05-16

    Diabetic retinopathy (DR) is a leading cause of vision loss with retinal neovascularization. This study aims to investigate whether Asymmetric dimethylarginine (ADMA) impacts the pathogenesis of DR via focusing on promoting retinal neovascularization and its underlying molecular mechanisms. Diabetic rats were induced by a single intraperitoneal injection of streptozotocin (STZ) for 20 weeks. ADMA levels in aqueous and the influence of hypoxia on ADMA and angiogenesis in RF/6A cells were examined. The effects and underlying molecular mechanisms of ADMA on neovascularization of RF/6A cells were further evaluated by administration of ADMA, DDAH siRNA or ephrinB2 siRNA. Results showed that ADMA levels were elevated in both aqueous from diabetic rats and culture medium in RF/6A cells pretreated with hypoxia. Administration of ADMA directly promoted proliferation, migration, adhesion and tube formation of RF/6A cells, which was further confirmed by DDAH1 siRNA or DDAH2 siRNA. In addition, ephrinB2 expression was increased under diabetic conditions, and the angiogenic effects of ADMA were blocked by ephrinB2 siRNA. In conclusion, ADMA contributes to the neovascularization of retina in diabetic mellitus, which is regulated by ephrinB2. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo; Allende Prieto, Carlos; Meszaros, Szabolcs

    2012-11-10

    We measure the Milky Way's rotation curve over the Galactocentric range 4 kpc {approx}< R {approx}< 14 kpc from the first year of data from the Apache Point Observatory Galactic Evolution Experiment. We model the line-of-sight velocities of 3365 stars in 14 fields with b = 0 Degree-Sign between 30 Degree-Sign {<=} l {<=} 210 Degree-Sign out to distances of 10 kpc using an axisymmetric kinematical model that includes a correction for the asymmetric drift of the warm tracer population ({sigma} {sub R} Almost-Equal-To 35 km s{sup -1}). We determine the local value of the circular velocity to be V{submore » c} (R {sub 0}) = 218 {+-} 6 km s{sup -1} and find that the rotation curve is approximately flat with a local derivative between -3.0 km s{sup -1} kpc{sup -1} and 0.4 km s{sup -1} kpc{sup -1}. We also measure the Sun's position and velocity in the Galactocentric rest frame, finding the distance to the Galactic center to be 8 kpc < R {sub 0} < 9 kpc, radial velocity V {sub R, Sun} = -10 {+-} 1 km s{sup -1}, and rotational velocity V {sub {phi}, Sun} = 242{sup +10} {sub -3} km s{sup -1}, in good agreement with local measurements of the Sun's radial velocity and with the observed proper motion of Sgr A*. We investigate various systematic uncertainties and find that these are limited to offsets at the percent level, {approx}2 km s{sup -1} in V{sub c} . Marginalizing over all the systematics that we consider, we find that V{sub c} (R {sub 0}) < 235 km s{sup -1} at >99 % confidence. We find an offset between the Sun's rotational velocity and the local circular velocity of 26 {+-} 3 km s{sup -1}, which is larger than the locally measured solar motion of 12 km s{sup -1}. This larger offset reconciles our value for V{sub c} with recent claims that V{sub c} {approx}> 240 km s{sup -1}. Combining our results with other data, we find that the Milky Way's dark-halo mass within the virial radius is {approx}8 Multiplication-Sign 10{sup 11} M {sub Sun }.« less

  13. Three dimensional force balance of asymmetric droplets

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook

    2016-11-01

    An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  14. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  15. A spatial length scale analysis of turbulent temperature and velocity fluctuations within and above an orchard canopy

    USGS Publications Warehouse

    Wang, Y.S.; Miller, D.R.; Anderson, D.E.; Cionco, R.M.; Lin, J.D.

    1992-01-01

    Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions.

  16. Plant Equipment Package Modernization Program. Volume 4-1. Model Lines. Shell, HE, M483/M107-155MM Case, Cartridge, M115B1, M148A1B1, M150B1-105MM Shell, HEAT-T, M456A1-105MM Fuze, PD, M739

    DTIC Science & Technology

    1976-04-01

    Cartridge, M115B1, M148A1B1, M15#1B1-15MM J .. Shell, HEAT-T, M456A1-105MM Fuze, PD, M739 # prepared for Project Manager Munitions Production Base...ENGINEERS PLANT EQUIPMENT PACKAGE MODERNIZATION PROGRAM Volume 4-1 Report No. 75-86-R-4- MODEL LINE DEVELOPMENT FUZE,PD, M739 prepared for Project...In preparing the model line for the manufacture of piece parts for the M739 fuze, a number of facts became obvious and affect the detailed de- [ sign

  17. Upscaling anomalous reactive kinetics (A+B-->C) from pore scale Lagrangian velocity analysis

    NASA Astrophysics Data System (ADS)

    De Anna, P.; Tartakovsky, A. M.; Le Borgne, T.; Dentz, M.

    2011-12-01

    Natural flow fields in porous media display a complex spatio-temporal organization due to heterogeneous geological structures at different scales. This multiscale disorder implies anomalous dispersion, mixing and reaction kinetics (Berkowitz et al. RG 2006, Tartakovsky PRE 2010). Here, we focus on the upscaling of anomalous kinetics arising from pore scale, non Gaussian and correlated, velocity distributions. We consider reactive front simulations, where a component A displaces a component B that saturates initially the porous domain. The reactive component C is produced at the dispersive front located at interface between the A and B domains. The simulations are performed with the SPH method. As the mixing zone grows, the total mass of C produced increases with time. The scaling of this evolution with time is different from that which would be obtained from the homogeneous advection dispersion reaction equation. This anomalous kinetics property is related to spatial structure of the reactive mixture, and its evolution with time under the combined action of advective and diffusive processes. We discuss the different scaling regimes arising depending on the dominant process that governs mixing. In order to upscale these processes, we analyze the Lagrangian velocity properties, which are characterized by the non Gaussian distributions and long range temporal correlation. The main origin of these properties is the existence of very low velocity regions where solute particles can remain trapped for a long time. Another source of strong correlation is the channeling of flow in localized high velocity regions, which created finger-like structures in the concentration field. We show the spatial Markovian, and temporal non Markovian, nature of the Lagrangian velocity field. Therefore, an upscaled model can be defined as a correlated Continuous Time Random Walk (Le Borgne et al. PRL 2008). A key feature of this model is the definition of a transition probability density for

  18. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  19. Air Velocity Mapping of Environmental Test Chambers

    DTIC Science & Technology

    1989-07-01

    variable that must be measured for the evaluations of the air diffusion performance index (ADPI), or the thermal comfort indices such as predicted mean...altered. The impact of asymmetrical airflow patterns undoubtedly affect human thermal comfort votes. The standardized 6 technique described in this...report could be easily employed prior to or along with specific studies requiring precise air velocity data, and coupled with human thermal comfort surveys

  20. Asymmetric distances for binary embeddings.

    PubMed

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  1. A nanojet: propulsion of a molecular machine by an asymmetric distribution of reaction--products

    NASA Astrophysics Data System (ADS)

    Liverpool, Tanniemola; Golestanian, Ramin; Ajdari, Armand

    2006-03-01

    A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. Motion of the device is driven by an asymmetric distribution of reaction products. We calculate the propulsive velocity of the device as well as the scale of the velocity fluctuations. We also consider the effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction.

  2. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    PubMed Central

    2012-01-01

    Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of

  3. Suction performance and internal flow of a 2-bladed helical inducer with inlet asymmetric plate

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Uchinono, Y.; Ishizaka, K.; Furukawa, A.; Kim, J.-H.

    2013-10-01

    It has been found in our past studies that the installation of asymmetric plate at the inlet of inducer is effective for the suppression of cavitation surge phenomenon. In the present study, the suction performance of 2-bladed helical inducer with an inlet asymmetric plate is experimentally investigated. It is observed that the suction performance in large flow rate conditions is not significantly influenced by the asymmetric plate, whereas the head of inducer with the asymmetric plate increases just before the head breakdown in partial flow conditions. To understand the mechanism of this additional head, the flow measurements and the numerical simulations are carried out. It is found that the circumferential component of absolute velocity at the exit of inducer slightly increases with the development of cavitation in both cases with and without the inlet asymmetric plate, indicating the increase of the theoretical head. The theoretical head increase with the inlet asymmetric plate is also confirmed by the unsteady numerical simulations, suggesting that the additional head is achieved through the increase of the theoretical head with the change of the exiting flow from the inducer associated with some amount of cavitation.

  4. Evidence for the η(b)(2S) and observation of h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ.

    PubMed

    Mizuk, R; Asner, D M; Bondar, A; Pedlar, T K; Adachi, I; Aihara, H; Arinstein, K; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bay, A; Belous, K; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bonvicini, G; Bozek, A; Bračko, M; Brodzicka, J; Browder, T E; Chekelian, V; Chen, A; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I-S; Cho, K; Choi, S-K; Choi, Y; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Garmash, A; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W-S; Hsiung, Y B; Hyun, H J; Iijima, T; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kapusta, P; Kawasaki, T; Kim, H J; Kim, H O; Kim, J H; Kim, K T; Kim, M J; Kim, Y J; Kinoshita, K; Ko, B R; Koblitz, S; Kodyš, P; Korpar, S; Kouzes, R T; Križan, P; Krokovny, P; Kuhr, T; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, S-H; Li, J; Libby, J; Liu, C; Liu, Y; Liu, Z Q; Liventsev, D; Louvot, R; Matvienko, D; McOnie, S; Miyabayashi, K; Miyata, H; Mohanty, G B; Mohapatra, D; Moll, A; Muramatsu, N; Mussa, R; Nakao, M; Natkaniec, Z; Ng, C; Nishida, S; Nishimura, K; Nitoh, O; Nozaki, T; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Pestotnik, R; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Sakai, Y; Sandilya, S; Santel, D; Sanuki, T; Sato, Y; Schneider, O; Schwanda, C; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y-S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Sumihama, M; Sumiyoshi, T; Tanida, K; Tatishvili, G; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Tsuboyama, T; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vorobyev, V; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yabsley, B D; Yamaoka, J; Yamashita, Y; Yuan, C Z; Zhang, Z P; Zhilich, V

    2012-12-07

    We report the first evidence for the η(b)(2S) using the h(b)(2P)→η(b)(2S)γ transition and the first observation of the h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ transitions. The mass and width of the η(b)(1S) and η(b)(2S) are measured to be m(η(b)(1S))=(9402.4±1.5±1.8) MeV/c(2), m(η(b)(2S))=(9999.0±3.5(-1.9)(+2.8)) MeV/c(2), and Γ(η(b)(1S))=(10.8(-3.7-2.0)(+4.0+4.5)) MeV. We also update the h(b)(1P) and h(b)(2P) mass measurements. We use a 133.4 fb(-1) data sample collected at energies near the Υ(5S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider.

  5. Longitudinal growth of head circumference in term symmetric and asymmetric small for gestational age infants.

    PubMed

    Kaur, Harvinder; Bhalla, A K; Kumar, Praveen

    2012-07-01

    To study longitudinal growth pattern of head circumference of full-term symmetric and asymmetric small for gestational age (SGA) infants of the two sexes during first year of life. Mixed-longitudinal growth research design. Head circumference amongst full-term 100 symmetric, 100 asymmetric as well as 100 appropriate for gestational age (AGA) infants was measured at birth, 1, 3, 6, 9 and 12 months of age using standardized technique and instrument. The mean head circumference of male symmetric SGA infants measured significantly (p≤0.001) smaller than asymmetric SGA infants while, in female symmetric SGA infants it measured shorter beyond 6 months. As compared to AGA infants, head circumference in symmetric and asymmetric SGA infants measured significantly smaller in size. Growth velocity for head circumference amongst symmetric and asymmetric SGA male infants did not show statistically significant differences. Rate of head circumference growth remained significantly higher amongst female asymmetric SGA infants than the symmetric ones between 3 and 6 months while, a reversal of trend was observed between 9 and 12 months. The better growth attainments for head circumference of male and female asymmetric SGA infants than their symmetric SGA counterparts during first postnatal year of life may be attributed to the continuation of influence of "head sparing" experienced by asymmetric SGA babies during prenatal life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Pulsatile flow in a compliant stenosed asymmetric model

    NASA Astrophysics Data System (ADS)

    Usmani, Abdullah Y.; Muralidhar, K.

    2016-12-01

    Time-varying velocity field in an asymmetric constricted tube is experimentally studied using a two-dimensional particle image velocimetry system. The geometry resembles a vascular disease which is characterized by arterial narrowing due to plaque deposition. The present study compares the nature of flow patterns in rigid and compliant asymmetric constricted tubes for a range of dimensionless parameters appearing in a human artery. A blood analogue fluid is employed along with a pump that mimics cardioflow conditions. The peak Reynolds number range is Re 300-800, while the Womersley number range considered in experiments is Wo 6-8. These values are based on the peak velocity in a straight rigid tube connected to the model, over a pulsation frequency range of 1.2-2.4 Hz. The medial-plane velocity distribution is used to investigate the nature of flow patterns. Temporal distribution of stream traces and hemodynamic factors including WSS, TAWSS and OSI at important phases of the pulsation cycle are discussed. The flow patterns obtained from PIV are compared to a limited extent against numerical simulation. Results show that the region downstream of the constriction is characterized by a high-velocity jet at the throat, while a recirculation zone, attached to the wall, evolves in time. Compliant models reveal large flow disturbances upstream during the retrograde flow. Wall shear stress values are lower in a compliant model as compared to the rigid. Cross-plane flow structures normal to the main flow direction are visible at select phases of the cycle. Positive values of largest Lyapunov exponent are realized for wall movement and are indicative of chaotic motion transferred from the flow to the wall. These exponents increase with Reynolds number as well as compliance. Period doubling is observed in wall displacement of highly compliant models, indicating possible triggering of hemodynamic events in a real artery that may cause fissure in the plaque deposits.

  7. A study of H-alpha velocities in NGC 1499, NGC 7000, and IC 1318B/C

    NASA Technical Reports Server (NTRS)

    Fountain, W. F.; Gary, G. A.; Odell, C. R.

    1983-01-01

    Multiple slit echelle spectrograph observations of the H-alpha emission line are used to map the radial velocities of the California Nebula (NGC 1499), the North American Nebula complex (NGC 7000 and IC 5070), and IC 1318B/C. The California Nebula is singularly constant in velocity, considering its geometry. The North American Nebula complex reflects a very simple, classical dynamical picture. The expansion discovered earlier in IC 1318B/C is confirmed, detailed, and the model refined. The new data, along with that in earlier papers of this series, show that stellar wind acceleration and champagne flow mechanisms both play important roles in determining the evolution of H II regions.

  8. 3D Asymmetrical motions of the Galactic outer disc with LAMOST K giant stars

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; López-Corredoira, Martín; Carlin, Jeffrey L.; Deng, Licai

    2018-07-01

    We present a three dimensional velocity analysis of Milky Way disc kinematics using LAMOST K giant stars and the GPS1 proper motion catalogue. We find that Galactic disc stars near the anticentre direction (in the range of Galactocentric distance between R = 8 and 13 kpc and vertical position between Z = -2 and 2 kpc) exhibit asymmetrical motions in the Galactocentric radial, azimuthal, and vertical components. Radial motions are not zero, thus departing from circularity in the orbits; they increase outwards within R ≲ 12 kpc, show some oscillation in the northern (0 < Z < 2 kpc) stars, and have north-south asymmetry in the region corresponding to a well-known nearby northern structure in the velocity field. There is a clear vertical gradient in azimuthal velocity, and also an asymmetry that shifts from a larger azimuthal velocity above the plane near the solar radius to faster rotation below the plane at radii of 11-12 kpc. Stars both above and below the plane at R ≳ 9 kpc exhibit net upward vertical motions. We discuss some possible mechanisms that might create the asymmetrical motions, such as external perturbations due to dwarf galaxy minor mergers or dark matter sub-haloes, warp dynamics, internal processes due to spiral arms or the Galactic bar, and (most likely) a combination of some or all of these components.

  9. A direction detective asymmetrical twin-core fiber curving sensor

    NASA Astrophysics Data System (ADS)

    An, Maowei; Geng, Tao; Yang, Wenlei; Zeng, Hongyi; Li, Jian

    2015-10-01

    Long period fiber gratings (LPFGs), which can couple the core mode to the forward propagating cladding modes of a fiber and have the advantage of small additional loss, no backward reflection, small size, which is widely used in optical fiber sensors and optical communication systems. LPFG has different fabricating methods, in order to write gratings on the twin-core at the same time effectively, we specially choose electric heating fused taper system to fabricate asymmetric dual-core long period fiber grating, because this kind of method can guarantee the similarity of gratings on the twin cores and obtain good geometric parameters of LPFG, such as cycle, cone waist. Then we use bending test platform to conduct bending test for each of the core of twin-core asymmetric long period fiber grating. Experiments show that: the sensitivity of asymmetrical twin-core long period fiber grating's central core under bending is -5.47nm·m, while the sensitivity of asymmetric twin-core long period fiber grating partial core changed with the relative position of screw micrometer. The sensitivity at 0°, 30°, 90° direction is -4.22nm·m, -9.84nm·m, -11.44nm·m respectively. The experiment results strongly demonstrate the properties of rim sensing of asymmetrical twin-core fiber gratings which provides the possibility of simultaneously measuring the bending magnitude and direction and solving the problem of cross sensing when multi-parameter measuring. In other words, we can detect temperature and bend at the same time by this sensor. As our knowledge, it is the first time simultaneously measuring bend and temperature using this structure of fiber sensors.

  10. Light airplane crash tests at impact velocities of 13 and 27 m/sec

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Vaughan, V. L., Jr.

    1977-01-01

    Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.

  11. Phase velocity enhancement of linear explosive shock tubes

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  12. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  13. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, C. E.; Cassak, P. A., E-mail: Paul.Cassak@mail.wvu.edu; Swisdak, M.

    2016-08-15

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields,more » simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.« less

  14. Asymmetric angular dependence of spin-transfer torques in CoFe/Mg-B-O/CoFe magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ling, E-mail: lingtang@zjut.edu.cn; Xu, Zhi-Jun, E-mail: xzj@zjut.edu.cn; Zuo, Xian-Jun

    Using a first-principles noncollinear wave-function-matching method, we studied the spin-transfer torques (STTs) in CoFe/Mg-B-O/CoFe(001) magnetic tunnel junctions (MTJs), where three different types of B-doped MgO in the spacer are considered, including B atoms replacing Mg atoms (Mg{sub 3}BO{sub 4}), B atoms replacing O atoms (Mg{sub 4}BO{sub 3}), and B atoms occupying interstitial positions (Mg{sub 4}BO{sub 4}) in MgO. A strong asymmetric angular dependence of STT can be obtained both in ballistic CoFe/Mg{sub 3}BO{sub 4} and CoFe/Mg{sub 4}BO{sub 4} based MTJs, whereas a nearly symmetric STT curve is observed in the junctions based on CoFe/Mg{sub 4}BO{sub 3}. Furthermore, the asymmetry ofmore » the angular dependence of STT can be suppressed significantly by the disorder of B distribution. Such skewness of STTs in the CoFe/Mg-B-O/CoFe MTJs could be attributed to the interfacial resonance states induced by the B diffusion into MgO spacer.« less

  15. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity < 10 m s-1). The distribution of spectral slopes is roughly symmetric with a maximum at -5/3 during active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  16. Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load.

    PubMed

    Mokhtarinia, Hamid Reza; Sanjari, Mohammad Ali; Chehrehrazi, Mahshid; Kahrizi, Sedigheh; Parnianpour, Mohamad

    2016-02-01

    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and pelvis-thigh coordination patterns and variability. Statistical analysis revealed more in-phase coordination pattern in CNSLBP (p=0.005). There was less adaptation in the DP for the CNSLBP group, as shown by interactions of Group by Load (p=.008) and Group by Symmetry by Velocity (p=.03) for the DP of pelvis-thigh and lumbar-pelvis couplings, respectively. Asymmetric (p<0.001) and loaded (p=0.04) conditions caused less in-phase coordination. Coordination variability was higher during asymmetric and low velocity conditions (p<0.001). In conclusion, coordination pattern and variability could be influenced by trunk flexion-extension conditions. CNSLBP subjects demonstrated less adaptability of movement pattern to the demands of the flexion-extension task. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Radial Velocity Fiber-Fed Spectrographs Towards the Discovery of Compact Planets and Pulsations on M Stars

    NASA Astrophysics Data System (ADS)

    Berdiñas, Zaira M.

    2016-11-01

    This thesis is developed in the framework of the paradigm that seeks for the discovery of an Earth analog. Nowadays, low mass stars, and in particular M dwarf stars, are key targets towards achieving this goal. In this thesis, I focus on the study of the short-time domain of M dwarf stars with the aim of searching for short period planets, but also for the first detection of stellar pulsations on this spectral type. Both science goals are the primary objectives of the “Cool Tiny Beats” (CTB) survey, which has produced most of the data used in this thesis. CTB data consist in high resolution and high-cadence spectroscopic Doppler measurements taken either with HARPS or HARPS-N spectrographs. First of all, a thorough understanding of the spectrographs response in the short time domain was performed to characterize the sources of noise in our range of study. Our first approach to the goals of this thesis consisted in the design of an observational experiment to delve into the HARPS-N sub-night performance. Results unveiled variability of the spectra continuum correlated with instabilities of the spectrograph illumination associated to the airmass. Such distortions, which are wavelength and time dependent, are also present in at least one of the data-products given by the HARPS-N reduction software: the width of the mean-line profiles (i.e. the so-called FWHM index), an index commonly used as a proxy of the stellar activity. As a consequence, we searched for an alternative approach to measure the width index. In particular, we calculated the mean-line profile of the spectrum with a least-squares-deconvolution technique and we obtained the profile indices as the moments of the profile distribution. As part of this study, we also corroborated that the radial velocities calculated with our template matching algorithm TERRA are not affected by the illumination stability. This work unveiled a possible failure of the HARPS-N atmospheric dispersion corrector (or ADC) and

  18. KINEMATICS OF THE OUTFLOW FROM THE YOUNG STAR DG TAU B: ROTATION IN THE VICINITIES OF AN OPTICAL JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata, Luis A.; Lizano, Susana; Rodríguez, Luis F.

    2015-01-10

    We present {sup 12}CO(2-1) line and 1300 μm continuum observations made with the Submillimeter Array of the young star DG Tau B. We find, in the continuum observations, emission arising from the circumstellar disk surrounding DG Tau B. The {sup 12}CO(2-1) line observations, on the other hand, revealed emission associated with the disk and the asymmetric outflow related with this source. Velocity asymmetries about the flow axis are found over the entire length of the flow. The amplitude of the velocity differences is of the order of 1-2 km s{sup –1} over distances of about 300-400 AU. We interpret themmore » as a result of outflow rotation. The sense of the outflow and disk rotation is the same. Infalling gas from a rotating molecular core cannot explain the observed velocity gradient within the flow. Magneto-centrifugal disk winds or photoevaporated disk winds can produce the observed rotational speeds if they are ejected from a Keplerian disk at radii of several tens of AU. Nevertheless, these slow winds ejected from large radii are not very massive, and cannot account for the observed linear momentum and angular momentum rates of the molecular flow. Thus, the observed flow is probably entrained material from the parent cloud. DG Tau B is a good laboratory to model in detail the entrainment process and see if it can account for the observed angular momentum.« less

  19. Enhancement of coupling ratios in SOI based asymmetrical optical directional couplers

    NASA Astrophysics Data System (ADS)

    Pendam, Nagaraju; Vardhani, Chunduru Parvatha

    2017-11-01

    A novel design of slab structured asymmetrical optical directional coupler with S-bend waveguides on silicon-on-insulator (SOI) platform has been designed by using R-Soft CAD tool. Beam propagation method (BPM) is used for light propagation analysis. The simulation results of asymmetrical optical directional couplers are reported. We find that the asymmetrical directional coupler has lower coupling ratios and higher extinction ratios with waveguide parameters such as width, wavelength, waveguide spacing, and coupling length. Simulation results designate that the coupling efficiency for transverse electric (TE) and transverse magnetic (TM) modes can reach about more than 95% and extinction ratio about 6 dB when the coupling length is 6 mm for both the polarization modes and insertion loss is 17 dB with same coupling length 6 mm at central wavelength 1550 nm.

  20. FAIMS Operation for Realistic Gas Flow Profile and Asymmetric Waveforms Including Electronic Noise and Ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartsburg, Alexandre A.; Tang, Keqi; Smith, Richard D.

    The use of Field Asymmetric waveform Ion Mobility Spectrometry (FAIMS) has rapidly grown with the advent of commercial FAIMS systems coupled to mass spectrometry. However, many fundamental aspects of FAIMS remain obscure, hindering its technological improvement and expansion of analytical utility. Recently, we developed a comprehensive numerical simulation approach to FAIMS that can handle any device geometry and operational conditions. The formalism was originally set up in one dimension for a uniform gas flow and limited to ideal asymmetric voltage waveforms. Here we extend the model to account for a realistic gas flow velocity distribution in the analytical gap, axialmore » ion diffusion, and waveform imperfections (e.g. noise and ripple). The non-uniformity of gas flow velocity profile has only a minor effect, slightly improving resolution. However, waveform perturbations are significant even at very low levels, in some cases {approx} 0.01% of nominal voltage. These perturbations always improve resolution and decrease sensitivity. Variation of noise or ripple amplitude produces a trade-off between resolution and sensitivity. This trade-off is physically equivalent to that obtained via adjustment of the gap width and/or asymmetric waveform frequency, but the scaling of low-frequency ripple appears to be a more practical way to control FAIMS resolution.« less

  1. Opening of the Central Atlantic Ocean: Implications for Geometric Rifting and Asymmetric Initial Seafloor Spreading after Continental Breakup

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.

    2017-12-01

    The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the

  2. VizieR Online Data Catalog: K2-141 b radial velocity and light curve (Barragan+, 2018)

    NASA Astrophysics Data System (ADS)

    Barragan, O.; Gandolfi, D.; Dai, F.; Livingston, J.; Persson, C. M.; Hirano, T.; Narita, N.; Csizmadia, Sz.; Winn, J. N.; Nespral, D.; Prieto-Arranz, J.; Smith, A. M. S.; Nowak, G.; Albrecht, S.; Antoniciello, G.; Bo Justesen, A.; Cabrera, J.; Cochran, W. D.; Deeg, H..; Eigmuller, P.; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E.; Hatzes, A. P.; Hidalgo, D.; Johnson, M. C.; Korth, J.; Palle, E.; Patzold, M.; Rauer, H.; Tanaka, Y.; van Eylen, V.

    2018-01-01

    Light curve and radial velocities for K2-141 (EPIC 246393474). Light curve comes from campaing 12 of the extended Kepler mission, K2. Radial velocity data was obtained with HARPS at th3 3.6m telescope, ESO. FIES data comes from observations at the Nordic Optical Telescope (NOT). (3 data files).

  3. Application of asymmetric flow field-flow fractionation (AF4) and multiangle light scattering (MALS) for the evaluation of changes in the product molar mass during PVP-b-PAMPS synthesis.

    PubMed

    Fuentes, Catalina; Castillo, Joel; Vila, Jose; Nilsson, Lars

    2018-06-01

    The use of polymers for the delivery of drugs has increased dramatically in the last decade. To ensure the desired properties and functionality of such substances, adequate characterization in terms of the molar mass (M) and size is essential. The aim of this study was to evaluate the changes in the M and size of PVP-b-PAMPS when the amounts of the synthesis reactants in the two-step radical reaction were varied. The determination of the M and size distributions was performed by an asymmetric flow field-flow fractionation (AF4) system connected to multiangle light scattering (MALS) and differential refractive index (dRI) detectors. The results show that the M of the polymers varies depending on the relative amounts of the reactants and that AF4-MALS-dRI is a powerful characterization technique for analyzing polymers. Using AF4, it was possible to separate the product of the first radical reaction (PVP-CTA) into two populations. The first population had an elongated, rod-like or random coil conformation, and the second had a conformation corresponding to homogeneous spheres or a microgel structure. PVP-b-PAMPS had only one population, which had a rod-like conformation. The molar masses of PVP-CTA and PVP-b-PAMPS found in this study were higher than those reported in previous studies.

  4. High Velocity Absorption during Eta Car B's Periastron Passage

    NASA Technical Reports Server (NTRS)

    Nielsen, Krister E.; Groh, J. H.; Hillier, J.; Gull, Theodore R.; Owocki, S. P.; Okazaki, A. T.; Damineli, A.; Teodoro, M.; Weigelt, G.; Hartman, H.

    2010-01-01

    Eta Car is one of the most luminous massive stars in the Galaxy, with repeated eruptions with a 5.5 year periodicity. These events are caused by the periastron passage of a massive companion in an eccentric orbit. We report the VLT/CRIRES detection of a strong high-velocity, (<1900 km/s) , broad absorption wing in He I at 10833 A during the 2009.0 periastron passage. Previous observations during the 2003.5 event have shown evidence of such high-velocity absorption in the He I 10833 transition, allowing us to conclude that the high-velocity gas is crossing the line-of-sight toward Eta Car over a time period of approximately 2 months. Our analysis of HST/STlS archival data with observations of high velocity absorption in the ultraviolet Si IV and C IV resonance lines, confirm the presence of a high-velocity material during the spectroscopic low state. The observations provide direct detection of high-velocity material flowing from the wind-wind collision zone around the binary system, and we discuss the implications of the presence of high-velocity gas in Eta Car during periastron

  5. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

    NASA Astrophysics Data System (ADS)

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.

  6. Separated before birth: pulsars B2020+28 and B2021+51 as the remnants of runaway stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2007-08-01

    Astrometric data on the pulsars B2020+28 and B2021+51 suggest that they originated within several parsecs of each other in the direction of the Cyg OB2 association. It was proposed that the pulsars share their origin in a common massive binary and were separated at the birth of the second pulsar following the asymmetric supernova explosion. We consider a different scenario for the origin of the pulsar pair based on a possibility that the pulsars were separated before their birth and that they are the remnants of runaway stars ejected (with velocities similar to those of the pulsars) from the core of Cyg OB2 due to strong three- or four-body dynamical encounters. Our scenario does not require any asymmetry in supernova explosions.

  7. Phosphorene-directed self-assembly of asymmetric PS-b-PMMA block copolymer for perpendicularly-oriented sub-10 nm PS nanopore arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng

    2017-10-01

    Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.

  8. Numerical studies of asymmetric adiabatic accretion flow - The effect of velocity gradients

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.; Fryxell, B. A.

    1989-01-01

    A numerical study of the time variation of the angular momentum and mass capture rates for a central object accreting from a uniform medium with a velocity gradient transverse to the direction of the mean flow is presented, covering a range of velocity asymmetries and Mach numbers in the incident flow. It is found that the mass accretion rate in a given evolutionary sequence varies in an irregular manner, with the matter accreting onto the central object from either a continuously moving accretion wake or from an accretion disk. The implications of the results from the study of short-term fluctuations observed in the pulse period and luminosity of X-ray pulsars are discussed.

  9. The influence of asymmetric force requirements on a multi-frequency bimanual coordination task.

    PubMed

    Kennedy, Deanna M; Rhee, Joohyun; Jimenez, Judith; Shea, Charles H

    2017-01-01

    An experiment was designed to determine the impact of the force requirements on the production of bimanual 1:2 coordination patterns requiring the same (symmetric) or different (asymmetric) forces when Lissajous displays and goal templates are provided. The Lissajous displays have been shown to minimize the influence of attentional and perceptual constraints allowing constraints related to neural crosstalk to be more clearly observed. Participants (N=20) were randomly assigned to a force condition in which the left or right limb was required to produce more force than the contralateral limb. In each condition participants were required to rhythmically coordinate the pattern of isometric forces in a 1:2 coordination pattern. Participant performed 13 practice trials and 1 test trial per force level. The results indicated that participants were able to effectively coordinate the 1:2 multi-frequency goal patterns under both symmetric and asymmetric force requirements. However, consistent distortions in the force and force velocity time series were observed for one limb that appeared to be associated with the production of force in the contralateral limb. Distortions in the force produced by the left limb occurred regardless of the force requirements of the task (symmetric, asymmetric) or whether the left or right limb had to produce more force than the contralateral limb. However, distinct distortions in the right limb occurred only when the left limb was required to produce 5 times more force than the right limb. These results are consistent with the notion that neural crosstalk can influence both limbs, but may manifest differently for each limb depending on the force requirements of the task. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electron Jet of Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  11. Predicting tensorial electrophoretic effects in asymmetric colloids

    NASA Astrophysics Data System (ADS)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  12. VizieR Online Data Catalog: Radial velocities in M67. I. 1278 candidate members (Geller+, 2015)

    NASA Astrophysics Data System (ADS)

    Geller, A. M.; Latham, D. W.; Mathieu, R. D.

    2015-10-01

    This is the first in a series of papers studying the dynamical state of the old open cluster M67 through precise radial velocities. This is also the paper LXVII of the WIYN Open Cluster Study. Our radial velocity survey of M67 began as part of the dissertation work of Mathieu (1983PhDT.........8M), taking advantage of the CfA Digital Speedometers (DS). Three nearly identical instruments were used, initially on the MMT (from HJD2445337 to HJD2450830) and 1.5m Tillinghast Reflector (from HJD2444184 to HJD2454958) at the Fred Lawrence Whipple Observatory on Mount Hopins, Arizona, and then later on the 1.5m Wyeth Reflector (from HJD2445722 to HJD2453433) at the Oak Ridge Observatory in the Town of Harvard, Massachusetts. Subsequently the M67 target samples were expanded several times. Radial velocities measurements from other programs were integrated into the database, and our observational facilities were extended to include Hydra Multi-Object Spectrograph (MOS) at the WIYN Observatory (from HJD2453386 to HJD2456709) and the new Tillinghast Reflector Echelle Spectrograph (TRES) on the Tillinghast Reflector (from HJD2455143 to HJD2456801). Details about the telescopes, observing procedures, and data reductions of spectra obtained with the CfA DS can be found in Latham (1985srv..conf...21L, 1992ASPC...32..110L). The corresponding information for spectra obtained with Hydra at the WIYN Observatory can be found in Geller et al. 2008 (cat. J/AJ/135/2264), Geller et al. 2010 (cat. J/AJ/139/1383) and Hole et al. (2009). TRES is a stabilized fiber-fed echelle spectrograph with a CCD detector and resolution of 44000. The initial CfA sample was defined in 1982. The last surviving CfA Digital Speedometer, on the 1.5m Tillinghast Reflector, was retired in the summer of 2009. Over the following five observing seasons, TRES was used to continue the radial velocity observations of targets (mostly binaries) from both the CfA and the WIYN samples. Importantly, Roger Griffin and James

  13. Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals.

    PubMed

    Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Zhao, Sihao; Lu, Mingquan

    2017-10-16

    Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm.

  14. VizieR Online Data Catalog: M4 Core Project with HST. Radial velocities (Malavolta+, 2015)

    NASA Astrophysics Data System (ADS)

    Malavolta, L.; Piotto, G.; Bedin, L. R.; Sneden, C.; Nascimbeni, V.; Sommariva, V.

    2016-07-01

    The spectra for our project were originally used by Sommariva et al. (2009A&A...493..947S) to study the internal velocity dispersion of M4 and to search for spectroscopic binaries. A total of 2771 stars covering colour-magnitude diagram (CMD) positions from the upper RGB to about 1mag fainter than the main-sequence turnoff (TO) luminosity were observed between 2003 and 2009, including 306 new spectra obtained in 2009 and targeting MS stars already observed in the previous epochs. Determination of the M 4 velocity dispersion and binary star fraction were the prime motivators for obtaining these data. Therefore nearly all stars were observed at least twice, and three or more spectra were obtained for nearly 40 per cent of the sample. (2 data files).

  15. Catalytic asymmetric nitro-Mannich reactions with a Yb/K heterobimetallic catalyst.

    PubMed

    Nitabaru, Tatsuya; Kumagai, Naoya; Shibasaki, Masakatsu

    2010-03-04

    A catalytic asymmetric nitro-Mannich (aza-Henry) reaction with rare earth metal/alkali metal heterobimetallic catalysts is described. A Yb/K heterobimetallic catalyst assembled by an amide-based ligand promoted the asymmetric nitro-Mannich reaction to afford enantioenriched anti-b-nitroamines in up to 86% ee. Facile reduction of the nitro functionality allowed for efficient access to optically active 1,2-diamines.

  16. Asymmetric cell division requires specific mechanisms for adjusting global transcription.

    PubMed

    Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E

    2017-12-01

    Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Precision stellar radial velocity measurements with FIDEOS at the ESO 1-m telescope of La Silla

    NASA Astrophysics Data System (ADS)

    Vanzi, L.; Zapata, A.; Flores, M.; Brahm, R.; Tala Pinto, M.; Rukdee, S.; Jones, M.; Ropert, S.; Shen, T.; Ramirez, S.; Suc, V.; Jordán, A.; Espinoza, N.

    2018-07-01

    We present results from the commissioning and early science programs of FIbre Dual Echelle Optical Spectrograph (FIDEOS), the new high-resolution echelle spectrograph developed at the Centre of Astro Engineering of Pontificia Universidad Catolica de Chile, and recently installed at the ESO 1-m telescope of La Silla. The instrument provides spectral resolution R ˜ 43 000 in the visible spectral range 420-800 nm, reaching a limiting magnitude of 11 in V band. Precision in the measurement of radial velocity is guaranteed by light feeding with an octagonal optical fibre, suitable mechanical isolation, thermal stabilization, and simultaneous wavelength calibration. Currently the instrument reaches radial velocity stability of ˜8 m s-1 over several consecutive nights of observation.

  18. Asymmetric MHD outflows/jets from accreting T Tauri stars

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.

    2015-06-01

    Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.

  19. TWO DISTANT HALO VELOCITY GROUPS DISCOVERED BY THE PALOMAR TRANSIENT FACTORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sesar, Branimir; Cohen, Judith G.; Levitan, David

    2012-08-20

    We report the discovery of two new halo velocity groups (Cancer groups A and B) traced by eight distant RR Lyrae stars and observed by the Palomar Transient Factory survey at R.A. {approx} 129 Degree-Sign , decl. {approx} 20 Degree-Sign (l {approx} 205 Degree-Sign , b {approx} 32 Degree-Sign ). Located at 92 kpc from the Galactic center (86 kpc from the Sun), these are some of the most distant substructures in the Galactic halo known to date. Follow-up spectroscopic observations with the Palomar Observatory 5.1 m Hale telescope and W. M. Keck Observatory 10 m Keck I telescope indicatemore » that the two groups are moving away from the Galaxy at v-bar{sub gsr}{sup A} = 78.0{+-}5.6 km s{sup -1} (Cancer group A) and v-bar{sub gsr}{sup B} = 16.3{+-}7.1 km s{sup -1} (Cancer group B). The groups have velocity dispersions of {sigma}{sub v{sub g{sub s{sub r}{sup A}}}} = 12.4{+-}5.0 km s{sup -1} and {sigma}B{sub v{sub g{sub s{sub r}{sup B}}}} =14.9{+-}6.2 km s{sup -1} and are spatially extended (about several kpc), making it very unlikely that they are bound systems, and more likely to be debris of tidally disrupted dwarf galaxies or globular clusters. Both groups are metal-poor (median metallicities of [Fe/H]{sup A} = -1.6 dex and [Fe/H]{sup B} = -2.1 dex) and have a somewhat uncertain (due to small sample size) metallicity dispersion of {approx}0.4 dex, suggesting dwarf galaxies as progenitors. Two additional RR Lyrae stars with velocities consistent with those of the Cancer groups have been observed {approx}25 Degree-Sign east, suggesting possible extension of the groups in that direction.« less

  20. Detection of atmospheric velocity fields in A-type stars

    NASA Astrophysics Data System (ADS)

    Landstreet, J. D.

    1998-10-01

    High signal-to-noise spectra with spectral resolution of more than 10(5) have been obtained of one normal B9.5V, one normal A1V, two Am stars, and two HgMn B stars having v sin i less than 6 km s(-1) . These spectra are modeled with LTE line profile synthesis to test the extent to which the spectrum of each star can be modeled correctly with a single set of parameters T_e, log g, chemical abundances, v sin i, and (depth-independent) microturbulent velocity xi . The answer to this question is important for abundance analysis of A and B stars; if conventional line synthesis does not reproduce the line profiles observed in stars of small v sin i, results obtained from such analysis are not likely to be very precise. The comparison of models with observations is then used to search for direct evidence of atmospheric motions, including line-strength dependent broadening, line core shape, and line asymmetries, in order to study how the microturbulence derived from abundance analysis is related to more direct evidence of atmospheric velocity fields. It is found for the three stars with 12,000 >= T_e >= 10,200 K (the normal star 21 Peg and the two HgMn stars 53 Tau and HD 193452) that xi is less than 1 km s(-1) , and line profiles are reproduced accurately by the synthesis with a single set of parameters. The slightly cooler (T_e ~ 9800 K) star HD 72660 has only a slightly stronger surface convective layer than the hotter stars, but for this star xi ~ 2.2 km s(-1) . Strong spectral lines all show significant asymmetry, with the blue line wing deeper than the red wing, and have line bisectors which have curvature towards the blue with a span of about 0.5 to 1.0 km s(-1) . A single model fits all lines satisfactorily. The two Am stars (HD 108642 and 32 Aqr), with T_e ~ 8000 K, are found to have much larger values of xi (4 to 5 km s(-1) ). The strong spectral lines of these two stars are extremely asymmetric, with depressed blue wings, and the bisectors have spans of order 3

  1. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less

  2. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    DOE PAGES

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; ...

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less

  3. A method for automated control of belt velocity changes with an instrumented treadmill.

    PubMed

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2016-01-04

    Increased practice difficulty during asymmetrical split-belt treadmill rehabilitation has been shown to improve gait outcomes during retention and transfer tests. However, research in this area has been limited by manual treadmill operation. In the case of variable practice, which requires stride-by-stride changes to treadmill belt velocities, the treadmill control must be automated. This paper presents a method for automation of asymmetrical split-belt treadmill walking, and evaluates how well this method performs with regards to timing of gait events. One participant walked asymmetrically for 100 strides, where the non-dominant limb was driven at their self-selected walking speed, while the other limb was driven randomly on a stride-by-stride basis. In the control loop, the key factors to insure that the treadmill belt had accelerated to its new velocity safely during the swing phase were the sampling rate of the A/D converter, processing time within the controller software, and acceleration of the treadmill belt. The combination of these three factors resulted in a total control loop time during each swing phase that satisfied these requirements with a factor of safety that was greater than 4. Further, a polynomial fit indicated that belt acceleration was the largest contributor to changes in this total time. This approach appears to be safe and reliable for stride-by-stride adjustment of treadmill belt speed, making it suitable for future asymmetrical split-belt walking studies. Further, it can be incorporated into virtual reality rehabilitation paradigms that utilize split-belt treadmill walking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride / silicon-on-insulator platform.

