Science.gov

Sample records for asymmetry-driven structure formation

  1. Geometric asymmetry driven Janus micromotors.

    PubMed

    Zhao, Guanjia; Pumera, Martin

    2014-10-01

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a "coconut" micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. PMID:25122607

  2. Geometric asymmetry driven Janus micromotors

    NASA Astrophysics Data System (ADS)

    Zhao, Guanjia; Pumera, Martin

    2014-09-01

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S

  3. Structure Formation in Astrophysics

    NASA Astrophysics Data System (ADS)

    Chabrier, Gilles

    2009-01-01

    Part I. Physical Processes and Numerical Methods Common to Structure Formations in Astrophysics: 1. The physics of turbulence E. Levêque; 2. The numerical simulation of turbulence W. Schmidt; 3. Numerical methods for radiation magnetohydrodynamics in astrophysics R. Klein and J. Stone; 4. The role of jets in the formation of planets, stars, and galaxies R. Banerjee, R. Pudritz and R. Ouyed; 5. Advanced numerical methods in astrophysical fluid dynamics A. Hujeirat and F. Heitsch; Part II. Structure and Star Formation in the Primordial Universe: 6. New frontiers in cosmology and galaxy formation challenges for the future R. Ellis and J. Silk; 7. Galaxy formation physics T. Abel, G. Bryan and R. Teyssier; 8. First stars formation, evolution, feedback effects V. Bromm, A. Ferrara and A. Heger; Part III. Contemporary Star and Brown Dwarf Formation: a) Cloud Formation and Fragmentation: 9. Diffuse interstellar medium and the formation of molecular clouds P. Hennebelle, M. Mac Low and E. Vazquez-Semadeni; 10. The formation of distributed and clustered stars in molecular clouds T. Megeath, Z. -Y. Li and A. Nordlund; b) Core Fragmentation and Star Formation: 11. The formation and evolution of prestellar cores P. André, S. Basu and S. Inutsuka; 12. Models for the formation of massive stars; Part IV. Protoplanetary Disks and Planet Formation M. Krumholz and I. Bonnell: 13. Observational properties of disks and young stellar objects G. Duchêne, F. Ménard, J. Muzzerolle and S. Mohanty; 14. Structure and dynamics of protoplanetary disks C. Dullemond, R. Durisen and J. Papaloizou; 15. Planet formation and evolution theory and observation Y. Alibert, I. Baraffe, W. Benz, G. Laughlin and S. Udry; 16. Planet formation assembling the puzzle G. Wurm and T. Guillot; Part V. Summary: 17. Open issues in small- and large-scale structure formation R. Klessen and M. Mac Low; 18. Final word E. Salpeter.

  4. Structure Formation in Astrophysics

    NASA Astrophysics Data System (ADS)

    Chabrier, Gilles

    2011-02-01

    Part I. Physical Processes and Numerical Methods Common to Structure Formations in Astrophysics: 1. The physics of turbulence E. Levêque; 2. The numerical simulation of turbulence W. Schmidt; 3. Numerical methods for radiation magnetohydrodynamics in astrophysics R. Klein and J. Stone; 4. The role of jets in the formation of planets, stars, and galaxies R. Banerjee, R. Pudritz and R. Ouyed; 5. Advanced numerical methods in astrophysical fluid dynamics A. Hujeirat and F. Heitsch; Part II. Structure and Star Formation in the Primordial Universe: 6. New frontiers in cosmology and galaxy formation challenges for the future R. Ellis and J. Silk; 7. Galaxy formation physics T. Abel, G. Bryan and R. Teyssier; 8. First stars formation, evolution, feedback effects V. Bromm, A. Ferrara and A. Heger; Part III. Contemporary Star and Brown Dwarf Formation: a) Cloud Formation and Fragmentation: 9. Diffuse interstellar medium and the formation of molecular clouds P. Hennebelle, M. Mac Low and E. Vazquez-Semadeni; 10. The formation of distributed and clustered stars in molecular clouds T. Megeath, Z. -Y. Li and A. Nordlund; b) Core Fragmentation and Star Formation: 11. The formation and evolution of prestellar cores P. André, S. Basu and S. Inutsuka; 12. Models for the formation of massive stars; Part IV. Protoplanetary Disks and Planet Formation M. Krumholz and I. Bonnell: 13. Observational properties of disks and young stellar objects G. Duchêne, F. Ménard, J. Muzzerolle and S. Mohanty; 14. Structure and dynamics of protoplanetary disks C. Dullemond, R. Durisen and J. Papaloizou; 15. Planet formation and evolution theory and observation Y. Alibert, I. Baraffe, W. Benz, G. Laughlin and S. Udry; 16. Planet formation assembling the puzzle G. Wurm and T. Guillot; Part V. Summary: 17. Open issues in small- and large-scale structure formation R. Klessen and M. Mac Low; 18. Final word E. Salpeter.

  5. Cosmological structure formation

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    A summary of the current forefront problem of physical cosmology, the formation of structures (galaxies, clusters, great walls, etc.) in the universe is presented. Solutions require two key ingredients: (1) matter; and (2) seeds. Regarding the matter, it now seems clear that both baryonic and non-baryonic matter are required. Whether the non-baryonic matter is hot or cold depends on the choice of seeds. Regarding the seeds, both density fluctuations and topological defects are discussed. The combination of isotropy of the microwave background and the recent observations indicating more power on large scales have severly constrained, if not eliminated, Gaussian fluctuations with equal power on all scales, regardless of the eventual resolution of both the matter and seed questions. It is important to note that all current structure formation ideas require new physics beyond SU(3) x SU(2) x U(1).

  6. Kinetically guided colloidal structure formation

    PubMed Central

    Hecht, Fabian M.; Bausch, Andreas R.

    2016-01-01

    The self-organization of colloidal particles is a promising approach to create novel structures and materials, with applications spanning from smart materials to optoelectronics to quantum computation. However, designing and producing mesoscale-sized structures remains a major challenge because at length scales of 10–100 μm equilibration times already become prohibitively long. Here, we extend the principle of rapid diffusion-limited cluster aggregation (DLCA) to a multicomponent system of spherical colloidal particles to enable the rational design and production of finite-sized anisotropic structures on the mesoscale. In stark contrast to equilibrium self-assembly techniques, kinetic traps are not avoided but exploited to control and guide mesoscopic structure formation. To this end the affinities, size, and stoichiometry of up to five different types of DNA-coated microspheres are adjusted to kinetically control a higher-order hierarchical aggregation process in time. We show that the aggregation process can be fully rationalized by considering an extended analytical DLCA model, allowing us to produce mesoscopic structures of up to 26 µm in diameter. This scale-free approach can easily be extended to any multicomponent system that allows for multiple orthogonal interactions, thus yielding a high potential of facilitating novel materials with tailored plasmonic excitation bands, scattering, biochemical, or mechanical behavior. PMID:27444018

  7. Unravelling lignin formation and structure

    SciTech Connect

    Lewis, N.G. . Inst. of Biological Chemistry)

    1991-01-01

    During this study, we established that the Fagaceae exclusively accumulate Z-monolignois/glucosides, and not the E-isomers. Evidence for the presence of a novel E{yields}Z isomerse has been obtained. Our pioneering work in lignin biosynthesis and structure in situ has also progressed smoothly. We established the bonding environments of a woody angiosperm, Leucanea leucocephala, as well as wheat (T. aestivum) and tobacco (N. tabacum). A cell culture system from Pinus taeda was developed which seems ideal for investigating the early stages of lignification. These cultures excrete peroxidase isozymes, considered to be specifically involved in lignin deposition. We also studied the effect of the putative lignin-degrading enzyme, lignin peroxidase, on monolignols and dehydropolymerisates therefrom. In all cases, polymerization was observed, and not degradation; these polymers are identical to that obtained with horseradish peroxidases/H{sub 2}O{sub 2}. It seems inconceivable that these enzymes can be considered as being primarily responsible for lignin biodegradation.

  8. Instabilities and structure formation in laser processing

    SciTech Connect

    Baeuerle, D.; Arenholz, E.; Arnold, N.; Heitz, J.; Kargl, P.B.

    1996-12-31

    This paper gives an overview on different types of instabilities and structure formation in various fields of laser processing. Among the examples discussed in detail are non-coherent structures observed in laser-induced chemical vapor deposition (LCVD), in laser-induced surface modifications, and in laser ablation of polymers.

  9. Structure formation in the quasispherical Szekeres model

    SciTech Connect

    Bolejko, Krzysztof

    2006-06-15

    Structure formation in the Szekeres model is investigated. Since the Szekeres model is an inhomogeneous model with no symmetries, it is possible to examine the interaction of neighboring structures and its impact on the growth of a density contrast. It has been found that the mass flow from voids to clusters enhances the growth of the density contrast. In the model presented here, the growth of the density contrast is almost 8 times faster than in the linear approach.

  10. Structure formation, backreaction and weak gravitational fields

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Singh, T. P.

    2008-03-01

    There is an ongoing debate in the literature as to whether the effects of averaging out inhomogeneities ('backreaction') in cosmology can be large enough to account for the acceleration of the scale factor in the Friedmann-Lemaître-Robertson-Walker (FLRW) models. In particular, some simple models of structure formation studied in the literature seem to indicate that this is indeed possible, and it has also been suggested that the perturbed FLRW framework is no longer a good approximation during structure formation, when the density contrast becomes non-linear. In this work we attempt to clarify the situation to some extent, using a fully relativistic model of pressureless spherical collapse. We find that whereas averaging during structure formation can lead to acceleration via a selective choice of averaging domains, the acceleration is not present when more generic domains are used for averaging. Further, we show that for most of the duration of the collapse, matter velocities remain small, and the perturbed FLRW form of the metric can be explicitly recovered, in the structure formation phase. We also discuss the fact that the magnitude of the average effects of inhomogeneities depends on the scale of averaging, and while it may not be completely negligible on intermediate scales, it is expected to remain small when averaging on suitably large scales.

  11. Evolution of atomic structure during nanoparticle formation

    PubMed Central

    Tyrsted, Christoffer; Lock, Nina; Jensen, Kirsten M. Ø.; Christensen, Mogens; Bøjesen, Espen D.; Emerich, Hermann; Vaughan, Gavin; Billinge, Simon J. L.; Iversen, Bo B.

    2014-01-01

    Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structure is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries. PMID:25075335

  12. Evolution of atomic structure during nanoparticle formation.

    PubMed

    Tyrsted, Christoffer; Lock, Nina; Jensen, Kirsten M Ø; Christensen, Mogens; Bøjesen, Espen D; Emerich, Hermann; Vaughan, Gavin; Billinge, Simon J L; Iversen, Bo B

    2014-05-01

    Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structure is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries. PMID:25075335

  13. Early structure formation from cosmic string loops

    SciTech Connect

    Shlaer, Benjamin; Vilenkin, Alexander; Loeb, Abraham E-mail: vilenkin@cosmos.phy.tufts.edu

    2012-05-01

    We examine the effects of cosmic strings on structure formation and on the ionization history of the universe. While Gaussian perturbations from inflation are known to provide the dominant contribution to the large scale structure of the universe, density perturbations due to strings are highly non-Gaussian and can produce nonlinear structures at very early times. This could lead to early star formation and reionization of the universe. We improve on earlier studies of these effects by accounting for high loop velocities and for the filamentary shape of the resulting halos. We find that for string energy scales Gμ∼>10{sup −7}, the effect of strings on the CMB temperature and polarization power spectra can be significant and is likely to be detectable by the Planck satellite. We mention shortcomings of the standard cosmological model of galaxy formation which may be remedied with the addition of cosmic strings, and comment on other possible observational implications of early structure formation by strings.

  14. Model of intermittent zonal flow structure formation

    SciTech Connect

    Anderson, Johan; Kim, Eun-jin

    2008-11-01

    We present a theory the PDF tails of the zonal flow formation by assuming that a modon (a bipolar vortex) drives a zonal flow through the generalized Reynolds stress. We show that the PDF tails of zonal flow formation have exponential behavior {approx_equal}e{sup -{xi}}{sup {phi}{sub Z}{sub F}{sup 3}}, with the overall amplitude {xi} severely quenched by strong flow shear. It is found that stronger zonal flows are generated in ITG turbulence than Hasegawa-Mima (HM) turbulence as well as further from marginal stability. This suggests that although ITG turbulence has a higher level of heat flux, it also more likely generates stronger zonal flows, leading to a self-regulating system. It is also shown that shear flows can significantly reduce the PDF tails of structure formation.

  15. The structure and formation of natural categories

    NASA Technical Reports Server (NTRS)

    Fisher, Douglas; Langley, Pat

    1990-01-01

    Categorization and concept formation are critical activities of intelligence. These processes and the conceptual structures that support them raise important issues at the interface of cognitive psychology and artificial intelligence. The work presumes that advances in these and other areas are best facilitated by research methodologies that reward interdisciplinary interaction. In particular, a computational model is described of concept formation and categorization that exploits a rational analysis of basic level effects by Gluck and Corter. Their work provides a clean prescription of human category preferences that is adapted to the task of concept learning. Also, their analysis was extended to account for typicality and fan effects, and speculate on how the concept formation strategies might be extended to other facets of intelligence, such as problem solving.

  16. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge. PMID:12804279

  17. General relativity and cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Adamek, Julian; Daverio, David; Durrer, Ruth; Kunz, Martin

    2016-04-01

    Numerical simulations are a versatile tool for providing insight into the complicated process of structure formation in cosmology. This process is mainly governed by gravity, which is the dominant force on large scales. At present, a century after the formulation of general relativity, numerical codes for structure formation still employ Newton’s law of gravitation. This approximation relies on the two assumptions that gravitational fields are weak and that they originate from non-relativistic matter. Whereas the former seems well justified on cosmological scales, the latter imposes restrictions on the nature of the `dark’ components of the Universe (dark matter and dark energy), which are, however, poorly understood. Here we present the first simulations of cosmic structure formation using equations consistently derived from general relativity. We study in detail the small relativistic effects for a standard lambda cold dark matter cosmology that cannot be obtained within a purely Newtonian framework. Our particle-mesh N-body code computes all six degrees of freedom of the metric and consistently solves the geodesic equation for particles, taking into account the relativistic potentials and the frame-dragging force. This conceptually clean approach is very general and can be applied to various settings where the Newtonian approximation fails or becomes inaccurate, ranging from simulations of models with dynamical dark energy or warm/hot dark matter to core collapse supernova explosions.

  18. Stochastic structure formation in random media

    NASA Astrophysics Data System (ADS)

    Klyatskin, V. I.

    2016-01-01

    Stochastic structure formation in random media is considered using examples of elementary dynamical systems related to the two-dimensional geophysical fluid dynamics (Gaussian random fields) and to stochastically excited dynamical systems described by partial differential equations (lognormal random fields). In the latter case, spatial structures (clusters) may form with a probability of one in almost every system realization due to rare events happening with vanishing probability. Problems involving stochastic parametric excitation occur in fluid dynamics, magnetohydrodynamics, plasma physics, astrophysics, and radiophysics. A more complicated stochastic problem dealing with anomalous structures on the sea surface (rogue waves) is also considered, where the random Gaussian generation of sea surface roughness is accompanied by parametric excitation.

  19. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Aubriet, F.; Gaumet, Jean-Jacques; De Jong, Wibe A.; Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Leavitt, Christopher M.

    2009-05-11

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  20. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Frederic Aubriet; Jean-Jacques Gaumet; Wibe A de Jong; Groenewold, Gary S; Gianotto, Anita K; McIlwain, Michael E; Michael J. Van Stipdonk; Christopher M. Leavitt

    2009-06-01

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  1. Secondary structure formation in peptide amphiphile micelles

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    2012-02-01

    Peptide amphiphiles (PAs) are capable of self-assembly into micelles for use in the targeted delivery of peptide therapeutics and diagnostics. PA micelles exhibit a structural resemblance to proteins by having folded bioactive peptides displayed on the exterior of a hydrophobic core. We have studied two factors that influence PA secondary structure in micellar assemblies: the length of the peptide headgroup and amino acids closest to the micelle core. Peptide length was systematically varied using a heptad repeat PA. For all PAs the addition of a C12 tail induced micellization and secondary structure. PAs with 9 amino acids formed beta-sheet interactions upon aggregation, whereas the 23 and 30 residue peptides were displayed in an apha-helical conformation. The 16 amino acid PA experienced a structural transition from helix to sheet, indicating that kinetics play a role in secondary structure formation. A p53 peptide was conjugated to a C16 tail via various linkers to study the effect of linker chemistry on PA headgroup conformation. With no linker the p53 headgroup was predominantly alpha helix and a four alanine linker drastically changed the structure of the peptide headgroup to beta-sheet, highlighting the importance of hydrogen boding potential near the micelle core.

  2. Cosmological structure formation from soft topological defects

    NASA Technical Reports Server (NTRS)

    Hill, Christopher T.; Schramm, David N.; Fry, J. N.

    1988-01-01

    Some models have extremely low-mass pseudo-Goldstone bosons that can lead to vacuum phase transitions at late times, after the decoupling of the microwave background.. This can generate structure formation at redshifts z greater than or approx 10 on mass scales as large as M approx 10 to the 18th solar masses. Such low energy transitions can lead to large but phenomenologically acceptable density inhomogeneities in soft topological defects (e.g., domain walls) with minimal variations in the microwave anisotropy, as small as delta Y/T less than or approx 10 to the minus 6 power. This mechanism is independent of the existence of hot, cold, or baryonic dark matter. It is a novel alternative to both cosmic string and to inflationary quantum fluctuations as the origin of structure in the Universe.

  3. The formation and structure of Olympic gels

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Lang, M.; Sommer, J.-U.

    2015-12-01

    Different methods for creating Olympic gels are analyzed using computer simulations. First ideal reference samples are obtained from freely interpenetrating semi-dilute solutions and melts of cyclic polymers. The distribution of pairwise concatenations per cyclic molecule is given by a Poisson-distribution and can be used to describe the elastic structure of the gels. Several batches of linear chains decorated with different selectively binding groups at their ends are mixed in the "DNA Origami" technique and network formation is realized. While the formation of cyclic molecules follows mean field predictions below overlap of the precursor molecules, an enhanced ring formation above overlap is found that is not explained by mean field arguments. The "progressive construction" method allows to create Olympic gels with a single reaction step from a concentrated mixture of large compressed rings with a low weight fraction of short chains that are below overlap concentration. This method, however, is limited by the difficulty to obtain a sufficiently high degree of polymerization of the large rings.

  4. Formation of Structure in the Universe

    NASA Technical Reports Server (NTRS)

    Bahcall, John; Fisher, Karl; Miralda-Escude, Jordi; Strauss, Michael; Weinberg, David

    1997-01-01

    This grant supported research by the investigators through summer salary support for Strauss and Weinberg, support for graduate students at Princeton University and Ohio State University, and travel, visitor, and publication support for the investigators. The grant originally had a duration of 1 year, and it was extended (without additional funding) for an additional year. The impact of the grant was considerable given its relatively modest duration and funding level, in part because it provided 'seed' funding to get Strauss and Weinberg started at new institutions, and in part because it was combined with support from subsequent grants. Here we summarize progress in the three general areas described in the grant proposal: Lyman alpha absorbers and the intergalactic medium, galaxy formation; and large scale structure.

  5. Electrically induced structure formation and pattern transfer

    NASA Astrophysics Data System (ADS)

    Schäffer, Erik; Thurn-Albrecht, Thomas; Russell, Thomas P.; Steiner, Ullrich

    2000-02-01

    The wavelength of light represents a fundamental technological barrier to the production of increasingly smaller features on integrated circuits. New technologies that allow the replication of patterns on scales less than 100nm need to be developed if increases in computing power are to continue at the present rate. Here we report a simple electrostatic technique that creates and replicates lateral structures in polymer films on a submicrometre length scale. Our method is based on the fact that dielectric media experience a force in an electric field gradient. Strong field gradients can produce forces that overcome the surface tension in thin liquid films, inducing an instability that features a characteristic hexagonal order. In our experiments, pattern formation takes place in polymer films at elevated temperatures, and is fixed by cooling the sample to room temperature. The application of a laterally varying electric field causes the instability to be focused in the direction of the highest electric field. This results in the replication of a topographically structured electrode. We report patterns with lateral dimensions of 140nm, but the extension of the technique to pattern replication on scales smaller than 100nm seems feasible.

  6. Diagnosing delayed ettringite formation in concrete structures

    SciTech Connect

    Thomas, Michael Folliard, Kevin Drimalas, Thano Ramlochan, Terry

    2008-06-15

    There has been a number of cases involving deteriorated concrete structures in North America where there has been considerable controversy surrounding the respective contributions of alkali-silica reaction (ASR) and delayed ettringite formation (DEF) to the observed damage. The problem arises because the macroscopic symptoms of distress are not unequivocal and microscopical examinations of field samples often reveal evidence of both processes making it difficult to separate the individual contributions. This paper presents the results of an investigation of a number of concrete columns carrying a raised expressway in North America; prior studies had implicated both DEF and ASR as possible causes of deterioration. Although the columns were not deliberately heat-cured, it is estimated that the peak internal temperature would have exceeded 70 deg. C and perhaps even 80 deg. C, in some cases. The forensic investigation included scanning electron microscopy with energy-dispersive X-ray analysis and expansion testing of cores extracted from the structure. Small-diameter cores stored in limewater expanded significantly (0.3 to 1.3%) and on the basis of supplementary tests on laboratory-produced concrete specimens it was concluded that expansion under such conditions is caused by DEF as the conditions of the test will not sustain ASR. In at least one column, DEF was diagnosed as the sole contributory cause of damage with no evidence of any contribution from ASR or any other deterioration process. In other cases, both ASR and DEF were observed to have contributed to the apparent damage. Of the columns examined, only concrete containing fly ash appeared to be undamaged. The results of this study confirm that, under certain conditions, the process of DEF (acting in isolation of other processes) can result in significant deterioration of cast-in-place reinforced concrete structures.

  7. Ultraviolet background radiation from cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Ferrara, Andrea; White, Simon D. M.; Bianchi, Simone

    2004-03-01

    We calculate the contribution to the ultraviolet background (UVB) from thermal emission from gas shock heated during cosmic structure formation. Our main calculation is based on an updated version of Press-Schechter theory. It is consistent with a more empirical estimate based on the observed properties of galaxies and the observed cosmic star formation history. Thermal UVB emission is characterized by a hard spectrum extending well beyond 4 Ryd. The bulk of the radiation is produced by objects in the mass range 1011-1013 Msolar, i.e. large galaxies and small groups. We compute a composite UVB spectrum due to quasi-stellar object (QSO), stellar and thermal components. The ratio of the UVB intensities at the H and He Lyman limits increases from 60 at z= 2 to more than 300 at z= 6. A comparison of the resulting photoionization rates to the observed Gunn-Peterson effect at high redshifts constrains the escape fraction of ionizing photons from galaxies to be less than a few per cent. Near 1 Ryd, thermal and stellar emission are comparable, amounting to about 10, 20 and 35 per cent of the total flux at redshifts of 3, 4.5 and higher, respectively. However, near the ionization threshold for He II, the thermal contribution is much stronger. It is comparable to the QSO intensity already at redshift ~3 and dominates at redshifts above 4. Thermal photons alone are enough to produce and sustain He II reionization already at z~ 6. We discuss the possible implications of our results for the thermal history of the intergalactic medium, in particular for He II reionization.

  8. Structural control on karst collapse sinkhole formation

    NASA Astrophysics Data System (ADS)

    Santo, Antonio; Ascione, Alessandra; Mazzoli, Stefano; Santangelo, Nicoletta

    2013-04-01

    Collapse sinkholes owing their formation to erosion and deformation phenomena caused by subsurface karstification are widespread in the carbonate massifs of peninsular Italy. In contrast with solution dolines, which are densely distributed on the subplanar top surfaces of the carbonate massifs, the collapse sinkholes (hereinafter labelled karst collapse sinkholes) generally occur as isolated landforms and mostly affect the slopes and piedmont areas. In the latter instances, the sinkholes also affect alluvial fan conglomerates, or slope debris, overlying the carbonate rocks. We investigated the karst collapse sinkholes of the southern-central Apennines mountain belt (Italy), which is representative of a young orogenic system, characterised by recent tectonic activity and strong seismicity. The aim of the study is the identification of the causative factors which control the occurrence of such hazardous phenomena. The study was based on a regional scale analysis on sinkhole distribution in relation to the local geological-structural, geomorphological and hydrogeological contexts, and was paralleled with field analysis of some selected areas. The regional scale analysis indicates that the karst collapse sinkholes are not the mere response to the concurrence of the climatic and lithological conditions which commonly favour the development of karst processes, the occurrence of such landforms appearing strongly influenced by distinctive structural and hydrogeological conditions. In particular, a close relationship between the karst collapse sinkholes and the main extensional faults showing evidence of late Quaternary activity may be envisaged. This is inferred from the spatial distribution of the karst collapse sinkholes, which is strikingly uneven, the sinkholes generally occurring in alignments following large late Quaternary fault zones, or being clustered at the terminations of those faults. In addition, areas affected by the occurrence of groups of sinkholes, are

  9. Structure Formation of Block Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Abetz, Volker

    2013-03-01

    Isoporous membranes have received increasing attention during the last couple of years. The advantage of these materials is to give access to membranes with a very high number density of pores with controlled diameters, thus leading to ultrafiltration membranes with a very high permeability, and simultaneously also with a very high selectivity in terms of size exclusion. Different approaches have been reported, which typically involve the transfer of a thin block copolymer film from a solid to a porous support, eventually followed by an edging step. An alternative strategy is to form integral asymmetric membranes, where the thin top layer is continuously changing into a spongy support layer, thus avoiding the build-up of mechanical stresses. This happens by subjecting the cast polymer solution film into a precipitant, inducing the so-called phase inversion by exchange of solvent with the non-solvent. Here it is important to have a system where solvent and nonsolvent are fully miscible. This strategy also enables the direct formation of open pores without a subsequent edging step, if the solvents and nonsolvents are appropriately chosen. Different types of amphiphilic block copolymers based on styrene, 2- or 4-vinyl pyridine, and ethylene oxide with various compositions and molecular weights will be discussed. These block copolymers were dissolved at different concentrations in various solvent mixtures, and then cast on a non-woven support, which was either pretreated with a liquid, or not. Varying the time before the cast solution was subjected to phase inversion, as well as choosing the temperature of the precipitation bath, are further parameters having strong influence on the obtained membrane film structure. Membranes with pore forming blocks showing pH or temperature sensitive behaviour can be reversibly switched from an open state to a closed state. The size of the pores can be controlled by both molecular weight and composition of the block copolymers.

  10. Nonlinear structure formation in flat cosmological models

    NASA Technical Reports Server (NTRS)

    Martel, Hugo

    1995-01-01

    This paper describes the formation of nonlinear structure in flat (zero curvature) Friedmann cosmological models. We consider models with two components: the usual nonrelativistic component that evolves under gravity and eventually forms the large-scale structure of the universe, and a uniform dark matter component that does not clump under gravity, and whose energy density varies with the scale factor a(t) like a(t)(sup -n), where n is a free parameter. Each model is characterized by two parameters: the exponent n and the present density parameter Omega(sub 0) of the nonrelativistic component. The linear perturbation equations are derived and solved for these models, for the three different cases n = 3, n is greater than 3, and n is less than 3. The case n = 3 is relevant to model with massive neutrinos. The presence of the uniform component strongly reduces the growth of the perturbation compared with the Einstein-de Sitter model. We show that the Meszaros effect (suppression of growth at high redshift) holds not only for n = 4, radiation-dominated models, but for all models with n is greater than 3. This essentially rules out any such model. For the case n is less than 3, we numerically integrate the perturbation equations from the big bang to the present, for 620 different models with various values of Omega(sub 0) and n. Using these solutions, we show that the function f(Omega(sub 0), n) = (a/delta(sub +))d(delta)(sub +)/da, which enters in the relationship between the present density contrast delta(sub 0) and peculiar velocity field u(sub 0) is essentially independent of n. We derive approximate solutions for the second-order perturbation equations. These second-order solutions are tested against the exact solutions and the Zel'dovich approximation for spherically symmetric perturbations in the marginally nonlinear regime (the absolute value of delta is less than or approximately 1). The second-order and Zel'dovich solutions have comparable accuracy

  11. Structural Analysis of Dusty Plasma Formations Based on Spatial Spectra

    SciTech Connect

    Khakhaev, A. D.; Luizova, L. A.; Piskunov, A. A.; Podryadchikov, S. F.; Soloviev, A. V.

    2008-09-07

    Some advantages of studying the structure of dusty plasma formations using spatial spectra are illustrated by simulated experiments and by processing actual images of dusty structures in dc glow discharge in inert and molecular gases.

  12. Structure and formation of ant transportation networks

    PubMed Central

    Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine

    2011-01-01

    Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958

  13. Formation and structure of neutrino astronomical objects

    NASA Astrophysics Data System (ADS)

    Lu, Tan; Luo, Liao-fu; Yang, Gou-chen

    1981-12-01

    Neutrinos with non-zero mass could gather to form a new kind of astronomical bodies: the Neutrino Astronomical Objects (NAO). We have investigated the mechanism of their formation and the relation of this formation to that of the galaxies, ascertained their e, p, He 4 content, whose presence should produce a series of observable effects. NAOs are a peculiar kind of heavenly bodies with many new properties. They have a linear size of the order of 100 pc, a total neutrino content of the order of 10 14M⊙ and an e, p, He 4 content of the order of 10 9M⊙.

