Science.gov

Sample records for asymptotically scale-invariant occupancy

  1. Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive

    PubMed Central

    Tsallis, Constantino; Gell-Mann, Murray; Sato, Yuzuru

    2005-01-01

    Phase space can be constructed for N equal and distinguishable subsystems that could be probabilistically either weakly correlated or strongly correlated. If they are locally correlated, we expect the Boltzmann-Gibbs entropy SBG ≡ -k Σi pi ln pi to be extensive, i.e., SBG(N) ∝ N for N → ∞. In particular, if they are independent, SBG is strictly additive, i.e., SBG(N) = NSBG(1), ∀N. However, if the subsystems are globally correlated, we expect, for a vast class of systems, the entropy Sq ≡ k[1 - Σi pqi]/(q - 1) (with S1 = SBG) for some special value of q ≠ 1 to be the one which is extensive [i.e., Sq(N) ∝ N for N → ∞]. Another concept which is relevant is strict or asymptotic scale-freedom (or scale-invariance), defined as the situation for which all marginal probabilities of the N-system coincide or asymptotically approach (for N → ∞) the joint probabilities of the (N - 1)-system. If each subsystem is a binary one, scale-freedom is guaranteed by what we hereafter refer to as the Leibnitz rule, i.e., the sum of two successive joint probabilities of the N-system coincides or asymptotically approaches the corresponding joint probability of the (N - 1)-system. The kinds of interplay of these various concepts are illustrated in several examples. One of them justifies the title of this paper. We conjecture that these mechanisms are deeply related to the very frequent emergence, in natural and artificial complex systems, of scale-free structures and to their connections with nonextensive statistical mechanics. Summarizing, we have shown that, for asymptotically scale-invariant systems, it is Sq with q ≠ 1, and not SBG, the entropy which matches standard, clausius-like, prescriptions of classical thermodynamics. PMID:16230624

  2. Scale invariance in biophysics

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene

    2000-06-01

    In this general talk, we offer an overview of some problems of interest to biophysicists, medical physicists, and econophysicists. These include DNA sequences, brain plaques in Alzheimer patients, heartbeat intervals, and time series giving price fluctuations in economics. These problems have the common feature that they exhibit features that appear to be scale invariant. Particularly vexing is the problem that some of these scale invariant phenomena are not stationary-their statistical properties vary from one time interval to the next or form one position to the next. We will discuss methods, such as wavelet methods and multifractal methods, to cope with these problems. .

  3. The scale invariant generator technique for quantifying anisotropic scale invariance

    NASA Astrophysics Data System (ADS)

    Lewis, G. M.; Lovejoy, S.; Schertzer, D.; Pecknold, S.

    1999-11-01

    Scale invariance is rapidly becoming a new paradigm for geophysics. However, little attention has been paid to the anisotropy that is invariably present in geophysical fields in the form of differential stratification and rotation, texture and morphology. In order to account for scaling anisotropy, the formalism of generalized scale invariance (GSI) was developed. Until now there has existed only a single fairly ad hoc GSI analysis technique valid for studying differential rotation. In this paper, we use a two-dimensional representation of the linear approximation to generalized scale invariance, to obtain a much improved technique for quantifying anisotropic scale invariance called the scale invariant generator technique (SIG). The accuracy of the technique is tested using anisotropic multifractal simulations and error estimates are provided for the geophysically relevant range of parameters. It is found that the technique yields reasonable estimates for simulations with a diversity of anisotropic and statistical characteristics. The scale invariant generator technique can profitably be applied to the scale invariant study of vertical/horizontal and space/time cross-sections of geophysical fields as well as to the study of the texture/morphology of fields.

  4. A Scale-Invariant Treatment for Recursive Path Models.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.; And Others

    1993-01-01

    A reparameterization is formulated that yields estimates of scale-invariant parameters in recursive path models with latent variables, and (asymptotically) correct standard errors, without the use of constrained optimization. The method is based on the logical structure of the reticular action model. (Author)

  5. Hidden scale invariance of metals

    NASA Astrophysics Data System (ADS)

    Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.; Pedersen, Ulf R.

    2015-11-01

    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general "hidden" scale invariance of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W, and Hg), most post-transition metals (Ga, In, Sn, and Tl), and the metalloids Si and Ge cannot be explained by the IPL assumption. The virial-energy correlation coefficients of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules.

  6. Emerging universe from scale invariance

    SciTech Connect

    Del Campo, Sergio; Herrera, Ramón; Guendelman, Eduardo I.; Labraña, Pedro E-mail: guendel@bgu.ac.il E-mail: plabrana@ubiobio.cl

    2010-06-01

    We consider a scale invariant model which includes a R{sup 2} term in action and show that a stable ''emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R{sup 2} term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.

  7. Measuring Scale Invariance between and within Subjects.

    ERIC Educational Resources Information Center

    Benson, Jeri; Hocevar, Dennis

    The present paper represents a demonstration of how LISREL V can be used to investigate scale invariance (1) across time (its relationship to test-retest reliability), and (2) across groups. Five criteria were established to test scale invariance across time and four criteria were established to test scale invariance across groups. Using the…

  8. Scale invariance in road networks

    NASA Astrophysics Data System (ADS)

    Kalapala, Vamsi; Sanwalani, Vishal; Clauset, Aaron; Moore, Cristopher

    2006-02-01

    We study the topological and geographic structure of the national road networks of the United States, England, and Denmark. By transforming these networks into their dual representation, where roads are vertices and an edge connects two vertices if the corresponding roads ever intersect, we show that they exhibit both topological and geographic scale invariance. That is, we show that for sufficiently large geographic areas, the dual degree distribution follows a power law with exponent 2.2⩽α⩽2.4 , and that journeys, regardless of their length, have a largely identical structure. To explain these properties, we introduce and analyze a simple fractal model of road placement that reproduces the observed structure, and suggests a testable connection between the scaling exponent α and the fractal dimensions governing the placement of roads and intersections.

  9. Cosmological constant in scale-invariant theories

    SciTech Connect

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.

    2011-10-01

    The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.

  10. Broken Scale Invariance and Anomalous Dimensions

    DOE R&D Accomplishments Database

    Wilson, K. G.

    1970-05-01

    Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.

  11. Scale invariant density perturbations from cyclic cosmology

    NASA Astrophysics Data System (ADS)

    Frampton, Paul Howard

    2016-04-01

    It is shown how quantum fluctuations of the radiation during the contraction era of a comes back empty (CBE) cyclic cosmology can provide density fluctuations which re-enter the horizon during the subsequent expansion era and at lowest order are scale invariant, in a Harrison-Zel’dovich-Peebles sense. It is necessary to be consistent with observations of large scale structure.

  12. Natural inflation with hidden scale invariance

    NASA Astrophysics Data System (ADS)

    Barrie, Neil D.; Kobakhidze, Archil; Liang, Shelley

    2016-05-01

    We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns - 1 ≈ - 0.025(N⋆/60)-1 and r ≈ 0.0667(N⋆/60)-1, where N⋆ ≈ 30- 65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.

  13. Scale invariance in the spectral action

    SciTech Connect

    Chamseddine, Ali H.; Connes, Alain

    2006-06-15

    The arbitrary mass scale in the spectral action for the Dirac operator is made dynamical by introducing a dilaton field. We evaluate all the low-energy terms in the spectral action and determine the dilaton couplings. These results are applied to the spectral action of the noncommutative space defined by the standard model. We show that the effective action for all matter couplings is scale invariant, except for the dilaton kinetic term and Einstein-Hilbert term. The resulting action is almost identical to the one proposed for making the standard model scale invariant as well as the model for extended inflation and has the same low-energy limit as the Randall-Sundrum model. Remarkably, all desirable features with correct signs for the relevant terms are obtained uniquely and without any fine tuning.

  14. From scale invariance to Lorentz symmetry.

    PubMed

    Sibiryakov, Sergey

    2014-06-20

    It is shown that a unitary translationally invariant field theory in 1+1 dimensions, satisfying isotropic scale invariance, standard assumptions about the spectrum of states and operators, and the requirement that signals propagate with finite velocity, possesses an infinite dimensional symmetry given by one or a product of several copies of conformal algebra. In particular, this implies the presence of one or several Lorentz groups acting on the operator algebra of the theory. PMID:24996083

  15. Scale-invariant geometric random graphs

    NASA Astrophysics Data System (ADS)

    Xie, Zheng; Rogers, Tim

    2016-03-01

    We introduce and analyze a class of growing geometric random graphs that are invariant under rescaling of space and time. Directed connections between nodes are drawn according to influence zones that depend on node position in space and time, mimicking the heterogeneity and increased specialization found in growing networks. Through calculations and numerical simulations we explore the consequences of scale invariance for geometric random graphs generated this way. Our analysis reveals a dichotomy between scale-free and Poisson distributions of in- and out-degree, the existence of a random number of hub nodes, high clustering, and unusual percolation behavior. These properties are similar to those of empirically observed web graphs.

  16. Scale invariant texture descriptors for classifying celiac disease

    PubMed Central

    Hegenbart, Sebastian; Uhl, Andreas; Vécsei, Andreas; Wimmer, Georg

    2013-01-01

    Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods provide classification results improving the current state of the art. However, not each of the investigated scale invariant methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be. Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset. PMID:23481171

  17. The scale-invariant scotogenic model

    NASA Astrophysics Data System (ADS)

    Ahriche, Amine; McDonald, Kristian L.; Nasri, Salah

    2016-06-01

    We investigate a minimal scale-invariant implementation of the scotogenic model and show that viable electroweak symmetry breaking can occur while simultaneously generating one-loop neutrino masses and the dark matter relic abundance. The model predicts the existence of a singlet scalar (dilaton) that plays the dual roles of triggering electroweak symmetry breaking and sourcing lepton number violation. Important constraints are studied, including those from lepton flavor violating effects and dark matter direct-detection experiments. The latter turn out to be somewhat severe, already excluding large regions of parameter space. None the less, viable regions of parameter space are found, corresponding to dark matter masses below (roughly) 10 GeV and above 200 GeV.

  18. Discrete scale invariance in supercritical percolation

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Chen, Wei; Nagler, Jan

    2016-01-01

    Recently it has been demonstrated that the connectivity transition from microscopic connectivity to macroscopic connectedness, known as percolation, is generically announced by a cascade of microtransitions of the percolation order parameter (Chen et al 2014 Phys. Rev. Lett. 112 155701). Here we report the discovery of macrotransition cascades which follow percolation. The order parameter grows in discrete macroscopic steps with positions that can be randomly distributed even in the thermodynamic limit. These transition positions are, however, correlated and follow scaling laws which arise from discrete scale invariance (DSI) and non self-averaging, both traditionally unrelated to percolation. We reveal the DSI in ensemble measurements of these non self-averaging systems by rescaling of the individual realizations before averaging.

  19. Scale invariance and universality of economic fluctuations

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Amaral, L. A. N.; Gopikrishnan, P.; Plerou, V.

    2000-08-01

    In recent years, physicists have begun to apply concepts and methods of statistical physics to study economic problems, and the neologism “econophysics” is increasingly used to refer to this work. Much recent work is focused on understanding the statistical properties of time series. One reason for this interest is that economic systems are examples of complex interacting systems for which a huge amount of data exist, and it is possible that economic time series viewed from a different perspective might yield new results. This manuscript is a brief summary of a talk that was designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena - scale invariance and universality - can be useful in guiding research on economics. We shall see that while scale invariance has been tested for many years, universality is relatively less frequently discussed. This article reviews the results of two recent studies - (i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes - from tiny fluctuations to drastic events, such as market crashes. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ in size by as much as eight orders of magnitude. (ii) Quantifying business firm fluctuations: We analyze the Computstat database comprising all publicly traded United States manufacturing companies within the years 1974-1993. We find that the distributions of growth rates is different for different bins of firm size, with a width that varies inversely with a power of firm size. Similar variation is found for other complex organizations, including country size, university research budget size, and size of species of bird populations.

  20. Scale-invariant correlations and the distribution of prime numbers

    NASA Astrophysics Data System (ADS)

    Holdom, B.

    2009-08-01

    Negative correlations in the distribution of prime numbers are found to display a scale invariance. This occurs in conjunction with a nonstationary behavior. We compare the prime number series to a type of fractional Brownian motion which incorporates both the scale invariance and the nonstationary behavior. Interesting discrepancies remain. The scale invariance also appears to imply the Riemann hypothesis and we study the use of the former as a test of the latter.

  1. Noninflationary model with scale invariant cosmological perturbations

    SciTech Connect

    Peter, Patrick; Pinho, Emanuel J. C.; Pinto-Neto, Nelson

    2007-01-15

    We show that a contracting universe which bounces due to quantum cosmological effects and connects to the hot big-bang expansion phase, can produce an almost scale invariant spectrum of perturbations provided the perturbations are produced during an almost matter dominated era in the contraction phase. This is achieved using Bohmian solutions of the canonical Wheeler-DeWitt equation, thus treating both the background and the perturbations in a fully quantum manner. We find a very slightly blue spectrum (n{sub S}-1>0). Taking into account the spectral index constraint as well as the cosmic microwave background normalization measure yields an equation of state that should be less than {omega} < or approx. 8x10{sup -4}, implying n{sub S}-1{approx}O(10{sup -4}), and that the characteristic curvature scale of the Universe at the bounce is L{sub 0}{approx}10{sup 3}l{sub Pl}, a region where one expects that the Wheeler-DeWitt equation should be valid without being spoiled by string or loop quantum gravity effects. We have also obtained a consistency relation between the tensor-to-scalar ratio T/S and the scalar spectral index as T/S{approx}4.6x10{sup -2}{radical}(n{sub S}-1), leading to potentially measurable differences with inflationary predictions.

  2. Scale invariance, conformality, and generalized free fields

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; Luty, Markus A.; Prilepina, Valentina

    2016-02-01

    This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum field theories with scale invariance but not conformal invariance. An important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen is that trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.

  3. Computing with scale-invariant neural representations

    NASA Astrophysics Data System (ADS)

    Howard, Marc; Shankar, Karthik

    The Weber-Fechner law is perhaps the oldest quantitative relationship in psychology. Consider the problem of the brain representing a function f (x) . Different neurons have receptive fields that support different parts of the range, such that the ith neuron has a receptive field at xi. Weber-Fechner scaling refers to the finding that the width of the receptive field scales with xi as does the difference between the centers of adjacent receptive fields. Weber-Fechner scaling is exponentially resource-conserving. Neurophysiological evidence suggests that neural representations obey Weber-Fechner scaling in the visual system and perhaps other systems as well. We describe an optimality constraint that is solved by Weber-Fechner scaling, providing an information-theoretic rationale for this principle of neural coding. Weber-Fechner scaling can be generated within a mathematical framework using the Laplace transform. Within this framework, simple computations such as translation, correlation and cross-correlation can be accomplished. This framework can in principle be extended to provide a general computational language for brain-inspired cognitive computation on scale-invariant representations. Supported by NSF PHY 1444389 and the BU Initiative for the Physics and Mathematics of Neural Systems,.

  4. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    NASA Astrophysics Data System (ADS)

    Du, L. M.; Bai, J. M.; Xie, Z. H.; Yi, T. F.; Xu, Y. B.; Xue, R.; Wang, X. H.

    2015-06-01

    In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the fundamental plane, while near-Eddington sources such as FSRQs have not been explicitly studied. The extracted physical properties of synchrotron jet of FSRQs have been shown to be scale invariant using our sample. The results are in good agreement with theoretical expectations of Heinz & Sunyaev (2003). Therefore, the jet synchrotron is shown to be scale independent, regardless of the accretion modes. Results in this article thus lend support to the scale invariant model of the jet synchrotron throughout the mass scale of black hole systems.

  5. Scale invariance of subsurface flow patterns and its limitation

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Winkler, G.; Birk, S.

    2016-05-01

    Preferential flow patterns in the subsurface are of great importance for the availability and the quality of water resources. However, knowledge of their spatial structure is still behind their importance, so that understanding the nature of preferential flow patterns is a major issue in subsurface hydrology. Comparing the statistics of river catchment sizes and spring discharges, we found that the morphology of preferential subsurface flow patterns is probably scale invariant and similar to that of dendritic river networks. This result is not limited to karstic aquifers where the occurrence of dendritic structures has been known at least qualitatively for a long time. The scale invariance even seems to be independent of the lithology of the aquifer. However, scale invariance of river patterns seems to be only limited by the continental scale, while scale invariance of subsurface flow patterns breaks down at much smaller scales. The upper limit of scale invariance in subsurface flow patterns is highly variable. We found a range from thousands of square kilometers for limestone aquifers down to less than 1 km2 in the weathered zone and debris accumulations of crystalline rocks.

  6. On time scale invariance of random walks in confined space.

    PubMed

    Bearup, Daniel; Petrovskii, Sergei

    2015-02-21

    Animal movement is often modelled on an individual level using simulated random walks. In such applications it is preferable that the properties of these random walks remain consistent when the choice of time is changed (time scale invariance). While this property is well understood in unbounded space, it has not been studied in detail for random walks in a confined domain. In this work we undertake an investigation of time scale invariance of the drift and diffusion rates of Brownian random walks subject to one of four simple boundary conditions. We find that time scale invariance is lost when the boundary condition is non-conservative, that is when movement (or individuals) is discarded due to boundary encounters. Where possible analytical results are used to describe the limits of the time scaling process, numerical results are then used to characterise the intermediate behaviour. PMID:25481837

  7. Anisotropic scale invariant spacetimes and black holes in Zwei-Dreibein Gravity

    NASA Astrophysics Data System (ADS)

    Goya, A. F.