    PubMed

    Sun, Xiao; Aitchison, J Stewart; Mojahedi, Mo

    2017-04-03

    We have experimentally demonstrated a compact polarization beam splitter (PBS) based on the silicon nitride/silicon-on-insulator platform using the recently proposed augmented-low-index-guiding (ALIG) waveguide structure. The two orthogonal polarizations are split in an asymmetric multimode interference (MMI) section, which was 1.6 μm wide and 4.8 μm long. The device works well over the entire C-band wavelength range and has a measured low insertion loss of less than 1 dB. The polarization extinction ratio at the Bar Port is approximately 17 dB and at the Cross Port is approximately 25 dB. The design of the device is robust and has a good fabrication tolerance.

  5. Asymmetric hearing loss in a random population of patients with mild to moderate sensorineural hearing loss.

    PubMed

    Segal, Nili; Shkolnik, Mark; Kochba, Anat; Segal, Avichai; Kraus, Mordechai

    2007-01-01

    We evaluated the correlation of asymmetric hearing loss, in a random population of patients with mild to moderate sensorineural hearing loss, to several clinical factors such as age, sex, handedness, and noise exposure. We randomly selected, from 8 hearing institutes in Israel, 429 patients with sensorineural hearing loss of at least 30 dB at one frequency and a speech reception threshold not exceeding 30 dB. Patients with middle ear disease or retrocochlear disorders were excluded. The results of audiometric examinations were compared binaurally and in relation to the selected factors. The left ear's hearing threshold level was significantly higher than that of the right ear at all frequencies except 1.0 kHz (p < .05). One hundred fifty patients (35%) had asymmetric hearing loss (more than 10 dB difference between ears). In most of the patients (85%) the binaural difference in hearing threshold level, at any frequency, was less than 20 dB. Age, handedness, and sex were not found to be correlated to asymmetric hearing loss. Noise exposure was found to be correlated to asymmetric hearing loss.

  6. Evolution of asymmetrically displaced footpoints during substorms

    NASA Astrophysics Data System (ADS)

    Ohma, A.; Østgaard, N.; Laundal, K.; Reistad, J.; Tenfjord, P.; Snekvik, K.; Fillingim, M. O.

    2017-12-01

    It is well established that a transverse (y) component in the interplanetary magnetic field (IMF) induces a By component in the closed magnetosphere through asymmetric loading and/or redistribution of magnetic flux. Simultaneous images of the aurora in the two hemispheres have revealed that conjugate auroral features are displaced longitudinally during such conditions, indicating that the field-lines are displaced from their symmetric configuration. Although the direction and magnitude of this displacement show correlations with IMF clock angle and dipole tilt, events show large temporal and spatial variability of this displacement. For instance, it is not clear how substorms affect the displacement.In a previous case study, Østgaard et al. [2011] demonstrated that displaced auroral forms, associated with the present IMF orientation, returned to a more symmetric configuration during the expansion phase of two substorms. Using IMAGE and Polar, we have identified multiple events where conjugate images during substorms are available. By visual inspection and by applying correlation analysis, we identify conjugate auroral features and investigate how the asymmetry evolves during the substorm phases. We find that the system returns to a more symmetric state during the substorm expansion and early recovery phase, in agreement with the earlier published result. This is also true for the events where the solar wind driving is stable, indicating that the asymmetric displacement is indeed reduced or removed by the substorm. This can be interpreted as the result of increased reconnection rate in the magnetotail during the substorm expansion phase, which reduces the asymmetric lobe pressure.Østgaard, N., B. K. Humberset, and K. M. Laundal (2011), Evolution of auroral asymmetries in the conjugate hemi-spheres during two substorms, Geophys. Res. Lett., 38, L03101, doi:10.1029/2010GL046057.

  7. Asymmetrically pressing nasal splint for crooked nose deformity.

    PubMed

    Tugrul, Selahattin; Dogan, Remzi; Kocak, Ilker; Ozturan, Orhan

    2015-01-01

    Correcting crooked nose deformity is one of the most difficult procedure in rhinoplastic surgery. For that reason, the authors have been designed an asymmetrically pressing nasal splint. In this prospective study, the aim was to compare the effects of applying asymmetrically pressing nasal splint and normal symmetrically splint on the crooked nose. This study included 129 patients who were operated on for crooked nose deformity. Patients were divided into 2 groups. Normal symmetrically pressing nasal splint was applied to groups 1a (I type) and 1b (C type). Asymmetrically pressing nasal splint was applied to groups 2a (I type) and 2b (C type). All groups were compared according to deflection angle from the midline, the percentage of postoperative improvement, patient satisfaction with visual analog scale, and complication rate. I-type noses in both groups at postoperative angle values were reduced, and C-type noses in both groups at postoperative angle values were increased significantly compared with preoperative values. I-type noses of group 2 at postoperative angle values compared with group 1 were reduced, and C-type noses were increased in group 2 significantly. Patient satisfaction rate in group 2 were significantly better than in group 1. The closeness ratios to the ideal angles in group 1 were in "good" and "moderate" levels, whereas in group 2, it was in "excellent" level. There was no significant difference in complication rate in both groups. Asymmetrically pressing splint (novel design) showed increasing success rate clearly in crooked nose surgery than in normal splints.

  8. Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel

    NASA Astrophysics Data System (ADS)

    Jhorar, R.; Tripathi, D.; Bhatti, M. M.; Ellahi, R.

    2018-05-01

    This article addresses the electrokinetically modulated biomechanical transport through a two-dimensional asymmetric microchannel induced by peristaltic waves. Electrokinetic transport with peristaltic phenomena grabbed a significant attention due to its novel applications in engineering. Electrical fields also provide an excellent mode for regulating flows. The electrohydrodynamics problem is modified by means of Debye-Hückel linearization. Firstly, the governing flow problem is described by continuity and momentum equations in the presence of electrokinetic forces in Cartesian coordinates, then long wavelength and low/zero Reynolds ("neglecting the inertial forces") approximations are applied to modify the governing flow problem. The resulting differential equations are solved analytically in order to obtain exact solutions for velocity profile whereas the numerical integration is carried out to analyze the pumping characteristics. The physical behaviour of sundry parameters is discussed for velocity profile, pressure rise and volume flow rate. In particular, the behaviour of electro-osmotic parameter, phase difference, and Helmholtz-Smoluchowski velocity is examined and discussed. The trapping mechanism is also visualized by drawing streamlines against the governing parameters. The present study offers various interesting results that warrant further study on electrokinetic transport with peristalsis.

  9. Transport of pulmonary secretions by asymmetric high frequency oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenauer, L.M.

    1987-01-01

    Asymmetric high frequency oscillation (AHFO) was investigated as a mechanism for augmenting the clearance of excess pulmonary secretions from the airways of the lungs. In vitro and in vivo models were developed to test its ability to predictably transport pulmonary secretions. The augmentation of mucus transport by 10 Hz AHFO was investigated in the canine trachea. Ventilation of eight dogs (2 studies each) was performed with three AHFO power settings in random order and conventional mechanical ventilation (CMV) before or after the AHFO trials. Prior to each trial, 35-45 ..mu..l of canine muscus mixed with a radiotagged colloid (/sup 99/Tc/supmore » m/) was instilled in the distal trachea. As the radiotagged mixture traveled up the trachea, tracheal muscus velocities (TMV) were recorded on six channels with a multidetector probe. CMV mean TMVs before and after AHFO were not significantly different. The mean TMV of 6.3 +/- 2.6 mm/min at 30% power AHFO was faster than the CMV mean TVM of 4.1 +/- 2.1 mm/min (p <0.05).« less

  10. TU-F-CAMPUS-I-04: Head-Only Asymmetric Gradient System Evaluation: ACR Image Quality and Acoustic Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weavers, P; Shu, Y; Tao, S

    Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can producemore » clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065.« less

  11. Asymmetric chemical reactions by polarized quantum beams

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044

  12. Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking - A principal component analysis approach.

    PubMed

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2018-06-01

    Gait adaptation is a task that requires fine-tuned coordination of all degrees of freedom in the lower limbs by the central nervous system. However, when individuals change their gait it is unknown how this coordination is organized, and how it can be influenced by contextual interference during practice. Such knowledge could provide information about measurement of gait adaptation during rehabilitation. Able-bodied individuals completed an acute bout of asymmetric split-belt treadmill walking, where one limb was driven at a constant velocity and the other according to one of three designed practice paradigms: serial practice, where the variable limb belt velocity increased over time; random blocked practice, where every 20 strides the variable limb belt velocity changed randomly; random practice, where every stride the variable limb belt velocity changed randomly. On the second day, subjects completed one of two different transfer tests; one with a belt asymmetry close to that experienced on the acquisition day (transfer 1; 1.5:1), and one with a greater asymmetry (transfer 2; 2:1) . To reduce this inherently high-dimensional dataset, principal component analyses were used for kinematic data collected throughout the acquisition and transfer phases; resulting in extraction of the first two principal components (PCs). For acquisition, PC1 and PC2 were related to sagittal and frontal plane control. For transfer 1, PC1 and PC2 were related to frontal plane control of the base of support and whole-body center of mass. For transfer 2, PC1 did not have any variables with high enough coefficients deemed to be relevant, and PC2 was related to sagittal plane control. Observations of principal component scores indicate that variance structuring differs among practice groups during acquisition and transfer 1, but not transfer 2. These results demonstrate the main kinematic coordinative structures that exist during gait adaptation, and that control of sagittal plane and

  13. Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals

    PubMed Central

    Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Lu, Mingquan

    2017-01-01

    Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm. PMID:29035350

  14. Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimerz J.; Gwynne, Peter; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca

    2017-01-01

    The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded approximately 1900 CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011-2015) of 0.58% per yr, but large spatial variations are present. Using the nonparametric 'Demons' method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0.''09 to 0.''44 per yr. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities v(sub s) as low as 3600 km per sec (for an assumed distance of 8.5 kpc), much less than v(sub s) = 12,000-13,000 km per sec along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 yr, we measure its increase at 1.3% +/- 0.8% per yr. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.

  15. Asymmetric Fireballs in Symmetric Collisions

    DOE PAGES

    Bialas, A.; Bzdak, A.; Zalewski, K.

    2013-01-01

    Here, this contribution reports on the results obtained in the two recently published papers demonstrating that data of the STAR Collaboration show a substantial asymmetric component in the rapidity distribution of the system created in central Au-Au collisions, implying that boost invariance is violated on the event-by-event basis even at the mid c.m. rapidity.

  16. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals [On the Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Ruiz Pestana, Luis; Womack, James C.

    The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV10 nonlocal correlation functional can replace the VV10 nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV10, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicatemore » that a value of b = 6 (fortuitously the same as that in B97M-V) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, ωB97X-V and ωB97M-V, and a value of b = 6.2 is recommended for both ωB97X-rV and ωB97M-rV.« less

  17. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals [On the Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals

    DOE PAGES

    Mardirossian, Narbe; Ruiz Pestana, Luis; Womack, James C.; ...

    2016-12-06

    The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV10 nonlocal correlation functional can replace the VV10 nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV10, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicatemore » that a value of b = 6 (fortuitously the same as that in B97M-V) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, ωB97X-V and ωB97M-V, and a value of b = 6.2 is recommended for both ωB97X-rV and ωB97M-rV.« less

  18. Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li 4Ti 5O 12 supercapacitors

    NASA Astrophysics Data System (ADS)

    Ionica-Bousquet, C. M.; Muñoz-Rojas, D.; Casteel, W. J.; Pearlstein, R. M.; Kumar, G. Girish; Pez, G. P.; Palacín, M. R.

    Solutions of novel fluorinated lithium dodecaborate (Li 2B 12F xH 12- x) salts have been evaluated as electrolytes in nonaqueous asymmetric supercapacitors with Li 4Ti 5O 12 as negative electrode, and activated carbon (AC) as positive electrode. The results obtained with these new electrolytes were compared with those obtained with cells built using standard 1 M LiPF 6 dissolved in ethylene carbonate and dimethyl carbonate (EC:DMC; 1:1, v/v) as electrolyte. The specific energy, rate capability, and cycling performances of nonaqueous asymmetric cells based on these new electrolyte salts were studied. Cells assembled using the new fluoroborate salts show excellent reversibility, coulombic efficiency, rate capability and improved cyclability when compared with the standard electrolyte. These features confirm the suitability of lithium-fluoro-borate based salts to be used in nonaqueous asymmetric supercapacitors.

  19. H2MBH2 and M(μ-H)2BH2 Molecules Isolated in Solid Argon: Interelement M-B and M-H-B Bonds (M = Ge, Sn).

    PubMed

    Zhao, Jie; Beckers, Helmut; Huang, Tengfei; Wang, Xuefeng; Riedel, Sebastian

    2018-02-19

    Laser-ablated boron atoms react with GeH 4 molecules to form novel germylidene borane H 2 GeBH 2 , which undergoes a photochemical rearrangement to the germanium tetrahydroborate Ge(μ-H) 2 BH 2 upon irradiation with light of λ = 405 nm. For comparison, the boron atom reactions with SnH 4 only gave the tin tetrahydroborate Sn(μ-H) 2 BH 2 . Infrared matrix-isolation spectroscopy with deuterium substitution and the state-of-the-art quantum-chemical calculations are used to identify these species in solid argon. A planar structure of H 2 GeBH 2 with an electron-deficient B-Ge bond with a partial multiple bond character (bond order = 1.5) is predicted by quantum-chemical calculations. In the case of M(μ-H) 2 BH 2 (M = Ge, Sn) two 3c-2e B-H-M hydrogen bridged bonds are formed by donation of electrons from the B-H σ-bonds into empty p-orbitals of M.

  20. Passive asymmetric transport of hesperetin across isolated rabbit cornea.

    PubMed

    Srirangam, Ramesh; Majumdar, Soumyajit

    2010-07-15

    Hesperetin, an aglycone of the flavanone hesperidin, is a potential candidate for the treatment of diabetic retinopathy and macular edema. The purpose of this investigation was to determine solubility, stability and in vitro permeability characteristics of hesperetin across excised rabbit corneas. Aqueous and pH dependent solubility was determined using standard shake flask method. Solution stability was evaluated as a function of pH (1.2-9) and temperature (25 and 40 degrees C). Permeability of hesperetin was determined across the isolated rabbit cornea utilizing a side-bi-side diffusion apparatus, in the apical to basolateral (A-B) and basolateral to apical (B-A) directions. Hesperetin displayed asymmetrical transcorneal transport with a 2.3-fold higher apparent permeability in the B-A direction compared to the A-B direction. The transport process was observed to be pH dependent. Surprisingly, however, the involvement of efflux transporters or proton-coupled carrier-systems was not evident in this asymmetric transcorneal diffusion process. The passive and pH dependent corneal transport of hesperetin could probably be attributable to corneal ultrastructure, physicochemical characteristics of hesperetin and the role of transport buffer components. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    DOE PAGES

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less

  2. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishara, Fady; Zupan, Jure

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less

  3. A baseline for upper crustal velocity variations along the East Pacific Rise at 13 deg N

    NASA Astrophysics Data System (ADS)

    Kappus, Mary E.; Harding, Alistair J.; Orcutt, John A.

    1995-04-01

    A wide aperture profile of the East Pacific Rise at 13 deg N provides data necessary to make a high-resolution seismic velocity profile of the uppermost crust along a 52-km segment of ridge crest. Automated and objective processing steps, including r-p analysis and waveform inversion, allow the construction of models in a consistent way so that comparisons are meaningful. A continuous profile is synthesized from 70 independent one-dimensional models spaced at 750-km intervals along the ridge. The resulting seismic velocity structure of the top 500 m of crust is remarkable in its lack of variability. The main features are a thin low-velocity layer 2A at the top with a steep gradient to layer 2B. The seafloor velocity is nearly constant at 2.45 km/s +/- 3% along the entire ridge. The velocity at the top of layer 2B is 5.0 km/s +/- 10%. The depth to the 4 km/s isovelocity contour within layer 2A is 130 +/- 20 m from 13 deg to 13 deg 20 min N, north of which it increases to 180 m. The increase in thickness is coincident with a deviation from axial linearity (DEVAL) noted by both a slight change in axis depth and orientation and in geochemistry. The waveform inversion, providing more details plus velocity gradient information, shows a layer 2A with about 80 m of constant-velocity material underlain by 150 m of high velocity gradient material, putting the base of layer 2A at approximately 230 m depth south of 13 deg 20 min N and about 50 m thicker north of the DEVAL. The overall lack of variability, combined with other recent measurements of layer 2A thickness along and near the axis, indicates that the thickness of volcanic extrusives is controlled not by levels of volcanic productivity, but the dynamics of emplacement. The homogeneity along axis also provides a baseline of inherent variability in crustal structure of about 10% against which other observed variations in similar regimes can be compared.

  4. Asymmetric threat data mining and knowledge discovery

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  5. B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.

    PubMed

    Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A

    2018-03-01

    Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B 0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B 0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Asymmetric quantum well broadband thyristor laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing

    2017-11-01

    A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.

  7. Harvard M.B.A.: A Golden Passport

    ERIC Educational Resources Information Center

    Knight, Michael

    1978-01-01

    Despite increasing competition from Stanford University in California and a number of other graduate business schools, an M.B.A. degree from Harvard is still regarded as the great golden passport to life in the upper class. Discusses the salary and business advantages in having a Harvard M.B.A. and the attitudes of three graduates on what the…

  8. Sound Velocity Measurements in the Low and the High Field Phases of the Nuclear-Ordered bcc Solid 3He in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sasaki, Satoshi; Nakayama, Atsuyoshi; Sasaki, Yutaka; Mizusaki, Takao

    2008-06-01

    We have measured the temperature and magnetic-field dependences of the sound velocity for one longitudinal and two transverse waves in the low field phase (LFP) and the high field phase (HFP) of nuclear spin ordered bcc solid 3He crystals with a single magnetic domain along the melting curve. From sound velocity measurements for various crystal orientations as a function of the sound propagation direction, we determined the elastic stiffness constants, c ij ( T, B). In the LFP with tetragonal symmetry for the nuclear spin structure, we extracted six nuclear spin elastic stiffness constants Δ c {/ij ℓ }( T,0.06 T) from the temperature dependence of the sound velocity at 0.06 T and Δ c {/ij ℓ }(0.5 mK, B) from the magnetic-field dependence of sound velocity at 0.5 mK. In the HFP with cubic symmetry for the nuclear spin structure, we extracted three Δ c {/ij h }( T,0.50 T) at 0.50 T and Δ c {/ij h }(0.5 mK, B) at 0.5 mK. At the first-order magnetic phase transition from the LFP to the HFP at the lower critical field B c1, large jumps in sound velocities were observed for various crystal directions and we extracted three Δ c_{ij}^{total}|_{B_{c1}} . Using the thermodynamic relation between Δ c ij and the change in the internal energy for the exchange interaction in this system, Δ U ex( T, B), Δ c ij are related to the generalized second-order Grüneisen constants Γ{/ij X }≡ ∂ 2ln X/ ∂ ɛ i ∂ ɛ j as Δ c ij ( T, B)=Γ{/ij X }Δ U ex( T, B), where X represents some physical quantity which depends on the molar volume and ɛ j is the j-th component of a strain tensor. In the LFP, the Δ c {/ij ℓ }( T,0.06 T) were proportional to T 4, and Δ c {/ij ℓ }(0.5 mK, B) were proportional to B 2. We extracted Γ_{ij}^{s^{ell}} for the spin wave velocity in the LFP, s ℓ , from Δ c {/ij ℓ }( T,0.06 T) and Γ^{1/χ^{ell}}_{ij} for the inverse susceptibility, 1/ χ ℓ from Δ c {/ij ℓ }(0.5 mK, B). In the HFP, Δ c {/ij h }( T,0.50 T) were proportional

  9. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces

    NASA Astrophysics Data System (ADS)

    Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.

    2014-04-01

    A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.

  10. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    PubMed

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  11. Some statistical features of the seismic activity related to the recent M8.2 and M7.1 earthquakes in Mexico

    NASA Astrophysics Data System (ADS)

    Guzman, L.; Baeza-Blancas, E.; Reyes, I.; Angulo Brown, F.; Rudolf Navarro, A.

    2017-12-01

    By studying the magnitude earthquake catalogs, previous studies have reported evidence that some changes in the spatial and temporal organization of earthquake activity is observedbefore and after of a main-shock. These previous studies have used different approach methods for detecting clustering behavior and distance-events density in order topoint out the asymmetric behavior of before shocks and aftershocks. Here, we present a statistical analysis of the seismic activity related to the M8.2 and M7.1 earthquakes occurredon Sept. 7th and Sept. 19th, respectively. First, we calculated the interevent time and distance for the period Sept. 7th 2016 until Oct. 20th 2017 for each seismic region ( a radius of 150 km centeredat coordinates of the M8.1 and M7.1). Next, we calculated the "velocity" of the walker as the ratio between the interevent distance and interevent time, and similarly, we also constructed the"acceleration". A slider pointer is considered to estimate some statistical features within time windows of size τ for the velocity and acceleration sequences before and after the main shocks. Specifically, we applied the fractal dimension method to detect changes in the correlation (persistence) behavior of events in the period before the main events.Our preliminary results pointed out that the fractal dimension associated to the velocity and acceleration sequences exhibits changes in the persistence behavior before the mainshock, while thescaling dimension values after the main events resemble a more uncorrelated behavior. Moreover, the relationship between the standard deviation of the velocity and the local mean velocity valuefor a given time window-size τ is described by an exponent close to 1.5, and the cumulative distribution of velocity and acceleration are well described by power law functions after the crash and stretched-exponential-like distribution before the main shock. On the other hand, we present an analysis of patterns of seismicquiescence

  12. Asymmetric twins in rhombohedral boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Takeshi, E-mail: tfujita@wpi-aimr.tohoku.ac.jp; Guan, Pengfei; Madhav Reddy, K.

    2014-01-13

    Superhard materials consisting of light elements have recently received considerable attention because of their ultrahigh specific strength for a wide range of applications as structural and functional materials. However, the failure mechanisms of these materials subjected to high stresses and dynamic loading remain to be poorly known. We report asymmetric twins in a complex compound, boron carbide (B{sub 4}C), characterized by spherical-aberration-corrected transmission electron microscopy. The atomic structure of boron-rich icosahedra at rhombohedral vertices and cross-linked carbon-rich atomic chains can be clearly visualized, which reveals unusual asymmetric twins with detectable strains along the twin interfaces. This study offers atomic insightsmore » into the structure of twins in a complex material and has important implications in understanding the planar defect-related failure of superhard materials under high stresses and shock loading.« less

  13. Asymmetric cryorolling for fabrication of nanostructural aluminum sheets

    PubMed Central

    YU, Hailiang; LU, Cheng; TIEU, Kiet; LIU, Xianghua; SUN, Yong; YU, Qingbo; KONG, Charlie

    2012-01-01

    Nanostructural Al 1050 sheets were produced using a novel method of asymmetric cryorolling under ratios of upper and down rolling velocities (RUDV) of 1.1, 1.2, 1.3, and 1.4. Sheets were rolled to about 0.17 mm from 1.5 mm. Both the strength and ductility of Al 1050 sheets increase with RUDVs. Tensile strength of Al sheets with the RUDV 1.4 is larger 22.3% of that for RUDV 1.1, which is 196 MPa. The TEM observations show the grain size is 360 nm when the RUDV is 1.1, and 211 nm for RUDV 1.4. PMID:23101028

  14. How required reserve ratio affects distribution and velocity of money

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Ding, Ning; Wang, Yougui

    2005-11-01

    In this paper the dependence of wealth distribution and the velocity of money on the required reserve ratio is examined based on a random transfer model of money and computer simulations. A fractional reserve banking system is introduced to the model where money creation can be achieved by bank loans and the monetary aggregate is determined by the monetary base and the required reserve ratio. It is shown that monetary wealth follows asymmetric Laplace distribution and latency time of money follows exponential distribution. The expression of monetary wealth distribution and that of the velocity of money in terms of the required reserve ratio are presented in a good agreement with simulation results.

  15. Shed vortex structure and phase-averaged velocity statistics in symmetric/asymmetric turbulent flat plate wakes

    NASA Astrophysics Data System (ADS)

    Rai, Man Mohan

    2018-05-01

    The near wake of a flat plate is investigated via direct numerical simulations. Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large θ/DTE values (θ is the boundary layer momentum thickness toward the end of the plate and DTE is the trailing edge thickness). In the present study, the emphasis is on relatively thick plates with circular trailing edges (CTEs) resulting in θ/D values less than one (D is the plate thickness and the diameter of the CTE) and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 × 106 and 10 000, respectively. Two cases are computed: one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and the other with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained are of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor of 1.27 weaker in terms of peak phase-averaged spanwise vorticity at the first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x/D) that occurs near the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to

  16. Shed Vortex Structure and Phase-Averaged Velocity Statistics in Symmetric/Asymmetric Turbulent Flat Plate Wakes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2017-01-01

    The near wake of a flat plate is investigated via direct numerical simulations (DNS). Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large theta divided by D (sub TE) values (theta is the boundary layer momentum thickness towards the end of the plate and D (sub TE) is the trailing edge thickness). In the present study the emphasis is on relatively thick plates with circular trailing edges (CTE) resulting in theta divided by D values less than one (D is the plate thickness and the diameter of the CTE), and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 x 10 (sup 6) and 10,000, respectively. Two cases are computed; one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and, a second with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained is of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor 1.27 weaker in terms of peak phase-averaged spanwise vorticity at first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x divided by D) that occurs nears the positive vortex cores. This behavior is

  17. Asymmetric conditional volatility in international stock markets

    NASA Astrophysics Data System (ADS)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  18. Asymmetrical squaraines for high-performance small-molecule organic solar cells with a short circuit current of over 12 mA cm(-2).

    PubMed

    Chen, Yao; Zhu, Youqin; Yang, Daobin; Luo, Qian; Yang, Lin; Huang, Yan; Zhao, Suling; Lu, Zhiyun

    2015-04-11

    An asymmetrical squaraine dye (Py-3) with its two electron-donating aryl groups directly linked to the electron-withdrawing squaric acid core possesses an ideal bandgap of 1.33 eV, together with an intense and broad absorption band in the range 550-950 nm. Hence, the resulting solution-processed solar cells display an impressive Jsc of 12.03 mA cm(-2) and a PCE of 4.35%.

  19. Asymmetric Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Gwynne, Peter; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Willett, Rebecca

    2017-03-01

    The youngest Galactic supernova remnant (SNR) G1.9+0.3, produced by a (probable) SN Ia that exploded ˜1900 CE, is strongly asymmetric at radio wavelengths, much brighter in the north, but bilaterally symmetric in X-rays. We present the results of X-ray expansion measurements that illuminate the origin of the radio asymmetry. We confirm the mean expansion rate (2011-2015) of 0.58% yr-1, but large spatial variations are present. Using the nonparametric “Demons” method, we measure the velocity field throughout the entire SNR, finding that motions vary by a factor of 5, from 0\\buildrel{\\prime\\prime}\\over{.} 09 to 0\\buildrel{\\prime\\prime}\\over{.} 44 yr-1. The slowest shocks are at the outer boundary of the bright northern radio rim, with velocities v s as low as 3600 km s-1 (for an assumed distance of 8.5 kpc), much less than v s = 12,000-13,000 km s-1 along the X-ray-bright major axis. Such strong deceleration of the northern blast wave most likely arises from the collision of SN ejecta with a much denser than average ambient medium there. This asymmetric ambient medium naturally explains the radio asymmetry. In several locations, significant morphological changes and strongly nonradial motions are apparent. The spatially integrated X-ray flux continues to increase with time. Based on Chandra observations spanning 8.3 yr, we measure its increase at 1.3 % +/- 0.8 % yr-1. The SN ejecta are likely colliding with the asymmetric circumstellar medium ejected by the SN progenitor prior to its explosion.

  20. Satellite Observations of Glacier Surface Velocities in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Melkonian, A. K.; Pritchard, M. E.

    2012-12-01

    Glaciers in southeast Alaska are undergoing rapid changes and are significant contributors to sea level rise. A key to understanding the ice dynamics is knowledge of the surface velocities, which can be used with ice thickness measurements to derive mass flux rates. For many glaciers in Alaska, surface velocity estimates either do not exist or are based on data that are at least a decade old. Here we present updated maps of glacier surface velocities in southeast Alaska produced through a pixel tracking technique using synthetic aperture radar data and high-resolution optical imagery. For glaciers with previous velocity estimates, we will compare the results and discuss possible implications for ice dynamics. We focus on Glacier Bay and the Stikine Icefield, which contain a number of fast-flowing tidewater glaciers including LeConte, Johns Hopkins, and La Perouse. For the Johns Hopkins, we will also examine the influence a massive landslide in June 2012 had on flow dynamics. Our velocity maps show that within Glacier Bay, the highest surface velocities occur on the tidewater glaciers. La Perouse, the only Glacier Bay glacier to calve directly into the Pacific Ocean, has maximum velocities of 3.5 - 4 m/day. Johns Hopkins Glacier shows 4 m/day velocities at both its terminus and in its upper reaches, with lower velocities of ~1-3 m/day in between those two regions. Further north, the Margerie Glacier has a maximum velocity of ~ 4.5 m/day in its upper reaches and a velocity of ~ 2 m/day at its terminus. Along the Grand Pacific terminus, the western terminus fed by the Ferris Glacier displays velocities of about 1 m/day while the eastern terminus has lower velocities of < 0.5 m/day. The lake terminating glaciers along the Pacific coast have overall lower surface velocities, but they display complex flow patterns. The Alsek Glacier displays maximum velocities of 2.5 m/day above where it divides into two branches. Velocities at the terminus of the northern branch reach 1

  1. Asymmetric disappearance and periodic asymmetric phenomena of rocking dynamics in micro dual-capacitive energy harvester

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Guo, Xiaoyu; Huang, Run

    2018-06-01

    We study asymmetric disappearance and period asymmetric phenomena starting with a rocking dynamic in micro dual-capacitive energy harvester. The mathematical model includes nonlinear electrostatic forces from the variable dual capacitor, the numerical functioned forces provided by suspending springs, linear damping forces and an external vibration force. The suspending plate and its elastic supports were designed in a symmetric structure in the micro capacitor, however, the reported energy harvester was unavoidable starting with a asymmetric motion in the real vibration environment. We found that the designed dual energy capacitive harvester can harvest ˜6 µW with 10V input voltage, and under 0.8 time's resonant frequency vibration. We also discovered that the rocking dynamics of the suspended plate can be showed with an asymmetric disappearance or periodic asymmetric phenomena starting with an asymmetric motion. The study of these asymmetric disappearance and period asymmetric phenomena were not only important for the design of the stability of the micro capacitor for sensor or the energy harvesting, but also gave a deep understanding of the rocking nonlinear dynamics of the complex micro structures and beams.

  2. Benchmarking passive seismic methods of estimating the depth of velocity interfaces down to ~300 m

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; Gorbatov, Alexei

    2016-04-01

    In shallow passive seismology it is generally accepted that the spatial autocorrelation (SPAC) method is more robust than the horizontal-over-vertical spectral ratio (HVSR) method at resolving the depth to surface-wave velocity (Vs) interfaces. Here we present results of a field test of these two methods over ten drill sites in western Victoria, Australia. The target interface is the base of Cenozoic unconsolidated to semi-consolidated clastic and/or carbonate sediments of the Murray Basin, which overlie Paleozoic crystalline rocks. Depths of this interface intersected in drill holes are between ~27 m and ~300 m. Seismometers were deployed in a three-arm spiral array, with a radius of 250 m, consisting of 13 Trillium Compact 120 s broadband instruments. Data were acquired at each site for 7-21 hours. The Vs architecture beneath each site was determined through nonlinear inversion of HVSR and SPAC data using the neighbourhood algorithm, implemented in the geopsy modelling package (Wathelet, 2005, GRL v35). The HVSR technique yielded depth estimates of the target interface (Vs > 1000 m/s) generally within ±20% error. Successful estimates were even obtained at a site with an inverted velocity profile, where Quaternary basalts overlie Neogene sediments which in turn overlie the target basement. Half of the SPAC estimates showed significantly higher errors than were obtained using HVSR. Joint inversion provided the most reliable estimates but was unstable at three sites. We attribute the surprising success of HVSR over SPAC to a low content of transient signals within the seismic record caused by low levels of anthropogenic noise at the benchmark sites. At a few sites SPAC waveform curves showed clear overtones suggesting that more reliable SPAC estimates may be obtained utilizing a multi-modal inversion. Nevertheless, our study indicates that reliable basin thickness estimates in the Australian conditions tested can be obtained utilizing HVSR data from a single

  3. Stationary Plasma Thruster Ion Velocity Distribution

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1994-01-01

    A nonintrusive velocity diagnostic based on laser induced fluorescence of the 5d4F(5/2)-6p4D(5/2) singly ionized xenon transition was used to interrogate the exhaust of a 1.5 kW Stationary Plasma Thruster (SPT). A detailed map of plume velocity vectors was obtained using a simplified, cost-effective, nonintrusive, semiconductor laser based scheme. Circumferential velocities on the order of 250 m/s were measured which implied induced momentum torques of approximately 5 x 10(exp -2) N-cm. Axial and radial velocities were evaluated one mm downstream of the cathode at several locations across the width of the annular acceleration channel. Radial velocities varied linearly with radial distance. A maximum radial velocity of 7500 m/s was measured 8 mm from the center of the channel. Axial velocities as large as 16,500 m/s were measured.

  4. Pronounced Shear Velocity Asymmetry in the Mantle Across the Juan de Fuca Ridge and Curious Lack of Features at the Gorda Ridge

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Ruan, Y.; Forsyth, D. W.

    2015-12-01

    With new Rayleigh-wave tomography results, we have detected a clear and strong asymmetry in the shear velocity structure of the Juan de Fuca ridge. Concentrated in a relatively thin layer with a depth range of ~30-60km, there lies a region of very low shear velocity, with velocities ranging from ~3.8km/s to 4.0km/s. Such low velocities provide strong evidence for the presence of partial melt. This low-velocity region is highly asymmetric, extending much further west than east of the ridge. Especially at shallow depths of ~35 km, this low-velocity region is concentrated just west of the southern portion of the ridge. Peaking near the Axial Seamount, the youngest of the Cobb-Eickelberg Seamounts, it extends south to the region around the small Vance Seamounts just north of the junction with the Blanco Fracture Zone. The Juan de Fuca plate is relatively stationary in the hotspot reference frame, and the Juan de Fuca ridge migrates westward in the hotspot reference frame. Seamounts are overwhelmingly concentrated on the western flank of the ridge, and an asymmetric upwelling driven by migration in the hotspot reference frame has been proposed to explain the seamount asymmetry (i.e. Davis and Karsten, 1986). Our velocity asymmetry, which matches the seamount asymmetry, provides evidence for this asymmetric upwelling and its connection to migration in the absolute hotspot reference frame. In the shear velocity results, the Gorda ridge displays a remarkable lack of features, with no clearly identifiable expression in the subsurface velocity. There is evidence of a broad low-velocity feature beneath Gorda beginning at a depth of ~150 km, but no clear shallow features can be tied to the ridge. At the depths we can resolve (~25-250km), the anisotropy beneath and within the Juan de Fuca plate is small, indicating a deep source of the shear wave splitting results (Bodmer et al., in press), which indicate a fast axis aligned with the Juan de Fuca plate's absolute motion. Around

  5. Towards a Copernicus Service for Monitoring Polar Ice Sheet Velocity and Discharge using Sentinel-1A and 1B SAR

    NASA Astrophysics Data System (ADS)

    Wuite, Jan; Nagler, Thomas; Hetzenecker, Markus; Blumthaler, Ursula; Ossowska, Joanna; Rott, Helmut

    2017-04-01

    The enhanced imaging capabilities of Sentinel-1A and 1B and the systematic acquisition planning of polar regions by ESA form the basis for the development and implementation of an operational system for monitoring ice dynamics and discharge of Antarctica, Greenland and other polar ice caps. Within the framework of the ESA CCI and the Austrian ASAP/FFG programs we implemented an automatic system for generation of ice velocity maps from repeat pass Sentinel-1 Terrain Observation by Progressive Scans (TOPS) mode data applying iterative offset tracking using both coherent and incoherent image cross-correlation. Greenland's margins are monitored by 6 tracks continuously since mid of 2015 with 12 days repeat observations using Sentinel-1A. With the twin satellite Sentinel-1B, launched in April 2016, the repeat acquisition period is reduced to only 6 days allowing frequent velocity retrievals - even in regions with high accumulation rates and very fast flow - and providing insight for studying short-term variations of ice flow and discharge. The Sentinel-1 ice velocity products continue the sparse coverage in time and space of previous velocity mapping efforts. The annual Greenland wide winter acquisition campaigns of 4 to 6 repeat track observations, acquired within a few weeks, provide nearly gapless and seamless ice sheet wide flow velocity maps on a yearly basis which are important for ice sheet modelling purposes and accurate mass balance assessments. An Antarctic ice sheet wide ice velocity map (with polar gap) was generated from Sentinel-1A data, acquired within 8 months, providing an important benchmark for gauging future changes in ice dynamics. For regions with significant warming continuous monitoring of ice streams with 6 to 12-day repeat intervals, exploiting both satellites, is ongoing to detect changes of ice flow as indicators of climate change. We present annual ice sheet wide velocity maps of Greenland from 2014/15 to 2016/17 and Antarctica from 2015

  6. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    NASA Astrophysics Data System (ADS)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  7. High efficiency silicon solar cell based on asymmetric nanowire.

    PubMed

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki

    2015-07-08

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.

  8. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    NASA Astrophysics Data System (ADS)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  9. Auditory velocity discrimination in the horizontal plane at very high velocities.

    PubMed

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hall effects on peristaltic flow of couple stress fluid in a vertical asymmetric channel

    NASA Astrophysics Data System (ADS)

    Maninaga Kumar, P.; Kavitha, A.; Saravana, R.

    2017-11-01

    The influence of Hall effect on peristaltic transport of a couple stress fluid in a vertical asymmetric channel is examined. The problem is solved under the assumptions of low Reynolds number and long wavelength. The velocity, temperature and concentration are obtained by using analytical solutions. Effect of Hall parameter, couple stress fluid parameter, Froude number, Hartmann number and the phase difference on the pumping characteristics, temperature and concentration are discussed graphically.

  11. The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region

    NASA Astrophysics Data System (ADS)

    Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.

    2008-10-01

    The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos|B and the index n is ~0.2 or even smaller. This study (a) does not support the conclusion by Nielsen and Schlegel (1985), Nielsen et al. (2002, their #[18]) that at flow angles larger than ~60° (or |VirrN,F|≤300 m/s) the STARE Doppler velocities are equal to the component of the electron drift velocity. We found (b) that if the data points are averages over 100 m/s intervals (bins) of l-o-s electron velocities and 10 deg intervals (bins) of flow angles, then the largest STARE Doppler velocities always reside inside the bin with the largest flow angle. In the flow angle bin 80° the STARE Doppler velocity is larger than its driver term, i.e. the EISCAT l-o-s electron drift velocity component, |VirrN,F|>|VE×Blos|. Both features (a and b) as well as the weak flow angle velocity dependence indicate that the l-o-s electron drift velocity cannot be the sole factor which controls the motion of the backscatter ~1-m irregularities at large flow angles. Importantly, the backscatter was collected at aspect angle ~1° and flow angle Θ>60°, where linear fluid and kinetic theories invariably predict negative growth rates. At least qualitatively, all the facts can be reasonably explained by nonlinear wave-wave coupling found and

  12. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Makarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  13. Does asymmetric correlation affect portfolio optimization?

    NASA Astrophysics Data System (ADS)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  14. Resonant activation in piecewise linear asymmetric potentials.

    PubMed

    Fiasconaro, Alessandro; Spagnolo, Bernardo

    2011-04-01

    This work analyzes numerically the role played by the asymmetry of a piecewise linear potential, in the presence of both a Gaussian white noise and a dichotomous noise, on the resonant activation phenomenon. The features of the asymmetry of the potential barrier arise by investigating the stochastic transitions far behind the potential maximum, from the initial well to the bottom of the adjacent potential well. Because of the asymmetry of the potential profile together with the random external force uniform in space, we find, for the different asymmetries: (1) an inversion of the curves of the mean first passage time in the resonant region of the correlation time τ of the dichotomous noise, for low thermal noise intensities; (2) a maximum of the mean velocity of the Brownian particle as a function of τ; and (3) an inversion of the curves of the mean velocity and a very weak current reversal in the miniratchet system obtained with the asymmetrical potential profiles investigated. An inversion of the mean first passage time curves is also observed by varying the amplitude of the dichotomous noise, behavior confirmed by recent experiments. ©2011 American Physical Society

  15. 29 CFR Appendix B to Subpart M of... - Guardrail Systems

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information necessary to build a complete system, and the employer is still responsible for designing and... 29 Labor 8 2011-07-01 2011-07-01 false Guardrail Systems B Appendix B to Subpart M of Part 1926..., Subpt. M, App. B Appendix B to Subpart M of Part 1926—Guardrail Systems Non-Mandatory Guidelines for...

  16. 29 CFR Appendix B to Subpart M of... - Guardrail Systems

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information necessary to build a complete system, and the employer is still responsible for designing and... 29 Labor 8 2010-07-01 2010-07-01 false Guardrail Systems B Appendix B to Subpart M of Part 1926..., Subpt. M, App. B Appendix B to Subpart M of Part 1926—Guardrail Systems Non-Mandatory Guidelines for...

  17. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics

    NASA Astrophysics Data System (ADS)

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported.

  18. Field Testing of an In-well Point Velocity Probe for the Rapid Characterization of Groundwater Velocity

    NASA Astrophysics Data System (ADS)

    Osorno, T.; Devlin, J. F.

    2017-12-01

    Reliable estimates of groundwater velocity is essential in order to best implement in-situ monitoring and remediation technologies. The In-well Point Velocity Probe (IWPVP) is an inexpensive, reusable tool developed for rapid measurement of groundwater velocity at the centimeter-scale in monitoring wells. IWPVP measurements of groundwater speed are based on a small-scale tracer test conducted as ambient groundwater passes through the well screen and the body of the probe. Horizontal flow direction can be determined from the difference in tracer mass passing detectors placed in four funnel-and-channel pathways through the probe, arranged in a cross pattern. The design viability of the IWPVP was confirmed using a two-dimensional numerical model in Comsol Multiphysics, followed by a series of laboratory tank experiments in which IWPVP measurements were calibrated to quantify seepage velocities in both fine and medium sand. Lab results showed that the IWPVP was capable of measuring the seepage velocity in less than 20 minutes per test, when the seepage velocity was in the range of 0.5 to 4.0 m/d. Further, the IWPVP estimated the groundwater speed with a precision of ± 7%, and an accuracy of ± 14%, on average. The horizontal flow direction was determined with an accuracy of ± 15°, on average. Recently, a pilot field test of the IWPVP was conducted in the Borden aquifer, C.F.B. Borden, Ontario, Canada. A total of approximately 44 IWPVP tests were conducted within two 2-inch groundwater monitoring wells comprising a 5 ft. section of #8 commercial well screen. Again, all tests were completed in under 20 minutes. The velocities estimated from IWPVP data were compared to 21 Point Velocity Probe (PVP) tests, as well as Darcy-based estimates of groundwater velocity. Preliminary data analysis shows strong agreement between the IWPVP and PVP estimates of groundwater velocity. Further, both the IWPVP and PVP estimates of groundwater velocity appear to be reasonable when

  19. Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta

    NASA Astrophysics Data System (ADS)

    Utrobin, V. P.; Chugai, N. N.