  14. Multilayer structure formation via homophily and homeostasis

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir V.; Koronovskii, Alexey A.; Maksimenko, Vladimir A.; Khramova, Marina V.; Hramov, Alexander E.; Pavlov, Alexey N.; Moskalenko, Olga I.; Buldú, Javier M.; Boccaletti, Stefano

    2016-03-01

    The competition of homophily and homeostasis mechanisms taking place in the multilayer network where several layers of connection topologies are simultaneously present as well as the interaction between layers is considered. We have shown that the competition of homophily and homeostasis leads in such networks to the formation of synchronous patterns within the different layers of the network, which may be both the distinct and identical.

  15. Formation of the structure of gold nanoclusters during crystallization

    SciTech Connect

    Gafner, Yu. Ya. Goloven'ko, Zh. V.; Gafner, S. L.

    2013-02-15

    The structure formation in gold nanoparticles 1.6-5.0 nm in diameter is studied by molecular dynamics simulation using a tight-binding potential. The simulation shows that the initial fcc phase in small Au clusters transforms into other structural modifications as temperature changes. As the cluster size increases, the transition temperature shifts toward the melting temperature of the cluster. The effect of various crystallization conditions on the formation of the internal structure of gold nanoclusters is studied in terms of microcanonical and canonical ensembles. The stability boundaries of various crystalline isomers are analyzed. The obtained dependences are compared with the corresponding data obtained for copper and nickel nanoparticles. The structure formation during crystallization is found to be characterized by a clear effect of the particle size on the stability of a certain isomer modification. Nickel and copper clusters are shown to exhibit common features in the formation of their structural properties, whereas gold clusters demonstrate much more complex behavior.

  16. Formation and structure of misfit dislocations

    NASA Astrophysics Data System (ADS)

    Nandedkar, A. S.; Srinivasan, G. R.; Murthy, C. S.

    1991-03-01

    We report here theoretical observations of the evolution of core structure of well-defined misfit dislocations arising from the spontaneous decomposition of highly strained coherent interfaces in a fcc bicrystal. We use a finely stepped energy-minimization technique and Lennard-Jones pair potential, which allowed Burgers-circuit construction and core-structure analysis. Simulations were made for (111) and (001) interfaces, which produced 60° and edge dislocations, respectively. The atomic configurations produced were consistent with those expected from the elasticity theory.

  17. Formation of bulk refractive index structures

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  18. Structure and Mechanism of a Pentameric Formate Channel

    SciTech Connect

    Waight, A.; Love, J; Wang, D

    2010-01-01

    Formate transport across the inner membrane is a critical step in anaerobic bacterial respiration. Members of the formate/nitrite transport protein family function to shuttle substrate across the cytoplasmic membrane. In bacterial pathogens, the nitrite transport protein is involved in protecting bacteria from peroxynitrite released by host macrophages. We have determined the 2.13-{angstrom} structure of the formate channel FocA from Vibrio cholerae, which reveals a pentamer in which each monomer possesses its own substrate translocation pore. Unexpectedly, the fold of the FocA monomer resembles that found in water and glycerol channels. The selectivity filter in FocA consists of a cytoplasmic slit and a central constriction ring. A 2.5-{angstrom} high-formate structure shows two formate ions bound to the cytoplasmic slit via both hydrogen bonding and van der Waals interactions, providing a structural basis for the substrate selectivity of the channel.

  19. G-triplex structure and formation propensity

    PubMed Central

    Cerofolini, Linda; Amato, Jussara; Giachetti, Andrea; Limongelli, Vittorio; Novellino, Ettore; Parrinello, Michele; Fragai, Marco; Randazzo, Antonio; Luchinat, Claudio

    2014-01-01

    The occurrence of a G-triplex folding intermediate of thrombin binding aptamer (TBA) has been recently predicted by metadynamics calculations, and experimentally supported by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) data collected on a 3′ end TBA-truncated 11-mer oligonucleotide (11-mer-3′-t-TBA). Here we present the solution structure of 11-mer-3′-t-TBA in the presence of potassium ions. This structure is the first experimental example of a G-triplex folding, where a network of Hoogsteen-like hydrogen bonds stabilizes six guanines to form two G:G:G triad planes. The G-triplex folding of 11-mer-3′-t-TBA is stabilized by the potassium ion and destabilized by increasing the temperature. The superimposition of the experimental structure with that predicted by metadynamics shows a great similarity, with only significant differences involving two loops. These new structural data show that 11-mer-3′-t-TBA assumes a G-triplex DNA conformation as its stable form, reinforcing the idea that G-triplex folding intermediates may occur in vivo in human guanine-rich sequences. NMR and CD screening of eight different constructs obtained by removing from one to four bases at either the 3′ and the 5′ ends show that only the 11-mer-3′-t-TBA yields a relatively stable G-triplex. PMID:25378342

  20. Selective formation of turbulent structures in magnetized cylindrical plasmas

    SciTech Connect

    Kasuya, Naohiro; Itoh, Kimitaka; Yagi, Masatoshi; Itoh, Sanae-I

    2008-05-15

    The mechanism of nonlinear structural formation has been studied with a three-field reduced fluid model, which is extended to describe the resistive drift wave turbulence in magnetized cylindrical plasmas. In this model, ion-neutral collisions strongly stabilize the resistive drift wave, and the formed structure depends on the collision frequency. If the collision frequency is small, modulational coupling of unstable modes generates a zonal flow. On the other hand, if the collision frequency is large, a streamer, which is a localized vortex in the azimuthal direction, is formed. The structure is generated by nonlinear wave coupling and is sustained for a much longer duration than the drift wave oscillation period. This is a minimal model for analyzing the turbulent structural formation mechanism by mode coupling in cylindrical plasmas, and the competitive nature of structural formation is revealed. These turbulent structures affect particle transport.

  1. Adolescent Identity Formation and the Organizational Structure of High Schools.

    ERIC Educational Resources Information Center

    Schmiedeck, Raoul A.

    1979-01-01

    The author describes aspects of the size and organizational structure of high schools which reduce human contact and have a negative influence on the sense of community, the development of relationships, and the formation of personal identity. (Author/SJL)

  2. The Temporal Structure of Scientific Consensus Formation

    PubMed Central

    Shwed, Uri; Bearman, Peter S.

    2011-01-01

    This article engages with problems that are usually opaque: What trajectories do scientific debates assume, when does a scientific community consider a proposition to be a fact, and how can we know that? We develop a strategy for evaluating the state of scientific contestation on issues. The analysis builds from Latour’s black box imagery, which we observe in scientific citation networks. We show that as consensus forms, the importance of internal divisions to the overall network structure declines. We consider substantive cases that are now considered facts, such as the carcinogenicity of smoking and the non-carcinogenicity of coffee. We then employ the same analysis to currently contested cases: the suspected carcinogenicity of cellular phones, and the relationship between vaccines and autism. Extracting meaning from the internal structure of scientific knowledge carves a niche for renewed sociological commentary on science, revealing a typology of trajectories that scientific propositions may experience en route to consensus. PMID:21886269

  3. Structure formation of thermally driven turbulence

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei; Yoshida, Zensho

    2013-10-01

    Self-organized structures in plasma turbulence, such as zonal flow and streamer, play important roles in terms of confinement in fusion devices. Recently thermodynamical approaches to dictate self-organization are proposed. Yoshida and Mahajan explained the bifurcation to ``High confinement mode'' in magnetically confined fusion device by using thermodynamic model. The nonexact term available to generate vorticity in equation of motion is baroclinicity (T∇S). Assuming circulation of the fluid element as cycle of heat engine, fluid mechanics and thermodynamic laws can be connected. In this study, by solving the fluid equation of motion as specific mechanical process, we investigate the connection between thermal driving of turbulence and self-organization of vortical structures. Grant-in-Aid for JSPS Fellows 241010.

  4. Formation of cosmic structure by Doppler instability

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1991-01-01

    A new mechanism is described which can create an instability in homogeneous gaseous matter at very low density. When an isotropic background radiation field has, near an electronic resonance, a spectral feature for which photon occupation number increases with frequency, moving atoms increase their speed by taking energy from the photon distribution. In a cosmological setting, a sufficiently intense spectral feature can interact with neutral atomic gas, after recombination, to generate protogalactic perturbations of the scale and magnitude needed to explain large-scale cosmic structure.

  5. Competing stability modes in vortex structure formation

    NASA Astrophysics Data System (ADS)

    Garrett, Stephen; Gostelow, J. Paul; Rona, Aldo; McMullan, W. Andrew

    2015-11-01

    Nose cones and turbine blades have rotating components and represent very practical geometries for which the behavior of vortex structures is not completely understood. These two different physical cases demonstrate a common theme of competition between mode and vortex types. The literature concerning boundary-layer transition over rotating cones presents clear evidence of an alternative instability mode leading to counter-rotating vortex pairs, consistent with a centrifugal instability. This is in contrast to co-rotating vortices present over rotating disks that arise from crossflow effects. It is demonstrated analytically that this mode competes with the crossflow mode and is dominant only over slender cones. Predictions are aligned with experimental measurements over slender cones. Concurrent experimental work on the flow over swept cylinders shows that organized fine-scale streamwise vorticity occurs more frequently on convex surfaces than is appreciated. The conventional view of purely two-dimensional laminar boundary layers following blunt leading edges is not realistic and such boundary layers need to be treated three-dimensionally, particularly when sweep is present. The vortical structures are counter-rotating for normal cylinders and co-rotating under high sweep conditions. Crossflow instabilities may have a major role to play in the transition process but the streamline curvature mode is still present, and seemingly unchanged, when the boundary layer becomes turbulent.

  6. Structural template formation with discovery of subclasses

    NASA Astrophysics Data System (ADS)

    Long, Xiaojing; Wyatt, Chris

    2010-03-01

    A major focus of computational anatomy is to extract the most relevant information to identify and characterize anatomical variability within a group of subjects as well as between different groups. The construction of atlases is central to this effort. An atlas is a deterministic or probabilistic model with intensity variance, structural, functional or biochemical information over a population. To date most algorithms to construct atlases have been based on a single subject assuming that the population is best described by a single atlas. However, we believe that in a population with a wide range of subjects multiple atlases may be more representative since they reveal the anatomical differences and similarities within the group. In this work, we propose to use the K-means clustering algorithm to partition a set of images into several subclasses, based on a joint distance which is composed of a distance quantifying the deformation between images and a dissimilarity measured from the registration residual. During clustering, the spatial transformations are averaged rather than images to form cluster centers, to ensure a crisp reference. At the end of this algorithm, the updated centers of the k clusters are our atlases. We demonstrate this algorithm on a subset of a public available database with whole brain volumes of subjects aged 18-96 years. The atlases constructed by this method capture the significant structural differences across the group.

  7. Structural Basis for Glycyl Radical Formation By Pyruvate Formate-Lyase Activating Enzyme

    SciTech Connect

    Vey, J.L.; Yang, J.; Li, M.; Broderick, W.E.; Broderick, J.B.; Drennan, C.L.

    2009-05-26

    Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G{sup 734} of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of enzymes. We report here structures of the substrate-free and substrate-bound forms of pyruvate formate-lyase-activating enzyme, the first structures of an AdoMet radical activase. To obtain the substrate-bound structure, we have used a peptide substrate, the 7-mer RVSGYAV, which contains the sequence surrounding G{sup 734}. Our structures provide fundamental insights into the interactions between the activase and the G{sup 734} loop of pyruvate formate-lyase and provide a structural basis for direct and stereospecific H atom abstraction from the buried G{sup 734}4 of pyruvate formate-lyase.

  8. Nonlinear structure formation in nonlocal gravity

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2014-09-01

    We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from ΛCDM by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ∼ 6% larger today). Compared to ΛCDM today, in the nonlocal model, massive haloes are slightly more abundant (by ∼ 10% at M ∼ 10{sup 14} M{sub ⊙}/h) and concentrated ≈ 8% enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For k ∼> 1 h/Mpc, the amplitude of the nonlinear matter and velocity divergence power spectra exhibits a modest enhancement of ∼ 12% to 15%, compared to ΛCDM today. This suggests that this model might only be distinguishable from ΛCDM by future observational missions. We point out that the absence of a screening mechanism may lead to tensions with Solar System tests due to local time variations of the gravitational strength, although this is subject to assumptions about the local time evolution of background averaged quantities.

  9. Femtosecond laser-induced periodic surface structure formation on tungsten

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-09-15

    In this paper, we demonstrate the generation of periodic surface structures on a technologically important material, tungsten, at both 400 and 800 nm, despite that the table values of dielectric constants for tungsten at these two wavelengths suggest the absence of surface plasmons, a wave necessary for forming periodic structures on metals. Furthermore, we find that the structure periods formed on tungsten are significantly less than the laser wavelengths. We believe that the dielectric constants of tungsten change significantly due to intense laser pulse heating and surface structuring and roughening at nanometer scales, permitting surface plasmon excitation and periodic structure formation.

  10. Internal Structure of Stellar Clusters: Geometry of Star Formation

    NASA Astrophysics Data System (ADS)

    Alfaro, Emilio J.; Sánchez, Néstor

    2011-04-01

    The study of the internal structure of star clusters provides important clues concerning their formation mechanism and dynamical evolution. There are both observational and numerical evidences indicating that open clusters evolve from an initial clumpy structure, presumably a direct consequence of the formation in a fractal medium, toward a centrally condensed state. This simple picture has, however, several drawbacks. There can be very young clusters exhibiting radial patterns maybe reflecting the early effect of gravity on primordial gas. There can be also very evolved clusters showing fractal patterns that either have survived through time or have been generated subsequently by some (unknown) mechanism. Additionally, the fractal structure of some open clusters is much clumpier than the average structure of the interstellar medium in the Milky Way, although in principle a very similar structure should be expected. Here we summarize and discuss observational and numerical results concerning this subject.

  11. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots

    PubMed Central

    Zubairova, Laily D.; Nabiullina, Roza M.; Nagaswami, Chandrasekaran; Zuev, Yuriy F.; Mustafin, Ilshat G.; Litvinov, Rustem I.; Weisel, John W.

    2015-01-01

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1–0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis. PMID:26635081

  12. Structure of tetracarbonylethyleneosmium: ethylene structure changes upon complex formation.

    PubMed

    Karunatilaka, Chandana; Tackett, Brandon S; Washington, John; Kukolich, Stephen G

    2007-08-29

    Rotational spectra of seven isotopomers of tetracarbonylethyleneosmium, Os(CO)4(eta2-C2H4), were measured in the 4-12 GHz range using a Flygare-Balle-type pulsed-beam Fourier transform microwave spectrometer system. Olefin-transition metal complexes of this type occur extensively in recent organic syntheses and serve as important models for transition states in the metal-mediated transformations of alkenes. Three osmium ((192)Os, (190)Os, and (188)Os) and three unique 13C isotopomers (13C in ethylene, axial, and equatorial positions) were observed in natural abundance. Additional spectra were measured for a perdeuterated sample, Os(CO)4(eta2-C2D4). The measured rotational constants for the main osmium isotopomer ((192)Os) are A = 929.3256(6), B = 755.1707(3), and C = 752.7446(3) MHz, indicating a near-prolate asymmetric top molecule. The approximately 140 assigned b-type transitions were fit using a Watson S-reduced Hamiltonian including A, B, C, and five centrifugal distortion constants. A near-complete r0 gas-phase structure has been determined from a least-squares structural fit using eight adjustable structural parameters to fit the 21 measured rotational constants. Changes in the structure of ethylene on coordination to Os(CO)4 are large and well-determined. For the complex, the experimental ethylene C-C bond length is 1.432(5) A, which falls between the free ethylene value of 1.3391(13) A and the ethane value of 1.534(2) A. The angle between the plane of the CH2 group and the extended ethylene C-C bond ( angleout-of-plane) is 26.0(3) degrees , indicating that this complex is better described as a metallacyclopropane than as a pi-bonded olefin-metal complex. The Os-C-C-H dihedral angle is 106.7(2) degrees , indicating that the ethylene carbon atoms have near sp3 character in the complex. Kraitchman analysis of the available rotational constants gave principal axis coordinates for the carbon and hydrogen atoms in excellent agreement with the least-squares fit

  13. The probabilistic mechanism of formation of block structures

    NASA Astrophysics Data System (ADS)

    Ivanov, V. I.

    2012-03-01

    Questions on the formation of block structures are considered. It is shown that the block structure is characteristic of bodies in a wide range of scales from microscopic to astronomic and from the bodies of nonliving nature to living organisms and communities. A scheme of the mechanism of the probabilistic formation of block structures is suggested. The characteristics general for structures of all scales are revealed. Evidence is presented that the hierarchical pattern of element sizes is characteristic of natural structures in which the ratio of linear sizes of elements neighboring by hierarchy is 2-5, while the characteristic scale coefficient is √ N , where N is the total number of elements of which the system is formed. The block-probabilistic approach ensures knowledge of rare catastrophic events, including earthquakes, market crashes, floods, and industrial catastrophes, or creative events such as the formation of hypercomplex systems similar to organisms and communities. The statistics of rare events follows the power distribution (the distribution with a "heavy tail") rather than the exponential one and especially the Poisson distribution, the Gaussian distribution, or the distributions with "light tails" close to them. The expression for the factor of increasing the formation probability of the systems, which is of many orders of magnitude even for the simplest systems, is acquired.

  14. Bifurcation of learning and structure formation in neuronal maps

    NASA Astrophysics Data System (ADS)

    Marschler, Christian; Faust-Ellsässer, Carmen; Starke, Jens; van Hemmen, J. Leo

    2014-11-01

    Most learning processes in neuronal networks happen on a much longer time scale than that of the underlying neuronal dynamics. It is therefore useful to analyze slowly varying macroscopic order parameters to explore a network's learning ability. We study the synaptic learning process giving rise to map formation in the laminar nucleus of the barn owl's auditory system. Using equation-free methods, we perform a bifurcation analysis of spatio-temporal structure formation in the associated synaptic-weight matrix. This enables us to analyze learning as a bifurcation process and follow the unstable states as well. A simple time translation of the learning window function shifts the bifurcation point of structure formation and goes along with traveling waves in the map, without changing the animal's sound localization performance.

  15. Food Composition Database Format and Structure: A User Focused Approach

    PubMed Central

    Clancy, Annabel K.; Woods, Kaitlyn; McMahon, Anne; Probst, Yasmine

    2015-01-01

    This study aimed to investigate the needs of Australian food composition database user’s regarding database format and relate this to the format of databases available globally. Three semi structured synchronous online focus groups (M = 3, F = 11) and n = 6 female key informant interviews were recorded. Beliefs surrounding the use, training, understanding, benefits and limitations of food composition data and databases were explored. Verbatim transcriptions underwent preliminary coding followed by thematic analysis with NVivo qualitative analysis software to extract the final themes. Schematic analysis was applied to the final themes related to database format. Desktop analysis also examined the format of six key globally available databases. 24 dominant themes were established, of which five related to format; database use, food classification, framework, accessibility and availability, and data derivation. Desktop analysis revealed that food classification systems varied considerably between databases. Microsoft Excel was a common file format used in all databases, and available software varied between countries. User’s also recognised that food composition databases format should ideally be designed specifically for the intended use, have a user-friendly food classification system, incorporate accurate data with clear explanation of data derivation and feature user input. However, such databases are limited by data availability and resources. Further exploration of data sharing options should be considered. Furthermore, user’s understanding of food composition data and databases limitations is inherent to the correct application of non-specific databases. Therefore, further exploration of user FCDB training should also be considered. PMID:26554836

  16. Family Structure: Its Effects on Adolescent Attachment and Identity Formation.

    ERIC Educational Resources Information Center

    Faber, Anthony J.; Edwards, Anne E.; Bauer, Karlin S.; Wetchler, Joseph L.

    2003-01-01

    Examines the association between family structure, attachment, and identity formation. Results partially support the hypotheses and indicate that unresolved spouse conflict is associated with low levels of attachment in adolescents and attachment to father is linked to identity achieved and the diffused identity status. Findings support a link…

  17. Formation of iron-rich shelled structures by microbial communities

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Santamaría, Joan; Amils, Ricardo; Parro, Victor; Gómez-Ortíz, D.; Izawa, Matthew R. M.; Banerjee, Neil R.; Pérez Rodríguez, Raúl; Rodríguez, Nuria; López-Martínez, Nieves

    2015-01-01

    this paper, we describe the discovery and characterization of shelled structures that occur inside galleries of Pyrenees mines. The structures are formed by the mineralization of iron and zinc oxides, dominantly franklinite (ZnFe2O4) and poorly ordered goethite (α-FeO(OH)). Subsurface oxidation and hydration of polymetallic sulfide orebodies produce solutions rich in dissolved metal cations including Fe2+/3+ and Zn2+. The microbially precipitated shell-like structure grows by lateral or vertical stacking of thin laminae of iron oxide particles which are accreted mostly by fungal filaments. The resulting structures are composed of randomly oriented aggregates of needle-like, uniform-sized crystals, suggesting some biological control in the structure formation. Such structures are formed by the integration of two separated shells, following a complex process driven likely by different strategies of fungal microorganisms that produced the complex macrostructure.

  18. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  19. Mechanisms underlying structural variant formation in genomic disorders

    PubMed Central

    Carvalho, Claudia M. B.; Lupski, James R.

    2016-01-01

    With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility. PMID:26924765

  20. Hysteresis-driven structure formation in biochemical networks

    PubMed

    Klein

    1998-09-21

    A mechanism of structure formation, based on hysteresis behaviour is presented. A bisubstrate kinetic system with substrate inhibition, discussed previously in the context of Turing structure formation, may show hysteresis behaviour, when embedded in a metabolic network: the system may possess multiple steady states and may be switched from one stable fixpoint to the other. When cells containing this type of system are diffusively coupled, under certain conditions patterns result, which, as is demonstrated, are not of the Turing type. The main difference to diffusion-driven (Turing) structures is the fact that the hysteresis-driven patterns emerge under diffusive conditions, under which both the homogeneous and the asymmetrical steady state is stable. The resulting special properties and biological implications are discussed.Copyright 1998 Academic Press Limited PMID:9778438

  1. Connecting the density structure of molecular clouds and star formation.

    NASA Astrophysics Data System (ADS)

    Kainulainen, Jouni

    2015-08-01

    In the current paradigm of turbulence-regulated interstellar medium (ISM), star formation rates of entire galaxies are intricately linked to the density structure of the individual molecular clouds in the ISM. This density structure is essentially encapsulated in the probability distribution function of volume densities (rho-PDF), which directly affects the star formation rates predicted by analytic models. Contrasting its fundamental role, the rho-PDF function and its evolution have remained virtually unconstrained by observations. I describe in this contribution our recent progress in attaining observational constraints for the rho-PDFs of molecular clouds. Specifically, I review our first systematic determination of the rho-PDFs in Solar neighborhood molecular clouds. I will also present new evidence of the time evolution of the projected rho-PDFs, i.e., column density PDFs. These results together enable us to build the first observationally constrained link between the evolving density structure of molecular clouds and the star formation within. Finally, I discuss our work to expand the analysis into a Galactic context and to observationally connect the physical processes acting at the scale of molecular clouds with star formation at the scale of galaxies.

  2. Hierarchical Structure Formation of Nanoparticulate Spray-Dried Composite Aggregates.

    PubMed

    Zellmer, Sabrina; Garnweitner, Georg; Breinlinger, Thomas; Kraft, Torsten; Schilde, Carsten

    2015-11-24

    The design of hierarchically structured nano- and microparticles of different sizes, porosities, surface areas, compositions, and internal structures from nanoparticle building blocks is important for new or enhanced application properties of high-quality products in a variety of industries. Spray-drying processes are well-suited for the design of hierarchical structures of multicomponent products. This structure design using various nanoparticles as building blocks is one of the most important challenges for the future to create products with optimized or completely new properties. Furthermore, the transfer of designed nanomaterials to large-scale products with favorable handling and processing can be achieved. The resultant aggregate structure depends on the utilized nanoparticle building blocks as well as on a large number of process and formulation parameters. In this study, structure formation and segregation phenomena during the spray drying process were investigated to enable the synthesis of tailor-made nanostructures with defined properties. Moreover, a theoretical model of this segregation and structure formation in nanosuspensions is presented using a discrete element method simulation. PMID:26505280

  3. Formation, structure, and reactivity of palladium superoxo complexes

    SciTech Connect

    Talsi, E.P.; Babenko, V.P.; Shubin, A.A.; Chinakov, V.D.; Nekipelov, V.M.; Zamaraev, K.I.

    1987-11-18

    The mechanism of formation of palladium superoxo complexes, their structure, and their reactivity are discussed. The formation of the palladium superoxo complexes in the reaction of palladium(II) acetate, propionate, trifluororacetate, and bis(acetylacetonate) and palladium(0) tetrakis(triphenylphosphine) with hydrogen peroxide and potassium superoxide has been detected in solution by electron proton resonance. The oxidation of olefins and carbon monoxide by these complexes is considered. Reaction mechanisms and reaction kinetics for these oxidations are reported using the palladium superoxo complexes. 44 references, 8 figures, 2 tables.

  4. Excitonic gap formation and condensation in the bilayer graphene structure

    NASA Astrophysics Data System (ADS)

    Apinyan, V.; Kopeć, T. K.

    2016-09-01

    We have studied the excitonic gap formation in the Bernal Stacked, bilayer graphene (BLG) structures at half-filling. Considering the local Coulomb interaction between the layers, we calculate the excitonic gap parameter and we discuss the role of the interlayer and intralayer Coulomb interactions and the interlayer hopping on the excitonic pair formation in the BLG. Particularly, we predict the origin of excitonic gap formation and condensation, in relation to the furthermost interband optical transition spectrum. The general diagram of excitonic phase transition is given, explaining different interlayer correlation regimes. The temperature dependence of the excitonic gap parameter is shown and the role of the chemical potential, in the BLG, is discussed in details.

  5. Neural pattern formation in networks with dendritic structure

    NASA Astrophysics Data System (ADS)

    Bressloff, P. C.; De Souza, B.

    1998-04-01

    We present a detailed analysis of a recently proposed model of neural pattern formation that is based on the combined effect of diffusion along a neuron's dendritic tree and recurrent interactions along axo-dendritic synaptic connections. For concreteness, we consider a one-dimensional array of analog neurons with the dendritic tree idealized as a one-dimensional cable. Linear stability analysis and bifurcation theory together with numerical simulations are used to establish conditions for the onset of a Turing instability leading to the formation of stable spatial patterns of network output activity. It is shown that the presence of dendritic structure can induce dynamic (time-periodic) spatial pattern formation. Moreover, correlations between the dendritic location of a synapse and the relative positions of neurons in the network are shown to result in spatially oscillating patterns of activity along the dendrites of each neuron.

  6. Black Hole Mergers as Probes of Structure Formation

    NASA Technical Reports Server (NTRS)

    Alicea-Munoz, Emily

    2008-01-01

    Observations of gravitational waves from massive black hole (MBH) mergers can provide us with important clues about the era of structure formation in the early universe. Previous research in this field has been limited to calculating merger rates of MBHs using different models where many assumptions are made about the specific values of physical parameters of the mergers, resulting in merger rate estimates that span 5 to 6 orders of magnitude. We develop a semi-analytical, phenomenological model that includes plausible combinations of several physical parameters involved in the mergers. which we then turn around to determine how well LISA observations will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 structure formation era. We do this by generating synthetic LISA observable data (masses, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo (MCMC) method. This allows us to constrain the physical parameters of the mergers.

  7. Analysis of the Particle Formation Process of Structured Microparticles.

    PubMed

    Baldelli, Alberto; Boraey, Mohammed A; Nobes, David S; Vehring, Reinhard

    2015-08-01

    The particle formation process for microparticles of cellulose acetate butyrate dried from an acetone solution was investigated experimentally and theoretically. A monodisperse droplet chain was used to produce solution microdroplets in a size range of 55-70 μm with solution concentrations of 0.37 and 10 mg/mL. As the droplets dried in a laminar air flow with a temperature of 30, 40, or 55 °C, the particle formation process was recorded by two independent optical methods. Dried particles in a size range of 10-30 μm were collected for morphology analysis, showing hollow, elongated particles whose structure was dependent on the drying gas temperature and initial solution concentration. The setup allowed comprehensive measurements of the particle formation process to be made, including the period after initial shell formation. The early particle formation process for this system was controlled by the diffusion of cellulose acetate butyrate in the liquid phase, whereas later stages of the process were dominated by shell buckling and folding. PMID:25685865

  8. Biased galaxy formation and large-scale structure

    NASA Astrophysics Data System (ADS)

    Berlind, Andreas Alan

    The biased relation between the galaxy and mass distributions lies at the intersection of large scale structure in the universe and the process of galaxy formation. I study the nature of galaxy bias and its connections to galaxy clustering and galaxy formation physics. Galaxy bias has traditionally been viewed as an obstacle to constraining cosmological parameters by studying galaxy clustering. I examine the effect of bias on measurements of the cosmological density parameter Wm by techniques that exploit the gravity-induced motions of galaxies. Using a variety of environmental bias models applied to N-body simulations, I find that, in most cases, the quantity estimated by these techniques is the value of W0.6m/bs , where bs is the ratio of rms galaxy fluctuations to rms mass fluctuations on large scales. Moreover, I find that different methods should, in principle, agree with each other and it is thus unlikely that non-linear or scale-dependent bias is responsible for the discrepancies that exist among current measurements. One can also view the influence of bias on galaxy clustering as a strength rather than a weakness, since it provides us with a potentially powerful way to constrain galaxy formation theories. With this goal in mind, I develop the "Halo Occupation Distribution" (HOD), a physically motivated and complete formulation of bias that is based on the distribution of galaxies within virialized dark matter halos. I explore the sensitivity of galaxy clustering statistics to features of the HOD and focus on how the HOD may be empirically constrained from galaxy clustering data. I make the connection to the physics of galaxy formation by studying the HOD predicted by the two main theoretical methods of modeling galaxy formation. I find that, despite many differences between them, the two methods predict the same HOD, suggesting that galaxy bias is determined by robust features of the hierarchical galaxy formation process rather than details of gas cooling

  9. Nonlinear structure formation in gravity theories beyond general relativity

    NASA Astrophysics Data System (ADS)

    Mota, David F.