    2014-09-01

    We show that Zwei-Dreibein Gravity (ZDG), a bigravity theory recently proposed by Bergshoeff, de Haan, Hohm, Merbis, and Townsend in ref. [1], admits exact solutions with anisotropic scale invariance. These type of geometries are the three-dimensional analogues of the spacetimes which were proposed as gravity duals for condensed matter systems. In particular, we find Schrödinger invariant spaces as well as Lifshitz spaces with arbitrary dynamical exponent z. We also find black holes that are asymptotically Lifshitz with z = 3, showing that these (non-constant curvature) solutions of New Massive Gravity (NMG) are persistent after the introduction of the infinite tower of higher-curvature terms of ZDG, provided a renormalization of the parameters. Black holes in asymptotically warped Anti-de Sitter spaces are also found. Interestingly, in almost all the geometries studied in this work, the metric associated with the second dreibein turns out to be equivalent, up to a constant global factor, to the first one. This phenomenon has been previously observed in other bigravity theories in asymptotically flat and asymptotically Anti-de Sitter backgrounds. However, for the particular case of the z = 3 Lifshitz black hole, here we found that the second metric corresponds to a different black hole that coincides with the former only in the asymptotic region. In fact, we find a new family of z = 3 black holes that corresponds to a one-parameter deformation of the NMG solution.

  8. Binary optical filters for scale invariant pattern recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Downie, John D.; Hine, Butler P.

    1992-01-01

    Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.

  9. Tuning the cosmological constant, broken scale invariance, unitarity

    NASA Astrophysics Data System (ADS)

    Förste, Stefan; Manz, Paul

    2016-06-01

    We study gravity coupled to a cosmological constant and a scale but not conformally invariant sector. In Minkowski vacuum, scale invariance is spontaneously broken. We consider small fluctuations around the Minkowski vacuum. At the linearised level we find that the trace of metric perturbations receives a positive or negative mass squared contribution. However, only for the Fierz-Pauli combination the theory is free of ghosts. The mass term for the trace of metric perturbations can be cancelled by explicitly breaking scale invariance. This reintroduces fine-tuning. Models based on four form field strength show similarities with explicit scale symmetry breaking due to quantisation conditions.

  10. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    PubMed Central

    Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  11. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.

    PubMed

    Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  12. Levels of complexity in scale-invariant neural signals

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Ma, Qianli D. Y.; Bartsch, Ronny P.

    2012-02-01

    Many physiological systems exhibit complex scale-invariant and nonlinear features characterized long-range power-law correlations, indicating a possibly common control mechanism. It has been suggested that dynamical processes, influenced by inputs and feedback on multiple time scales, may be sufficient to give rise to this complexity. Two examples of physiologic signals that are the output of hierarchical multiscale physiologic systems under neural control are the human heartbeat and human gait. We show that while both cardiac interbeat interval and gait interstride interval time series under healthy conditions have comparable scale-invariant behavior, they still belong to different complexity classes. We compare results from empirical findings and stochastic feedback modeling approaches to cardiac and locomotor dynamics, which provide new insights into the multicomponent neural mechanisms regulating these complex systems.

  13. Scale-invariant entropy-based theory for dynamic ordering

    SciTech Connect

    Mahulikar, Shripad P. E-mail: spm@aero.iitb.ac.in; Kumari, Priti

    2014-09-01

    Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations.

  14. Gauge coupling unification in a classically scale invariant model

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ishida, Hiroyuki; Takahashi, Ryo; Yamaguchi, Yuya

    2016-02-01

    There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3) C with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.

  15. Manifestly scale-invariant regularization and quantum effective operators

    NASA Astrophysics Data System (ADS)

    Ghilencea, D. M.

    2016-05-01

    Scale-invariant theories are often used to address the hierarchy problem. However the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which breaks this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale-invariant regularization in (classical) scale-invariant theories. We use a dilaton-dependent subtraction function μ (σ ) which, after spontaneous breaking of the scale symmetry, generates the usual dimensional regularization subtraction scale μ (⟨σ ⟩) . One consequence is that "evanescent" interactions generated by scale invariance of the action in d =4 -2 ɛ (but vanishing in d =4 ) give rise to new, finite quantum corrections. We find a (finite) correction Δ U (ϕ ,σ ) to the one-loop scalar potential for ϕ and σ , beyond the Coleman-Weinberg term. Δ U is due to an evanescent correction (∝ɛ ) to the field-dependent masses (of the states in the loop) which multiplies the pole (∝1 /ɛ ) of the momentum integral to give a finite quantum result. Δ U contains a nonpolynomial operator ˜ϕ6/σ2 of known coefficient and is independent of the subtraction dimensionless parameter. A more general μ (ϕ ,σ ) is ruled out since, in their classical decoupling limit, the visible sector (of the Higgs ϕ ) and hidden sector (dilaton σ ) still interact at the quantum level; thus, the subtraction function must depend on the dilaton only, μ ˜σ . The method is useful in models where preserving scale symmetry at quantum level is important.

  16. Scale-invariant Lipatov kernels from t-channel unitarity

    SciTech Connect

    Coriano, C.; White, A.R.

    1994-11-14

    The Lipatov equation can be regarded as a reggeon Bethe-Salpeter equation in which higher-order reggeon interactions give higher-order kernels. Infra-red singular contributions in a general kernel are produced by t-channel nonsense states and the allowed kinematic forms are determined by unitarity. Ward identity and infra-red finiteness gauge invariance constraints then determine the corresponding scale-invariant part of a general higher-order kernel.

  17. Magnetic vortex filaments, universal scale invariants, and the fundamental constants

    SciTech Connect

    Lerner, E.J.

    1986-12-01

    An explanation for the observed scale invariants in the universe is presented. Force-free magnetic vortex filaments are proposed to play a crucial role in the formation of superclusters, clusters, galaxies, and stars by initiating gravitational compression. The critical velocities involved in vortex formation are shown to explain the observed constant orbital velocities of clusters, galaxies, and stars. A second scale invariant nr = C where n is particle density and r is average distance between objects, is also noted here and explained by the model. The model predicts a maximum size for magnetic vortices, which is comparable to the dimensions of the observable universe and a density for such vortices which is close to that actually observed, eliminating any theoretical need for missing mass. On this basis, they present an alternative cosmology to that of the ''Big Bang,'' one which provides a much better fit to recent observations of large-scale structure and motion. The model suggests scale invariants between microscopic and cosmological scales, leading to the derivation of a simple analytical expression for the fundamental constants G, m/sub rho//m/sub e/, and e/sup 2//hc. We conclude that these expressions indicate the existence of vortex phenomena on the particle level.

  18. Observing scale-invariance in non-critical dynamical systems

    NASA Astrophysics Data System (ADS)

    Gros, C.; Marković, D.

    2013-01-01

    Recent observation for scale invariant neural avalanches in the brain have been discussed in details in the scientific literature. We point out, that these results do not necessarily imply that the properties of the underlying neural dynamics are also scale invariant. The reason for this discrepancy lies in the fact that the sampling statistics of observations and experiments is generically biased by the size of the basins of attraction of the processes to be studied. One has hence to precisely define what one means with statements like 'the brain is critical' . We recapitulate the notion of criticality, as originally introduced in statistical physics for second order phase transitions, turning then to the discussion of critical dynamical systems. We elucidate in detail the difference between a 'critical system', viz a system on the verge of a phase transition, and a 'critical state', viz state with scaleinvariant correlations, stressing the fact that the notion of universality is linked to critical states. We then discuss rigorous results for two classes of critical dynamical systems, the Kauffman net and a vertex routing model, which both have non-critical states. However, an external observer that samples randomly the phase space of these two critical models, would find scale invariance. We denote this phenomenon as 'observational criticality' and discuss its relevance for the response properties of critical dynamical systems.

  19. Scale invariance in the dynamics of spontaneous behavior

    PubMed Central

    Proekt, Alex; Banavar, Jayanth R.; Maritan, Amos; Pfaff, Donald W.

    2012-01-01

    Typically one expects that the intervals between consecutive occurrences of a particular behavior will have a characteristic time scale around which most observations are centered. Surprisingly, the timing of many diverse behaviors from human communication to animal foraging form complex self-similar temporal patterns reproduced on multiple time scales. We present a general framework for understanding how such scale invariance may arise in nonequilibrium systems, including those that regulate mammalian behaviors. We then demonstrate that the predictions of this framework are in agreement with detailed analysis of spontaneous mouse behavior observed in a simple unchanging environment. Neural systems operate on a broad range of time scales, from milliseconds to hours. We analytically show that such a separation between time scales could lead to scale-invariant dynamics without any fine tuning of parameters or other model-specific constraints. Our analyses reveal that the specifics of the distribution of resources or competition among several tasks are not essential for the expression of scale-free dynamics. Rather, we show that scale invariance observed in the dynamics of behavior can arise from the dynamics intrinsic to the brain. PMID:22679281

  20. Scale-invariant alternatives to general relativity. II. Dilaton properties

    NASA Astrophysics Data System (ADS)

    Karananas, Georgios K.; Shaposhnikov, Mikhail

    2016-04-01

    In the present paper, we revisit gravitational theories which are invariant under TDiffs—transverse (volume-preserving) diffeomorphisms and global scale transformations. It is known that these theories can be rewritten in an equivalent diffeomorphism-invariant form with an action including an integration constant (cosmological constant for the particular case of non-scale-invariant unimodular gravity). The presence of this integration constant, in general, breaks explicitly scale invariance and induces a runaway potential for the (otherwise massless) dilaton, associated with the determinant of the metric tensor. We show, however, that if the metric carries mass dimension [GeV] -2 , the scale invariance of the system is preserved, unlike the situation in theories in which the metric has mass dimension different from -2 . The dilaton remains massless and couples to other fields only through derivatives, without any conflict with observations. We observe that one can define a specific limit for fields and their derivatives (in particular, the dilaton goes to zero, potentially related to the small distance domain of the theory) in which the only singular terms in the action correspond to the Higgs mass and the cosmological constant. We speculate that the self-consistency of the theory may require the regularity of the action, leading to the absence of the bare Higgs mass and cosmological constant, whereas their small finite values may be generated by nonperturbative effects.

  1. Multifractality and scale invariance in human heartbeat dynamics

    NASA Astrophysics Data System (ADS)

    Ching, Emily S. C.; Tsang, Yue-Kin

    2007-10-01

    Human heart rate is known to display complex fluctuations. Evidence of multifractality in heart rate fluctuations in healthy state has been reported [Ivanov , Nature (London) 399, 461 (1999)]. This multifractal character could be manifested as the dependence of the probability density functions (PDFs) of the interbeat interval increments, which are the differences in two interbeat intervals that are separated by n beats, on n . On the other hand, “scale invariance in the PDFs of detrended healthy human heart rate increments” was recently reported [Kiyono , Phys. Rev. Lett. 93, 178103 (2004)]. In this paper, we clarify that the scale invariance reported is actually exhibited by the PDFs of the increments of the “detrended” integrated healthy interbeat interval and should, therefore, be more accurately referred as the scale invariance or n independence of the PDFs of the sum of n detrended interbeat intervals. Indeed, we demonstrate explicitly that the PDFs of detrended healthy interbeat interval increments are scale or n dependent in accord with its multifractal character. Our work also establishes that this n independence of the PDFs of the sum of n detrended interbeat intervals is a general feature of human heartbeat dynamics, shared by heart rate fluctuations in both healthy and pathological states.

  2. Self-organization in a model of economic system with scale invariant interactions

    NASA Astrophysics Data System (ADS)

    Pis`mak, Yu. M.

    2001-10-01

    The method of constructing the local scale invariant stochastic models is proposed. The possible extension of minimal scale-invariant interaction principle for stochastic systems is formulated. A simple scale invariant model that possesses an economical interpretation is considered. Essential characteristics of its self-organization mechanisms are discussed.

  3. Scale Invariance in Landscape Evolution Models Using Stream Power Laws

    NASA Astrophysics Data System (ADS)

    Kwang, J. S.; Parker, G.

    2014-12-01

    Landscape evolution models (LEM) commonly utilize stream power laws to simulate river incision with formulations such as E = KAmSn, where E is a vertical incision rate [L/T], K is an erodibility constant [L1-2m/T], A is an upstream drainage area [L2], S is a local channel gradient [-], and m and n are positive exponents that describe the basin hydrology. In our reduced complexity model, the landscape approached equilibrium by balancing an incision rate with a constant, uniform, vertical rock uplift rate at every location in the landscape. From our simulations, for a combination of m and n, the landscape exhibited scale invariance. That is, regardless of the size and scale of the basin, the relief and vertical structure of the landscape remained constant. Therefore, the relief and elevation profile of the landscape at equilibrium were only dependent on the coefficients for erodibility and uplift and an equation that described how upstream area, A, increased as the length of a stream increased. In our analytical 1D models, we utilized two equations that described upslope area, (a) A = Bl, where B is the profile width [L], and l is the stream length from the ridge [L] and (b) A = Clh, Hack's Law, where C is a constant [L2-h] and h is a positive exponent. With these equations, (a) m = n and (b) hm = n resulted in scale invariance. In our numerical 2D models, the relationship between A and l was inherent in the actual structure of the drainage network. From our numerical 2D results, scale invariance occurred when 2m = n. Additionally, using reasonable values from the literature for exponents, n, m and h, resulted in singularities at the ridges in the landscape, which caused truncation error. In consequence, the elevation of the ridge increased as the number of grid cells in the domain increased in the numerical model, and the model was unable to converge. These singularities at the ridges appeared when (a) m ≥ n and (b) hm ≥ n in the analytical model and 2m ≥ n in

  4. Scale invariant behavior in a large N matrix model

    NASA Astrophysics Data System (ADS)

    Narayanan, Rajamani; Neuberger, Herbert

    2016-01-01

    Eigenvalue distributions of properly regularized Wilson-loop operators are used to study the transition from UV behavior to IR behavior in gauge theories coupled to matter that potentially have an IR fixed point. We numerically demonstrate the emergence of scale invariance in a matrix model that describes S U (N ) gauge theory coupled to two flavors of massless adjoint fermions in the large N limit. The eigenvalue distribution of Wilson loops of varying sizes cannot be described by a universal lattice beta function connecting the UV to the IR.

  5. Scale-Invariant Correlations in Dynamic Bacterial Clusters

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Dong, Xu; Be'er, Avraham; Swinney, Harry L.; Zhang, H. P.

    2012-04-01

    In Bacillus subtilis colonies, motile bacteria move collectively, spontaneously forming dynamic clusters. These bacterial clusters share similarities with other systems exhibiting polarized collective motion, such as bird flocks or fish schools. Here we study experimentally how velocity and orientation fluctuations within clusters are spatially correlated. For a range of cell density and cluster size, the correlation length is shown to be 30% of the spatial size of clusters, and the correlation functions collapse onto a master curve after rescaling the separation with correlation length. Our results demonstrate that correlations of velocity and orientation fluctuations are scale invariant in dynamic bacterial clusters.

  6. Non-scale-invariant density perturbations from chaotic extended inflation

    SciTech Connect

    Mollerach, S. ); Matarrese, S. )

    1992-03-15

    Chaotic inflation is analyzed in the frame of scalar-tensor theories of gravity. Fluctuations in the energy density arise from quantum fluctuations of the Brans-Dicke field and of the inflaton field. The spectrum of perturbations is studied for a class of models: it is non-scale-invariant and, for certain values of the parameters, it has a peak. If the peak appears at astrophysically interesting scales it may help to reconcile the cold-dark-matter scenario for structure formation with large-scale observations.

  7. Non scale-invariant density perturbations from chaotic extended inflation

    NASA Technical Reports Server (NTRS)

    Mollerach, Silvia; Matarrese, Sabino

    1991-01-01

    Chaotic inflation is analyzed in the frame of scalar-tensor theories of gravity. Fluctuations in the energy density arise from quantum fluctuations of the Brans-Dicke field and of the inflation field. The spectrum of perturbations is studied for a class of models: it is non scale-invarient and, for certain values of the parameters, it has a peak. If the peak appears at astrophysically interesting scales, it may help to reconcile the Cold Dark Matter scenario for structure formation with large scale observations.

  8. Scale invariance of human electroencephalogram signals in sleep

    NASA Astrophysics Data System (ADS)

    Cai, Shi-Min; Jiang, Zhao-Hui; Zhou, Tao; Zhou, Pei-Ling; Yang, Hui-Jie; Wang, Bing-Hong

    2007-12-01

    In this paper, we investigate the dynamical properties of electroencephalogram (EEG) signals of humans in sleep. By using a modified random walk method, we demonstrate that scale-invariance is embedded in EEG signals after a detrending procedure is applied. Furthermore, we study the dynamical evolution of the probability density function (PDF) of the detrended EEG signals by nonextensive statistical modeling. It displays a scale-independent property, which is markedly different from the usual scale-dependent PDF evolution and cannot be described by the Fokker-Planck equation.

  9. Scale-invariant curvature fluctuations from an extended semiclassical gravity

    SciTech Connect

    Pinamonti, Nicola E-mail: siemssen@dima.unige.it; Siemssen, Daniel E-mail: siemssen@dima.unige.it

    2015-02-15

    We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.

  10. Critical Scale Invariance in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Sakata, Seiichiro; Hayano, Junichiro; Yamamoto, Yoshiharu

    2004-10-01

    We demonstrate the robust scale-invariance in the probability density function (PDF) of detrended healthy human heart rate increments, which is preserved not only in a quiescent condition, but also in a dynamic state where the mean level of the heart rate is dramatically changing. This scale-independent and fractal structure is markedly different from the scale-dependent PDF evolution observed in a turbulentlike, cascade heart rate model. These results strongly support the view that a healthy human heart rate is controlled to converge continually to a critical state.