    2017-12-01

    We explore the well-observed Type IIP supernova 2013ej with peculiar luminosity evolution. It is found that the hydrodynamic model cannot reproduce in detail the bolometric luminosity at both the plateau and the radioactive tail. Yet the ejecta mass of 23-26 M⊙ and the kinetic energy of (1.2-1.4) × 1051 erg are determined rather confidently. We suggest that the controversy revealed in hydrodynamic simulations stems from the strong asphericity of the 56Ni ejecta. An analysis of the asymmetric nebular H α line and of the peculiar radioactive tail made it possible to recover parameters of the asymmetric bipolar 56Ni ejecta with the heavier jet residing in the rear hemisphere. The inferred 56Ni mass is 0.039 M⊙, twice as large compared to a straightforward estimate from the bolometric luminosity at the early radioactive tail. The bulk of ejected 56Ni has velocities in the range of 4000-6500 km s-1. The linear polarization predicted by the model with the asymmetric ionization produced by bipolar 56Ni ejecta is consistent with the observational value.

  20. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S. H.; Chu, C. S.

    2016-01-18

    Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. Thismore » is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions.« less

  1. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  2. Carrying asymmetric loads during stair negotiation.

    PubMed

    Wang, Junsig; Gillette, Jason

    2017-03-01

    Individuals often carry items in one hand instead of both hands during activities of daily living. The combined effects of carrying asymmetric loads and stair negotiation may create even higher demands on the low back and lower extremity. The purpose of this study was to investigate the effect of symmetric and asymmetric loading conditions on L5/S1 and lower extremity moments during stair negotiation. Twenty-two college students performed stair ascent and stair descent on a three-step staircase (step height 18.5cm, tread depth 29.5cm) at preferred pace under five load conditions: no load, 10% body weight (BW) unilateral load, 20% BW unilateral load, 10% BW bilateral load, and 20% BW bilateral load. Video cameras and force platforms were used to collect kinematic and kinetic data. Inverse dynamics was used to calculate frontal plane moments for the L5/S1 and lower extremity. A 20% BW unilateral load resulted in significantly higher peak L5/S1 lateral bending, hip abduction, and external knee varus moments than nearly all other loading conditions during stair ascent and stair descent. Therefore, we suggest potential benefits when carrying symmetrical loads as compared to an asymmetric load in order to decrease the frontal joint moments, particularly at 20% BW load. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The M.B.A.: A Schizophrenic Graduate Program?

    ERIC Educational Resources Information Center

    Rinehart, Shelley M.

    2007-01-01

    The term "M.B.A." is globally recognized as referring to a Masters of Business Administration Program, a degree historically perceived as a graduate's ticket to employment opportunities, generous salaries and the business savvy that garners respect across industries. Recently, however, the value of an M.B.A. has come under fire from many…

  4. Lift production through asymmetric flapping

    NASA Astrophysics Data System (ADS)

    Jalikop, Shreyas; Sreenivas, K. R.

    2009-11-01

    At present, there is a strong interest in developing Micro Air Vehicles (MAV) for applications like disaster management and aerial surveys. At these small length scales, the flight of insects and small birds suggests that unsteady aerodynamics of flapping wings can offer many advantages over fixed wing flight, such as hovering-flight, high maneuverability and high lift at large angles of attack. Various lift generating mechanims such as delayed stall, wake capture and wing rotation contribute towards our understanding of insect flight. We address the effect of asymmetric flapping of wings on lift production. By visualising the flow around a pair of rectangular wings flapping in a water tank and numerically computing the flow using a discrete vortex method, we demonstrate that net lift can be produced by introducing an asymmetry in the upstroke-to-downstroke velocity profile of the flapping wings. The competition between generation of upstroke and downstroke tip vortices appears to hold the key to understanding this lift generation mechanism.

  5. Thermal analysis of MHD electro-osmotic peristaltic pumping of Casson fluid through a rotating asymmetric micro-channel

    NASA Astrophysics Data System (ADS)

    Venugopal Reddy, Kattamreddy; Makinde, Oluwole Daniel; Gnaneswara Reddy, Machireddy

    2018-05-01

    In this paper, we investigate the combined effects of wall slip, viscous dissipation, and Joule heating on MHD electro-osmotic peristaltic motion of Casson fluid with heat transfer through a rotating asymmetric micro-channel. Using long wavelength and small Reynolds number assumptions, the governing equations of momentum and energy balance are obtained and tackled analytically. The effects of various embedding parameters on the stream function, velocity, temperature, skin friction, Nusselt number and trapping phenomenon are displayed graphically and discussed. It is found that Casson fluid velocity, temperature, and heat transfer rate are enhanced with a boost in electro-osmotic force.

  6. Plasma and Energetic Particle Behaviors During Asymmetric Magnetic Reconnection at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Zhang, H.; Zong, Q.-G.; Otto, A.; Sibeck, D. G.; Wang, Y.; Glassmeier, K.-H.; Daly, P.W.; Reme, H.

    2014-01-01

    The factors controlling asymmetric reconnection and the role of the cold plasma population in the reconnection process are two outstanding questions. We present a case study of multipoint Cluster observations demonstrating that the separatrix and flow boundary angles are greater on the magnetosheath than on the magnetospheric side of the magnetopause, probably due to the stronger density than magnetic field asymmetry at this boundary. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection in the diffusion region near the subsolar magnetopause, the colder ions are simply entrained by ??×?? drifts at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play only a very limited role in asymmetric reconnection, in contrast to previous simulation studies. Three cold ion populations (probably H+, He+, and O+) appear in the energy spectrum, consistent with ion acceleration to a common velocity.

  7. Klf8 regulates left-right asymmetric patterning through modulation of Kupffer's vesicle morphogenesis and spaw expression.

    PubMed

    Lin, Che-Yi; Tsai, Ming-Yuan; Liu, Yu-Hsiu; Lu, Yu-Fen; Chen, Yi-Chung; Lai, Yun-Ren; Liao, Hsin-Chi; Lien, Huang-Wei; Yang, Chung-Hsiang; Huang, Chang-Jen; Hwang, Sheng-Ping L

    2017-07-17

    Although vertebrates are bilaterally symmetric organisms, their internal organs are distributed asymmetrically along a left-right axis. Disruption of left-right axis asymmetric patterning often occurs in human genetic disorders. In zebrafish embryos, Kupffer's vesicle, like the mouse node, breaks symmetry by inducing asymmetric expression of the Nodal-related gene, spaw, in the left lateral plate mesoderm (LPM). Spaw then stimulates transcription of itself and downstream genes, including lft1, lft2, and pitx2, specifically in the left side of the diencephalon, heart and LPM. This developmental step is essential to establish subsequent asymmetric organ positioning. In this study, we evaluated the role of krüppel-like factor 8 (klf8) in regulating left-right asymmetric patterning in zebrafish embryos. Zebrafish klf8 expression was disrupted by both morpholino antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. Whole-mount in situ hybridization was conducted to evaluate gene expression patterns of Nodal signalling components and the positions of heart and visceral organs. Dorsal forerunner cell number was evaluated in Tg(sox17:gfp) embryos and the length and number of cilia in Kupffer's vesicle were analyzed by immunocytochemistry using an acetylated tubulin antibody. Heart jogging, looping and visceral organ positioning were all defective in zebrafish klf8 morphants. At the 18-22 s stages, klf8 morphants showed reduced expression of genes encoding Nodal signalling components (spaw, lft1, lft2, and pitx2) in the left LPM, diencephalon, and heart. Co-injection of klf8 mRNA with klf8 morpholino partially rescued spaw expression. Furthermore, klf8 but not klf8△zf overexpressing embryos showed dysregulated bilateral expression of Nodal signalling components at late somite stages. At the 10s stage, klf8 morphants exhibited reductions in length and number of cilia in Kupffer's vesicle, while at 75% epiboly, fewer dorsal forerunner cells were observed

  8. A correlation to estimate the velocity of convective currents in boilover.

    PubMed

    Ferrero, Fabio; Kozanoglu, Bulent; Arnaldos, Josep

    2007-05-08

    The mathematical model proposed by Kozanoglu et al. [B. Kozanoglu, F. Ferrero, M. Muñoz, J. Arnaldos, J. Casal, Velocity of the convective currents in boilover, Chem. Eng. Sci. 61 (8) (2006) 2550-2556] for simulating heat transfer in hydrocarbon mixtures in the process that leads to boilover requires the initial value of the convective current's velocity through the fuel layer as an adjustable parameter. Here, a correlation for predicting this parameter based on the properties of the fuel (average ebullition temperature) and the initial thickness of the fuel layer is proposed.

  9. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of amore » white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.« less

  10. Non-ideal energy conversion during asymmetric magnetic reconnection with a moderate guide field

    NASA Astrophysics Data System (ADS)

    Genestreti, K. J.; Varsani, A.; Hesse, M.; Torbert, R. B.; Burch, J.; Cassak, P.; Ergun, R.; Phan, T.; Nakamura, R.; Giles, B. L.; Schwartz, S. J.; Wang, S.; Toledo Redondo, S.; Hwang, K. J.; Laignel, B.; Escoubet, C. P.; Fear, R. C.; Khotyaintsev, Y. V.

    2017-12-01

    Using data from NASA's Magnetospheric Multiscale (MMS) mission, we investigate the local (in time and space) rate of work done by the non-ideal electric field on the plasma during a crossing through the magnetopause reconnection region. The four MMS spacecraft were in a tight tetrahedral formation ( 7 km separation) and observed several ion and electron-scale signatures of asymmetric reconnection, one of which was J.E' (=J.(E+vexB))>0. The data indicate that the magnetic field was expending energy both (1) near the magnetosphere-side separator, where the current was carried by counter-streaming electrons with crescent-shaped velocity distribution functions, and (2) near the magnetic X-point, where the current was carried by accelerated inflowing magnetosheath electrons moving against the guide field. Near the X-point, the current-aligned portion of the non-ideal electric field is largely a result of electron pressure divergence. We further investigate the pressure tensor divergence, separating the components from in and out-of-the-plane gradients as well as gyrotropic and non-gyrotropic pressures.

  11. An efficient system for the asymmetric acylation of (R,S)-3-n-butylphthalide catalyzed by novozyme 435.

    PubMed

    Li, Cuiqin; He, Laping; Qiu, Baoquan; Gao, Bing

    2010-01-01

    Novozyme 435 could be a highly efficient catalyst in the asymmetric acylation of (R,S)-3-n-butylphthalide in tetrahydrofuran-hexane solvents. The effect of various reaction parameters such as agitation velocity, water content, mixed media, temperature, concentration of Novozyme 435, molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, reaction time, enantiomeric excess of substrate (ee(S)), enantiomeric excess of product (ee(P)), and enantioselective ratio (E) were studied. Tetrahydrofuran markedly improved (R,S)-3-n-butylphthalide conversion, enantiomeric excess of remaining 3-n-butylphthalide, and enantiomeric ratio. The optimum media were 50% (v/v) tetrahydrofuran and 50% (v/v) hexane. Other ideal reaction conditions were an agitation velocity of 150 rpm, 0.4% (v/v) water content, temperature of 30 °C, 8 mg/mL dosage of Novozyme 435, 8:1 (0.4 mmol: 0.05 mmol) molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, and a reaction time of 48 hr. Under the optimum conditions, 96.4% ee(S) and 49.3% conversion of (R,S)-3-n-butylphthalide were achieved. In addition, enantiomeric excess of the product was above 98.0%.

  12. Asymmetric Formal Synthesis of Azadirachtin.

    PubMed

    Mori, Naoki; Kitahara, Takeshi; Mori, Kenji; Watanabe, Hidenori

    2015-12-01

    An asymmetric formal synthesis of azadirachtin, a potent insect antifeedant, was accomplished in 30 steps to Ley's synthetic intermediate (longest linear sequence). The synthesis features: 1) rapid access to the optically active right-hand segment starting from the known 5-hydroxymethyl-2-cyclopentenone scaffold; 2) construction of the B and E rings by a key intramolecular tandem radical cyclization; 3) formation of the hemiacetal moiety in the C ring through the α-oxidation of the six-membered lactone followed by methanolysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotlyar, V. V.; Kovalev, A. A., E-mail: alexeysmr@mail.ru; Porfirev, A. P.

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  14. VizieR Online Data Catalog: Sgr B2(N) and Sgr B2(M) IRAM 30m line survey (Belloche+, 2013)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Mueller, H. S. P.; Menten, K. M.; Schilke, P.; Comito, C.

    2013-08-01

    The list of line identifications corresponding to the blue labels in Figs. 2 to 7 where the labels are often too crowded to be easily readable are available in ASCII format. The lists are split into six files, three for Sgr B2(N) and three for Sgr B2(M). For each source, there is one file per atmospheric window (3, 2, and 1mm). Each file is ordered by increasing frequency. The observed and synthetic spectra of Sgr B2(N) and Sgr B2(M) between 80 and 116GHz are available both in ASCII and FITS formats. The synthetic spectra were resampled to the same frequency channels as the observed spectra. The blanking value is -1000K for the ASCII files. There is one ASCII file per source. There are two FITS files per source, one for the observed spectrum and one for the synthetic spectrum. The intensities are in main-beam temperature scale in K. The blanking value is 42.75234K for the observed spectrum of SgrB2(N) and 53.96533K for the observed spectrum of SgrB2(M). (9 data files).

  15. Asymmetric Differential Resistance of Current Biased Mesoscopic AuFe Wires

    NASA Astrophysics Data System (ADS)

    Eom, J.; Chandrasekhar, V.; Neuttiens, G.; Strunk, C.; van Haesendonck, C.; Bruynseraede, Y.

    1996-03-01

    An anomalous asymmetry is found in the differential resistance dV/dI of mesoscopic AuFe wires as a function of dc bias current at low temperatures. The samples are fabricated by ion implanting Au wires of length 1.0 - 35.0 μ m and of width 0.1 - 1.0 μ m with Fe at two different concentrations, 0.2 at.% and 0.4 at.%. The asymmetry is more pronounced in narrow and short samples. The asymmetric component of dV/dI increases with decreasing temperature, and saturates below the maximum in the spin glass resistance. It is found that the lead configuration for the four-terminal measurement also affects the asymmetric component of dV/dI.

  16. Asymmetric Weakness and West Nile Virus Infection.

    PubMed

    Kuo, Dick C; Bilal, Saadiyah; Koller, Paul

    2015-09-01

    Weakness is a common presentation in the emergency department (ED). Asymmetric weakness or weakness that appears not to follow an anatomical pattern is a less common occurrence. Acute flaccid paralysis with no signs of meningoencephalitis is one of the more uncommon presentations of West Nile virus (WNV). Patient may complain of an acute onset of severe weakness, or even paralysis, in one or multiple limbs with no sensory deficits. This weakness is caused by injury to the anterior horn cells of the spinal cord. We present a case of acute asymmetric flaccid paralysis with preserved sensory responses that was eventually diagnosed as neuroinvasive WNV infection. A 31-year-old male with no medical history presented with complaints of left lower and right upper extremity weakness. Computed tomography scan was negative and multiple other studies were performed in the ED. Eventually, he was admitted to the hospital and was found to have decreased motor amplitudes, severely reduced motor neuron recruitment, and denervation on electrodiagnostic study. Cerebrospinal fluid specimen tested positive for WNV immunoglobulin (Ig) G and IgM antibodies. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Acute asymmetric flaccid paralysis with no signs of viremia or meningoencephalitis is an unusual presentation of WNV infection. WNV should be included in the differential for patients with asymmetric weakness, especially in the summer months in areas with large mosquito populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Correlation of right atrial appendage velocity with left atrial appendage velocity and brain natriuretic Peptide.

    PubMed

    Kim, Bu-Kyung; Heo, Jung-Ho; Lee, Jae-Woo; Kim, Hyun-Soo; Choi, Byung-Joo; Cha, Tae-Joon

    2012-03-01

    Left atrial appendage (LAA) anatomy and function have been well characterized both in healthy and diseased people, whereas relatively little attention has been focused on the right atrial appendage (RAA). We sought to evaluate RAA flow velocity and to compare these parameters with LAA indices and with a study of biomarkers, such as brain natriuretic peptide, among patients with sinus rhythm (SR) and atrial fibrillation (AF). In a series of 79 consecutive patients referred for transesophageal echocardiography, 43 patients (23 with AF and 20 controls) were evaluated. AF was associated with a decrease in flow velocity for both LAA and RAA [LAA velocity-SR vs. AF: 61 ± 22 vs. 29 ± 18 m/sec (p < 0.01), RAA velocity-SR vs. AF: 46 ± 20 vs. 19 ± 8 m/sec (p < 0.01)]. Based on simple linear regression analysis, LAA velocity and RAA velocity were positively correlated, and RAA velocity was inversely correlated with brain natriuretic peptide (BNP). AF was associated with decreased RAA and LAA flow velocities. RAA velocity was found to be positively correlated with LAA velocity and negatively correlated with BNP. The plasma BNP concentration may serve as a determinant of LAA and RAA functions.

  18. Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time.

    PubMed

    Daniels, M; Noble, M I; ter Keurs, H E; Wohlfart, B

    1984-10-01

    The relation between force and velocity was determined in sixteen trabeculae of rat right ventricle as a function of time during a twitch, of sarcomere length and of external Ca2+ concentration, [Ca2+]o. The trabeculae were studied in modified Krebs-Henseleit solution at 25 degrees C. Force was measured with a semiconductor strain gauge. Sarcomere length was measured with a laser diffraction system. A servomotor system was used in which control could be switched between sarcomere length, muscle length and force. Force-velocity relations were derived from load clamps and from contractions in which sarcomere length was initially held constant followed by a quick release and slower release of the sarcomeres at controlled velocity. Force-velocity relations were fitted by Hill's equation (Hill, 1938), (Po-P) b = (P+a) V, where P = force, V = velocity, Po = isometric force in mN/mm2 and a and b are constants. For [Ca2+]o = 2.5 mM, with both interventions the values (mean +/- S.D.) were: b = 1.00 +/- 0.45 micron/s; a = 9.52 +/- 5.60 mN/mm2; Vo measured = 13.6 +/- 3.0 micron/s; Vo calculated = 13.4 +/- 3.4 micron/s; Po measured = 96.5 +/- 25.0 mN/mm2; Po calculated = 119.3 +/- 34.5 mN/mm2. Vo rose with [Ca2+]o to a maximum at [Ca2+]o = 1.2 mM when Po was about 50% of maximum, while Po rose with [Ca2+]o to a maximum at above 2.5 mM. Vo rose with time during the twitch to a maximum at 25 ms following onset of contraction; Po was then about 50% of the maximum that was obtained at 120 ms. Vo increased with sarcomere length from zero at a sarcomere length of 1.6 micron to a maximum at 1.85 micron. Between 1.85 micron and 2.3 micron, Vo was constant. At 1.85 micron, Po was about 60% of maximum Po. These results are compatible with the hypothesis that Vo is more sensitive than Po to the amount of Ca2+ bound to the contractile proteins, and that Vo reaches a maximal value with an amount of Ca2+ bound to the contractile proteins at which Po has obtained only about 50% of its

  19. Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure.

    PubMed

    Guo, Kai; Wang, Xianfu; Hu, Lintong; Zhai, Tianyou; Li, Huiqiao; Yu, Neng

    2018-06-01

    Fiber supercapacitors have attracted tremendous attention as promising power source candidates for the next generation of wearable electronics, which are flexible, stretchable, and washable. Although asymmetric fiber supercapacitors with a high energy density have been achieved, their stretchability is no more than 200%, and they still face mechanical instability and an unreliable waterproof structure. This work develops a highly integrated structure for a waterproof, highly stretchable, and asymmetric fiber-shaped supercapacitor, which is assembled by integrating a helix-shaped asymmetric fiber supercapacitor into a bifunctional polymer. The asymmetric fiber supercapacitor demonstrates a working voltage of 1.6 V, a high energy density of 2.86 mW h/cm 3 , has unchanged capacitance after being immersed in water for 50 h, and retains 95% of its initial capacitance after 3000 cycles of stretching-releasing at a maximum strain of 400%. The extraordinary waterproof capability, the large stretching strain, and excellent stretching stability are attributed to the highly integrated structure design, which can also simplify the assembly process of stretchable, waterproof fiber supercapacitors.

  20. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    PubMed

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  1. Fabrication and Characterization of a Micromachined Swirl-Shaped Ionic Polymer Metal Composite Actuator with Electrodes Exhibiting Asymmetric Resistance

    PubMed Central

    Feng, Guo-Hua; Liu, Kim-Min

    2014-01-01

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation. PMID:24824370

  2. Effect of waist diameter and twist on tapered asymmetrical dual-core fiber MZI filter.

    PubMed

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2015-10-01

    A compact in-fiber Mach-Zehnder interferometer (MZI) filter fabricated from custom-designed asymmetrical dual-core fiber is numerically analyzed in detail and experimentally verified. The asymmetrical dual-core fiber has core diameters and a core pitch of 6.9, 6, and 19.9 μm, respectively. The fiber tapering technique is introduced to fuse the originally uncoupled cores into strong coupling tapered regions. The length and diameter of the waist region have a close impact on the splitting ratio, which further affects the spectral properties of the MZI filter. The field evolution with varied waist parameters is characterized by the finite element method and beam propagation method. Repeatable comb filters with ∼15  dB extinction ratio are successfully achieved under the guidance of simulated optimum conditions. The twist-induced circular birefringence gives rise to a retardance that causes the spectral shifts of the MZI filter. The theoretical and experimental results confirm that the relative wavelength shift is proportional to the retardance, which follows a sinc function in the limit of a large twist rate.

  3. The tangential velocity of M31: CLUES from constrained simulations

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Hoffman, Yehuda; Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Courtois, Hélène; Tully, R. Brent

    2016-07-01

    Determining the precise value of the tangential component of the velocity of M31 is a non-trivial astrophysical issue that relies on complicated modelling. This has recently lead to conflicting estimates, obtained by several groups that used different methodologies and assumptions. This Letter addresses the issue by computing a Bayesian posterior distribution function of this quantity, in order to measure the compatibility of those estimates with Λ cold dark matter (ΛCDM). This is achieved using an ensemble of Local Group (LG) look-alikes collected from a set of constrained simulations (CSs) of the local Universe, and a standard unconstrained ΛCDM. The latter allows us to build a control sample of LG-like pairs and to single out the influence of the environment in our results. We find that neither estimate is at odds with ΛCDM; however, whereas CSs favour higher values of vtan, the reverse is true for estimates based on LG samples gathered from unconstrained simulations, overlooking the environmental element.

  4. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment

    USGS Publications Warehouse

    Stephenson, W.J.; Louie, J.N.; Pullammanappallil, S.; Williams, R.A.; Odum, J.K.

    2005-01-01

    Multichannel analysis of surface waves (MASW) and refraction microtremor (ReMi) are two of the most recently developed surface acquisition techniques for determining shallow shear-wave velocity. We conducted a blind comparison of MASW and ReMi results with four boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, California, to determine how closely these surface methods match the downhole measurements. Average shear-wave velocity estimates to depths of 30, 50, and 100 m demonstrate that the surface methods as implemented in this study can generally match borehole results to within 15% to these depths. At two of the boreholes, the average to 100 m depth was within 3%. Spectral amplifications predicted from the respective borehole velocity profiles similarly compare to within 15 % or better from 1 to 10 Hz with both the MASW and ReMi surface-method velocity profiles. Overall, neither surface method was consistently better at matching the borehole velocity profiles or amplifications. Our results suggest MASW and ReMi surface acquisition methods can both be appropriate choices for estimating shearwave velocity and can be complementary to each other in urban settings for hazards assessment.

  5. Radial velocity studies of cool stars.

    PubMed

    Jones, Hugh R A; Barnes, John; Tuomi, Mikko; Jenkins, James S; Anglada-Escude, Guillem

    2014-04-28

    Our current view of exoplanets is one derived primarily from solar-like stars with a strong focus on understanding our Solar System. Our knowledge about the properties of exoplanets around the dominant stellar population by number, the so-called low-mass stars or M dwarfs, is much more cursory. Based on radial velocity discoveries, we find that the semi-major axis distribution of M dwarf planets appears to be broadly similar to those around more massive stars and thus formation and migration processes might be similar to heavier stars. However, we find that the mass of M dwarf planets is relatively much lower than the expected mass dependency based on stellar mass and thus infer that planet formation efficiency around low-mass stars is relatively impaired. We consider techniques to overcome the practical issue of obtaining good quality radial velocity data for M dwarfs despite their faintness and sustained activity and emphasize (i) the wavelength sensitivity of radial velocity signals, (ii) the combination of radial velocity data from different experiments for robust detection of small amplitude signals, and (iii) the selection of targets and radial velocity interpretation of late-type M dwarfs should consider Hα behaviour.

  6. Investigation on asymmetric flow over a blunt-nose slender body at high angle of attack

    NASA Astrophysics Data System (ADS)

    Zhongyang, Qi; Yankui, Wang; Lei, Wang; Qian, Li

    2017-12-01

    The asymmetric vortices over a blunt-nose slender body are investigated experimentally and numerically at a high angle of attack (AoA, α = 50°) and a Reynolds number of Re D = 1.54 × 105 on the basis of an incoming free-stream velocity and diameter (D) of the model. A micro-perturbation in the form of a hemispherical protrusion with a radius of r = 0.012D is introduced and attached on the nose of the slender body to control the behavior of the asymmetric vortices. Given the predominant role of micro perturbation in the asymmetric vortex pattern, a square wave, which is singly periodic, is observed for side-force variation by setting the circumferential angle (θ) of the micro perturbation from 0° to 360°. The asymmetric vortex pattern and the corresponding side force are manageable and highly dependent on the location of perturbation. The flow structure over the blunt-nose slender body is clarified by building a physical model of asymmetric vortex flow structure in a regular state at a high AoA (α = 50°). This model is divided into several regions by flow structure development along the model body-axis, i.e., inception region at x/D ≤ 3.0, triple-vortex region at 3.0 ≤ x/D ≤ 6.0, four-vortex region at 6.0 ≤ x/D ≤ 8.5, and five-vortex region at 8.5 ≤ x/D ≤ 12. The model reveals a complicated multi-vortex system. The associated pressure distributions and flow characteristics are discussed in detail.

  7. On the wake flow of asymmetrically beveled trailing edges

    NASA Astrophysics Data System (ADS)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.

    2016-05-01

    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  8. Sound velocities in shocked liquid D2 to 28 GPa

    NASA Astrophysics Data System (ADS)

    Holmes, N. C.; Ross, M.; Nellis, W. J.

    1999-06-01

    Recent measurements of shock temperatures(N. C. Holmes, W. J. Nellis, and M. Ross, Phys. Rev.) B52, 15835 (1995). and laser-driven Hugoniot measurements(L. B. Da Silva, et al.), Phys. Rev. Lett. 78, 483 (1997). of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the amount of expected dissociation is small on the Hugoniot at the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, c^2 = (partial P/partial ρ)_S. We used the shock overtake method to measure sound velocities at several shock pressures between 10--28 GPa. These data provide support for recently developed molecular dissociation models.

  9. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2017 with ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, K.; Box, J.; Schlegel, N.; Larour, E. Y.; Morlighem, M.; Solgaard, A.; Kjeldsen, K. K.; Larsen, S. H.; Rignot, E. J.; Dupont, T. K.; Kjaer, K. H.

    2017-12-01

    Tidewater terminus changes have a significant influence on glacier velocity and mass balance and impact therefore Greenland's ice mass balance. Improving glacier front changes in ice sheet models helps understanding the processes that are driving glacier mass changes and improves predictions on Greenland's mass loss. We use the level set based moving boundary capability (Bondzio et al., 2016) included in the Ice Sheet System Model ISSM to reconstruct velocity and thickness changes on Upernavik Isstrøm, Greenland from 1849 to 2017. During the simulation, we use various data sets. For the model initialization, trim line data and an observed calving front position determine the shape of the ice surface elevation. The terminus changes are prescribed by observations. Data sets like the GIMP DEM, ArcticDEM, IceBridge surface elevation and ice surface velocities from the ESA project CCI and NASA project MEaSUREs help evaluating the simulation performance. The simulation is sensitive to the prescribed terminus changes, showing an average acceleration along the three flow lines between 50% and 190% from 1849 to 2017. Simulated ice surface velocity and elevation between 1990 and 2012 are within +/-20% of observations (GIMP, ArcticDEM, IceBridge, CCI and MEaSUREs). Simulated mass changes indicate increased dynamical ice loss from 1932 onward, amplified by increased negative SMB anomalies after 1998. More detailed information about methods and findings can be found in Haubner et al., 2017 (in TC discussion, describing simulation results between 1849-2012). Future goals are the comparison of ice surface velocity changes simulated with prescribed terminus retreat against other retreat schemes (Morlighem et al., 2016; Levermann et al., 2012; Bondzio et al., 2017) and applying the method onto other tidewater glaciers.

  10. Beta-Alanine Supplementation Improves Throwing Velocities in Repeated Sprint Ability and 200-m Swimming Performance in Young Water Polo Players.

    PubMed

    Claus, Gabriel Machado; Redkva, Paulo Eduardo; Brisola, Gabriel Mota Pinheiro; Malta, Elvis Sousa; de Araujo Bonetti de Poli, Rodrigo; Miyagi, Willian Eiji; Zagatto, Alessandro Moura

    2017-05-01

    The purpose of this study was to investigate the effects of beta-alanine supplementation on specific tests for water polo. Fifteen young water polo players (16 ± 2 years) underwent a 200-m swimming performance, repeated-sprint ability test (RSA) with free throw (shooting), and 30-s maximal tethered eggbeater kicks. Participants were randomly allocated into two groups (placebo × beta-alanine) and supplemented with 6.4g∙day -1 of beta-alanine or a placebo for six weeks. The mean and total RSA times, the magnitude based inference analysis showed a likely beneficial effect for beta-alanine supplementation (both). The ball velocity measured in the throwing performance after each sprint in the RSA presented a very like beneficial inference in the beta-alanine group for mean (96.4%) and percentage decrement of ball velocity (92.5%, likely beneficial). Furthermore, the percentage change for mean ball velocity was different between groups (beta-alanine=+2.5% and placebo=-3.5%; p = .034). In the 30-s maximal tethered eggbeater kicks the placebo group presented decreased peak force, mean force, and fatigue index, while the beta-alanine group maintained performance in mean force (44.1%, possibly beneficial), only presenting decreases in peak force. The 200-m swimming performance showed a possibly beneficial effect (68.7%). Six weeks of beta-alanine supplementation was effective for improving ball velocity shooting in the RSA, maintaining performance in the 30-s test, and providing possibly beneficial effects in the 200-m swimming performance.

  11. Calibrating the Planck Cluster Mass Scale with Cluster Velocity Dispersions

    NASA Astrophysics Data System (ADS)

    Amodeo, Stefania; Mei, Simona; Stanford, Spencer A.; Bartlett, James G.; Melin, Jean-Baptiste; Lawrence, Charles R.; Chary, Ranga-Ram; Shim, Hyunjin; Marleau, Francine; Stern, Daniel

    2017-08-01

    We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the Planck mass proxy. The result for the mass bias parameter, (1-b), depends on the value of the galaxy velocity bias, {b}{{v}}, adopted from simulations: (1-b)=(0.51+/- 0.09){b}{{v}}3. Using a velocity bias of {b}{{v}}=1.08 from Munari et al., we obtain (1-b)=0.64+/- 0.11, I.e., an error of 17% on the mass bias measurement with 17 clusters. This mass bias value is consistent with most previous weak-lensing determinations. It lies within 1σ of the value that is needed to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna-Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of {b}{{v}}≳ 0.9 at 3σ .

  12. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  13. Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral BINOL-derived zincate catalyst.

    PubMed

    Li, Hong; Da, Chao-Shan; Xiao, Yu-Hua; Li, Xiao; Su, Ya-Ning

    2008-09-19

    Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral metal complex is reported for the first time herein. Two novel semicrown chiral ligands 1a and 1b were synthesized from (S)- and (R)-BINOL, respectively, and then employed to catalyze the direct asymmetric aldol addition of aryl ketones to aryl aldehydes. Introduced with 2.0 equiv of diethylzinc, 1b had higher enantioselectivity than 1a. Up to 97% yield and up to 80% enantioselectivity were achieved.

  14. Search for companions in visual binary systems using precise radial-velocity measurements

    NASA Astrophysics Data System (ADS)

    Katoh, Noriyuki; Itoh, Yoichi; Sato, Bun'ei

    2018-05-01

    The frequency of triple and quadruple systems is considered to be high in the early phase of star formation. Some multiple systems decay in the pre-main-sequence phase. The multiplicity of main-sequence stars provides clues about the evolution of binary systems. This work searched for companions of five components of visual binary systems using precise radial-velocity measurements. Their radial velocities were monitored from 2007 to 2012 using the HIgh Dispersion Echelle Spectrograph (HIDES) installed on the Okayama Astrophysical Observatory (OAO) 1.88 m reflector. In combination with previous work, this work searched for companions with an orbital period of less than 9 yr for the five bodies. We found periodic variations in the radial velocities for ADS 6190 A and BDS 10966A. The radial velocities of ADS 7311 A, 31 Dra A, and 31 Dra B show significant trends. ADS 6190 A is an SB1 binary with an orbital period of 366.2 d. The minimum mass of the secondary star is 0.5^{+0.7}_{-0.2} M_{⊙}. The radial velocity of ADS 7311 A was monitored for an observational span of 3200 d. We rejected a planetary-mass companion as the cause of a decreasing trend in the radial velocity of ADS 7311 A. This work confirmed that the periodic variation in the radial velocity of BDS 10966 A is 771.1 d. Bisector analysis did not reveal a correlation between the asymmetry of a spectral line and the radial velocity of BDS 10966 A. We rejected nonradial oscillation of the photosphere as the source of the radial velocity variation. The variation may be caused by the rotational modulation owing to surface inhomogeneity. The orbital elements of 31 Dra A derived in this paper are consistent with those in a previous paper. 31 Dra A system is an SB1 binary with a minimum mass ratio of 0.30 ± 0.08. 31 Dra B exhibits a periodic variation in radial velocity. The orbital elements derived in this work are consistent with those reported previously by others. The variation is caused by a circumstellar

  15. Asymmetrical A-Frame Triplatinum Clusters Bridged by Small Organic Molecules and Bis((diphenylphosphino)methyl)phenylphosphine.

    PubMed

    Tanase, Tomoaki; Ukaji, Hirokazu; Igoshi, Toshiaki; Yamamoto, Yasuhiro

    1996-07-03

    Reactions of the linear triplatinum complex [Pt(3)(&mgr;-dpmp)(2)(XylNC)(2)](2+) (3) with small organic molecules led to formation of asymmetrical A-frame triplatinum complexes with an additional bridge across one of the metal-metal bonds, where dpmp is bis((diphenylphosphino)methyl)phenylphosphine. Reaction of complex 3 with electron deficient alkynes (R(1)C&tbd1;CR(2): R(1) = R(2) = CO(2)Me; R(1) = H, R(2) = CO(2)Me; R(1) = R(2) = CO(2)Et) afforded a new series of triplatinum clusters formulated as [Pt(3)(&mgr;-dpmp)(2)(&mgr;-R(1)CCR(2))(XylNC)(2)](PF(6))(2) (5a, R(1) = R(2) = CO(2)Me; 5b, R(1) = H, R(2) = CO(2)Me; 5c, R(1) = R(2) = CO(2)Et) in good yields. The complex cation of 5b was characterized by X-ray crystallography to have an asymmetrical A-frame structure comprising three Pt atoms bridged by two dpmp ligands, in which an acetylene molecule was inserted into one of the Pt-Pt bonds (triclinic, P&onemacr;, a = 19.507(3) Å, b = 20.327(4) Å, c = 14.499(4) Å, alpha = 107.69(2) degrees, beta = 102.08(2) degrees, gamma = 71.30(1) degrees, V = 5148 Å(3), Z = 2, R = 0.070, and R(w) = 0.084). The Pt-Pt bond length is 2.718(1) Å and the Pt.Pt nonbonded distance is 3.582(1) Å. Treatment of 3 with an excess of HBF(4).Et(2)O gave the asymmetrical cluster [Pt(3)(&mgr;-dpmp)(2)(&mgr;-H)(XylNC)(2)](BF(4))(3).CH(2)Cl(2) (6.CH(2)Cl(2)), in 61% yield, and a similar reaction with p-NO(2)C(6)H(4)NC led to the formation of [Pt(3)(&mgr;-dpmp)(2)(&mgr;-R(3)NC)(XylNC)(2)](PF(6))(2).CH(2)Cl(2) (7.CH(2)Cl(2)) in 94% yield (R(3) = p-NO(2)C(6)H(4)). Complexes 6 and 7 are assumed to have a single atom-bridged, asymmetrical A-frame structures. Reaction of the complex syn-[Pt(2)(&mgr;-dpmp)(2)(XylNC)(2)](2+) (1) with [MCl(2)(cod)] (M = Pt, Pd) gave the dimer-monomer combined trinuclear cluster [Pt(2)MCl(2)(&mgr;-dpmp)(2)(XylNC)(2)](PF(6))(2) (8a, M = Pt, 89%; 8b, M = Pd, 55%). The structure of 8a was determined by X-ray crystallography to be comprised of a metal

  16. Global Properties of M31’s Stellar Halo from the SPLASH Survey. III. Measuring the Stellar Velocity Dispersion Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Tollerud, Erik; Beaton, Rachael L.; Guhathakurta, Puragra; Bullock, James S.; Chiba, Masashi; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Tanaka, Mikito

    2018-01-01

    We present the velocity dispersion of red giant branch stars in M31’s halo, derived by modeling the line-of-sight velocity distribution of over 5000 stars in 50 fields spread throughout M31’s stellar halo. The data set was obtained as part of the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) Survey, and covers projected radii of 9 to 175 kpc from M31’s center. All major structural components along the line of sight in both the Milky Way (MW) and M31 are incorporated in a Gaussian Mixture Model, including all previously identified M31 tidal debris features in the observed fields. The probability that an individual star is a constituent of M31 or the MW, based on a set of empirical photometric and spectroscopic diagnostics, is included as a prior probability in the mixture model. The velocity dispersion of stars in M31’s halo is found to decrease only mildly with projected radius, from 108 km s‑1 in the innermost radial bin (8.2 to 14.1 kpc) to ∼80 to 90 km s‑1 at projected radii of ∼40–130 kpc, and can be parameterized with a power law of slope ‑0.12 ± 0.05. The quoted uncertainty on the power-law slope reflects only the precision of the method, although other sources of uncertainty we consider contribute negligibly to the overall error budget. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  17. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    PubMed Central

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  18. Threshold Velocity for Saltation Activity in the Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; He, Qing; Matimin, Ali; Yang, Fan; Huo, Wen; Liu, Xinchun; Zhao, Tianliang; Shen, Shuanghe

    2017-12-01

    The threshold velocity is an indicator of a soil's susceptibility to saltation activity and is also an important parameter in dust emission models. In this study, the saltation activity, atmospheric conditions, and soil conditions were measured from 1 August 2008 to 31 July 2009 in the Taklimakan Desert, China. the threshold velocity was estimated using the Gaussian time fraction equivalence method. At 2 m height, the 1-min averaged threshold velocity varied between 3.5 and 10.9 m/s, with a mean of 5.9 m/s. Threshold velocities varying between 4.5 and 7.5 m/s accounted for about 91.4% of all measurements. The average threshold velocity displayed clear seasonal variations in the following sequence: winter (5.1 m/s) < autumn (5.8 m/s) < spring (6.1 m/s) < summer (6.5 m/s). A regression equation of threshold velocity was established based on the relations between daily mean threshold velocity and air temperature, specific humidity, and soil volumetric moisture content. High or moderate positive correlations were found between threshold velocity and air temperature, specific humidity, and soil volumetric moisture content (air temperature r = 0.75; specific humidity r = 0.59; and soil volumetric moisture content r = 0.55; sample size = 251). In the study area, the observed horizontal dust flux was 4198.0 kg/m during the whole period of observation, while the horizontal dust flux calculated using the threshold velocity from the regression equation was 4675.6 kg/m. The correlation coefficient between the calculated result and the observations was 0.91. These results indicate that atmospheric and soil conditions should not be neglected in parameterization schemes for threshold velocity.

  19. Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors.

    PubMed

    Prodon, François; Chenevert, Janet; Hébras, Céline; Dumollard, Rémi; Faure, Emmanuel; Gonzalez-Garcia, Jose; Nishida, Hiroki; Sardet, Christian; McDougall, Alex

    2010-06-01

    Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.

  20. Shear-wave velocity model from Rayleigh wave group velocities centered on the Sacramento/San Joaquin Delta

    USGS Publications Warehouse

    Fletcher, Jon Peter B.; Erdem, Jemile

    2017-01-01

    Rayleigh wave group velocities obtained from ambient noise tomography are inverted for an upper crustal model of the Central Valley, California, centered on the Sacramento/San Joaquin Delta. Two methods were tried; the first uses SURF96, a least-squares routine. It provides a good fit to the data, but convergence is dependent on the starting model. The second uses a genetic algorithm, whose starting model is random. This method was tried at several nodes in the model and compared to the output from SURF96. The genetic code is run five times and the variance of the output of all five models can be used to obtain an estimate of error. SURF96 produces a more regular solution mostly because it is typically run with a smoothing constraint. Models from the genetic code are generally consistent with the SURF96 code sometimes producing lower velocities at depth. The full model, calculated using SURF96, employed a 2-pass strategy, which used a variable damping scheme in the first pass. The resulting model shows low velocities near the surface in the Central Valley with a broad asymmetrical sedimentary basin located close to the western edge of the Central Valley near 122°W longitude. At shallow depths the Rio Vista Basin is found nestled between the Pittsburgh/Kirby Hills and Midland faults, but a significant basin also seems to exist to the west of the Kirby Hills fault. There are other possible correlations between fast and slow velocities in the Central Valley and geologic features such as the Stockton Arch, oil or gas producing regions and the fault-controlled western boundary of the Central Valley.

  1. Shear-wave Velocity Model from Rayleigh Wave Group Velocities Centered on the Sacramento/San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, Jon B.; Erdem, Jemile

    2017-10-01

    Rayleigh wave group velocities obtained from ambient noise tomography are inverted for an upper crustal model of the Central Valley, California, centered on the Sacramento/San Joaquin Delta. Two methods were tried; the first uses SURF96, a least squares routine. It provides a good fit to the data, but convergence is dependent on the starting model. The second uses a genetic algorithm, whose starting model is random. This method was tried at several nodes in the model and compared to the output from SURF96. The genetic code is run five times and the variance of the output of all five models can be used to obtain an estimate of error. SURF96 produces a more regular solution mostly because it is typically run with a smoothing constraint. Models from the genetic code are generally consistent with the SURF96 code sometimes producing lower velocities at depth. The full model, calculated using SURF96, employed a 2-pass strategy, which used a variable damping scheme in the first pass. The resulting model shows low velocities near the surface in the Central Valley with a broad asymmetrical sedimentary basin located close to the western edge of the Central Valley near 122°W longitude. At shallow depths, the Rio Vista Basin is found nestled between the Pittsburgh/Kirby Hills and Midland faults, but a significant basin also seems to exist to the west of the Kirby Hills fault. There are other possible correlations between fast and slow velocities in the Central Valley and geologic features such as the Stockton Arch, oil or gas producing regions and the fault-controlled western boundary of the Central Valley.