    2016-07-01

    We investigate the effects of modified gravity theories, in particular, the symmetron and f(R) gravity, on the nonlinear regime of structure formation. In particular, we investigate the velocity dispersion of galaxy clusters as a function of the halo masses, how the matter power spectra depend on the coupling, range and screening scale of the fifth force, and on possible ways of detecting violations of the equivalence principle using the mass inferred via lensing methods versus the mass inferred via dynamical methods.

  10. Band formation in coupled-resonator slow-wave structures.

    PubMed

    Möller, Björn M; Woggon, Ulrike; Artemyev, Mikhail V

    2007-12-10

    Sequences of coupled-resonator optical waveguides (CROWs) have been examined as slow-wave structures. The formation of photonic bands in finite systems is studied in the frame of a coupled oscillator model. Several types of resonator size tuning in the system are evaluated in a systematical manner. We show that aperiodicities in sequences of coupled microspheres provide an additional degree of freedom for the design of photonic bands. PMID:19551030

  11. Cosmic string and formation of large scale structure.

    NASA Astrophysics Data System (ADS)

    Fang, L.-Z.; Xiang, S.-P.

    Cosmic string formed due to phase transition in the early universe may be the cause of galaxy formation and clustering. The advantage of string model is that it can give a consistent explanation of all observed results related to large scale structure, such as correlation functions of galaxies, clusters and superclusters, the existence of voids and/or bubbles, anisotropy of cosmic background radiation. A systematic review on string model has been done.

  12. Glass formation and local topological instability of atomic structure

    SciTech Connect

    Egami, T.

    1997-12-31

    A direct connection between the local topology of the atomic structure of liquids and glasses and thermodynamic quantities through the atomic level stresses is suggested for metallic alloys. In particular the role of local topological instability in the phase transformation involving liquid and glass will be discussed. It is pointed out that a single local geometrical criterion can explain various phase transformations, such as melting, glass transition, and glass formation by solid state reaction and liquid quenching.

  13. Gravitationally induced particle production and its impact on structure formation

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2016-08-01

    In this paper we investigate the influence of a continuous particles creation processes on the linear and nonlinear matter clustering, and its consequences on the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole l, showing that the scale where the nonlinear growth overcomes the linear effect depends strongly of particles creation rate.

  14. Horizontal shear zones: physical modeling of formation and structure

    NASA Astrophysics Data System (ADS)

    Bokun, A. N.

    2009-11-01

    On examples of ductile viscous materials (pastes), which demonstrated the deformational type of coagulation behavior and the reproduced zones of the horizontal shear of a brittle fracture, ductile flow, and intermediate types. The formation of coagulation agglomerates appeared well organized, both in terms of time and structurally. The found systems of fractures revealed a sequential course of the deformation process and the contribution of each system in the total structural transformation was established. By virtue of rheological analysis of coagulation structures, the basic parameters (yield strength, viscosity), and their input into the model of the deformational response (brittle, ductile), were determined. The substantial composition and its deformational properties of the material under question appeared to dictate the structure of shear zones and their general mutual organization. The rheological analysis of coagulation clusters of model materials allowed for the justified interpretation of experimental data to regulate deformation processes effectively and predict their results.

  15. Formation of coherent structures in kinetic simulations of collisionless turbulence

    NASA Astrophysics Data System (ADS)

    Roytershteyn, V.; Karimabadi, H.

    2014-12-01

    We discuss recent large-scale kinetic simulations of collisionless turbulence in two environments, the solar wind and the Earth's magnetosheath. Formation of copious coherent structures is observed in both cases, despite the facts that the geometry, characteristic plasma parameters, and driving mechanisms are drastically different between the two systems. In addition to the traditional planar current sheets, other types of coherent current structures have been observed in 3D fully kinetic simulations with initial conditions relevant to the solar wind. These structures are discussed in detail. In 3D global hybrid simulations of the interaction between solar wind and planetary magnetospheres, the foreshock dynamics driven by reflected ions is shown to have a significant impact on the structure of the bow shock, as well as on the magnetosheath turbulence. A complicated interaction between turbulence, bow shock, and global flow leads to global perturbations in the Earth's magnetosphere.

  16. Structure formation of surfactant membranes under shear flow

    NASA Astrophysics Data System (ADS)

    Shiba, Hayato; Noguchi, Hiroshi; Gompper, Gerhard

    2013-07-01

    Shear-flow-induced structure formation in surfactant-water mixtures is investigated numerically using a meshless-membrane model in combination with a particle-based hydrodynamics simulation approach for the solvent. At low shear rates, uni-lamellar vesicles and planar lamellae structures are formed at small and large membrane volume fractions, respectively. At high shear rates, lamellar states exhibit an undulation instability, leading to rolled or cylindrical membrane shapes oriented in the flow direction. The spatial symmetry and structure factor of this rolled state agree with those of intermediate states during lamellar-to-onion transition measured by time-resolved scatting experiments. Structural evolution in time exhibits a moderate dependence on the initial condition.

  17. Nonlinear Structure Formation, Backreaction and Weak Gravitational Fields

    NASA Astrophysics Data System (ADS)

    Paranjape, A.

    There is an ongoing debate in the literature concerning the effects of averaging out inhomogeneities (“backreaction”) in cosmology. In particular, some simple models of structure formation studied in the literature seem to indicate that the backreaction can play a significant role at late times, and it has also been suggested that the standard perturbed FLRW framework is no longer a good approximation during structure formation, when the density contrast becomes nonlinear. In this work we use Zalaletdinov's covariant averaging scheme (macroscopic gravity or MG) to show that as long as the metric of the Universe can be described by the perturbed FLRW form, the corrections due to averaging remain negligibly small. Further, using a fully relativistic and reasonably generic model of pressureless spherical collapse, we show that as long as matter velocities remain small (which is true in our model), the perturbed FLRW form of the metric can be explicitly recovered. Together, these results imply that the backreaction remains small even during nonlinear structure formation, and we confirm this within the toy model with a numerical calculation.

  18. Chinese lexical networks: The structure, function and formation

    NASA Astrophysics Data System (ADS)

    Li, Jianyu; Zhou, Jie; Luo, Xiaoyue; Yang, Zhanxin

    2012-11-01

    In this paper Chinese phrases are modeled using complex networks theory. We analyze statistical properties of the networks and find that phrase networks display some important features: not only small world and the power-law distribution, but also hierarchical structure and disassortative mixing. These statistical traits display the global organization of Chinese phrases. The origin and formation of such traits are analyzed from a macroscopic Chinese culture and philosophy perspective. It is interesting to find that Chinese culture and philosophy may shape the formation and structure of Chinese phrases. To uncover the structural design principles of networks, network motif patterns are studied. It is shown that they serve as basic building blocks to form the whole phrase networks, especially triad 38 (feed forward loop) plays a more important role in forming most of the phrases and other motifs. The distinct structure may not only keep the networks stable and robust, but also be helpful for information processing. The results of the paper can give some insight into Chinese language learning and language acquisition. It strengthens the idea that learning the phrases helps to understand Chinese culture. On the other side, understanding Chinese culture and philosophy does help to learn Chinese phrases. The hub nodes in the networks show the close relationship with Chinese culture and philosophy. Learning or teaching the hub characters, hub-linking phrases and phrases which are meaning related based on motif feature should be very useful and important for Chinese learning and acquisition.

  19. Electron microscopic examination of wastewater biofilm formation and structural components.

    PubMed Central

    Eighmy, T T; Maratea, D; Bishop, P L

    1983-01-01

    This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties. Images PMID:6881965

  20. FORMATION OF COLD FILAMENTARY STRUCTURE FROM WIND-BLOWN SUPERBUBBLES

    SciTech Connect

    Ntormousi, Evangelia; Burkert, Andreas; Fierlinger, Katharina; Heitsch, Fabian

    2011-04-10

    The expansion and collision of two wind-blown superbubbles is investigated numerically. Our models go beyond previous simulations of molecular cloud formation from converging gas flows by exploring this process with realistic flow parameters, sizes, and timescales. The superbubbles are blown by time-dependent winds and supernova explosions, calculated from population synthesis models. They expand into a uniform or turbulent diffuse medium. We find that dense, cold gas clumps and filaments form naturally in the compressed collision zone of the two superbubbles. Their shapes resemble the elongated, irregular structure of observed cold, molecular gas filaments, and clumps. At the end of the simulations, between 65% and 80% of the total gas mass in our simulation box is contained in these structures. The clumps are found in a variety of physical states, ranging from pressure equilibrium with the surrounding medium to highly underpressured clumps with large irregular internal motions and structures which are rotationally supported.

  1. The effect of residual structure on hydrate formation

    SciTech Connect

    Lederhos, J.P.; Sloan, E.D.

    1995-12-01

    The combined statistical mechanics and classical thermodynamics approach of Parrish and Prausnitz (1972) was instrumental in providing the natural gas industry with a practical tool to predict hydrate formation. This extension of the van der Waals and Platteeuw model is perhaps the most prevalent use of statistical thermodynamics by the natural gas industry. In addition the Parrish and Prausnitz approach spawned many years of academic research in the laboratories of Kobayashi, Holder, and others. In the present work we present a continuation of Professor Prausnitz`s philosophy in bridging microscopic behavior with macroscopic observations. A microscopic model for hydrate kinetic formation is presented, together with experimental observations of residual structure which can explain phenomena from the laboratories of Bishnoi, Kobayashi, Makogon, and others. We also show how these microscopic phenomena can be used to generate a new (kinetic) type of hydrate inhibition.

  2. Formation and primary heating of the solar coronal structures

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Shatashvili, N. L.; Miklaszewsk, R.; Nikol'Skaya, K. I.

    2010-05-01

    It is shown that the two-fluid formalism in which the bulk velocity field is treated at par with the magnetic field, has the potential of serving as an excellent model for investigating the observed coronal structures and dynamical phenomena in solar atmosphere. It is suggested that the interaction of the fluid and the magnetic aspects of a plasma may be a crucial element in creating the enormous diversity in the solar atmosphere - the structures which comprise the solar corona can be created by particle (plasma) flows observed near the Sun's surface-the primary heating of these structures is caused by the viscous dissipation of the flow kinetic energy. Explicit models (theory as well as simulation) for the formation and heating of coronal structures are worked out. Investigations show that for efficient loop formation, the primary up-flows of plasma in the chromospheres / transition region should be relatively cold and fast (as opposed to hot). It is during trapping and accumulation in closed field regions, that the flows thermalize (due to the dissipation of the short scale flow energy) leading to a bright and hot coronal structure. The formation and primary heating of a closed coronal structure (loop at the end) are simultaneous. The coronal loop, in fact, is created just when up-flows (whatever their initial temperature) enter the closed magnetic field region; heating will always take place due to the dissipation of short-scale flow energy. The heating caused by the dissipation of flow energy may, in addition, be augmented by one or several modes of secondary heating. In our model, the 'secondary heating' may occur to simply sustain (against, say, radiation losses) the hot bright loop. The emerging scenario, then, is not the filling of some hypothetical virtual loop with hot gas. The loop, in fact, is created by the interaction of the flow and the ambient field; its formation and heating are simultaneous and 'loop' has no ontological priority to the flow

  3. Structural and Kinetic Studies of Formate Dehydrogenase from Candida boidinii.

    PubMed

    Guo, Qi; Gakhar, Lokesh; Wickersham, Kyle; Francis, Kevin; Vardi-Kilshtain, Alexandra; Major, Dan T; Cheatum, Christopher M; Kohen, Amnon

    2016-05-17

    The structure of formate dehydrogenase from Candida boidinii (CbFDH) is of both academic and practical interests. First, this enzyme represents a unique model system for studies on the role of protein dynamics in catalysis, but so far these studies have been limited by the availability of structural information. Second, CbFDH and its mutants can be used in various industrial applications (e.g., CO2 fixation or nicotinamide recycling systems), and the lack of structural information has been a limiting factor in commercial development. Here, we report the crystallization and structural determination of both holo- and apo-CbFDH. The free-energy barrier for the catalyzed reaction was computed and indicates that this structure indeed represents a catalytically competent form of the enzyme. Complementing kinetic examinations demonstrate that the recombinant CbFDH has a well-organized reactive state. Finally, a fortuitous observation has been made: the apoenzyme crystal was obtained under cocrystallization conditions with a saturating concentration of both the cofactor (NAD(+)) and inhibitor (azide), which has a nanomolar dissociation constant. It was found that the fraction of the apoenzyme present in the solution is less than 1.7 × 10(-7) (i.e., the solution is 99.9999% holoenzyme). This is an extreme case where the crystal structure represents an insignificant fraction of the enzyme in solution, and a mechanism rationalizing this phenomenon is presented. PMID:27100912

  4. Improving the Factor Structure of Psychological Scales: The Expanded Format as an Alternative to the Likert Scale Format

    ERIC Educational Resources Information Center

    Zhang, Xijuan; Savalei, Victoria

    2016-01-01

    Many psychological scales written in the Likert format include reverse worded (RW) items in order to control acquiescence bias. However, studies have shown that RW items often contaminate the factor structure of the scale by creating one or more method factors. The present study examines an alternative scale format, called the Expanded format,…

  5. Gap formation following climatic events in spatially structured plant communities.

    PubMed

    Liao, Jinbao; De Boeck, Hans J; Li, Zhenqing; Nijs, Ivan

    2015-01-01

    Gaps play a crucial role in maintaining species diversity, yet how community structure and composition influence gap formation is still poorly understood. We apply a spatially structured community model to predict how species diversity and intraspecific aggregation shape gap patterns emerging after climatic events, based on species-specific mortality responses. In multispecies communities, average gap size and gap-size diversity increased rapidly with increasing mean mortality once a mortality threshold was exceeded, greatly promoting gap recolonization opportunity. This result was observed at all levels of species richness. Increasing interspecific difference likewise enhanced these metrics, which may promote not only diversity maintenance but also community invasibility, since more diverse niches for both local and exotic species are provided. The richness effects on gap size and gap-size diversity were positive, but only expressed when species were sufficiently different. Surprisingly, while intraspecific clumping strongly promoted gap-size diversity, it hardly influenced average gap size. Species evenness generally reduced gap metrics induced by climatic events, so the typical assumption of maximum evenness in many experiments and models may underestimate community diversity and invasibility. Overall, understanding the factors driving gap formation in spatially structured assemblages can help predict community secondary succession after climatic events. PMID:26114803

  6. Cosmological structure formation in Decaying Dark Matter models

    NASA Astrophysics Data System (ADS)

    Cheng, Dalong; Chu, M.-C.; Tang, Jiayu

    2015-07-01

    The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime τ into only one type of massive daughters with non-relativistic recoil velocity Vk. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to τ. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the concentration-mass relation, which depend on the decay parameters lifetime τ, recoil velocity Vk and redshift. The fitting functions lead to accurate reconstruction of the the non-linear power transfer function of DDM to CDM in the framework of halo model. Using these results, we set constraints on the DDM parameter space by demanding that DDM does not induce larger suppression than the Lyman-α constrained WDM models. We further generalize and constrain the DDM models to initial conditions with non-trivial mother fractions and show that the halo model predictions are still valid after considering a global decayed fraction. Finally, we point out that the DDM is unlikely to resolve the disagreement on cluster numbers between the Planck primary CMB prediction and the Sunyaev-Zeldovich (SZ) effect number count for τ ~ H0-1.

  7. Black Hole Mergers as Probes of Structure Formation

    NASA Technical Reports Server (NTRS)

    Alicea-Munoz, E.; Miller, M. Coleman

    2008-01-01

    Intense structure formation and reionization occur at high redshift, yet there is currently little observational information about this very important epoch. Observations of gravitational waves from massive black hole (MBH) mergers can provide us with important clues about the formation of structures in the early universe. Past efforts have been limited to calculating merger rates using different models in which many assumptions are made about the specific values of physical parameters of the mergers, resulting in merger rate estimates that span a very wide range (0.1 - 104 mergers/year). Here we develop a semi-analytical, phenomenological model of MBH mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z 5 - 30 structure formation era. We do this by generating synthetic LISA observable data (total BH mass, BH mass ratio, redshift, merger rates), which are then analyzed using a Markov Chain Monte Carlo method. This allows us to constrain the physical parameters of the mergers. We find that our methodology works well at estimating merger parameters, consistently giving results within 1- of the input parameter values. We also discover that the number of merger events is a key discriminant among models. This helps our method be robust against observational uncertainties. Our approach, which at this stage constitutes a proof of principle, can be readily extended to physical models and to more general problems in cosmology and gravitational wave astrophysics.

  8. Star formation along the Hubble sequence. Radial structure of the star formation of CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Cid Fernandes, R.; Pérez, E.; García-Benito, R.; López Fernández, R.; Lacerda, E. A. D.; Cortijo-Ferrero, C.; de Amorim, A. L.; Vale Asari, N.; Sánchez, S. F.; Walcher, C. J.; Wisotzki, L.; Mast, D.; Alves, J.; Ascasibar, Y.; Bland-Hawthorn, J.; Galbany, L.; Kennicutt, R. C.; Márquez, I.; Masegosa, J.; Mollá, M.; Sánchez-Blázquez, P.; Vílchez, J. M.

    2016-05-01

    The spatially resolved stellar population content of today's galaxies holds important information for understanding the different processes that contribute to the star formation and mass assembly histories of galaxies. The aim of this paper is to characterize the radial structure of the star formation rate (SFR) in galaxies in the nearby Universe as represented by a uniquely rich and diverse data set drawn from the CALIFA survey. The sample under study contains 416 galaxies observed with integral field spectroscopy, covering a wide range of Hubble types and stellar masses ranging from M⋆ ~ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to derive 2D maps and radial profiles of the intensity of the star formation rate in the recent past (ΣSFR), as well as related properties, such as the local specific star formation rate (sSFR), defined as the ratio between ΣSFR and the stellar mass surface density (μ⋆). To emphasize the behavior of these properties for galaxies that are on and off the main sequence of star formation (MSSF), we stack the individual radial profiles in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd), and several stellar masses. Our main results are: (a) the intensity of the star formation rate shows declining profiles that exhibit very small differences between spirals with values at R = 1 half light radius (HLR) within a factor two of ΣSFR ~ 20 M⊙Gyr-1pc-2. The dispersion in the ΣSFR(R) profiles is significantly smaller in late type spirals (Sbc, Sc, Sd). This confirms that the MSSF is a sequence of galaxies with nearly constant ΣSFR. (b) sSFR values scale with Hubble type and increase radially outward with a steeper slope in the inner 1 HLR. This behavior suggests that galaxies are quenched inside-out and that this process is faster in the central, bulge-dominated part than in the disks. (c) As a whole and at all radii, E and S0 are off the MSSF with SFR much smaller than spirals of the

  9. Vortex Ring Structure at Late Stages of Formation

    NASA Astrophysics Data System (ADS)

    Fabris, Drazen; Liepmann, Dorian

    1996-11-01

    The development of a vortex ring as it moves several diameters from the generating nozzle is studied experimentally with DPIV. For longer piston strokes (L/D = 2) and for moderate Reynolds numbers (Γ / ν of several thousand) the vorticity distribution includes a region of rotational fluid near the front stagnation point of the ring. This region of fluid is a remnant of the shear layer rolling up to form the core of the ring and is a consequence of the stopping condition of the formation. This structure persists for at least several diameters of the ring advection.

  10. Influence factors analysis on the formation of silk I structure.

    PubMed

    Ming, Jinfa; Pan, Fukui; Zuo, Baoqi

    2015-04-01

    Regenerated silk fibroin aqueous solution was used to study the crystalline structure of Bombyx mori silk fibroin in vitro. By controlling environmental conditions and concentration of silk fibroin solution, it provided a means for the direct preparing silk I structure and understanding the details of silk fibroin molecules interactions in formation process. In this study, silk fibroin molecules were assembled to form random coil at low concentration of solution and then, as the concentration increases, were converted to silk I at 55% relative humidity (RH). At the same time, the structure of silk fibroin forming below 45 °C was mostly in silk I. A partial ternary phase diagram of temperature-humidity-concentration was constructed based on the results. The results showed silk I structure could be controlled by adjusting the external environmental conditions. The enhanced control over silk I structure, as embodied in phase diagram, could potentially be utilized to understand the molecular chain conformation of silk I in further research work. PMID:25677178

  11. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  12. Giant planet formation in radially structured protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin A. L.; Nelson, Richard P.

    2016-08-01

    Our recent N-body simulations of planetary system formation, incorporating models for the main physical processes thought to be important during the building of planets (i.e. gas disc evolution, migration, planetesimal/boulder accretion, gas accretion onto cores, etc.), have been successful in reproducing some of the broad features of the observed exoplanet population (e.g. compact systems of low mass planets, hot Jupiters), but fail completely to form any surviving cold Jupiters. The primary reason for this failure is rapid inward migration of growing protoplanets during the gas accretion phase, resulting in the delivery of these bodies onto orbits close to the star. Here, we present the results of simulations that examine the formation of gas giant planets in protoplanetary discs that are radially structured due to spatial and temporal variations in the effective viscous stresses, and show that such a model results in the formation of a population of cold gas giants. Furthermore, when combined with models for disc photoevaporation and a central magnetospheric cavity, the simulations reproduce the well-known hot-Jupiter/cold-Jupiter dichotomy in the observed period distribution of giant exoplanets, with a period valley between 10-100 days.

  13. Giant planet formation in radially structured protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin A. L.; Nelson, Richard P.

    2016-08-01

    Our recent N-body simulations of planetary system formation, incorporating models for the main physical processes thought to be important during the building of planets (i.e. gas disc evolution, migration, planetesimal/boulder accretion, gas accretion on to cores, etc.), have been successful in reproducing some of the broad features of the observed exoplanet population (e.g. compact systems of low-mass planets, hot Jupiters), but fail completely to form any surviving cold Jupiters. The primary reason for this failure is rapid inward migration of growing protoplanets during the gas accretion phase, resulting in the delivery of these bodies on to orbits close to the star. Here, we present the results of simulations that examine the formation of gas giant planets in protoplanetary discs that are radially structured due to spatial and temporal variations in the effective viscous stresses, and show that such a model results in the formation of a population of cold gas giants. Furthermore, when combined with models for disc photoevaporation and a central magnetospheric cavity, the simulations reproduce the well-known hot-Jupiter/cold-Jupiter dichotomy in the observed period distribution of giant exoplanets, with a period valley between 10 and 100 d.

  14. Correlations between Community Structure and Link Formation in Complex Networks

    PubMed Central

    Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep

    2013-01-01

    Background Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Methodology/Principal Findings Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Conclusions/Significance Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction. PMID:24039818

  15. HIERARCHICAL STRUCTURE FORMATION AND MODES OF STAR FORMATION IN HICKSON COMPACT GROUP 31

    SciTech Connect

    Gallagher, S. C.; Durrell, P. R.; Elmegreen, D. M.; Chandar, R.; English, J.; Charlton, J. C.; Gronwall, C.; Young, J.; Tzanavaris, P.; Hornschemeier, A. E.; Johnson, K. E.; Mendes de Oliveira, C.; Whitmore, B.; Maybhate, Aparna; Zabludoff, Ann

    2010-02-15

    The handful of low-mass, late-type galaxies that comprise Hickson Compact Group 31 (HCG 31) is in the midst of complex, ongoing gravitational interactions, evocative of the process of hierarchical structure formation at higher redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we characterize the large population of < 10 Myr old star clusters (SCs) that suffuse the system. From the colors and luminosities of the young SCs, we find that the galaxies in HCG 31 follow the same universal scaling relations as actively star-forming galaxies in the local universe despite the unusual compact group environment. Furthermore, the specific frequency of the globular cluster system is consistent with the low end of galaxies of comparable masses locally. This, combined with the large mass of neutral hydrogen and tight constraints on the amount of intragroup light, indicate that the group is undergoing its first epoch of interaction-induced star formation. In both the main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are sensitive to the magnitude of disk turbulence, have both sizes and masses more characteristic of z = 1-2 galaxies. After subtracting the light from compact sources, we find no evidence for an underlying old stellar population in F-it appears to be a truly new structure. The low-velocity dispersion of the system components, available reservoir of H I, and current star formation rate of {approx}10 M {sub sun} yr{sup -1} indicate that HCG 31 is likely to both exhaust its cold gas supply and merge within {approx}1 Gyr. We conclude that the end product will be an isolated, X-ray-faint, low-mass elliptical.

  16. Banded Electron Structure Formation in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Banded electron structures in energy-time spectrograms have been observed in the inner magnetosphere concurrent with a sudden relaxation of geomagnetic activity. In this study, the formation of these banded structures is considered with a global, bounce-averaged model of electron transport, and it is concluded that this structure is a natural occurrence when plasma sheet electrons are captured on closed drift paths near the Earth. These bands do not appear unless there is capture of plasma sheet electrons; convection along open drift paths making open pass around the Earth do not have time to develop this feature. The separation of high-energy bands from the injection population due to the preferential advection of the gradient-curvature drift creates spikes in the energy distribution, which overlap to form a series of bands in the energy spectrograms. The lowest band is the bulk of the injected population in the sub-key energy range. Using the Kp history for an observed banded structure event, a cloud of plasma sheet electrons is captured and the development of their distribution function is examined and discussed.

  17. Towards the mathematical model of rim structure formation

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.

    1997-09-01

    The high burnup LWR UO 2 fuels show a notable micro-structural change around the pellet outer zone which is called the rim structure. It is observed at temperatures as low as 400°C so that fission track and cascade mixing could be the key mechanism. SEM observation revealed that the structure primarily appears on free surfaces of UO 2, indicating that strong sink for point defects may play a big role. And as generic observations, increase of lattice parameter indicates extensive amounts of vacancies are stored in high burnup fuel, which may induce the restructuring interacting with dislocations of high density at high burnup. Considering these observations a model of reaction-diffusion process of defects with irradiation induced transport is proposed. The equations are investigated numerically. The model indicates that an instability starts when the dislocation network starts intensive interaction with vacancy flux which is modified by interstitial diffusion between spatial segments. It appeared to be similar to the Turing type instability which indicates that the rim structure formation is one kind of the self-organizing processes of open reaction-diffusion systems.

  18. Structure formation and the end of the cosmic dark ages

    NASA Astrophysics Data System (ADS)

    Alvarez, Marcelo Alonso

    We present results on the evolution of dark matter halos and reionization. Dark matter halos enshroud galaxies, quasars and stars. As such, they are fundamentally important to structure formation. In studying reionization, we focus on photoionization by the first stars, the 21-cm and cosmic microwave backgrounds, and its large-scale structure. Several new and important results are presented. First, we analyze the evolution of dark matter haloes that result from collapse within cosmological pancakes. Their mass accretion history and concentration are very similar to those reported simulations of CDM. Thus, fundamental properties of virialized halo formation and evolution are generic and not limited to hierarchical clustering or Gaussian-random-noise initial conditions. We also find that a simple one dimensional fluid model can explain this universal behaviour, implying that the evolving structure of CDM halos can be well understood as the effect of a universal, time-varying rate of smooth and continuous mass infall on an isotropic, collisionless fluid. We discuss cosmological reionization, from small scales and early times, to large scales and late times. We have simulated ionization fronts (I-fronts) created by the first stars forming in "minihalos". We find that nearby minihalos trap the I-front, so their centers remain neutral, contrary to the suggestion that these stars would trigger a second generation by ionizing neighboring minihalos cores. We then turn to the cross-correlation of cosmic microwave background (CMB) and 21-cm maps. We find that its measurement can be used to reconstruct the reionization history of the universe. Afterwards, we discuss the three versus first-year data from the Wilkinson Microwave Anisotropy Probe (WMAP). Surprisingly, the delay of reionization from three-year data is matched by a similar delay in structure formation. These effects cancel to leave the source halo efficiency constraints unchanged. We conclude by analyzing the

  19. The Large-scale Structure of the Universe: Probes of Cosmology and Structure Formation

    NASA Astrophysics Data System (ADS)

    Noh, Yookyung

    The usefulness of large-scale structure as a probe of cosmology and structure formation is increasing as large deep surveys in multi-wavelength bands are becoming possible. The observational analysis of large-scale structure guided by large volume numerical simulations are beginning to offer us complementary information and crosschecks of cosmological parameters estimated from the anisotropies in Cosmic Microwave Background (CMB) radiation. Understanding structure formation and evolution and even galaxy formation history is also being aided by observations of different redshift snapshots of the Universe, using various tracers of large-scale structure. This dissertation work covers aspects of large-scale structure from the baryon acoustic oscillation scale, to that of large scale filaments and galaxy clusters. First, I discuss a large- scale structure use for high precision cosmology. I investigate the reconstruction of Baryon Acoustic Oscillation (BAO) peak within the context of Lagrangian perturbation theory, testing its validity in a large suite of cosmological volume N-body simulations. Then I consider galaxy clusters and the large scale filaments surrounding them in a high resolution N-body simulation. I investigate the geometrical properties of galaxy cluster neighborhoods, focusing on the filaments connected to clusters. Using mock observations of galaxy clusters, I explore the correlations of scatter in galaxy cluster mass estimates from multi-wavelength observations and different measurement techniques. I also examine the sources of the correlated scatter by considering the intrinsic and environmental properties of clusters.