  11. Scale invariance of temporal order discrimination using complex, naturalistic events

    PubMed Central

    Kwok, Sze Chai; Macaluso, Emiliano

    2015-01-01

    Recent demonstrations of scale invariance in cognitive domains prompted us to investigate whether a scale-free pattern might exist in retrieving the temporal order of events from episodic memory. We present four experiments using an encoding-retrieval paradigm with naturalistic stimuli (movies or video clips). Our studies show that temporal order judgement retrieval times were negatively correlated with the temporal separation between two events in the movie. This relation held, irrespective of whether temporal distances were on the order of tens of minutes (Exp 1−2) or just a few seconds (Exp 3−4). Using the SIMPLE model, we factored in the retention delays between encoding and retrieval (delays of 24 h, 15 min, 1.5–2.5 s, and 0.5 s for Exp 1–4, respectively) and computed a temporal similarity score for each trial. We found a positive relation between similarity and retrieval times; that is, the more temporally similar two events, the slower the retrieval of their temporal order. Using Bayesian analysis, we confirmed the equivalence of the RT/similarity relation across all experiments, which included a vast range of temporal distances and retention delays. These results provide evidence for scale invariance during the retrieval of temporal order of episodic memories. PMID:25909581

  12. Scale invariance of temporal order discrimination using complex, naturalistic events.

    PubMed

    Kwok, Sze Chai; Macaluso, Emiliano

    2015-07-01

    Recent demonstrations of scale invariance in cognitive domains prompted us to investigate whether a scale-free pattern might exist in retrieving the temporal order of events from episodic memory. We present four experiments using an encoding-retrieval paradigm with naturalistic stimuli (movies or video clips). Our studies show that temporal order judgement retrieval times were negatively correlated with the temporal separation between two events in the movie. This relation held, irrespective of whether temporal distances were on the order of tens of minutes (Exp 1-2) or just a few seconds (Exp 3-4). Using the SIMPLE model, we factored in the retention delays between encoding and retrieval (delays of 24 h, 15 min, 1.5-2.5 s, and 0.5 s for Exp 1-4, respectively) and computed a temporal similarity score for each trial. We found a positive relation between similarity and retrieval times; that is, the more temporally similar two events, the slower the retrieval of their temporal order. Using Bayesian analysis, we confirmed the equivalence of the RT/similarity relation across all experiments, which included a vast range of temporal distances and retention delays. These results provide evidence for scale invariance during the retrieval of temporal order of episodic memories. PMID:25909581

  13. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  14. Differential rotation and cloud texture: Analysis using generalized scale invariance

    SciTech Connect

    Pflug, K.; Lovejoy, S. ); Schertzer, D. )

    1993-02-14

    The standard picture of atmospheric dynamics is that of an isotropic two-dimensional large scale and an isotropic three-dimensional small scale, the two separated by a dimensional transition called the [open quotes]mesoscale gap.[close quotes] Evidence now suggests that, on the contrary, atmospheric fields, while strongly anisotropic, are nonetheless scale invariant right through the mesoscale. Using visible and infrared satellite cloud images and the formalism of generalized scale invariance (GSI), the authors attempt to quantify the anisotropy for cloud radiance fields in the range 1-1000 km. To do this, the statistical translational invariance of the fields is exploited by studying the anisotropic scaling of lines of constant Fourier amplitude. This allows the investigation of the change in shape and orientation of average structures with scale. For the three texturally-and meteorologically-very different images analyzed, three different generators of anisotropy are found that generally reproduce well the Fourier space anisotropy. Although three cases are a small number from which to infer ensemble-averaged properties, the authors conclude that while cloud radiances are not isotropic (self-similar), they are nonetheless scaling. Since elsewhere (with the help of simulations) it is shown that the generator of the anisotropy is related to the texture, it is argued here that GSI could potentially provide a quantitative basis for cloud classification and modeling. 59 refs., 21 figs., 2 tabs.

  15. A dimension scale-invariant probabilistic model based on Leibniz-like pyramids

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Tsallis, C.

    2012-02-01

    We introduce a family of dimension scale-invariant Leibniz-like pyramids and (d + 1)-dimensional hyperpyramids (d = 1, 2, 3, …), with d = 1 corresponding to triangles, d = 2 to (tetrahedral) pyramids, and so on. For all values of d, they are characterized by a parameter ν > 0, whose value determines the degree of correlation between N (d + 1)-valued random variables (d = 1 corresponds to binary variables, d = 2 to ternary variables, and so on). There are (d + 1)N different events, and the limit ν → ∞ corresponds to independent random variables, in which case each event has a probability 1/(d + 1)N to occur. The sums of these N (d + 1)-valued random variables correspond to a d-dimensional probabilistic model and generalize a recently proposed one-dimensional (d = 1) model having q -Gaussians (with q = (ν - 2)/(ν - 1) for ν ∈ [1, ∞)) as N → ∞ limit probability distributions for the sum of the N binary variables [A. Rodríguez, V. Schwammle, and C. Tsallis, J. Stat. Mech.: Theory Exp. 2008, P09006; R. Hanel, S. Thurner, and C. Tsallis, Eur. Phys. J. B 72, 263 (2009)]. In the ν → ∞ limit the d-dimensional multinomial distribution is recovered for the sums, which approach a d-dimensional Gaussian distribution for N → ∞. For any ν, the conditional distributions of the d-dimensional model are shown to yield the corresponding joint distribution of the (d-1)-dimensional model with the same ν. For the d = 2 case, we study the joint probability distribution and identify two classes of marginal distributions, one of them being asymmetric and dimension scale-invariant, while the other one is symmetric and only asymptotically dimension scale-invariant. The present probabilistic model is proposed as a testing ground for a deeper understanding of the necessary and sufficient conditions for having q-Gaussian attractors in the N → ∞ limit, the ultimate goal being a neat mathematical view of the causes clarifying the ubiquitous emergence of q

  16. Generalized scale invariance, clouds and radiative transfer on multifractal clouds

    SciTech Connect

    Lovejoy, S.; Schertzer, D.

    1995-09-01

    Recent systematic satellite studies (LANDSAT, AVHRR, METEOSAT) of cloud radiances using (isotropic) energy spectra have displayed excellent scaling from at least about 300m to about 4000km, even for individual cloud pictures. At first sight, this contradicts the observed diversity of cloud morphology, texture and type. The authors argue that the explanation of this apparent paradox is that the differences are due to anisotropy, e.g. differential stratification and rotation. A general framework for anisotropic scaling expressed in terms of isotropic self-similar scaling and fractals and multifractals is needed. Schertzer and Lovejoy have proposed Generalized Scale Invariance (GSI) in response to this need. In GSI, the statistics of the large and small scales of system can be related to each other by a scale changing operator T{sub {lambda}} which depends only on the scale ratio {lambda}{sub i} there is no characteristic size. 3 refs., 1 fig.

  17. Fermi-bounce cosmology and scale-invariant power spectrum

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Bambi, Cosimo; Marcianò, Antonino; Modesto, Leonardo

    2014-12-01

    We develop a nonsingular bouncing cosmology using a nontrivial coupling of general relativity to fermionic fields. The usual big bang singularity is avoided thanks to a negative energy density contribution from the fermions. Our theory is ghost free since the fermionic operator that generates the bounce is equivalent to torsion, which has no kinetic terms. The physical system consists of standard general relativity plus a topological sector for gravity and fermionic matter described by Dirac fields with a nonminimal coupling. We show that a scale-invariant power spectrum generated in the contracting phase can be recovered by suitable choices of fermion number density and bare mass, thus providing a possible alternative to the inflationary scenario.

  18. Scale-invariant structure of size fluctuations in plants

    NASA Astrophysics Data System (ADS)

    Picoli, S.; Mendes, R. S.; Lenzi, E. K.; Malacarne, L. C.

    2012-03-01

    A wide range of physical and biological systems exhibit complex behaviours characterised by a scale-invariant structure of the fluctuations in their output signals. In the context of plant populations, scaling relationships are typically allometric. In this study, we analysed spatial variation in the size of maize plants (Zea Mays L.) grown in agricultural plots at constant densities and found evidence of scaling in the size fluctuations of plants. The findings indicate that the scaling of the probability distribution of spatial size fluctuation exhibits non-Gaussian behaviour compatible with a Lévy stable process. The scaling relationships were observed for spatial scales spanning three orders of magnitude. These findings should provide additional information for the selection and development of empirically accurate models of pattern formation in plant populations.

  19. Classically Scale Invariant Inflation and (A)gravity

    NASA Astrophysics Data System (ADS)

    Farzinnia, Arsham

    2016-07-01

    In this talk, I present the minimal classically scale-invariant and CP-symmetric extension of the standard model, containing one additional complex gauge singlet and three flavors of right-handed Majorana neutrinos, incorporated within a renormalizable framework of gravity, consistent with these symmetries; the Agravity. I particularly focus on the slow-roll inflationary paradigm within this framework, by identifying the pseudo-Nambu-Goldstone boson of the (approximate) scale symmetry with the inflaton field, constructing its one-loop effective potential, computing the slow-roll parameters and the inflationary observables, and demonstrating the compatibility of the small field inflation scenario with the latest Planck collaboration data sets.a

  20. Near-Milne realization of scale-invariant fluctuations

    SciTech Connect

    Magueijo, Joao

    2007-12-15

    A near-Milne universe produces a very red spectrum of vacuum quantum fluctuations but has the potential to produce near-scale-invariant thermal fluctuations. This happens if the energy and entropy are mildly subextensive, for example, if there is a Casimir contribution. Therefore, one does not need to invoke corrections to Einstein gravity (as in loop quantum cosmology) for a thermal scenario to be viable. Neither do we need the energy to scale like the area, as in scenarios where the thermal fluctuations are subject to a phase transition in the early universe. Some odd features of this model are pointed out: whether they are fatal or merely unusual will need to be investigated further.

  1. Fisher information and the thermodynamics of scale-invariant systems

    NASA Astrophysics Data System (ADS)

    Hernando, A.; Vesperinas, C.; Plastino, A.

    2010-02-01

    We present a thermodynamic formulation for scale-invariant systems based on the minimization with constraints of the Fisher information measure. In such a way a clear analogy between these systems’ thermal properties and those of gases and fluids is seen to emerge in a natural fashion. We focus our attention on the non-interacting scenario, speaking thus of scale-free ideal gases (SFIGs) and present some empirical evidences regarding such disparate systems as electoral results, city populations and total citations in Physics journals, that seem to indicate that SFIGs do exist. We also illustrate the way in which Zipf’s law can be understood in a thermodynamical context as the surface of a finite system. Finally, we derive an equivalent microscopic description of our systems which totally agrees with previous numerical simulations found in the literature.

  2. Transport in fractal media: an effective scale-invariant approach.

    PubMed

    Hernandez-Coronado, H; Coronado, M; Herrera-Hernandez, E C

    2012-06-01

    In this paper an advective-dispersion equation with scale-dependent coefficients is proposed for describing transport through fractals. This equation is obtained by imposing scale invariance and assuming that the porosity, the dispersion coefficient, and the velocity follow fractional power laws on the scale. The model incorporates the empirically found trends in highly heterogeneous media, regarding the dependence of the dispersivity on the scale and the dispersion coefficient on the velocity. We conclude that the presence of nontrivial fractal parameters produces anomalous dispersion, as expected, and that the presence of convective processes induces a reescalation in the concentration and shifts the tracer velocity to different values with respect to the nonfractal case. PMID:23005215

  3. Excitation of flow instabilities due to nonlinear scale invariance

    SciTech Connect

    Prasad Datta, Dhurjati; Sen, Sudip

    2014-05-15

    A novel route to instabilities and turbulence in fluid and plasma flows is presented in kinetic Vlasov-Maxwell model. New kind of flow instabilities is shown to arise due to the availability of new kinetic energy sources which are absent in conventional treatments. The present approach is based on a scale invariant nonlinear analytic formalism developed to address irregular motions on a chaotic attractor or in turbulence in a more coherent manner. We have studied two specific applications of this turbulence generating mechanism. The warm plasma Langmuir wave dispersion relation is shown to become unstable in the presence of these multifractal measures. In the second application, these multifractal measures are shown to induce naturally non-Gaussian, i.e., a stretched, Gaussian distribution and anomalous transport for tracer particles from the turbulent advection-diffusion transport equation in a Vlasov plasma flow.

  4. Generation of scale invariant magnetic fields in bouncing universes

    NASA Astrophysics Data System (ADS)

    Sriramkumar, L.; Atmjeet, Kumar; Jain, Rajeev Kumar

    2015-09-01

    We consider the generation of primordial magnetic fields in a class of bouncing models when the electromagnetic action is coupled non-minimally to a scalar field that, say, drives the background evolution. For scale factors that have the power law form at very early times and non-minimal couplings which are simple powers of the scale factor, one can easily show that scale invariant spectra for the magnetic field can arise before the bounce for certain values of the indices involved. It will be interesting to examine if these power spectra retain their shape after the bounce. However, analytical solutions for the Fourier modes of the electromagnetic vector potential across the bounce are difficult to obtain. In this work, with the help of a new time variable that we introduce, which we refer to as the e-Script N-fold, we investigate these scenarios numerically. Imposing the initial conditions on the modes in the contracting phase, we numerically evolve the modes across the bounce and evaluate the spectra of the electric and magnetic fields at a suitable time after the bounce. As one could have intuitively expected, though the complete spectra depend on the details of the bounce, we find that, under the original conditions, scale invariant spectra of the magnetic fields do arise for wavenumbers much smaller than the scale associated with the bounce. We also show that magnetic fields which correspond to observed strengths today can be generated for specific values of the parameters. But, we find that, at the bounce, the backreaction due to the electromagnetic modes that have been generated can be significantly large calling into question the viability of the model. We briefly discuss the implications of our results.

  5. Curvaton reheating mechanism in a scale invariant two measures theory

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo I.; Herrera, Ramón

    2016-01-01

    The curvaton reheating mechanism in a scale invariant two measures theory defined in terms of two independent non-Riemannian volume forms (alternative generally covariant integration measure densities) on the space-time manifold which are metric independent is studied. The model involves two scalar matter fields, a dilaton, that transforms under scale transformations and it will be used also as the inflaton of the model and another scalar, which does not transform under scale transformations and which will play the role of a curvaton field. Potentials of appropriate form so that the pertinent action is invariant under global Weyl-scale symmetry are introduced. Scale invariance is spontaneously broken upon integration of the equations of motion. After performing transition to the physical Einstein frame we obtain: (1) For given value of the curvaton field an effective potential for the scalar field with two flat regions for the dilaton which allows for a unified description of both early universe inflation as well as of present dark energy epoch; (2) In the phase corresponding to the early universe, the curvaton has a constant mass and can oscillate decoupled from the dilaton and that can be responsible for both reheating and perturbations in the theory. In this framework, we obtain some interesting constraints on different parameters that appear in our model; (3) For a definite parameter range the model possesses a non-singular "emergent universe" solution which describes an initial phase of evolution that precedes the inflationary phase. Finally we discuss generalizations of the model, through the effect of higher curvature terms, where inflaton and curvaton can have coupled oscillations.

  6. Viscosity and scale invariance in the unitary Fermi gas

    SciTech Connect

    Enss, Tilman; Haussmann, Rudolf; Zwerger, Wilhelm

    2011-03-15

    We compute the shear viscosity of the unitary Fermi gas above the superfluid transition temperature, using a diagrammatic technique that starts from the exact Kubo formula. The formalism obeys a Ward identity associated with scale invariance which guarantees that the bulk viscosity vanishes identically. For the shear viscosity, vertex corrections and the associated Aslamazov-Larkin contributions are shown to be crucial to reproduce the full Boltzmann equation result in the high-temperature, low fugacity limit. The frequency dependent shear viscosity {eta}({omega}) exhibits a Drude-like transport peak and a power-law tail at large frequencies which is proportional to the Tan contact. The weight in the transport peak is given by the equilibrium pressure, in agreement with a sum rule due to Taylor and Randeria. Near the superfluid transition the peak width is of the order of 0.5T{sub F}, thus invalidating a quasiparticle description. The ratio {eta}/s between the static shear viscosity and the entropy density exhibits a minimum near the superfluid transition temperature whose value is larger than the string theory bound h/(4{pi}k{sub B}) by a factor of about seven.

  7. Physical naturalness and dynamical breaking of classical scale invariance

    NASA Astrophysics Data System (ADS)

    Heikinheimo, Matti; Racioppi, Antonio; Spethmann, Christian; Raidal, Martti; Tuominen, Kimmo

    2014-05-01

    We propose a model of a confining dark sector, dark technicolor, that communicates with the Standard Model (SM) through the Higgs portal. In this model electroweak (EW) symmetry breaking and dark matter (DM) share a common origin, and the EW scale is generated dynamically. Our motivation to suggest this model is the absence of evidence for new physics from recent Large Hadron Collider (LHC) data. Although the conclusion is far from certain at this point, this lack of evidence may suggest that no mechanism exists at the EW scale to stabilize the Higgs mass against radiative corrections from ultraviolet (UV) physics. The usual reaction to this puzzling situation is to conclude that the stabilizing new physics is either hidden from us by accident, or that it appears at energies that are currently inaccessible, such that nature is indeed fine-tuned. In order to re-examine the arguments that have led to this dichotomy, we review the concept of naturalness in effective field theories, discussing in particular the role of quadratic divergences in relation to different energy scales. This leads us to suggest classical scale invariance as a guideline for model building, implying that explicit mass scales are absent in the underlying theory.