  2. Testing the limits of the Maxwell distribution of velocities for atoms flying nearly parallel to the walls of a thin cell.

    PubMed

    Todorov, Petko; Bloch, Daniel

    2017-11-21

    For a gas at thermal equilibrium, it is usually assumed that the velocity distribution follows an isotropic 3-dimensional Maxwell-Boltzmann (M-B) law. This assumption classically implies the assumption of a "cos θ" law for the flux of atoms leaving the surface. Actually, such a law has no grounds in surface physics, and experimental tests of this assumption have remained very few. In a variety of recently developed sub-Doppler laser spectroscopy techniques for gases one-dimensionally confined in a thin cell, the specific contribution of atoms moving nearly parallel to the boundary of the vapor container becomes essential. We report here on the implementation of an experiment to probe effectively the distribution of atomic velocities parallel to the windows for a thin (60 μm) Cs vapor cell. The principle of the setup relies on a spatially separated pump-probe experiment, where the variations of the signal amplitude with the pump-probe separation provide the information on the velocity distribution. The experiment is performed in a sapphire cell on the Cs resonance line, which benefits from a long-lived hyperfine optical pumping. Presently, we can analyze specifically the density of atoms with slow normal velocities ∼5-20 m/s, already corresponding to unusual grazing flight-at ∼85°-88.5° from the normal to the surface-and no deviation from the M-B law is found within the limits of our elementary setup. Finally we suggest tracks to explore more parallel velocities, when surface details-roughness or structure-and the atom-surface interaction should play a key role to restrict the applicability of an M-B-type distribution.

  3. Testing the limits of the Maxwell distribution of velocities for atoms flying nearly parallel to the walls of a thin cell

    NASA Astrophysics Data System (ADS)

    Todorov, Petko; Bloch, Daniel

    2017-11-01

    For a gas at thermal equilibrium, it is usually assumed that the velocity distribution follows an isotropic 3-dimensional Maxwell-Boltzmann (M-B) law. This assumption classically implies the assumption of a "cos θ" law for the flux of atoms leaving the surface. Actually, such a law has no grounds in surface physics, and experimental tests of this assumption have remained very few. In a variety of recently developed sub-Doppler laser spectroscopy techniques for gases one-dimensionally confined in a thin cell, the specific contribution of atoms moving nearly parallel to the boundary of the vapor container becomes essential. We report here on the implementation of an experiment to probe effectively the distribution of atomic velocities parallel to the windows for a thin (60 μm) Cs vapor cell. The principle of the setup relies on a spatially separated pump-probe experiment, where the variations of the signal amplitude with the pump-probe separation provide the information on the velocity distribution. The experiment is performed in a sapphire cell on the Cs resonance line, which benefits from a long-lived hyperfine optical pumping. Presently, we can analyze specifically the density of atoms with slow normal velocities ˜5-20 m/s, already corresponding to unusual grazing flight—at ˜85°-88.5° from the normal to the surface—and no deviation from the M-B law is found within the limits of our elementary setup. Finally we suggest tracks to explore more parallel velocities, when surface details—roughness or structure—and the atom-surface interaction should play a key role to restrict the applicability of an M-B-type distribution.

  4. Electron-positron pair production in ion collisions at low velocity beyond Born approximation

    NASA Astrophysics Data System (ADS)

    Lee, R. N.; Milstein, A. I.

    2016-10-01

    We derive the spectrum and the total cross section of electromagnetic e+e- pair production in the collisions of two nuclei at low relative velocity β. Both free-free and bound-free e+e- pair production is considered. The parameters ηA,B =ZA,B α are assumed to be small compared to unity but arbitrary compared to β (ZA,B are the charge numbers of the nuclei and α is the fine structure constant). Due to a suppression of the Born term by high power of β, the first Coulomb correction to the amplitude appears to be important at ηA,B ≳ β. The effect of a finite nuclear mass is discussed. In contrast to the result obtained in the infinite nuclear mass limit, the terms ∝M-2 are not suppressed by the high power of β and may easily dominate at sufficiently small velocities.

  5. Effect of delta tabs on mixing and axis switching in jets from asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1994-01-01

    The effect of delta tabs on mixing and the phenomenon of axis switching in free air jets from various asymmetric nozzles was studied experimentally. Flow visualization and Pitot probe surveys were carried out with a set of small nozzles (D = 1.47 cm) at a jet Mach number, Mj = 1.63. Hot wire measurements for streamwise vorticity were carried out with larger nozzles (D = 6.35 cm) at Mj = 0.31. Jet mixing with the asymmetric nozzles, as indicated by the mass fluxes downstream, was found to be higher than that produced by a circular nozzle. The circular nozzle with four delta tabs, however, produced fluxes much higher than that produced by a asymmetric nozzles themselves or by most of the tab configurations tried with them. Even higher fluxes could be obtained with only a few cases, e.g., with 3:1 rectangular nozzle with two large delta tabs placed on the narrow edges. In this case, the jet 'fanned out' at a large angle after going through one axis switch. The axis switching could be either stopped or augmented with suitable choice of the tab configurations. Two mechanisms are identified governing the phenomenon. One, as described in Ref. 12 and referred to here as the omega(sub Theta)-induced dynamics, is due to differential induced velocities of different segments of a rolled up azimuthal vortical structure. The other is the omega(sub x)-induced dynamics due to the induced velocities of streamwise vortex pairs in the flow. While the former dynamics are responsible for rapid axis switching in periodically forced jets, the effect of the tabs is governed mainly by the latter. It is inferred that both dynamics are active in a natural asymmetric jet issuing from a nozzle having an upstream contraction. The tendency for axis switching caused by the omega(sub Theta)-induced dynamics is resisted by the omega(sub x)-induced dynamics, leading to a delayed or no switch over in that case. In jets from orifices and in screeching jets, the omega(sub Theta)-induced dynamics

  6. On the Electrons Dynamics during Rapid Island Coalescence in Asymmetric Magnetic Reconnection: Case With and With No Guide Field

    NASA Astrophysics Data System (ADS)

    Cazzola, E.; Innocenti, M. E.; Markidis, S.; Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2015-12-01

    We present a set of fully kinetic 2.5D simulations of electron dynamics during rapid magnetic islands coalescence in asymmetric conditions. Simulations are performed using the massively parallel fully kinetic implicit moment method code iPIC3D (Markidis et al. 2010). The domain is a double periodic box with two current sheets initially representing two different reconnection conditions with the same asymmetric ratio. In the upper sheet the conventional hyperbolic continuous functions for magnetic field and density are initialised across the layer (e.g. Pritchett 2008). In the lower layer the same asymmetric conditions are used the presence of an extremely steep gradient describing a pure tangential discontinuity.Cases with and without guide field are compared. While the upper layer shows the typical reconnection evolution of an asymmetric configuration, the lower layer very soon develops not-uniformly distributed multiple reconnection points which rapidly evolve in a series of magnetic islands. Quick islands coalescence follows. Even though the electrons dynamics during island merging has been studied in both symmetric and asymmetric conditions (e.g. Pritchett 2007, 2008b, Drake et al. 2006, Oka et al. 2010, Huang et al. 2014), these simulations show new interesting features such as the presence of three distinct regions, here named X, M and D, with very different properties. Regions X and M manifest typical signatures of ongoing reconnection, distinguishable thanks to the direct comparison with the outcomes of the upper layer. In particular, M-type regions are different because reconnection occurs between two merging islands in a vertical fashion with respect to the direction of the current sheets initially set. In contrast, regions D present a quite diverse features, not showing the typical signatures of a occurring reconnection. The present work is supported by the NASA MMS Grant NNX08AO84G. Additional support for the KULeuven team is provided by the European

  7. The structure, stability, and infrared spectrum of B 2N, B 2N +, B 2N -, BO, B 2O and B 2N 2.

    NASA Astrophysics Data System (ADS)

    Martin, J. M. L.; François, J. P.; Gijbels, R.

    1992-05-01

    The structure, infrared spectrum, and heat of formation of B 2N, B 2N -, BO, and B 2O have been studied ab initio. B 2N is very stable; B 2O even more so. B 2N, B 2N -, B 2O, and probably B 2N + have symmetric linear ground-state structures; for B 2O, an asymmetric linear structure lies about 12 kcal/mol above the ground state. B 2N +, B 2N - and B 2O have intense asymmetric stretching frequencies, predicted near 870, 1590 and 1400 cm -1, respectively. Our predicted harmonic frequencies and isotopic shifts for B 2O confirm the recent experimental identification by Andrews and Burkholder. Absorptions at 1889.5 and 1998.5 cm -1 in noble-gas trapped boron nitride vapor belong the BNB and BNBN ( 3Π), respectively; a tentative assignment of 882.5 cm -1 to BNB + is proposed. Total atomization energies Σ De (Σ D0) are computed (accuracy ±2 kcal/mol) as: BO 193.1 (190.4), B 2O 292.5 (288.7), B 2N 225.0 (250.3) kcal/mol. The ionization potential and electron affinity of B 2N are predicted to be 8.62±0.1 and 3.34±0.1 eV. The MP4-level additivity approximations involved in G1 theory results in errors on the order of 1 kcal/mol in the Σ De values.

  8. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  9. Direct Enantioselective Reaction between Hemiacetals and Phosphorus Ylides: Important Role of a By-Product in the Asymmetric Transformation.

    PubMed

    Wang, Rui; Wang, Linqing; Yang, Dongxu; Li, Dan; Liu, Xihong; Wang, Pengxin; Wang, Kezhou; Zhu, Haiyong; Bai, Lutao

    2018-05-16

    By employing a simple in-situ generated magnesium catalyst, the direct asymmetric reaction between hemiacetals and P-ylides is achieved via a tandem Wittig-oxa-Michael reaction sequence. Enantioenriched chromans, isochromans and tetrahydropyrans can be obtained in good chemical yields. (-)-Erythrococcamide B can be asymmetrically synthesized through this synthetic technique. In this work, the by-product, TPO, was identified as a necessary additive in this asymmetric synthetic method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A SEARCH FOR Hα ABSORPTION AROUND KELT-3 b AND GJ 436 b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G., E-mail: pcauley@wesleyan.edu

    2017-02-01

    Observations of extended atmospheres around hot planets have generated exciting results concerning the dynamics of escaping planetary material. The configuration of the escaping planetary gas can result in asymmetric transit features, producing both pre- and post-transit absorption in specific atomic transitions. Measuring the velocity and strength of the absorption can provide constraints on the mass loss mechanism, and potentially clues to the interactions between the planet and the host star. Here we present a search for H α absorption in the circumplanetary environments of the hot planets KELT-3 b and GJ 436 b. We find no evidence for absorption aroundmore » either planet at any point during the two separate transit epochs for which each system was observed. We provide upper limits on the radial extent and density of the excited hydrogen atmospheres around both planets. The null detection for GJ 436 b contrasts with the strong Ly α absorption measured for the same system, suggesting that the large cloud of neutral hydrogen is almost entirely in the ground state. The only confirmed exoplanetary H α absorption to date has been made around the active star HD 189733 b. KELT-3 and GJ 436 are less active than HD 189733, hinting that exoplanet atmospheres exposed to EUV photons from active stars are better suited for detection of H α absorption.« less

  11. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    PubMed

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  12. Spin stability of sounding rocket secondary payloads following high velocity ejections

    NASA Astrophysics Data System (ADS)

    Nelson, Weston M.

    The Auroral Spatial Structures Probe (ASSP) mission is a sounding rocket mission studying solar energy input to space weather. ASSP requires the high velocity ejection (up to 50 m/s) of 6 secondary payloads, spin stabilized perpendicular to the ejection velocity. The proposed scientific instrumentation depends on a high degree of spin stability, requiring a maximum coning angle of less than 5°. It also requires that the spin axis be aligned within 25° of the local magnetic field lines. The maximum velocities of current ejection methods are typically less than 10m/s, and often produce coning angles in excess of 20°. Because of this they do not meet the ASSP mission requirements. To meet these requirements a new ejection method is being developed by NASA Wallops Flight Facility. Success of the technique in meeting coning angle and B-field alignment requirements is evaluated herein by modeling secondary payload dynamic behavior using a 6-DOF dynamic simulation employing state space integration written in MATLAB. Simulation results showed that secondary payload mass balancing is the most important factor in meeting stability requirements. Secondary mass payload properties will be measured using an inverted torsion pendulum. If moment of inertia measurement errors can be reduced to 0.5%, it is possible to achieve mean coning and B-field alignment angles of 2.16° and 2.71°, respectively.

  13. Consolidated B-24M Liberator Equipped for Icing Research

    NASA Image and Video Library

    1946-07-21

    A Consolidated B-25M Liberator modified for icing research by the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. NACA Lewis performed a limited amount of icing research during World War II, but the program expanded significantly in 1946. The accumulation of ice on aircraft was a continual problem. The ice formations could result in extra weight, aerodynamic penalties, and blockage engine inlets. Although the Lewis icing researchers utilized numerous aircraft, the program’s two workhorses were the B-24M Liberator, seen here, and a North American XB-25E Mitchell. The Consolidated Aircraft Company created the four-engine bomber in the early 1940s. During World War II the bomber was employed on long-duration bombing missions in both Europe and the Pacific. Production of the B-24M version did not begin until October 1944 with the end of the war in Europe approaching. This resulted in scores of unneeded bombers when hostilities ended. This B-24M arrived at the NACA Lewis laboratory in November 1945. At Lewis the B-24M was repeatedly modified to study ice accretion on aircraft components. Researchers analyzed different anti-icing and deicing strategies and gathered statistical ice measurement data. The B-24M was also used to study ice buildup on jet engines. A General Electric I-16 engine was installed in the aircraft’s waist compartment with an air scoop on the top of the aircraft to duct air to the engine. Water spray nozzles inside the aircraft were employed to simulate icing conditions at the turbojet’s inlet.

  14. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  15. Stepwise shockwave velocity determinator

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.; Beeson, Harold

    1992-01-01

    To provide an uncomplicated and inexpensive method for measuring the far-field velocity of a surface shockwave produced by an explosion, a stepwise shockwave velocity determinator (SSVD) was developed. The velocity determinator is constructed of readily available materials and works on the principle of breaking discrete sensors composed of aluminum foil contacts. The discrete sensors have an average breaking threshold of approximately 7 kPa. An incremental output step of 250 mV is created with each foil contact breakage and is logged by analog-to-digital instrumentation. Velocity data obtained from the SSVD is within approximately 11 percent of the calculated surface shockwave velocity of a muzzle blast from a 30.06 rifle.

  16. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    NASA Astrophysics Data System (ADS)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  17. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    PubMed Central

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  18. Measurement of the time dependence of B0-B0(bar) oscillations using inclusive dilepton events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, Barbara

    A preliminary study of time dependence of B{sup 0}{bar B}{sup 0} oscillations using dilepton events is presented. The flavor of the B meson is determined by the charge sign of the lepton. To separate signal leptons from cascade and fake leptons we have used a method which combines several discriminating variables in a neural network. The time evolution of the oscillations is studied by reconstructing the time difference between the decays of the B mesons produced by the {Upsilon}(4S) decay. With an integrated luminosity of 7.7 fb{sup -1} collected on resonance by BABAR at the PEP-II asymmetric B Factory, wemore » measure the difference in mass of the neutral B eigenstates, {Delta}m{sub B{sup 0}}, to be (0.507 {+-} 0.015 {+-} 0.022) x 10{sup 12} {Dirac_h} s{sup -1}.« less

  19. Akt, mTOR and NF-κB pathway activation in Treponema pallidum stimulates M1 macrophages.

    PubMed

    Lin, Li-Rong; Gao, Zheng-Xiang; Lin, Yong; Zhu, Xiao-Zhen; Liu, Wei; Liu, Dan; Gao, Kun; Tong, Man-Li; Zhang, Hui-Lin; Liu, Li-Li; Xiao, Yao; Niu, Jian-Jun; Liu, Fan; Yang, Tian-Ci

    2018-06-01

    The polarization of macrophages and the molecular mechanism involved during the early process of syphilis infection remain unknown. This study was conducted to explore the influence of Treponema pallidum (T. pallidum) treatment on macrophage polarization and the Akt-mTOR-NFκB signaling pathway mechanism involved in this process. M0 macrophages derived from the phorbol-12-myristate-13-acetate-induced human acute monocytic leukemia cell line THP-1 were cultured with T. pallidum. T. pallidum induced inflammatory cytokine (IL-1β and TNF-α) expression in a dose- and time-dependent manner. However IL-10 cytokine expression decreased at the mRNA and protein levels. Additionally, the expression of the M1 surface marker iNOS was up-regulated with incubation time, and the expression of the M2 surface marker CD206 was low (vs. PBS treated macrophages, P < 0.001) and did not fluctuate over 12 h. Further studies revealed that Akt-mTOR-NFκB pathway proteins, including p-Akt, p-mTOR, p-S6, p-p65, and p-IκBα, were significantly higher in the T. pallidum-treated macrophages than in the PBS-treated macrophages (P < 0.05). In addition, inflammatory cytokine expression was suppressed in T. pallidum-induced M1 macrophages pretreated with LY294002 (an Akt-specific inhibitor) or PDTC (an NF-κB inhibitor), while inflammatory cytokine levels increased in T. pallidum-induced M1 macrophages pretreated with rapamycin (an mTOR inhibitor). These findings revealed that T. pallidum promotes the macrophage transition to pro-inflammatory M1 macrophages in vitro. The present study also provides evidence that Akt, mTOR and NF-κB pathway activation in T. pallidum stimulates M1 macrophages. This study provides novel insights into the innate immune response to T. pallidum infection. Copyright © 2018. Published by Elsevier B.V.

  20. Design optimization of superconducting coils based on asymmetrical characteristics of REBCO tapes

    NASA Astrophysics Data System (ADS)

    Hong, Zhiyong; Li, Wenrong; Chen, Yanjun; Gömöry, Fedor; Frolek, Lubomír; Zhang, Min; Sheng, Jie

    2018-07-01

    Angle dependence Ic(B,θ) of superconducting tape is a crucial parameter to calculate the influence of magnetic field during the design of superconducting applications,. This paper focuses on the asymmetrical characteristics found in REBCO tapes and further applications based on this phenomenon. This paper starts with angle dependence measurements of different HTS tapes, asymmetrical characteristics are found in some of the testing samples. On basis of this property, optimization of superconducting coils in superconducting motor, transformer and insert magnet is discussed by simulation. Simplified experiments which represent the structure of insert magnet were carried out to prove the validity of numerical studies. Conclusions obtained in this paper show that the asymmetrical property of superconducting tape is quite important in design of superconducting applications, and optimized winding technique based on this property can be used to improve the performance of superconducting devices.

  1. Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport?

    PubMed

    Olshausen, Philipp V; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L; Rohrbach, Alexander

    2013-09-03

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28< z< 1.08. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  3. Asymmetric Warfare: M31 and its Satellites

    NASA Astrophysics Data System (ADS)

    Fardal, M.

    2010-06-01

    Photometric surveys of M31's halo vividly illustrate the wreckage caused by hierarchical galaxy formation. Several of M31's satellites are being disrupted by M31's tidal field, among them M33 and And I, while other tidal structures are the corpses of satellites already destroyed. The extent to which M31's satellites have left battle scars upon it is unknown; to answer this we need accurate orbits and masses of the perturbers. I focus here on M31's 150-kpc-long Giant Southern Stream (GSS) as an example of how these can be determined even in the absence of a visible progenitor. Comparing N-body models to photometric and spectroscopic data, I find this stream resulted from the disruption of a large satellite galaxy by a close passage about 750 Myr ago. The GSS is connected to several other debris structures in M31's halo. Bayesian sampling of the simulations estimates the progenitor's initial mass as M* = 109.5±0.2 Msun, showing it was one of the most massive Local Group galaxies until quite recently. The stream model constrains M31's halo mass to be ( 1.8 ± 0.5 ) × 1012 Msun. While these small uncertainties neglect several important degrees of freedom, they are likely to remain good even with a more complete model. Future work on M31 satellites and streams will provide independent constraints on M31's mass and reveal the shared history of M31 and its halo components.

  4. Inhibition of polyomavirus ori-dependent DNA replication by mSin3B.

    PubMed

    Xie, An-Yong; Folk, William R

    2002-12-01

    When tethered in cis to DNA, the transcriptional corepressor mSin3B inhibits polyomavirus (Py) ori-dependent DNA replication in vivo. Histone deacetylases (HDACs) appear not to be involved, since tethering class I and class II HDACs in cis does not inhibit replication and treating the cells with trichostatin A does not specifically relieve inhibition by mSin3B. However, the mSin3B L59P mutation that impairs mSin3B interaction with N-CoR/SMRT abrogates inhibition of replication, suggesting the involvement of N-CoR/SMRT. Py large T antigen interacts with mSin3B, suggesting an HDAC-independent mechanism by which mSin3B inhibits DNA replication.

  5. Precise seismic velocity structure beneath the Hokkaido corner, northern Japan: Arc-arc collision and the 1970 M 6.7 Hidaka region earthquake and the 1982 M 7.1 Urakawa-oki earthquake

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, A.; Nakajima, J.; Okada, T.; Matsuzawa, T.; Katsumata, K.

    2011-12-01

    Using arrival-time data both from the nationwide Kiban seismic network and from a dense temporary seismic network covering the area of the Hokkaido corner [Katsumata et al., 2002a; 2003, JGR], we precisely determined three-dimensional seismic velocity structure beneath this area to understand the collision process between the Kuril and northeasetern Japan forearcs. Tomographic inversions were performed with smaller grid spacing [5 x 10 x 5 km] than our previous study [Kita et al., 2010b, EPSL] by using the double-difference tomography method [Zhang and Thurber, 2003; 2006]. Inhomogeneous seismic velocity structure was more precisely imaged in the Hokkaido corner at depths of 0-120 km. A broad low-velocity zone of P- and S- waves having velocities of crust materials with a total volume of 80 km x 100 km x 50 km is distributed to the west of the Hidaka metamorphic belt (the Hidaka main thrust) at depths of 30-90km. On the other hand, several small-scale high-velocity zones having velocities of mantle materials were detected at depths of 0-35 km), inclined east-northeastward at a high angle of 40-60 degrees. All of these anomaly high velocity zones are respectively located in the deeper extension of the Neogene thrust faults, striking almost N-S direction and dipping 40-50 degrees at depths of 0-10km [e.g. Ito 2000]. The largest high-velocity zone is located in the deeper extension of the Hidaka main thrust, being in contact with the eastern edge of the low-V zone. This high-V zone reaches near the surface at the Hidaka metamorphic belt and its southern edge is located just beneath the Horoman-peridotite, which is one of the most famous peridotite outcrops. Moreover, the boundary of the high-V zone with the broad low-V zone corresponds to the fault plane of the 1970 Mj 6.7 Hidaka region earthquake [Moriya 1972]. Another high-V zone is located within the broad low-V zone at depths of 20-30km and in the deeper extension of thrust, which belongs to the Ishikari Low land

  6. Subluminous phase velocity regions of an accurately described Gaussian laser field and laser-driven acceleration

    NASA Astrophysics Data System (ADS)

    Xie, Y. J.; Ho, Y. K.; Cao, N.; Shao, L.; Pang, J.; Chen, Z.; Zhang, S. Y.; Liu, J. R.

    2003-11-01

    By taking account of the high-order corrections to the paraxial approximation of a Gaussian beam, it has been verified that for a focused laser beam propagating in vacuum, there indeed exists a subluminous wave phase velocity region surrounding the laser beam axis. The magnitude of the phase velocity scales as Vϕm∼ c(1+ b/( kw0) 2), where Vϕm is the phase velocity of the wave, c is the speed of light in vacuum, w0 is the beam width at focus. This feature gives a reasonable explanation for the mechanism of capture and acceleration scenario.

  7. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  8. FAST, LOW-IONIZATION EMISSION REGIONS OF THE PLANETARY NEBULA M2-42

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danehkar, A.; Parker, Q. A.; Steffen, W., E-mail: ashkbiz.danehkar@cfa.harvard.edu

    Spatially resolved observations of the planetary nebula M2-42 (PN G008.2−04.8) obtained with the Wide Field Spectrograph on the Australian National University 2.3 m telescope have revealed the remarkable features of bipolar collimated jets emerging from its main structure. Velocity-resolved channel maps derived from the [N ii] λ6584 emission line disentangle different morphological components of the nebula. This information is used to develop a three-dimensional morpho-kinematic model, which consists of an equatorial dense torus and a pair of asymmetric bipolar outflows. The expansion velocity of about 20 km s{sup −1} is measured from the spectrum integrated over the main shell. However,more » the deprojected velocities of the jets are found to be in the range of 80–160 km s{sup −1} with respect to the nebular center. It is found that the mean density of the collimated outflows, 595 ± 125 cm{sup −3}, is five times lower than that of the main shell, 3150 cm{sup −3}, whereas their singly ionized nitrogen and sulfur abundances are about three times higher than those determined from the dense shell. The results indicate that the features of the collimated jets are typical of fast, low-ionization emission regions.« less

  9. Calculation of symmetric and asymmetric vortex seperation on cones and tangent ogives based on discrete vortex models

    NASA Technical Reports Server (NTRS)

    Chin, S.; Lan, C. Edward

    1988-01-01

    An inviscid discrete vortex model, with newly derived expressions for the tangential velocity imposed at the separation points, is used to investigate the symmetric and asymmetric vortex separation on cones and tangent ogives. The circumferential locations of separation are taken from experimental data. Based on a slender body theory, the resulting simultaneous nonlinear algebraic equations in a cross-flow plane are solved with Broyden's modified Newton-Raphson method. Total force coefficients are obtained through momentum principle with new expressions for nonconical flow. It is shown through the method of function deflation that multiple solutions exist at large enough angles of attack, even with symmetric separation points. These additional solutions are asymmetric in vortex separation and produce side force coefficients which agree well with data for cones and tangent ogives.

  10. Detailed analysis of particle launch velocities, size distributions and gas densities during normal explosions at Stromboli

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Ripepe, Maurizio; Hughes, Elizabeth A.

    2012-06-01

    Using high frame rate (33 Hz) thermal video data we describe and parameterize the emission and ascent dynamics of a mixed plume of gas and particles emitted during a normal explosion at Stromboli (Aeolian Islands, Italy). Analysis of 34 events showed that 31 of them were characterized by a first phase characterized by an initial diffuse spray of relatively small (lapilli-sized) particles moving at high velocities (up to 213 m s- 1; average 66-82 m s- 1). This was followed, typically within 0.1 s, by a burst comprising a mixture of ash and lapilli, but dominated by larger bomb-sized particles, moving at lower exit velocities of up to 129 m s- 1, but typically 46 m s- 1. We interpret these results as revealing initial emission of a previously unrecorded high velocity gas-jet phase, to which the lapilli are coupled. This is followed by emission of slower moving larger particles that are decoupled from the faster moving gas-phase. Diameters for particles carried by the gas phase are typically around 4 cm, but can be up to 9 cm, with the diameter of the particles carried by the gas jet (D) decreasing with increased density and velocity of the erupted gas cloud (ρgas and Ugas). Data for 101 particles identified as moving with the gas jet during 32 eruptions allow us to define a new relation, whereby Ugas = Uparticle + a [ρgas√{D}]b. Here, Uparticle is the velocity of bombs whose motion is decoupled from that of the gas cloud, and a and b are two empirically-derived coefficients. This replaces the old relation, whereby Ugas = Uparticle + k √{D}; a relation that requires a constant gas density for each eruption. This is an assumption that we show to be invalid, with gas density potentially varying between 0.04 kg m- 3 and 9 kg m- 3 for the 32 cases considered, so that k varies between 54 m1/2 s- 1 and 828 m1/2 s- 1, compared with the traditionally used constant of 150 m1/2 s- 1.

  11. Asymmetric Campaigning as a Rational Choice: Planning Considerations

    DTIC Science & Technology

    2006-06-01

    ASYMMETRIC CAMPAIGNING AS A RATIONAL CHOICE: PLANNING CONSIDERATIONS A thesis presented to the Faculty of the U.S. Army Command and...campaigning as a rational choice: planning considerations. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Erik Claessen...constitute a rational course of action against an overwhelmingly stronger opponent? Such a concept requires: first, analysis of the centers of gravity of

  12. Asymmetric Membranes from Two Chemically Distinct Triblock Terpolymers Blended during Standard Membrane Fabrication.

    PubMed

    Li, Yuk Mun; Srinivasan, Divya; Vaidya, Parth; Gu, Yibei; Wiesner, Ulrich

    2016-10-01

    Deviating from the traditional formation of block copolymer derived isoporous membranes from one block copolymer chemistry, here asymmetric membranes with isoporous surface structure are derived from two chemically distinct block copolymers blended during standard membrane fabrication. As a first proof of principle, the fabrication of asymmetric membranes is reported, which are blended from two chemically distinct triblock terpolymers, poly(isoprene-b-styrene-b-(4-vinyl)pyridine) (ISV) and poly(isoprene-b-styrene-b-(dimethylamino)ethyl methacrylate) (ISA), differing in the pH-responsive hydrophilic segment. Using block copolymer self-assembly and nonsolvent induced phase separation process, pure and blended membranes are prepared by varying weight ratios of ISV to ISA. Pure and blended membranes exhibit a thin, selective layer of pores above a macroporous substructure. Observed permeabilities at varying pH values of blended membranes depend on relative triblock terpolymer composition. These results open a new direction for membrane fabrication through the use of mixtures of chemically distinct block copolymers enabling the tailoring of membrane surface chemistries and functionalities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gyroid Structures at Highly Asymmetric Volume Fractions by Blending of ABC Triblock Terpolymer and AB Diblock Copolymer

    DOE PAGES

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...

    2017-11-08

    Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less

  14. Gyroid Structures at Highly Asymmetric Volume Fractions by Blending of ABC Triblock Terpolymer and AB Diblock Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong

    Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less

  15. Superresolution Imaging of Dynamic MreB Filaments in B. subtilis—A Multiple-Motor-Driven Transport?

    PubMed Central

    Olshausen, Philipp v.; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L.; Rohrbach, Alexander

    2013-01-01

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. PMID:24010660

  16. The basic mechanics of bipedal walking lead to asymmetric behavior.

    PubMed

    Gregg, Robert D; Degani, Amir; Dhaher, Yasin; Lynch, Kevin M

    2011-01-01

    This paper computationally investigates whether gait asymmetries can be attributed in part to basic bipedal mechanics independent of motor control. Using a symmetrical rigid-body model known as the compass-gait biped, we show that changes in environmental or physiological parameters can facilitate asymmetry in gait kinetics at fast walking speeds. In the environmental case, the asymmetric family of high-speed gaits is in fact more stable than the symmetric family of low-speed gaits. These simulations suggest that lower extremity mechanics might play a direct role in functional and pathological asymmetries reported in human walking, where velocity may be a common variable in the emergence and growth of asymmetry. © 2011 IEEE

  17. Strongly interacting photons in asymmetric quantum well via resonant tunneling.

    PubMed

    Sun, H; Fan, S L; Feng, X L; Wu, C F; Gong, S Q; Huang, G X; Oh, C H

    2012-04-09

    We propose an asymmetric quantum well structure to realize strong interaction between two slow optical pulses. The essential idea is the combination of the advantages of inverted-Y type scheme and resonant tunneling. We analytically demonstrate that giant cross-Kerr nonlinearity can be achieved with vanishing absorptions. Owing to resonant tunneling, the contributions of the probe and signal cross-Kerr nonlinearities to total nonlinear phase shift vary from destructive to constrictive, leading to nonlinear phase shift on order of π at low light level. In this structure, the scheme is inherent symmetric for the probe and signal pulses. Consequently, the condition of group velocity matching can be fulfilled with appropriate initial electron distribution.

  18. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    NASA Astrophysics Data System (ADS)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function < (Δ T/T)({v}\\cdot \\hat{n}/σ _v) > between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  19. Velocity segregation and systematic biases in velocity dispersion estimates with the SPT-GMOS spectroscopic survey

    DOE PAGES

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; ...

    2017-03-07

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanningmore » $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $$17\\pm4$$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($$m < m^{*}-0.5$$) cluster galaxies is $$11\\pm4$$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Here, by measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.« less

  20. Velocity segregation and systematic biases in velocity dispersion estimates with the SPT-GMOS spectroscopic survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanningmore » $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $$17\\pm4$$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($$m < m^{*}-0.5$$) cluster galaxies is $$11\\pm4$$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Here, by measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.« less

  1. Asymmetric Evolutionary Games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  2. Asymmetric Evolutionary Games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  3. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  4. Stellar streams as gravitational experiments. II. Asymmetric tails of globular cluster streams

    NASA Astrophysics Data System (ADS)

    Thomas, G. F.; Famaey, B.; Ibata, R.; Renaud, F.; Martin, N. F.; Kroupa, P.

    2018-01-01

    Kinematically cold tidal streams of globular clusters (GC) are excellent tracers of the Galactic gravitational potential at moderate Galactocentric distances, and can also be used as probes of the law of gravity on Galactic scales. Here, we compare for the first time the generation of such streams in Newtonian and Milgromian gravity (MOND). We first computed analytical results to investigate the expected shape of the GC gravitational potential in both frameworks, and we then ran N-body simulations with the Phantom of Ramses code. We find that the GCs tend to become lopsided in MOND. This is a consequence of the external field effect which breaks the strong equivalence principle. When the GC is filling its tidal radius the lopsidedness generates a strongly asymmetric tidal stream. In Newtonian dynamics, such markedly asymmetric streams can in general only be the consequence of interactions with dark matter subhalos, giant molecular clouds, or interaction with the Galactic bar. In these Newtonian cases, the asymmetry is the consequence of a very large gap in the stream, whilst in MOND it is a true asymmetry. This should thus allow us in the future to distinguish these different scenarios by making deep observations of the environment of the asymmetric stellar stream of Palomar 5. Moreover, our simulations indicate that the high internal velocity dispersion of Palomar 5 for its small stellar mass would be natural in MOND. The movie is available in electronic form at http://www.aanda.org

  5. High-velocity runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  6. Guiding properties of asymmetric hybrid plasmonic waveguides on dielectric substrates

    PubMed Central

    2014-01-01

    We proposed an asymmetric hybrid plasmonic waveguide which is placed on a substrate for practical applications by introducing an asymmetry into a symmetric hybrid plasmonic waveguide. The guiding properties of the asymmetric hybrid plasmonic waveguide are investigated using finite element method. The results show that, with proper waveguide sizes, the proposed waveguide can eliminate the influence of the substrate on its guiding properties and restore its broken symmetric mode. We obtained the maximum propagation length of 2.49 × 103 μm. It is approximately equal to that of the symmetric hybrid plasmonic waveguide embedded in air cladding with comparable nanoscale confinement. PMID:24406096

  7. Analysis of the νb{6} Asymmetric no Stretch Band of Nitromethane

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Degliumberto, Lou; Perry, David S.; Mettee, Howard; Sams, Robert L.

    2017-06-01

    The b-type band near 1583 \\wn has been assigned for m ≤ 3, K''_{a} ≤ 10, J'' ≤ 20. The ground state combination differences derived from these assigned levels were fit with the RAM36 program with an RMS deviation of 0.0006 \\wn. The upper state levels are split into multiplets by perturbations. A subset of the available upper state combination differences for m = 0, K'_{a} ≤ 7, J' ≤ 10 were fit with the same program, but with rather poorer precision (0.01 \\wn) than for the ground state.

  8. Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.

    PubMed

    Zhang, Leicong; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Su, Haibo; Li, Gang; Gao, Jihua; Sun, Rong; Wong, Ching-Ping

    2016-01-26

    In this study, a flexible asymmetrical all-solid-state supercapacitor with high electrochemical performance was fabricated with Ni/MnO2-filter paper (FP) as the positive electrode and Ni/active carbon (AC)-filter paper as negative electrode, separated with poly(vinyl alcohol) (PVA)-Na2SO4 electrolyte. A simple procedure, such as electroless plating, was introduced to prepare the Ni/MnO2-FP electrode on the conventional laboratory FP, combined with the subsequent step of electrodeposition. Electrochemical results show that the as-prepared electrodes display outstanding areal specific capacitance (1900 mF/cm(2) at 5 mV/s) and excellent cycling performance (85.1% retention after 1000 cycles at 20 mA/cm(2)). Such a flexible supercapacitor assembled asymmetrically in the solid state exhibits a large volume energy density (0.78 mWh/cm(3)) and superior flexibility under different bending conditions. It has been demonstrated that the supercapacitors could be used as a power source to drive a 3 V light-emitting diode indicator. This study may provide an available method for designing and fabricating flexible supercapacitors with high performance in the application of wearable and portable electronics based on easily available materials.

  9. Keep-Left Behavior Induced by Asymmetrically Profiled Walls

    NASA Astrophysics Data System (ADS)

    Oliveira, C. L. N.; Vieira, A. P.; Helbing, D.; Andrade, J. S.; Herrmann, H. J.

    2016-01-01

    We show, computationally and analytically, that asymmetrically shaped walls can organize the flow of pedestrians driven in opposite directions through a corridor. Precisely, a two-lane ordered state emerges in which people always walk on the left-hand side (or right-hand side), controlled by the system's parameters. This effect depends on features of the channel geometry, such as the asymmetry of the profile and the channel width, as well as on the density and the drift velocity of pedestrians, and the intensity of noise. We investigate in detail the influence of these parameters on the flow and discover a crossover between ordered and disordered states. Our results show that an ordered state only appears within a limited range of drift velocities. Moreover, increasing noise may suppress such flow organization, but the flow is always sustained. This is in contrast with the "freezing by heating" phenomenon according to which pedestrians tend to clog in smooth channels for strong noise [Phys. Rev. Lett. 84, 1240 (2000)]. Therefore, the ratchetlike effect proposed here acts on the system not only to induce a "keep-left" behavior but also to prevent the freezing by heating clogging phenomenon. Besides pedestrian flow, this new phenomenon has other potential applications in microfluidics systems.

  10. Stromal demarcation line induced by corneal cross-linking in eyes with keratoconus and nonkeratoconic asymmetric topography.

    PubMed

    Malta, João B N; Renesto, Adimara C; Moscovici, Bernardo K; Soong, H K; Campos, Mauro

    2015-02-01

    To evaluate stromal demarcation lines following corneal cross-linking (CXL) using anterior segment optical coherence tomography in patients with keratoconus and nonkeratoconic asymmetric topography. Fifth-nine eyes of 59 patients were enrolled in a retrospective comparative case series, of which 19 eyes had keratoconus and 40 eyes had asymmetric topography. Eyes with asymmetric topography were treated in preparation for photorefractive keratectomy. One month after CXL, a stromal demarcation line was evaluated at 5 standardized corneal points using anterior segment optical coherence tomography. Mean stromal demarcation line depths were measured at 5 points on the cornea, namely, centrally, 3.0 mm temporally, 1.5 mm temporally, 3.0 mm nasally, and 1.5 mm nasally. For the keratoconus group, the values were 178 ± 47, 123 ± 15, 152 ± 47, 125 ± 23, and 160 ± 43 μm, respectively. For the asymmetric corneal topography group (without keratoconus), they were 305 ± 64, 235 ± 57, 294 ± 50, 214 ± 54, and 285 ± 58 μm, respectively. There was no correlation between central corneal pachymetry and stromal demarcation line depth in all 5 measured corneal points in both groups. CXL treatment profiles are similar in keratoconic and nonkeratoconic eyes with asymmetric topography.

  11. The frictional strength of talc gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofeng; Elwood Madden, Andrew S.; Reches, Ze'ev

    2017-05-01

    Talc is present in several large-scale fault zones worldwide and is mineralogically stable at temperature of the upper crust. It is therefore necessary to gain a better understanding of the frictional behavior of talc under a wide range of slip velocity conditions occurring during the seismic cycle. We analyzed the frictional and structural characteristics of room-dry and water-saturated talc gouge by shear experiments on a confined gouge layer at slip velocity range of 0.002-0.66 m/s and normal stress up to 4.1 MPa. Room-dry talc showed a distinct slip-strengthening with the initial friction coefficient of μ 0.4 increased systematically to μ 1 at slip distance D > 1 m. Room-dry talc also displayed velocity-strengthening at slip distances shorter than 1 m. The water-saturated talc gouge displayed systematic low frictional strength of μ = 0.1-0.3 for the entire experimental range, with clear velocity-strengthening behavior with positive (a-b) values (rate dependence parameter of rate and state friction) of 0.01-0.04. The microstructural analyses revealed distributed shear and systematic dilation (up to 50%) for the room-dry talc, in contrast to the extreme slip localization and strong shear compaction for water-saturated talc. We propose that talc frictional strength is controlled by lubrication along cleavage surfaces that is facilitated by adsorbed water (room-dry) and surplus water (water-saturated). This mechanism can explain our experimental observations of slip-strengthening and velocity-strengthening for both types of talc gouge, as well as other clay minerals. It is thus expected that talc presence in fault zones would enhance creep and inhibit unstable slip.

  12. Influence of thermal and velocity slip on the peristaltic flow of Cu-water nanofluid with magnetic field

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher

    2016-03-01

    The peristaltic flow of an incompressible viscous fluid containing copper nanoparticles in an asymmetric channel is discussed with thermal and velocity slip effects. The copper nanoparticles for the peristaltic flow water as base fluid is not explored so far. The equations for the purposed fluid model are developed first time in literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been calculated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. The influence of various flow parameters on the flow and heat transfer characteristics is obtained.

  13. Correlative velocity fluctuations over a gravel river bed

    USGS Publications Warehouse

    Dinehart, Randal L.

    1999-01-01

    Velocity fluctuations in a steep, coarse‐bedded river were measured in flow depths ranging from 0.8 to 2.2 m, with mean velocities at middepth from 1.1 to 3.1 m s−1. Analyses of synchronous velocity records for two and three points in the vertical showed a broad range of high coherence for wave periods from 10 to 100 s, centering around 10–30 s. Streamwise correlations over distances of 9 and 14 m showed convection velocities near mean velocity for the same wave periods. The range of coherent wave periods was a small multiple of predicted “boil” periods. Correlative fluctuations in synchronous velocity records in the vertical direction suggested the blending of short pulses into longer wave periods. The highest spectral densities were measured beyond the range of coherent wave periods and were probably induced by migration of low‐relief bed forms.

  14. 32 CFR Appendix B to Subpart M of... - Non-Permit Access Routes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Non-Permit Access Routes B Appendix B to Subpart M of Part 552 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY MILITARY..., Yakima Training Center, and Camp Bonneville Pt. 552, Subpt. M, App. B Appendix B to Subpart M of Part 552...

  15. 32 CFR Appendix B to Subpart M of... - Non-Permit Access Routes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Non-Permit Access Routes B Appendix B to Subpart M of Part 552 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY MILITARY..., Yakima Training Center, and Camp Bonneville Pt. 552, Subpt. M, App. B Appendix B to Subpart M of Part 552...