  20. Formation of GaN porous structures with improved structural controllability by photoassisted electrochemical etching

    NASA Astrophysics Data System (ADS)

    Kumazaki, Yusuke; Yatabe, Zenji; Sato, Taketomo

    2016-04-01

    We aimed to develop a photoassisted electrochemical etching process for the formation of GaN porous structures. Pore linearity and depth controllability were strongly affected by the anode voltage. In addition, the use of light with an energy below the band gap played an important role in controlling the pore diameter. Spectro-electrochemical measurements revealed that the high electric field induced at the GaN/electrolyte interface caused a redshift of the photoabsorption edge. This specific phenomenon can be explained by a theoretical calculation based on the Franz-Keldysh effect. On the basis of the results of our experimental and theoretical analyze, we propose a formation model for GaN porous structures. We also note that the application of the Franz-Keldysh effect is useful in controlling the structural properties of GaN porous structures.

  1. Innovative design of composite structures: The use of curvilinear fiber format in composite structure design

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Charette, R. F.

    1990-01-01

    The gains in structural efficiency are investigated that can be achieved by aligning the fibers in some or all of the layers in a laminate with the principal stress directions in those layers. The name curvilinear fiber format is given to this idea. The problem studied is a plate with a central circular hole subjected to a uniaxial tensile load. An iteration scheme is used to find the fiber directions at each point in the laminate. Two failure criteria are used to evaluate the tensile load capacity of the plates with a curvilinear format, and for comparison, counterpart plates with a conventional straightline fiber format. The curvilinear designs for improved tensile capacity are then checked for buckling resistance. It is concluded that gains in efficiency can be realized with the curvilinear format.

  2. Laser induced formation of micro-rough structures

    NASA Astrophysics Data System (ADS)

    Singh, Rajiv K.; Fitz-Gerald, James M.

    1997-01-01

    Laser induced micro-rough structures (LIMS) are a by-product of laser ablation process and are created during multiple pulse irradiation on the surface of the material. Although LIMS have been found to be deleterious for the thin film deposition process, these surfaces have wide variety of applications in synthesis of adherent coatings in thermal expansion mismatched systems. Earlier models, based on interference effects of the laser beam, to explain the evolution of LIMS, are not consistent with the experimental results. Experiments were conducted on a wide variety of materials (e.g. SiC, alumina, YBaCuO superconductor, etc.) to understand the mechanisms for generation of the micro-rough structures. A novel model was developed to explain the characteristics of LIMS such as (i) feature orientation (ii) evolution of surface structures as a function of pulses, (iii) formation of LIMS within a energy window near ablation threshold and (iv) periodicity which is independent of the laser wavelength and incident angle.

  3. Numerical models of sunspot formation and fine structure.

    PubMed

    Rempel, Matthias

    2012-07-13

    Sunspots are central to our understanding of solar (and stellar) magnetism in many respects. On the large scale, they link the magnetic field observable in the photosphere to the dynamo processes operating in the solar interior. Properly interpreting the constraints that sunspots impose on the dynamo process requires a detailed understanding of the processes involved in their formation, dynamical evolution and decay. On the small scale, they give an insight into how convective energy transport interacts with the magnetic field over a wide range of field strengths and inclination angles, leading to sunspot fine structure observed in the form of umbral dots and penumbral filaments. Over the past decade, substantial progress has been made on both observational and theoretical sides. Advanced ground- and space-based observations have resolved, for the first time, the details of umbral dots and penumbral filaments and discovered similarities in their substructures. Numerical models have advanced to the degree that simulations of entire sunspots with sufficient resolution to resolve sunspot fine structure are feasible. A combination of improved helioseismic inversion techniques with seismic forward modelling provides new views on the subsurface structure of sunspots. In this review, we summarize recent progress, with particular focus on numerical modelling. PMID:22665895

  4. Structural basis of complement membrane attack complex formation.

    PubMed

    Serna, Marina; Giles, Joanna L; Morgan, B Paul; Bubeck, Doryen

    2016-01-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a 'multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a 'split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration. PMID:26841837

  5. Structural basis of complement membrane attack complex formation

    PubMed Central

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-01-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a ‘multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a ‘split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration. PMID:26841837

  6. Structural basis of complement membrane attack complex formation

    NASA Astrophysics Data System (ADS)

    Serna, Marina; Giles, Joanna L.; Morgan, B. Paul; Bubeck, Doryen

    2016-02-01

    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a `multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a `split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration.

  7. The Influence of Molecular Cooling in Pregalactic Structure Formation

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Abel, T.; Lepp, S.; Dalgarno, A.

    1999-12-01

    The detailed chemistry and cooling in collapsing primordial clouds will be presented for total baryonic densities up to 106 cm-3. The model consists of 160 reactions of 23 species including H2, HD, HeH+, and LiH, and accounts for 8 different cooling and heating mechanisms. The hydrodynamic evolution of the gas is modeled under the assumptions of free-fall, isothermal, and isobaric collapse as well as for the central regions of 105 M⊙ objects in hierarchical scenarios. The latter being drawn from three-dimensional cosmological hydrodynamical simulations. The dominant processes in the reaction network are identified and a minimal model that accurately predicts the full chemistry will be presented. It is found that radiative cooling due to collisional excitation of HD can lower the temperature in a primordial cloud below that reachable through H2 cooling alone. Further, the temperature evolution is influenced by the choice of the adopted H2 radiative cooling function. Implications for globular cluster and primordial star formation, as well as structure formation on small scales and the importance of molecular cooling in general will be discussed. The work of P.C.S. was supported by the DoE ORNL LDRD Seed Money Fund. T.A. acknowledges support from NSF Grant ASC--9318185. The work of S.L. and A.D. was supported by NSF Cooperative Agreement OSR-9353227 and Astronomical Sciences Grant AST-93-01099, respectively.

  8. Magnetic Structure and Formation of On-disk Coronal Plumes

    NASA Astrophysics Data System (ADS)

    Antonsson, S.; Tiwari, S. K.; Moore, R. L.; Winebarger, A. R.

    2015-12-01

    "Plumes" are feather-like features found on the solar disk, in the plage-like field concentrations of quiet regions. On-disk plumes are analogous to polar/coronal-hole plumes but have not been studied in detail in the past. We research their formation and characteristics, such as lifetime, intensity and magnetic setting at the feet. Atmospheric Imaging Assembly (AIA) images in the 171 Å filter and Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms, both from the Solar Dynamics Observatory (SDO), are analyzed with the IDL SolarSoftWare package and used to study the plumes. We find that on-disk plumes form at the places of converging magnetic fields, and disappear when those fields disperse. However, plumes disappear after nearby events, such as flares, or with the emergence of opposite polarity. The lifetime of each plume tends to be several days, although some appear and disappear within several hours. On-disk plumes outline magnetic fields close to the sun, allowing a better understanding of fine magnetic structures than before. Additionally, since plumes must be heated to around 600,000 K to be visible in 171 Å, their formation and characteristics could tell about how they, and therefore the corona, are heated.

  9. Structural modification in the formation of starch - silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  10. Structure Formation Mechanisms and Electrical Properties of PVD Fluoropolymer Films

    NASA Astrophysics Data System (ADS)

    Luchnikov, P. A.

    2015-01-01

    The mechanisms of forming fluoropolymer coatings on silicon substrates via condensation from an active gas phase using directed flows of accelerated electrons and ions are studied. It is demonstrated that electrical properties of the resulting fluoropolymer films strongly depend on the technological parameters of the deposition process. Their most optimal properties are reported when condensation takes place at the temperatures within ~373-386 K. It is shown that thermal annealing of the films in vacuum at 430-470 K improves their electrophysical parameters by re-evaporating the low-molecular complexes from the structure and decreasing the concentration of defects and spin-radicals, while annealing in air gives rise to formation of additional polar groups.

  11. Halo formation and evolution: unification of structure and physical properties

    NASA Astrophysics Data System (ADS)

    Ernest, Allan D.; Collins, Matthew P.

    2016-08-01

    The assembly of matter in the universe proliferates a wide variety of halo structures, often with enigmatic consequences. Giant spiral galaxies, for example, contain both dark matter and hot gas, while dwarf spheroidal galaxies, with weaker gravity, contain much larger fractions of dark matter, but little gas. Globular clusters, superficially resembling these dwarf spheroidals, have little or no dark matter. Halo temperatures are also puzzling: hot cluster halos contain cooler galaxy halos; dwarf galaxies have no hot gas at all despite their similar internal processes. Another mystery is the origin of the gas that galaxies require to maintain their measured star formation rates (SFRs). We outline how gravitational quantum theory solves these problems, and enables baryons to function as weakly-interacting-massive-particles (WIMPs) in Lambda Cold Dark Matter (LCDM) theory. Significantly, these dark-baryon ensembles may also be consistent with primordial nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropies.

  12. Structure formation in inhomogeneous Early Dark Energy models

    SciTech Connect

    Batista, R.C.; Pace, F. E-mail: francesco.pace@port.ac.uk

    2013-06-01

    We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ΛCDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on δ{sub c} parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ΛCDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ΛCDM model than its homogeneous counterparts.

  13. Halo formation and evolution: unifying physical properties with structure

    NASA Astrophysics Data System (ADS)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp

  14. The Effective Field Theory of Dark Matter and Structure Formation

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P

    2014-06-01

    We develop the effective field theory of cosmological large scale structure. We start from the collisionless Boltzmann equation and integrate out short modes of a dark matter/dark energy dominated universe (LambdaCDM) whose matter is comprised of massive particles as used in cosmological simulations. This establishes a long distance effective fluid, valid for length scales larger than the non-linear scale ~ 10 Mpc, and provides the complete description of large scale structure formation. Extracting the time dependence, we derive recursion relations that encode the perturbative solution. This is exact for the matter dominated era and quite accurate in LambdaCDM also. The effective fluid is characterized by physical parameters, including sound speed and viscosity. These two fluid parameters play a degenerate role with each other and lead to a relative correction from standard perturbation theory of the form ~ 10^{-6}c^2k^2/H^2. Starting from the linear theory, we calculate corrections to cosmological observables, such as the baryon-acoustic-oscillation peak, which we compute semi-analytically at one-loop order. Due to the non-zero fluid parameters, the predictions of the effective field theory agree with observation much more accurately than standard perturbation theory and we explain why. We also discuss corrections from treating dark matter as interacting or wave-like and other issues.

  15. Linear and nonlinear effects in detonation wave structure formation

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2016-06-01

    The role of linear and nonlinear effects in the process of formation of detonation wave structure is investigated using linear stability analysis and direct numerical simulation. A simple model with a one-step irreversible chemical reaction is considered. For linear stability computations, both the local iterative shooting procedure and the global Chebyshev pseudospectral method are employed. Numerical simulations of 1D pulsating instability are performed using a shock fitting approach based on a 5th order upwind-biased compact-difference discretization and a shock acceleration equation deduced from the Rankine-Hugoniot conditions. A shock capturing WENO scheme of the 5th order is used to simulate propagation of detonation wave in a plane channel. It is shown that the linear analysis predicts correctly the mode dominating on early stages of flow evolution and the size of detonation cells which emerge during these stages. Later, however, when a developed self-reproducing cellular structure forms, the cell size is approximately doubled due to nonlinear effects.

  16. Cosmological nonlinear structure formation in full general relativity

    NASA Astrophysics Data System (ADS)

    Torres, José M.; Alcubierre, Miguel; Diez-Tejedor, Alberto; Núñez, Darío

    2014-12-01

    We perform numerical evolutions of cosmological scenarios using a standard general relativistic code in spherical symmetry. We concentrate on two different situations: initial matter distributions that are homogeneous and isotropic, and perturbations to those that respect the spherical symmetry. As matter models we consider the case of a pressureless perfect fluid, i.e. dust, and the case of a real massive scalar field oscillating around the minimum of the potential. Both types of matter have been considered as possible dark matter candidates in the cosmology literature, dust being closely related to the standard cold dark matter paradigm. We confirm that in the linear regime the perturbations associated with these types of matter grow in essentially the same way, the main difference being that in the case of a scalar field the dynamics introduce a cutoff in the power spectrum of the density perturbations at scales comparable with the Compton wavelength of the field. We also follow the evolutions well beyond the linear regime showing that both models are able to form structure. In particular we find that, once in the nonlinear regime, perturbations collapse faster in a universe dominated by dust. This is expected to delay the formation of the first structures in the scalar field dark matter scenario with respect to the standard cold dark matter one.

  17. Turbulence driven by structure formation in the circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Iapichino, L.; Viel, M.; Borgani, S.

    2013-07-01

    The injection of turbulence in the circumgalactic medium at redshift z = 2 is investigated using the mesh-based hydrodynamic code ENZO and a sub-grid-scale (SGS) model for unresolved turbulence. Radiative cooling and heating by a uniform Ultraviolet (UV) background are included in our runs and compared with the effect of turbulence modelling. Mechanisms of gas exchange between galaxies and the surrounding medium, as well as metal enrichment, are not taken into account, and turbulence is here driven solely by structure formation (mergers and shocks). We find that turbulence, both at resolved and SGS scales, impacts mostly the warm-hot intergalactic medium (WHIM), with temperature between 105 and 107 K, mainly located around collapsed and shock-heated structures, and in filaments. Typical values of the ratio of turbulent to thermal pressure is 0.1 in the WHIM, corresponding to a volume-weighted average of the SGS turbulent to thermal Doppler broadening bt/btherm = 0.26, on length scales below the grid resolution of 25 kpc h- 1. In the diffuse intergalactic medium, defined in a range of baryon overdensity δ between 1 and 50, the importance of turbulence is smaller, but grows as a function of gas density, and the Doppler broadening ratio is fitted by the function bt/btherm = 0.023 × δ0.58.

  18. Structure formation in cosmologies with oscillating dark energy

    NASA Astrophysics Data System (ADS)

    Pace, F.; Fedeli, C.; Moscardini, L.; Bartelmann, M.

    2012-05-01

    We study the imprints on the formation and evolution of cosmic structures of a particular class of dynamical dark energy models, characterized by an oscillating equation of state. This investigation complements earlier work on the topic that focused exclusively on the expansion history of the Universe for such models. Oscillating dark energy cosmologies were introduced in an attempt to solve the coincidence problem, since in the course of cosmic history matter and dark energy would have had periodically comparable energy densities. In this class of models the redshift evolution of the equation of state parameter w(z) for dark energy is characterized by two parameters, describing the amplitude and the frequency of the oscillations (the phase is usually set by the boundary condition that w(z) should be close to -1 at recent times). We consider six different oscillating dark energy models, each characterized by a different set of parameter values. For one of these models w(z) is lower than -1 at present and larger than -1 in the past, in agreement with some marginal evidence from recent Type Ia supernova studies. Under the common assumption that dark energy is not clustering on the scales of interest, we study different aspects of cosmic structure formation. In particular, we self-consistently solve the spherical collapse problem based on the Newtonian hydrodynamical approach, and compute the resulting spherical overdensity as a function of cosmic time. We then estimate the behaviour of several cosmological observables, such as the linear growth factor, the integrated Sachs-Wolfe effect, the number counts of massive structures and the matter and cosmic shear power spectra. We show that, independently of the amplitude and the frequency of the dark energy oscillations, none of the aforementioned observables shows an oscillating behaviour as a function of redshift. This is a consequence of the said observables' being integrals over some functions of the expansion rate

  19. Boundary Layer Dynamical Structure During Secondary Eyewall Formation

    NASA Astrophysics Data System (ADS)

    Abarca, S. F.; Montgomery, M. T.; McWilliams, J. C.

    2014-12-01

    Secondary eyewall formation (SEF) is widely recognized as an important research problem in the dynamics of mature tropical cyclones. It has been shown that the development of the wind maxima in SEF occurs within the boundary layer and that it follows a chain of events initiated by a substantial radial expansion of the tangential wind field. In this context, there is not yet a consensus on the phenomenon's essential physics. It has been proposed that the boundary-layer dynamics of a maturing hurricane vortex is an important controlling element in SEF. However, recent literature also argues that hurricane boundary layers and the related coupling with the interior flow can be described through an Ekman-like balance and that shock-like structures are relevant in the swirling boundary layer of the inner core of mature storms. We analyze the radial and vertical structure of the specific forces and accelerations in in the boundary layer in a mature hurricane that includes a canonical eyewall replacement cycle. The case occurred in a mesoscale, convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation has been studied extensively in the literature. We find that momentum advection is almost everywhere important (some of it is associated with asymmetric eddies). We discuss the implication of our findings on the proposed importance of Ekman-like balance dynamics during SEF. Finally, our analysis does not support the recently proposed idea that the radial advection of radial momentum, and shock-like structures, are closely related to the supergradient wind phenomena observed during SEF.

  20. FORMATION AND STRUCTURE OF LOW-DENSITY EXO-NEPTUNES

    SciTech Connect

    Rogers, Leslie A.; Seager, Sara; Bodenheimer, Peter

    2011-09-01

    Kepler has found hundreds of Neptune-size (2-6 R{sub +}) planet candidates within 0.5 AU of their stars. The nature of the vast majority of these planets is not known because their masses have not been measured. Using theoretical models of planet formation, evolution, and structure, we explore the range of minimum plausible masses for low-density exo-Neptunes. We focus on highly irradiated planets with T{sub eq} {>=} 500 K. We consider two separate formation pathways for low-mass planets with voluminous atmospheres of light gases: core-nucleated accretion and outgassing of hydrogen from dissociated ices. We show that Neptune-size planets at T{sub eq} = 500 K with masses as small as a few times that of Earth can plausibly be formed by core-nucleated accretion coupled with subsequent inward migration. We also derive a limiting low-density mass-radius relation for rocky planets with outgassed hydrogen envelopes but no surface water. Rocky planets with outgassed hydrogen envelopes typically have computed radii well below 3 R{sub +}. For both planets with H/He envelopes from core-nucleated accretion and planets with outgassed hydrogen envelopes, we employ planet interior models to map the range of planet mass-envelope mass-equilibrium temperature parameter space that is consistent with Neptune-size planet radii. Atmospheric mass loss mediates which corners of this parameter space are populated by actual planets and ultimately governs the minimum plausible mass at a specified transit radius. We find that Kepler's 2-6 R{sub +} planet candidates at T{sub eq} = 500-1000 K could potentially have masses {approx}< 4 M{sub +}. Although our quantitative results depend on several assumptions, our qualitative finding that warm Neptune-size planets can have masses substantially smaller than those given by interpolating the masses and radii of planets within our Solar System is robust.

  1. Formation mechanisms, structure, solution behavior, and reactivity of aminodiborane.

    PubMed

    Li, Huizhen; Ma, Nana; Meng, Wenjuan; Gallucci, Judith; Qiu, Yongqing; Li, Shujun; Zhao, Qianyi; Zhang, Jie; Zhao, Ji-Cheng; Chen, Xuenian

    2015-09-30

    A facile synthesis of cyclic aminodiborane (NH2B2H5, ADB) from ammonia borane (NH3·BH3, AB) and THF·BH3 has made it possible to determine its important characteristics. Ammonia diborane (NH3BH2(μ-H)BH3, AaDB) and aminoborane (NH2BH2, AoB) were identified as key intermediates in the formation of ADB. Elimination of molecular hydrogen occurred from an ion pair, [H2B(NH3) (THF)](+)[BH4](-). Protic-hydridic hydrogen scrambling was proved on the basis of analysis of the molecular hydrogen products, ADB and other reagents through (2)H NMR and MS, and it was proposed that the scrambling occurred as the ion pair reversibly formed a BH5-like intermediate, [(THF)BH2NH2](η(2)-H2)BH3. Loss of molecular hydrogen from the ion pair led to the formation of AoB, most of which was trapped by BH3 to form ADB with a small amount oligomerizing to (NH2BH2)n. Theoretical calculations showed the thermodynamic feasibility of the proposed intermediates and the activation processes. The structure of the ADB·THF complex was found from X-ray single crystal analysis to be a three-dimensional array of zigzag chains of ADB and THF, maintained by hydrogen and dihydrogen bonding. Room temperature exchange of terminal and bridge hydrogens in ADB was observed in THF solution, while such exchange was not observed in diethyl ether or toluene. Both experimental and theoretical results confirm that the B-H-B bridge in ADB is stronger than that in diborane (B2H6, DB). The B-H-B bridge is opened when ADB and NaH react to form sodium aminodiboronate, Na[NH2(BH3)2]. The structure of the sodium salt as its 18-crown-6 ether adduct was determined by X-ray single crystal analysis. PMID:26335760

  2. Formation and Internal Structure of Terrestrial Planets, and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Jin, S.

    2014-11-01

    As of 2014 April 21, over 1490 confirmed exoplanets and 3705 Kepler candidates have been detected. This implies that exoplanets may be ubiquitous in the universe. In this paper, we focus on the formation, evolution, and internal structure of terrestrial planets, and the atmospheric escape of close-in planets. In chapter 2, we investigate the dynamical evolution of planetary system after the protoplanetary disk has dissipated. We find that in the final assembly stage, the occurrence of terrestrial planets is quite common and in 40% of our simulations finally at least one planet is formed in the habitable zone. We also find that if there is a highly-inclined giant planet in the system, a great many bodies will be either driven out of the system, or collide with the giant planet or the central star. This will lead to the difficulty in planetary accretion. Moreover, our results show that planetary migration can lead to the formation of close-in planets. Besides migration, close-in terrestrial planets can also be formed by a collision-merger mechanism, which means that planetary embryos can kick terrestrial planets directly into orbits that are extremely close to their parent stars. In chapter 3, we construct numerically an internal structure model for terrestrial planets, and provide three kinds of possible internal structures of Europa (Jupiter's moon) based on this model. Then, we calculate the radii of low-mass exoplanets for various mass combinations of core and mantle, and find that some of them are inconsistent with the observed radius of rocky planets. This phenomenon can be explained only if there exists a large amount of water in the core, or they own gaseous envelopes. In chapter 4, we improve our planetary evolution codes using the semi-gray model of Guillot (2010), which includes the incident flux from the host star as a heating source in planetary atmosphere. The updated codes can solve the structure of the top radiative zone of intensely irradiated

  3. Structure formation in the Dvali Gabadadze Porrati cosmological model

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya; Maartens, Roy

    2006-01-01

    The DGP brane-world model provides an alternative to the standard LCDM cosmology, in which the late universe accelerates due to a modification of gravity rather than vacuum energy. The cosmological constant Λ in LCDM is replaced by a single parameter, the crossover scale rc, in DGP. The supernova redshift observations can be fitted by both models, with Λ ~ H02 and rc ~ H0-1. This degeneracy is broken by structure formation, which is suppressed in different ways in the two models. There is some confusion in the literature about how the standard linear growth factor is modified in the DGP model. While the luminosity distance can be computed purely from the modified four-dimensional Friedman equation, the evolution of density perturbations requires an analysis of the five-dimensional gravitational field. We show that if the five-dimensional effects are inappropriately neglected, then the four-dimensional Bianchi identities are violated and the computed growth factor is incorrect. By using the five-dimensional equations, we derive the correct growth factor.

  4. The contribution of quasar outflows to cosmological structure formation

    NASA Astrophysics Data System (ADS)

    Arav, Nahum

    2011-10-01

    A vast new discovery space is opened up by the high sensitivity of COS in the far UV. These new capabilities are ushering a revolution in the study of AGN outflows. We now have the ability to obtain high quality data on objects up to a redshift of about 1, providing access to ten times more {and better} diagnostic absorption lines than was possible with STIS {which could only observe outflows at z<0.05 with sufficient S/N}. These diagnostics will allow us to quantify how much do quasar outflow contribute to AGN feedback. On the way to this lofty goal, we'll be able to resolve important questions in the study of these outflows: Where are they situated within the host galaxy? What is their ionization equilibrium and chemical abundances? Unlike ground-based observations, COS data can yield the answers to all these questions for the most ubiquitous outflows, and therefore connect them to our developing understanding of cosmological structure formation.Our analysis of recent archived COS observations gives a concrete example for the above claims; including the first determination of the distance from the central source for a high-ionization outflow. Here we propose an archive program to look through the 520 COS G130M and G160M orbits of AGN archive observations, identify quasar outflows and publish the analyses of the best cases.

  5. Renormalizing a viscous fluid model for large scale structure formation

    NASA Astrophysics Data System (ADS)

    Führer, Florian; Rigopoulos, Gerasimos

    2016-02-01

    Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher order vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.

  6. Using Black Hole Mergers to Explore Structure Formation

    NASA Technical Reports Server (NTRS)

    Alicea-Munoz, E.; Miller, M. Coleman

    2008-01-01

    Observations of gravitational waves from massive black hole mergers will open a new window into the era of structure formation in the early universe. Past efforts have concentrated on calculating merger rates using different physical assumptions, resulting in merger rate estimates that span a wide range (0.1 - 1 0A4 mergers/year). We develop a semi-analytical, phenomenological model of massive black hole mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z approx. 5 - 30 epoch. Our approach involves generating synthetic LISA observable data (total BH masses, BH mass ratios, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo method, thus finding constraints for the physical parameters of the mergers. We find that our method works well at estimating merger parameters and that the number of merger events is a key discriminant among models, therefore making our method robust against observational uncertainties. Our approach can also be extended to more physically-driven models and more general problems in cosmology.

  7. Using Black Hole Mergers to Explore Structure Formation

    NASA Technical Reports Server (NTRS)

    Alicea-Munoz, E.; Miller, M. Coleman

    2009-01-01

    Observations of gravitational waves from massive black hole mergers will open a new window into the era of structure formation in the early universe. Past efforts have concentrated on calculating merger rates using different physical assumptions, resulting in merger rate estimates that span a wide range (0.1 - 10(exp 4) mergers/year). We develop a semi-analytical, phenomenological model of massive black hole mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 epoch. Our approach involves generating synthetic LISA observable data (total BH masses, BH mass ratios, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo method, thus finding constraints for the physical parameters of the mergers. We find that our method works well at estimating merger parameters and that the number of merger events is a key discriminant among models, therefore making our method robust against observational uncertainties. Our approach can also be extended to more physically-driven models and more general problems in cosmology. This work is supported in part by the Cooperative Education Program at NASA/GSFC.

  8. Generation of Hierarchically Ordered Structures on a Polymer Film by Electrohydrodynamic Structure Formation.

    PubMed

    Tian, Hongmiao; Shao, Jinyou; Hu, Hong; Wang, Li; Ding, Yucheng

    2016-06-29

    The extensive applications of hierarchical structures in optoelectronics, micro/nanofluidics, energy conservation, etc., have led to the development of a variety of approaches for their fabrication, which can be categorized as bottom-up or top-down strategies. Current bottom-up and top-down strategies bear a complementary relationship to each other due to their processing characteristics, i.e., the advantages of one method correspond to the disadvantages of the other, and vice versa. Here we propose a novel method based on electrohydrodynamic structure formation, aimed at combining the main advantages of the two strategies. The method allows the fabrication of a hierarchically ordered structure with well-defined geometry and high mechanical durability on a polymer film, through a simple and low-cost process also suitable for mass-production. In this approach, upon application of an electric field between a template and a substrate sandwiching an air gap and a polymer film, the polymer is pulled toward the template and further flows into the template cavities, resulting in a hierarchical structure with primary and secondary patterns determined by electrohydrodynamic instability and by the template features, respectively. In this work, the fabrication of a hierarchical structure by electrohydrodynamic structure formation is studied using numerical simulations and experimental tests. The proposed method is then employed for the one-step fabrication of a hierarchical structure exhibiting a gradual transition in the periodicity of the primary structure using a slant template and a flat polymer film, which presents an excellent performance on controllable wettability. PMID:27268135

  9. Crystal structures of complexes of NAD{sup +}-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    SciTech Connect

    Filippova, E. V. Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-07-15

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI{sub 2} with the coupled reduction of nicotinamide adenine dinucleotide (NAD{sup +}). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD{sup +}-azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state.

  10. Innovative design of composite structures: Use of curvilinear fiber format to improve structural efficiency

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Charette, R. F.

    1987-01-01

    To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.