  8. Scale-Invariant Hydrodynamics and Quantum Viscosity in Fermi Gases

    NASA Astrophysics Data System (ADS)

    Thomas, John

    2015-05-01

    An optically-trapped gas of spin 1/2-up and spin 1/2-down 6Li atoms, tuned near a collisional (Feshbach) resonance, provides a unique paradigm for testing predictions that cross interdisciplinary boundaries, from high temperature superconductors to nuclear matter. At resonance, the dilute atomic cloud becomes the most strongly interacting, non-relativistic fluid known: Shock waves are produced when two clouds collide. We observe scale-invariant hydrodynamic expansion of a resonantly interacting gas and determine the quantum shear viscosity η = α ℏn , with n the density, as a function of interaction strength and temperature, from nearly the ground state through the superfluid phase transition. We extract the local shear viscosity coefficient α from cloud-averaged data, using iterative methods borrowed from image processing, and observe previously hidden features, which are compared to recent predictions. In collaboration with Ethan Elliott and James Joseph, Physics Department, North Carolina State University. Supported by NSF, DOE, ARO, AFOSR.

  9. Scale invariance of a diode-like tunnel junction

    NASA Astrophysics Data System (ADS)

    Cabrera, Hugo; Zanin, Danilo Andrea; de Pietro, Lorenzo Giuseppe; Michaels, Thomas; Thalmann, Peter; Ramsperger, Urs; Vindigni, Alessandro; Pescia, Danilo

    2013-03-01

    In Near Field-Emission SEM (NFESEM), electrostatic considerations favor a diode-like tunnel junction consisting of an atomic-sized source mounted at the apex of a thin wire placed at nanometric distances from a collector. The quantum mechanical tunnel process, instead, can provide a barrier toward miniaturization. In the first place, it deteriorates the generation of electrons by introducing non-linearities within the classically forbidden zone that exponentially increase with decreasing sizes. In addition, in the direct tunnelling regime, i.e. when the distance between emitter and collector d approaches the subnanometer range, a characteristic length appears, making the cross-over from the (almost) scale-invariant electric-field assisted regime to the essentially different STM-regime. We have observed that the experimental data relating the current I to the two experimental variables V (bias voltage between tip and collector) and d can be made (almost) collapse onto a ``scaling curve'' relating I to the single variable V .d-λ , λ being some exponent that depends solely on the geometry of the junction. This scaling property can be used to highlight non-linear aspects of the quantum mechanical tunnelling process.

  10. Rotation and Scale Invariant Wavelet Feature for Content-Based Texture Image Retrieval.

    ERIC Educational Resources Information Center

    Lee, Moon-Chuen; Pun, Chi-Man

    2003-01-01

    Introduces a rotation and scale invariant log-polar wavelet texture feature for image retrieval. The underlying feature extraction process involves a log-polar transform followed by an adaptive row shift invariant wavelet packet transform. Experimental results show that this rotation and scale invariant wavelet feature is quite effective for image…

  11. Evaluating Empirical Relationships among Prediction, Measurement, and Scaling Invariance. Research Report. ETS RR-11-06

    ERIC Educational Resources Information Center

    Moses, Tim

    2011-01-01

    The purpose of this study was to consider the relationships of prediction, measurement, and scaling invariance when these invariances were simultaneously evaluated in psychometric test data. An approach was developed to evaluate prediction, measurement, and scaling invariance based on linear and nonlinear prediction, measurement, and scaling…

  12. Power spectrum scale invariance identifies prefrontal dysregulation in paranoid schizophrenia.

    PubMed

    Radulescu, Anca R; Rubin, Denis; Strey, Helmut H; Mujica-Parodi, Lilianne R

    2012-07-01

    Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect-valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k(1) : Z = 4.3215, P = 0.00002 and k(2) : Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ -1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = -1.9437, P = 0.05 for k(1) ; Z = -2.5099, P = 0.01 for k(2) ). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region. PMID:21567663

  13. N-boson spectrum from a discrete scale invariance

    NASA Astrophysics Data System (ADS)

    Kievsky, A.; Timofeyuk, N. K.; Gattobigio, M.

    2014-09-01

    We present an analysis of the N-boson spectrum computed using a soft two-body potential, the strength of which has been varied in order to cover an extended range of positive and negative values of the two-body scattering length a close to the unitary limit. The spectrum shows a tree structure of two states, one shallow and one deep, attached to the ground state of the system with one less particle. It is governed by a unique universal function Δ (ξ), already known in the case of three bosons. In the three-particle system the angle ξ, determined by the ratio of the two- and three-body binding energies E3/E2=tan2ξ, characterizes the discrete scale invariance of the system. Extending the definition of the angle to the N-body system as EN/E2=tan2ξ, we study the N-boson spectrum in terms of this variable. The analysis of the results, obtained for up to N =16 bosons, allows us to extract a general formula for the energy levels of the system close to the unitary limit. Interestingly, a linear dependence of the universal function as a function of N is observed at fixed values of a. We show that the finite-range nature of the calculations results in the range corrections that generate a shift of the linear relation between the scattering length a and a particular form of the universal function. We also comment on the limits of applicability of the universal relations.

  14. Scale invariant sheath folds in salt, sediments and shear zones

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Holdsworth, R. E.; McCaffrey, K. J. W.

    2007-10-01

    Sheath folds are developed in a broad spectrum of geological environments in which material flow occurs, including gravity-driven surficial deformation in ignimbrites, unconsolidated sediments and salt, together with deeper level ductile shear zones in metamorphic rocks. This study represents the first geometric comparison of sheath folds in these different settings across a wide range of scales. Elliptical closures defining eye-folds represent ( y- z) cross sections through highly-curvilinear sheath folds. Our analysis of the published literature, coupled with field observations, reveals remarkably similar ellipticities ( R yz) for sheath folds in metamorphic shear zones ( R yz 4.23), salt ( R yz 4.29), sediment slumps ( R yz 4.34), glaciotectonites ( R yz 4.48), and ignimbrites ( R yz 4.34). Nested eye-folds across this range of materials ( N = 1800) reveal distinct and consistent differences in ellipticity from the outer- ( R yz) to the inner-most ( R y' z' ) elliptical "rings" of individual sheath folds. The variation in ratios from outer to inner rings ( R' = R yz/ R y' z' ) in gravity-driven surficial flows typically displays a relative increase in ellipticity to define cats-eye-folds ( R' < 1) similar to those observed during simple and general shear in metamorphic rocks. We show that sheath folds develop across a range of scales within these different environments, and display elliptical ratios ( R yz) that are remarkably constant ( R2 > 0.99) across 9 orders of magnitude (sheath y axes range from ˜0.1 mm to >75 km). Our findings lead us to conclude that the geometric properties of sheath folds are scale invariant and primarily controlled by the type and amount of strain, with R' also reflecting the rheological significance of layering associated with original buckle fold mechanisms. The scaling pattern of sheath folds reflects the length scales of the precursor buckle folds (and width of deformation zones) across a broad range of materials and

  15. Correlated Percolation, Fractal Structures, and Scale-Invariant Distribution of Clusters in Natural Images

    PubMed Central

    Saremi, Saeed; Sejnowski, Terrence J.

    2016-01-01

    Natural images are scale invariant with structures at all length scales. We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs. We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153

  16. Correlated Percolation, Fractal Structures, and Scale-Invariant Distribution of Clusters in Natural Images.

    PubMed

    Saremi, Saeed; Sejnowski, Terrence J

    2016-05-01

    Natural images are scale invariant with structures at all length scales.We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs.We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153

  17. The neural correlates of processing scale-invariant environmental sounds at birth.

    PubMed

    Gervain, Judit; Werker, Janet F; Black, Alexis; Geffen, Maria N

    2016-06-01

    Sensory systems are thought to have evolved to efficiently represent the full range of sensory stimuli encountered in the natural world. The statistics of natural environmental sounds are characterized by scale-invariance: the property of exhibiting similar patterns at different levels of observation. The statistical structure of scale-invariant sounds remains constant at different spectro-temporal scales. Scale-invariance plays a fundamental role in how efficiently animals and human adults perceive acoustic signals. However, the developmental origins and brain correlates of the neural encoding of scale-invariant environmental sounds remain unexplored. Here, we investigate whether the human brain extracts the statistical property of scale-invariance. Synthetic sounds generated by a mathematical model to respect scale-invariance or violate it were presented to newborns. In alternating blocks, the two sound types were presented together in an alternating fashion, whereas in non-alternating blocks, only one type of sound was presented. Newborns' brain responses were measured using near-infrared spectroscopy. We found that scale-invariant and variable-scale sounds were discriminated by the newborn brain, as suggested by differential activation in the left frontal and temporal areas to alternating vs. non-alternating blocks. These results indicate that newborns already detect and encode scale-invariance as a characteristic feature of acoustic stimuli. This suggests that the mathematical principle of efficient coding of information guides the auditory neural code from the beginning of human development, a finding that may help explain how evolution has prepared the brain for perceiving the natural world. PMID:26956907

  18. General conditions for scale-invariant perturbations in an expanding universe

    SciTech Connect

    Geshnizjani, Ghazal; Kinney, William H.; Dizgah, Azadeh Moradinezhad E-mail: whkinney@buffalo.edu

    2011-11-01

    We investigate the general properties of expanding cosmological models which generate scale-invariant curvature perturbations in the presence of a variable speed of sound. We show that in an expanding universe, generation of a super-Hubble, nearly scale-invariant spectrum of perturbations over a range of wavelengths consistent with observation requires at least one of three conditions: (1) accelerating expansion, (2) a speed of sound faster than the speed of light, or (3) super-Planckian energy density.

  19. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking

    NASA Astrophysics Data System (ADS)

    Rinaldi, Massimiliano; Vanzo, Luciano

    2016-07-01

    We study a scale-invariant model of quadratic gravity with a nonminimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways, and we study in detail some of these possibilities.

  20. Distinctive Feature Extraction for Indian Sign Language (ISL) Gesture using Scale Invariant Feature Transform (SIFT)

    NASA Astrophysics Data System (ADS)

    Patil, Sandeep Baburao; Sinha, G. R.

    2016-07-01

    India, having less awareness towards the deaf and dumb peoples leads to increase the communication gap between deaf and hard hearing community. Sign language is commonly developed for deaf and hard hearing peoples to convey their message by generating the different sign pattern. The scale invariant feature transform was introduced by David Lowe to perform reliable matching between different images of the same object. This paper implements the various phases of scale invariant feature transform to extract the distinctive features from Indian sign language gestures. The experimental result shows the time constraint for each phase and the number of features extracted for 26 ISL gestures.

  1. Dynamics of Two Dimensional Bose Gases and the Role of Scale Invariance

    NASA Astrophysics Data System (ADS)

    Maki, Jeff

    2016-05-01

    The controllable study of dynamics has become commonplace in cold atom experiments. However, the theoretical exploration of dynamics has relied heavily on numerical simulations due to the vast complexity of dynamical many body problems. The situation is simplified in two dimensional Bose gases thanks to the presence of scale invariance. This symmetry is presumed to have an important effect on the dynamics of the system but has yet to be studied in the context of cold gases. In this talk we report a study of interacting two dimensional Bose gases and the role scale invariance plays on the system's dynamics.

  2. Nonlocal matching condition and scale-invariant spectrum in bouncing cosmology

    SciTech Connect

    Chu, C.-S.; Furuta, K.; Lin, F.-L.

    2006-05-15

    In cosmological scenarios such as the pre-big bang scenario or the ekpyrotic scenario, a matching condition between the metric perturbations in the pre-big bang phase and those in the post big bang phase is often assumed. Various matching conditions have been considered in the literature. Nevertheless obtaining a scale-invariant CMB spectrum via a concrete mechanism remains impossible. In this paper, we examine this problem from the point of view of local causality. We begin with introducing the notion of local causality and explain how it constrains the form of the matching condition. We then prove a no-go theorem: independent of the details of the matching condition, a scale-invariant spectrum is impossible as long as the local causality condition is satisfied. In our framework, it is easy to show that a violation of local causality around the bounce is needed in order to give a scale-invariant spectrum. We study a specific scenario of this possibility by considering a nonlocal effective theory inspired by noncommutative geometry around the bounce and show that a scale-invariant spectrum is possible. Moreover we demonstrate that the magnitude of the spectrum is compatible with observations if the bounce is assumed to occur at an energy scale which is a few orders of magnitude below the Planckian energy scale.

  3. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework.

    PubMed

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework. PMID:26232979

  4. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    NASA Astrophysics Data System (ADS)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  5. Evaluation of scale invariance in physiological signals by means of balanced estimation of diffusion entropy.

    PubMed

    Zhang, Wenqing; Qiu, Lu; Xiao, Qin; Yang, Huijie; Zhang, Qingjun; Wang, Jianyong

    2012-11-01

    By means of the concept of the balanced estimation of diffusion entropy, we evaluate the reliable scale invariance embedded in different sleep stages and stride records. Segments corresponding to waking, light sleep, rapid eye movement (REM) sleep, and deep sleep stages are extracted from long-term electroencephalogram signals. For each stage the scaling exponent value is distributed over a considerably wide range, which tell us that the scaling behavior is subject and sleep cycle dependent. The average of the scaling exponent values for waking segments is almost the same as that for REM segments (∼0.8). The waking and REM stages have a significantly higher value of the average scaling exponent than that for light sleep stages (∼0.7). For the stride series, the original diffusion entropy (DE) and the balanced estimation of diffusion entropy (BEDE) give almost the same results for detrended series. The evolutions of local scaling invariance show that the physiological states change abruptly, although in the experiments great efforts have been made to keep conditions unchanged. The global behavior of a single physiological signal may lose rich information on physiological states. Methodologically, the BEDE can evaluate with considerable precision the scale invariance in very short time series (∼10^{2}), while the original DE method sometimes may underestimate scale-invariance exponents or even fail in detecting scale-invariant behavior. The BEDE method is sensitive to trends in time series. The existence of trends may lead to an unreasonably high value of the scaling exponent and consequent mistaken conclusions. PMID:23214843

  6. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.

    PubMed

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-01-01

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. PMID:26151674

  7. Reconstruction of a nonminimal coupling theory with scale-invariant power spectrum

    SciTech Connect

    Qiu, Taotao

    2012-06-01

    A nonminimal coupling single scalar field theory, when transformed from Jordan frame to Einstein frame, can act like a minimal coupling one. Making use of this property, we investigate how a nonminimal coupling theory with scale-invariant power spectrum could be reconstructed from its minimal coupling counterpart, which can be applied in the early universe. Thanks to the coupling to gravity, the equation of state of our universe for a scale-invariant power spectrum can be relaxed, and the relation between the parameters in the action can be obtained. This approach also provides a means to address the Big-Bang puzzles and anisotropy problem in the nonminimal coupling model within Jordan frame. Due to the equivalence between the two frames, one may be able to find models that are free of the horizon, flatness, singularity as well as anisotropy problems.

  8. Observation of the Efimovian expansion in scale-invariant Fermi gases.

    PubMed

    Deng, Shujin; Shi, Zhe-Yu; Diao, Pengpeng; Yu, Qianli; Zhai, Hui; Qi, Ran; Wu, Haibin

    2016-07-22

    Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time t, the expansion of the cloud size exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor, and the expansion dynamics is governed by a log-periodic function. This marked expansion shares the same scaling law and mathematical description as the Efimov effect. PMID:27463669

  9. Scale-invariant scalar spectrum from the nonminimal derivative coupling with fourth-order term

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Moon, Taeyoon

    2015-08-01

    In this paper, an exactly scale-invariant spectrum of scalar perturbation generated during de Sitter spacetime is found from the gravity model of the nonminimal derivative coupling with fourth-order term. The nonminimal derivative coupling term generates a healthy (ghost-free) fourth-order derivative term, while the fourth-order term provides an unhealthy (ghost) fourth-order derivative term. The Harrison-Zel’dovich spectrum obtained from Fourier transforming the fourth-order propagator in de Sitter space is recovered by computing the power spectrum in its momentum space directly. It shows that this model provides a truly scale-invariant spectrum, in addition to the Lee-Wick scalar theory.

  10. Direct detection of singlet dark matter in classically scale-invariant standard model

    NASA Astrophysics Data System (ADS)

    Endo, Kazuhiro; Ishiwata, Koji

    2015-10-01

    Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.

  11. Titius-Bode laws in the solar system. 1: Scale invariance explains everything

    NASA Astrophysics Data System (ADS)

    Graner, F.; Dubrulle, B.

    1994-02-01

    According to the Titius-Bode law, the planetary distances to the sun follow a geometric progression. We review the major interpretations and explanations of the law. We show that most derivations of Titius-Bode law are implicitely based on the assumption of both rotational and scale invariance. In absence of any radial length scale, linear instabilities cause periodic perturbations in the variable x = ln(r/r0). Since maxima equidistant in x obey a geometric progression in the variable r, Titius-Bode type of laws are natural outcome of the linear regime of systems in which both symmetries are present; we discuss possible nonlinear corrections to the law. Thus, if Titius-Bode law is real, it is probably only a consequence of the scale invariance of the disk which gave rise to the planets.

  12. Scale-invariant cosmological perturbations from Horava-Lifshitz gravity without inflation

    SciTech Connect

    Mukohyama, Shinji

    2009-06-15

    Based on the renormalizable theory of gravitation recently proposed by Horava, we present a simple scenario to generate almost scale-invariant, super-horizon curvature perturbations. The anisotropic scaling with dynamical critical exponent z = 3 implies that the amplitude of quantum fluctuations of a free scalar field generated in the early epoch of the expanding universe is insensitive to the Hubble expansion rate and, thus, scale-invariant. Those fluctuations are later converted to curvature perturbations by the curvaton mechanism or/and the modulated decay of heavy particles/oscillating fields. This scenario works, for example, for power law expansion a{proportional_to}t {sup p} with p>1/3 and, thus, does not require inflation. Also, this scenario does not rely on any additional assumptions such as the detailed balance condition.