  16. Supernova 2010ev: A reddened high velocity gradient type Ia supernova

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.

    2016-05-01

    Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).

  17. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  18. Analysis on the mechanism of pulse-shortening in an X-band triaxial klystron amplifier due to the asymmetric mode competition

    NASA Astrophysics Data System (ADS)

    Qi, Zumin; Zhang, Jun; Xie, Yongjie; Zhang, Yi; Wang, Zehua; Zhou, Xiaofeng; Zhu, Jianhui; Zi, Yanyong; Zhong, Huihuang

    2016-12-01

    Asymmetric mode competitions are observed in the design of an X-band triaxial klystron amplifier with an asymmetric input cavity, and the generation mechanism of the asymmetric mode competition is analyzed in the paper. The results indicate that the asymmetric modes are excited in the buncher cavity. The asymmetric mode (coaxial TM612 mode) in the buncher cavity with the highest shunt impedance can start up first among the asymmetric modes with negative beam loading conductance. The coupling of the corresponding coaxial TE mode between the buncher and input cavity exacerbates the start oscillation of the asymmetric mode competition. The rationality of the analysis is demonstrated by cutting off the propagation of the corresponding coaxial TE modes between the buncher cavity and the input cavity, and the asymmetric mode competitions are thoroughly suppressed by specially designed reflectors and lossy material. In simulation, a microwave with a power of 1.28 GW and a frequency of 9.375 GHz is generated, and the extraction efficiency and the gain are 34.5% and 41.5 dB, respectively.

  19. Kinematics and M(sub v) calibration of K and M dwarf stars using Hipparcos data

    NASA Technical Reports Server (NTRS)

    Upgren, A. R.; Ratnatunga, K. U.; Casertano, S.; Weis, E.

    1997-01-01

    The luminosities and kinematics of lower main sequence stars in a spectroscopically selected sample covering spectral types K 3 to M 5 are determined using Hipparcos parallaxes and proper motions. The stars separate into two kinematically distinct components, called young disk and old disk components. The young component has velocity dispersion (30, 17, 12) km/s in the U, V and W directions, respectively, and features an asymmetric drift of 8 km/s, a vertex deviation of 10 +/- 3 deg and an absolute magnitude of 10.48 mag at color (R - I)(sub Kron) = 1.0 mag. The respective features of the old component are: (56, 34, 31) km/s, 28 km/s and 0.6 mag at the same color. The slope and intrinsic width of the magnitude calibration of each component are determined. The analysis is used to investigate the possible presence of residual systematic discrepancies of the model with Hipparcos data. There are indications of a possible underestimation of the parallax errors.

  20. Rashba effect in an asymmetric quantum dot in a magnetic field

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, S.; Cahay, M.

    2002-12-01

    We derive an expression for the total spin-splitting energy in an asymmetric quantum dot with ferromagnetic contacts, subjected to a transverse electric field. Such a structure has been shown by one of us to act as a spintronic quantum gate with in-built qubit readers and writers (Phys. Rev. B61, 13813 (2000)). The ferromagnetic contacts result in a magnetic field that causes a Zeeman splitting of the electronic states in the quantum dot. We show that this Zeeman splitting can be finely tuned with a transverse electric field as a result of nonvanishing Rashba spin-orbit coupling in an asymmetric quantum dot. This feature is critical for implementing a quantum gate.

  1. On the origin of high-velocity runaway stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  2. Synthesis of asymmetric tetracarboxylic acids and corresponding dianhydrides

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2008-01-01

    This invention relates to processes for preparing asymmetrical biphenyl tetracarboxylic acids and the corresponding asymmetrical dianhydrides, namely 2,3,3',4'-biphenyl dianhydride (a-BPDA), 2,3,3',4'-benzophenone dianhydride (a-BTDA) and 3,4'-methylenediphthalic anhydride (-MDPA). By cross-coupling reactions of reactive metal substituted o-xylenes or by cross-coupling o-xylene derivatives in the presence of catalysts, this invention specifically produces asymmetrical biphenyl intermediates that are subsequently oxidized or hydrolyzed and oxidized to provide asymmetric biphenyl tetracarboxylic acids in comparatively high yields. These asymmetrical biphenyl tetracarboxylic acids are subsequently converted to the corresponding asymmetrical dianhydrides without contamination by symmetrical biphenyl dianhydrides.

  3. Asymmetric ion trap

    DOEpatents

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  4. Asymmetric ion trap

    DOEpatents

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  5. High-contrast Imaging of Intermediate-mass Giants with Long-term Radial Velocity Trends

    NASA Astrophysics Data System (ADS)

    Ryu, Tsuguru; Sato, Bun'ei; Kuzuhara, Masayuki; Narita, Norio; Takahashi, Yasuhiro H.; Uyama, Taichi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Omiya, Masashi; Harakawa, Hiroki; Abe, Lyu; Ando, Hiroyasu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Currie, Thayne; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Hełminiak, Krzysztof G.; Henning, Thomas; Hodapp, Klaus W.; Ida, Shigeru; Ishii, Miki; Itoh, Yoichi; Iye, Masanori; Izumiura, Hideyuki; Janson, Markus; Kambe, Eiji; Kandori, Ryo; Knapp, Gillian R.; Kokubo, Eiichiro; Kwon, Jungmi; Matsuo, Taro; Mayama, Satoshi; McElwain, Michael W.; Mede, Kyle; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Takeda, Yoichi; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Yoshida, Michitoshi; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2016-07-01

    A radial velocity (RV) survey for intermediate-mass giants has been in operation for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct-imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to γ Hya B ({0.61}-0.14+0.12{M}⊙ ), HD 5608 B (0.10+/- 0.01{M}⊙ ), and HD 109272 B (0.28+/- 0.06{M}⊙ ). For the remaining targets (ι Dra, 18 Del, and HD 14067), we exclude companions more massive than 30-60 M Jup at projected separations of 1″-7″. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets ι Dra b, HD 5608 b, and HD 14067 b.

  6. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  7. Rotating field mass and velocity analyzer

    NASA Technical Reports Server (NTRS)

    Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)

    1998-01-01

    A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.

  8. High-velocity frictional properties of gabbro

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  9. Axis switching and spreading of an asymmetric jet: Role of vorticity dynamics

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1994-01-01

    The effects of vortex generators and periodic excitation on vorticity dynamics and the phenomenon of axis switching in a free asymmetric jet are studied experimentally. Most of the data reported are for a 3:1 rectangular jet at a Reynolds number of 450,000 and a Mach number of 0.31. The vortex generators are in the form of 'delta tabs', triangular shaped protrusions into the flow, placed at the nozzle exit. With suitable placement of the tabs, axis switching could be either stopped or augmented. Two mechanisms are identified governing the phenomenon. One, as described by previous researchers and referred to here as the omega(sub theta)-induced dynamics, is due to difference in induced velocities for different segments of a rolled up azimuthal vortical structure. The other, omega(sub x)-induced dynamics, is due to the induced velocities of streamwise vortex pairs in the flow. Both dynamics can be active in a natural asymmetric jet; the tendency for axis switching caused by the omega(sub theta)-induced dynamics may be, depending on the streamwise vorticity distribution, either resisted or enhanced by the omega(sub x)-induced dynamics. While this simple framework qualitatively explains the various observations made on axis switching, mechanisms actually in play may be much more complex. The two dynamics are not independent as the flow field is replete with both azimuthal and streamwise vortical structures which continually interact. Phase averaged flow field data for a periodically forced case, over a volume of the flow field, are presented and discussed in an effort to gain insight into the dynamics of these vortical structures.

  10. Coordination Polymer of M(II)-Pyrazinamide (M = Co, Cd) with Double End-to-End Thiocyanate Bridge

    NASA Astrophysics Data System (ADS)

    Ponco Prananto, Yuniar

    2018-01-01

    Pyrazinamide (pza, C4N2H3-CONH2) is a good ligand for coordination polymer. Their transition metal complexes are known to have antibacterial activities, magnetic properties, etc. Coordination polymers of M(II)-pyrazinamide with thiocyanate (M = Co (a), Cd (b)), prepared using bench-top layering technique with M(II):pza:SCN ratio of 1:2:2, is successfully crystallised at room temperature. Single crystal XRD was used to determine the crystal structure. Infrared and melting point determination were also performed. Crystal structure of both complexes, solved in Triclinic P-1, show that each octahedral metal centre is connected to two adjacent metal centres by double end-to-end thiocyanate bridge forming a 1D polymeric structure with M···M distances of 5.524 Å (in a) and 5.887 Å (in b). Two monodentate pyrazinamide ligands occupy the rest of the coordination sites on the metal centre in a trans relationship. Only in complex a, one lattice pyrazinamide molecule is involved in the asymmetric unit. Crystal packing of both a and b are also displaying non-covalent networks as a result of hydrogen-bonding involving the pyrazine ring, amide and carbonyl groups between adjacent chains and π···π interactions (only occurred in a). In addition, the observed melting points of both a and b are relatively close to each other (around 180°C), and ATR-IR spectra support the presence of the bridging thiocyanate and terminal pyrazinamide.

  11. The Blue Needle: A Highly Asymmetric Debris Disk Surrounding HD 15115

    NASA Astrophysics Data System (ADS)

    Kalas, P.; Graham, J. R.; Fitzgerald, M.

    2007-06-01

    Using the ACS coronagraph aboard the Hubble Space Telescope in the optical, and Keck adaptive optics in the near- infrared, we discovered an edge-on dust disk surrounding the F2V star HD 15115. HD 15115 is the most asymmetric debris disk imaged to date, with an eastward pointing midplane detected to ~315 AU radius, and a westward pointing midplane detected to >550 AU radius. The blue optical to near-infrared scattered light color relative to the star may indicate dust scattering properties similar to the AU Mic debris disk. The existence of a large debris disk surrounding HD 15115 is consistent with its proposed membership in the Beta Pic moving group, and the extreme asymmetry presents significant theoretical challenges. We hypothesize that the extreme asymmetries may be caused by dynamical perturbations from HIP 12545, another Beta Pic Moving Group member east of HD 15115, that shares a common proper motion vector, heliocentric distance, Galactic space velocity, and age. HD 15115 is a prime candidate for exoplanet detection via radial velocity and transit techniques.

  12. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  13. Inclined asymmetric librations in exterior resonances

    NASA Astrophysics Data System (ADS)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  14. Sources of Error and the Statistical Formulation of M S: m b Seismic Event Screening Analysis

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Patton, H. J.; Taylor, S. R.; Bonner, J. L.; Selby, N. D.

    2014-03-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.

  15. Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Menten, K. M.; Schilke, P.; Comito, C.

    2013-11-01

    isotopologues of vinyl cyanide, cyanoacetylene, and hydrogen cyanide. We also report the detection of transitions from within twelve new vibrationally or torsionally excited states of known molecules. Absorption features produced by diffuse clouds along the line of sight are detected in transitions with low rotation quantum numbers of many simple molecules and are modeled with ~30-40 velocity components with typical linewidths of ~3-5 km s-1. Conclusions: Although the large number of unidentified lines may still allow future identification of new molecules, we expect most of these lines to belong to vibrationally or torsionally excited states or to rare isotopologues of known molecules for which spectroscopic predictions are currently missing. Significant progress in extending the inventory of complex organic molecules in Sgr B2(N) and deriving tighter constraints on their location, origin, and abundance is expected in the near future thanks to an ongoing spectral line survey at 3 mm with ALMA in its cycles 0 and 1. The present single-dish survey will serve as a solid basis for the line identification and analysis of such an interferometric survey. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Figures 2-7 and Tables 6-107 are available in electronic form at http://www.aanda.orgThe observed and synthetic 3 mm spectra of Sgr B2(N) and (M), as well as the lists of line identifications corresponding to the blue lab- els in Figs. 2-7, are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A47

  16. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity

    NASA Astrophysics Data System (ADS)

    Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise

    2018-05-01

    Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent earthquakes with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the rupture direction and average rupture velocity Vr, when unilateral rupture propagation dominates. The approach is applied to all the shallow (z < 120 km) earthquakes of the catalog over the 1992-2015 time period. After a careful validation process, rupture properties for a catalog of 96 earthquakes are obtained. The subsequent analysis of this catalog provides several insights about the seismic rupture process. We first report that up-dip ruptures are more abundant than down-dip ruptures for shallow subduction interface earthquakes, which can be understood as a consequence of the material contrast between the slab and the overriding crust. Rupture velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no earthquakes propagate over long distances with rupture velocity approaching the P wave velocity. Among the 23 ruptures faster than 3100 m/s, we observe both documented supershear ruptures (e.g. the 2001 Kunlun earthquake), and undocumented ruptures that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.

  17. Asymmetric Conjugated Molecules Based on [1]Benzothieno[3,2-b][1]benzothiophene for High-Mobility Organic Thin-Film Transistors: Influence of Alkyl Chain Length.

    PubMed

    He, Keqiang; Li, Weili; Tian, Hongkun; Zhang, Jidong; Yan, Donghang; Geng, Yanhou; Wang, Fosong

    2017-10-11

    Herein, we report the synthesis and characterization of a series of [1]benzothieno[3,2-b][1]benzothiophene (BTBT)-based asymmetric conjugated molecules, that is, 2-(5-alkylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene (BTBT-Tn, in which T and n represent thiophene and the number of carbons in the alkyl group, respectively). All of the molecules with n ≥ 4 show mesomorphism and display smectic A, smectic B (n = 4), or smectic E (n > 4) phases and then crystalline phases in succession upon cooling from the isotropic state. Alkyl chain length has a noticeable influence on the microstructures of vacuum-deposited films and therefore on the performance of the organic thin-film transistors (OTFTs). All molecules except for 2-(thiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene and 2-(5-ethylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene showed OTFT mobilities above 5 cm 2 V -1 s -1 . 2-(5-Hexylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene and 2-(5-heptylthiophen-2-yl)[1]benzothieno[3,2-b][1]benzothiophene showed the greatest OTFT performance with reliable hole mobilities (μ) up to 10.5 cm 2 V -1 s -1 because they formed highly ordered and homogeneous films with diminished grain boundaries.

  18. A Vs30-derived Near-surface Seismic Velocity Model

    NASA Astrophysics Data System (ADS)

    Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.

    2010-12-01

    Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model

  19. K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf

    NASA Astrophysics Data System (ADS)

    Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz; Dai, F.; Gandolfi, D.; Hirano, T.; Winn, J. N.; Albrecht, S.; Alonso, R.; Antoniciello, G.; Barragán, O.; Deeg, H.; Eigmüller, Ph; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E. W.; Hatzes, A. P.; Hidalgo, D.; Howard, A. W.; Isaacson, H.; Korth, J.; Kuzuhara, M.; Livingston, J.; Narita, N.; Nespral, D.; Nowak, G.; Palle, E.; Pätzold, M.; Persson, C. M.; Petigura, E.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Van Eylen, V.

    2018-03-01

    We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, adaptive optics imaging, radial velocity measurements, and light-curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 R⊕, and which must have an iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M⊙ and radius 0.442 ± 0.044 R⊙.

  20. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation.

    PubMed

    Garcia, M J; Smedira, N G; Greenberg, N L; Main, M; Firstenberg, M S; Odabashian, J; Thomas, J D

    2000-01-01

    To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.

  1. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Smedira, N. G.; Greenberg, N. L.; Main, M.; Firstenberg, M. S.; Odabashian, J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). BACKGROUND: The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. METHODS: We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. RESULTS: In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). CONCLUSIONS: Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.

  2. Determination of Tsunami Warning Criteria for Current Velocity

    NASA Astrophysics Data System (ADS)

    Chen, R.; Wang, D.

    2015-12-01

    Present Tsunami warning issuance largely depends on an event's predicted wave height and inundation depth. Specifically, a warning is issued if the on-shore wave height is greater than 1m. This project examines whether any consideration should be given to current velocity. We apply the idea of force balance to determine theoretical minimum velocity thresholds for injuring people and damaging properties as a function of wave height. Results show that even at a water depth of less than 1m, a current velocity of 2 m/s is enough to pose a threat to humans and cause potential damage to cars and houses. Next, we employ a 1-dimensional shallow water model to simulate Tsunamis with various amplitudes and an assumed wavelength of 250km. This allows for the profiling of current velocity and wave height behavior as the Tsunamis reach shore. We compare this data against our theoretical thresholds to see if any real world scenarios would be dangerous to people and properties. We conclude that for such Tsunamis, the present warning criteria are effective at protecting people against larger events with amplitude greater than ~0.3m. However, for events with amplitude less than ~0.2m, it is possible to have waves less than 1m with current velocity high enough to endanger humans. Thus, the inclusion of current velocity data would help the present Tsunami warning criteria become more robust and efficient, especially for smaller Tsunami events.

  3. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  4. [Density and hydrostatic settling velocity of Biomphalaria straminea].

    PubMed

    Feng-Yang, Min; Jia-Sheng, Wang; Xing-Jian, Xu; Jian-Yin, Zhou; Li-Zhen, Chen

    2017-05-18

    To understand the eco-hydraulics characteristics of Biomphalaria straminea , the intermediate host of Schistosoma mansoni . The drainage method and settlement tube method were applied to measure B. straminea 's density and hydrostatic settling velocity respectively. The density of B. straminea was 1.04-1.16 g/cm 3 , and the average value was 1.08 g/cm 3 . The hydrostatic settling velocity was 2.32-12.92 cm/s. The eco-hydraulics characteristics of B. straminea is different from Oncomelania hupensis , and more attention should be paid to the hydraulic measures for the control of B. straminea .

  5. U.S. Army Special Forces Roles in Asymmetric Warfare

    DTIC Science & Technology

    2001-06-01

    1Jonathan B . Tucker, “Asymmetric Warfare: An Emerging Threat to U.S. Security,” Forum For Applied Research and Public Policy (Monterey...8Ibid., 34. 9Tucker, 11. 10Ibid., 2. 11 Henry H . Shelton, GEN, USA, Commander in Chief, U.S. Special Operations Command...the Senate Armed Services Committee, “Military Threats and Security Challenges Through 2015,” (Washington: 3 February 2000), 3. 26GEN Henry H

  6. Astrometry, radial velocity, and photometry: the HD 128311 system remixed with data from HST, HET, and APT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McArthur, Barbara E.; Benedict, G. Fritz.; Cochran, William D.

    We have used high-cadence radial velocity measurements from the Hobby-Eberly Telescope with published velocities from the Lick 3 m Shane Telescope, combined with astrometric data from the Hubble Space Telescope (HST) Fine Guidance Sensors to refine the orbital parameters of the HD 128311 system, and determine an inclination of 55.°95 ± 14.°55 and true mass of 3.789 {sub −0.432}{sup +0.924} M {sub JUP} for HD 128311 c. The combined radial velocity data also reveal a short period signal which could indicate a third planet in the system with an Msin i of 0.133 ± 0.005 M {sub JUP} or stellarmore » phenomena. Photometry from the T12 0.8 m automatic photometric telescope at the Fairborn Observatory and HST are used to determine a photometric period close to, but not within the errors of the radial velocity signal. We performed a cross-correlation bisector analysis of the radial velocity data to look for correlations with the photometric period and found none. Dynamical integrations of the proposed system show long-term stability with the new orbital parameters of over 10 million years. Our new orbital elements do not support the claims of HD 128311 b and c being in mean motion resonance.« less

  7. A model for the Lin-Shu type density-wave structure of our Galaxy: Line-of-sight and transverse-longitudinal velocities of 242 optically visible open clusters

    NASA Astrophysics Data System (ADS)

    Griv, E.; Jiang, I.-G.

    2015-02-01

    In this paper, the fourth in a series, we examine again one of the implications of the Lin-Shu density-wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line-of-sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort-Lindblad theory of galactic differential rotation are used. The minor effects caused by the two-dimensional tightly-wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances r<3 kpc from the Sun and -200 < z <200 pc from the Galactic plane, and ages 2 × 108 < t < 2 × 109 yr are collected from Dias et al. (2014), excluding extremely far, high-velocity, young and old objects in our fitting. The most noteworthy result is the fact that the parameters of Lin-Shu type density waves estimated from two independent line-of-sight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low-m trailing density-wave patterns with different number of spiral arms m (say, m=1, 2, 3, and 4), pitch angles (about 5o, 8o, 11o, and 14o, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well-organized (``flocculent'') spiral structure of the system. In memory of Professors Alexei M. Fridman (1940-2010) and Chi Yuan (1937-2008)

  8. The Cluster-EAGLE project: velocity bias and the velocity dispersion-mass relation of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.; Bahé, Yannick M.; Dalla Vecchia, Claudio; Crain, Robert A.; Theuns, Tom

    2018-03-01

    We use the Cluster-EAGLE simulations to explore the velocity bias introduced when using galaxies, rather than dark matter particles, to estimate the velocity dispersion of a galaxy cluster, a property known to be tightly correlated with cluster mass. The simulations consist of 30 clusters spanning a mass range 14.0 ≤ log10(M200 c/M⊙) ≤ 15.4, with their sophisticated subgrid physics modelling and high numerical resolution (subkpc gravitational softening), making them ideal for this purpose. We find that selecting galaxies by their total mass results in a velocity dispersion that is 5-10 per cent higher than the dark matter particles. However, selecting galaxies by their stellar mass results in an almost unbiased (<5 per cent) estimator of the velocity dispersion. This result holds out to z = 1.5 and is relatively insensitive to the choice of cluster aperture, varying by less than 5 per cent between r500 c and r200 m. We show that the velocity bias is a function of the time spent by a galaxy inside the cluster environment. Selecting galaxies by their total mass results in a larger bias because a larger fraction of objects have only recently entered the cluster and these have a velocity bias above unity. Galaxies that entered more than 4 Gyr ago become progressively colder with time, as expected from dynamical friction. We conclude that velocity bias should not be a major issue when estimating cluster masses from kinematic methods.

  9. True-triaxial experimental seismic velocities linked to an in situ 3D seismic velocity structure

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.

    2017-12-01

    Upscaling from laboratory seismic velocities to in situ field seismic velocities is a fundamental problem in rock physics. This study presents a unique situation where a 3D velocity structure of comparable frequency ranges is available both in situ and experimentally. The in situ data comes from the Underground Research Laboratory (URL) located in Manitoba, Canada. The velocity survey and oriented, cubic rock sample, are from the 420m level of the mine, where the geology is a homogeneous and isotropic granite. The triaxial in situ stress field at this level was determined and the Mine-by tunnel was excavated horizontally to maximize borehole break out. Ultrasonic velocity measurements for P-, S1-,and S2-waves were done in the tunnel sidewall, ceiling and far-field rock mass.The geophysical imaging cell (GIC) used in this study allows for true triaxial stress (σ1 > σ2 > σ3). Velocity surveys for P-, S1-, and S2-wave can be acquired along all three axes, and therefore the effects of σ1, σ2, σ3 on the velocity-stress relationship is obtained along all 3 axes. The cubic (80 mm) granite sample was prepared oriented to the in situ principle stress axis in the field. The stress path of the sample extraction from in situ stress was modeled in FLAC 3D (by Itasca inc ), and then reapplied in the GIC to obtain the laboratory velocities at in situ stress. Both laboratory and field velocities conclude the same maximum velocity axis, within error, to be along σ2 at 5880±60 m/s for P-wave. This deviation from the expected fast axis being σ1, is believed to be caused by an aligned microcrack fabric. The theory of acoustoelasticity, the dependence of acoustic wave velocity on stresses in the propagating isotropic medium, is applied to the borehole hoop and radial stresses produced by the Mine-by tunnel. The acoustoelastic effect involves determining the linear (second-order) and nonlinear (third-order) elastic constants, which are derived from the velocity-stress slopes

  10. 46 CFR 153.352 - B/3 and 4 m venting system outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false B/3 and 4 m venting system outlets. 153.352 Section 153.352 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Cargo Venting Systems § 153.352 B/3 and 4 m venting system outlets. A B/3 or 4 m venting system outlet...

  11. 46 CFR 153.352 - B/3 and 4 m venting system outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false B/3 and 4 m venting system outlets. 153.352 Section 153.352 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Cargo Venting Systems § 153.352 B/3 and 4 m venting system outlets. A B/3 or 4 m venting system outlet...

  12. Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    2017-03-01

    Asymmetric mass ejection in the early phase of supernova (SN) explosions can impart a kick velocity to the new-born neutron star (NS). For neutrino-driven explosions the NS acceleration has been shown to be mainly caused by the gravitational attraction of the anisotropically expelled inner ejecta, while hydrodynamic forces contribute on a subdominant level, and asymmetric neutrino emission plays only a secondary role. Two- and three-dimensional hydrodynamic simulations have demonstrated that this gravitational tug-boat mechanism can explain the observed space velocities of young NSs up to more than 1000 km s-1. Here, we discuss how the NS kick depends on the energy, ejecta mass, and asymmetry of the SN explosion, and what role the compactness of the pre-collapse stellar core plays for the momentum transfer to the NS. We also provide simple analytic expressions for the NS velocity in terms of these quantities. Referring to results of hydrodynamic simulations in the literature, we argue why, within the discussed scenario of NS acceleration, electron-capture SNe, low-mass Fe-core SNe, and ultra-stripped SNe can be expected to have considerably lower intrinsic NS kicks than core-collapse SNe of massive stellar cores. Our basic arguments also remain valid if progenitor stars possess large-scale asymmetries in their convective silicon and oxygen burning layers. Possible scenarios for spin-kick alignment are sketched. Much of our discussion stays on a conceptual and qualitative level, and more work is necessary on the numerical modeling side to determine the dependences of involved parameters, whose prescriptions will be needed for recipes that can be used to better describe NS kicks in binary evolution and population synthesis studies.

  13. GHRS observations of cool, low-gravity star. 2: Flow and turbulent velocities in the outer atmosphere of gamma CRU CIS (M3.4 III)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Judge, Philip G.

    1995-01-01

    The Goddard High Resoulution Spectrograph (GHRS) on the Hubble Space Telescope (HST) has been used to obtain medium (R = 20,000) and high (R = 85,000) resoultion UV spectra of chromosphere emission features for the M3.4 III star gamma Cru. Small Science Aperture (SSA) G270M and Echelle-B spectra of selected regions in the 2300-2850 A range were obtained to determine the kinematics of the chromosphere using lines of C2), Fe2, Co2, Si1/2), Ni2, Mn2, and Mg2. Profiles of C2) (UV 0.01) lines and fluorescently excited lines of low optical depth indicate average turbulent velocities (Doppler FWHM) of 30.2 +/- 1.3 and 28.8 +/- 1.3 km/s, respectively. The fluorescent emission lines (mean RV = 21.3 +/- 0.9 km/s) and the wings of the emission components of Fe2 lines (mean RV = 22.8 +/- 0.4 km/s) are approximately at rest relative to the radial velocity of the star (21 km/s), while the C2) lines show a modest inflow (mean RV = 23.1 +/- 0.9 km/s). The more opaque lines of Fe2 and Mg2 exhibit complex profiles resulting from line formation in an optically thick, extended expanding atmosphere. The emission wings of these lines are broadened by multiple scattering, and they are centered near the photospheric radial velocity. Closer to line center, these strong lines show a strong blueshifted self-absorption feature (already seen in IUE data), indicative of formation in an expanding chromosphere, and a previously unseen dip in the profiles on the red side of line center. The absorption components, when extracted using simple Gaussian fits, show strong correlations with the relative optical depths of the lines. The derived absorption flow velocities converge to the photospheric velocity as one examines spectra features formed deeper in the atmosphere. The blueward abosrption velocity increases in magnitude from about 7 to 14 km/s with increasing line optical depth - the strong absorptions directly map the acceleration of the outflowing stellar wind, while the interpretation of the

  14. Asymmetric cryptography based on wavefront sensing.

    PubMed

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  15. Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, Roberta M.; Gordon, Michael S.; Hahn, David

    In this series of papers we have presented the results of a spectroscopic survey of luminous stars in the nearby spirals M31 and M33. Here, we present spectroscopy of 132 additional stars. Most have emission-line spectra, including luminous blue variables (LBVs) and candidate LBVs, Fe ii emission line stars, the B[e] supergiants, and the warm hypergiants. Many of these objects are spectroscopically similar and are often confused with each other. We examine their similarities and differences and propose the following guidelines that can be used to help distinguish these stars in future work. (1) The B[e] supergiants have emission linesmore » of [O i] and [Fe ii] in their spectra. Most of the spectroscopically confirmed sgB[e] stars also have warm circumstellar dust in their spectral energy distributions (SEDs). (2) Confirmed LBVs do not have the [O i] emission lines in their spectra. Some LBVs have [Fe ii] emission lines, but not all. Their SEDs show free–free emission in the near-infrared but no evidence for warm dust . Their most important and defining characteristic is the S Dor-type variability. (3) The warm hypergiants spectroscopically resemble the LBVs in their dense wind state and the B[e] supergiants. However, they are very dusty. Some have [Fe ii] and [O i] emission in their spectra like the sgB[e] stars, but are distinguished by their A- and F-type absorption-line spectra. In contrast, the B[e] supergiant spectra have strong continua and few if any apparent absorption lines. Candidate LBVs should share the spectral characteristics of the confirmed LBVs with low outflow velocities and the lack of warm circumstellar dust.« less

  16. The Kinetics of G2 and M Transitions Regulated by B Cyclins

    PubMed Central

    Huang, Yehong; Sramkoski, R. Michael; Jacobberger, James W.

    2013-01-01

    B cyclins regulate G2-M transition. Because human somatic cells continue to cycle after reduction of cyclin B1 (cycB1) or cyclin B2 (cycB2) by RNA interference (RNAi), and because cycB2 knockout mice are viable, the existence of two genes should be an optimization. To explore this idea, we generated HeLa BD™ Tet-Off cell lines with inducible cyclin B1- or B2-EGFP that were RNAi resistant. Cultures were treated with RNAi and/or doxycycline (Dox) and bromodeoxyuridine. We measured G2 and M transit times and 4C cell accumulation. In the absence of ectopic B cyclin expression, knockdown (kd) of either cyclin increased G2 transit. M transit was increased by cycB1 kd but decreased by cycB2 depletion. This novel difference was further supported by time-lapse microscopy. This suggests that cycB2 tunes mitotic timing, and we speculate that this is through regulation of a Golgi checkpoint. In the presence of endogenous cyclins, expression of active B cyclin-EGFPs did not affect G2 or M phase times. As previously shown, B cyclin co-depletion induced G2 arrest. Expression of either B cyclin-EGFP completely rescued knockdown of the respective endogenous cyclin in single kd experiments, and either cyclin-EGFP completely rescued endogenous cyclin co-depletion. Most of the rescue occurred at relatively low levels of exogenous cyclin expression. Therefore, cycB1 and cycB2 are interchangeable for ability to promote G2 and M transition in this experimental setting. Cyclin B1 is thought to be required for the mammalian somatic cell cycle, while cyclin B2 is thought to be dispensable. However, residual levels of cyclin B1 or cyclin B2 in double knockdown experiments are not sufficient to promote successful mitosis, yet residual levels are sufficient to promote mitosis in the presence of the dispensible cyclin B2. We discuss a simple model that would explain most data if cyclin B1 is necessary. PMID:24324638

  17. Asymmetric soft-error resistant memory

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)

    1991-01-01

    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.

  18. Gravitational redshift and asymmetric redshift-space distortions for stacked clusters

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Kaiser, Nick; Cole, Shaun; Frenk, Carlos

    2017-06-01

    We derive the expression for the observed redshift in the weak field limit in the observer's past light cone, including all relativistic terms up to second order in velocity. We then apply it to compute the cluster-galaxy cross-correlation functions (CGCF) using N-body simulations. The CGCF is asymmetric along the line of sight owing to the presence of the small second-order terms such as the gravitational redshift (GRedshift). We identify two systematics in the modelling of the GRedshift signal in stacked clusters. First, it is affected by the morphology of dark matter haloes and the large-scale cosmic-web. The non-spherical distribution of galaxies around the central halo and the presence of neighbouring clusters systematically reduce the GRedshift signal. This bias is approximately 20 per cent for Mmin ≃ 1014 M⊙ h-1, and is more than 50 per cent for haloes with Mmin ≃ 2 × 1013 M⊙ h-1 at r > 4 Mpc h-1. Secondly, the best-fitting GRedshift profiles as well as the profiles of all other relativistic terms are found to be significantly different in velocity space compared to their real space versions. We find that the relativistic Doppler redshift effect, like other second-order effects, is subdominant to the GRedshift signal. We discuss some subtleties relating to these effects in velocity space. We also find that the S/N of the GRedshift signal increases with decreasing halo mass.

  19. How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?

    NASA Astrophysics Data System (ADS)

    Samadi, M.; Abbassi, S.; Lovelace, R. V. E.

    2017-09-01

    This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.

  20. Control of B Lymphocyte Development and Functions by the mTOR Signaling Pathways

    PubMed Central

    Iwata, Terri N.; Ramírez-Komo, Julita A.; Park, Heon; Iritani, Brian M.

    2017-01-01

    Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells. PMID:28583723

  1. Confirmation of radial velocity variability in Arcturus

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1988-01-01

    The paper presents results of high-precision measurements of radial-velocity variations in Alpha Boo. Significant radial-velocity variability is detected well in excess of the random and systematic measurement errors. The radial velocity varies by an amount greater than 200 m/sec with a period of around 2 days.

  2. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information.

    PubMed

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  3. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  4. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  5. The CARMENES search for exoplanets around M dwarfs. HD147379 b: A nearby Neptune in the temperate zone of an early-M dwarf

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Ribas, I.; Zechmeister, M.; Caballero, J. A.; Trifonov, T.; Dreizler, S.; Morales, J. C.; Tal-Or, L.; Lafarga, M.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Jeffers, S. V.; Aceituno, J.; Béjar, V. J. S.; Guàrdia, J.; Guenther, E. W.; Hagen, H.-J.; Montes, D.; Passegger, V. M.; Seifert, W.; Schweitzer, A.; Cortés-Contreras, M.; Abril, M.; Alonso-Floriano, F. J.; Eiff, M. Ammler-von; Antona, R.; Anglada-Escudé, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; del Burgo, C.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Czesla, S.; Díez-Alonso, E.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González Hernández, J. I.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Henning, Th.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Kürster, M.; Labarga, F.; Lamert, A.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; López del Fresno, M.; López-González, M. J.; López-Puertas, M.; López Salas, J. F.; López-Santiago, J.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez Trinidad, A.; Rohloff, R.-R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schöfer, P.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Ulbrich, R.-G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2018-02-01

    We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ± 0.08 M⊙), a bright M0.0 V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of K = 5.1 ± 0.4 m s-1 and a period of P = 86.54 ± 0.06 d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass mP sin i = 25 ± 2 M⊕, 1.5 times the mass of Neptune, with an orbital semi-major axis a = 0.32 au and low eccentricity (e < 0.13). HD 147379 b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1 d (and its first harmonic), which we attribute to the rotation period of the star. RV data (Table A.1) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/L5

  6. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Phil; HMI Team

    2016-10-01

    The Problem: The SDO satellite is in an inclined Geo-sync orbit which allows uninterrupted views of the Sun nearly 98% of the time. This orbit has a velocity of about 3,500 m/s with the solar line-of-sight component varying with time of day and time of year. Due to remaining calibration errors in wavelength filters the orbit velocity leaks into the line-of-sight solar velocity and magnetic field measurements. Since the same model of the filter is used in the Milne-Eddington inversions used to generate the vector magnetic field data, the orbit velocity also contaminates the vector magnetic products. These errors contribute 12h and 24h variations in most HMI data products and are known as the 24-hour problem. Early in the mission we made a patch to the calibration that corrected the disk mean velocity. The resulting LOS velocity has been used for helioseismology with no apparent problems. The velocity signal has about a 1% scale error that varies with time of day and with velocity, i.e. it is non-linear for large velocities. This causes leaks into the LOS field (which is simply the difference between velocity measured in LCP and RCP rescaled for the Zeeman splitting). This poster reviews the measurement process, shows examples of the problem, and describes recent work at resolving the issues. Since the errors are in the filter characterization it makes most sense to work first on the LOS data products since they, unlike the vector products, are directly and simply related to the filter profile without assumptions on the solar atmosphere, filling factors, etc. Therefore this poster is strictly limited to understanding how to better understand the filter profiles as they vary across the field and with time of day and time in years resulting in velocity errors of up to a percent and LOS field estimates with errors up to a few percent (of the standard LOS magnetograph method based on measuring the differences in wavelength of the line centroids in LCP and RCP light). We

  7. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  8. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, X. Z.; Xiang, H. J.

    2014-09-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the "asymmetric multiferroic." In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  9. Strong Asymmetric Limit of the Quasi-Potential of the Boundary Driven Weakly Asymmetric Exclusion Process

    NASA Astrophysics Data System (ADS)

    Bertini, Lorenzo; Gabrielli, Davide; Landim, Claudio

    2009-07-01

    We consider the weakly asymmetric exclusion process on a bounded interval with particles reservoirs at the endpoints. The hydrodynamic limit for the empirical density, obtained in the diffusive scaling, is given by the viscous Burgers equation with Dirichlet boundary conditions. In the case in which the bulk asymmetry is in the same direction as the drift due to the boundary reservoirs, we prove that the quasi-potential can be expressed in terms of the solution to a one-dimensional boundary value problem which has been introduced by Enaud and Derrida [16]. We consider the strong asymmetric limit of the quasi-potential and recover the functional derived by Derrida, Lebowitz, and Speer [15] for the asymmetric exclusion process.

  10. Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li

    2015-05-01

    Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.

  11. Velocity model of the shallow lunar crust

    NASA Technical Reports Server (NTRS)

    Gangi, A. F.

    1980-01-01

    The travel times of the seismic waves obtained for the Apollo-14 and -16 active seismic experiments and the Apollo-16 grenade launches are shown to be consistent with a powder-layer model of the shallow lunar crust. The velocity variation with depth determined from these data is: V(z) = approximately 110 z to the 1/6 power m/sec for z less than 10 meters and V(z) is nearly = to 250 m/sec for z greater than 10 meters. The velocity values found for the 10 meter depth are similar to those found by Kovach, et al. (1972). The z to the 1/6 power depth dependence for the velocity of the topmost layer is that predicted on the basis of a powder layer (Gangi, 1972). The Amplitude variation of the direct waves as a function of source-to-receiver separation, x, is A(x) = A(o)x to the -n power exp(-ax) where 1.5 n 2.2 and a is nearly = to 0.047 neper/m. Velocity-spectra analyses of the direct, surface-reflected, bottom-reflected and refracted waves give results that are consistent with the velocity model inferred from the traveltime data.

  12. Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: Combined stochastic analyses of KTB velocity and lithology logs

    USGS Publications Warehouse

    Goff, J.A.; Holliger, K.

    1999-01-01

    The main borehole of the German Continental Deep Drilling Program (KTB) extends over 9000 m into a crystalline upper crust consisting primarily of interlayered gneiss and metabasite. We present a joint analysis of the velocity and lithology logs in an effort to extract the lithology component of the velocity log. Covariance analysis of lithology log, approximated as a binary series, indicates that it may originate from the superposition of two Brownian stochastic processes (fractal dimension 1.5) with characteristic scales of ???2800 m and ???150 m, respectively. Covariance analysis of the velocity fluctuations provides evidence for the superposition of four stochastic process with distinct characteristic scales. The largest two scales are identical to those derived from the lithology, confirming that these scales of velocity heterogeneity are caused by lithology variations. The third characteristic scale, ???20 m, also a Brownian process, is probably related to fracturing based on correlation with the resistivity log. The superposition of these three Brownian processes closely mimics the commonly observed 1/k decay (fractal dimension 2.0) of the velocity power spectrum. The smallest scale process (characteristic scale ???1.7 m) requires a low fractal dimension, ???1.0, and accounts for ???60% of the total rms velocity variation. A comparison of successive logs from 6900-7140 m depth indicates that such variations are not repeatable and thus probably do not represent true velocity variations in the crust. The results of this study resolve disparity between the differing published estimates of seismic heterogeneity based on the KTB sonic logs, and bridge the gap between estimates of crustal heterogeneity from geologic maps and borehole logs. Copyright 1999 by the American Geophysical Union.

  13. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Kincaid, Russell W. (Inventor); Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  14. THE BULGE RADIAL VELOCITY ASSAY (BRAVA). II. COMPLETE SAMPLE AND DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, Andrea; De Propris, Roberto; Stubbs, Scott A.