  11. Structure and Soot Formation Properties of Laminar Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion-generated pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide emissions associated with soot emissions are responsible for most fire deaths, and limited understanding of soot processes in flames is a major impediment to the development of computational combustion. Motivated by these observations, soot processes within laminar premixed and nonpremixed (diffusion) flames are being studied during this investigation. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. Nonbuoyant flames are emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. This study involves both ground- and space-based experiments, however, the following discussion will be limited to ground-based experiments because no space-based experiments were carried out during the report period. The objective of this work was to complete measurements in both premixed and nonpremixed flames in order to gain a better understanding of the structure of the soot-containing region and processes of soot nucleation and surface growth in these environments, with the latter information to be used to develop reliable ways of predicting soot properties in practical flames. The present discussion is brief, more details about the portions of the investigation considered here can be found in refs. 8-13.

  12. Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history

    NASA Astrophysics Data System (ADS)

    Davy, Bryan; Hoernle, Kaj; Werner, Reinhard

    2008-07-01

    Seismic reflection profiles across the Hikurangi Plateau Large Igneous Province and adjacent margins reveal the faulted volcanic basement and overlying Mesozoic-Cenozoic sedimentary units as well as the structure of the paleoconvergent Gondwana margin at the southern plateau limit. The Hikurangi Plateau crust can be traced 50-100 km southward beneath the Chatham Rise where subduction cessation timing and geometry are interpreted to be variable along the margin. A model fit of the Hikurangi Plateau back against the Manihiki Plateau aligns the Manihiki Scarp with the eastern margin of the Rekohu Embayment. Extensional and rotated block faults which formed during the breakup of the combined Manihiki-Hikurangi plateau are interpreted in seismic sections of the Hikurangi Plateau basement. Guyots and ridge-like seamounts which are widely scattered across the Hikurangi Plateau are interpreted to have formed at 99-89 Ma immediately following Hikurangi Plateau jamming of the Gondwana convergent margin at ˜100 Ma. Volcanism from this period cannot be separately resolved in the seismic reflection data from basement volcanism; hence seamount formation during Manihiki-Hikurangi Plateau emplacement and breakup (125-120 Ma) cannot be ruled out. Seismic reflection data and gravity modeling suggest the 20-Ma-old Hikurangi Plateau choked the Cretaceous Gondwana convergent margin within 5 Ma of entry. Subsequent uplift of the Chatham Rise and slab detachment has led to the deposition of a Mesozoic sedimentary unit that thins from ˜1 km thickness northward across the plateau. The contrast with the present Hikurangi Plateau subduction beneath North Island, New Zealand, suggests a possible buoyancy cutoff range for LIP subduction consistent with earlier modeling.

  13. Flexible Virtual Structure Consideration in Dynamic Modeling of Mobile Robots Formation

    NASA Astrophysics Data System (ADS)

    El Kamel, A. Essghaier; Beji, L.; Lerbet, J.; Abichou, A.

    2009-03-01

    In cooperative mobile robotics, we look for formation keeping and maintenance of a geometric configuration during movement. As a solution to these problems, the concept of a virtual structure is considered. Based on this idea, we have developed an efficient flexible virtual structure, describing the dynamic model of n vehicles in formation and where the whole formation is kept dependant. Notes that, for 2D and 3D space navigation, only a rigid virtual structure was proposed in the literature. Further, the problem was limited to a kinematic behavior of the structure. Hence, the flexible virtual structure in dynamic modeling of mobile robots formation presented in this paper, gives more capabilities to the formation to avoid obstacles in hostile environment while keeping formation and avoiding inter-agent collision.

  14. Topics in cosmology: Structure formation, dark energy and recombination

    NASA Astrophysics Data System (ADS)

    Alizadeh, Esfandiar

    The field of theoretical cosmology consists of numerous, inter-related branches, whose ambitious goal is to uncover the history of the universe from its beginning to its future. Achieving this, no doubt, requires a deep understanding of many areas of physics. In this thesis I touch upon a few of these areas in which I worked during my PhD studies. Chapter (2) describes our work in finding the accretion and merger history of dark matter halos. Dark matter halos are the collapsed dark matter structures in the late time evolution of the universe, whose existence is vital for the formation of galaxies in the Universe as they act as the potential wells where normal matter (collectively called Baryons) can accumulate, cool, and form stars. It is then no surprise that the properties of galaxies depends on the properties of the dark matter halo in which it resides, including its merger history, i.e. the number of times it merged with other halos. Even though these merger rates can be calculated theoretically for infinitesimal time steps, in order to find the merger history over an extended period of time one had to use either Monte-Carlo simulations to build up the total rates of merging and accreting from the infinitesimal rates or use N-body simulations. In chapter (2) we show how we used random walk formalism to write down an analytical (integral) equation for the merger history of halos. We have solved this equation numerically and find very good agreement with Monte-Carlo simulations. This work can be used in theories of galaxy formation and evolution. We then switch from the overdense regions of the Universe, halos, to the underdense ones, voids. These structures have not attracted as much attention from cosmologists as their overdense counterparts in probing the cosmological models. We show here that the shapes of voids as a probe can be of use for future surveys to pin down the equation of state of the dark energy, i.e. the ratio of its pressure to its energy

  15. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  16. STUDIES OF DUST CAKE FORMATION AND STRUCTURE IN FABRIC FILTRATION

    EPA Science Inventory

    Measurements with composite fabrics in which the upstream layer had a very low packing density (i.e., low fiber volume fraction) support the hypothesis that pressure drop reduction by means of electrical stimulation is due to preferential formation of the dust cake in the region ...

  17. Formation of copper porous structures under near-equilibrium chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kornyushchenko, A. S.; Natalich, V. V.; Perekrestov, V. I.

    2016-05-01

    The mechanism of copper structure formation under near-equilibrium conditions in a chemically-active medium-condensate system has been investigated. The desired conditions have been implemented using CVD system. Copper chloride CuCl2 was used as a source material, and mixture of hydrogen with nitrogen served as a working gas. The influence of the evaporation temperature, condensation temperature and state of the growth surface on the porous structures formation has been investigated. It has been established, that the structure formation mechanism is determined by layer-by-layer or normal crystal growth, nucleation and growth of whiskers, and also by partial intergrowth of structural elements.

  18. Laser-induced structure formation on stretched polymer foils

    SciTech Connect

    Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter; Arenholz, Enno

    2007-04-15

    Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.

  19. BOOK REVIEW: Transport and Structural Formation in Plasmas

    NASA Astrophysics Data System (ADS)

    Thyagaraja, A.

    1999-06-01

    The book under review is one of a series of monographs on plasma physics published by the Institute of Physics under the editorship of Peter Stott and Hans Wilhelmsson. It is nicely produced and is aimed at research workers and advanced students of both laboratory (i.e. tokamak plasmas) and astrophysical plasma physics. The authors are prolific contributors to the subject of plasma turbulence and transport with a well-defined message: ``The authors' view is that the plasma structure, fluctuations and turbulent transport are continually regulating each other and, in addition, that the structural formation and structural transition of plasmas are typical of the physics of far from equilibrium systems. The book presents and explains why the plasma inhomogeneity is the ordering parameter governing transport and how self-sustained fluctuations can be driven through subcritical excitation even beyond linear instability''. This point of view is expounded in 24 chapters, including topics such as transport phenomena in toroidal plasmas (Chapters 2-4), low frequency modes and instabilities of confined systems (Chapters 5-7), renormalization (Chapter 8), self-sustained turbulence due to the current diffusive mode and resistive effects (Chapters 9-11), subcritical turbulence and numerical simulations (Chapters 12-14), scale invariance arguments (Chapter 15), electric field effects (Chapters 17-21) and self-organized dynamics (Chapter 22). The material is essentially drawn from the authors' many and varied original contributions to the plasma turbulence and transport literature. Whatever view one might have about the merits of this work, there is little doubt in this reviewer's mind that it is indeed thought-provoking and presents a worthy intellectual challenge to plasma theorists and experimentalists alike. The authors take a consistent stance and discuss the issues from their own standpoint. They observe that the plasmas one encounters in practice (for definiteness, the

  20. Structure and Formation of Kaonic Atoms and Kaonic Nuclei

    NASA Astrophysics Data System (ADS)

    Yamagata, Junko; Hirenzaki, Satoru; Nagahiro, Hideko; Jido, Daisuke

    We study theoretically the in-flight (K-, N) reactions for the formation of bar {K}NN systems using the microscopic chiral unitary s-wave bar {K}N amplitude to get deeper physical insights on the expected spectra, and to investigate the experimental feasibility of the reaction at J-PARC facility. We show the missing mass spectra of the (K-, N) reactions accompanied by the particle emissions due to bar {K} absorption in nucleus.

  1. Structural constraints regulating triple helix formation by A-tracts.

    PubMed

    Sen, A; Gräslund, A

    2000-12-15

    The study concerns the propensity of triple helix formation by different DNA oligonucleotides containing long A-tracts with and without flanking GxC base pairs in order to probe the role of length of the A-tract and the flanking sequences. From nuclear magnetic resonance (NMR) studies of imino proton spectra and circular dichroism (CD) spectroscopy of samples composed of potential triplex forming strand sequences in correct stoichiometries, we have concluded that 8-mer A-tracts flanked by GxC base pairs exert significant steric hindrance to triple helix formation. When as much as 50 mM Mg2+ was added, no triple helix formation was observed in these samples. In contrast, open-ended 8-mer A-tracts formed triplex with the corresponding two T8 strands under relatively mild ionic conditions (100 mM Na+). Moreover, the shorter the length of the A-tract, the less is the hindrance to form a triple helix. PMID:11152277

  2. Network formation: neighborhood structures, establishment costs, and distributed learning.

    PubMed

    Chasparis, Georgios C; Shamma, Jeff S

    2013-12-01

    We consider the problem of network formation in a distributed fashion. Network formation is modeled as a strategic-form game, where agents represent nodes that form and sever unidirectional links with other nodes and derive utilities from these links. Furthermore, agents can form links only with a limited set of neighbors. Agents trade off the benefit from links, which is determined by a distance-dependent reward function, and the cost of maintaining links. When each agent acts independently, trying to maximize its own utility function, we can characterize “stable” networks through the notion of Nash equilibrium. In fact, the introduced reward and cost functions lead to Nash equilibria (networks), which exhibit several desirable properties such as connectivity, bounded-hop diameter, and efficiency (i.e., minimum number of links). Since Nash networks may not necessarily be efficient, we also explore the possibility of “shaping” the set of Nash networks through the introduction of state-based utility functions. Such utility functions may represent dynamic phenomena such as establishment costs (either positive or negative). Finally, we show how Nash networks can be the outcome of a distributed learning process. In particular, we extend previous learning processes to so-called “state-based” weakly acyclic games, and we show that the proposed network formation games belong to this class of games. PMID:23757585

  3. FASTR: A novel data format for concomitant representation of RNA sequence and secondary structure information.

    PubMed

    Bose, Tungadri; Dutta, Anirban; Mh, Mohammed; Gandhi, Hemang; Mande, Sharmila S

    2015-09-01

    Given the importance of RNA secondary structures in defining their biological role, it would be convenient for researchers seeking RNA data if both sequence and structural information pertaining to RNA molecules are made available together. Current nucleotide data repositories archive only RNA sequence data. Furthermore, storage formats which can frugally represent RNA sequence as well as structure data in a single file, are currently unavailable. This article proposes a novel storage format, 'FASTR', for concomitant representation of RNA sequence and structure. The storage efficiency of the proposed FASTR format has been evaluated using RNA data from various microorganisms. Results indicate that the size of FASTR formatted files (containing both RNA sequence as well as structure information) are equivalent to that of FASTA-format files, which contain only RNA sequence information. RNA secondary structure is typically represented using a combination of a string of nucleotide characters along with the corresponding dot-bracket notation indicating structural attributes. 'FASTR' - the novel storage format proposed in the present study enables a frugal representation of both RNA sequence and structural information in the form of a single string. In spite of having a relatively smaller storage footprint, the resultant 'fastr' string(s) retain all sequence as well as secondary structural information that could be stored using a dot-bracket notation. An implementation of the 'FASTR' methodology is available for download at http://metagenomics.atc.tcs.com/compression/fastr. PMID:26333403

  4. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer. PMID:26831689

  5. Energy minimization for self-organized structure formation and actuation

    NASA Astrophysics Data System (ADS)

    Kofod, Guggi; Wirges, Werner; Paajanen, Mika; Bauer, Siegfried

    2007-02-01

    An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation.

  6. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel

    NASA Astrophysics Data System (ADS)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-02-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  7. Regulatory effects of cotranscriptional RNA structure formation and transitions.

    PubMed

    Liu, Sheng-Rui; Hu, Chun-Gen; Zhang, Jin-Zhi

    2016-09-01

    RNAs, which play significant roles in many fundamental biological processes of life, fold into sophisticated and precise structures. RNA folding is a dynamic and intricate process, which conformation transition of coding and noncoding RNAs form the primary elements of genetic regulation. The cellular environment contains various intrinsic and extrinsic factors that potentially affect RNA folding in vivo, and experimental and theoretical evidence increasingly indicates that the highly flexible features of the RNA structure are affected by these factors, which include the flanking sequence context, physiochemical conditions, cis RNA-RNA interactions, and RNA interactions with other molecules. Furthermore, distinct RNA structures have been identified that govern almost all steps of biological processes in cells, including transcriptional activation and termination, transcriptional mutagenesis, 5'-capping, splicing, 3'-polyadenylation, mRNA export and localization, and translation. Here, we briefly summarize the dynamic and complex features of RNA folding along with a wide variety of intrinsic and extrinsic factors that affect RNA folding. We then provide several examples to elaborate RNA structure-mediated regulation at the transcriptional and posttranscriptional levels. Finally, we illustrate the regulatory roles of RNA structure and discuss advances pertaining to RNA structure in plants. WIREs RNA 2016, 7:562-574. doi: 10.1002/wrna.1350 For further resources related to this article, please visit the WIREs website. PMID:27028291

  8. Block-copolymer-induced structure formation in microemulsions

    SciTech Connect

    Hilfiker, R.; Eicke, H.F.; Steeb, C.; Hofmeier, U. )

    1991-02-07

    Transient electric birefringence measurements were performed on water/AOT (sodium bis(2-ethylhexyl) sulfosuccinate)/isooctane microemulsions with various amounts of block-copoly(oxyethylene/isoprene/oxyethylene) added. The authors could show that addition of the copolymer leads to a formation of nanodroplet (ND)-copolymer-aggregates. The contributions of NDs and aggregates to the induced birefringence could easily be separated because the NDs exhibited a negative and the aggregates a positive induced birefringence and because the time scales corresponding to the two processes were different.

  9. Note on structure formation from cosmic string wakes

    SciTech Connect

    Duplessis, Francis; Brandenberger, Robert E-mail: rhb@physics.mcgill.ca

    2013-04-01

    The search for cosmic strings has been of renewed interest with the advent of precision cosmology. In this note we give a quantitative description of the nonlinear matter density fluctuations that can form from a scaling network of cosmic string wakes. Specifically, we compute the distribution of dark matter halos. These halos would possess strong correlations in position space that should have survived until today. We also discuss the challenges involved in their detection due to their small size and the complex dynamics of their formation.

  10. Learning the 3-D structure of objects from 2-D views depends on shape, not format

    PubMed Central

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-01-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  11. Learning the 3-D structure of objects from 2-D views depends on shape, not format.

    PubMed

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-05-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  12. Formation of structure in Au, Cu and Ni nanoclusters: MD simulations

    NASA Astrophysics Data System (ADS)

    Gafner, Yu Ya; Gafner, S. L.; Golonenko, Zh V.; Redel, L. V.; Khrustalev, V. I.

    2016-02-01

    The molecular dynamics method with the modified tight-binding (TB-SMA) potential has been used to study structure formation in gold nanoparticles 1.6-5.0 nm in diameter. The formation of the internal structure of gold nanoclusters is studied in terms of canonical ensembles. The stability boundaries of various crystalline isomers are analyzed. The obtained dependences are compared with the corresponding data obtained for copper and nickel nanoparticles. The structure formation during solidification is found to be characterized by a clear effect of the particle size on the stability of a crystalline modification.

  13. Formation of core-shell structure in high entropy alloy coating by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wu, Wanfei; He, Yizhu; Li, Mingxi; Guo, Sheng

    2016-02-01

    The formation of core-shell structure is an interesting phenomenon occurring during the solidification process, due to the liquid phase separation. The formation of core-shell structure in high-entropy alloys, a new class of advanced metallic materials, has not been reported previously, and thus constitutes an intriguing scientific question. Here, we firstly report the formation of core-shell structure in one laser cladded high-entropy alloy, where we show the nanosized-Y2O3 powder addition, serves as the catalyst for the liquid phase separation.

  14. Formation and structural characteristics of thermosensitive multiblock copolymer vesicles.

    PubMed

    Ma, Shiying; Xiao, Mengying; Wang, Rong

    2013-12-23

    The spontaneous vesicle formation of ABABA-type amphiphilic multiblock copolymers bearing thermosensitive hydrophilic A-block in a selective solvent is studied using dissipative particle dynamics (DPD) approach. The formation process of vesicle through nucleation and growth pathway is observed by varying the temperature. The simulation results show that spherical micelle takes shape at high temperature. As temperature decreases, vesicles with small aqueous cavity appear and the cavity expands as well as the membrane thickness decreases with the temperature further decreasing. This finding is in agreement with the experimental observation. Furthermore, by continuously varying the temperature and the length of the hydrophobic block, a phase diagram is constructed, which can indicate the thermodynamically stable region for vesicles. The morphological phase diagram shows that vesicles can form in a larger parameter scope. The relationship between the hydrophilic and hydrophobic block length versus the aqueous cavity size and vesicle size are revealed. Simulation results demonstrate that the copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in A-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. PMID:24304193

  15. Processes of ordered structure formation in polypeptide thin film solutions.

    SciTech Connect

    Botiz, I.; Schlaad, H.; Reiter, G.

    2010-06-17

    An experimental study is presented on the hierarchical assembly of {alpha}-helical block copolymers polystyrene-poly({gamma}-benzyl-L-glutamate) into anisotropic ordered structures. We transformed thin solid films into solutions through exposure to solvent vapor and studied the nucleation and growth of ordered three-dimensional structures in such solutions, with emphasis on the dependence of these processes on supersaturation with respect to the solubility limit. Interestingly, polymer solubility could be significantly influenced via variation of humidity in the surrounding gas phase. It is concluded that the interfacial tension between the ordered structures and the solution increased with humidity. The same effect was observed for other protic non-solvents in the surrounding gas phase and is attributed to a complexation of poly({gamma}-benzyl-L-glutamate) by protic non-solvent molecules (via hydrogen-bonding interactions). This change of polymer solubility was demonstrated to be reversible by addition or removal of small amounts of protic non-solvent in the surrounding gas phase. At a constant polymer concentration, ordered ellipsoidal structures could be dissolved by removing water or methanol present in the solution. Such structures formed once again when water or methanol was reintroduced via the vapor phase.

  16. Formation of Si structure in glass with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Miura, Kiyotaka; Hirao, Kazuyuki; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Kanehira, Shingo

    2008-10-01

    Mixing metallic Al into the starting material for silicate glass is proposed as a means of forming Si structures in glass. We confirmed that Si nanocrystals are space-selectively deposited in silicate glass via a thermite reaction triggered by femtosecond laser pulses. Small Si particles were transformed into larger, but still micrometer sized, Si particles by laser irradiation. These structures grew to micro-size particles due to the thermite reaction promoted by heat treatment. We discuss what effect the irradiation of the focused laser pulse had on the Si deposition process in the laser-irradiated region. Localized high temperatures and pressures and generation of shock waves appear to be very important in forming Si-rich structures that contribute to the growth of Si particles. The diffusion of calcium ions by the generation of shock waves and the presence of Al-rich structures is important for forming Si-rich structures such as Si clusters, which is achieved by continuously breaking Si-O bonds using localized high temperatures.

  17. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  18. Structural difference rule for amorphous alloy formation by ion mixing

    NASA Technical Reports Server (NTRS)

    Liu, B.-X.; Johnson, W. L.; Nicolet, M.A.; Lau, S. S.

    1983-01-01

    A rule is formulated which establishes a sufficient condition that an amorphous binary alloy will be formed by ion mixing of multilayered samples when the two constituent metals are of different crystalline structure, regardless of their atomic sizes and electronegativities. The rule is supported by the experimental results obtained on six selected binary metal systems, as well as by the previous data reported in the literature. The amorphization mechanism is discussed in terms of the competition between two different structures resulting in frustration of the crystallization process.

  19. How chemistry influences cloud structure, star formation, and the IMF

    NASA Astrophysics Data System (ADS)

    Hocuk, S.; Cazaux, S.; Spaans, M.; Caselli, P.

    2016-03-01

    In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of grain surface chemistry (GSC) on star formation and its impact on the initial mass function (IMF). We follow a contracting translucent cloud in which we treat the gas-grain chemical interplay in detail, including the process of freeze-out. We perform 3D hydrodynamical simulations under three different conditions, a pure gas-phase model, a freeze-out model, and a complete chemistry model. The models display different thermal evolution during cloud collapse as also indicated in Hocuk, Cazaux & Spaans, but to a lesser degree because of a different dust temperature treatment, which is more accurate for cloud cores. The equation of state (EOS) of the gas becomes softer with CO freeze-out and the results show that at the onset of star formation, the cloud retains its evolution history such that the number of formed stars differ (by 7 per cent) between the three models. While the stellar mass distribution results in a different IMF when we consider pure freeze-out, with the complete treatment of the GSC, the divergence from a pure gas-phase model is minimal. We find that the impact of freeze-out is balanced by the non-thermal processes; chemical and photodesorption. We also find an average filament width of 0.12 pc (±0.03 pc), and speculate that this may be a result from the changes in the EOS caused by the gas-dust thermal coupling. We conclude that GSC plays a big role in the chemical composition of molecular clouds and that surface processes are needed to accurately interpret observations, however, that GSC does not have a significant impact as far as star formation and the IMF is concerned.

  20. Formative Influences in the Evolving Structure of American Postsecondary Education.

    ERIC Educational Resources Information Center

    Pfnister, Allan O.

    Three movements that have affected the structure of American postsecondary education are the development of governance by lay boards of control, the growth in power of state coordinating bodies, and the emergence of federal regulatory agency authority over postsecondary education. American postsecondary education has been characterized as…

  1. Formation of the internal structure of solids under severe load.

    PubMed

    Metlov, Leonid S

    2010-05-01

    An alternative form of kinetic equations, involving the internal and free energies symmetrically, has been derived in the framework of the theory of vacancies. Dynamical nature of irreversible phenomena during formation and motion of defects (dislocations) has been analyzed by a computer experiment. Results of this simulation are then extended into a thermodynamic identity, involving the law of conservation of energy at interaction with an environment (the first law of thermodynamics) and the law of energy transformation in the internal degrees of freedom (relaxation). This identity is compared to the analogous Jarzynski identity. The approach is illustrated by simulation of processes during severe plastic deformation; the Rybin kinetic equation for this case has been derived. PMID:20866199

  2. Structure and Formation of Elliptical and Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf

    2009-05-01

    New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT <= -21.66 have cuspy cores—"missing light"—at small radii. Cores are well known and naturally scoured by binary black holes (BHs) formed in dissipationless ("dry") mergers. All 17 ellipticals with -21.54 <= MVT <= -15.53 do not have cores. We find a new distinct component in these galaxies: all coreless ellipticals in our sample have extra light at the center above the inward extrapolation of the outer Sérsic profile. In large ellipticals, the excess light is spatially resolved and resembles the central components predicted in numerical simulations of mergers of galaxies that contain gas. In the simulations, the gas dissipates, falls toward the center, undergoes a starburst, and builds a compact stellar component that, as in our observations, is distinct from the Sérsic-function main body of the elliptical. But ellipticals with extra light also contain supermassive BHs. We suggest that the starburst has swamped core scouring by binary BHs. That is, we interpret extra light components as a signature of formation in dissipative ("wet") mergers. Besides extra light, we find three new aspects to the ("E-E") dichotomy into two types of elliptical galaxies. Core galaxies are known to be slowly rotating, to have relatively anisotropic velocity distributions, and to have boxy isophotes. We show that they have Sérsic indices n > 4 uncorrelated

  3. Unconstrained Structure Formation in Coarse-Grained Protein Simulations

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan

    The ability of proteins to fold into well-defined structures forms the basis of a wide variety of biochemical functions in and out of the cell membrane. Many of these processes, however, operate at time- and length-scales that are currently unattainable by all-atom computer simulations. To cope with this difficulty, increasingly more accurate and sophisticated coarse-grained models are currently being developed. In the present thesis, we introduce a solvent-free coarse-grained model for proteins. Proteins are modeled by four beads per amino acid, providing enough backbone resolution to allow for accurate sampling of local conformations. It relies on simple interactions that emphasize structure, such as hydrogen bonds and hydrophobicity. Realistic alpha/beta content is achieved by including an effective nearest-neighbor dipolar interaction. Parameters are tuned to reproduce both local conformations and tertiary structures. By studying both helical and extended conformations we make sure the force field is not biased towards any particular secondary structure. Without any further adjustments or bias a realistic oligopeptide aggregation scenario is observed. The model is subsequently applied to various biophysical problems: (i) kinetics of folding of two model peptides, (ii) large-scale amyloid-beta oligomerization, and (iii) protein folding cooperativity. The last topic---defined by the nature of the finite-size thermodynamic transition exhibited upon folding---was investigated from a microcanonical perspective: the accurate evaluation of the density of states can unambiguously characterize the nature of the transition, unlike its corresponding canonical analysis. Extending the results of lattice simulations and theoretical models, we find that it is the interplay between secondary structure and the loss of non-native tertiary contacts which determines the nature of the transition. Finally, we combine the peptide model with a high-resolution, solvent-free, lipid

  4. Structure formation in a nonlocally modified gravity model

    SciTech Connect

    Park, Sohyun; Dodelson, Scott

    2013-01-01

    We study a nonlocally modified gravity model proposed by Deser and Woodard which gives an explanation for current cosmic acceleration. By deriving and solving the equations governing the evolution of the structure in the Universe, we show that this model predicts a pattern of growth that differs from standard general relativity (+dark energy) at the 10-30% level. These differences will be easily probed by the next generation of galaxy surveys, so the model should be tested shortly.

  5. Dynamically-induced structures formation in congested magma

    NASA Astrophysics Data System (ADS)

    Petford, N.

    2008-12-01

    Crystal fabrics preserved in igneous rocks offer a glimpse into the magma emplacement process. Detailed field mapping, in combination with AMS studies, seem to provide the best available data for unravelling intrusion architecture on the decimetre scale. However, a full and proper understanding of the fluid dynamics of congested fluid-particle mixtures during shear remains elusive. This is a shame as without recourse to such fundamental understanding, the interpretation of structural field data in the context of magma flow remains problematic. One way to gain insight into the process is to treat flowing magma as a dynamic material with a rheology similar to sheared, congested slurries. The fancy that dense magma equates to a high temperature slurry is an attractive one, and opens up a way to examine the emplacement process that does not rely exclusively on equilibrium thermodynamics as a final explanation of commonly observed igneous structures. Instead, using examples from mafic rocks where cooling has been rapid, the idea is put forward that in high Peclet number suspensions (where particle diffusion is negligible), shearing and non- Newtonian behaviour imparts a rich diversity of structures including layering, grading and flow segregation. Key to understanding the rheology, hence flow dynamics of congested magma, is the particle microstructure, a still poorly known essence of suspension flows. Where magma transport is continental in scale and long lived (e.g. Large Igneous Provinces), rotation of the earth may in theory endow a small but potentially measurable imprint on the preserved flow fabric.

  6. Experimental formation of brittle structural assemblages in oblique divergence

    NASA Astrophysics Data System (ADS)

    Smith, J. V.; Durney, D. W.

    1992-12-01

    A series of experiments is reported in which brittle minor structures are initiated in narrow deformation zones in clay under conditions of kinematically controlled oblique divergent displacement. Nineteen settings of boundary displacement angle were used from pure wrench to pure divergence under conditions favouring either faults (dry experiments) or extension fractures (wet experiments). Pure wrench produced the well known assemblage of Riedel strike-slip faults whereas experiments in pure divergence produced conjugate arrays of normal faults and extension fractures with a dihedral angle of 30° bisected by the direction of the zone, as has been described in rift zones. Experiments with boundary displacements at intermediate settings show a continuum of structural orientations and dihedral angles between these two extremes. A boundary between assemblages dominated by strike-slip faults and extensional faults was found at a displacement angle of 45° from the deformation zone. These results are interpreted kinematically in terms of: (1) principal axes of infinitesimal incremental strain; (2) material dilatancy control on shear structure dihedral angles; and (3) whether the vertical strain in divergent wrench settings is a thickening (strike-slip assemblage) or a thinning (normal fault assemblage).