  13. Exact scale-invariant background of gravitational waves from cosmic defects.

    PubMed

    Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon

    2013-03-01

    We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction. PMID:23521248

  14. Observation of the Efimovian expansion in scale-invariant Fermi gases

    NASA Astrophysics Data System (ADS)

    Deng, Shujin; Shi, Zhe-Yu; Diao, Pengpeng; Yu, Qianli; Zhai, Hui; Qi, Ran; Wu, Haibin

    2016-07-01

    Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time t, the expansion of the cloud size exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor, and the expansion dynamics is governed by a log-periodic function. This marked expansion shares the same scaling law and mathematical description as the Efimov effect.

  15. A new dynamics of electroweak symmetry breaking with classically scale invariance

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ishida, Hiroyuki; Kitazawa, Noriaki; Yamaguchi, Yuya

    2016-04-01

    We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu-Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu-Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.

  16. Scale invariant hydrodynamic focusing and sorting of inertial particles by size in spiral micro channels

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Hasabnis, Nilesh; Katuri, Kalyan; Sudarsanam, Senbagaraman; Joshi, Ketaki; Ramasubramanian, Melur

    2015-08-01

    The hydrodynamic separation of spherical particles in flows at low Reynolds numbers is a very active area of research in microfluidic engineering due to the many important biomedical applications. In particular, curved channels such as spiral channels are of growing interest because the lift and drag force exerted on inertial particles can be used to hydrodynamically separate the particles. In this paper we present a scale invariant classification of the lateral focusing of particles in highly curved spiral micro channels with a square cross section. We then use this scale invariant classification to demonstrate the separation of particles in two-particle mixtures across a large range of sizes. We thus show that our results can be used to systematically design the geometry of devices and select flow parameters to separate particles by size in a mixture.

  17. Void probability as a function of the void's shape and scale-invariant models

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1991-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  18. Scale-Invariant Forms of Conservation Equations in Reactive Fields and a Modified Hydro-Thermo-Diffusive Theory of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Sohrab, Siavash H.; Piltch, Nancy (Technical Monitor)

    2000-01-01

    A scale-invariant model of statistical mechanics is applied to present invariant forms of mass, energy, linear, and angular momentum conservation equations in reactive fields. The resulting conservation equations at molecular-dynamic scale are solved by the method of large activation energy asymptotics to describe the hydro-thermo-diffusive structure of laminar premixed flames. The predicted temperature and velocity profiles are in agreement with the observations. Also, with realistic physico-chemical properties and chemical-kinetic parameters for a single-step overall combustion of stoichiometric methane-air premixed flame, the laminar flame propagation velocity of 42.1 cm/s is calculated in agreement with the experimental value.

  19. On scale invariant features and sequential Monte Carlo sampling for bronchoscope tracking

    NASA Astrophysics Data System (ADS)

    Luó, Xióngbiao; Feuerstein, Marco; Kitasaka, Takayuki; Natori, Hiroshi; Takabatake, Hirotsugu; Hasegawa, Yoshinori; Mori, Kensaku

    2011-03-01

    This paper presents an improved bronchoscope tracking method for bronchoscopic navigation using scale invariant features and sequential Monte Carlo sampling. Although image-based methods are widely discussed in the community of bronchoscope tracking, they are still limited to characteristic information such as bronchial bifurcations or folds and cannot automatically resume the tracking procedure after failures, which result usually from problematic bronchoscopic video frames or airway deformation. To overcome these problems, we propose a new approach that integrates scale invariant feature-based camera motion estimation into sequential Monte Carlo sampling to achieve an accurate and robust tracking. In our approach, sequential Monte Carlo sampling is employed to recursively estimate the posterior probability densities of the bronchoscope camera motion parameters according to the observation model based on scale invariant feature-based camera motion recovery. We evaluate our proposed method on patient datasets. Experimental results illustrate that our proposed method can track a bronchoscope more accurate and robust than current state-of-the-art method, particularly increasing the tracking performance by 38.7% without using an additional position sensor.

  20. Apparent Low-Energy Scale Invariance in Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Taylor, Edward

    2013-05-01

    Strongly-interacting systems in two dimensions have occupied a central position in the study of quantum materials. From high temperature superconductors to the Hall effect in two-dimensional electron gases, strong quantum and thermal fluctuations conspire to make this an extremely rich yet poorly-understood regime to work in. Several remarkable and surprising recent experiments in ultracold atomic gases show us that there are puzzles to be understood even in the simplest nontrivial two-dimensional system: a dilute quantum gas with strong s-wave interactions. Amongst these is an experiment that finds an undamped breathing mode oscillating at twice the trap frequency over a wide range of parameters, behaviour nominally associated with scale invariance, even though scale invariance is strictly broken in this system by a finite s-wave scattering length. This apparent scale symmetry is all the more remarkable given that the mean-field BCS theory for the 2D gas predicts an exact low-energy scale invariance, relevant to the low-energy breathing mode, meaning that only quantum and thermal fluctuations can break this low-energy scale symmetry. Understanding why the symmetry breaking is so weak may give insight into how to make reliable theoretical predictions in systems with strong fluctuation effects, where there is no obvious small parameter from which a perturbation expansion can be formulated. Supported by NSF Grant No. DMR-1006532 (Mohit Randeria), NSERC, and the Canadian Institute for Advanced Research.

  1. Generating scale-invariant perturbations from rapidly-evolving equation of state

    NASA Astrophysics Data System (ADS)

    Khoury, Justin; Steinhardt, Paul J.

    2011-06-01

    Recently, we introduced an ekpyrotic model based on a single, canonical scalar field that generates nearly scale-invariant curvature fluctuations through a purely “adiabatic mechanism” in which the background evolution is a dynamical attractor. Despite the starkly different physical mechanism for generating fluctuations, the two-point function is identical to inflation. In this paper, we further explore this concept, focusing in particular on issues of non-Gaussianity and quantum corrections. We find that the degeneracy with inflation is broken at three-point level: for the simplest case of an exponential potential, the three-point amplitude is strongly scale dependent, resulting in a breakdown of perturbation theory on small scales. However, we show that the perturbative breakdown can be circumvented—and all issues raised in Linde et al. (arXiv:0912.0944) can be addressed—by altering the potential such that power is suppressed on small scales. The resulting range of nearly scale-invariant, Gaussian modes can be as much as 12 e-folds, enough to span the scales probed by microwave background and large-scale structure observations. On smaller scales, the spectrum is not scale invariant but is observationally acceptable.

  2. Scale-invariant hidden local symmetry, topology change, and dense baryonic matter

    NASA Astrophysics Data System (ADS)

    Paeng, Won-Gi; Kuo, Thomas T. S.; Lee, Hyun Kyu; Rho, Mannque

    2016-05-01

    When scale symmetry is implemented into hidden local symmetry in low-energy strong interactions to arrive at a scale-invariant hidden local symmetric (HLS) theory, the scalar f0(500 ) may be interpreted as pseudo-Nambu-Goldstone (pNG) boson, i.e., dilaton, of spontaneously broken scale invariance, joining the pseudoscalar pNG bosons π and the matter fields V =(ρ ,ω ) as relevant degrees of freedom. Implementing the skyrmion-half-skyrmion transition predicted at large Nc in QCD at a density roughly twice the nuclear matter density found in the crystal simulation of dense skyrmion matter, we determine the intrinsically density-dependent "bare parameters" of the scale-invariant HLS Lagrangian matched to QCD at a matching scale ΛM. The resulting effective Lagrangian, with the parameters scaling with the density of the system, is applied to nuclear matter and dense baryonic matter relevant to massive compact stars by means of the double-decimation renormalization-group Vlow k formalism. We satisfactorily postdict the properties of normal nuclear matter and more significantly predict the equation of state of dense compact-star matter that quantitatively accounts for the presently available data coming from both the terrestrial and space laboratories. We interpret the resulting structure of compact-star matter as revealing how the combination of hidden-scale symmetry and hidden local symmetry manifests itself in compressed baryonic matter.

  3. Polynomial Asymptotes

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2010-01-01

    This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…

  4. Scale-invariance of sediment patterns - the fingerprint of fundamental drivers (Jean Baptiste Lamarck Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Schlager, Wolfgang

    2015-04-01

    In contrast to the realms of magmatism and metamorphism, most depositional processes can be observed directly at the earth's surface. Observation of sediment patterns advanced significantly with the advent of remote sensing and 3D reflection seismics. Remote sensing is particularly relevant for the present topic because it documents mainly Holocene sediments - the best objects to link depositional processes to products. Classic examples of scale-invariant geometry are channel-fan systems, i.e. river-delta and canyon-fan complexes. The underlying control in both instances is the energy-dispersion of a channeled stream of water that discharges in a body of still water. The resulting fan-shaped sediment accumulations are scale-invariant over 7 orders of magnitude in linear size. The Mesozoic-Cenozoic record shows comparable trends and patterns. Further examples of depositional scale-invariance include foresets of non-cohesive sediments and braided-channel deposits. Reefs and carbonate platforms offer an example of scale-invariance related to biotic growth. Shallow-water carbonate platforms rimmed by reefs or reef-rimmed atolls with deep lagoons are characteristic morphologies of tropical carbonate deposits. The structure has been compared to a bucket where stiff reef rims hold a pile of loose sediment. Remote sensing data from the Maldive, Chagos and Laccadive archipelagos of the Indian Ocean show that bucket structures are the dominant depositional pattern from meter-size reefs to archipelagos of hundreds of kilometers in diameter, i.e. over more than 4 orders of magnitude in linear size. Over 2.5 orders of magnitude, the bucket structures qualify as statistical fractals. Ecologic and hydrodynamic studies on modern reefs suggest that the bucket structure is a form of biotic self-organization: The edge position in a reef is favored over the center position because bottom shear is higher and the diffusive boundary layer between reef and water thinner. Thus, the reef

  5. Nearly scale-invariant power spectrum and quantum cosmological perturbations in the gravity's rainbow scenario

    NASA Astrophysics Data System (ADS)

    Wang, Sai; Chang, Zhe

    2015-06-01

    We propose the gravity's rainbow scenario as a possible alternative of the inflation paradigm to account for the flatness and horizon problems. We focus on studying the cosmological scalar perturbations which are seeded by the quantum fluctuations in the very early universe. The scalar power spectrum is expected to be nearly scale-invariant. We estimate the rainbow index and energy scale M in the gravity's rainbow scenario by analyzing the Planck temperature and WMAP polarization datasets. The constraints on them are given by and at the confidence level.

  6. Learning How to Extract Rotation-Invariant and Scale-Invariant Features from Texture Images

    NASA Astrophysics Data System (ADS)

    Montoya-Zegarra, Javier A.; Papa, João Paulo; Leite, Neucimar J.; da Silva Torres, Ricardo; Falcão, Alexandre

    2008-12-01

    Learning how to extract texture features from noncontrolled environments characterized by distorted images is a still-open task. By using a new rotation-invariant and scale-invariant image descriptor based on steerable pyramid decomposition, and a novel multiclass recognition method based on optimum-path forest, a new texture recognition system is proposed. By combining the discriminating power of our image descriptor and classifier, our system uses small-size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz data set. High classification rates demonstrate the superiority of the proposed system.

  7. Scale-invariant behavior in a spatial game of prisoners' dilemma

    NASA Astrophysics Data System (ADS)

    Lim, Y. F.; Chen, Kan; Jayaprakash, C.

    2002-02-01

    A spatially extended version of the game of prisoner's dilemma, originally proposed by Nowak and May, is modified to include stochastic updating and found to exhibit scale-invariant behavior. Two critical regimes with different scaling behaviors are found; the corresponding exponents have been determined numerically. Spatially, the critical states are characterized by the existence of delicately balanced networks of defectors separating domains of cooperators; temporally, the evolution of the critical states following local perturbations is characterized by avalanches of various magnitudes, which cause restructuring of the networks of defectors on all scales.

  8. Scale-invariance underlying the logistic equation and its social applications

    NASA Astrophysics Data System (ADS)

    Hernando, A.; Plastino, A.

    2013-01-01

    On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.

  9. Scale-Invariant Sparse PCA on High Dimensional Meta-elliptical Data

    PubMed Central

    Han, Fang; Liu, Han

    2014-01-01

    We propose a semiparametric method for conducting scale-invariant sparse principal component analysis (PCA) on high dimensional non-Gaussian data. Compared with sparse PCA, our method has weaker modeling assumption and is more robust to possible data contamination. Theoretically, the proposed method achieves a parametric rate of convergence in estimating the parameter of interests under a flexible semiparametric distribution family; Computationally, the proposed method exploits a rank-based procedure and is as efficient as sparse PCA; Empirically, our method outperforms most competing methods on both synthetic and real-world datasets. PMID:24932056

  10. Nearly scale invariant spectrum of gravitational radiation from global phase transitions.

    PubMed

    Jones-Smith, Katherine; Krauss, Lawrence M; Mathur, Harsh

    2008-04-01

    Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early Universe and we confirm that it is scale invariant, implying an observation of such a spectrum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in cosmic microwave background polarization or other gravity wave signals. PMID:18517931

  11. Generating scale-invariant tensor perturbations in the non-inflationary universe

    NASA Astrophysics Data System (ADS)

    Li, Mingzhe

    2014-09-01

    It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar-tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  12. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    SciTech Connect

    Hinterbichler, Kurt; Khoury, Justin E-mail: jkhoury@sas.upenn.edu

    2012-04-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves.

  13. An Anisotropic Scale-Invariant Unstructured Mesh Generator Auitable for Volumetric Imaging Data

    SciTech Connect

    Kuprat, Andrew P.; Einstein, Daniel R.

    2009-02-20

    Mesh generation algorithms must consider the computational physics schemes to be adopted insomuch as tessellation should attempt to minimize discretization error metrics a priori, while placing elements judiciously yet economically. Basing local element size and shape on local geometric feature size is a promising approach, as the underlying physics may either be scale-invariant or may vary with scale in a predictable way. We present a boundary-fitted scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local geometric scale, given a triangulated mesh surface. The resulting tetrahedra are well-shaped and nearly orthogonal to the boundary. Unlike previous feature-based approaches, our algorithm does not require a background mesh, nor does it rely on the medial-axis. In contrast, as a first step, our algorithm produces a gradientlimited feature-size field over the input surface based on efficient ray casting. We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[6].

  14. An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data.

    PubMed

    Kuprat, Andrew P; Einstein, Daniel R

    2009-02-20

    We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local feature size. Given an input triangulated surface mesh, a feature size field is determined by casting rays normal to the surface and into the geometry and then performing gradient-limiting operations to enforce continuity of the resulting field. Surface mesh density is adjusted to be proportional to the feature size field and then a layered anisotropic volume mesh is generated. This mesh is "scale-invariant" in that roughly the same number of layers of mesh exist in mesh cross-sections, between a minimum scale size L(min) and a maximum scale size L(max). We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex biological surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[14]. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1. PMID:19784397

  15. General mechanism for producing scale-invariant perturbations and small non-Gaussianity in ekpyrotic models

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Lehners, Jean-Luc; Steinhardt, Paul J.

    2014-06-01

    We explore a new type of entropic mechanism for generating density perturbations in a contracting phase in which there are two scalar fields but only one has a steep negative potential. This first field dominates the energy density and is the source of the ekpyrotic equation of state. The second field has a negligible potential, but its kinetic energy density is coupled to the first field with a nonlinear sigma-model type interaction. We show that for any ekpyrotic equation of state it is possible to choose the potential and the kinetic coupling such that exactly scale-invariant (or nearly scale-invariant) entropy perturbations are produced. The corresponding background solutions are stable, and the bispectrum of the entropy perturbations vanishes as no non-Gaussianity is produced during the ekpyrotic phase. Hence, the only contribution to non-Gaussianity comes from the nonlinearity of the conversion process during which entropic perturbations are turned into adiabatic ones, resulting in a local non-Gaussianity parameter, fNL˜5.

  16. A scale-invariant cellular-automata model for distributed seismicity

    NASA Technical Reports Server (NTRS)

    Barriere, Benoit; Turcotte, Donald L.

    1991-01-01

    In the standard cellular-automata model for a fault an element of stress is randomly added to a grid of boxes until a box has four elements, these are then redistributed to the adjacent boxes on the grid. The redistribution can result in one or more of these boxes having four or more elements in which case further redistributions are required. On the average added elements are lost from the edges of the grid. The model is modified so that the boxes have a scale-invariant distribution of sizes. The objective is to model a scale-invariant distribution of fault sizes. When a redistribution from a box occurs it is equivalent to a characteristic earthquake on the fault. A redistribution from a small box (a foreshock) can trigger an instability in a large box (the main shock). A redistribution from a large box always triggers many instabilities in the smaller boxes (aftershocks). The frequency-size statistics for both main shocks and aftershocks satisfy the Gutenberg-Richter relation with b = 0.835 for main shocks and b = 0.635 for aftershocks. Model foreshocks occur 28 percent of the time.