    2012-03-15

    We present new radial velocity measurements from the Bulge Radial Velocity Assay, a large-scale spectroscopic survey of M-type giants in the Galactic bulge/bar region. The sample of {approx}4500 new radial velocities, mostly in the region -10 Degree-Sign < l < +10 Degree-Sign and b Almost-Equal-To -6 Degree-Sign , more than doubles the existent published data set. Our new data extend our rotation curve and velocity dispersion profile to +20 Degree-Sign , which is {approx}2.8 kpc from the Galactic center. The new data confirm the cylindrical rotation observed at -6 Degree-Sign and -8 Degree-Sign and are an excellent fit to themore » Shen et al. N-body bar model. We measure the strength of the TiO{epsilon} molecular band as a first step toward a metallicity ranking of the stellar sample, from which we confirm the presence of a vertical abundance gradient. Our survey finds no strong evidence of previously unknown kinematic streams. We also publish our complete catalog of radial velocities, photometry, TiO band strengths, and spectra, which is available at the Infrared Science Archive as well as at UCLA.« less

  15. Asymmetric kinetic equilibria: Generalization of the BAS model for rotating magnetic profile and non-zero electric field

    NASA Astrophysics Data System (ADS)

    Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence

    2015-09-01

    Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115-121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard method for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958-1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251-317 (1996); and F. Mottez, Phys. Plasmas 10, 1541-1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present) 20

  16. Asymmetric kinetic equilibria: Generalization of the BAS model for rotating magnetic profile and non-zero electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorville, Nicolas, E-mail: nicolas.dorville@lpp.polytechnique.fr; Belmont, Gérard; Aunai, Nicolas

    Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115–121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard methodmore » for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958–1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251–317 (1996); and F. Mottez, Phys. Plasmas 10, 1541–1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994

  17. Chiral poly-rare earth metal complexes in asymmetric catalysis

    PubMed Central

    Shibasaki, Masakatsu

    2006-01-01

    Asymmetric catalysis is a powerful component of modern synthetic organic chemistry. To further broaden the scope and utility of asymmetric catalysis, new basic concepts for the design of asymmetric catalysts are crucial. Because most chemical reactions involve bond-formation between two substrates or moieties, high enantioselectivity and catalyst activity should be realized if an asymmetric catalyst can activate two reacting substrates simultaneously at defined positions. Thus, we proposed the concept of bifunctional asymmetric catalysis, which led us to the design of new asymmetric catalysts containing two functionalities (e.g. a Lewis acid and a Brønsted base or a Lewis acid and a Lewis base). These catalysts demonstrated broad reaction applicability with excellent substrate generality. Using our catalytic asymmetric reactions as keys steps, efficient total syntheses of pharmaceuticals and their biologically active lead natural products were achieved. PMID:25792774

  18. Current Reversals of an Underdamped Brownian Particle in an Asymmetric Deformable Potential

    NASA Astrophysics Data System (ADS)

    Cai, Chun-Chun; Liu, Jian-Li; Chen, Hao; Li, Feng-Guo

    2018-03-01

    Transport of an underdamped Brownian particle in a one-dimensional asymmetric deformable potential is investigated in the presence of both an ac force and a static force, respectively. From numerical simulations, we obtain the current average velocity. The current reversals and the absolute negative mobility are presented. The increasing of the deformation of the potential can cause the absolute negative mobility to be suppressed and even disappear. When the static force is small, the increase of the potential deformation suppresses the absolute negative mobility. When the force is large, the absolute negative mobility disappears. In particular, when the potential deformation is equal to 0.015, the two current reversals present with the increasing of the force. Remarkably, when the potential deformation is small, there are three current reversals with the increasing of the friction coefficient and the average velocity presents a oscillation behavior. Supported in part by the National Natural Science Foundation of China under Grant Nos. 11575064 and 11175067, and the Natural Science Foundation of Guangdong Province under Grant No. 2016A030313433

  19. Clonal B cells in Waldenström's macroglobulinemia exhibit functional features of chronic active B-cell receptor signaling

    PubMed Central

    Argyropoulos, K V; Vogel, R; Ziegler, C; Altan-Bonnet, G; Velardi, E; Calafiore, M; Dogan, A; Arcila, M; Patel, M; Knapp, K; Mallek, C; Hunter, Z R; Treon, S P; van den Brink, M R M; Palomba, M L

    2016-01-01

    Waldenström's macroglobulinemia (WM) is a B-cell non-Hodgkin's lymphoma (B-NHL) characterized by immunoglobulin M (IgM) monoclonal gammopathy and the medullary expansion of clonal lymphoplasmacytic cells. Neoplastic transformation has been partially attributed to hyperactive MYD88 signaling, secondary to the MYD88 L265P mutation, occurring in the majority of WM patients. Nevertheless, the presence of chronic active B-cell receptor (BCR) signaling, a feature of multiple IgM+ B-NHL, remains a subject of speculation in WM. Here, we interrogated the BCR signaling capacity of primary WM cells by utilizing multiparametric phosphoflow cytometry and found heightened basal phosphorylation of BCR-related signaling proteins, and augmented phosphoresponses on surface IgM (sIgM) crosslinking, compared with normal B cells. In support of those findings we observed high sIgM expression and loss of phosphatase activity in WM cells, which could both lead to signaling potentiation in clonal cells. Finally, led by the high-signaling heterogeneity among WM samples, we generated patient-specific phosphosignatures, which subclassified patients into a ‘high' and a ‘healthy-like' signaling group, with the second corresponding to patients with a more indolent clinical phenotype. These findings support the presence of chronic active BCR signaling in WM while providing a link between differential BCR signaling utilization and distinct clinical WM subgroups. PMID:26867669

  20. Left ventricular dimensions, systolic functions, and mass in term neonates with symmetric and asymmetric intrauterine growth restriction.

    PubMed

    Cinar, Bahar; Sert, Ahmet; Gokmen, Zeynel; Aypar, Ebru; Aslan, Eyup; Odabas, Dursun

    2015-02-01

    Previous studies have demonstrated structural changes in the heart and cardiac dysfunction in foetuses with intrauterine growth restriction. There are no available data that evaluated left ventricular dimensions and mass in neonates with symmetric and asymmetric intrauterine growth restriction. Therefore, we aimed to evaluate left ventricular dimensions, systolic functions, and mass in neonates with symmetric and asymmetric intrauterine growth restriction. We also assessed associated maternal risk factors, and compared results with healthy appropriate for gestational age neonates. In all, 62 asymmetric intrauterine growth restriction neonates, 39 symmetric intrauterine growth restriction neonates, and 50 healthy appropriate for gestational age neonates were evaluated by transthoracic echocardiography. The asymmetric intrauterine growth restriction group had significantly lower left ventricular end-systolic and end-diastolic diameters and posterior wall diameter in systole and diastole than the control group. The symmetric intrauterine growth restriction group had significantly lower left ventricular end-diastolic diameter than the control group. All left ventricular dimensions were lower in the asymmetric intrauterine growth restriction neonates compared with symmetric intrauterine growth restriction neonates (p>0.05), but not statistically significant except left ventricular posterior wall diameter in diastole (3.08±0.83 mm versus 3.54 ±0.72 mm) (p<0.05). Both symmetric and asymmetric intrauterine growth restriction groups had significantly lower relative posterior wall thickness (0.54±0.19 versus 0.48±0.13 versus 0.8±0.12), left ventricular mass (9.8±4.3 g versus 8.9±3.4 g versus 22.2±5.7 g), and left ventricular mass index (63.6±29.1 g/m2 versus 54.5±24.4 g/m2 versus 109±28.8 g/m2) when compared with the control group. Our study has demonstrated that although neonates with both symmetric and asymmetric intrauterine growth restriction had lower left

  1. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser

    DOE PAGES

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    2017-11-21

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  2. High sensitivity rotation sensing based on tunable asymmetrical double-ring structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqing

    2017-05-01

    A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.

  3. A Proper Motion Search for Stars Escaping from Globular Clusters with High Velocities

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Scholz, R.-D.; Irwin, M.

    The dynamical evolution of globular clusters, in particular during the late phases, may be strongly influenced by the energy transfer from binaries to passing stars. As a by-product of this process, stars with high velocities are expected, perhaps high enough to escape from the cluster. Accurate proper motions are the only suitable tool to identify candidates for such high-velocity cluster stars. In order to perform such a search, we use a catalogue of absolute proper motions and UBV magnitudes for about 104 stars with B < 20 in a field of 10 square degrees centered on the globular cluster M3. The data were derived from more than 80 photographic plates taken between 1965 and 1995 with the Tautenburg Schmidt telescope and measured by means of the APM facility, Cambridge. The stellar sample is complete to B = 18.5 and comprises nearly all post-main-sequence stars in the halo of M3 and its surrounding. The proper motions are of Hipparcos-like accuracy (median error 1 mas/yr) in this magnitude range. We find several dozens of candidates, distributed over the whole field, with proper motions and colours consistent with the assumption of their origin from the cluster. Further conclusions can be drawn only on the basis of radial velocity measurements for the candidates and of estimates for the field-star contamination by means of simulations of the Galactic structure and kinematics in this field.

  4. Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing.

    PubMed

    Masani, Kei; Vette, Albert H; Abe, Masaki O; Nakazawa, Kimitaka

    2014-03-01

    The purpose of this study was to test the hypothesis that the center of pressure (COP) velocity reflects the center of mass (COM) acceleration due to a large derivative gain in the neural control system during quiet standing. Twenty-seven young (27.2±4.5 years) and twenty-three elderly (66.2±5.0 years) subjects participated in this study. Each subject was requested to stand quietly on a force plate for five trials, each 90 s long. The COP and COM displacements, the COP and COM velocities, and the COM acceleration were acquired via a force plate and a laser displacement sensor. The amount of fluctuation of each variable was quantified using the root mean square. Following the experimental study, a simulation study was executed to investigate the experimental findings. The experimental results revealed that the COP velocity was correlated with the COM velocity, but more highly correlated with the COM acceleration. The equation of motion of the inverted pendulum model, however, accounts only for the correlation between the COP and COM velocities. These experimental results can be meaningfully explained by the simulation study, which indicated that the neural motor command presumably contains a significant portion that is proportional to body velocity. In conclusion, the COP velocity fluctuation reflects the COM acceleration fluctuation rather than the COM velocity fluctuation, implying that the neural motor command controlling quiet standing posture contains a significant portion that is proportional to body velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Observation and Study of the Baryonic B-meson Decays B to D(*) p pbar (pi) (pi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.

    We present results for B-meson decay modes involving a charm meson, protons, and pions using 455 x 10{sup 6} B{bar B} pairs recorded by the BABAR detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collider. The branching fractions are measured for the following ten decays: {bar B}{sup 0} {yields} D{sup 0}p{bar p}, {bar B}{sup 0} {yields} D*{sup 0}p{bar p}, {bar B}{sup 0} {yields} D{sup +}p{bar p}{pi}{sup -}, {bar B}{sup 0} {yields} D*{sup +}p{bar p}{pi}{sup -}, B{sup -} {yields} D{sup 0}p{bar p}{pi}{sup -}, B{sup -} {yields} D*{sup 0}pp{pi}{sup -}, {bar B}{sup 0} {yields} D{sup 0}p{bar p}{pi}{sup -}{pi}{sup +}, {bar B}{supmore » 0} {yields} D*{sup 0}p{bar p}{pi}{sup -}{pi}{sup +}, B{sup -} {yields} D{sup +}p{bar p}{pi}{sup -}{pi}{sup -}, and B{sup -} {yields} D*{sup +}p{bar p}{pi}{sup -}{pi}{sup -}. The four B{sup -} and the two five-body B{sup 0} modes are observed for the first time. The four-body modes are enhanced compared to the three- and the five-body modes. In the three-body modes, the M(p{bar p}) and M(D{sup (*)0}p) invariant mass distributions show enhancements near threshold values. In the four-body mode {bar B}{sup 0} {yields} D{sup +}p{bar p}{pi}{sup -}, the M(p{pi}{sup -}) distribution shows a narrow structure of unknown origin near 1.5GeV/c{sup 2}. The distributions for the five-body modes, in contrast to the others, are similar to the expectations from uniform phase-space predictions.« less

  6. Staufen 2 regulates mGluR long-term depression and Map1b mRNA distribution in hippocampal neurons.

    PubMed

    Lebeau, Geneviève; Miller, Linda C; Tartas, Maylis; McAdam, Robyn; Laplante, Isabel; Badeaux, Frédérique; DesGroseillers, Luc; Sossin, Wayne S; Lacaille, Jean-Claude

    2011-01-01

    The two members of the Staufen family of RNA-binding proteins, Stau1 and Stau2, are present in distinct ribonucleoprotein complexes and associate with different mRNAs. Stau1 is required for protein synthesis-dependent long-term potentiation (L-LTP) in hippocampal pyramidal cells. However, the role of Stau2 in synaptic plasticity remains unexplored. We found that unlike Stau1, Stau2 is not required for L-LTP. In contrast, Stau2, but not Stau1, is necessary for DHPG-induced protein synthesis-dependent long-term depression (mGluR-LTD). While Stau2 is involved in early development of spines, its down-regulation does not alter spine morphology or spontaneous miniature synaptic activity in older cultures where LTD occurs. In addition, Stau2, but not Stau1, knockdown reduces the dendritic localization of Map1b mRNA, a specific transcript involved in mGluR-LTD. Moreover, mGluR stimulation with DHPG induces Map1b, but not Map2, mRNA dissociation from mRNA granules containing Stau2 and the ribosomal protein P0. This dissociation was not observed in cells in which Stau2 was depleted. Finally, Stau2 knockdown reduces basal Map1b protein expression in dendrites and prevents DHPG-induced increases in dendritic Map1b protein level. We suggest a role for Stau2 in the generation and regulation of Map1b mRNA containing granules that are required for mGluR-LTD.

  7. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  8. Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

    NASA Astrophysics Data System (ADS)

    Mawass, Mohamad-Assaad; Richter, Kornel; Bisig, Andre; Reeve, Robert M.; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Krone, Andrea; Kronast, Florian; Schütz, Gisela; Kläui, Mathias

    2017-04-01

    Spintronic applications based on magnetic domain-wall (DW) motion, such as magnetic data storage, sensors, and logic devices, require approaches to reliably manipulate the magnetization in nanowires. In this paper, we report the direct dynamic experimental visualization of reliable switching from the onion to the vortex state by DW automotion at zero field in asymmetric ferromagnetic rings using a uniaxial field pulse. Employing time-resolved x-ray microscopy, we demonstrate that depending on the detailed spin structure of the DWs and the size and geometry of the rings, the automotive propagation can be tailored during the DW relaxation from the higher-energy onion state to the energetically favored vortex state, where both DWs annihilate. Our measurements show DW automotion with an average velocity of about 60 m /s , which is a significant speed for spintronic devices. Such motion is mostly governed by local forces resulting from the geometry variations in the device. A closer study of the annihilation process via micromagnetic simulations reveals that a new vortex is nucleated in between the two initial walls. We demonstrate that the annihilation of DWs through automotion in our scheme always occurs with the detailed topological nature of the walls influencing only the DW dynamics on a local scale. The simulations show good quantitative agreement with our experimental results. These findings shed light on a robust and reliable switching process of the onion state in ferromagnetic rings, which paves the way for further optimization of these devices.

  9. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  10. Velocity structure of the shallow lunar crust

    NASA Technical Reports Server (NTRS)

    Gangi, A. F.; Yen, T. E.

    1979-01-01

    Data from the thumper shots of the Apollo 14 and Apollo 16 active seismic experiments, testing whether the velocity variation in the shallow lunar crust (depths less than or equal to 10 m) can be represented by a self-compacting-power-layer or by a constant-velocity-layer model, are analyzed. Although filtering and stacking improved the S/N ratios, it was found that measuring the arrival times or amplitudes of arrivals beyond 32 m was not possible. The data quality precluded a definitive distinction between the power-law velocity variation and the layered-velocity model. Furthermore, it was found that the shallow lunar regolith is made up of fine particles, which supports the idea of a 1/6 power-velocity model. Analysis of the amplitudes of first arrivals revealed large errors in the data due to variations in the geophone sensitivities and shot strengths; a least-squares method, that uses data redundancy was employed to eliminate them.

  11. N-terminal pro-brain natriuretic peptide is related with coronary flow velocity reserve and diastolic dysfunction in patients with asymmetric hypertrophic cardiomyopathy.

    PubMed

    Tesic, Milorad; Seferovic, Jelena; Trifunovic, Danijela; Djordjevic-Dikic, Ana; Giga, Vojislav; Jovanovic, Ivana; Petrovic, Olga; Marinkovic, Jelena; Stankovic, Sanja; Stepanovic, Jelena; Ristic, Arsen; Petrovic, Milan; Mujovic, Nebojsa; Vujisic-Tesic, Bosiljka; Beleslin, Branko; Vukcevic, Vladan; Stankovic, Goran; Seferovic, Petar

    2017-10-01

    The relations of elevated N-terminal pro-brain natriuretic peptide (NT-pro-BNP) and cardiac ischemia in hypertrophic cardiomyopathy (HCM) patients is uncertain. Therefore we designed the study with the following aims: (1) to analyze plasma concentrations of NT-pro-BNP in various subsets of HCM patients; (2) to reveal the correlations of NT-pro-BNP, myocardial ischemia, and diastolic dysfunction; (3) to assess predictors of the elevated plasma levels of NT-pro-BNP. In 61 patients (mean age 48.9±16.3 years; 26 male) with asymmetric HCM plasma levels of NT-pro-BNP were obtained. Standard transthoracic examination, tissue Doppler echocardiography with measurement of transthoracic coronary flow velocity reserve (CFVR) in left anterior descending artery (LAD) was done. Mean natural logarithm value of NT-pro-BNP was 7.11±0.95pg/ml [median value 1133 (interquartile range 561-2442)pg/ml]. NT-pro-BNP was significantly higher in patients with higher NYHA class, in obstructive HCM, more severe mitral regurgitation, increased left atrial volume index (LAVI), presence of calcified mitral annulus, elevated left ventricular (LV) filling pressure and in decreased CFVR. Levels of NT-pro-BNP significantly correlated with the ratio of E/e' (r=0.534, p<0.001), LV outflow tract gradient (r=0.503, p=0.024), LAVI (r=0.443, p<0.001), while inversely correlated with CFVR LAD (r=-0.569, p<0.001). When multivariate analysis was done only CFVR LAD and E/e' emerged as independent predictors of NT-pro-BNP. Plasma levels of NT-pro-BNP were significantly higher in HCM patients with more advanced disease. Elevated NT-pro-BNP not only reflects the diastolic impairment of the LV, but it might also be the result of cardiac ischemia in patients with HCM. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  12. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    PubMed

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Calibration of the seismic velocity structure and understanding of the fault formation in the environs of the Orkney M5.5 earthquake, South Africa

    NASA Astrophysics Data System (ADS)

    Ogasawara, H.; Manzi, M. S.; Durrheim, R. J.; Ogasawara, H.

    2017-12-01

    In August 2014, the largest seismic event (M5.5) to occur in a South African gold mining district took place near Orkney. The M5.5 event and aftershocks were recorded by strainmeters installed at 3 km depth hundreds of meters above the M5.5 fault, 46 in-mine 4.5Hz triaxial geophone stations at depths of 2-3 km within a hypocentral radius of 2-3 km, and 17 surface strong motion stations (South African Seismograph Network; SANSN) within an epicentral radius of 25 km. Aftershocks were distributed on a nearly vertical plane striking NNW-SSE. The upper edge of this fault was hundreds of meters below the deepest level of the mine. ICDP approved a project "Drilling into seismogenic zones of M2.0-5.5 earthquakes in South African gold mines" to elucidate the details of the events (DSeis; Yabe et al. invited talk in S020 in this AGU). On 1 August 2017 drilling was within a few hundreds of meters of intersecting the M5.5 fault zone. To locate the drilling target accurately it is very important to determine the velocity structure between the seismic events and sensors. We do this by using the interval velocities used to migrate 3D-reflection seismic data that was previously acquired by a mining company to image the gold-bearing reef and any fault structures close to the mining horizon. Less attention was given to the velocities below the mining horizon, as accurate imaging of the geological structure was not as important and very little drilling information was available. We used the known depths of prominent reflectors above the mining horizon to derive the interval velocities needed to convert two-way-travel-time to depth. We constrain the velocity below the mining horizon by comparing the DSeis drilling results with the 3D seismic cube. The geometric data is crucial for the kinematic modeling that Ogasawara et al. (S018 in this AGU) advocates. The efforts will result in a better understanding of the main rupture and aftershocks.

  14. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training.

    PubMed

    González-Badillo, Juan José; Rodríguez-Rosell, David; Sánchez-Medina, Luis; Gorostiaga, Esteban M; Pareja-Blanco, Fernando

    2014-01-01

    The purpose of this study was to compare the effect on strength gains of two isoinertial resistance training (RT) programmes that only differed in actual concentric velocity: maximal (MaxV) vs. half-maximal (HalfV) velocity. Twenty participants were assigned to a MaxV (n = 9) or HalfV (n = 11) group and trained 3 times per week during 6 weeks using the bench press (BP). Repetition velocity was controlled using a linear velocity transducer. A complementary study (n = 10) aimed to analyse whether the acute metabolic (blood lactate and ammonia) and mechanical response (velocity loss) was different between the MaxV and HalfV protocols used. Both groups improved strength performance from pre- to post-training, but MaxV resulted in significantly greater gains than HalfV in all variables analysed: one-repetition maximum (1RM) strength (18.2 vs. 9.7%), velocity developed against all (20.8 vs. 10.0%), light (11.5 vs. 4.5%) and heavy (36.2 vs. 17.3%) loads common to pre- and post-tests. Light and heavy loads were identified with those moved faster or slower than 0.80 m · s(-1) (∼ 60% 1RM in BP). Lactate tended to be significantly higher for MaxV vs. HalfV, with no differences observed for ammonia which was within resting values. Both groups obtained the greatest improvements at the training velocities (≤ 0.80 m · s(-1)). Movement velocity can be considered a fundamental component of RT intensity, since, for a given %1RM, the velocity at which loads are lifted largely determines the resulting training effect. BP strength gains can be maximised when repetitions are performed at maximal intended velocity.

  15. Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janka, Hans-Thomas

    Asymmetric mass ejection in the early phase of supernova (SN) explosions can impart a kick velocity to the new-born neutron star (NS). For neutrino-driven explosions the NS acceleration has been shown to be mainly caused by the gravitational attraction of the anisotropically expelled inner ejecta, while hydrodynamic forces contribute on a subdominant level, and asymmetric neutrino emission plays only a secondary role. Two- and three-dimensional hydrodynamic simulations have demonstrated that this gravitational tug-boat mechanism can explain the observed space velocities of young NSs up to more than 1000 km s{sup −1}. Here, we discuss how the NS kick depends onmore » the energy, ejecta mass, and asymmetry of the SN explosion, and what role the compactness of the pre-collapse stellar core plays for the momentum transfer to the NS. We also provide simple analytic expressions for the NS velocity in terms of these quantities. Referring to results of hydrodynamic simulations in the literature, we argue why, within the discussed scenario of NS acceleration, electron-capture SNe, low-mass Fe-core SNe, and ultra-stripped SNe can be expected to have considerably lower intrinsic NS kicks than core-collapse SNe of massive stellar cores. Our basic arguments also remain valid if progenitor stars possess large-scale asymmetries in their convective silicon and oxygen burning layers. Possible scenarios for spin-kick alignment are sketched. Much of our discussion stays on a conceptual and qualitative level, and more work is necessary on the numerical modeling side to determine the dependences of involved parameters, whose prescriptions will be needed for recipes that can be used to better describe NS kicks in binary evolution and population synthesis studies.« less

  16. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.

    PubMed

    Dubal, Deepak P; Chodankar, Nilesh R; Vinu, Ajayan; Kim, Do-Heyoung; Gomez-Romero, Pedro

    2017-07-10

    Nanofabrication using a "bottom-up" approach of hybrid electrode materials into a well-defined architecture is essential for next-generation miniaturized energy storage devices. This paper describes the design and fabrication of reduced graphene oxide (rGO)/polyoxometalate (POM)-based hybrid electrode materials and their successful exploitation for asymmetric supercapacitors. First, redox active nanoclusters of POMs [phosphomolybdic acid (PMo 12 ) and phosphotungstic acid (PW 12 )] were uniformly decorated on the surface of rGO nanosheets to take full advantage of both charge-storing mechanisms (faradaic from POMs and electric double layer from rGO). The as-synthesized rGO-PMo 12 and rGO-PW 12 hybrid electrodes exhibited impressive electrochemical performances with specific capacitances of 299 (269 mF cm -2 ) and 370 F g -1 (369 mF cm -2 ) in 1 m H 2 SO 4 as electrolyte at 5 mA cm -2 . An asymmetric supercapacitor was then fabricated using rGO-PMo 12 as the positive and rGO-PW 12 as the negative electrode. This rGO-PMo 12 ∥rGO-PW 12 asymmetric cell could be successfully cycled in a wide voltage window up to 1.6 V and hence exhibited an excellent energy density of 39 Wh kg -1 (1.3 mWh cm -3 ) at a power density of 658 W kg -1 (23 mW cm -3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-organized criticality in asymmetric exclusion model with noise for freeway traffic

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-02-01

    The one-dimensional asymmetric simple-exclusion model with open boundaries for parallel update is extended to take into account temporary stopping of particles. The model presents the traffic flow on a highway with temporary deceleration of cars. Introducing temporary stopping into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. In the self-organized critical state, start-stop waves (or traffic jams) appear with various sizes (or lifetimes). The typical interval < s>between consecutive jams scales as < s> ≃ Lv with v = 0.51 ± 0.05 where L is the system size. It is shown that the cumulative jam-interval distribution Ns( L) satisfies the finite-size scaling form ( Ns( L) ≃ L- vf( s/ Lv). Also, the typical lifetime <m7rang; of traffic jams scales as < m> ≃ Lv‧ with v‧ = 0.52 ± 0.05. The cumulative distribution Nm( L) of lifetimes satisfies the finite-size scaling form Nm( L)≃ L-1g( m/ Lv‧).

  18. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    PubMed

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  19. Regional correlations of V s30 and velocities averaged over depths less than and greater than 30 meters

    USGS Publications Warehouse

    Boore, D.M.; Thompson, E.M.; Cadet, H.

    2011-01-01

    Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (V S30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (V Sz, with z being the averaging depth). The correlations for sites in Japan (corresponding to the KiK-net network) show that V S30 is systematically larger for a given V Sz than for profiles from the other regions. The difference largely results from the placement of the KiK-net station locations on rock and rocklike sites, whereas stations in the other regions are generally placed in urban areas underlain by sediments. Using the KiK-net velocity profiles, we provide equations relating V S30 to V Sz for z ranging from 5 to 29 m in 1-m increments. These equations (and those for California velocity profiles given in Boore, 2004b) can be used to estimate V S30 from V Sz for sites in which velocity profiles do not extend to 30 m. The scatter of the residuals decreases with depth, but, even for an averaging depth of 5 m, a variation in log V S30 of 1 standard deviation maps into less than a 20% uncertainty in ground motions given by recent GMPEs at short periods. The sensitivity of the ground motions to V S30 uncertainty is considerably larger at long periods (but is less than a factor of 1.2 for averaging depths greater than about 20 m). We also find that V S30 is correlated with V Sz for z as great as 400 m for sites of the KiK-net network, providing some justification for using V S30 as a site-response variable for predicting ground motions at periods for which the wavelengths far exceed 30 m.

  20. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.

    PubMed

    Ying, Yi-Lun; Hu, Yong-Xu; Gao, Rui; Yu, Ru-Jia; Gu, Zhen; Lee, Luke P; Long, Yi-Tao

    2018-04-25

    Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron

  1. Sound Velocities of Iron-Nickel and Iron-Nickel-Silicon Alloys at High Pressure

    NASA Astrophysics Data System (ADS)

    Miller, R. A.; Jackson, J. M.; Sturhahn, W.; Zhao, J.; Murphy, C. A.

    2014-12-01

    Seismological and cosmochemical studies suggest Earth's core is primarily composed of iron with ~5 to 10 wt% nickel and some light elements [e.g. 1]. To date, the concentration of nickel and the amount and identity of light elements remain poorly constrained due in part to the difficulty of conducting experimental measurements at core conditions. The vibrational properties of a variety iron alloys paired with seismic observations can help better constrain the composition of the core. We directly measured the partial phonon density of states of bcc- and hcp-structured Fe0.9Ni0.1 and Fe0.85Ni0.1Si0.05 at high pressures. The samples were compressed using a panoramic diamond anvil cell. A subset of the experiments were conducted using neon as a pressure transmitting medium. Measurements of high statistical quality were performed with nuclear resonant inelastic x-ray scattering (NRIXS) at sector 3-ID-B of the Advanced Photon Source [2, 3, 4]. The unit cell volume of each sample was determined at each compression point with in-situ x-ray diffraction at sector 3-ID-B before and after each NRIXS measurement. The Debye, compressional, and shear sound velocities were determined from the low energy region of the partial phonon density of states paired with the volume measurements. We will present partial phonon density of states and sound velocities for Fe0.9Ni0.1 and Fe0.85Ni0.1Si0.05 at high-pressure and compare with those of pure iron. References: [1] McDonough, W.F. (2004): Compositional Model for the Earth's Core. Elsevier Ltd., Oxford. [2] Murphy, C.A., J.M. Jackson, W. Sturhahn, and B. Chen (2011): Melting and thermal pressure of hcp-Fe from the phonon density of states, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2011.07.001. [3] Murphy, C.A., J.M. Jackson, W. Sturhahn, and B. Chen (2011): Grüneisen parameter of hcp-Fe to 171 GPa, Geophys. Res. Lett., doi:10.1029/2011GL049531. [4] Murphy, C.A., J.M. Jackson, and W. Sturhahn (2013): Experimental constraints on the

  2. Impacts into Coarse-Grained Spheres at Moderate Impact Velocities: Implications for Cratering on Asteroids and Planets

    NASA Technical Reports Server (NTRS)

    Barnouin, Olivier S.; Daly, R. Terik; Cintala, Mark J.; Crawford, David A.

    2018-01-01

    The surfaces of many planets and asteroids contain coarsely fragmental material generated by impacts or other geologic processes. The presence of such pre-existing structures may affect subsequent impacts, particularly when the width of the shock is comparable to or smaller than the size of pre-existing structures. Reasonable theoretical predictions and low speed (<300m/s) impact experiments suggest that in such targets the cratering process should be highly dissipative, which would reduce cratering efficiencies and cause a rapid decay in ejection velocity as a function of distance from the impact point. In this study, we assess whether these results apply at higher impact speeds between 0.5 and 2.5 km s-1. This study shows little change in cratering efficiency when 3.18 mm diameter glass beads are launched into targets composed of these same beads. These impacts are very efficient, and ejection velocity decays slowly as function of distance from the impact point. This slow decay in ejection velocity probably indicates a correspondingly slow decay of the shock stresses. However, these experiments reveal that initial interactions between projectile and target strongly influence the cratering process and lead to asymmetries in crater shape and ejection angles, as well as significant variations in ejection velocity at a given launch position. Such effects of asymmetric coupling could be further enhanced by heterogeneity in the initial distribution of grains in the target and by mechanical collisions between grains. These experiments help to explain why so few craters are seen on the rubble-pile asteroid Itokawa: impacts into its coarsely fragmental surface by projectiles comparable to or smaller than the size of these fragments likely yield craters that are not easily recognizable.

  3. Velocity and pressure fields associated with near-wall turbulence structures

    NASA Technical Reports Server (NTRS)

    Johansson, Arne V.; Alfredsson, P. Henrik; Kim, John

    1990-01-01

    Computer generated databases containing velocity and pressure fields in three-dimensional space at a sequence of time-steps, were used for the investigation of near-wall turbulence structures, their space-time evolution, and their associated pressure fields. The main body of the results were obtained from simulation data for turbulent channel flow at a Reynolds number of 180 (based on half-channel height and friction velocity) with a grid of 128 x 129 x and 128 points. The flow was followed over a total time of 141 viscous time units. Spanwise centering of the detected structures was found to be essential in order to obtain a correct magnitude of the associated Reynolds stress contribution. A positive wall-pressure peak is found immediately beneath the center of the structure. The maximum amplitude of the pressure pattern was, however, found in the buffer region at the center of the shear-layer. It was also found that these flow structures often reach a maximum strength in connection with an asymmetric spanwise motion, which motivated the construction of a conditional sampling scheme that preserved this asymmetry.

  4. Asymmetrical Capacitors for Propulsion

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Melcher, Cory; Winet, Edwin

    2004-01-01

    Asymmetrical Capacitor Thrusters have been proposed as a source of propulsion. For over eighty years, it has been known that a thrust results when a high voltage is placed across an asymmetrical capacitor, when that voltage causes a leakage current to flow. However, there is surprisingly little experimental or theoretical data explaining this effect. This paper reports on the results of tests of several Asymmetrical Capacitor Thrusters (ACTs). The thrust they produce has been measured for various voltages, polarities, and ground configurations and their radiation in the VHF range has been recorded. These tests were performed at atmospheric pressure and at various reduced pressures. A simple model for the thrust was developed. The model assumed the thrust was due to electrostatic forces on the leakage current flowing across the capacitor. It was further assumed that this current involves charged ions which undergo multiple collisions with air. These collisions transfer momentum. All of the measured data was consistent with this model. Many configurations were tested, and the results suggest general design principles for ACTs to be used for a variety of purposes.

  5. The CARMENES search for exoplanets around M dwarfs. Radial-velocity variations of active stars in visual-channel spectra

    NASA Astrophysics Data System (ADS)

    Tal-Or, L.; Zechmeister, M.; Reiners, A.; Jeffers, S. V.; Schöfer, P.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Caballero, J. A.; Aceituno, J.; Bauer, F. F.; Béjar, V. J. S.; Czesla, S.; Dreizler, S.; Fuhrmeister, B.; Hatzes, A. P.; Johnson, E. N.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Reffert, S.; Sadegi, S.; Seifert, W.; Shulyak, D.

    2018-06-01

    Context. Previous simulations predicted the activity-induced radial-velocity (RV) variations of M dwarfs to range from 1 cm s-1 to 1 km s-1, depending on various stellar and activity parameters. Aims: We investigate the observed relations between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing CARMENES high-resolution visual-channel spectra (0.5-1μm), which were taken within the CARMENES RV planet survey during its first 20 months of operation. Methods: During this time, 287 of the CARMENES-sample stars were observed at least five times. From each spectrum we derived a relative RV and a measure of chromospheric Hα emission. In addition, we estimated the chromatic index (CRX) of each spectrum, which is a measure of the RV wavelength dependence. Results: Despite having a median number of only 11 measurements per star, we show that the RV variations of the stars with RV scatter of >10 m s-1 and a projected rotation velocity v sin i > 2 km s-1 are caused mainly by activity. We name these stars "active RV-loud stars" and find their occurrence to increase with spectral type: from 3% for early-type M dwarfs (M0.0-2.5 V) through 30% for mid-type M dwarfs (M3.0-5.5 V) to >50% for late-type M dwarfs (M6.0-9.0 V). Their RV-scatter amplitude is found to be correlated mainly with v sin i. For about half of the stars, we also find a linear RV-CRX anticorrelation, which indicates that their activity-induced RV scatter is lower at longer wavelengths. For most of them we can exclude a linear correlation between RV and Hα emission. Conclusions: Our results are in agreement with simulated activity-induced RV variations in M dwarfs. The RV variations of most active RV-loud M dwarfs are likely to be caused by dark spots on their surfaces, which move in and out of view as the stars rotate. The data presented in Figs. 5 and A.1 are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  6. Asymmetric collimation: Dosimetric characteristics, treatment planning algorithm, and clinical applications

    NASA Astrophysics Data System (ADS)

    Kwa, William

    1998-11-01

    In this thesis the dosimetric characteristics of asymmetric fields are investigated and a new computation method for the dosimetry of asymmetric fields is described and implemented into an existing treatment planning algorithm. Based on this asymmetric field treatment planning algorithm, the clinical use of asymmetric fields in cancer treatment is investigated, and new treatment techniques for conformal therapy are developed. Dose calculation is verified with thermoluminescent dosimeters in a body phantom. In this thesis, an analytical approach is proposed to account for the dose reduction when a corresponding symmetric field is collimated asymmetrically to a smaller asymmetric field. This is represented by a correction factor that uses the ratio of the equivalent field dose contributions between the asymmetric and symmetric fields. The same equation used in the expression of the correction factor can be used for a wide range of asymmetric field sizes, photon energies and linear accelerators. This correction factor will account for the reduction in scatter contributions within an asymmetric field, resulting in the dose profile of an asymmetric field resembling that of a wedged field. The output factors of some linear accelerators are dependent on the collimator settings and whether the upper or lower collimators are used to set the narrower dimension of a radiation field. In addition to this collimator exchange effect for symmetric fields, asymmetric fields are also found to exhibit some asymmetric collimator backscatter effect. The proposed correction factor is extended to account for these effects. A set of correction factors determined semi-empirically to account for the dose reduction in the penumbral region and outside the radiated field is established. Since these correction factors rely only on the output factors and the tissue maximum ratios, they can easily be implemented into an existing treatment planning system. There is no need to store either

  7. Structure of clusters with bimodal distribution of galaxy line-of-sight velocities III: A1831

    NASA Astrophysics Data System (ADS)

    Kopylov, A. I.; Kopylova, F. G.

    2010-07-01

    We study the A1831 cluster within the framework of our program of the investigation of galaxy clusters with bimodal velocity distributions (i.e., clusters where the velocities of subsystems differ by more than Δ cz ˜ 3000 km/s).We identify two subsystems in this cluster: A1831A ( cz = 18970 km/s) and A1831B ( cz = 22629 km/s) and directly estimate the distances to these subsystems using three methods applied to early-type galaxies: the Kormendy relation, the photometric plane, and the fundamental plane. To this end, we use the results of our observations made with the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the data adopted from the SDSS DR6 catalog. We confirmed at a 99% confidence level that (1) the two subsystems are located at different distances, which are close to their Hubble distances, and (2) the two subsystems are located behind one another along the line of sight and are not gravitationally bound to each other. Both clusters have a complex internal structure, which makes it difficult to determine their dynamical parameters. Our estimates for the velocity dispersions and masses of the two clusters: 480 km/s and 1.9 × 1014 M ⊙ for A1831A, 952 km/s and 1.4 × 1015 M ⊙ for A1831B should be views as upper limits. At least three spatially and kinematically distinct groups of galaxies can be identified in the foreground cluster A1831A, and this fact is indicative of its incomplete dynamical relaxation. Neither can we rule out the possibility of a random projection. The estimate of the mass of the main cluster A1831B based on the dispersion of the line-of-sight velocities of galaxies is two-to-three times greater than the independent mass estimates based on the total K-band luminosity, temperature, and luminosity of the X-ray gas of the cluster. This fact, combined with the peculiarities of its kinematical structure, leads us to conclude that the cluster is in a dynamically active state: galaxies and

  8. Asymmetric lasing at spectral singularities

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2018-03-01

    Scattering coefficients can diverge at spectral singularities. In such situation, the stationary solution becomes a laser solution with outgoing waves only. We explore a parity-time (PT )-symmetric non-Hermitian two-arm Aharonov-Bohm interferometer consisting of three coupled resonators enclosing synthetic magnetic flux. The synthetic magnetic flux does not break the PT symmetry, which protects the symmetric transmission. The features and conditions of symmetric, asymmetric, and unidirectional lasing at spectral singularities are discussed. We elucidate that lasing affected by the interference is asymmetric; asymmetric lasing is induced by the interplay between the synthetic magnetic flux and the system's non-Hermiticity. The product of the left and right transmissions is equal to that of the reflections. Our findings reveal that the synthetic magnetic flux affects light propagation, and the results can be applied in the design of lasing devices.

  9. Novel stereocontrolled approach to syn- and anti-oxepene-cyclogeranyl trans-fused polycyclic systems: asymmetric total synthesis of (-)-Aplysistatin, (+)-Palisadin A, (+)-Palisadin B, (+)-12-hydroxy-palisadin B, and the AB ring system of adociasulfate-2 and toxicol A.

    PubMed

    Couladouros, Elias A; Vidali, Veroniki P

    2004-08-06

    A new stereocontrolled method for the formation of trans-anti cyclogeranyl-oxepene systems is described. The demanding stereochemistry is secured by stereoselective coupling of a cyclogeranyl tertiary alcohol with a 1,2-unsymmetrically substituted epoxide, while the formation of the highly strained oxepene is achieved employing ring-closing metathesis. Since the stereochemistry of the trans-fused 6,7-ring system is determined by the epoxide, the method also allows the construction of trans-syn 6,7-ring systems. This approach leads to the synthesis of the AB fragment of Adociasulfate-2 and Toxicol A, for the first time. The flexibility and efficiency of the presented strategy is demonstrated by the total asymmetric synthesis of (-)-Aplysistatin, (+)-Palisadin A, (+)-12-hydroxy-Palisadin B, and (+)-Palisadin B, employing two similar key intermediates.

  10. Climatology of tropospheric vertical velocity spectra

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  11. Center of Gravity in the Asymmetric Environment: Applicable or Not

    DTIC Science & Technology

    2006-06-01

    public release; distribution unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The military concept of a Center of Gravity ( COG ) in...changed a great deal since the introduction of COG . And in today’s asymmetric environment, in which non-state actors use unconventional tactics, it is...becoming extremely difficult to apply the COG concept. The primary reason for this difficulty is that non-state actors do not operate as a unitary

  12. Aerodynamic and acoustic investigation of inverted velocity profile coannular exhaust nozzle models and development of aerodynamic and acoustic prediction procedures

    NASA Technical Reports Server (NTRS)

    Larson, R. S.; Nelson, D. P.; Stevens, B. S.

    1979-01-01

    Five co-annular nozzle models, covering a systematic variation of nozzle geometry, were tested statically over a range of exhaust conditions including inverted velocity profile (IVP) (fan to primary stream velocity ratio 1) and non IVP profiles. Fan nozzle pressure ratio (FNPR) was varied from 1.3 to 4.1 at primary nozzle pressure ratios (PNPR) of 1.53 and 2.0. Fan stream temperatures of 700 K (1260 deg R) and 1089 K(1960 deg R) were tested with primary stream temperatures of 700 K (1260 deg R), 811 K (1460 deg R), and 1089 K (1960 deg R). At fan and primary stream velocities of 610 and 427 m/sec (2000 and 1400 ft/sec), respectively, increasing fan radius ratio from 0.69 to 0.83 reduced peak perceived noise level (PNL) 3 dB, and an increase in primary radius ratio from 0 to 0.81 (fan radius ratio constant at 0.83) reduced peak PNL an additional 1.0 dB. There were no noise reductions at a fan stream velocity of 853 m/sec (2800 ft/sec). Increasing fan radius ratio from 0.69 to 0.83 reduced nozzle thrust coefficient 1.2 to 1.5% at a PNPR of 1.53, and 1.7 to 2.0% at a PNPR of 2.0. The developed acoustic prediction procedure collapsed the existing data with standard deviation varying from + or - 8 dB to + or - 7 dB. The aerodynamic performance prediction procedure collapsed thrust coefficient measurements to within + or - .004 at a FNPR of 4.0 and a PNPR of 2.0.

  13. Holographic butterfly velocities in brane geometry and Einstein-Gauss-Bonnet gravity with matters

    NASA Astrophysics Data System (ADS)

    Huang, Wung-Hong

    2018-03-01

    In the first part of the paper we generalize the butterfly velocity formula to anisotropic spacetime. We apply the formula to evaluate the butterfly velocities in M-branes, D-branes, and strings backgrounds. We show that the butterfly velocities in M2-branes, M5-branes and the intersection M 2 ⊥ M 5 equal to those in fundamental strings, D4-branes and the intersection F 1 ⊥ D 4 backgrounds, respectively. These observations lead us to conjecture that the butterfly velocity is generally invariant under a double-dimensional reduction. In the second part of the paper, we study the butterfly velocity for Einstein-Gauss-Bonnet gravity with arbitrary matter fields. A general formula is obtained. We use this formula to compute the butterfly velocities in different backgrounds and discuss the associated properties.

  14. Time dependent response of low velocity impact induced composite conical shells under multiple delamination

    NASA Astrophysics Data System (ADS)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.

  15. Allenes in Asymmetric Catalysis. Asymmetric Ring-Opening of Meso-Epoxides Catalyzed by Allene-Containing Phosphine Oxides

    PubMed Central

    Pu, Xiaotao; Qi, Xiangbing; Ready, Joseph M.

    2009-01-01

    Unsymmetrically substituted allenes (1,2 dienes) are inherently chiral and can be prepared in optically pure form. Nonetheless, to date the allene framework has not been incorporated into ligands for asymmetric catalysis. Since allenes project functionality differently than either tetrahedral carbon or chiral biaryls, they may create complementary chiral environments. This study demonstrates that optically active C2 symmetric allene-containing bisphosphine oxides can catalyze the addition of SiCl4 to meso epoxides with high enantioselectivity. The epoxide-opening likely involves generation of a Lewis acidic, cationic (bisphosphine oxide)SiCl3 complex. The fact that high asymmetric induction is observed suggests that allenes may represent a new platform for the development of ligands and catalysts for asymmetric synthesis. PMID:19722613

  16. Measurement of semileptonic B decays into orbitally excited charmed mesons.

    PubMed

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Schott, G; Alwyn, K E; Bailey, D; Barlow, R J; Chia, Y M; Edgar, C L; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L

    2009-07-31

    We present a study of B decays into semileptonic final states containing charged and neutral D1(2420) and D_{2};{*}(2460). The analysis is based on a data sample of 208 fb;{-1} collected at the Upsilon(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. With a simultaneous fit to four different decay chains, the semileptonic branching fractions are extracted from measurements of the mass difference Deltam=m(D;{**})-m(D) distributions. Product branching fractions are determined to be B(B;{+}-->D_{1};{0}l;{+}nu_{l})xB(D_{1};{0}-->D;{*+}pi;{-})=(2.97+/-0.17+/-0.17)x10;{-3}, B(B;{+}-->D_{2};{*0}l;{+}nu_{l})xB(D_{2};{*0}-->D;{(*)+}pi;{-})=(2.29+/-0.23+/-0.21)x10;{-3}, B(B;{0}-->D_{1};{-}l;{+}nu_{l})xB(D_{1};{-}-->D;{*0}pi;{-})=(2.78+/-0.24+/-0.25)x10;{-3} and B(B;{0}-->D_{2};{*-}l;{+}nu_{l})xB(D_{2};{*-}-->D;{(*)0}pi;{-})=(1.77+/-0.26+/-0.11)x10;{-3}. In addition we measure the branching ratio Gamma(D_{2};{*}-->Dpi;{-})/Gamma(D_{2};{*}-->D;{(*)}pi;{-})=0.62+/-0.03+/-0.02.