  7. Coupled and extended quintessence: Theoretical differences and structure formation

    NASA Astrophysics Data System (ADS)

    Pettorino, Valeria; Baccigalupi, Carlo

    2008-05-01

    The case of a coupling between dark energy and matter [coupled quintessence (CQ)] or gravity [extended quintessence (EQ)] has recently attracted a deep interest and has been widely investigated both in the Einstein and in the Jordan frames (EF, JF), within scalar-tensor theories. Focusing on the simplest models proposed so far, in this paper we study the relation existing between the two scenarios, isolating the Weyl scaling which allows one to express them in the EF and JF. Moreover, we perform a comparative study of the behavior of linear perturbations in both scenarios, which turn out to behave in a markedly different way. In particular, while the clustering is enhanced in the considered CQ models with respect to the corresponding quintessence ones where the coupling is absent and to the ordinary cosmologies with a cosmological constant and cold dark matter (ΛCDM), structures in EQ models may grow slower. This is likely to have direct consequences on the inner properties of nonlinear structures, like cluster concentration, as well as on the weak lensing shear on large scales. Finally, we specialize our study for interfacing linear dynamics and N-body simulations in these cosmologies, giving a recipe for the corrections to be included in N-body codes in order to take into account the modifications to the expansion rate, growth of structures, and strength of gravity.

  8. Investigation of hierarchical structure formation in ceramics with invar effect

    NASA Astrophysics Data System (ADS)

    Dedova, Elena S.; Shadrin, Vladimir S.; Shutilova, Ekaterina S.; Kulkov, Sergei N.

    2015-10-01

    The structure, phase composition and thermal properties of (Al2O3-20 wt % ZrO2)-ZrW2O8 ceramic composites obtained using nanosized, finely dispersed and coarse-grained initial powders were investigated. On the polished surface of composites homogeneously distributed white particles were observed. The chemical composition of the particles was determined. The phase composition of the composites was represented with corundum, monoclinic ZrO2 and two modifications of ZrW2O8 (tetragonal and cubic) regardless of initial powders morphology. Crystal structure parameters of the material obtained were determined. Linear thermal expansion coefficient values of the composites were determined and compared with those calculated using the mixture rule. The experimental data correlated well with the calculated values of CTE for Al2O3-20 wt % ZrO2 ceramics. The difference in thermal expansion values for composites obtained using initial components with different morphology may be attributed to phase transformations, features of hierarchical structures, internal stresses due to thermal expansion mismatch, which contribute significantly to thermal expansion of the ceramic composites.

  9. Terasaki Ramps in the Endoplasmic Reticulum: Structure, Function and Formation

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Guven, Jemal; Valencia, Dulce-Maria

    2015-03-01

    The endoplasmic reticulum (ER) has long been considered an exceedingly important and complex cellular organelle in eukaryotes (like you). It is a membrane structure, part folded lamellae, part tubular network, that both envelopes the nucleus and threads its way outward, all the way to the cell's periphery. Despite the elegant mechanics of bilayer membranes offered by the work of Helfrich and Canham, as far as the ER is concerned, theory has mostly sat on the sidelines. However, refined imaging of the ER has recently revealed beautiful and subtle geometrical forms - simple geometries, from the mathematical point of view - which some have called a ``parking garage for ribosomes.'' I'll review the discovery and physics of Terasaki ramps and discuss their relation to cell-biological questions, such as ER and nuclear-membrane re-organization during mitosis. Rather than being a footnote in a textbook on differential geometry, these structures suggest answers to a number of the ER's structure-function problems.

  10. Structural ensembles of the north belt of Venus deformations and possible mechanisms of their formation

    NASA Technical Reports Server (NTRS)

    Markov, M. S.

    1986-01-01

    The author discusses structural formations in the northern deformation belt of Venus, studied according to the data of the radar pictures obtained with the Venera 15 and 16 probes. He shows that it consists of regions of compression with submeridional orientation, regions of displacement, extending in the sublatitudinal direction and individual slightly deformed blocks. He puts forward the hypothesis that the formation of these structures is related with horizontal movements in the mantle in the sublatitudinal direction.

  11. Linking the structural properties of galaxies and their star formation histories with STAGES

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Aragón-Salamanca, Alfonso; Gray, Meghan E.; Wolf, Christian; Maltby, David T.; Bell, Eric F.; Böhm, Asmus; Jogee, Shardha

    2016-01-01

    We study the links between star formation history and structure for a large mass-selected galaxy sample at 0.05 ≤ zphot ≤ 0.30. The galaxies inhabit a very broad range of environments, from cluster cores to the field. Using Hubble Space Telescope (HST) images, we quantify their structure following Hoyos et al., and divide them into disturbed and undisturbed. We also visually identify mergers. Additionally, we provide a quantitative measure of the degree of disturbance for each galaxy (`roughness'). The majority of elliptical and lenticular galaxies have relaxed structure, showing no signs of ongoing star formation. Structurally disturbed galaxies, which tend to avoid the lowest density regions, have higher star formation activity and younger stellar populations than undisturbed systems. Cluster spirals with reduced/quenched star formation have somewhat less disturbed morphologies than spirals with `normal' star formation activity, suggesting that these `passive' spirals have started their morphological transformation into S0s. Visually identified mergers and galaxies not identified as mergers but with similar roughness have similar specific star formation rates and stellar ages. The degree of enhanced star formation is thus linked to the degree of structural disturbance, regardless of whether it is caused by major mergers or not. This suggests that merging galaxies are not special in terms of their higher-than-normal star formation activity. Any physical process that produces `roughness', or regions of enhanced luminosity density, will increase the star formation activity in a galaxy with similar efficiency. An alternative explanation is that star formation episodes increase the galaxies' roughness similarly, regardless of whether they are merger induced or not.

  12. Simulations of the formation of large-scale structure

    NASA Astrophysics Data System (ADS)

    White, S. D. M.

    Numerical studies related to the simulation of structure growth are examined. The linear development of fluctuations in the early universe is studied. The research of Aarseth, Gott, and Turner (1979) based on N-body integrators that obtained particle accelerations by direct summation of the forces due to other objects is discussed. Consideration is given to the 'pancake theory' of Zel'dovich (1970) for the evolution from adiabatic initial fluctuation, the neutrino-dominated universe models of White, Frenk, and Davis (1983), and the simulations of Davis et al. (1985).

  13. Formation and subdivision of deformation structures during plastic deformation.

    PubMed

    Jakobsen, Bo; Poulsen, Henning F; Lienert, Ulrich; Almer, Jonathan; Shastri, Sarvjit D; Sørensen, Henning O; Gundlach, Carsten; Pantleon, Wolfgang

    2006-05-12

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior. Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials. PMID:16690859

  14. Disentangling Effects of Nuclear Structure in Heavy Element Formation

    SciTech Connect

    Hinde, D. J.; Thomas, R. G.; Rietz, R. du; Diaz-Torres, A.; Dasgupta, M.; Brown, M. L.; Evers, M.; Gasques, L. R.; Rafiei, R.; Rodriguez, M. D.

    2008-05-23

    Forming the same heavy compound nucleus with different isotopes of the projectile and target elements allows nuclear structure effects in the entrance channel (resulting in static deformation) and in the dinuclear system to be disentangled. Using three isotopes of Ti and W, forming {sup 232}Cm, with measurement spanning the capture barrier energies, alignment of the heavy prolate deformed nucleus is shown to be the main reason for the broadening of the mass distribution of the quasifission fragments as the beam energy is reduced. The complex, consistently evolving mass-angle correlations that are observed carry more information than the integrated mass or angular distributions, and should severely test models of quasifission.

  15. Foreign body impact event damage formation in composite structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1994-01-01

    This report discusses a methodology that can be used to assess the effect of foreign body impacts on composite structural integrity. The described effort focuses on modeling the effect of a central impact on a 5 3/4 inch filament wound test article. The discussion will commence with details of the material modeling that was used to establish the input properties for the analytical model. This discussion is followed by an overview of the impact assessment methodology. The progress on this effort to date is reviewed along with a discussion of tasks that have yet to be completed.

  16. Features of formation concentration profile in structured materials

    NASA Astrophysics Data System (ADS)

    Pavlenko, T. S.; Lisenkov, A. A.; Babinov, N. A.

    2016-01-01

    The paper presents analysis of dependence of the penetration depth of the implanted aluminium ions in structured titanium. Ion implantation was performed repetitively pulsed particle beam ion source "MEVVA-V.RU". In the interpretation of the observed patterns of energy accounted for heterogeneous composition of the beam vacuum-arc source, is represented by three components. Within the simulation found that in samples with relatively fine grains (ultrafine samples) largely contribute to diffusion processes, in particular radiation- induced diffusion in comparison with fine-grained samples.

  17. Formation, structure, and decomposition of lanthanide basic carbonates

    SciTech Connect

    Akinc, M.; Sordelet, D.J.; Munson, M. )

    1988-05-01

    Precipitation, crystal structure, and thermal decomposition behavior of the rare-earth basic carbonates were investigated. Precipitates were produced from hydrolysis of rare-earth cations in hot urea solutions. The light rare earths formed were crystalline with regular geometric shapes, whereas heavy rare earths produced amorphous, spherical monodisperse particles. Crystalline phases belong to ancylite-type orthorhombic symmetry. Unit-cell volume was related to interatomic distance. Thermal decomposition of the crystalline precipitates occurred in two major distinct steps to produce oxide, whereas heavy rare earths decomposed continuously with several distinct effects to produce oxide powder.

  18. Dynamic Structure Formation at the Fronts of Volatile Liquid Drops

    NASA Astrophysics Data System (ADS)

    Gotkis, Y.; Ivanov, I.; Murisic, N.; Kondic, L.

    2006-11-01

    We report on instabilities during the spreading of volatile liquids, with emphasis on the novel instability observed when isopropyl alcohol is deposited on a monocrystalline Si wafer. This instability is characterized by emission of drops ahead of the expanding front, with each drop followed by smaller, satellite droplets, forming the structures which we nickname “octopi” due to their appearance. A less volatile liquid, or a substrate of larger heat conductivity, suppresses this instability. We formulate a theoretical model that reproduces the main features of the experiment.

  19. Structural control of nonadiabatic bond formation: the photochemical formation and stability of substituted 4a,4b-dihydrotriphenylenes.

    PubMed

    Snyder, Joshua A; Bragg, Arthur E

    2015-04-30

    Nonadiabatic photocyclization makes bonds and is the first step in the photoinduced cyclodehydrogenation of ortho-arenes to yield polycyclic aromatic hydrocarbons. How molecular structure alters potential-energy landscapes, excited-state dynamics, and stabilities of reactants and intermediates underlies the feasibility of desirable photochemistry. In order to gain insight into these structure-dynamics relationships, we have used femtosecond transient absorption spectroscopy (TAS) to examine photoinduced dynamics of 1,2,3-triphenylbenzene (TPB) and ortho-quaterphenyl (OQTP), phenyl-subsituted analogues of ortho-terphenyl (OTP). Dynamics of TPB and OTP are quite similar: TPB exhibits fast (7.4 ps) excited-state decay with concomitant formation and vibrational relaxation of 9-phenyl-dihydrotriphenylene (9-phenyl DHT). In contrast, photoexcited OQTP exhibits multistate kinetics leading to formation of 1-phenyl DHT. Excited-state calculations reveal the existence of two distinct minima on the OQTP S1 surface and, together with photophysical data, support a mechanism involving both direct cyclization by way of an asymmetric structure and indirect cyclization by way of a symmetric quinoid-like minimum. Temperature-dependent nanosecond TAS was utilized to assess the relative stabilities of intermediates, substantiating the observed trend in photochemical reactivity OTP > OQTP > TPB. In total, this work demonstrates how specific structural variations alter the course of the excited-state dynamics and photoproduct stability that underlies desired photochemistry. PMID:25849258

  20. Co-crystal formation based on structural matching.

    PubMed

    Zhou, Liping; Dodd, Stephanie; Capacci-Daniel, Christina; Garad, Sudhakar; Panicucci, Riccardo; Sethuraman, Vijay

    2016-06-10

    A co-crystal is defined as a single crystalline structure composed of two or more components with no proton transfer which are solid at room temperature. Our group has come up with the following rationale selection of co-formers for initial co-crystal screening: 1) selection of co-formers with the highest potential for hydrogen bonding with the API and 2) selection of co-formers with diversity of secondary structural characteristics. We demonstrate the feasibility of this technique with a Novartis drug candidate A. In the first tier, 20 co-formers were screened and two hits were identified. By examining the two co-formers, which worked from the first round, a second round of screening was undertaken with more focused chemical matter. Nineteen co-crystal formers closely related to the two hits in the first screen were screened in the second tier. From this screen five hits were identified. All the hits were compared for their physical and chemical stability and dissolution profile. Based on the comparison 4-aminobenzoic co-crystal was chosen for in-vivo comparison with the free form. The co-crystal had 12 times higher exposure than the free form thus overcoming the solubility limited exposure. PMID:26948852

  1. Dynamics versus structure: breaking the density degeneracy in star formation

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.

    2014-12-01

    The initial density of individual star-forming regions (and by extension the birth environment of planetary systems) is difficult to constrain due to the `density degeneracy problem': an initially dense region expands faster than a more quiescent region due to two-body relaxation and so two regions with the same observed present-day density may have had very different initial densities. We constrain the initial densities of seven nearby star-forming regions by folding in information on their spatial structure from the {Q}-parameter and comparing the structure and present-day density to the results of N-body simulations. This in turn places strong constraints on the possible effects of dynamical interactions and radiation fields from massive stars on multiple systems and protoplanetary discs. We apply our method to constrain the initial binary population in each of these seven regions and show that the populations in only three - the Orion Nebula Cluster, ρ Oph, and Corona Australis - are consistent with having evolved from the Kroupa universal initial period distribution and a binary fraction of unity.

  2. Formation and structural properties of multi-block copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Ma, Shiying

    2014-03-01

    Due to the unique structure, vesicles have attracted considerable attention for their potential applications, such as gene and drug delivery, microcapsules, nanoreactors, cell membrane mimetic, synthetic organelles, etc. By using dissipative particle dynamics, we studied the self-assembly of amphiphilic multi-block copolymer. The phase diagram was constructed by varying the interaction parameters and the composition of the block copolymers. The results show that the vesicles are stable in a large region which is different from the diblock copolymer or triblock copolymer. The structural properties of vesicles can be controlled by varying the interaction parameters and the length of the hydrophobic block. The relationship between the hydrophilic and hydrophobic block length vs the aqueous cavity size and vesicle size are revealed. The copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in hydrophobic-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. Acknowledgments. This work has been supported by NNSFC (No. 21074053) and NBRPC (No. 2010CB923303).

  3. Minimal continuum theories of structure formation in dense active fluids

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Heidenreich, Sebastian; Bär, Markus; Goldstein, Raymond E.

    2013-04-01

    Self-sustained dynamical phases of living matter can exhibit remarkable similarities over a wide range of scales, from mesoscopic vortex structures in microbial suspensions and motility assays of biopolymers to turbulent large-scale instabilities in flocks of birds or schools of fish. Here, we argue that, in many cases, the phenomenology of such active states can be efficiently described in terms of fourth- and higher-order partial differential equations. Structural transitions in these models can be interpreted as Landau-type kinematic transitions in Fourier (wavenumber) space, suggesting that microscopically different biological systems can share universal long-wavelength features. This general idea is illustrated through numerical simulations for two classes of continuum models for incompressible active fluids: a Swift-Hohenberg-type scalar field theory, and a minimal vector model that extends the classical Toner-Tu theory and appears to be a promising candidate for the quantitative description of dense bacterial suspensions. We discuss how microscopic symmetry-breaking mechanisms can enter macroscopic continuum descriptions of collective microbial motion near surfaces, and conclude by outlining future applications.

  4. Modelling the structural controls of primary kaolinite formation

    NASA Astrophysics Data System (ADS)

    Tierney, R. L.; Glass, H. J.

    2016-09-01

    An abundance of kaolinite was formed within the St. Austell outcrop of the Cornubian batholith in Cornwall, southwest England, by the hydrous dissolution of feldspar crystals. The permeability of Cornish granites is low and alteration acts pervasively from discontinuity features, with montmorillonite recognised as an intermediate assemblage in partially kaolinised material. Structural features allowed fluids to channel through the impermeable granite and pervade deep into the rock. Areas of high structural control are hypothesised to link well with areas of advanced alteration. As kaolinisation results in a loss of competence, we present a method of utilising discontinuity orientations from nearby unaltered granites alongside the local tectonic history to calculate strain rates and delineate a discrete fracture network. Simulation of the discrete fracture network is demonstrated through a case study at Higher Moor, where kaolinite is actively extracted from a pit. Reconciliation of fracture connectivity and permeability against measured subsurface data show that higher values of modelled properties match with advanced kaolinisation observed in the field. This suggests that the technique may be applicable across various industries and disciplines.

  5. Structural Control of Nonadiabatic Photochemical Bond Formation: Photocyclization in Structurally Modified ortho-Terphenyls.

    PubMed

    Molloy, Molly S; Snyder, Joshua A; DeFrancisco, Justin R; Bragg, Arthur E

    2016-06-16

    Understanding how molecular structure impacts the shapes of potential energy surfaces and prospects for nonadiabatic photochemical dynamics is critical for predicting and controlling the chemistry of molecular excited states. Ultrafast transient absorption spectroscopy was used to interrogate photoinduced, nonadiabatic 6π cyclization of a collection of ortho-terphenyls (OTP) modified with alkyl substituents of different sizes and electron-donating/withdrawing character positioned on its central and pendant phenyl rings. OTP alkylated at the 4,4″ and 4',5' positions of the pendant and central rings, respectively, exhibiting biphasic excited-state relaxation; this is qualitatively similar to relaxation of OTP itself, including a fast decrease in excited-state absorption (τ1 = 1-4 ps) followed by formation of metastable cyclized photoproducts (τ2 = 3-47 ps) that share common characteristic spectroscopic features for all substitutions despite variations in chemical nature of the substituents. By contrast, anomalous excited-state dynamics are observed for 3',6'dimethyl-OTP, in which the methyl substituents crowd the pendant rings sterically; time-resolved spectral dynamics and low photochemical reactivity with iodine reveal that methylation proximal to the pendant rings impedes nonadiabatic cyclization. Results from transient measurements and quantum-chemical calculations are used to decipher the nature of excited state relaxation mechanisms in these systems and how they are perturbed by mechanical, electronic, and steric interactions induced by substituents. PMID:27171560

  6. Formation of 2D nanoparticles with block structure in simultaneous electric explosion of conductors

    SciTech Connect

    Kryzhevich, Dmitrij S. E-mail: kost@ispms.ru; Zolnikov, Konstantin P. E-mail: kost@ispms.ru; Abdrashitov, Andrei V.; Lerner, Marat I.; Psakhie, Sergey G.

    2014-11-14

    A molecular dynamics simulation of nanoparticle formation in simultaneous electric explosion of conductors is performed. Interatomic interaction is described using potentials calculated in the framework of the embedded atom method. High-rate heating results in failure of the conductors with the formation of nanoparticles. The influence of the heating rate, temperature distribution over the specimen cross-section and the distance between simultaneously exploded conductors on the structure of formed nanoparticles is studied. The calculation results show that the electric explosion of conductors allows the formation of nanoparticles with block structure.

  7. Distributed attitude synchronization of formation flying via consensus-based virtual structure

    NASA Astrophysics Data System (ADS)

    Cong, Bing-Long; Liu, Xiang-Dong; Chen, Zhen

    2011-06-01

    This paper presents a general framework for synchronized multiple spacecraft rotations via consensus-based virtual structure. In this framework, attitude control systems for formation spacecrafts and virtual structure are designed separately. Both parametric uncertainty and external disturbance are taken into account. A time-varying sliding mode control (TVSMC) algorithm is designed to improve the robustness of the actual attitude control system. As for the virtual attitude control system, a behavioral consensus algorithm is presented to accomplish the attitude maneuver of the entire formation and guarantee a consistent attitude among the local virtual structure counterparts during the attitude maneuver. A multiple virtual sub-structures (MVSSs) system is introduced to enhance current virtual structure scheme when large amounts of spacecrafts are involved in the formation. The attitude of spacecraft is represented by modified Rodrigues parameter (MRP) for its non-redundancy. Finally, a numerical simulation with three synchronization situations is employed to illustrate the effectiveness of the proposed strategy.

  8. Cosmic expansion and structure formation in running vacuum cosmologies

    NASA Astrophysics Data System (ADS)

    Basilakos, Spyros

    2015-06-01

    We investigate the dynamics of the Friedmann-Lemaître-Robertson-Walker (FLRW) flat cosmological models in which the vacuum energy varies with redshift. A particularly well-motivated model of this type is the so-called quantum field vacuum, in which both kind of terms H2 and constant appear in the effective dark energy (DE) density affecting the evolution of the main cosmological functions at the background and perturbation levels. Specifically, it turns out that the functional form of the quantum vacuum endows the vacuum energy of a mild dynamical evolution which could be observed nowadays and appears as dynamical DE. Interestingly, the low-energy behavior is very close to the usual Lambda cold dark matter (ΛCDM) model, but it is by no means identical. Finally, within the framework of the quantum field vacuum we generalize the large scale structure properties, namely growth of matter perturbations, cluster number counts and spherical collapse model.

  9. Structural Basis of Vesicle Formation at the Inner Nuclear Membrane

    PubMed Central

    Hagen, Christoph; Dent, Kyle C.; Zeev-Ben-Mordehai, Tzviya; Grange, Michael; Bosse, Jens B.; Whittle, Cathy; Klupp, Barbara G.; Siebert, C. Alistair; Vasishtan, Daven; Bäuerlein, Felix J.B.; Cheleski, Juliana; Werner, Stephan; Guttmann, Peter; Rehbein, Stefan; Henzler, Katja; Demmerle, Justin; Adler, Barbara; Koszinowski, Ulrich; Schermelleh, Lothar; Schneider, Gerd; Enquist, Lynn W.; Plitzko, Jürgen M.; Mettenleiter, Thomas C.; Grünewald, Kay

    2015-01-01

    Summary Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM. PMID:26687357

  10. Structural characterization of a karstified limestone formation using GPR

    NASA Astrophysics Data System (ADS)

    Rousset, D.; Sénéchal, G.; Gaffet, S.

    2009-12-01

    The Laboratoire Souterrain à Bas Bruit (LSBB) at Rustrel - Pays d'Apt, France, is an Inter-disciplinary Underground Science and Technology Laboratory buried in a karstified limestone formation. A multidisciplinary program focused on water circulation monitoring is presently performed inside the tunnels. This program comprises the investigation of faults, fractures, karstification and stratigraphy ofthe limestone massif using GPR. We present the main results obtained from these data. The tunnel has been dug in lower cretaceous limestone which is characterized by a low clay content, high electrical resistivity which results in generally very low attenuation of electro-magnetic waves. 90% of the tunnels floor are made of concrete whereas other are made of bare limestone. This experimental site offers a unique opportunity of perfoming measurements within an unweathered limestone massif. The whole 3km long tunnel has been investigated using single offset shielded 250 MHz antennas in May 2009. Processing includes : DC and very low frequency removal, amplitude compensation preserving lateral variations, migration and time to depth conversion. When necessary predictive deconvolution has been applied to remove ringing effects. These data sets are characterized by good signal to noise ratio and a signal penetration down to 18 meters. These data allow us to accurately map the stratigraphy of the surrounding rocks across the concrete walls of the tunnel. Some 20 m deep vertical wells have been drilled inside the tunnel through observed reflectors. This is a strong validation of the GPR images. The estimated resolution is centimetric to decimetric and matches the required geologic accuracy. The GPR data set allows to extend previous geological results in depth, particularly in the concrete coated parts of the tunnel where conventional geological surveying is impossible. Thanks to the processing which preserves lateral amplitude variations, GPR sections exhibit prominent

  11. Observation of the Early Structural Changes Leading to the Formation of Protein Superstructures.

    PubMed

    Foderà, Vito; Vetri, Valeria; Wind, Thea S; Noppe, Wim; Cornett, Claus; Donald, Athene M; Morozova-Roche, Ludmilla A; Vestergaard, Bente

    2014-09-18

    Formation of superstructures in protein aggregation processes has been indicated as a general pathway for several proteins, possibly playing a role in human pathologies. There is a severe lack of knowledge on the origin of such species in terms of both mechanisms of formation and structural features. We use equine lysozyme as a model protein, and by combining spectroscopic techniques and microscopy with X-ray fiber diffraction and ab initio modeling of Small Angle X-ray Scattering data, we isolate the partially unfolded state from which one of these superstructures (i.e., particulate) originates. We reveal the low-resolution structure of the unfolded state and its mechanism of formation, highlighting the physicochemical features and the possible pathway of formation of the particulate structure. Our findings provide a novel detailed knowledge of such a general and alternative aggregation pathway for proteins, this being crucial for a basic and broader understanding of the aggregation phenomena. PMID:26276341

  12. Structure formation constraints on Sommerfeld-enhanced dark matter annihilation

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2012-12-01

    We study the growth of cosmic structure in a ΛCDM universe under the assumption that dark matter self-annihilates with an averaged cross section times relative velocity that grows with the scale factor, an increase known as Sommerfeld-enhancement. Such an evolution is expected in models in which a light force carrier in the dark sector enhances the annihilation cross section of dark matter particles, and has been invoked, for instance, to explain anomalies in cosmic ray spectra reported in the past. In order to make our results as general as possible, we assume that dark matter annihilates into a relativistic species that only interacts gravitationally with the standard model. This assumption also allows us to test whether the additional relativistic species mildly favored by cosmic-microwave background data could originate from dark matter annihilation. We do not find evidence for Sommerfeld-enhanced dark matter annihilation and derive the corresponding upper limits on the annihilation cross-section.

  13. Structural Basis of Clostridium perfringens Toxin Complex Formation

    SciTech Connect

    Adams,J.; Gregg, K.; Bayer, E.; Boraston, A.; Smith, S.

    2008-01-01

    The virulent properties of the common human and livestock pathogen Clostridium perfringens are attributable to a formidable battery of toxins. Among these are a number of large and highly modular carbohydrate-active enzymes, including the {mu}-toxin and sialidases, whose catalytic properties are consistent with degradation of the mucosal layer of the human gut, glycosaminoglycans, and other cellular glycans found throughout the body. The conservation of noncatalytic ancillary modules among these enzymes suggests they make significant contributions to the overall functionality of the toxins. Here, we describe the structural basis of an ultra-tight interaction (Ka = 1.44 x 1011 M-1) between the X82 and dockerin modules, which are found throughout numerous C. perfringens carbohydrate-active enzymes. Extensive hydrogen-bonding and van der Waals contacts between the X82 and dockerin modules give rise to the observed high affinity. The {mu}-toxin dockerin module in this complex is positioned {approx}180 relative to the orientation of the dockerin modules on the cohesin module surface within cellulolytic complexes. These observations represent a unique property of these clostridial toxins whereby they can associate into large, noncovalent multitoxin complexes that allow potentiation of the activities of the individual toxins by combining complementary toxin specificities.

  14. Formation and finite element analysis of tethered bilayer lipid structures.

    PubMed

    Kwak, Kwang Joo; Valincius, Gintaras; Liao, Wei-Ching; Hu, Xin; Wen, Xuejin; Lee, Andrew; Yu, Bo; Vanderah, David J; Lu, Wu; Lee, L James

    2010-12-01

    Rapid solvent exchange of an ethanolic solution of diphytanoyl phosphatidylcholine (DPhyPC) in the presence of a mixed self-assembled monolayer (SAM) [thiolipid/β-mercaptoethanol (βME) (3/7 mol/mol) on Au] shows a transition from densely packed tethered bilayer lipid membranes [(dp)tBLMs], to loosely packed tethered bilayer lipid membranes [(lp)tBLMs], and tethered bilayer liposome nanoparticles (tBLNs) with decreasing DPhyPC concentration. The tethered lipidic constructs in the aqueous medium were analyzed by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). Finite element analysis (FEA) was applied to interpret spectral EIS features without referring to equivalent circuit modeling. Using structural data obtained earlier from neutron reflectometry and dielectric constants of lipid bilayers, we reproduced experimentally observed features of the electrochemical impedance (EI) spectra of complex surface constructs involving small pinhole defects, large membrane-free patches, and bound liposomes. We demonstrated by FEA that highly insulating (dp)tBLMs with low-defect density exhibit EI spectra in the shape of a perfect semicircle with or without low-frequency upward "tails" in the Cole-Cole representation. Such EI spectra were observed at DPhyPC concentrations of >5 × 10(-3) mol L(-1). While AFM was not able to visualize very small lateral defects in such films, EI spectra unambiguously signaled their presence by increased low frequency "tails". Using FEA we demonstrate that films with large diameter visible defects (>25 nm by AFM) produce EI spectral features consisting of two semicircles of comparable size. Such films were typically obtained at DPhyPC concentrations of <5 × 10(-3) mol L(-1). At DPhyPC concentrations of <1.0 × 10(-3) mol L(-1) the planar bilayer structures were replaced by ellipsoidal liposomes with diameters ranging from 50 to 500 nm as observed in AFM images. Despite the distinct surface morphology change, the EI

  15. Nonlinear structure formation in the cubic Galileon gravity model

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk

    2013-10-01

    We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the ECOSMOG code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by ∼ 20% with respect to the standard ΛCDM model today. The modified expansion rate accounts for ∼ 15% of this enhancement, while the fifth force is responsible for only ∼ 5%. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime (k∼>0.1h Mpc{sup −1}), the fifth force leads to only a modest increase (∼<8%) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other models with the same screening mechanism. The screening also results in the fifth force increasing the number density of halos by less than 10%, on all mass scales. Our results show that the screening does not ruin the validity of linear theory on large scales which anticipates very strong constraints from galaxy clustering data. We also show that, whilst the model gives an excellent match to CMB data on small angular scales (l∼>50), the predicted integrated Sachs-Wolfe effect is in tension with Planck/WMAP results.