  17. Derivative-based scale invariant image feature detector with error resilience.

    PubMed

    Mainali, Pradip; Lafruit, Gauthier; Tack, Klaas; Van Gool, Luc; Lauwereins, Rudy

    2014-05-01

    We present a novel scale-invariant image feature detection algorithm (D-SIFER) using a newly proposed scale-space optimal 10th-order Gaussian derivative (GDO-10) filter, which reaches the jointly optimal Heisenberg's uncertainty of its impulse response in scale and space simultaneously (i.e., we minimize the maximum of the two moments). The D-SIFER algorithm using this filter leads to an outstanding quality of image feature detection, with a factor of three quality improvement over state-of-the-art scale-invariant feature transform (SIFT) and speeded up robust features (SURF) methods that use the second-order Gaussian derivative filters. To reach low computational complexity, we also present a technique approximating the GDO-10 filters with a fixed-length implementation, which is independent of the scale. The final approximation error remains far below the noise margin, providing constant time, low cost, but nevertheless high-quality feature detection and registration capabilities. D-SIFER is validated on a real-life hyperspectral image registration application, precisely aligning up to hundreds of successive narrowband color images, despite their strong artifacts (blurring, low-light noise) typically occurring in such delicate optical system setups. PMID:24723627

  18. A regional GEV scale-invariant framework for Intensity-Duration-Frequency analysis

    NASA Astrophysics Data System (ADS)

    Blanchet, J.; Ceresetti, D.; Molinié, G.; Creutin, J.-D.

    2016-09-01

    We propose in this paper a regional formulation of Intensity-Duration-Frequency curves of point-rainfall maxima in a scale-invariant Generalized Extreme Value (GEV) framework. The two assumptions we make is that extreme daily rainfall is GEV-distributed - which is justified by Extreme Value Theory (EVT) - and that extremes of aggregated daily rainfall follow simple-scaling relationships. Following these assumptions, we develop in a unified way a GEV simple-scaling model for extremes of aggregated daily rainfall over the range of durations where scaling applies. Then we propose a way of correcting this model for measurement frequency, giving a new GEV-scaling model for extremes of aggregated hourly rainfall. This model deviates from the simple-scaling assumption. This framework is applied to the Mediterranean region of Cévennes-Vivarais, France. A network of about 300 daily raingage stations covering the last 50 years and accumulated to span the range 1 day-1 week is used to fit the scale invariant GEV-model locally. By means of spatial interpolation of the model parameters, and correction for measurement frequency, we are able to build a regional model with good performances down to 1 h duration, even though only one hourly station is used to build the model. Finally we produce mean and return level maps within the region in the range 1 h-1 week and comment on the potential rain storms leading to these maps.

  19. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks

    PubMed Central

    Colon-Perez, Luis M.; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R.; Price, Catherine; Mareci, Thomas H.

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime. PMID:26173147

  20. Scale-invariant Perturbations: Model-independent Analysis of Alternatives to Cosmic inflation

    NASA Astrophysics Data System (ADS)

    Moradinezhad Dizgah, Azadeh

    The focus of this thesis is to study generation of scale-invariant perturbation in non-inflationary backgrounds. Throughout we assume that the universe is dominated by a single scalar degree of freedom at early times when the perturbations are generated. The first three chapters consist of review materials needed for the follow up discussion in the last three chapters which present our findings. We probe the parameter space of scalar field models first by using the dualities that preserve the form of the horizons relevant for generation of perturbations. For canonical scalar field models, we use a known duality between expanding and contracting cosmologies to construct a dual of the inflationary flow hierarchy applicable to contracting cosmologies such as ekpyrotic and cyclic models. We show that the inflationary flow equations are invariant under the duality and therefore apply equally well to inflation or to cyclic cosmology. We then generalize the cosmological duality between inflation and cyclic contraction to the case of non-canonical scalar field theories with varying speed of sound. The single duality in the canonical case generalizes to a family of three dualities constructed to leave the cosmological acoustic horizon invariant. We find three classes of models: (I) DBI inflation, (II) the non-canonical generalization of cyclic contraction, and (III) a new cosmological solution with rapidly decreasing speed of sound and relatively slowly growing scale factor, which we dub stalled cosmology. We construct dual analogs to the inflationary slow roll approximation, and solve for the curvature perturbation in all three cases. Both cyclic contraction and stalled cosmology predict a strongly blue spectrum for the curvature perturbations inconsistent with observations. Taking a more phenomenological approach, in the last chapter, we investigate the general properties of expanding cosmological models which generate scale-invariant curvature perturbations in the

  1. Towards anisotropy-free and nonsingular bounce cosmology with scale-invariant perturbations

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao; Gao, Xian; Saridakis, Emmanuel N.

    2013-08-01

    We investigate nonsingular bounce realizations in the framework of ghost-free generalized Galileon cosmology, which furthermore can be free of the anisotropy problem. Considering an ekpyroticlike potential we can obtain a total equation of state larger than 1 in the contracting phase, which is necessary for the evolution to be stable against small anisotropic fluctuations. Since such a large equation of state forbids the Galileon field to generate the desired form of perturbations, we additionally introduce the curvaton field which can in general produce the observed nearly scale-invariant spectrum. In particular, we provide approximate analytical and exact semianalytical expressions under which the bouncing scenario is consistent with observations. Finally, the combined Galileon-curvaton system is free of the big rip after the bounce.

  2. Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra

    NASA Astrophysics Data System (ADS)

    Rezakhah, Saeid; Maleki, Yasaman

    2016-07-01

    Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.

  3. Hidden scale invariance in molecular van der Waals liquids: A simulation study

    NASA Astrophysics Data System (ADS)

    Schrøder, Thomas B.; Pedersen, Ulf R.; Bailey, Nicholas P.; Toxvaerd, Søren; Dyre, Jeppe C.

    2009-10-01

    Results from molecular dynamics simulations of two viscous molecular model liquids—the Lewis-Wahnström model of orthoterphenyl and an asymmetric dumbbell model—are reported. We demonstrate that the liquids have a “hidden” approximate scale invariance: equilibrium potential energy fluctuations are accurately described by inverse power-law (IPL) potentials, the radial distribution functions are accurately reproduced by the IPL’s, and the radial distribution functions obey the IPL predicted scaling properties to a good approximation. IPL scaling of the dynamics also applies—with the scaling exponent predicted by the equilibrium fluctuations. In contrast, the equation of state does not obey the IPL scaling. We argue that our results are general for van der Waals liquids, but do not apply, e.g., for hydrogen-bonded liquids.

  4. Shadow Higgs boson from a scale-invariant hidden U(1){sub s} model

    SciTech Connect

    Chang, W.-F.; Ng, John N.; Wu, Jackson M. S.

    2007-06-01

    We study a scale-invariant SU(2)xU(1){sub Y}xU(1){sub s} model which has only dimensionless couplings. The shadow U(1){sub s} is hidden, and it interacts with the standard model (SM) solely through mixing in the scalar sector and kinetic mixing of the U(1) gauge bosons. The gauge symmetries are broken radiatively by the Coleman-Weinberg mechanism. Lifting of the flat direction in the scalar potential gives rise to a light scalar, the scalon, or the shadow Higgs, and a heavier scalar which we identify as the SM Higgs boson. The phenomenology of this model is discussed. In particular, the constraints on the shadow Higgs in different mass ranges, and the possibility of discovering a shadow Higgs with a mass a few tens of GeV in precision t-quark studies at the LHC, are investigated.

  5. Adiabatic perturbations in pre-big bang models: Matching conditions and scale invariance

    NASA Astrophysics Data System (ADS)

    Durrer, Ruth; Vernizzi, Filippo

    2002-10-01

    At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre-big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase. We show that, under certain physically motivated and quite generic assumptions on the high energy corrections, one obtains n=0 for the spectrum of scalar perturbations in the original pre-big bang model (with a vanishing potential). With the same assumptions, when an exponential potential for the dilaton is included, a scale invariant spectrum (n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre-big bang and ekpyrotic scenario. We also derive the resulting spectrum for arbitrary power law scale factors matched to a radiation-dominated era.

  6. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    PubMed

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. PMID:27268260

  7. Automated Image Retrieval of Chest CT Images Based on Local Grey Scale Invariant Features.

    PubMed

    Arrais Porto, Marcelo; Cordeiro d'Ornellas, Marcos

    2015-01-01

    Textual-based tools are regularly employed to retrieve medical images for reading and interpretation using current retrieval Picture Archiving and Communication Systems (PACS) but pose some drawbacks. All-purpose content-based image retrieval (CBIR) systems are limited when dealing with medical images and do not fit well into PACS workflow and clinical practice. This paper presents an automated image retrieval approach for chest CT images based local grey scale invariant features from a local database. Performance was measured in terms of precision and recall, average retrieval precision (ARP), and average retrieval rate (ARR). Preliminary results have shown the effectiveness of the proposed approach. The prototype is also a useful tool for radiology research and education, providing valuable information to the medical and broader healthcare community. PMID:26262345

  8. A position, rotation, and scale invariant image descriptor based on rays and circular paths

    NASA Astrophysics Data System (ADS)

    Solorza-Calderón, Selene

    2015-09-01

    In this paper a rotation, scale and translation (RST) invariant image descriptor based on 1D signatures is presented. The position invariant is obtained using the amplitude spectrum of the Fourier transform of the image. That spectrum is introduced in the analytical Fourier-Mellin transform (AFMT) to obtain the scale invariance. From the normalized AFMT amplitude spectrum two 1D signatures are constructed. To build a 1D circular signature, circular path binary masks are used to filter the spectrum image. On the other hand, ray path binary filters are utilized in the construction of the 1D ray signature. These 1D signatures are RST invariant image descriptors. The Latin alphabet letters in Arial font style were used to test the descriptor efficiency. According with the statistical analysis of bootstrap with a constant replacement B = 1000 and normal distribution, the descriptor has a confidence level at least of 95%.

  9. Scale invariant extension of the standard model with a strongly interacting hidden sector.

    PubMed

    Hur, Taeil; Ko, P

    2011-04-01

    We present a scale invariant extension of the standard model with a new QCD-like strong interaction in the hidden sector. A scale Λ(H) is dynamically generated in the hidden sector by dimensional transmutation, and chiral symmetry breaking occurs in the hidden sector. This scale is transmitted to the SM sector by a real singlet scalar messenger S and can trigger electroweak symmetry breaking. Thus all the mass scales in this model arise from the hidden sector scale Λ(H), which has quantum mechanical origin. Furthermore, the lightest hadrons in the hidden sector are stable by the flavor conservation of the hidden sector strong interaction, and could be the cold dark matter (CDM). We study collider phenomenology, relic density, and direct detection rates of the CDM of this model. PMID:21561182

  10. Retinal identification based on an Improved Circular Gabor Filter and Scale Invariant Feature Transform.

    PubMed

    Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming

    2013-01-01

    Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409

  11. Scale-invariant cellular automata and self-similar Petri nets

    NASA Astrophysics Data System (ADS)

    Schaller, M.; Svozil, K.

    2009-05-01

    Two novel computing models based on an infinite tessellation of space-time are introduced. They consist of recursively coupled primitive building blocks. The first model is a scale-invariant generalization of cellular automata, whereas the second one utilizes self-similar Petri nets. Both models are capable of hypercomputations and can, for instance, “solve” the halting problem for Turing machines. These two models are closely related, as they exhibit a step-by-step equivalence for finite computations. On the other hand, they differ greatly for computations that involve an infinite number of building blocks: the first one shows indeterministic behavior, whereas the second one halts. Both models are capable of challenging our understanding of computability, causality, and space-time.

  12. Retinal Identification Based on an Improved Circular Gabor Filter and Scale Invariant Feature Transform

    PubMed Central

    Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming

    2013-01-01

    Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409

  13. Scale invariance of continuum size distribution upon irreversible growth of surface islands

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sokolova, Zh. V.

    2015-06-01

    The continuum kinetic equation for irreversible heterogeneous growth of a surface island is ana-lyzed given a special form of the dependence of capture coefficient σ on size s and coverage of the surface Θ. It is shown that, if σ( s, Θ) = α(Θ)( a + s)β, the function α(Θ) is arbitrary, and 0 ≤ β ≤ 1, then the solutions of the continuum equation of the first order satisfy the hypothesis about the scale invariance of the size distribu-tion (scaling) in a single exceptional case—at ≤ = 1. The obtained results testify about the presence of a fun-damental relation of the scaling and linearity of the dependence σ( s). Problems about associations of distri-bution functions in continuum and discrete growth models and about application of the obtained solutions for modeling and interpretation of experimental data in different systems are discussed.

  14. SUPERFLUID VORTEX UNPINNING AS A COHERENT NOISE PROCESS, AND THE SCALE INVARIANCE OF PULSAR GLITCHES

    SciTech Connect

    Melatos, A.; Warszawski, L.

    2009-08-01

    The scale-invariant glitch statistics observed in individual pulsars (exponential waiting-time and power-law size distributions) are consistent with a critical self-organization process, wherein superfluid vortices pin metastably in macroscopic domains and unpin collectively via nearest-neighbor avalanches. Macroscopic inhomogeneity emerges naturally if pinning occurs at crustal faults. If, instead, pinning occurs at lattice sites and defects, which are macroscopically homogeneous, we show that an alternative, noncritical self-organization process operates, termed coherent noise, wherein the global Magnus force acts uniformly on vortices trapped in a range of pinning potentials and undergoing thermal creep. It is found that vortices again unpin collectively, but not via nearest-neighbor avalanches, and that, counterintuitively, the resulting glitch sizes are scale invariant, in accord with observational data. A mean-field analytic theory of the coherent noise process, supported by Monte Carlo simulations, yields a power-law size distribution, between the smallest and largest glitch, with exponent a in the range -2 {<=} a {<=} 0. When the theory is fitted to data from the nine most active pulsars, including the two quasi-periodic glitchers PSR J0537-6910 and PSR J0835-4510, it directly constrains the distribution of pinning potentials in the star, leading to two conclusions: (1) the potentials are broadly distributed, with the mean comparable to the standard deviation; and (2) the mean potential decreases with characteristic age. Fitting the theory to the data also constrains the pinned vortex fraction and the rate of thermal creep. An observational test is proposed to discriminate between nearest-neighbor avalanches and coherent noise: the latter process predicts a statistical excess of large glitches ('aftershocks') following a large glitch, whereas the former process does not. Its discriminatory power is discussed under various microphysical scenarios.

  15. Beyond Quasi-Geostrophic Turbulence: Generalized Scale Invariance and (2+Hz)-Dimensional Vorticity Equations

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.; Tuck, A.

    2010-12-01

    We discuss the claim of Lindborg et al (2009) that the spectrum power law E(k)≈k-3 on scales ≥600 km obtained with the help of commercial jetliner trajectory deviations (GASP and Mozaic databases) could not be brought into question by Lovejoy et al (2009), because this spectrum corresponds to a “well known theory of quasi-geostrophic turbulence developed by Charney (1971)”. Lindborg, et al (2009) also argued that “earlier limitations [of this theory] would have been relaxed in many of the modern models of atmospheric turbulence”. We show that both these statements are irrelevant and that generalized scale invariance (GSI, Schertzer and Lovejoy 1985) is rather indispensable to go beyond the quasi-geostrophic limitations, to go in fact from scale analysis to scaling analysis. This enables us to derive dynamical equations for the vorticity in an embedding space of (fractional) dimension D=2+Hz (0≤ Hz ≤1, 1- Hz measures the scaling stratification of atmospheric turbulence). These equations correspond to an interesting dynamical alternative to quasi-geostrophic approximation and turbulence. References: Charney, J. G. (1971). "Geostrophic Turbulence." J. Atmos. Sci 28: 1087. Lindborg, E., K. K. Tung, G. D. Nastrom, J. Y. N. Cho and K. S. Gage (2009). "Comment on "Reinterpreting aircraft measurements in anisotropic scaling turbulence" by lovejoy et al. (2009)." Atmos. Chem. Phys. Discuss. 9: 22331-22336. Lovejoy, S., A. F. Tuck, D. Schertzer and S. J. Hovde (2009). "Rinterpreting aircraft measurements in anisotropic scaling turbulence." Atmos. Chem. Phys. 9: 5007-5025. Schertzer, D. and S. Lovejoy (1985). "Generalised scale invariance in turbulent phenomena." Physico-Chemical Hydrodynamics Journal 6: 623-635.

  16. New physics at the weak scale: axigluon models, scale invariance and naturalness, and interacting dark matter

    NASA Astrophysics Data System (ADS)

    Tavares, Gustavo Marques

    The Standard Model of particle physics describes all known elementary particles and their interactions. Despite its great experimental success, we know that the Standard Model is not a complete description of Nature and therefore new phenomena should be observed at higher energies. In the coming years the Large Hadron Collider will test the Standard Model by colliding protons with center of mass energies of up to 14 TeV providing some of the most stringent tests on the Standard Model. Experimental searches for Dark Matter provide a complementary program to test physics at the weak scale. In the near future new experimental data coming from direct detection experiments, and from satellites and telescopes will drastically improve our sensitivity to weak scale dark matter. This could lead to the first direct observation of dark matter, and thus of physics beyond the Standard Model. In this thesis I propose different extensions of the Standard Model and discuss their experimental consequences. I first discuss models for Axigluons, which are spin one particles in the adjoint representation of the SU(3) color gauge group. These models were motivated by the measurement of higher than predicted forward-backward asymmetry in top quark pair production at the Tevatron. I study different scenarios for Axigluon models that can explain the Tevatron result and explore their signatures at the Large Hadron Collider. Second I discuss the implications of ultraviolet scale invariance for the Standard Model, which has been advocated as a solution to the hierarchy problem. I show that in order to solve the hierarchy problem with scale invariance, new physics is required not far from the weak scale. In the last part of this thesis I propose a new model for dark matter, in which dark matter is charged under a hidden non-Abelian gauge group. This leads to modifications in the sensitivity of the usual experimental searches for dark matter in addition to distinct signatures in the Cosmic

  17. Explicit Adaptive Symplectic (Easy) Integrators: A Scaling Invariant Generalisation of the Levi-Civita and KS Regularisations

    NASA Astrophysics Data System (ADS)

    Blanes, Sergio; Budd, Chris J.