  17. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    PubMed

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  19. Consistent assignment of the vibrations of symmetric and asymmetric ortho-disubstituted benzenes

    NASA Astrophysics Data System (ADS)

    Tuttle, William D.; Gardner, Adrian M.; Andrejeva, Anna; Kemp, David J.; Wakefield, Jonathan C. A.; Wright, Timothy G.

    2018-02-01

    The form of molecular vibrations, and changes in these, give valuable insights into geometric and electronic structure upon electronic excitation or ionization, and within families of molecules. Here, we give a description of the phenyl-ring-localized vibrational modes of the ground (S0) electronic states of a wide range of ortho-disubstituted benzene molecules including both symmetrically- and asymmetrically-substituted cases. We conclude that the use of the commonly-used Wilson or Varsányi mode labels, which are based on the vibrational motions of benzene itself, is misleading and ambiguous. In addition, we also find the use of the Mi labels for monosubstituted benzenes [A.M. Gardner, T.G. Wright. J. Chem. Phys. 135 (2011) 114305], or the recently-suggested labels for para-disubstituted benzenes [A. Andrejeva, A.M. Gardner, W.D. Tuttle, T.G. Wright, J. Molec. Spectrosc. 321, 28 (2016)] are not appropriate. Instead, we label the modes consistently based upon the Mulliken (Herzberg) method for the modes of ortho-difluorobenzene (pDFB) under Cs symmetry, since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules. By studying the vibrational wavenumbers from the same force field while varying the mass of the substituent, we are able to identify the corresponding modes across a wide range of molecules and hence provide consistent assignments. We assign the vibrations of the following sets of molecules: the symmetric o-dihalobenzenes, o-xylene and catechol (o-dihydroxybenzene); and the asymmetric o-dihalobenzenes, o-halotoluenes, o-halophenols and o-cresol. In the symmetrically-substituted species, we find a pair of in-phase and out-of-phase carbon-substituent stretches, and this motion persists in asymmetrically-substituted molecules for heavier substituents. When at least one of the substituents is light, then we find that these evolve into localized carbon-substituent stretches.

  20. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.

    PubMed

    Shibasaki, Masakatsu; Kanai, Motomu; Matsunaga, Shigeki; Kumagai, Naoya

    2009-08-18

    The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the

  1. Supernova 2010as: The Lowest-velocity Member of a Family of Flat-velocity Type IIb Supernovae

    NASA Astrophysics Data System (ADS)

    Folatelli, Gastón; Bersten, Melina C.; Kuncarayakti, Hanindyo; Olivares Estay, Felipe; Anderson, Joseph P.; Holmbo, Simon; Maeda, Keiichi; Morrell, Nidia; Nomoto, Ken'ichi; Pignata, Giuliano; Stritzinger, Maximilian; Contreras, Carlos; Förster, Francisco; Hamuy, Mario; Phillips, Mark M.; Prieto, José Luis; Valenti, Stefano; Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny; Greiner, Jochen; Updike, Adria; Haislip, Joshua B.; LaCluyze, Aaron P.; Moore, Justin P.; Reichart, Daniel E.

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name "flat-velocity Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s-1 for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M ⊙. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor. This paper includes data gathered with the following facilities in Chile: the 6.5 m Magellan Telescopes located at Las Campanas Observatory, the Gemini Observatory, Cerro Pachón (Gemini Program GS-2008B-Q-56), and the European Organisation for Astronomical Research in the Southern Hemisphere (ESO Programmes 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526). We have also used data from the ESO Science Archive Facility under request number gfolatelli74580 and from the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STSc

  2. Streamwise decrease of the 'unsteady' virtual velocity of gravel tracers

    NASA Astrophysics Data System (ADS)

    Klösch, Mario; Gmeiner, Philipp; Habersack, Helmut

    2017-04-01

    Gravel tracers are usually inserted and transported on top of the riverbed, before they disperse vertically and laterally due to periods of intense bedload, the passage of bed forms, lateral channel migration and storage on bars. Buried grains have a lower probability of entrainment, resulting in a reduction of overall mobility, and, on average, in a deceleration of the particles with distance downstream. As a consequence, the results derived from tracer experiments and their significance for gravel transport may depend on the time scale of the investigation period, complicating the comparison of results from different experiments. We developed a regression method, which establishes a direct link between the transport velocity and the unsteady flow variables to yield an 'unsteady' virtual velocity, while considering the tracer slowdown with distance downstream in the regression. For that purpose, the two parameters of a linear excess shear velocity formula (the critical shear velocity u*c and coefficient a) were defined as functions of the travelled distance since the tracer's insertion. Application to published RFID tracer data from the Mameyes River, Puerto Rico, showed that during the investigation period the critical shear velocity u*c of tracers representing the median bed particle diameter (0.11 m) increased from 0.36 m s-1 to 0.44 m s-1, while the coefficient a decreased from the dimensionless value of 4.22 to 3.53, suggesting a reduction of the unsteady virtual velocity at the highest shear velocity in the investigation period from 0.40 m s-1 to 0.08 m s-1. Consideration of the tracer slowdown improved the root mean square error of the calculated mean displacements of the median bed particle diameter from 8.82 m to 0.34 m. As in previous work these results suggest the need of considering the history of transport when deriving travel distances and travel velocities, depending on the aim of the tracer study. The introduced method now allows estimating the

  3. The intricate Galaxy disk: velocity asymmetries in Gaia-TGAS

    NASA Astrophysics Data System (ADS)

    Antoja, T.; de Bruijne, J.; Figueras, F.; Mor, R.; Prusti, T.; Roca-Fàbrega, S.

    2017-06-01

    We use Gaia-TGAS data to compare the transverse velocities in Galactic longitude (coming from proper motions and parallaxes) in the Milky Way disk for negative and positive longitudes as a function of distance. The transverse velocities are strongly asymmetric and deviate significantly from the expectations for an axisymmetric galaxy. The value and sign of the asymmetry changes at spatial scales of several tens of degrees in Galactic longitude and about 0.5 kpc in distance. The asymmetry is statistically significant at 95% confidence level for 57% of the region probed, which extends up to 1.2 kpc. A percentage of 24% of the region shows absolute differences at this confidence level larger than 5 km s-1 and 7% larger than 10 km s-1. The asymmetry pattern shows mild variations in the vertical direction and with stellar type. A first qualitative comparison with spiral arm models indicates that the arms are probably not the main source of the asymmetry. We briefly discuss alternative origins. This is the first time that global all-sky asymmetries are detected in the Milky Way kinematics beyond the local neighbourhood and with a purely astrometric sample.

  4. Vortex Dynamics of Asymmetric Heave Plates

    NASA Astrophysics Data System (ADS)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  5. Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays.

    PubMed

    Yang, Yong; Wang, Mei; Zhang, Peili; Wang, Weihan; Han, Hongxian; Sun, Licheng

    2016-11-09

    Modification of p-type Si surface by active and stable earth-abundant electrocatalysts is an effective strategy to improve the sluggish kinetics for the hydrogen evolution reaction (HER) at p-Si/electrolyte interface and to develop highly efficient and low-cost photocathodes for hydrogen production from water. To this end, Si nanowire (Si-NW) array has been loaded with highly efficient electrocatalysts, M-B (M = Ni, Co), by facile and quick electroless plating to build M-B catalyst-modified Si nanowire-array-textured photocathodes for water reduction to H 2 . Compared with the bare Si-NW array, composite Si-NWs/M-B arrays display evidently enhanced photoelectrochemical (PEC) performance. The onset potential (V phon ) of cathodic photocurrent is positively shifted by 530-540 mV to 0.44-0.45 V vs RHE, and the short-circuit current density (J sc ) is up to 19.5 mA cm -2 in neutral buffer solution under simulated 1 sun illumination. Impressively, the half-cell photopower conversion efficiencies (η hc ) of the optimized Si-NWs/Co-B (2.53%) and Si-NWs/Ni-B (2.45%) are comparable to that of Si-NWs/Pt (2.46%). In terms of the large J sc , V phon , and η hc values, as well as the high Faradaic efficiency, Si-NWs/M-B electrodes are among the top performing Si photocathodes which are modified with HER electrocatalysts but have no buried solid/solid junction.

  6. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques.

    PubMed

    Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric

    2014-12-01

    Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.

  7. Validation of a Video Analysis Software Package for Quantifying Movement Velocity in Resistance Exercises.

    PubMed

    Sañudo, Borja; Rueda, David; Pozo-Cruz, Borja Del; de Hoyo, Moisés; Carrasco, Luis

    2016-10-01

    Sañudo, B, Rueda, D, del Pozo-Cruz, B, de Hoyo, M, and Carrasco, L. Validation of a video analysis software package for quantifying movement velocity in resistance exercises. J Strength Cond Res 30(10): 2934-2941, 2016-The aim of this study was to establish the validity of a video analysis software package in measuring mean propulsive velocity (MPV) and the maximal velocity during bench press. Twenty-one healthy males (21 ± 1 year) with weight training experience were recruited, and the MPV and the maximal velocity of the concentric phase (Vmax) were compared with a linear position transducer system during a standard bench press exercise. Participants performed a 1 repetition maximum test using the supine bench press exercise. The testing procedures involved the simultaneous assessment of bench press propulsive velocity using 2 kinematic (linear position transducer and semi-automated tracking software) systems. High Pearson's correlation coefficients for MPV and Vmax between both devices (r = 0.473 to 0.993) were observed. The intraclass correlation coefficients for barbell velocity data and the kinematic data obtained from video analysis were high (>0.79). In addition, the low coefficients of variation indicate that measurements had low variability. Finally, Bland-Altman plots with the limits of agreement of the MPV and Vmax with different loads showed a negative trend, which indicated that the video analysis had higher values than the linear transducer. In conclusion, this study has demonstrated that the software used for the video analysis was an easy to use and cost-effective tool with a very high degree of concurrent validity. This software can be used to evaluate changes in velocity of training load in resistance training, which may be important for the prescription and monitoring of training programmes.

  8. Release and velocity of micronized dexamethasone implants with an intravitreal drug delivery system: kinematic analysis with a high-speed camera.

    PubMed

    Meyer, Carsten H; Klein, Adrian; Alten, Florian; Liu, Zengping; Stanzel, Boris V; Helb, Hans M; Brinkmann, Christian K

    2012-01-01

    Ozurdex, a novel dexamethasone (DEX) implant, is released by a drug delivery system into the vitreous cavity. We analyzed the mechanical release aperture of the novel applicator, obtained real-time recordings using a high-speed camera system and performed kinematic analysis of the DEX application. Experimental study. : The application of intravitreal DEX implants (6 mm length, 0.46 mm diameter; 700 μg DEX mass, 0.0012 g total implant mass) was recorded by a high-speed camera (500 frames per second) in water (Group A: n = 7) or vitreous (Group B: n = 7) filled tanks. Kinematic analysis calculated the initial muzzle velocity as well as the impact on the retinal surface at approximately 15 mm of the injected drug delivery system implant in both groups. A series of drug delivery system implant positions was obtained and graphically plotted over time. High-speed real-time recordings revealed that the entire movement of the DEX implant lasted between 28 milliseconds and 55 milliseconds in Group A and 1 millisecond and 7 milliseconds in Group B. The implants moved with a mean muzzle velocity of 820 ± 350 mm/s (±SD, range, 326-1,349 mm/s) in Group A and 817 ± 307 mm/s (±SD, range, 373-1,185 mm/s) in Group B. In both groups, the implant gradually decelerated because of drag force. With greater distances, the velocity of the DEX implant decreased exponentially to a complete stop at 13.9 mm to 24.7 mm in Group A and at 6.4 mm to 8.0 mm in Group B. Five DEX implants in Group A reached a total distance of more than 15 mm, and their calculated mean velocity at a retinal impact of 15 mm was 408 ± 145 mm/s (±SD, range, 322-667 mm/s), and the consecutive normalized energy was 0.55 ± 0.44 J/m (±SD). In Group B, none of the DEX implants reached a total distance of 6 mm or more. An accidental application at an angle of 30 grade and consecutively reduced distance of approximately 6 mm may result in a mean velocity of 844 and mean normalized energy of 0.15 J/m (SD ± 0.47) in a

  9. Catalytic asymmetric Michael reactions promoted by a lithium-free lanthanum-BINOL complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, Hiroaki; Arai, Takayoshi; Shibasaki, Masakatsu

    1994-02-23

    In this communication, we report about a new lithium-free BINOL-lanthanum complex, which is quite effective in catalytic asymmetric Michael reaction. We have succeeded in developing effective asymmetric base catalysts, in particular, asymmetric ester enolate catalysts for asymmetric Michael reactions. Two asymmetric lanthanum complexes are now available, namely, BINOL-lanthanum-lithium complex, which is quite effective in catalytic asymmetric nitrosaldol reactions, and a new lithium-free BINOL-lanthanum ester enolate complex, that is very effective in catalytic asymmetric Michael reactions. The two complexes complement each other in their ability to catalyze asymmetric nitroaldol and asymmetric Michael reactions. 14 refs., 1 fig., 2 tabs.

  10. Comparison of wind velocity in thunderstorms determined from measurements by a ground-based Doppler radar and an F-106B airplane

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Dunham, R. E., Jr.; Lee, J. T.

    1985-01-01

    As a part of the NASA Storm Hazards Program, the wind velocity in several thunderstorms was measured by an F-106B instrumented airplane and a ground-based Doppler radar. The results of five airplane penetrations of two storms in 1980 and six penetrations of one storm in 1981 are given. Comparisons were made between the radial wind velocity components measured by the radar and the airplane. The correlation coefficients for the 1980 data and part of the 1981 data were 0.88 and 0.78, respectively. It is suggested that larger values for these coefficients may be obtained by improving the experimental technique and in particular by slaving the radar to track the airplane during such tests.

  11. Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection.

    PubMed

    Nagy, Peter B; Simonetti, Francesco; Instanes, Geir

    2014-09-01

    Recent improvements in tomographic reconstruction techniques generated a renewed interest in short-range ultrasonic guided wave inspection for real-time monitoring of internal corrosion and erosion in pipes and other plate-like structures. Emerging evidence suggests that in most cases the fundamental asymmetric A0 mode holds a distinct advantage over the earlier market leader fundamental symmetric S0 mode. Most existing A0 mode inspections operate at relatively low inspection frequencies where the mode is highly dispersive therefore very sensitive to variations in wall thickness. This paper examines the potential advantages of increasing the inspection frequency to the so-called constant group velocity (CGV) point where the group velocity remains essentially constant over a wide range of wall thickness variation, but the phase velocity is still dispersive enough to allow accurate wall thickness assessment from phase angle measurements. This paper shows that in the CGV region the crucial issue of temperature correction becomes especially simple, which is particularly beneficial when higher-order helical modes are also exploited for tomography. One disadvantage of working at such relatively high inspection frequency is that, as the slower A0 mode becomes faster and less dispersive, the competing faster S0 mode becomes slower and more dispersive. At higher inspection frequencies these modes cannot be separated any longer based on their vibration polarization only, which is mostly tangential for the S0 mode while mostly normal for the A0 at low frequencies, as the two modes become more similar as the frequency increases. Therefore, we propose a novel method for suppressing the unwanted S0 mode based on the Poisson effect of the material by optimizing the angle of inclination of the equivalent transduction force of the Electromagnetic Acoustic Transducers (EMATs) used for generation and detection purposes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  13. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  14. Subcopula-based measure of asymmetric association for contingency tables.

    PubMed

    Wei, Zheng; Kim, Daeyoung

    2017-10-30

    For the analysis of a two-way contingency table, a new asymmetric association measure is developed. The proposed method uses the subcopula-based regression between the discrete variables to measure the asymmetric predictive powers of the variables of interest. Unlike the existing measures of asymmetric association, the subcopula-based measure is insensitive to the number of categories in a variable, and thus, the magnitude of the proposed measure can be interpreted as the degree of asymmetric association in the contingency table. The theoretical properties of the proposed subcopula-based asymmetric association measure are investigated. We illustrate the performance and advantages of the proposed measure using simulation studies and real data examples. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Rhinoplasty: The Asymmetric Crooked Nose-An Overview.

    PubMed

    Kosins, Aaron M; Daniel, Rollin K; Nguyen, Dananh P

    2016-08-01

    There are three reasons why the asymmetric crooked nose is one of the greatest challenges in rhinoplasty surgery. First, the complexity of the problem is not appreciated by the patient nor understood by the surgeon. Patients often see the obvious deviation of the nose, but not the distinct differences between the right and left sides. Surgeons fail to understand and to emphasize to the patient that each component of the nose is asymmetric. Second, these deformities can be improved, but rarely made flawless. For this reason, patients are told that the result will be all "-er words," better, straighter, cuter, but no "t-words," there is no perfect nor straight. Most surgeons fail to realize that these cases represent asymmetric noses on asymmetric faces with the variable of ipsilateral and contralateral deviations. Third, these cases demand a wide range of sophisticated surgical techniques, some of which have a minimal margin of error. This article offers an in-depth look at analysis, preoperative planning, and surgical techniques available for dealing with the asymmetric crooked nose. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Mechanics of an Asymmetric Hard-Soft Lamellar Nanomaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Weichao; Fredrickson, Glenn H.; Kramer, Edward J.

    2016-03-24

    Nanolayered lamellae are common structures in nanoscience and nanotechnology, but most are nearly symmetric in layer thickness. Here, we report on the structure and mechanics of highly asymmetric and thermodynamically stable soft–hard lamellar structures self-assembled from optimally designed PS 1-(PI-b-PS 2) 3 miktoarm star block copolymers. The remarkable mechanical properties of these strong and ductile PS (polystyrene)-based nanomaterials can be tuned over a broad range by varying the hard layer thickness while maintaining the soft layer thickness constant at 13 nm. Upon deformation, thin PS lamellae (<100 nm) exhibited kinks and predamaged/damaged grains, as well as cavitation in the softmore » layers. In contrast, deformation of thick lamellae (>100 nm) manifests cavitation in both soft and hard nanolayers. In situ tensile-SAXS experiments revealed the evolution of cavities during deformation and confirmed that the damage in such systems reflects both plastic deformation by shear and residual cavities. The aspects of the mechanics should point to universal deformation behavior in broader classes of asymmetric hard–soft lamellar materials, whose properties are just being revealed for versatile applications.« less

  17. The Catalytic Asymmetric Intramolecular Stetter Reaction

    PubMed Central

    de Alaniz, Javier Read; Rovis, Tomislav

    2010-01-01

    This account chronicles our efforts at the development of a catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows. PMID:20585467

  18. Asymmetric Bulkheads for Cylindrical Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ford, Donald B.

    2007-01-01

    Asymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat

  19. 2-Oxoacid Metabolism in Methanogenic CoM and CoB Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, David E

    Coenzyme M (CoM) and coenzyme B (CoB) are essential for methane production by the euryarchaea that employ this specialized anaerobic metabolism. Two pathways are known to produce CoM, 2-mercaptoethanesulfonate, and both converge on the 2-oxoacid sulfopyruvate. These cells have recruited the rich biochemistry of amino acid and 2-oxoacid metabolizing enzymes to produce a compound that resembles oxaloacetate, but with a more stable and acidic sulfonate group. 7-Mercaptoheptanoylthreonine phosphate, CoB, likewise owes its carbon backbone to a 2-oxoacid. Three enzymes recruited from leucine biosynthesis have evolved to catalyze the elongation of 2-oxoglutarate to 2-oxosuberate in CoB biosynthesis. This chapter describes themore » enzymology, synthesis and analytical techniques used to study 2-oxoacid metabolism in these pathways. Protein structure and mechanistic information from enzymes provides insight into the evolution of new enzymatic activity, and the evolution of substrate specificity from promiscuous enzyme scaffolds.« less

  20. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.

    PubMed

    Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J

    2007-07-13

    In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.

  1. Radial Velocity Detection of Extra-Solar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1998-01-01

    The McDonald Observatory Planetary Search (MOPS) was designed to search for Jovian-mass planets in orbit around solar-type stars by making high-precision measurements of the Radial Velocity (RV) of a star, to attempt to detect the reflex orbital motion of the star around the star-planet barycenter. In our solar system, the velocity of the Sun around the Sun-Jupiter barycenter averages 12.3 m/ s. The MOPS survey started operation in September 1987, and searches 36 bright, nearby, solar-type dwarfs to 10 m/s precision. The survey was started using telluric O2 absorption lines as the velocity reference metric. Observations use the McDonald Observatory 2.7-m Harlan Smith Telescope coude spectrograph with the six-foot camera. This spectrograph configuration isolates a single order of the echelle grating on a Texas Instruments 800 x 800 CCD. The telluric line method gave us a routine radial velocity precision of about 15 m/s for stars down to about 5-th magnitude. However, the data obtained with this technique suffered from some source of long-term systematic errors, which was probably the intrinsic velocity variability of the terrestrial atmosphere, i.e. winds. In order to eliminate this systematic error and to improve our overall measurement precision, we installed a stabilized I2 gas absorption cell as the velocity metric for the MOPS in October 1990. In use at the telescope, the cell is placed directly in front of the spectrograph entrance slit, with starlight passing through the cell. The use of this sealed stabilized I2 cell removes potential problems with possible long-term drifts in the velocity metric. The survey now includes a sample of 36 nearby F, G, and K type stars of luminosity class V or IV-V.

  2. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos

    PubMed Central

    Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  3. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  4. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  5. Two dwarf galaxies in Orion with low radial velocities.

    NASA Astrophysics Data System (ADS)

    Karachentsev, I.; Musella, I.

    1996-11-01

    Two relatively faint (B=15.7 and B=18.4mag, respectively), low velocity (+276 and +322km/s) galaxies were imaged with a CCD in the B, V, I bands. By means of the brightest stars we estimated their distances to be 6.4 and 5.5(+/-2)Mpc, assuming a galactic extinction of 2.7 and 2.9mag, respectively. We note that these isolated irregular dwarfs are located to a high Supergalactic latitude, -63deg, and their low radial velocities may be the result of a retarded expansion along the polar axis of the Local cloud of galaxies.

  6. Left-Right Asymmetric Morphogenesis in the Xenopus Digestive System

    USGS Publications Warehouse

    Muller, Jennifer K.; Prather, D.R.; Nascone-Yoder, N. M.

    2003-01-01

    The morphogenetic mechanisms by which developing organs become left-right asymmetric entities are unknown. To investigate this issue, we compared the roles of the left and right sides of the Xenopus embryo during the development of anatomic asymmetries in the digestive system. Although both sides contribute equivalently to each of the individual digestive organs, during the initial looping of the primitive gut tube, the left side assumes concave topologies where the right side becomes convex. Of interest, the concave surfaces of the gut tube correlate with expression of the LR gene, Pitx2, and ectopic Pitx2 mRNA induces ectopic concavities in a localized manner. A morphometric comparison of the prospective concave and convex surfaces of the gut tube reveals striking disparities in their rate of elongation but no significant differences in cell proliferation. These results provide insight into the nature of symmetry-breaking morphogenetic events during left-right asymmetric organ development. ?? 2003 Wiley-Liss, Inc.

  7. Interaction of nanoparticles for the peristaltic flow in an asymmetric channel with the induced magnetic field

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Raza, M.; Ellahi, R.

    2014-07-01

    In the present investigation, we examined the interaction of nanoparticle copper with the base fluid water in an asymmetric channel in the presence of an induced magnetic field. The complexity of equations describing the flow of the nanofluid is reduced by applying the low-Reynolds number and long-wavelength approximations. The resulting equations are solved exactly. The obtained expressions for the velocity and temperature phenomenon are sketched in graphs. The resulting relations for pressure gradient and pressure rise are plotted for various pertinent parameters. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon.

  8. Method development of damage detection in asymmetric buildings

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results

  9. The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update.

    PubMed

    Harmon-Jones, Eddie; Gable, Philip A; Peterson, Carly K

    2010-07-01

    Conceptual and empirical approaches to the study of the role of asymmetric frontal cortical activity in emotional processes are reviewed. Although early research suggested that greater left than right frontal cortical activity was associated with positive affect, more recent research, primarily on anger, suggests that greater left than right frontal cortical activity is associated with approach motivation, which can be positive (e.g., enthusiasm) or negative in valence (e.g., anger). In addition to reviewing this research on anger, research on guilt, bipolar disorder, and various types of positive affect is reviewed with relation to their association with asymmetric frontal cortical activity. The reviewed research not only contributes to a more complete understanding of the emotive functions of asymmetric frontal cortical activity, but it also points to the importance of considering motivational direction as separate from affective valence in psychological models of emotional space. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells.

    PubMed

    Lee, Jinmin; Sengupta, Prabuddha; Brzostowski, Joseph; Lippincott-Schwartz, Jennifer; Pierce, Susan K

    2017-02-15

    B-cell activation is initiated by the binding of antigen to the B-cell receptor (BCR). Here we used dSTORM superresolution imaging to characterize the nanoscale spatial organization of immunoglobulin M (IgM) and IgG BCRs on the surfaces of resting and antigen--activated human peripheral blood B-cells. We provide insights into both the fundamental process of antigen-driven BCR clustering and differences in the spatial organization of IgM and IgG BCRs that may contribute to the characteristic differences in the responses of naive and memory B-cells to antigen. We provide evidence that although both IgM and IgG BCRs reside in highly heterogeneous protein islands that vary in size and number of BCR single-molecule localizations, both resting and activated B-cells intrinsically maintain a high -frequency of single isolated BCR localizations, which likely represent BCR monomers. IgG BCRs are more clustered than IgM BCRs on resting cells and form larger protein islands after antigen activation. Small, dense BCR clusters likely formed via protein-protein interactions are present on the surface of resting cells, and antigen activation induces these to come together to form less dense, larger islands, a process likely governed, at least in part, by protein-lipid interactions. © 2017 Lee, Sengupta, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Asymmetric thin-shell wormholes

    NASA Astrophysics Data System (ADS)

    Forghani, S. Danial; Mazharimousavi, S. Habib; Halilsoy, Mustafa

    2018-06-01

    Spacetime wormholes in isotropic spacetimes are represented traditionally by embedding diagrams which were symmetric paraboloids. This mirror symmetry, however, can be broken by considering different sources on different sides of the throat. This gives rise to an asymmetric thin-shell wormhole, whose stability is studied here in the framework of the linear stability analysis. Having constructed a general formulation, using a variable equation of state and related junction conditions, the results are tested for some examples of diverse geometries such as the cosmic string, Schwarzschild, Reissner-Nordström and Minkowski spacetimes. Based on our chosen spacetimes as examples, our finding suggests that symmetry is an important factor to make a wormhole more stable. Furthermore, the parameter γ , which corresponds to the radius dependency of the pressure on the wormholes's throat, can affect the stability in a great extent.

  12. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors.

    PubMed

    Lu, Xihong; Zeng, Yinxiang; Yu, Minghao; Zhai, Teng; Liang, Chaolun; Xie, Shilei; Balogun, Muhammad-Sadeeq; Tong, Yexiang

    2014-05-21

    Oxygen-deficient α-Fe2 O3 nanorods with outstanding capacitive performance are developed and demonstrated as novel negative electrodes for flexible asymmetric supercapacitors. The asymmetric-supercapacitor device based on the oxygen-deficient α-Fe2 O3 nanorod negative electrode and a MnO2 positive electrode achieves a maximum energy density of 0.41 mW·h/cm(3) ; it is also capable of charging a mobile phone and powering a light-emitting diode indicator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 29 CFR Appendix B to Subpart M of... - Guardrail Systems

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Guardrail Systems B Appendix B to Subpart M of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926...

  14. 29 CFR Appendix B to Subpart M of... - Guardrail Systems

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Guardrail Systems B Appendix B to Subpart M of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926...

  15. 29 CFR Appendix B to Subpart M of... - Guardrail Systems

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Guardrail Systems B Appendix B to Subpart M of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926...

  16. Comparisons of Different Models on Dynamic Recrystallization of Plate during Asymmetrical Shear Rolling

    PubMed Central

    Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin

    2018-01-01

    Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation. PMID:29342080

  17. Comparisons of Different Models on Dynamic Recrystallization of Plate during Asymmetrical Shear Rolling.

    PubMed

    Zhang, Tao; Li, Lei; Lu, Shi-Hong; Gong, Hai; Wu, Yun-Xin

    2018-01-17

    Asymmetrical shear rolling with velocity asymmetry and geometry asymmetry is beneficial to enlarge deformation and refine grain size at the center of the thick plate compared to conventional symmetrical rolling. Dynamic recrystallization (DRX) plays a vital role in grain refinement during hot deformation. Finite element models (FEM) coupled with microstructure evolution models and cellular automata models (CA) are established to study the microstructure evolution of plate during asymmetrical shear rolling. The results show that a larger DRX fraction and a smaller average grain size can be obtained at the lower layer of the plate. The DRX fraction at the lower part increases with the ascending speed ratio, while that at upper part decreases. With the increase of the offset distance, the DRX fraction slightly decreases for the whole thickness of the plate. The differences in the DRX fraction and average grain size between the upper and lower surfaces increase with the ascending speed ratio; however, it varies little with the change of the speed ratio. Experiments are conducted and the CA models have a higher accuracy than FEM models as the grain morphology, DRX nuclei, and grain growth are taken into consideration in CA models, which are more similar to the actual DRX process during hot deformation.

  18. The Effect of Asymmetrical Signal Degradation on Binaural Speech Recognition in Children and Adults.

    ERIC Educational Resources Information Center

    Rothpletz, Ann M.; Tharpe, Anne Marie; Grantham, D. Wesley

    2004-01-01

    To determine the effect of asymmetrical signal degradation on binaural speech recognition, 28 children and 14 adults were administered a sentence recognition task amidst multitalker babble. There were 3 listening conditions: (a) monaural, with mild degradation in 1 ear; (b) binaural, with mild degradation in both ears (symmetric degradation); and…

  19. Asymmetric distribution of convection in tropical cyclones over the western North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping; Yang, Xiangrong; Ding, Juli; Shi, Wenli

    2016-11-01

    Forecasts of the intensity and quantitative precipitation of tropical cyclones (TCs) are generally inaccurate, because the strength and structure of a TC show a complicated spatiotemporal pattern and are affected by various factors. Among these, asymmetric convection plays an important role. This study investigates the asymmetric distribution of convection in TCs over the western North Pacific during the period 2005-2012, based on data obtained from the Feng Yun 2 (FY2) geostationary satellite. The asymmetric distributions of the incidence, intensity and morphology of convections are analyzed. Results show that the PDFs of the convection occurrence curve to the azimuth are sinusoidal. The rear-left quadrant relative to TC motion shows the highest occurrence rate of convection, while the front-right quadrant has the lowest. In terms of intensity, weak convections are favored in the front-left of a TC at large distances, whereas strong convections are more likely to appear to the rear-right of a TC within a 300 km range. More than 70% of all MCSs examined here are elongated systems, and meso- β enlongated convective systems (M βECSs) are the most dominant type observed in the outer region of a TC. Smaller MCSs tend to be more concentrated near the center of a TC. While semi-circular MCSs [M βCCSs, MCCs (mesoscale convective complexes)] show a high incidence rate to the rear of a TC, elongated MCSs [M βECSs, PECSs (persistent elongated convective systems)] are more likely to appear in the rear-right quadrant of a TC within a range of 400 km.

  20. Asymmetric giant magnetoimpedance effect created by micro magnets

    NASA Astrophysics Data System (ADS)

    Atalay, S.; Izgi, T.; Buznikov, N. A.; Kolat, V. S.

    2018-05-01

    Asymmetric giant magnetoimpedance (AGMI) effect has been investigated in as-prepared and current annealed amorphous (Co0.9Fe0.05Ni0.05)75Si15B10 ribbons. Asymmetry was created by micro magnets. Different numbers of magnets were used and it was found that increasing number of magnet, the shift in AGMI curves increases. When two micro magnets were placed 1 cm away from the ends of ribbon, a distortion in two peak shape of the GMI curve was observed. At high frequency range, a linear change in the AGMI was observed for the current annealed sample.

  1. Obscurin Targets Ankyrin-B and Protein Phosphatase 2A to the Cardiac M-line*

    PubMed Central

    Cunha, Shane R.; Mohler, Peter J.

    2008-01-01

    Ankyrin-B targets ion channels and transporters in excitable cells. Dysfunction in ankyrin-B-based pathways results in defects in cardiac physiology. Despite a wealth of knowledge regarding the role of ankyrin-B for cardiac function, little is known regarding the mechanisms underlying ankyrin-B regulation. Moreover, the pathways underlying ankyrin-B targeting in heart are unclear. We report that alternative splicing regulates ankyrin-B localization and function in cardiomyocytes. Specifically, we identify a novel exon (exon 43′) in the ankyrin-B regulatory domain that mediates interaction with the Rho-GEF obscurin. Ankyrin-B transcripts harboring exon 43′ represent the primary cardiac isoform in human and mouse. We demonstrate that ankyrin-B and obscurin are co-localized at the M-line of myocytes and co-immunoprecipitate from heart. We define the structural requirements for ankyrin-B/obscurin interaction to two motifs in the ankyrin-B regulatory domain and demonstrate that both are critical for obscurin/ankyrin-B interaction. In addition, we demonstrate that interaction with obscurin is required for ankyrin-B M-line targeting. Specifically, both obscurin-binding motifs are required for the M-line targeting of a GFP-ankyrin-B regulatory domain. Moreover, this construct acts as a dominant-negative by competing with endogenous ankyrin-B for obscurin-binding at the M-line, thus providing a powerful new tool to evaluate the function of obscurin/ankyrin-B interactions. With this new tool, we demonstrate that the obscurin/ankyrin-B interaction is critical for recruitment of PP2A to the cardiac M-line. Together, these data provide the first evidence for the molecular basis of ankyrin-B and PP2A targeting and function at the cardiac M-line. Finally, we report that ankyrin-B R1788W is localized adjacent to the ankyrin-B obscurin-binding motif and increases binding activity for obscurin. In summary, our new findings demonstrate that ANK2 is subject to alternative splicing

  2. The velocity structure of the lunar crust.

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.

    1973-01-01

    Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (1) velocity increases from 100 to 300 m/sec in the upper 100 m to about 4 km/sec at 5 km depth, (2) a more gradual increase from about 4 km/sec to about 6 km/sec at 25 km depth,(3) a discontinuity at a depth of 25 km, and (4) a constant value of about 7 km/sec at depths from 25 km to about 60 km.

  3. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate

    PubMed Central

    Noviski, Mark; Mueller, James L; Satterthwaite, Anne; Garrett-Sinha, Lee Ann; Brombacher, Frank

    2018-01-01

    Naive B cells co-express two BCR isotypes, IgM and IgD, with identical antigen-binding domains but distinct constant regions. IgM but not IgD is downregulated on autoreactive B cells. Because these isotypes are presumed to be redundant, it is unknown how this could impose tolerance. We introduced the Nur77-eGFP reporter of BCR signaling into mice that express each BCR isotype alone. Despite signaling strongly in vitro, IgD is less sensitive than IgM to endogenous antigen in vivo and developmental fate decisions are skewed accordingly. IgD-only Lyn−/− B cells cannot generate autoantibodies and short-lived plasma cells (SLPCs) in vivo, a fate thought to be driven by intense BCR signaling induced by endogenous antigens. Similarly, IgD-only B cells generate normal germinal center, but impaired IgG1+ SLPC responses to T-dependent immunization. We propose a role for IgD in maintaining the quiescence of autoreactive B cells and restricting their differentiation into autoantibody secreting cells. PMID:29521626

  4. 41 CFR Appendix B to Chapter 301 - Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance B Appendix B to Chapter 301 Public Contracts.... 301, App. B Appendix B to Chapter 301—Allocation of M&IE Rates To Be Used in Making Deductions From...

  5. 41 CFR Appendix B to Chapter 301 - Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance B Appendix B to Chapter 301 Public Contracts.... 301, App. B Appendix B to Chapter 301—Allocation of M&IE Rates To Be Used in Making Deductions From...

  6. 41 CFR Appendix B to Chapter 301 - Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance B Appendix B to Chapter 301 Public Contracts.... 301, App. B Appendix B to Chapter 301—Allocation of M&IE Rates To Be Used in Making Deductions From...

  7. 41 CFR Appendix B to Chapter 301 - Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Allocation of M&IE Rates To Be Used in Making Deductions From the M&IE Allowance B Appendix B to Chapter 301 Public Contracts.... 301, App. B Appendix B to Chapter 301—Allocation of M&IE Rates To Be Used in Making Deductions From...

  8. mRNA localization: an orchestration of assembly, traffic and synthesis.

    PubMed

    Xing, Lei; Bassell, Gary J

    2013-01-01

    Asymmetrical mRNA localization and subsequent local translation provide efficient mechanisms for protein sorting in polarized cells. Defects in mRNA localization have been linked to developmental abnormalities and neurological diseases. Thus, it is critical to understand the machineries mediating and mechanisms underlying the asymmetrical distribution of mRNA and its regulation. The goal of this review is to summarize recent advances in the understanding of mRNA transport and localization, including the assembly and sorting of transport messenger ribonucleic protein (mRNP) granules, molecular mechanisms of active mRNP transport, cytoskeletal interactions and regulation of these events by extracellular signals. © 2012 John Wiley & Sons A/S.

  9. NGTS-1b: a hot Jupiter transiting an M-dwarf

    NASA Astrophysics Data System (ADS)

    Bayliss, Daniel; Gillen, Edward; Eigmüller, Philipp; McCormac, James; Alexander, Richard D.; Armstrong, David J.; Booth, Rachel S.; Bouchy, François; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Chazelas, Bruno; Csizmadia, Szilard; Erikson, Anders; Faedi, Francesca; Foxell, Emma; Gänsicke, Boris T.; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Hodgkin, Simon T.; Jackman, James; Jenkins, James S.; Lambert, Gregory; Louden, Tom; Metrailler, Lionel; Moyano, Maximiliano; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raddi, Roberto; Rauer, Heike; Raynard, Liam; Smith, Alexis M. S.; Soto, Maritza; Thompson, Andrew P. G.; Titz-Weider, Ruth; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-04-01

    We present the discovery of NGTS-1b, a hot Jupiter transiting an early M-dwarf host (Teff,* = 3916 ^{+71}_{-63} K) in a P = 2.647 d orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of 0.812 ^{+0.066}_{-0.075} MJ, making it the most massive planet ever discovered transiting an M-dwarf. The radius of the planet is 1.33 ^{+0.61}_{-0.33} RJ. Since the transit is grazing, we determine this radius by modelling the data and placing a prior on the density from the population of known gas giant planets. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar-type stars. The host star shows no signs of activity, and the kinematics hint at the star being from the thick disc population. With a deep (2.5 per cent) transit around a K = 11.9 host, NGTS-1b will be a strong candidate to probe giant planet composition around M-dwarfs via James Webb Space Telescope transmission spectroscopy.

  10. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocitymore » (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.« less

  11. Survey of beta-particle interaction experiments with asymmetric matter

    NASA Astrophysics Data System (ADS)

    Van Horn, J. David; Wu, Fei

    2018-05-01

    Asymmetry is a basic property found at multiple scales in the universe. Asymmetric molecular interactions are fundamental to the operation of biological systems in both signaling and structural roles. Other aspects of asymmetry are observed and useful in many areas of science and engineering, and have been studied since the discovery of chirality in tartrate salts. The observation of parity violation in beta decay provided some impetus for later experiments using asymmetric particles. Here we survey historical work and experiments related to electron (e-) or positron (e+) polarimetry and their interactions with asymmetric materials in gas, liquid and solid forms. Asymmetric interactions may be classified as: 1) stereorecognition, 2) stereoselection and 3) stereoinduction. These three facets of physical stereochemistry are unique but interrelated; and examples from chemistry and materials science illustrate these aspects. Experimental positron and electron interactions with asymmetric materials may be classified in like manner. Thus, a qualitative assessment of helical and polarized positron experiments with different forms of asymmetric matter from the past 40 years is presented, as well as recent experiments with left-hand and right-hand single crystal quartz and organic compounds. The purpose of this classification and review is to evaluate the field for potential new experiments and directions for positron (or electron) studies with asymmetric materials.

  12. Asymmetrical accommodation in hyperopic anisometropic amblyopia

    PubMed Central

    Toor, Sonia; Riddell, Patricia

    2018-01-01

    Background/aims To investigate the presence of asymmetrical accommodation in hyperopic anisometropic amblyopia. Methods Accommodation in each eye and binocular vergence were measured simultaneously using a PlusoptiX SO4 photorefractor in 26 children aged 4–8 years with hyperopic anisometropic amblyopia and 13 controls (group age-matched) while they viewed a detailed target moving in depth. Results Without spectacles, only 5 (19%) anisometropes demonstrated symmetrical accommodation (within the 95% CI of the mean gain of the sound eye of the anisometropic group), whereas 21 (81%) demonstrated asymmetrical accommodation. Of those, 15 (58%) showed aniso-accommodation and 6 (23%) demonstrated ‘anti-accommodation’ (greater accommodation for distance than for near). In those with anti-accommodation, the response gain in the sound eye was (0.93±0.20) while that of the amblyopic eye showed a negative accommodation gain of (−0.44±0.23). Anti-accommodation resolved with spectacles. Vergence gains were typical in those with symmetrical and asymmetrical accommodation. Conclusion The majority of hyperopic anisometropic amblyopes demonstrated non-consensual asymmetrical accommodation. Approximately one in four demonstrated anti-accommodation. PMID:29051327

  13. Asymmetric coding of categorical spatial relations in both language and vision.

    PubMed

    Roth, J C; Franconeri, S L

    2012-01-01

    Describing certain types of spatial relationships between a pair of objects requires that the objects are assigned different "roles" in the relation, e.g., "A is above B" is different than "B is above A." This asymmetric representation places one object in the "target" or "figure" role and the other in the "reference" or "ground" role. Here we provide evidence that this asymmetry may be present not just in spatial language, but also in perceptual representations. More specifically, we describe a model of visual spatial relationship judgment where the designation of the target object within such a spatial relationship is guided by the location of the "spotlight" of attention. To demonstrate the existence of this perceptual asymmetry, we cued attention to one object within a pair by briefly previewing it, and showed that participants were faster to verify the depicted relation when that object was the linguistic target. Experiment 1 demonstrated this effect for left-right relations, and Experiment 2 for above-below relations. These results join several other types of demonstrations in suggesting that perceptual representations of some spatial relations may be asymmetrically coded, and further suggest that the location of selective attention may serve as the mechanism that guides this asymmetry.