  16. Biological pattern formation: from basic mechanisms to complex structures

    SciTech Connect

    Koch, A.J.; Meinhardt, H. )

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of [ital Drosophila] and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  17. Family Structure History: Links to Relationship Formation Behaviors in Young Adulthood

    ERIC Educational Resources Information Center

    Ryan, Suzanne; Franzetta, Kerry; Schelar, Erin; Manlove, Jennifer

    2009-01-01

    Using data from three waves of the National Longitudinal Study of Adolescent Health (N = 4,667), we examined the intergenerational link between parental family structure history and relationship formation in young adulthood. We investigated (a) whether parental family structure history is associated with young adults' own relationship formation…

  18. Geometry and field dependence of the formation of magnetic antivortices in pound-key-like structures

    NASA Astrophysics Data System (ADS)

    Asmat-Uceda, Martin; Li, Lin; Haldar, Arabinda; Shaw, Brian; Buchanan, Kristen S.

    2015-05-01

    In this work, we assess the effects of field history and structure shape on the formation of magnetic antivortices. The magnetic reversal process was investigated for a series of patterned micron-sized permalloy pound-key structures with varying degrees of asymmetry using magneto-optical Kerr effect hysteresis measurements combined with magnetic force microscopy. The largest number of antivortices was observed in the structures with the highest level of structure asymmetry, which also show an intermediate state in the hysteresis loop. A significant enhancement of the antivortex formation rate—from 5% to almost 80%—was achieved by adjusting the structure dimensions. Images of the magnetic states obtained at various points in the hysteresis loop show that the highest rate of antivortex formation occurs near the coercive field, also the nucleation field, and that the antivortex formation is also sensitive to the angle of the applied field, where the highest antivortex formation rate is observed when the field is aligned along the structure diagonal. A comparison of the experimental results with micromagnetic simulations shows that the areas with lower shape anisotropy lead the reversal in the formation step and the upper field limit for the antivortex stability is related to the reversal of the regions with higher shape anisotropy, although the simulations suggest that the annihilation mechanism will change to one that involves domain wall propagation when the smallest structure dimensions are below ˜60 nm. These results demonstrate how shape anisotropy can be used to promote the formation of isolated magnetic antivortices, which will facilitate future investigations of this topological magnetic state.

  19. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    SciTech Connect

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-27

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  20. Structural requirements of glycosaminoglycans for facilitating amyloid fibril formation of human serum amyloid A.

    PubMed

    Takase, Hiroka; Tanaka, Masafumi; Yamamoto, Aki; Watanabe, Shiori; Takahashi, Sanae; Nadanaka, Satomi; Kitagawa, Hiroshi; Yamada, Toshiyuki; Mukai, Takahiro

    2016-06-01

    Serum amyloid A (SAA) is a precursor protein of amyloid fibrils. Given that heparan sulfate (HS), a glycosaminoglycan (GAG), is detected in amyloid deposits, it has been suggested that GAG is a key component of amyloid fibril formation. We previously reported that heparin (an analog of HS) facilitates the fibril formation of SAA, but the structural requirements remain unknown. In the present study, we investigated the structural requirements of GAGs for facilitating the amyloid fibril formation of SAA. Spectroscopic analyses using structurally diverse GAG analogs suggested that the fibril formation of SAA was facilitated irrespective of the backbone structure of GAGs; however, the facilitating effect was strongly correlated with the degree of sulfation. Microscopic analyses revealed that the morphologies of SAA aggregates were modulated by the GAGs. The HS molecule, which is less sulfated than heparin but contains highly sulfated domains, exhibited a relatively high potential to facilitate fibril formation compared to other GAGs. The length dependence of fragmented heparins on the facilitating effect suggested that a high density of sulfate groups is also required. These results indicate that not only the degree of sulfation but also the lengths of sulfated domains in GAG play important roles in fibril formation of SAA. PMID:27097047

  1. FORMATION OF A PROPELLER STRUCTURE BY A MOONLET IN A DENSE PLANETARY RING

    SciTech Connect

    Michikoshi, Shugo; Kokubo, Eiichiro E-mail: kokubo@th.nao.ac.jp

    2011-05-10

    The Cassini spacecraft discovered a propeller-shaped structure in Saturn's A. This propeller structure is thought to be formed by gravitational scattering of ring particles by an unseen embedded moonlet. Self-gravity wakes are prevalent in dense rings due to gravitational instability. Strong gravitational wakes affect the propeller structure. Here, we derive the condition for the formation of a propeller structure by a moonlet embedded in a dense ring with gravitational wakes. We find that a propeller structure is formed when the wavelength of the gravitational wakes is smaller than the Hill radius of the moonlet. We confirm this formation condition by performing numerical simulations. This condition is consistent with observations of propeller structures in Saturn's A.

  2. Solution NMR structure of CsgE: Structural insights into a chaperone and regulator protein important for functional amyloid formation.

    PubMed

    Shu, Qin; Krezel, Andrzej M; Cusumano, Zachary T; Pinkner, Jerome S; Klein, Roger; Hultgren, Scott J; Frieden, Carl

    2016-06-28

    Curli, consisting primarily of major structural subunit CsgA, are functional amyloids produced on the surface of Escherichia coli, as well as many other enteric bacteria, and are involved in cell colonization and biofilm formation. CsgE is a periplasmic accessory protein that plays a crucial role in curli biogenesis. CsgE binds to both CsgA and the nonameric pore protein CsgG. The CsgG-CsgE complex is the curli secretion channel and is essential for the formation of the curli fibril in vivo. To better understand the role of CsgE in curli formation, we have determined the solution NMR structure of a double mutant of CsgE (W48A/F79A) that appears to be similar to the wild-type (WT) protein in overall structure and function but does not form mixed oligomers at NMR concentrations similar to the WT. The well-converged structure of this mutant has a core scaffold composed of a layer of two α-helices and a layer of three-stranded antiparallel β-sheet with flexible N and C termini. The structure of CsgE fits well into the cryoelectron microscopy density map of the CsgG-CsgE complex. We highlight a striking feature of the electrostatic potential surface in CsgE structure and present an assembly model of the CsgG-CsgE complex. We suggest a structural mechanism of the interaction between CsgE and CsgA. Understanding curli formation can provide the information necessary to develop treatments and therapeutic agents for biofilm-related infections and may benefit the prevention and treatment of amyloid diseases. CsgE could establish a paradigm for the regulation of amyloidogenesis because of its unique role in curli formation. PMID:27298344

  3. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation

    SciTech Connect

    Sievers, Stuart A.; Karanicolas, John; Chang, Howard W.; Zhao, Anni; Jiang, Lin; Zirafi, Onofrio; Stevens, Jason T.; Münch, Jan; Baker, David; Eisenberg, David

    2011-09-20

    Many globular and natively disordered proteins can convert into amyloid fibrils. These fibrils are associated with numerous pathologies as well as with normal cellular functions, and frequently form during protein denaturation. Inhibitors of pathological amyloid fibril formation could be useful in the development of therapeutics, provided that the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibrils as templates, we have designed and characterized an all-D-amino-acid inhibitor of the fibril formation of the tau protein associated with Alzheimer's disease, and a non-natural L-amino-acid inhibitor of an amyloid fibril that enhances sexual transmission of human immunodeficiency virus. Our results indicate that peptides from structure-based designs can disrupt the fibril formation of full-length proteins, including those, such as tau protein, that lack fully ordered native structures. Because the inhibiting peptides have been designed on structures of dual-{beta}-sheet 'steric zippers', the successful inhibition of amyloid fibril formation strengthens the hypothesis that amyloid spines contain steric zippers.

  4. The evolution of galaxies at constant number density: a less biased view of star formation, quenching, and structural formation

    NASA Astrophysics Data System (ADS)

    Ownsworth, Jamie R.; Conselice, Christopher J.; Mundy, Carl J.; Mortlock, Alice; Hartley, William G.; Duncan, Kenneth; Almaini, Omar

    2016-09-01

    Due to significant galaxy contamination and impurity in stellar mass selected samples (up to 95 per cent from z = 0-3), we examine the star formation history, quenching time-scales, and structural evolution of galaxies using a constant number density selection with data from the United Kingdom Infra-Red Deep Sky Survey Ultra-Deep Survey field. Using this methodology, we investigate the evolution of galaxies at a variety of number densities from z = 0-3. We find that samples chosen at number densities ranging from 3 × 10-4 to 10-5 galaxies Mpc-3 (corresponding to z ˜ 0.5 stellar masses of M* = 1010.95-11.6 M0) have a star-forming blue fraction of ˜50 per cent at z ˜ 2.5, which evolves to a nearly 100 per cent quenched red and dead population by z ˜ 1. We also see evidence for number density downsizing, such that the galaxies selected at the lowest densities (highest masses) become a homogeneous red population before those at higher number densities. Examining the evolution of the colours for these systems furthermore shows that the formation redshift of galaxies selected at these number densities is zform > 3. The structural evolution through size and Sérsic index fits reveal that while there remains evolution in terms of galaxies becoming larger and more concentrated in stellar mass at lower redshifts, the magnitude of the change is significantly smaller than for a mass-selected sample. We also find that changes in size and structure continues at z < 1, and is coupled strongly to passivity evolution. We conclude that galaxy structure is driving the quenching of galaxies, such that galaxies become concentrated before they become passive.

  5. Innovative design of composite structures: The use of curvilinear fiber format in structural design of composites

    NASA Technical Reports Server (NTRS)

    Charette, R. F.; Hyer, M. W.

    1990-01-01

    The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.

  6. Polyalanine and Abeta Aggregation Kinetics: Probing Intermediate Oligomer Formation and Structure Using Computer Simulations

    NASA Astrophysics Data System (ADS)

    Phelps, Erin Melissa

    2011-12-01

    The aggregation of proteins into stable, well-ordered structures known as amyloid fibrils has been associated with many neurodegenerative diseases. Amyloid fibrils are long straight, and un-branched structures containing several proto-filaments, each of which exhibits "cross beta structure," -- ribbon-like layers of large beta sheets whose strands run perpendicular to the fibril axis. It has been suggested in the literature that the pathway to fibril formation has the following steps: unfolded monomers associate into transient unstable oligomers, the oligomers undergo a rearrangement into the cross-beta structure and form into proto-filaments, these proto-filaments then associate and grow into fully formed fibrils. Recent experimental studies have determined that the unstable intermediate structures are toxic to cells and that their presence may play a key role in the pathogenesis of the amyloid diseases. Many efforts have been made to determine the structure of intermediate oligomer aggregates that form during the fibrillization process. The goal of this work is to provide details about the structure and formation kinetics of the unstable oligomers that appear in the fibril formation pathway. The specific aims of this work are to determine the steps in the fibril formation pathway and how the kinetics of fibrillization changes with variations in temperature and concentration. The method used is the application of discontinuous molecular dynamics to large systems of peptides represented with an intermediate resolution model, PRIME, that was previously developed in our group. Three different peptide sequences are simulated: polyalanine (KA14K), Abeta17-40, and Abeta17-42; the latter two are truncated sequences of the Alzheimer's peptide. We simulate the spontaneous assembly of these peptide chains from a random initial configuration of random coils. We investigate aggregation kinetics and oligomer formation of a system of 192 polyalanine (KA14K) chains over a

  7. Formation of chain structures in systems of charged grains interacting via isotropic pair potentials

    SciTech Connect

    Vaulina, O. S.; Lisina, I. I.; Koss, K. G.

    2013-05-15

    Conditions for the formation of chain structures of charged grains confined in the gravitational field by external electric fields are studied analytically and numerically. The relationships between the parameters of the pair interaction potential, the number of grains, and the electric field gradient in the trap are found. A criterion for the violation of stable equilibrium in a quasi-one-dimensional chain of grains and the formation of a new configuration in the system is proposed.

  8. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  9. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  10. Star formation, structure, and formation mechanism of cometary globules: near-infrared observations of CG 1 and CG 2

    NASA Astrophysics Data System (ADS)

    Mäkelä, M. M.; Haikala, L. K.

    2013-02-01

    Context. Cometary globule (CG) 1 and CG 2 are "classic" cometary globules in the Gum Nebula. They have compact heads and long dusty tails that point away from the centre of the Gum Nebula. Aims: We study the structure of CG 1 and CG 2 and the star formation in them to find clues to the CG formation mechanism. The two possible CG formation mechanisms, radiation-driven implosion (RDI) and a supernova blast wave, produce a characteristic mass distribution where the major part of the mass is situated in either the head (RDI) or the tail (supernova blast). Methods: CG 1 and CG 2 were imaged in the near infrared (NIR) JsHKs bands. NIR photometry was used to locate NIR excess objects and to create visual extinction maps of the CGs. The AV maps allow us to analyse the large-scale structure of CG 1 and CG 2. Archival images from the WISE and Spitzer satellites and HIRES-processed IRAS images were used to study the globule's small-scale structure. Fits were made to the spectral energy distribution plots of the NIR-excess stars to estimate their age and mass. Results: In addition to the previously known CG 1 IRS 1 we discovered three new NIR-excess objects in IR imaging, two in CG 1 and one in CG 2. CG 2 IRS 1 is the first detection of star formation in CG 2. The objects are young low-mass stars. CG 1 IRS 1 is probably a class I protostar in the head of CG 1. CG 1 IRS 1 drives a bipolar outflow, which is very weak in CO, but the cavity walls are seen in reflected light in our NIR and in the Spitzer 3.6 and 4.5 μm images. Strong emission from excited polycyclic aromatic hydrocarbon particles and very small grains were detected in the CG 1 tail. The total mass of CG 1 in the observed area is 41.9 M⊙ of which 16.8 M⊙ lies in the head. For CG 2 these values are 31.0 M⊙ total and 19.1 M⊙ in the head. The observed mass distribution does not offer a firm conclusion for the formation mechanism of the two CGs: CG 1 is in too evolved a state, and in CG 2 part of the globule

  11. Structural Complexities Influencing Biostratigraphic Interpretations of the Permian Nansen Formation type-section, Ellesmere Island, Canada

    NASA Astrophysics Data System (ADS)

    Hill, M.; Guest, B.

    2011-12-01

    The Carboniferous to Permian aged Nansen Formation is a cyclic carbonate shelf deposit and potential hydrocarbon reservoir. This formation is the thickest, most widespread carbonate sequence in the Sverdrup Basin. Deformed during the Eurekan Orogeny, the Nansen Fm. is topographically prominent and responsible for the rugged topography on Axel Heiburg and Ellesmere Island. The type-section for the Nansen Fm. is located on the north side of Hare Fiord, along Girty Creek. At this location there is an estimated stratigraphic thickness of 2 km. Due to easier access most of the stratigraphic work has been completed on nearby glacially exposed sections that traverse parallel to Girty Creek along glacial margins. Extensive biostratigraphy was completed on a glacier section to the west, however, in a glacier section to the east of Girty Creek, structural complexities appear to be repeating sections of the formation. Here, the Nansen formation is bounded by two regional reverse faults. This has produced duplex structures, with clearly exposed stacked horses, footwall synclines, and truncations. By projecting the structures observed along the eastern glacier section to the western glacier section that was used for biostratigraphic studies, it is clear that these structures would affect biostratigraphic interpretations. It was previously noted by biostratigraphers that thrust faults appear to be repeating sections of the Nansen formation. However by correlating all observed faults with the biostratigraphy, we can determine the extent to which the faulting has affected the interpretations, and whether all faults or stratigraphic repetitions are accounted for.

  12. Solution structure of eggcase silk protein and its implications for silk fiber formation

    PubMed Central

    Lin, Zhi; Huang, Weidong; Zhang, Jingfeng; Fan, Jing-Song; Yang, Daiwen

    2009-01-01

    Spider silks are renowned for their excellent mechanical properties and biomimetic and industrial potentials. They are formed from the natural refolding of water-soluble fibroins with α-helical and random coil structures in silk glands into insoluble fibers with mainly β-structures. The structures of the fibroins at atomic resolution and silk formation mechanism remain largely unknown. Here, we report the 3D structures of individual domains of a ≈366-kDa eggcase silk protein that consists of 20 identical type 1 repetitive domains, one type 2 repetitive domain, and conserved nonrepetitive N- and C-terminal domains. The structures of the individual domains in solution were determined by using NMR techniques. The domain interactions were investigated by NMR and dynamic light-scattering techniques. The formation of micelles and macroscopic fibers from the domains was examined by electron microscopy. We find that either of the terminal domains covalently linked with at least one repetitive domain spontaneously forms micelle-like structures and can be further transformed into fibers at ≥37 °C and a protein concentration of >0.1 wt%. Our biophysical and biochemical experiments indicate that the less hydrophilic terminal domains initiate the assembly of the proteins and form the outer layer of the micelles whereas the more hydrophilic repetitive domains are embedded inside to ensure the formation of the micelle-like structures that are the essential intermediates in silk formation. Our results establish the roles of individual silk protein domains in fiber formation and provide the basis for designing miniature fibroins for producing artificial silks. PMID:19458259

  13. Influence of surface modification on structure formation and micromechanical properties of spray-dried silica aggregates.

    PubMed

    Zellmer, Sabrina; Lindenau, Maylin; Michel, Stephanie; Garnweitner, Georg; Schilde, Carsten

    2016-02-15

    Spray drying processes were utilized for the production of hierarchical materials with defined structures. The structure formation during the spray drying process and the micromechanical properties of the obtained aggregates depend on the particle-particle interactions, the primary particle size and morphology as well as the process parameters of the spray drying process. Hence, the effect of different primary particle systems prepared as stable dispersions with various surface modifications were investigated on the colloidal structure formation and the micromechanical properties of silica particles as model aggregates and compared to theoretical considerations. The obtained results show that the structure formation of aggregates during the spray drying process for stable suspensions is almost independent on the functional groups present at the particle surface. Further, the mechanical properties of these aggregates differ considerably with the content of the bound ligand. This allows the defined adjustment of the aggregate properties, such as the strength and surface properties, as well as the formation of defined hierarchical aggregate structures. PMID:26619128

  14. Microsized structures assisted nanostructure formation on ZnSe wafer by femtosecond laser irradiation

    SciTech Connect

    Wang, Shutong; Feng, Guoying E-mail: zhoush@scu.edu.cn

    2014-12-22

    Micro/nano patterning of ZnSe wafer is demonstrated by femtosecond laser irradiation through a diffracting pinhole. The irradiation results obtained at fluences above the ablation threshold are characterized by scanning electron microscopy. The microsized structure with low spatial frequency has a good agreement with Fresnel diffraction theory. Laser induced periodic surface structures and laser-induced periodic curvelet surface structures with high spatial frequency have been found on the surfaces of microsized structures, such as spikes and valleys. We interpret its formation in terms of the interference between the reflected laser field on the surface of the valley and the incident laser pulse.

  15. Formation of ring structures in galactic disks during close passages of galaxies

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Fedorova, A. V.

    2016-01-01

    The formation of ring structures in galactic disks is investigated. It is shown that, in addition to the known mechanism of forming rings in "head-on" collisions between galaxies, ring structures can be formed during close passages of galaxies if the perturbing galaxy moves in a plane close to the equatorial plane of the perturbed disk galaxy, opposite to the direction of rotation of the disk. Numerical simulations of the formation of structures in the disk of a massive galaxy undergoing a passage with another galaxy are considered. The results of these cmputations show the formation of pronounced ring structures in the galactic disk when the initial inclination of the trajectory of the perturbing galaxy to the equatorial plane of the perturbed galaxy is no more than ~25°. However, the probability of close passages of galaxies with these parameters is small, as is the probability of head-on collisions. The characteristic time scale for the existence of pronounced rings is of order the dynamical time scale at the edge of the galaxy, 200-300 million years, close to the corresponding time for head-on collisions. The evolution of the rings has the same character in both cases: they gradually expand and move toward the periphery of the galaxy. The results of these simulations can also be applied to a close passage of one star by another star with a protoplanetary disk. According to the computation results, the characteristic time scale for the existence of pronounced rings in such a protoplanetary disk depends mainly on the size of the disk; this time scale can reach several tens of thousands of years for a disk radius of about 1000 AU. The formation of ring structures in such a disk could influence the formation and evolution of planetesimals, and possibly the character of the formation of planets and the distribution of their orbital semi-major axes.

  16. Probing Distinct Fullerene Formation Processes from Carbon Precursors of Different Sizes and Structures.

    PubMed

    Han, Jong Yoon; Choi, Tae Su; Kim, Soyoung; Lee, Jong Wha; Ha, Yoonhoo; Jeong, Kwang Seob; Kim, Hyungjun; Choi, Hee Cheul; Kim, Hugh I

    2016-08-16

    Fullerenes, cage-structured carbon allotropes, have been the subject of extensive research as new materials for diverse purposes. Yet, their formation process is still not clearly understood at the molecular level. In this study, we performed laser desorption ionization-ion mobility-mass spectrometry (LDI-IM-MS) of carbon substrates possessing different molecular sizes and structures to understand the formation process of fullerene. Our observations show that the formation process is strongly dependent on the size of the precursor used, with small precursors yielding small fullerenes and large graphitic precursors generally yielding larger fullerenes. These results clearly demonstrate that fullerene formation can proceed via both bottom-up and top-down processes, with the latter being favored for large precursors and more efficient at forming fullerenes. Furthermore, we observed that specific structures of carbon precursors could additionally affect the relative abundance of C60 fullerene. Overall, this study provides an advanced understanding of the mechanistic details underlying the formation processes of fullerene. PMID:27434606

  17. Simulation Study of the Non-Equilibrium Structure Formation In Magnetorheological Fluids.

    NASA Astrophysics Data System (ADS)

    Mohebi, M.; Jamasbi, N.; Liu, Jing

    1998-03-01

    A molecular dynamics model is presented to understand the structural formation of MR fluids which includes viscous drag of the surrounding liquid and the thermal motion of the particles. The simulation results indicate that the complexity of the lateral pattern as viewed in the direction of the applied field increases with the rate of application of the external magnetic field. We have also found that the maximum range for attractive interaction (escape distance) for two initially straight chains increases with temperature. Furthermore, we used our model to understand the role of volume fraction and cell thickness in the structural transition between column and bent wall formations. These results are relevant to understand the mechanisms and conditions for the formation of labyrinthine and columnar patterns experimentally observed in MR fluids.

  18. Geologic structure and altitude of the top of the Minnelusa Formation, northeastern Black Hills, South Dakota

    USGS Publications Warehouse

    Peter, Kathy D.; Kyllonen, David P.; Mills, Kathy R.

    1988-01-01

    This map shows the altitude of the top of the Permian--and Pennsylvanian age Minnelusa Formation, the deepest aquifer in the northeastern Black Hills for which there is sufficient data available to construct a structural map. The Minnelusa Formation outcrops in the western part of the map area and is more than 3 ,600 ft below land surface in the northeastern corner of the area. The formation consists of interbedded sandstone, sandy dolomite and limestone, shale, siltstone, gypsum, and anhydrite. The upper beds are an aquifer and the lower beds are a confining or semi-confining unit. Small anticlines and synclines parallel the Minnelusa outcrop. Domal structures and peaks in the study area are the result of Tertiary-age intrusions. (USGS)

  19. Dynamics of vortex structure formation during the evolution of modulation instability of dark solitons

    SciTech Connect

    Mironov, V. A.; Smirnov, A. I. Smirnov, L. A.

    2011-01-15

    The nonlinear stage of modulation instability of dark solitons is studied analytically and numerically. We propose an asymptotic description of the dynamics of these solitons in terms of their local velocity and the curvature of the lines at which solitons are concentrated. The features of the destruction of dark solitons (in particular, the formation of vortex structures from them) are analyzed.

  20. The magnetic field structure in high-mass star formation regions

    NASA Technical Reports Server (NTRS)

    Davidson, Jacqueline A.; Schleuning, D.; Dotson, J. L.; Dowell, C. Darren; Hildebrand, Roger H.

    1995-01-01

    We present a preliminary analysis of far-IR polarimetric observations, which were made to study the magnetic field structure in the high-mass star formation regions of M42, NGC2024, and W3. These observations were made from the Kuiper Airborne Observatory (KAO), using the University of Chicago far-IR polarimeter, Stokes.

  1. Structure elucidation of fungal beauveriolide III, a novel inhibitor of lipid droplet formation in mouse macrophages.

    PubMed

    Namatame, I; Tomoda, H; Tabata, N; Si, S; Omura, S

    1999-01-01

    The structure of fungal beauveriolide III, an inhibitor of lipid droplet formation in mouse macrophages, was elucidated to be cyclo-[(3S,4S)-3-hydroxy-4-methyloctanoyl-L-phenylalanyl-L-alanyl- D-allo-isoleucyl] by spectral analyses and chemical degradation. PMID:10092190

  2. Molar tooth structures in calcareous nodules, early Neoproterozoic Burovaya Formation, Turukhansk region, Siberia

    NASA Astrophysics Data System (ADS)

    Pope, Michael C.; Bartley, Julie K.; Knoll, Andrew H.; Petrov, Peter Yu.

    2003-05-01

    Molar tooth structures are abundant in large (1-2 m diameter) carbonate nodules within fine-grained, subtidal carbonates of the early Neoproterozoic (lower Upper Riphean) Burovaya Formation along the Sukhaya Tunguska River, Turukhansk Uplift, northwestern Siberia. Although molar tooth structures are regionally abundant in this unit, here they occur only within the nodules. Stable isotopic compositions of molar-tooth-filling dolomicrospar cements and of thinly bedded dolomicrite within and surrounding the nodules are indistinguishable from one another. The carbon isotopic compositions (mean δ13C=+2.8‰ PDB±0.4) reflect mean average oceanic surface water composition during their formation; the light oxygen isotopic compositions (mean δ18O=-6.4‰ PDB±2.2) are generally similar to those of other little-altered Meso- to Neoproterozoic limestones and dolostones. These molar tooth structures have no features that would support a tectonic origin; they more likely formed through bacterial processes. Carbonate cement filling of these voids occurred soon after their formation, but the mechanism responsible for this carbonate precipitation is currently uncertain. Local restriction of molar tooth structures to early diagenetic nodules suggests that penecontemporaneous lithification was required for the formation, or at least preservation, of these widespread Mesoproterozoic to Neoproterozoic features.

  3. Formation of pseudotachylitic breccias in the central uplifts of very large impact structures: Scaling the melt formation

    NASA Astrophysics Data System (ADS)

    Mohr-Westheide, Tanja; Reimold, Wolf Uwe

    2011-04-01

    The processes leading to formation of sometimes massive occurrences of pseudotachylitic breccia (PTB) in impact structures have been strongly debated for decades. Variably an origin of these pseudotachylite (friction melt)-like breccias by (1) shearing (friction melting); (2) so-called shock compression melting (with or without a shear component) immediately after shock propagation through the target; (3) decompression melting related to rapid uplift of crustal material due to central uplift formation; (4) combinations of these processes; or (5) intrusion of allochthonous impact melt from a coherent melt body has been advocated. Our investigations of these enigmatic breccias involve detailed multidisciplinary analysis of millimeter- to meter-sized occurrences from the type location, the Vredefort Dome. This complex Archean to early Proterozoic terrane constitutes the central uplift of the originally >250 km diameter Vredefort impact structure in South Africa. Previously, results of microstructural and microchemical investigations have indicated that formation of very small veinlets involved local melting, likely during the early shock compression phase. However, for larger veins and networks it was so far not possible to isolate a specific melt-forming mechanism. Macroscopic to microscopic evidence for friction melting is very limited, and so far chemical results have not directly supported PTB generation by intrusion of impact melt. On the other hand, evidence for filling of dilational sites with melt is abundant. Herein, we present a new approach to the mysterium of PTB formation based on volumetric melt breccia calculations. The foundation for this is the detailed analysis of a 1.5 × 3 × 0.04 m polished granite slab from a dimension-stone quarry in the core of the Vredefort Dome. This slab contains a 37.5 dm3 breccia zone. The pure melt volume in 0.1 m3 PTB-bearing granitic target rock outside of the several-decimeter-wide breccia zone in the granite slab was

  4. EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion

    PubMed Central

    Cai, Shuxian; Yang, Heng; Zeng, Kewu; Zhang, Jing; Zhong, Ni; Wang, Yingzi; Ye, Jing; Tu, Pengfei; Liu, Zhonghua

    2016-01-01

    Background Lipofuscin (LF) is formed during lipid peroxidation and sugar glycosylation by carbonyl-amino crosslinks with biomacrolecules, and accumulates slowly within postmitotic cells. The environmental pollution, modern dietary culture and lifestyle changes have been found to be the major sources of reactive carbonyl compounds in vivo. Irreversible carbonyl-amino crosslinks induced by carbonyl stress are essentially toxiferous for aging-related functional losses in modern society. Results show that (-)-epigallocatechin gallate (EGCG), the main polyphenol in green tea, can neutralize the carbonyl-amino cross-linking reaction and inhibit LF formation, but the underlying mechanism is unknown. Methods and Results We explored the mechanism of the neutralization process from protein, cell, and animal levels using spectrofluorometry, infrared spectroscopy, conformation antibodies, and electron microscopy. LF demonstrated an amyloidogenic β-sheet-rich with antiparallel structure, which accelerated the carbonyl-amino crosslinks formation and disrupted proteolysis in both PC12 cells and D-galactose (D-gal)-induced brain aging mice models. Additionally, EGCG effectively inhibited the formation of the amyloidogenic β-sheet-rich structure of LF, and prevented its conversion into toxic and on-pathway aggregation intermediates, thereby cutting off the carbonyl-amino crosslinks. Conclusions Our study indicated that the amyloidogenic β-sheet structure of LF may be the core driving force for carbonyl-amino crosslinks further formation, which mediates the formation of amyloid fibrils from native state of biomacrolecules. That EGCG exhibits anti-amyloidogenic β-sheet-rich structure properties to prevent the LF formation represents a novel strategy to impede the development of degenerative processes caused by ageing or stress-induced premature senescence in modern environments. PMID:27030967

  5. Soft sediment deformation structures in the Maastrichtian Ajali Formation Western Flank of Anambra Basin, Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Olabode, Solomon Ojo

    2014-01-01

    Soft sediment deformation structures were recognized in the Maastrichtian shallow marine wave to tide influenced regressive sediments of Ajali Formation in the western flank of Anambra basin, southern Nigerian. The soft sediment deformation structures were in association with cross bedded sands, clay and silt and show different morphological types. Two main types recognised are plastic deformations represented by different types of recumbent folds and injection structure represented by clastic dykes. Other structures in association with the plastic deformation structures include distorted convolute lamination, subsidence lobes, pillars, cusps and sand balls. These structures are interpreted to have been formed by liquefaction and fluidization mechanisms. The driving forces inferred include gravitational instabilities and hydraulic processes. Facies analysis, detailed morphologic study of the soft sediment deformation structures and previous tectonic history of the basin indicate that the main trigger agent for deformation is earthquake shock. The soft sediment deformation structures recognised in the western part of Anambra basin provide a continuous record of the tectonic processes that acted on the regressive Ajali Formation during the Maastrichtian.