    2004-05-01

    We present a generalisation of the Levi-Civita and Kustaanheimo-Stiefel regularisation. This allows the use of more general time rescalings. In particular, it is possible to find a regularisation which removes the singularity of the equations and preserves scaling invariance. In addition, these equations can, in certain cases, be integrated with explicit symplectic Runge-Kutta-Nyström methods. The combination of both techniques gives an explicit adaptive symplectic (EASY) integrator. We apply those methods to some perturbations of the Kepler problem and illustrate, by means of some numerical examples, when scaling invariant regularisations are more efficient that the LC/KS regularisation.

  18. Scale-invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum

    NASA Astrophysics Data System (ADS)

    Anabitarte, M.; Bellini, M.; Aguilar, José Edgar Madriz

    2010-01-01

    We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values.

  19. View FImP miracle (by scale invariance) à la self-interaction

    NASA Astrophysics Data System (ADS)

    Kang, Zhaofeng

    2015-12-01

    Combining feebly interacting massive particle (FIMP) dark matter (DM) with scale invariance (SI) leads to extremely light FIMP (thus the FImP) with FImP miracle, i.e., the mass and relic generations of FImP DM share the same dynamics. In this paper we show that due to the lightness of FImP, it, especially for a scalar FImP, can easily accommodate large DM self-interaction. For a fermionic FImP, such as the sterile neutrino, self-interaction additionally requires a mediator which is another FImP, a scalar boson with mass either much lighter or heavier than the FImP DM. DM self-interaction opens a new window to observe FImP (miracle), which does not leave traces in the conventional DM searches. As an example, FImP can account for the offsets between the centroid of DM halo and stars of galaxies recently observed in the galaxy cluster Abel 3827.

  20. Self-organization of developing embryo using scale-invariant approach

    PubMed Central

    2011-01-01

    Background Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos. Methods In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing C. elegans during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method. Results and conclusion The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2. PMID:21635789

  1. Model-Independent Phenotyping of C. elegans Locomotion Using Scale-Invariant Feature Transform

    PubMed Central

    Koren, Yelena; Sznitman, Raphael; Arratia, Paulo E.; Carls, Christopher; Krajacic, Predrag; Brown, André E. X.; Sznitman, Josué

    2015-01-01

    To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans’ phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior. PMID:25816290

  2. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Tchiguirinskaia, I.; Lovejoy, S.; Tuck, A. F.

    2012-01-01

    Lindborg et al. (2010) claim that the apparent spectrum power law E(k) ≈ k-3 on scales ≥600 km obtained with the help of commercial jetliner trajectory deviations (GASP and Mozaic databases) could not be brought into question (Lovejoy et al., 2009a), because this spectrum corresponds to "a well known theory of quasi-geostrophic turbulence developed by Charney (1971)". Lindborg et al. (2010) also claim that "limitations [of this theory] have been relaxed in many of the modern models of atmospheric turbulence". We show that both claims are irrelevant and that generalized scale invariance (GSI) is indispensable to go beyond the quasi-geostrophic limitations, to go in fact from scale analysis to scaling analysis in order to derive better analytical models. In this direction, we derive vorticity equations in a space of (fractal) dimension D=2+Hz (0 ≤ Hz ≤ 1), which corresponds to a first step in the derivation of a dynamical alternative to the quasi-geostrophic approximation and turbulence. The corresponding precise definition of fractional dimensional turbulence already demonstrates that the classical 2-D and 3-D turbulence are not the main options to understand atmospheric dynamics. Although (2 + Hz)-D turbulence (with 0 < Hz < 1) has more common features with 3-D turbulence than with 2-D turbulence, it has nevertheless very distinctive features: its scaling anisotropy is in agreement with the layered pancake structure, which is typical of rotating and stratified turbulence but not of the classical 3-D turbulence.

  3. Possibility Study of Scale Invariant Feature Transform (SIFT) Algorithm Application to Spine Magnetic Resonance Imaging

    PubMed Central

    Lee, Dong-Hoon; Lee, Do-Wan; Han, Bong-Soo

    2016-01-01

    The purpose of this study is an application of scale invariant feature transform (SIFT) algorithm to stitch the cervical-thoracic-lumbar (C-T-L) spine magnetic resonance (MR) images to provide a view of the entire spine in a single image. All MR images were acquired with fast spin echo (FSE) pulse sequence using two MR scanners (1.5 T and 3.0 T). The stitching procedures for each part of spine MR image were performed and implemented on a graphic user interface (GUI) configuration. Moreover, the stitching process is performed in two categories; manual point-to-point (mPTP) selection that performed by user specified corresponding matching points, and automated point-to-point (aPTP) selection that performed by SIFT algorithm. The stitched images using SIFT algorithm showed fine registered results and quantitatively acquired values also indicated little errors compared with commercially mounted stitching algorithm in MRI systems. Our study presented a preliminary validation of the SIFT algorithm application to MRI spine images, and the results indicated that the proposed approach can be performed well for the improvement of diagnosis. We believe that our approach can be helpful for the clinical application and extension of other medical imaging modalities for image stitching. PMID:27064404

  4. Scale invariance and universality of force networks in static granular matter

    NASA Astrophysics Data System (ADS)

    Ostojic, Srdjan; Somfai, Ellák; Nienhuis, Bernard

    2006-02-01

    Force networks form the skeleton of static granular matter. They are the key factor that determines mechanical properties such as stability, elasticity and sound transmission, which are important for civil engineering and industrial processing. Previous studies have focused on investigations of the global structure of external forces (the boundary condition) and on the probability distribution of individual contact forces. So far, however, precise knowledge of the disordered spatial structure of the force network has remained elusive. Here we report that molecular dynamics simulations of realistic granular packings reveal scale invariance of clusters of particles interacting by means of relatively strong forces. Despite visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, thereby determining a universality class. Unexpectedly, the flat ensemble of force configurations (a simple generalization of equilibrium statistical mechanics) belongs to this universality class, whereas some widely studied simplified models do not. This implies that the elasticity of the grains and their geometrical disorder do not affect the universal mechanical properties.

  5. Shortcuts to adiabaticity in classical and quantum processes for scale-invariant driving

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Jarzynski, Christopher; Del Campo, Adolfo

    2014-03-01

    All real physical processes in classical as well as in quantum devices operate in finite-time. For most applications, however, adiabatic, i.e. infinitely-slow processes, are more favorable, as these do not cause unwanted, parasitic excitations. A shortcut to adiabaticity is a driving protocol which reproduces in a short time the same final state that would result from an adiabatic process. A particular powerful technique to engineer such shortcuts is transitionless quantum driving by means of counterdiabatic fields. However, determining closed form expressions for the counterdiabatic field has generally proven to be a daunting task. In this paper, we introduce a novel approach, with which we find the explicit form of the counterdiabatic driving field in arbitrary scale-invariant dynamical processes, encompassing expansions and transport. Our approach originates in the formalism of generating functions, and unifies previous approaches independently developed for classical and quantum systems. We show how this new approach allows to design shortcuts to adiabaticity for a large class of classical and quantum, single-particle, non-linear, and many-body systems. SD and CJ acknowledge support from the National Science Foundation (USA) under grant DMR-1206971. This research is further supported by the U.S Department of Energy through the LANL/LDRD Program and a LANL J. Robert Oppenheimer fellowship (AdC).

  6. Are galaxy distributions scale invariant? A perspective from dynamical systems theory

    NASA Astrophysics Data System (ADS)

    McCauley, J. L.

    2002-06-01

    Unless there is an evidence for fractal scaling with a single exponent over distances 0.1<=r<=100h-1Mpc, then the widely accepted notion of scale invariance of the correlation integral for 0.1<=r<=10h-1Mpc must be questioned. The attempt to extract a scaling exponent /ν from the correlation integral /n(r) by plotting /log(n(r)) vs. /log(r) is unreliable unless the underlying point set is approximately monofractal. The extraction of a spectrum of generalized dimensions νq from a plot of the correlation integral generating function Gn(q) by a similar procedure is probably an indication that Gn(q) does not scale at all. We explain these assertions after defining the term multifractal, mutually inconsistent definitions having been confused together in the cosmology literature. Part of this confusion is traced to the confusion in interpreting a measure-theoretic formula written down by Hentschel and Procaccia in the dynamical systems theory literature, while other errors follow from confusing together entirely different definitions of multifractal from two different schools of thought. Most important are serious errors in data analysis that follow from taking for granted a largest term approximation that is inevitably advertised in the literature on both fractals and dynamical systems theory.

  7. An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data

    PubMed Central

    Kuprat, Andrew P.; Einstein, Daniel R.

    2009-01-01

    We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local feature size. Given an input triangulated surface mesh, a feature size field is determined by casting rays normal to the surface and into the geometry and then performing gradient-limiting operations to enforce continuity of the resulting field. Surface mesh density is adjusted to be proportional to the feature size field and then a layered anisotropic volume mesh is generated. This mesh is “scale-invariant” in that roughly the same number of layers of mesh exist in mesh cross-sections, between a minimum scale size Lmin and a maximum scale size Lmax. We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex biological surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[14]. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1. PMID:19784397

  8. Robust FFT-based scale-invariant image registration with image gradients.

    PubMed

    Tzimiropoulos, Georgios; Argyriou, Vasileios; Zafeiriou, Stefanos; Stathaki, Tania

    2010-10-01

    We present a robust FFT-based approach to scale-invariant image registration. Our method relies on FFT-based correlation twice: once in the log-polar Fourier domain to estimate the scaling and rotation and once in the spatial domain to recover the residual translation. Previous methods based on the same principles are not robust. To equip our scheme with robustness and accuracy, we introduce modifications which tailor the method to the nature of images. First, we derive efficient log-polar Fourier representations by replacing image functions with complex gray-level edge maps. We show that this representation both captures the structure of salient image features and circumvents problems related to the low-pass nature of images, interpolation errors, border effects, and aliasing. Second, to recover the unknown parameters, we introduce the normalized gradient correlation. We show that, using image gradients to perform correlation, the errors induced by outliers are mapped to a uniform distribution for which our normalized gradient correlation features robust performance. Exhaustive experimentation with real images showed that, unlike any other Fourier-based correlation techniques, the proposed method was able to estimate translations, arbitrary rotations, and scale factors up to 6. PMID:20479492

  9. Asymptotic Eigenstructures

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  10. Characterizing tropical tree species growth strategies: learning from inter-individual variability and scale invariance.

    PubMed

    Le Bec, Jimmy; Courbaud, Benoit; Le Moguédec, Gilles; Pélissier, Raphaël

    2015-01-01

    Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies. PMID

  11. Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions

    PubMed Central

    Yang, Hongdian; Plenz, Dietmar

    2014-01-01

    Identification of cortical dynamics strongly benefits from the simultaneous recording of as many neurons as possible. Yet current technologies provide only incomplete access to the mammalian cortex from which adequate conclusions about dynamics need to be derived. Here, we identify constraints introduced by sub-sampling with a limited number of electrodes, i.e. spatial ‘windowing’, for well-characterized critical dynamics―neuronal avalanches. The local field potential (LFP) was recorded from premotor and prefrontal cortices in two awake macaque monkeys during rest using chronically implanted 96-microelectrode arrays. Negative deflections in the LFP (nLFP) were identified on the full as well as compact sub-regions of the array quantified by the number of electrodes N (10–95), i.e., the window size. Spatiotemporal nLFP clusters organized as neuronal avalanches, i.e., the probability in cluster size, p(s), invariably followed a power law with exponent −1.5 up to N, beyond which p(s) declined more steeply producing a ‘cut-off’ that varied with N and the LFP filter parameters. Clusters of size s≤N consisted mainly of nLFPs from unique, non-repeated cortical sites, emerged from local propagation between nearby sites, and carried spatial information about cluster organization. In contrast, clusters of size s>N were dominated by repeated site activations and carried little spatial information, reflecting greatly distorted sampling conditions. Our findings were confirmed in a neuron-electrode network model. Thus, avalanche analysis needs to be constrained to the size of the observation window to reveal the underlying scale-invariant organization produced by locally unfolding, predominantly feed-forward neuronal cascades. PMID:24927158

  12. Characterizing Tropical Tree Species Growth Strategies: Learning from Inter-Individual Variability and Scale Invariance

    PubMed Central

    Le Bec, Jimmy; Courbaud, Benoit; Le Moguédec, Gilles; Pélissier, Raphaël

    2015-01-01

    Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies. PMID

  13. Time-Scale Invariance As an Emergent Property in Water Balance

    NASA Astrophysics Data System (ADS)

    Wang, D.; Tang, Y.

    2014-12-01

    The Darwinian modeling approach seeks to explain the behavior of a hydrologic system as a whole by identifying simple and robust temporal or spatial patterns that capture the relevant processes. Darwinian-based hydrologic models include the Soil Conservation Service (SCS) curve number model, the "abcd" model, and the Budyko-type models. However, these models were developed based on widely differing principles and assumptions and applied to distinct time scales. Here, we derive a one-parameter Budyko-type model for mean annual water balance which is based on a generalization of the proportionality hypothesis of the SCS model and therefore is independent of temporal scale. Furthermore, we show that the new model is equivalent to the key equation of the "abcd" model. Theoretical lower and upper bounds of the new model are identified and validated based on previous observations. Thus, we illustrate a time-scale invariance property in water balance, which allows for synthesis with the Newtonian approach and offers opportunities for progress in hydrologic modeling. In the derivation of Budyko equation, total evaporation is divided into initial evaporation (E0) and continuing evaporation. Runoff does not compete with initial evaporation for water storage by interception and top soils. The assumption behind the derived equation is that the ratio of continuing evaporation to its potential value is equal to the ratio of runoff to the maximum possible value of runoff. The derived equation satisfies the boundary conditions of Budyko hypothesis, and includes one parameter (ɛ). From the perspective of evaporation, is the ratio between initial evaporation and total evaporation; from the soil wetting (W) perspective, e can be interpreted as the ratio between initial evaporation ratio (λ =E0/W) and Horton index (H=E/W), i.e. ɛ =λ/H. H is dominantly controlled by vegetation represented by NDVI; l is found to increase with decreasing product between NDVI and the fraction of rainy

  14. From elasticity to inelasticity in cancer cell mechanics: A loss of scale-invariance

    NASA Astrophysics Data System (ADS)

    Laperrousaz, B.; Drillon, G.; Berguiga, L.; Nicolini, F.; Audit, B.; Satta, V. Maguer; Arneodo, A.; Argoul, F.

    2016-08-01

    Soft materials such as polymer gels, synthetic biomaterials and living biological tissues are generally classified as viscoelastic or viscoplastic materials, because they behave neither as pure elastic solids, nor as pure viscous fluids. When stressed beyond their linear viscoelastic regime, cross-linked biopolymer gels can behave nonlinearly (inelastically) up to failure. In living cells, this type of behavior is more frequent because their cytoskeleton is basically made of cross-linked biopolymer chains with very different structural and flexibility properties. These networks have high sensitivity to stress and great propensity to local failure. But in contrast to synthetic passive gels, they can "afford" these failures because they have ATP driven reparation mechanisms which often allow the recovery of the original texture. A cell pressed in between two plates for a long period of time may recover its original shape if the culture medium brings all the nutrients for keeping it alive. When the failure events are too frequent or too strong, the reparation mechanisms may abort, leading to an irreversible loss of mechanical homeostasis and paving the way for chronic diseases such as cancer. To illustrate this discussion, we consider a model of immature cell transformation during cancer progression, the chronic myelogenous leukemia (CML), where the formation of the BCR-ABL oncogene results from a single chromosomal translocation t(9; 22). Within the assumption that the cell response to stress is scale invariant, we show that the power-law exponent that characterizes their mechanosensitivity can be retrieved from AFM force indentation curves. Comparing control and BCR-ABL transduced cells, we observe that in the later case, one month after transduction, a small percentage the cancer cells no longer follows the control cell power law, as an indication of disruption of the initial cytoskeleton network structure.

  15. Natural islands for a 125 GeV Higgs in the scale-invariant NMSSM

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Cui, Yanou; Franceschini, Roberto

    2013-02-01

    We study whether a 125 GeV standard model-like Higgs boson can be accommodated within the scale-invariant NMSSM in a way that is natural in all respects, i.e., not only is the stop mass and hence its loop contribution to Higgs mass of natural size, but we do not allow significant tuning of NMSSM parameters as well. We pursue as much as possible an analytic approach which gives clear insights on various ways to accommodate such a Higgs mass, while conducting complementary numerical analyses. We consider both scenarios with singlet-like state being heavier and lighter than SM-like Higgs. With A-terms being small, we find for the NMSSM to be perturbative up to GUT scale, it is not possible to get 125 GeV Higgs mass, which is true even if we tune parameters of NMSSM. If we allow some of the couplings to become non-perturbative below the GUT scale, then the non-tuned option implies that the singlet self-coupling, κ, is larger than the singlet-Higgs coupling, λ, which itself is order 1. This leads to a Landau pole for these couplings close to the weak scale, in particular below ~ 104 TeV. In both the perturbative and non-perturbative NMSSM, allowing large A λ , A κ gives "more room" to accommodate a 125 GeV Higgs, but a tuning of these A-terms may be needed. In our analysis we also conduct a careful study of the constraints on the parameter space from requiring global stability of the desired vacuum fitting a 125 GeV Higgs, which is complementary to existing literature. In particular, as the singlet-higgs coupling λ increases, vacuum stability becomes more serious of an issue.