  14. Compressional velocities from multichannel refraction arrivals on Georges Bank: northwest Atlantic Ocean

    USGS Publications Warehouse

    McGinnis, L. D.; Otis, R. M.

    1979-01-01

    Velocities were obtained from unreversed, refracted arrivals on analog records from a 48‐channel, 3.6-km hydrophone cable (3.89 km from the airgun array to the last hydrophone array). Approximately 200 records were analyzed along 1500 km of ship track on Georges Bank, northwest Atlantic Ocean, to obtain regional sediment velocity distribution to a depth of 1.4 km below sea level. This technique provides nearly continuous coverage of refraction velocities and vertical velocity gradients. Because of the length of the hydrophone cable and the vertical velocity gradients, the technique is applicable only to the Continental Shelf and the shallower parts of the Continental Slope in water depths less than 300 m. Sediment diagenesis, the influence of overburden pressure on compaction, lithology, density, and porosity are inferred from these data. Velocities of the sediment near the water‐sediment interface range from less than 1500 m/sec on the north edge of Georges Bank to 1830 m/sec for glacial deposits in the northcentral part of the bank. Velocity gradients in the upper 400 m range from 1.0km/sec/km(sec−1) on the south edge of the bank to 1.7sec−1 on the north. Minimum gradients of 0.8sec−1 were observed south of Nantucket Island. Velocities and velocity gradients are explained in relation to physical properties of the Cretaceous, Tertiary, and Pleistocene sediments. Isovelocity contours at 100-m/sec intervals are nearly horizontal in the upper 400 m. Isovelocity contours at greater depths show a greater difference from a mean depth because of the greater structural and lithological variation. Bottom densities inferred from the velocities range from 1.7 to 1.9g/cm3 and porosities range from 48 to 62 percent. The most significant factor controlling velocity distribution on Georges Bank is overburden pressure and resulting compaction. From the velocity data we conclude that Georges Bank has been partially overridden by a continental ice sheet.

  15. VizieR Online Data Catalog: Radial velocity curves of LMC ellipsoidal variables (Nie+, 2014)

    NASA Astrophysics Data System (ADS)

    Nie, J. D.; Wood, P. R.

    2014-11-01

    We initially selected 86 sequence E candidates from those given in Soszynski et al. 2004 (cat. J/AcA/54/347). The radial velocity observations were taken using the Wide Field Spectrograph (WiFeS) mounted on the Australian National University 2.3m telescope at Siding Spring Observatory. WiFes has six gratings. For our observations, the gratings B7000 (wavelength coverage of 4184-5580Å) and I7000 (wavelength coverage of 6832-9120Å) were chosen for the blue and red CCD, respectively. These two gratings give a two-pixel resolution R=7000. We carried out 18 weeks of radial velocity monitoring, from 2010 September to 2012 March. (2 data files).

  16. Microporous Ni₁₁(HPO₃)₈(OH)₆ nanocrystals for high-performance flexible asymmetric all solid-state supercapacitors.

    PubMed

    Gao, Yanping; Zhao, Junhong; Run, Zhen; Zhang, Guangqin; Pang, Huan

    2014-12-07

    Microporous nickel phosphite [Ni11(HPO3)8(OH)6] nanocrystals were prepared using a hydrothermal method, and were successfully applied as a positive electrode in a flexible all solid-state asymmetric supercapacitor. Because of the specific micro/nanostructure, the flexible solid-state asymmetric supercapacitor can achieve a maximum energy density of 0.45 mW h cm(-3), which is higher than most reported supercapacitors. More importantly, the device performance remains efficient for 10,000 cycles.

  17. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device.

    PubMed

    Gong, Lei; Qiu, Xing-Ze; Ren, Yu-Xuan; Zhu, Hui-Qing; Liu, Wei-Wei; Zhou, Jin-Hua; Zhong, Min-Cheng; Chu, Xiu-Xiang; Li, Yin-Mei

    2014-11-03

    Recently, V. V. Kotlyar et al. [Opt. Lett.39, 2395 (2014)] have theoretically proposed a novel kind of three-parameter diffraction-free beam with a crescent profile, namely, the asymmetric Bessel (aB) beam. The asymmetry degree of such nonparaxial modes was shown to depend on a nonnegative real parameter c. We present a more generalized asymmetric Bessel mode in which the parameter c is a complex constant. This parameter controls not only the asymmetry degree of the mode but also the orientation of the optical crescent, and affects the energy distribution and orbital angular momentum (OAM) of the beam. As a proof of concept, the high-quality generation of asymmetric Bessel-Gauss beams was demonstrated with the super-pixel method using a digital micromirror device (DMD). We investigated the near-field properties as well as the far field features of such beams, and the experimental observations were in good agreement with the theoretical predictions. Additionally, we provided an effective way to control the beam's asymmetry and orientation, which may find potential applications in light-sheet microscopy and optical manipulation.

  18. Astrometry, Radial Velocity, and Photometry: The HD 128311 System Remixed with Data from HST, HET, and APT

    NASA Astrophysics Data System (ADS)

    McArthur, Barbara. E.; Benedict, G. Fritz; Henry, Gregory W.; Hatzes, Artie; Cochran, William D.; Harrison, Tom E.; Johns-Krull, Chris; Nelan, Ed

    2014-11-01

    We have used high-cadence radial velocity measurements from the Hobby-Eberly Telescope with published velocities from the Lick 3 m Shane Telescope, combined with astrometric data from the Hubble Space Telescope (HST) Fine Guidance Sensors to refine the orbital parameters of the HD 128311 system, and determine an inclination of 55.°95 ± 14.°55 and true mass of 3.789 +0.924 -0.432 M JUP for HD 128311 c. The combined radial velocity data also reveal a short period signal which could indicate a third planet in the system with an Msin i of 0.133 ± 0.005 M JUP or stellar phenomena. Photometry from the T12 0.8 m automatic photometric telescope at the Fairborn Observatory and HST are used to determine a photometric period close to, but not within the errors of the radial velocity signal. We performed a cross-correlation bisector analysis of the radial velocity data to look for correlations with the photometric period and found none. Dynamical integrations of the proposed system show long-term stability with the new orbital parameters of over 10 million years. Our new orbital elements do not support the claims of HD 128311 b and c being in mean motion resonance. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and observations with T12 0.8 m automatic photoelectric telescope (APT) at Fairborn Observatory.

  19. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  20. Sensitivity of estuarine turbidity maximum to settling velocity, tidal mixing, and sediment supply

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Geyer, W.R.; ,

    2007-01-01

    Estuarine turbidity maximum, numerical modeling, settling velocity, stratification The spatial and temporal distribution of suspended material in an Estuarine Turbidity Maxima (ETM) is primarily controlled by particle settling velocity, tidal mixing, shear-stress thresholds for resuspension, and sediment supply. We vary these parameters in numerical experiments of an idealized two-dimensional (x-z) estuary to demonstrate their affects on the development and retention of particles in an ETM. Parameters varied are the settling velocity (0.01, 0.1, and 0.5 mm/s), tidal amplitude (0.4 m 12 hour tide and 0.3 to 0.6 m 14 day spring neap cycle), and sediment availability (spatial supply limited or unlimited; and temporal supply as a riverine pulse during spring vs. neap tide). Results identify that particles with a low settling velocity are advected out of the estuary and particles with a high settling velocity provide little material transport to an ETM. Particles with an intermediate settling velocity develop an ETM with the greatest amount of material retained. For an unlimited supply of sediment the ETM and limit of salt intrusion co-vary during the spring neap cycle. The ETM migrates landward of the salt intrusion during spring tides and seaward during neap tides. For limited sediment supply the ETM does not respond as an erodible pool of sediment that advects landward and seaward with the salt front. The ETM is maintained seaward of the salt intrusion and controlled by the locus of sediment convergence in the bed. For temporal variability of sediment supplied from a riverine pulse, the ETM traps more sediment if the pulse encounters the salt intrusion at neap tides than during spring tides. ?? 2007 Elsevier B.V. All rights reserved.

  1. Measurements of Velocity and Ablation from Bering Glacier During the Recent Surge

    NASA Astrophysics Data System (ADS)

    Shuchman, R. A.; Roussi, C.; Endsley, K. A.; Josberger, E. G.; Hart, B. E.

    2011-12-01

    Bering Glacier, in south central Alaska, the largest and longest glacier in continental North America, is once again surging. The last surge occurred in the 1993-1995 time period; the current surge was first documented by satellite observations in January 2011. In mid-May 2011 we deployed Glacier Ablation Sensing System (GASS) units at six sites from the terminus (sea level) to the Bagley Ice field (1200m). At each GASS site the date, time, GPS WAAS enabled location, air temperature, melt, wind speed, upward and downward looking light intensity are measured and recorded on an hourly basis. The melt is determined by measuring acoustically the distance between the sensor's housing which is mounted on an aluminum pole stream drilled approximately 10 m in to the ice or snow surface. Two of the GASS sites nearest the terminus transmit data back via the iridium network and are reported on the web (www.beringglacier.org - click on 2011 ablation monitoring). As of late July 2011, the glacier had moved approximately 785m at the terminus (B1) and 858m at B2 approximately 15 km up glacier at an altitude of approximately 340m. B1 total melt from mid-May was 494 cm, while B2 melted 383 cm. From previous observations, the average daily melt at Bering in the summer is approximately 5cm/day, and the velocity at B2 was 4.5 m/day, with a total displacement in 2010 of approximately 280m. B2 is presently moving 12m/day down from its peak observed displacement of 18m/day in late May. In late July, B1 at the terminus is moving approximately 7m/day, slower than its maximum daily displacement of over 15m/day observed in late May. In contrast, the 2010 GASS unit measurement at the glacier terminus observed a daily movement of only .14m/day with a total displacement of only approximately 10 meters. The hourly observations for all six GASS units will be presented along with interpretation as to why the melts and displacements vary over the observation period.

  2. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles

    USGS Publications Warehouse

    Liu, Hsi-Ping; Boore, David M.; Joyner, William B.; Oppenheimer, David H.; Warrick, Richard E.; Zhang, Wenbo; Hamilton, John C.; Brown, Leo T.

    2000-01-01

    Shear-wave velocities (VS) are widely used for earthquake ground-motion site characterization. VS data are now largely obtained using borehole methods. Drilling holes, however, is expensive. Nonintrusive surface methods are inexpensive for obtaining VS information, but not many comparisons with direct borehole measurements have been published. Because different assumptions are used in data interpretation of each surface method and public safety is involved in site characterization for engineering structures, it is important to validate the surface methods by additional comparisons with borehole measurements. We compare results obtained from a particular surface method (array measurement of surface waves associated with microtremor) with results obtained from borehole methods. Using a 10-element nested-triangular array of 100-m aperture, we measured surface-wave phase velocities at two California sites, Garner Valley near Hemet and Hollister Municipal Airport. The Garner Valley site is located at an ancient lake bed where water-saturated sediment overlies decomposed granite on top of granite bedrock. Our array was deployed at a location where seismic velocities had been determined to a depth of 500 m by borehole methods. At Hollister, where the near-surface sediment consists of clay, sand, and gravel, we determined phase velocities using an array located close to a 60-m deep borehole where downhole velocity logs already exist. Because we want to assess the measurements uncomplicated by uncertainties introduced by the inversion process, we compare our phase-velocity results with the borehole VS depth profile by calculating fundamental-mode Rayleigh-wave phase velocities from an earth model constructed from the borehole data. For wavelengths less than ~2 times of the array aperture at Garner Valley, phase-velocity results from array measurements agree with the calculated Rayleigh-wave velocities to better than 11%. Measurement errors become larger for wavelengths 2

  3. Development of (99m)Tc-labeled asymmetric urea derivatives that target prostate-specific membrane antigen for single-photon emission computed tomography imaging.

    PubMed

    Kimura, Hiroyuki; Sampei, Sotaro; Matsuoka, Daiko; Harada, Naoya; Watanabe, Hiroyuki; Arimitsu, Kenji; Ono, Masahiro; Saji, Hideo

    2016-05-15

    Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting (99m)Tc-tricarbonyl complexes that are cationic or lack a charge, no anionic (99m)Tc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic (99m)Tc-tricarbonyl complex ([(99m)Tc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [(99m)Tc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [(99m)Tc]TMCE was 12-17%, with a radiochemical purity greater than 98% after HPLC purification. [(99m)Tc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [(99m)Tc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pre-earthquake Anomalies of the Ion Velocity in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Liu, J. Y. G.; Chao, C. K.

    2016-12-01

    In the paper, pre-earthquake ionospheric anomalies (PEIAs) of the ion velocity, which are further employed to estimate the seismo-ionospheric electric fields, are for the first time reported. To see whether ionospheric ion velocity can be used to detect PEIAs or not, we examine concurrent measurements of the ion density, ion temperature, and the ion velocity probed by ROCSAT/IPEI (ionospheric Plasma and Electrodynamics Instrument), as well as the global ionospheric map (GIM) of the total electron content (TEC) derived by ground-based GPS receivers during the 31 March 2002 M6.8 Earthquake in Taiwan. It is found around the epicenter area 1-5 days before the earthquake that the GIM TEC significantly decreases, while the ROCSAT/IPEI ion density significantly decreases and ion velocity in the downward direction anomalously increases. The increase in the downward velocity implies that a westward electric field of about 0.91mV/m generated during the earthquake period is essential.

  5. Space Motions of Low-Mass Stars. II: Radial Velocities

    NASA Astrophysics Data System (ADS)

    Upgren, A. R.; Harlow, J. J. B.

    1996-01-01

    Radial velocities are presented for 53 dwarf K and M stars, eight of which are radial velocity standards. This is the second list in a program to determine space motions for all of the stars in the McCormick lists of dwarf stars. The observations reported here differ from those of the first list in that they were made using the 1.88m David Dunlap reflector. One of the stars varies in radial velocity, consistent with a spectroscopic binary with a period of about 48 days. (SECTION: Stars)

  6. PirB Overexpression Exacerbates Neuronal Apoptosis by Inhibiting TrkB and mTOR Phosphorylation After Oxygen and Glucose Deprivation Injury.

    PubMed

    Zhao, Zhao-Hua; Deng, Bin; Xu, Hao; Zhang, Jun-Feng; Mi, Ya-Jing; Meng, Xiang-Zhong; Gou, Xing-Chun; Xu, Li-Xian

    2017-05-01

    Previous studies have proven that paired immunoglobulin-like receptor B (PirB) plays a crucial suppressant role in neurite outgrowth and neuronal plasticity after central nervous system injury. However, the role of PirB in neuronal survival after cerebral ischemic injury and its mechanisms remains unclear. In the present study, the role of PirB is investigated in the survival and apoptosis of cerebral cortical neurons in cultured primary after oxygen and glucose deprivation (OGD)-induced injury. The results have shown that rebarbative PirB exacerbates early neuron apoptosis and survival. PirB gene silencing remarkably decreases early apoptosis and promotes neuronal survival after OGD. The expression of bcl-2 markedly increased and the expression of bax significantly decreased in PirB RNAi-treated neurons, as compared with the control- and control RNAi-treated ones. Further, phosphorylated TrkB and mTOR levels are significantly downregulated in the damaged neurons. However, the PirB silencing markedly upregulates phosphorylated TrkB and mTOR levels in the neurons after the OGD. Taken together, the overexpression of PirB inhibits the neuronal survival through increased neuron apoptosis. Importantly, the inhibition of the phosphorylation of TrkB and mTOR may be one of its mechanisms.

  7. A mechanism for high wall-rock velocities in rockbursts

    USGS Publications Warehouse

    McGarr, A.

    1997-01-01

    Considerable evidence has been reported for wall-rock velocities during rockbursts in deep gold mines that are substantially greater than ground velocities associated with the primary seismic events. Whereas varied evidence suggests that slip across a fault at the source of an event generates nearby particle velocities of, at most, several m/s, numerous observations, in nearby damaged tunnels, for instance, imply wall-rock velocities of the order of 10 m/s and greater. The common observation of slab buckling or breakouts in the sidewalls of damaged excavations suggests that slab flexure may be the mechanism for causing high rock ejection velocities. Following its formation, a sidewall slab buckles, causing the flexure to increase until the stress generated by flexure reaches the limit 5 that can be supported by the sidewall rock. I assume here that S is the uniaxial compressive strength. Once the flexural stress exceeds S, presumably due to the additional load imposed by a nearby seismic event, the slab fractures and unflexes violently. The peak wall-rock velocity v thereby generated is given by v=(3 + 1-??2/2)1 2 S/?????E for rock of density ??, Young's modulus E, and Poisson's ratio ??. Typical values of these rock properties for the deep gold mines of South Africa yield v= 26 m/s and for especially strong quartzites encountered in these same mines, v> 50m/s. Even though this slab buckling process leads to remarkably high ejection velocities and violent damage in excavations, the energy released during this failure is only a tiny fraction of that released in the primary seismic event, typically of magnitude 2 or greater.

  8. Asymmetric lipid-polymer particles (LIPOMER) by modified nanoprecipitation: role of non-solvent composition.

    PubMed

    Jindal, Anil B; Devarajan, Padma V

    2015-07-15

    Asymmetric lipid polymer nanostructures (LIPOMER) comprising glyceryl monostearate (GMS) as lipid and Gantrez AN 119 (Gantrez) as polymer, revealed enhanced splenic accumulation. In the present paper, we attempt to explain the formation of asymmetric GMS LIPOMER using real time imaging. Particles were prepared by precipitation under static conditions using different non-solvent phase compositions. The process was video recorded and the videos converted to time elapsed images using the FFmpeg 0.10.2 software at 25 frames/sec. Non-solvent compositions comprising >30% of IPA/Acetone revealed significant stranding of the solvent phase and slower onset of precipitation(2-6s). At lower concentrations of IPA and acetone, and in non-solvent compositions comprising ethanol/water the stranding phenomenon was not evident. Further, rapid precipitation(<1 s) was evident. Nanoprecipitation based on the Marangoni effect is a result of diffusion stranding, interfacial turbulence, and mass transfer of solvent and non-solvent resulting in solute precipitation. Enhanced diffusion stranding favored by high interaction of GMS and Gantrez(low ΔPol), and the low solubility parameter(Δδtotal) and high mixing enthalpy(ΔHM) of GMS in IPA resulted in droplets with random shapes analogous to an amoeba with pseudopodia, which on precipitation formed asymmetric particles. Asymmetric particles could be readily designed through appropriate selection of solutes and non-solvent phase by modified nanoprecipitation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Limits on the Decay-Rate Difference of Neutral-B Mesons and on CP, T, and CPT Violation in B0-antiB0 Oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, B

    2004-02-29

    Using events in which one of two neutral-B mesons from the decay of an {Upsilon}(4S) resonance is fully reconstructed, we set limits on the difference between the decay rates of the two neutral-B mass eigenstates and on CP, T, and CPT violation in B{sup 0}{bar B}{sup 0} mixing. The reconstructed decays, comprising both CP and flavor eigenstates, are obtained from 88 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We determine six independent parameters governing oscillations ({Delta}m, {Delta}{Lambda}/{Lambda}), CPT and CP violation (Re z, Im z), and CP andmore » T violation (Im {lambda}{sub CP}, |q/p|), where {lambda}{sub cp} characterizes B{sup 0} and {bar B}{sup 0} decays to states of charmonium plus K{sub S}{sup 0} or K{sub L}{sup 0}. The results are sgn(Re {lambda}{sub CP}){Delta}{Lambda}/{Lambda} = .0.008 {+-} 0.037(stat.) {+-} 0.018(syst.) [-0.084, 0.068], |q/p| = 1.029 {+-} 0.013(stat.) {+-} 0.011(syst.) [1.001, 1.057], (Re {lambda}{sub CP}/|{lambda}{sub CP}|)Re z = 0.014 {+-} 0.035(stat.) {+-} 0.034(syst.) [-0.072, 0.101], Imz = 0.038 {+-} 0.029(stat.) {+-} 0.025(syst.) [-0.028, 0.104]. The values inside square brackets indicate the 90% confidence-level intervals. The values of Im {lambda}{sub CP} and {Delta}m are consistent with previous analyses and are used as cross-checks. These measurements are in agreement with Standard Model expectations.« less

  10. Nonlinear Peculiar-Velocity Analysis and PCA

    NASA Astrophysics Data System (ADS)

    Dekel, Avishai; Eldar, Amiram; Silberman, Lior; Zehavi, Idit

    We allow for nonlinear effects in the likelihood analysis of peculiar velocities, and obtain ˜35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be of the flat ΛCDM model (h = 0.65, n = 1) with only Ω_m free. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b˜ 0.2 (h^{-1}Mpc)^{-1} and fit a two-parameter power-law at k > k b . This allows for an unbiased fit in the linear regime. Tests using improved mock catalogs demonstrate a reduced bias and a better fit. We find for the Mark III and SFI data Ω_m = 0.35± 0.09 with σ_8Ω_m^{0.6} = 0.55± 0.10 (90% errors). When allowing deviations from ΛCDM, we find an indication for a wiggle in the power spectrum in the form of an excess near k ˜ 0.05 and a deficiency at k ˜ 0.1 (h^{-1}Mpc)^{-1} - a "cold flow" which may be related to a feature indicated from redshift surveys and the second peak in the CMB anisotropy. A χ^2 test applied to principal modes demonstrates that the nonlinear procedure improves the goodness of fit. The Principal Component Analysis (PCA) helps identifying spatial features of the data and fine-tuning the theoretical and error models. We address the potential for optimal data compression using PCA.

  11. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors

    PubMed Central

    Tabassum, Hassina; Mahmood, Asif; Wang, Qingfei; Xia, Wei; Liang, Zibin; Qiu, Bin; zhao, Ruo; Zou, Ruqiang

    2017-01-01

    To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH)2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g−1 at a current density of 1A g−1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH)2@CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg−1. This device also exhibits excellent rate capability with energy density of 15.55 Whkg−1 at power density of 9331 Wkg−1 coupled long termed stability up to 6000 cycles. PMID:28240224

  12. Hierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors.

    PubMed

    Tabassum, Hassina; Mahmood, Asif; Wang, Qingfei; Xia, Wei; Liang, Zibin; Qiu, Bin; Zhao, Ruo; Zou, Ruqiang

    2017-02-27

    To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH) 2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and hydrothermal treatment. The Co(OH) 2 could be firmly stabilized by dual protection of N-doped carbon polyhedron (CP) and B/N co-doped graphene (BCN) nanosheets. Interestingly, the porous carbon and BCN nanosheets greatly improve the charge storage, wettability, and redox activity of electrodes. Thus the hybrid delivers specific capacitance of 1263 F g -1 at a current density of 1A g -1 with 90% capacitance retention over 5000 cycles. Furthermore, the new aqueous asymmetric supercapacitor (ASC) was also designed by using Co(OH) 2 @CP@BCN nanohybrid and BCN nanosheets as positive and negative electrodes respectively, which leads to high energy density of 20.25 Whkg -1 . This device also exhibits excellent rate capability with energy density of 15.55 Whkg -1 at power density of 9331 Wkg -1 coupled long termed stability up to 6000 cycles.

  13. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimers, Kerstin; Buchholz, Katja; Werchau, Hermann

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cellsmore » revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.« less

  14. Clogging and transport of driven particles in asymmetric funnel arrays

    DOE PAGES

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    2018-05-03

    In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less

  15. Clogging and transport of driven particles in asymmetric funnel arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson Reichhardt, Cynthia J.; Reichhardt, Charles

    In this paper, we numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle-particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrantmore » pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth one-dimensional flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. Finally, the clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.« less

  16. Clogging and transport of driven particles in asymmetric funnel arrays

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-06-01

    We numerically examine the flow and clogging of particles driven through asymmetric funnel arrays when the commensurability ratio of the number of particles per plaquette is varied. The particle–particle interactions are modeled with a soft repulsive potential that could represent vortex flow in type-II superconductors or driven charged colloids. The velocity-force curves for driving in the easy flow direction of the funnels exhibit a single depinning threshold; however, for driving in the hard flow direction, we find that there can be both negative mobility where the velocity decreases with increasing driving force as well as a reentrant pinning effect in which the particles flow at low drives but become pinned at intermediate drives. This reentrant pinning is associated with a transition from smooth 1D flow at low drives to a clogged state at higher drives that occurs when the particles cluster in a small number of plaquettes and block the flow. When the drive is further increased, particle rearrangements occur that cause the clog to break apart. We map out the regimes in which the pinned, flowing, and clogged states appear as a function of plaquette filling and drive. The clogged states remain robust at finite temperatures but develop intermittent bursts of flow in which a clog temporarily breaks apart but quickly reforms.

  17. Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression.

    PubMed

    Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A; Kiebler, Michael; Temple, Sally

    2012-10-05

    Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here, we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2(+) neuroblast daughter, taking with it a subset of RNAs. Knockdown of Stau2 stimulates differentiation and overexpression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified candidates, including a subset involved in primary cilium function. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Asymmetric Segregation of the Double-Stranded RNA Binding Protein Staufen2 during Mammalian Neural Stem Cell Divisions Promotes Lineage Progression

    PubMed Central

    Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A.; Kiebler, Michael; Temple, Sally

    2012-01-01

    Summary Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2+ neuroblast daughter, taking with it a sub-set of RNAs. Knockdown of Stau2 stimulates differentiation and over-expression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified novel candidates, including a subset involved in primary cilium function. PMID:22902295

  19. Gas transfer velocities measured at low wind speed over a lake

    USGS Publications Warehouse

    Crusius, John; Wanninkhof, R.

    2003-01-01

    The relationship between gas transfer velocity and wind speed was evaluated at low wind speeds by quantifying the rate of evasion of the deliberate tracer, SF6, from a small oligotrophic lake. Several possible relationships between gas transfer velocity and low wind speed were evaluated by using 1-min-averaged wind speeds as a measure of the instantaneous wind speed values. Gas transfer velocities in this data set can be estimated virtually equally well by assuming any of three widely used relationships between k600 and winds referenced to 10-m height, U10: (1) a bilinear dependence with a break in the slope at ???3.7 m s-1, which resulted in the best fit; (2) a power dependence; and (3) a constant transfer velocity for U10 3.7 m s-1 which, coupled with the typical variability in instantaneous wind speeds observed in the field, leads to average transfer velocity estimates that are higher than those predicted for steady wind trends. The transfer velocities predicted by the bilinear steady wind relationship for U10 < ???3.7 m s-1 are virtually identical to the theoretical predictions for transfer across a smooth surface.

  20. Asymmetric Electrochemical Capacitors - Stretching the Limits of Aqueous Electrolytes

    DTIC Science & Technology

    2011-07-01

    controlled atmosphere (no need for a dry room or glove box), simplifying the fabrication and packaging process. The use of a faradaic material with a fi...than the thin (25 μ m) aluminum foil current collectors used in nonaqueous EDLCs. The corrosion of these current collectors must also be minimized...valid OMB control number. 1. REPORT DATE JUL 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Asymmetric

  1. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  2. Redox Regulation of NF-κB p50 and M1 Polarization in Microglia

    PubMed Central

    Taetzsch, Thomas; Levesque, Shannon; McGraw, Constance; Brookins, Savannah; Luqa, Rafy; Bonini, Marcelo G.; Mason, Ronald P.; Oh, Unsong; Block, Michelle L.

    2014-01-01

    Redox-signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF-κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro-inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2O2 showed altered NF-κB p50 protein-protein interactions, decreased NF-κB p50 DNA binding, and augmented late-stage TNFα expression, indicating that H2O2 impairs NF-κB p50 function and prolongs amplified M1 activation. NF-κB p50−/− mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1mg/kg, IP) administration in the NF-κB p50−/− mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin-trap DMPO mildly reduced LPS-induced 22 h TNFα in the brain in NF-κB p50+/+ mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF-κB p50−/− mice, implicating a fundamental role for NF-κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF-κB p50 as a key redox-signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS-specific vulnerability to chronic inflammation. PMID:25331559

  3. The structure of the electron diffusion region during asymmetric anti-parallel magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Swisdak, M.; Drake, J. F.; Price, L.; Burch, J. L.; Cassak, P.

    2017-12-01

    The structure of the electron diffusion region during asymmetric magnetic reconnection is ex- plored with high-resolution particle-in-cell simulations that focus on an magnetopause event ob- served by the Magnetospheric Multiscale Mission (MMS). A major surprise is the development of a standing, oblique whistler-like structure with regions of intense positive and negative dissipation. This structure arises from high-speed electrons that flow along the magnetosheath magnetic sepa- ratrices, converge in the dissipation region and jet across the x-line into the magnetosphere. The jet produces a region of negative charge and generates intense parallel electric fields that eject the electrons downstream along the magnetospheric separatrices. The ejected electrons produce the parallel velocity-space crescents documented by MMS.

  4. Two-Scale Ion Meandering Caused by the Polarization Electric Field During Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara L.; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert; hide

    2016-01-01

    Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.

  5. Two-scale ion meandering caused by the polarization electric field during asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert; Ergun, Robert E.; Burch, James L.; Avanov, Levon; Lavraud, Benoit; Moore, Thomas E.; Saito, Yoshifumi

    2016-08-01

    Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.

  6. Effect of neck flexor muscle activation on impact velocity of the head during backward falls in young adults.

    PubMed

    Choi, W J; Robinovitch, S N; Ross, S A; Phan, J; Cipriani, D

    2017-11-01

    Falls are a common cause of traumatic brain injuries (TBI) across the lifespan. A proposed but untested hypothesis is that neck muscle activation influences impact severity and risk for TBI during a fall. We conducted backward falling experiments to test whether activation of the neck flexor muscles facilitates the avoidance of head impact, and reduces impact velocity if the head contacts the ground. Young adults (n=8) fell from standing onto a 30cm thick gymnastics mat while wearing a helmet. Participants were instructed to fall backward and (a) prevent their head from impacting the mat ("no head impact" trials); (b) allow their head to impact the mat, but with minimal impact severity ("soft impact" trials); and (c) allow their head to impact the mat, while inhibiting efforts to reduce impact severity ("hard impact" trials). Trial type associated with peak magnitude of electromyographic activity of the sternocleidomastoid (SCM) muscles (p<0.017), and with the vertical and horizontal velocity of the head at impact (p<0.001). Peak SCM activations, expressed as percent maximal voluntary isometric contraction (%MVIC), averaged 75.3, 67.5, and 44.5%MVIC in "no head impact", "soft impact", and "hard impact" trials, respectively. When compared to "soft impact" trials, vertical impact velocities in "hard impact" trials averaged 87% greater (3.23 versus 1.73m/s) and horizontal velocities averaged 83% greater (2.74 versus 1.50m/s). For every 10% increase in SCM %MVIC, vertical impact velocity decreased 0.24m/s and horizontal velocity decreased 0.22m/s. We conclude that SCM activation contributes to the prevention and modulation of head impact severity during backward falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. M2-F3 In-flight Launch from B-52

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This photo shows the M2-F3 Lifting Body being launched from NASA's B-52 mothership at the NASA Flight Research Center (FRC--now the Dryden Flight Research Center), Edwards, California. A fleet of lifting bodies flown at the FRC from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Early flight testing of the M2-F1 and M2-F2 lifting body reentry configurations had validated the concept of piloted lifting body reentry from space. When the M2-F2 crashed on May 10, 1967, valuable information had already been obtained and was contributing to new designs. NASA pilots said the M2-F2 had lateral control problems, so when the M2-F2 was rebuilt at Northrop and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. First flight of the M2-F3, with NASA pilot Bill Dana at the controls, was June 2, 1970. The modified vehicle exhibited much better lateral stability and control characteristics than before, and only three glide flights were necessary before the first powered flight on Nov. 25, 1970. Over the next 26 missions, the M2-F3 reached a top speed of l,064 mph (Mach 1.6). Highest altitude reached by vehicle was 7l,500 feet on Dec. 20, 1972, the date of its last flight, with NASA pilot John Manke at the controls. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner from 1965 to 1969. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most

  8. Design of a Balun Bandpass Filter with Asymmetrical Coupled Microstrip Lines

    NASA Astrophysics Data System (ADS)

    Wang, Xuedao; Wang, Jianpeng; Zhang, Gang; Huang, Feng

    2017-07-01

    A new microstrip coupled-line balun topology and its application to the balun bandpass filter (BPF) with a triple mode response are proposed in this paper. The involved balun structure is composed of two back-to-back quarter-wavelength (λ/4) asymmetrical coupled-line sections. Detailed design formulas based on the asymmetrical coupled-line theory are given to validate the feasibility of the balun. Besides, to obtain filtering performance simultaneously, the balun is then effectively integrated with a pair of triple mode resonators. To demonstrate the design concept of the balun BPF, a prototype operating at 2.4 GHz with the fractional bandwidth (FBW) of about 19.2 % is designed, fabricated, and measured. Results indicate that between the two balanced outputs, the amplitude imbalance is less than 0.3 dB and the phase difference is within 180°±5° inside the whole passband. Both simulated and experimental results are in good agreement.

  9. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B.

    PubMed

    Jeong, Haeyoung; Lim, Jong-Min; Park, Jihye; Sim, Young Mi; Choi, Han-Gu; Lee, Jungho; Jeong, Won-Joong

    2014-04-16

    Chorella is the representative taxon of Chlorellales in Trebouxiophyceae, and its chloroplast (cp) genomic information has been thought to depend only on studies concerning Chlorella vulgaris and GenBank information of C. variablis. Mitochondrial (mt) genomic information regarding Chlorella is currently unavailable. To elucidate the evolution of organelle genomes and genetic information of Chlorella, we have sequenced and characterized the cp and mt genomes of Arctic Chlorella sp. ArM0029B. The 119,989-bp cp genome lacking inverted repeats and 65,049-bp mt genome were sequenced. The ArM0029B cp genome contains 114 conserved genes, including 32 tRNA genes, 3 rRNA genes, and 79 genes encoding proteins. Chlorella cp genomes are highly rearranged except for a Chlorella-specific six-gene cluster, and the ArM0029B plastid resembles that of Chlorella variabilis except for a 15-kb gene cluster inversion. In the mt genome, 62 conserved genes, including 27 tRNA genes, 3 rRNA genes, and 32 genes encoding proteins were determined. The mt genome of ArM0029B is similar to that of the non-photosynthetic species Prototheca and Heicosporidium. The ArM0029B mt genome contains a group I intron, with an ORF containing two LAGLIDADG motifs, in cox1. The intronic ORF is shared by C. vulgaris and Prototheca. The phylogeny of the plastid genome reveals that ArM0029B showed a close relationship of Chlorella to Parachlorella and Oocystis within Chlorellales. The distribution of the cox1 intron at 721 support membership in the order Chlorellales. Mitochondrial phylogenomic analyses, however, indicated that ArM0029B shows a greater affinity to MX-AZ01 and Coccomyxa than to the Helicosporidium-Prototheca clade, although the detailed phylogenetic relationships among the three taxa remain to be resolved. The plastid genome of ArM0029B is similar to that of C. variabilis. The mt sequence of ArM0029B is the first genome to be reported for Chlorella. Chloroplast genome phylogeny supports monophyly

  10. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B

    PubMed Central

    2014-01-01

    Background Chorella is the representative taxon of Chlorellales in Trebouxiophyceae, and its chloroplast (cp) genomic information has been thought to depend only on studies concerning Chlorella vulgaris and GenBank information of C. variablis. Mitochondrial (mt) genomic information regarding Chlorella is currently unavailable. To elucidate the evolution of organelle genomes and genetic information of Chlorella, we have sequenced and characterized the cp and mt genomes of Arctic Chlorella sp. ArM0029B. Results The 119,989-bp cp genome lacking inverted repeats and 65,049-bp mt genome were sequenced. The ArM0029B cp genome contains 114 conserved genes, including 32 tRNA genes, 3 rRNA genes, and 79 genes encoding proteins. Chlorella cp genomes are highly rearranged except for a Chlorella-specific six-gene cluster, and the ArM0029B plastid resembles that of Chlorella variabilis except for a 15-kb gene cluster inversion. In the mt genome, 62 conserved genes, including 27 tRNA genes, 3 rRNA genes, and 32 genes encoding proteins were determined. The mt genome of ArM0029B is similar to that of the non-photosynthetic species Prototheca and Heicosporidium. The ArM0029B mt genome contains a group I intron, with an ORF containing two LAGLIDADG motifs, in cox1. The intronic ORF is shared by C. vulgaris and Prototheca. The phylogeny of the plastid genome reveals that ArM0029B showed a close relationship of Chlorella to Parachlorella and Oocystis within Chlorellales. The distribution of the cox1 intron at 721 support membership in the order Chlorellales. Mitochondrial phylogenomic analyses, however, indicated that ArM0029B shows a greater affinity to MX-AZ01 and Coccomyxa than to the Helicosporidium-Prototheca clade, although the detailed phylogenetic relationships among the three taxa remain to be resolved. Conclusions The plastid genome of ArM0029B is similar to that of C. variabilis. The mt sequence of ArM0029B is the first genome to be reported for Chlorella. Chloroplast

  11. Swarm Counter-Asymmetric-Threat (CAT) 6-DOF Dynamics Simulation

    DTIC Science & Technology

    2005-07-01

    NAWCWD TP 8593 Swarm Counter-Asymmetric-Threat ( CAT ) 6-DOF Dynamics Simulation by James Bobinchak Weapons and Energetics...mathematical models used in the swarm counter- asymmetric-threat ( CAT ) simulation and the results of extensive Monte Carlo simulations. The swarm CAT ...Asymmetric-Threat ( CAT ) 6-DOF Dynamics Simulation (U) 6. AUTHOR(S) James Bobinchak and Gary Hewer 7. PERFORMING ORGANIZATION NAME(S) AND

  12. Return stroke velocities and currents using a solid state silicon detector system

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1988-01-01

    A small, portable device has been developed to measure return stroke velocities. With the device, velocities from 135 strokes that consist of 92 natural return strokes and 43 triggered return strokes have been analyzed. The average return stroke velocity for longer channels, greater than 500 meters, is 1.2 + or - 0.3 x 10 to the 8th m/s for both natural and triggered return strokes. For shorter channel lengths, less than 500 m, natural lightning has a statistically higher average return stroke velocity of 1.9 + or - 0.7 x 10 to the 8th m/s than triggered lightning with an average return stroke velocity of 1.4 + or - 0.4 x 10 to the 8th m/s. Using the transmission line model of the return stroke, natural lightning has a peak current distribution that is log-normal with a median value of 19 kA. Return stroke velocities and currents were determined for two distant single stroke natural positive cloud-to-ground flashes. The velocities were 1.0 and 1.7 x 10 to the 8th ms/s while the estimated peak current for each positive flash was over 125 kA.

  13. Alternating carrier models of asymmetric glucose transport violate the energy conservation laws.

    PubMed

    Naftalin, Richard J

    2008-11-01

    Alternating access transporters with high-affinity externally facing sites and low-affinity internal sites relate substrate transit directly to the unliganded asymmetric "carrier" (Ci) distribution. When both bathing solutions contain equimolar concentrations of ligand, zero net flow of the substrate-carrier complex requires a higher proportion of unliganded low-affinity inside sites (proportional, variant 1/KD(in)) and slower unliganded "free" carrier transit from inside to outside than in the reverse direction. However, asymmetric rates of unliganded carrier movement, kij, imply that an energy source, DeltaGcarrier = RT ln (koi/kio) = RT ln (Cin/Cout) = RT ln (KD(in)/KD(out)), where R is the universal gas constant (8.314 Joules/M/K degrees), and T is the temperature, assumed here to be 300 K degrees , sustains the asymmetry. Without this invalid assumption, the constraints of carrier path cyclicity, combined with asymmetric ligand affinities and equimolarity at equilibrium, are irreconcilable, and any passive asymmetric uniporter or cotransporter model system, e.g., Na-glucose cotransporters, espousing this fundamental error is untenable. With glucose transport via GLUT1, the higher maximal rate and Km of net ligand exit compared to net ligand entry is only properly simulated if ligand transit occurs by serial dissociation-association reactions between external high-affinity and internal low-affinity immobile sites. Faster intersite transit rates occur from lower-affinity sites than from higher-affinity sites and require no other energy source to maintain equilibrium. Similar constraints must apply to cotransport.

  14. Velocity distributions in a micromixer measured by NMR imaging.

    PubMed

    Ahola, Susanna; Telkki, Ville-Veikko; Stapf, Siegfried

    2012-04-24

    Velocity distributions (so-called propagators) with two-dimensional spatial resolution inside a chemical micromixer were measured by pulsed-field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR). A surface coil matching the volume of interest was built to enhance the signal-to-noise ratio. This enabled the acquisition of velocity maps with a very high spatial resolution of 29 μm × 39 μm. The measured propagators are compared with theoretical distributions and a good agreement is found. The results show that the propagator data provide much richer information about flow behaviour than conventional NMR velocity imaging and the information is essential for understanding the performance of a micromixer. It reveals, for example, deviations in the shape and size of the channel structures and multicomponent flow velocity distribution of overlapping channels. Propagator data efficiently compensate lost information caused by insufficient 3D resolution in conventional velocity imaging.

  15. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  16. Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.

    2017-12-01

    Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).

  17. Asymmetric dual-loop feedback to suppress spurious tones and reduce timing jitter in self-mode-locked quantum-dash lasers emitting at 155 μm

    NASA Astrophysics Data System (ADS)

    Asghar, Haroon; McInerney, John G.

    2017-09-01

    We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.

  18. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  19. B-747 Vortex Alleviation Flight Tests : Ground-Based Sensor Measurements

    DOT National Transportation Integrated Search

    1982-01-01

    In 1979, a series of B-747 flight tests were carried out to study the wake-vortex alleviation produced by deploying spoilers in the landing configuration. The alleviation achieved was examined by encounters of probe aircraft and by velocity profile m...

  20. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer.

    PubMed

    Carus, Jana; Paul, Maike; Schröder, Boris

    2016-03-01

    By reducing current velocity, tidal marsh vegetation can diminish storm surges and storm waves. Conversely, currents often exert high mechanical stresses onto the plants and hence affect vegetation structure and plant characteristics. In our study, we aim at analysing this interaction from both angles. On the one hand, we quantify the reduction of current velocity by Bolboschoenus maritimus, and on the other hand, we identify functional traits of B. maritimus' ramets along environmental gradients. Our results show that tidal marsh vegetation is able to buffer a large proportion of the flow velocity at currents under normal conditions. Cross-shore current velocity decreased with distance from the marsh edge and was reduced by more than 50% after 15 m of vegetation. We were furthermore able to show that plants growing at the marsh edge had a significantly larger diameter than plants from inside the vegetation. We found a positive correlation between plant thickness and cross-shore current which could provide an adaptive value in habitats with high mechanical stress. With the adapted morphology of plants growing at the highly exposed marsh edge, the entire vegetation belt is able to better resist the mechanical stress of high current velocities. This self-adaptive effect thus increases the ability of B. maritimus to grow and persist in the pioneer zone and may hence better contribute to ecosystem-based coastal protection by reducing current velocity.