  6. Pressure-dependent formation of i-motif and G-quadruplex DNA structures.

    PubMed

    Takahashi, S; Sugimoto, N

    2015-12-14

    Pressure is an important physical stimulus that can influence the fate of cells by causing structural changes in biomolecules such as DNA. We investigated the effect of high pressure on the folding of duplex, DNA i-motif, and G-quadruplex (G4) structures; the non-canonical structures may be modulators of expression of genes involved in cancer progression. The i-motif structure was stabilized by high pressure, whereas the G4 structure was destabilized. The melting temperature of an intramolecular i-motif formed by 5'-dCGG(CCT)10CGG-3' increased from 38.8 °C at atmospheric pressure to 61.5 °C at 400 MPa. This effect was also observed in the presence of 40 wt% ethylene glycol, a crowding agent. In the presence of 40 wt% ethylene glycol, the G4 structure was less destabilized than in the absence of the crowding agent. P-T stability diagrams of duplex DNA with a telomeric sequence indicated that the duplex is more stable than G4 and i-motif structures under low pressure, but the i-motif dominates the structural composition under high pressure. Under crowding conditions, the P-T diagrams indicated that the duplex does not form under high pressure, and i-motif and G4 structures dominate. Our findings imply that temperature regulates the formation of the duplex structure, whereas pressure triggers the formation of non-canonical DNA structures like i-motif and G4. These results suggest that pressure impacts the function of nucleic acids by stabilizing non-canonical structures; this may be relevant to deep sea organisms and during evolution under prebiotic conditions. PMID:26387909

  7. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.

    PubMed

    van Zandvoort, Ilona; Wang, Yuehu; Rasrendra, Carolus B; van Eck, Ernst R H; Bruijnincx, Pieter C A; Heeres, Hero J; Weckhuysen, Bert M

    2013-09-01

    Neither the routes through which humin byproducts are formed, nor their molecular structure have yet been unequivocally established. A better understanding of the formation and physicochemical properties of humins, however, would aid in making biomass conversion processes more efficient. Here, an extensive multiple-technique-based study of the formation, molecular structure, and morphology of humins is presented as a function of sugar feed, the presence of additives (e.g., 1,2,4-trihydroxybenzene), and the applied processing conditions. Elemental analyses indicate that humins are formed through a dehydration pathway, with humin formation and levulinic acid yields strongly depending on the processing parameters. The addition of implied intermediates to the feedstocks showed that furan and phenol compounds formed during the acid-catalyzed dehydration of sugars are indeed included in the humin structure. IR spectra, sheared sum projections of solid-state 2DPASS (13) C NMR spectra, and pyrolysis GC-MS data indicate that humins consist of a furan-rich polymer network containing different oxygen functional groups. The structure is furthermore found to strongly depend on the type of feedstock. A model for the molecular structure of humins is proposed based on the data presented. PMID:23836679

  8. Soft-sediment deformation structures interpreted as seismites in the Kolankaya Formation, Denizli Basin (SW Turkey).

    PubMed

    Topal, Savaş; Özkul, Mehmet

    2014-01-01

    The NW-trending Denizli basin of the SW Turkey is one of the neotectonic grabens in the Aegean extensional province. It is bounded by normal faults on both southern and northern margins. The basin is filled by Neogene and Quaternary terrestrial deposits. Late Miocene- Late Pliocene aged Kolankaya formation crops out along the NW trending Karakova uplift in the Denizli basin. It is a typical fluviolacustrine succession that thickens and coarsens upward, comprising poorly consolidated sand, gravelly sand, siltstone and marl. Various soft-sediment deformation structures occur in the formation, especially in fine- to medium grained sands, silts and marls: load structures, flame structures, clastic dikes (sand and gravely-sand dike), disturbed layers, laminated convolute beds, slumps and synsedimentary faulting. The deformation mechanism and driving force for the soft-sediment deformation are related essentially to gravitational instability, dewatering, liquefaction-liquidization, and brittle deformation. Field data and the wide lateral extent of the structures as well as regional geological data show that most of the deformation is related to seismicity and the structures are interpreted as seismites. The existence of seismites in the Kolankaya Formation is evidence for continuing tectonic activity in the study area during the Neogene and is consistent with the occurrence of the paleoearthquakes of magnitude >5. PMID:25152909

  9. Soft-Sediment Deformation Structures Interpreted as Seismites in the Kolankaya Formation, Denizli Basin (SW Turkey)

    PubMed Central

    Topal, Savaş; Özkul, Mehmet

    2014-01-01

    The NW-trending Denizli basin of the SW Turkey is one of the neotectonic grabens in the Aegean extensional province. It is bounded by normal faults on both southern and northern margins. The basin is filled by Neogene and Quaternary terrestrial deposits. Late Miocene- Late Pliocene aged Kolankaya formation crops out along the NW trending Karakova uplift in the Denizli basin. It is a typical fluviolacustrine succession that thickens and coarsens upward, comprising poorly consolidated sand, gravelly sand, siltstone and marl. Various soft-sediment deformation structures occur in the formation, especially in fine- to medium grained sands, silts and marls: load structures, flame structures, clastic dikes (sand and gravely-sand dike), disturbed layers, laminated convolute beds, slumps and synsedimentary faulting. The deformation mechanism and driving force for the soft-sediment deformation are related essentially to gravitational instability, dewatering, liquefaction-liquidization, and brittle deformation. Field data and the wide lateral extent of the structures as well as regional geological data show that most of the deformation is related to seismicity and the structures are interpreted as seismites. The existence of seismites in the Kolankaya Formation is evidence for continuing tectonic activity in the study area during the Neogene and is consistent with the occurrence of the paleoearthquakes of magnitude >5. PMID:25152909

  10. Formation of the structure of compositions with a furan binder during their thermal treatment

    SciTech Connect

    Kostikov, V.I.; Samsonova, L.S.; Butyrin, G.M.; Lukina, E.Yu.; Zimina, L.A.

    1981-01-01

    In the reported experiments, the influence of the conditions of thermal treatment on the nature of the shrinkage phenomena and the formation of a porous structure of a carbon material with a furan binder - an oligomer of difurfurylideneacetone - has been studied. A change in the rate of heating has a substantial influence on the porous structure and physicomechanical properties of the baked material. A material heat-treated under the conditins of chamber baking with a rate of rise of 10/degree/C/hr is characterized by the optimum porous structure and by high strength indices. 8 refs.

  11. Formation of periodic structures upon laser ablation of metal targets in liquids

    SciTech Connect

    Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A

    2005-09-30

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface. (interaction of laser radiation with matter)

  12. The formation mechanism of the periodic nanograting structure by the Weibel instability

    NASA Astrophysics Data System (ADS)

    Gouda, A. M.; Sakagami, H.; Ogata, T.; Hashida, M.; Sakabe, S.

    2016-04-01

    The two-dimensional particle in cell code has been used to demonstrated the formation mechanism for the periodic nanograting structure using 500-fs pulses of an ultra-fast laser with wavelength 800 nm, incidence angle 0°, linearly-polarized, and intensity 1018 W/cm2 µm2 in hydrogen plasma. The periodic nanograting structure has been clearly self-organized at the boundary between the preformed plasma and the dense plasma at t = 250 fs. By time evolution of the magnetic field and the current density in the dense plasma, it has been found that the Weibel instability plays a significant role to form the periodic nanograting structure.

  13. Structure formation in fibrous materials based on poly-3-hydroxybutyrate for traumatology

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Sklyanchuk, E. D.; Staroverova, O. V.; Abbasov, T. A.; Guryev, V. V.; Akatov, V. S.; Fadeyeva, I. S.; Fesenko, N. I.; Filatov, Yu. N.; Iordanskii, A. L.

    2015-10-01

    The paper reviews the structure formation of fibrous materials based on poly-3-hydroxybutyrate depending on parameters of electrospinning and characteristics of polymer solution. Fiber structure was studied by DSC, ESR and SEM. The molecular weight affects the diameter and uniformity of the fiber. An electromechanical impact leads to an orientation of crystalline structure in the fiber. The design of an artificial bioresorbable implant based on nano- and microfibers of poly-3-hydroxybutyrate is created. Dynamics of growth of mesenchymal stem cells on poly-3-hydroxybutyrate scaffolds is studied. Successful field tests of implants of the Achilles tendon in Wistar rats are conducted.

  14. Using Structured e-Forum to Support the Legislation Formation Process

    NASA Astrophysics Data System (ADS)

    Xenakis, Alexandros; Loukis, Euripides

    Many public policy problems are 'wicked', being characterised by high complexity, many heterogeneous views and conflicts among various stakeholders, and also lack of mathematically 'optimal' solutions and predefined algorithms for calculating them. The best approach for addressing such problems is through consultation and argumentation among stakeholders. The e-participation research has investigated and suggested several ICT tools for this purpose, such as e-forum, e-petition and e-community tools. This paper investigates the use of an advanced ICT tool, the structured e-forum, for addressing such wicked problems associated with the legislation formation. For this purpose we designed, implemented and evaluated two pilot e-consultations on legislation under formation in the Parliaments of Austria and Greece using a structured e-forum tool based on the Issue Based Information Systems (IBIS) framework. The conclusions drawn reveal the advantages offered by the structured e-forum, but also its difficulties as well.

  15. Structural basis for proteasome formation controlled by an assembly chaperone nas2.

    PubMed

    Satoh, Tadashi; Saeki, Yasushi; Hiromoto, Takeshi; Wang, Ying-Hui; Uekusa, Yoshinori; Yagi, Hirokazu; Yoshihara, Hidehito; Yagi-Utsumi, Maho; Mizushima, Tsunehiro; Tanaka, Keiji; Kato, Koichi

    2014-05-01

    Proteasome formation does not occur due to spontaneous self-organization but results from a highly ordered process assisted by several assembly chaperones. The assembly of the proteasome ATPase subunits is assisted by four client-specific chaperones, of which three have been structurally resolved. Here, we provide the structural basis for the working mechanisms of the last, hereto structurally uncharacterized assembly chaperone, Nas2. We revealed that Nas2 binds to the Rpt5 subunit in a bivalent mode: the N-terminal helical domain of Nas2 masks the Rpt1-interacting surface of Rpt5, whereas its C-terminal PDZ domain caps the C-terminal proteasome-activating motif. Thus, Nas2 operates as a proteasome activation blocker, offering a checkpoint during the formation of the 19S ATPase prior to its docking onto the proteolytic 20S core particle. PMID:24685148

  16. Formation of the pore structure of brown coal upon thermolysis with potassium hydroxide

    SciTech Connect

    T.G. Shendrik; Y.V. Tamarkina; T.V. Khabarova; V.A. Kucherenko; N.V. Chesnokov; B.N. Kuznetsov

    2009-07-01

    The pore-structure characteristics of active carbons prepared by the thermolysis (800{sup o}C) of brown coal impregnated with potassium hydroxide were studied. The dependence of the specific surface area, total pore volume, micropore volume, micropore fraction, and micropore size distribution on the KOH/coal weight ratio R{sub KOH}{le} 1.0 g/g was found. Condensation processes with the formation of a low-porosity material were predominant at low ratios of R{sub KOH} {le} 0.1 g/g. The development of a micropore structure was observed at R{sub KOH} {ge} 0.1 g/g, and it increased as R{sub KOH} was increased to 1.0 g/g. It was hypothesized that pore formation was due to the thermally initiated reactions of the structural fragments of coal with KOH molecules, which occurred within the framework of coal.

  17. Galaxy Structure as a Driver of the Star Formation Sequence Slope and Scatter

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Franx, Marijn; Bezanson, Rachel; Brammer, Gabriel B.; van Dokkum, Pieter G.; Kriek, Mariska T.; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Rigby, Jane R.; Rix, Hans-Walter; Skelton, Rosalind E.; van der Wel, Arjen; Wuyts, Stijn

    2015-09-01

    It is well established that (1) star-forming galaxies follow a relation between their star formation rate (SFR) and stellar mass ({M}\\star ), the “star formation sequence,” and (2) the SFRs of galaxies correlate with their structure, where star-forming galaxies are less concentrated than quiescent galaxies at fixed mass. Here, we consider whether the scatter and slope of the star formation sequence is correlated with systematic variations in the Sérsic indices, n, of galaxies across the SFR-{M}\\star plane. We use a mass-complete sample of 23,848 galaxies at 0.5 < z < 2.5 selected from the 3D-HST photometric catalogs. Galaxy light profiles parameterized by n are based on Hubble Space Telescope Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey near-infrared imaging. We use a single SFR indicator empirically calibrated from stacks of Spitzer/MIPS 24 μm imaging, adding the unobscured and obscured star formation. We find that the scatter of the star formation sequence is related in part to galaxy structure; the scatter due to variations in n at fixed mass for star-forming galaxies ranges from 0.14 ± 0.02 dex at z ˜ 2 to 0.30 ± 0.04 dex at z < 1. While the slope of the {log} {SFR}-{log} {M}\\star relation is of order unity for disk-like galaxies, galaxies with n > 2 (implying more dominant bulges) have significantly lower {SFR}/{M}\\star than the main ridgeline of the star formation sequence. These results suggest that bulges in massive z ˜ 2 galaxies are actively building up, where the stars in the central concentration are relatively young. At z < 1, the presence of older bulges within star-forming galaxies lowers global {SFR}/{M}\\star , decreasing the slope and contributing significantly to the scatter of the star formation sequence.

  18. Biofunctionalized Microfiber-Assisted Formation of Intrinsic Three-Dimensional Capillary-Like Structures

    PubMed Central

    Weinandy, Stefan; Laffar, Simone; Unger, Ronald E.; Flanagan, Thomas C.; Loesel, Robert; Kirkpatrick, C. James; van Zandvoort, Marc; Hermanns-Sachweh, Benita; Dreier, Agnieszka; Klee, Doris

    2014-01-01

    Objectives: A vascular supply network is essential in engineered tissues >100–200-μm thickness. To control vascular network formation in vitro, we hypothesize that capillarization can be achieved locally by using fibers to position and guide vessel-forming endothelial cells within a three-dimensional (3D) matrix. Materials and Methods: Biofunctionalization of poly-(L-lactic acid) (PLLA) fibers was performed by amino-functionalization and covalent binding of RGD peptides. Human foreskin fibroblasts (HFFs) and human umbilical vein endothelial cells (HUVECs) were seeded on the fibers in a mould and subsequently embedded in fibrin gel. After 9–21 days of coculture, constructs were fixed and immunostained (PECAM-1). Capillary-like structures with lumen in the 3D fibrin matrix were verified and quantified using two-photon microscopy and image analysis software. Results: Capillary-like networks with lumen formed adjacent to the PLLA fibers. Increased cell numbers were observed to attach to RGD-functionalized fibers, resulting in enhanced formation of capillary-like structures. Cocultivation of HFFs sufficiently supported HUVECs in the formation of capillary-like structures, which persisted for at least 21 days of coculture. Conclusions: The guidance of vessel growth within tissue-engineered constructs can be achieved using biofunctionalized PLLA microfibers. Further methods are warranted to perform specified spatial positioning of fibers within 3D formative scaffolds to enhance the applicability of the concept. PMID:24456033

  19. Control globular structure formation of a copolymer chain through inverse design.

    PubMed

    Yang, Xi; Lu, Zhong-Yuan

    2016-06-14

    A copolymer chain in dilute solution can exhibit various globular structures with characteristic morphologies, which makes it a potentially useful candidate for artificial materials design. However, the chain has a huge conformation space and may not naturally form the globular structure we desire. An ideal way to control globular structure formation should be inverse design, i.e., starting from the target structure and finding out what kind of polymers can effectively generate it. To accomplish this, we propose an inverse design procedure, which is combined with Wang-Landau Monte Carlo to fully and precisely explore the huge conformation space of the chain. Starting from a desired target structure, all the geometrically possible sequences are exactly enumerated. Interestingly, reasonable interaction strengths are obtained and found to be not specified for only one sequence. Instead, they can be combined with many other sequences and also achieve a relatively high yield for target structure, although these sequences may be rather different. These results confirm the possibility of controlling globular structure formation of a copolymer chain through inverse design and pave the way for targeted materials design. PMID:27306020

  20. Inverted micellar structures in bilayer membranes. Formation rates and half-lives.

    PubMed Central

    Siegel, D P

    1984-01-01

    Two sorts of inverted micellar structures have previously been proposed to explain morphological and 31P-NMR observations of bilayer systems. These structures only form in systems with components that can adopt the inverse hexagonal (HII) phase. LIP (lipidic particles) are intrabilayer structures, whereas IMI (inverted micellar intermediates) are structures that form between apposed bilayers. Here, we calculate the formation rates and half-lives of these structures to determine which (or if either) of these proposed structures is a likely explanation of the data. Calculations for the egg phosphatidylethanolamine and the Ca+-cardiolipin systems show that IMI form orders of magnitude faster than LIP, which should form slowly, if at all. This result is probably true in general, and indicates that "lipidic particle" electron micrograph images probably represent interbilayer structures, as some have previously proposed. It is shown here that IMI are likely intermediates in the lamellar----HII phase transitions and in the process of membrane fusion in some systems. The calculated formation rates, half-lives, and vesicle-vesicle fusion rates are in agreement with this observation. PMID:6365189

  1. Control globular structure formation of a copolymer chain through inverse design

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Lu, Zhong-Yuan

    2016-06-01

    A copolymer chain in dilute solution can exhibit various globular structures with characteristic morphologies, which makes it a potentially useful candidate for artificial materials design. However, the chain has a huge conformation space and may not naturally form the globular structure we desire. An ideal way to control globular structure formation should be inverse design, i.e., starting from the target structure and finding out what kind of polymers can effectively generate it. To accomplish this, we propose an inverse design procedure, which is combined with Wang-Landau Monte Carlo to fully and precisely explore the huge conformation space of the chain. Starting from a desired target structure, all the geometrically possible sequences are exactly enumerated. Interestingly, reasonable interaction strengths are obtained and found to be not specified for only one sequence. Instead, they can be combined with many other sequences and also achieve a relatively high yield for target structure, although these sequences may be rather different. These results confirm the possibility of controlling globular structure formation of a copolymer chain through inverse design and pave the way for targeted materials design.

  2. Formation of 1D adsorbed water structures on CaO(001)

    NASA Astrophysics Data System (ADS)

    Zhao, Xunhua; Bhattacharya, Saswata; Ghiringhelli, Luca M.; Levchenko, Sergey V.; Scheffler, Matthias

    2015-03-01

    Understanding the interaction of water with oxide surfaces is of fundamental importance for basic and engineering sciences. Recently, a spontaneous formation of one-dimensional (1D) adsorbed water structures have been observed on CaO(001). Interestingly, at other alkaline earth metal oxides, in particular MgO(001) and SrO(001), such structures have not been found experimentally. We calculate the relative stability of adsorbed water structures on the three oxides using density-functional theory combined with the ab initio atomistic thermodynamics. Low-energy structures at different coverages are obtained with a first-principles genetic algorithm. Finite-temperature vibrational spectra are calculated using ab initio molecular dynamics. We find a range of (T, p) conditions where 1D structures are thermodynamically stable on CaO(001). The orientation and vibrational spectra of the 1D structures are in agreement with the experiments. The formation of the 1D structures is found to be actuated by a symmetry breaking in the adsorbed water tetramer, as well as by a balance between water-water and water-substrate interactions, determined by the lattice constant of the oxide.

  3. The small and the beautiful: how the star formation law affects galactic disc structure

    NASA Astrophysics Data System (ADS)

    Braun, H.; Schmidt, W.

    2015-12-01

    We investigate the influence of different analytical parametrizations and fit functions for the local star formation rate in adaptive mesh refinement simulations of an isolated disc galaxy with the NYX code. Suchparametrizations express the star formation efficiency as function of the local turbulent Mach number and virial parameter. By employing the method of adaptively refined large eddy simulations, we are able to evaluate these physical parameters from the numerically unresolved turbulent energy associated with the grid scale. We consider both single and multi free-fall variants of star formation laws proposed by Padoan & Nordlund, Hennebelle & Chabrier, and Krumholz & McKee, summarized and tested recently with numerical simulations by Federrath & Klessen. We find that the global star formation rate and the relation between the local star formation rate and the gas column density is reproduced in agreement with observational constraints by all multi free-fall models of star formation. Some models with obsolete calibration or a single free-fall time-scale, however, result in an overly clumpy disc that does not resemble the structure of observed spirals.

  4. Talking therapy groups on acute psychiatric wards: patients' experience of two structured group formats.

    PubMed

    Radcliffe, Jonathan; Bird, Laura

    2016-08-01

    Aims and method We report the results of a clinical audit of patients' reactions to two types of talking therapy groups facilitated by assistant psychologists and psychology graduates on three acute wards. Patients' experiences of problem-solving and interpersonal group formats were explored via focus groups and structured interviews with 29 group participants. Results Both group formats generated high satisfaction ratings, with benefits related mostly to generic factors. Clinical implications Adequately trained and supported assistant psychologists and psychology graduates can provide supportive talking groups that patients find helpful. PMID:27512586

  5. Formation of polycrystalline-silicon films with hemispherical grains for capacitor structures with increased capacitance

    SciTech Connect

    Novak, A. V.

    2014-12-15

    The effect of formation conditions on the morphology of silicon films with hemispherical grains (HSG-Si) obtained by the method of low-pressure chemical vapor deposition (LPCVD) is investigated by atomic-force microscopy. The formation conditions for HSG-Si films with a large surface area are found. The obtained HSG-Si films make it possible to fabricate capacitor structures, the electric capacitance of which is twice as large in comparison to that of capacitors with “smooth” electrodes from polycrystalline silicon.

  6. Chemical structure of vanadium-based contact formation on n-AlN

    SciTech Connect

    Pookpanratana, S.; France, R.; Blum, M.; Bell, A.; Bar, M.; Weinhardt, L.; Zhang, Y.; Hofmann, T.; Fuchs, O.; Yang, W.; Denlinger, J. D.; Mulcahy, S.; Moustakas, T. D.; Heske, Clemens

    2010-05-17

    We have investigated the chemical interaction between a Au/V/Al/V layer structure and n-type AlN epilayers using soft x-ray photoemission, x-ray emission spectroscopy, and atomic force microscopy. To understand the complex processes involved in this multicomponent system, we have studied the interface before and after a rapid thermal annealing step. We find the formation of a number of chemical phases at the interface, including VN, metallic vanadium, aluminum oxide, and metallic gold. An interaction mechanism for metal contact formation on the entire n-(Al,Ga)N system is proposed.

  7. Talking therapy groups on acute psychiatric wards: patients' experience of two structured group formats

    PubMed Central

    Radcliffe, Jonathan; Bird, Laura

    2016-01-01

    Aims and method We report the results of a clinical audit of patients' reactions to two types of talking therapy groups facilitated by assistant psychologists and psychology graduates on three acute wards. Patients' experiences of problem-solving and interpersonal group formats were explored via focus groups and structured interviews with 29 group participants. Results Both group formats generated high satisfaction ratings, with benefits related mostly to generic factors. Clinical implications Adequately trained and supported assistant psychologists and psychology graduates can provide supportive talking groups that patients find helpful. PMID:27512586

  8. Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Planelles, S.; Schleicher, D. R. G.; Bykov, A. M.

    2015-05-01

    The large-scale structure of the Universe formed from initially small perturbations in the cosmic density field, leading to galaxy clusters with up to 1015 M⊙ at the present day. Here, we review the formation of structures in the Universe, considering the first primordial galaxies and the most massive galaxy clusters as extreme cases of structure formation where fundamental processes such as gravity, turbulence, cooling and feedback are particularly relevant. The first non-linear objects in the Universe formed in dark matter halos with 105-108 M⊙ at redshifts 10-30, leading to the first stars and massive black holes. At later stages, larger scales became non-linear, leading to the formation of galaxy clusters, the most massive objects in the Universe. We describe here their formation via gravitational processes, including the self-similar scaling relations, as well as the observed deviations from such self-similarity and the related non-gravitational physics (cooling, stellar feedback, AGN). While on intermediate cluster scales the self-similar model is in good agreement with the observations, deviations from such self-similarity are apparent in the core regions, where numerical simulations do not reproduce the current observational results. The latter indicates that the interaction of different feedback processes may not be correctly accounted for in current simulations. Both in the most massive clusters of galaxies as well as during the formation of the first objects in the Universe, turbulent structures and shock waves appear to be common, suggesting them to be ubiquitous in the non-linear regime.

  9. Development of structure in natural silk spinning and poly(vinyl alcohol) hydrogel formation

    NASA Astrophysics Data System (ADS)

    Willcox, Patricia Jeanene

    This research involves the characterization of structure and structure formation in aqueous systems. Particularly, these studies investigate the effect of various processing variables on the structure formation that occurs upon conversion from aqueous solution to fiber or hydrogel. The two processes studied include natural silk fiber spinning and physical gelation of poly(vinyl alcohol), PVOH, in water. The techniques employed combine cryogenic technology for sample preparation and direct observation by transmission electron microscopy with electron diffraction, atomic force microscopy, optical rheometry, X-ray scattering and optical microscopy. In order to explore the full range of structure formation in natural silk spinning, studies are conducted in vivo and in vitro. In vivo structural investigations are accomplished through the cryogenic quenching and subsequent microtoming of live silk-spinning animals, Nephila clavipes (spider) and Bombyx mori (silkworm). Observations made using transmission electron microscopy, electron diffraction and atomic force microscopy indicate a cholesteric liquid crystalline mesophase of aqueous silk fibroin in both species. The mechanism of structure formation in solution is studied in vitro using optical rheometry on aqueous solutions made from regenerated Bombyx mori cocoon silk. Concentrated solutions exhibit birefringence under flow, with a wormlike conformation of the silk molecules in concentrated salt solution. Changes in salt concentration and pH of the aqueous silk solutions result in differing degrees of alignment and aggregation. These results suggest that structural control in the natural silk spinning process is accomplished by chemical manipulation of the electrostatic interactions and hydrogen bonding between chains. Application of cryogenic methods in transmission electron microscopy also provides a unique look at hydration-dependent structures in gels of poly(vinyl alcohol) produced by freeze-thaw processing

  10. The formation, function and regulation of amyloids: insights from structural biology.

    PubMed

    Landreh, M; Sawaya, M R; Hipp, M S; Eisenberg, D S; Wüthrich, K; Hartl, F U

    2016-08-01

    Amyloid diseases are characterized by the accumulation of insoluble, β-strand-rich aggregates. The underlying structural conversions are closely associated with cellular toxicity, but can also drive the formation of functional protein assemblies. In recent years, studies in the field of structural studies have revealed astonishing insights into the origins, mechanisms and implications of amyloid formation. Notably, high-resolution crystal structures of peptides in amyloid-like fibrils and prefibrillar oligomers have become available despite their challenging chemical nature. Nuclear magnetic resonance spectroscopy has revealed that dynamic local polymorphisms in the benign form of the prion protein affect the transformation into amyloid fibrils and the transmissibility of prion diseases. Studies of the structures and interactions of chaperone proteins help us to understand how the cellular proteostasis network is able to recognize different stages of aberrant protein folding and prevent aggregation. In this review, we will focus on recent developments that connect the different aspects of amyloid biology and discuss how understanding the process of amyloid formation and the associated defence mechanisms can reveal targets for pharmacological intervention that may become the first steps towards clinically viable treatment strategies. PMID:27237473