  16. Traffic sign recognition based on a context-aware scale-invariant feature transform approach

    NASA Astrophysics Data System (ADS)

    Yuan, Xue; Hao, Xiaoli; Chen, Houjin; Wei, Xueye

    2013-10-01

    A new context-aware scale-invariant feature transform (CASIFT) approach is proposed, which is designed for the use in traffic sign recognition (TSR) systems. The following issues remain in previous works in which SIFT is used for matching or recognition: (1) SIFT is unable to provide color information; (2) SIFT only focuses on local features while ignoring the distribution of global shapes; (3) the template with the maximum number of matching points selected as the final result is instable, especially for images with simple patterns; and (4) SIFT is liable to result in errors when different images share the same local features. In order to resolve these problems, a new CASIFT approach is proposed. The contributions of the work are as follows: (1) color angular patterns are used to provide the color distinguishing information; (2) a CASIFT which effectively combines local and global information is proposed; and (3) a method for computing the similarity between two images is proposed, which focuses on the distribution of the matching points, rather than using the traditional SIFT approach of selecting the template with maximum number of matching points as the final result. The proposed approach is particularly effective in dealing with traffic signs which have rich colors and varied global shape distribution. Experiments are performed to validate the effectiveness of the proposed approach in TSR systems, and the experimental results are satisfying even for images containing traffic signs that have been rotated, damaged, altered in color, have undergone affine transformations, or images which were photographed under different weather or illumination conditions.

  17. Scale-Invariance in the Spatial Development of Landslides in the Umbria Region (Italy)

    NASA Astrophysics Data System (ADS)

    Liucci, Luisa; Melelli, Laura; Suteanu, Cristian

    2015-07-01

    Understanding the spatial distribution of mass movements is a major issue in the management and forecasting of landslide risk. In this context, the present study examines the most widespread types of landslide in the Umbria region (central Italy), that is, slides and flows, in order to establish if it is possible to identify a well-defined structure in their spatial pattern. By using the landslide inventory map available for the area and by resorting to the principles of fractal theory, the scaling properties of the landslide sample were investigated. The application of the box-counting algorithm to the maps of landslide triggering points and landslide areas allowed for the identification of a clear scale-invariant structure. Two distinct types of fractal behaviour were recognized, separated by a scale value of 1 km and characterized by capacity dimensions of 1.35 and 1.76, in the ranges of 25 m-1 km and 1-16 km, respectively. The comparison between the scaling exponents obtained from a map of points and one of areas, and the elaboration of the cumulative frequency distributions of landslide areas supported the interpretation of this result: the higher capacity dimension describes the spatial distribution of landslides in the Umbria region, while the lower contains additional information about their geometries, suggesting that the latter also possess scaling properties. Based on the finding of two different types of behaviour of landslides in space, the hypothesis is discussed that the contribution of each causal factor (i.e., predisposing and triggering factors) to the occurrence of landslide events and to their spatial development could be different in the two scale ranges identified, depending on its spatial variability at local and regional scale. According to this hypothesis, factors with high local variability (i.e., topographic attributes) would mainly affect the assortment of landslide geometries, while those with high regional variability (e.g., rainfalls

  18. Tsunami asymptotics

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2005-01-01

    By applying the technique of uniform asymptotic approximation to the oscillatory integrals representing tsunami wave profiles, the form of the travelling wave far from the source is calculated for arbitrary initial disturbances. The approximations reproduce the entire profiles very accurately, from the front to the tail, and their numerical computation is much faster than that of the oscillatory integrals. For one-dimensional propagation, the uniform asymptotics involve Airy functions and their derivatives; for two-dimensional propagation, the uniform asymptotics involve products of these functions. Separate analyses are required when the initial disturbance is specified as surface elevation or surface velocity as functions of position, and when these functions are even or odd. 'There was an awful rainbow once in heaven' (John Keats, 1820)

  19. Spontaneous breaking of scale invariance in a D = 3 U(N ) model with Chern-Simons gauge fields

    SciTech Connect

    Bardeen, William A.; Moshe, Moshe

    2014-06-18

    We study spontaneous breaking of scale invariance in the large N limit of three dimensional U(N )κ Chern-Simons theories coupled to a scalar field in the fundamental representation. When a λ6 ( Ø· Ø)3 self interaction term is added to the action we find a massive phase at a certain critical value for a combination of the λ(6) and ’t Hooft’s λ = N/κ couplings. This model attracted recent attention since at finite κ it contains a singlet sector which is conjectured to be dual to Vasiliev’s higher spin gravity on AdS4. Our paper concentrates on the massive phase of the 3d boundary theory. We discuss the advantage of introducing masses in the boundary theory through spontaneous breaking of scale invariance.

  20. Spontaneous breaking of scale invariance in a D = 3 U(N ) model with Chern-Simons gauge fields

    DOE PAGESBeta

    Bardeen, William A.; Moshe, Moshe

    2014-06-18

    We study spontaneous breaking of scale invariance in the large N limit of three dimensional U(N )κ Chern-Simons theories coupled to a scalar field in the fundamental representation. When a λ6 ( ؆ · Ø)3 self interaction term is added to the action we find a massive phase at a certain critical value for a combination of the λ(6) and ’t Hooft’s λ = N/κ couplings. This model attracted recent attention since at finite κ it contains a singlet sector which is conjectured to be dual to Vasiliev’s higher spin gravity on AdS4. Our paper concentrates on the massive phasemore » of the 3d boundary theory. We discuss the advantage of introducing masses in the boundary theory through spontaneous breaking of scale invariance.« less

  1. The scale invariant power spectrum of the primordial curvature perturbations from the coupled scalar tachyon bounce cosmos

    SciTech Connect

    Li, Changhong; Cheung, Yeuk-Kwan E. E-mail: cheung@nju.edu.cn

    2014-07-01

    We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified parameter space for a systematic study of inflationary and bounce cosmologies. The CSTB cosmos is dual-in Wands's sense-to slow-roll inflation as can be visualized with the aid of this parameter space. Guaranteed by the dynamical attractor behavior of the CSTB Cosmos, the scale invariance of its power spectrum is free of the fine-tuning problem, in contrast to the slow-roll inflation model.

  2. Void probability as a function of the void's shape and scale-invariant models. [in studies of spacial galactic distribution

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1992-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  3. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    SciTech Connect

    Paganelli, Chiara; Peroni, Marta

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application of contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT

  4. Strongly first-order electroweak phase transition and classical scale invariance

    NASA Astrophysics Data System (ADS)

    Farzinnia, Arsham; Ren, Jing

    2014-10-01

    In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space

  5. Alzheimer's Disease as Subcellular `Cancer' --- The Scale-Invariant Principles Underlying the Mechanisms of Aging ---

    NASA Astrophysics Data System (ADS)

    Murase, M.

    1996-01-01

    with self-organization, has been thought to underlie `creative' aspects of biological phenomena such as the origin of life, adaptive evolution of viruses, immune recognition and brain function. It therefore must be surprising to find that the same principles will also underlie `non-creative' aspects, for example, the development of cancer and the aging of complex organisms. Although self-organization has extensively been studied in nonliving things such as chemical reactions and laser physics, it is undoubtedly true that the similar sources of the order are available to living things at different levels and scales. Several paradigm shifts are, however, required to realize how the general principles of natural selection can be extensible to non-DNA molecules which do not possess the intrinsic nature of self-reproduction. One of them is, from the traditional, genetic inheritance view that DNA (or RNA) molecules are the ultimate unit of heritable variations and natural selection at any organization level, to the epigenetic (nongenetic) inheritance view that any non-DNA molecule can be the target of heritable variations and molecular selection to accumulate in certain biochemical environment. Because they are all enriched with a β-sheet content, ready to mostly interact with one another, different denatured proteins like β-amyloid, PHF and prions can individually undergo self-templating or self-aggregating processes out of gene control. Other paradigm shifts requisite for a break-through in the etiology of neurodegenerative disorders will be discussed. As it is based on the scale-invariant principles, the present theory also predicts plausible mechanisms underlying quite different classes of disorders such as amyotrophic lateral sclerosis (ALS), atherosclerosis, senile cataract and many other symptoms of aging. The present theory, thus, provides the consistent and comprehensive account to the origin of aging by means of natural selection and self-organization.

  6. Statistical characterisation of COSMO Sky-Med X-SAR retrieved precipitation fields by scale-invariance analysis

    NASA Astrophysics Data System (ADS)

    Deidda, Roberto; Mascaro, Giuseppe; Hellies, Matteo; Baldini, Luca; Roberto, Nicoletta

    2013-04-01

    COSMO Sky-Med (CSK) is an important programme of the Italian Space Agency aiming at supporting environmental monitoring and management of exogenous, endogenous and anthropogenic risks through X-band Synthetic Aperture Radar (X-SAR) on board of 4 satellites forming a constellation. Most of typical SAR applications are focused on land or ocean observation. However, X-band SAR can be detect precipitation that results in a specific signature caused by the combination of attenuation of surface returns induced by precipitation and enhancement of backscattering determined by the hydrometeors in the SAR resolution volume. Within CSK programme, we conducted an intercomparison between the statistical properties of precipitation fields derived by CSK SARs and those derived by the CNR Polar 55C (C-band) ground based weather radar located in Rome (Italy). This contribution presents main results of this research which was aimed at the robust characterisation of rainfall statistical properties across different scales by means of scale-invariance analysis and multifractal theory. The analysis was performed on a dataset of more two years of precipitation observations collected by the CNR Polar 55C radar and rainfall fields derived from available images collected by the CSK satellites during intense rainfall events. Scale-invariance laws and multifractal properties were detected on the most intense rainfall events derived from the CNR Polar 55C radar for spatial scales from 4 km to 64 km. The analysis on X-SAR retrieved rainfall fields, although based on few images, leaded to similar results and confirmed the existence of scale-invariance and multifractal properties for scales larger than 4 km. These outcomes encourage investigating SAR methodologies for future development of meteo-hydrological forecasting models based on multifractal theory.

  7. Rotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-Hough-forests

    NASA Astrophysics Data System (ADS)

    Yu, Yongtao; Guan, Haiyan; Zai, Dawei; Ji, Zheng

    2016-02-01

    This paper proposes a rotation-and-scale-invariant method for detecting airplanes from high-resolution satellite images. To improve feature representation capability, a multi-layer feature generation model is created to produce high-order feature representations for local image patches through deep learning techniques. To effectively estimate airplane centroids, a Hough forest model is trained to learn mappings from high-order patch features to the probabilities of an airplane being present at specific locations. To handle airplanes with varying orientations, patch orientation is defined and integrated into the Hough forest to augment Hough voting. The scale invariance is achieved by using a set of scale factors embedded in the Hough forest. Quantitative evaluations on the images collected from Google Earth service show that the proposed method achieves a completeness, correctness, quality, and F1-measure of 0.968, 0.972, 0.942, and 0.970, respectively, in detecting airplanes with arbitrary orientations and sizes. Comparative studies also demonstrate that the proposed method outperforms the other three existing methods in accurately and completely detecting airplanes in high-resolution remotely sensed images.

  8. Integration of Scale Invariant Generator Technique and S-A Technique for Characterizing 2-D Patterns for Information Retrieve

    NASA Astrophysics Data System (ADS)

    Cao, L.; Cheng, Q.

    2004-12-01

    The scale invariant generator technique (SIG) and spectrum-area analysis technique (S-A) were developed independently relevant to the concept of the generalized scale invariance (GSI). The former was developed for characterizing the parameters involved in the GSI for characterizing and simulating multifractal measures whereas the latter was for identifying scaling breaks for decomposition of superimposed multifractal measures caused by multiple geophysical processes. A natural integration of these two techniques may yield a new technique to serve two purposes, on the one hand, that can enrich the power of S-A by increasing the interpretability of decomposed patterns in some applications of S-A and, on the other hand, that can provide a mean to test the uniqueness of multifractality of measures which is essential for application of SIG technique in more complicated environment. The implementation of the proposed technique has been done as a Dynamic Link Library (DLL) in Visual C++. The program can be friendly used for method validation and application in different fields.

  9. Constructions for scale-invariant and kink-free vortex stretching

    NASA Astrophysics Data System (ADS)

    Dijkhuis, Geert C.

    1996-10-01

    Models for turbulent vortex stretching are presented as differentiable fractal curve constructions with circle arcs and screw segments replacing line elements in the usual definitions of non-analytic Koch- and Peano curves. Examples pf kink-free fractal curves are shown as self-intersecting, self-avoiding or (asymptotically) self-tangent loops, with flat versions partially or fully filling the plane, and spatial versions likewise for three dimensions. One set of kink-free fractal curves analytically models growing horseshoe vortices in Hinześ conceptual model for turbulence near a wall. From random walk analysis of transition layer vorticity on a defective lattice for intermittency, the inverse Von Karman constant emerges as fractal dimension threshold for escape of turbulence to infinity. A second curve sequence analytically models a vortex ring in superfluid helium stretching into a homogeneous vortex tangle moving between flat walls in a square channel. The deformation rule employs Hilbert's cube-filling loop construction with line segments bent into circle arcs with end points meeting at zero angle. Dynamically, the deformation geometry demands unequal skin friction on adjacent channel walls as boundary condition. The stretching process accelerates circulation velocities exponentially by conservation of angular momentum in vortex tubes with constant core volume. A third class of curves models deformation of a plasma vortex ring formed by (high-voltage or laser) discharge impact on a flat electrode surface, and carried sideways by turbulent shear flow. The construction rule now uses circle arcs twisted into Hopf-invariant screw segments for the streamlines, with mirror-symmetric halves preserving zero topoligical charge in the loop structure. Dynamically, skin friction from no-slip boundary conditions here exerts parallel torques on leading and trailing ring sections, twisting its right and left halves into mirror images with equal amounts of opposite helicity.

  10. Creasing, point-bifurcations, and the spontaneous breakdown of scale-invariance

    NASA Astrophysics Data System (ADS)

    Hohlfeld, Evan Benjamin

    Symmetry and symmetry breaking are important in condensed matter theory; they explain how continuum phases of matter emerge from molecular-scale chaos and lead directly to the classes of Partial Differential Equations (PDEs) that describe them. Here I suggest a new kind of symmetry breaking, the spontaneous breaking of scale symmetry, which is an asymptotic symmetry of all continuum models at small scales, and explains why things like fracture and first order phase transitions have macroscopic robustness. I formalize this idea with the notions of a point-instability and a point-bifurcation, which are sudden changes in the state of a system that develop from a point manifesting as a kind of topological change. As a non-trivial example of an equilibrium point-bifurcation, I discuss creasing in the surfaces of soft rubber-like materials. A crease is a singular, self-contacting fold, such as in the cup of the hand. Numerical methods (which rely on a novel kind of pseudo arc-length continuation for variational inequalities, called rough continuation) agree with experiments that show that creases in bent PDMS blocks form suddenly, but vanish continuously to a point, showing an effect called perfect hysteresis. Like a phase transition, creasing is characterized by intensive criterion---critical stresses---but the "phases" are a smooth surface and an intrinsically localized crease. Indeed I prove that for a wide class of PDEs of any differential and in any dimension, the only kinds of instabilities are ordinary linear instabilities and point-instabilities. I show that while linear stability is almost never sufficient to prove actual stability, linear stability (linear hyperbolicity) and a condition called a point-Lipshitz condition (or metastability) are necessary and sufficient conditions. I show this constructively: generically, when an equilibrium system loses metastability but retains linear stability, a bifurcation occurs where the bifurcating branch develops as a

  11. Derivation of the complete Gutenberg-Richter magnitude-frequency relation using the principle of scale invariance

    SciTech Connect

    Rundle, J.B. )

    1989-09-10

    The purpose of this paper is to show that the various observational parameters characterizing the statistical properties of earthquakes can be related to each other. The fundamental postulate which is used to obtain quantitative results is the idea that the physics of earthquake occurrence scales as a power law, similar to properties one often sees in critical phenomena. When the physics of earthquake occurrence is exactly scale invariant, {ital b}=1, and it can be shown as a consequence that earthquakes in any magnitude band {Delta}m cover the same area in unit time. This result therefore implies the existence of a universal'' covering interval {tau}{sub {ital T}}, which is here called the cycle interval.'' Using this idea, the complete Gutenberg-Richter relation is derived in terms of the fault area {ital S}{sub {ital T}}, which is available to events of any given size, the average stress drop {Delta}{sigma}{sub {ital T}} for events occurring on {ital S}{sub {tau}}, the interval {tau}{sub {ital T}} for events of stress drop {Delta}{sigma}{sub {ital T}} to cover an area {ital S}{sub {ital T}}, and the scaling exponent {alpha}, which is proportional to the {ital b} value. Observationally, the average recurrence time interval for great earthquakes, or perhaps equivalently, the recurrence interval for characteristic earthquakes on a fault segment, is a measure of the cycle interval {tau}{sub {ital T}}. The exponent {alpha} may depend on time, but scale invariance (self similarity) demands that {alpha}=1. It is shown in the appendix that the {ital A} value in the Gutenberg-Richter relation can be written in terms of {ital S}{sub {ital T}}, {tau}{sub {ital T}}, {Delta}{sigma}{sub {ital T}}, and the parameter {alpha}. The {ital b} value is either 1 or 1.5 (depending on the geometry of the fault zone) multiplied by {alpha}. {copyright} American Geophysical Union 1989

  12. Computer-aided mass detection in mammography: False positive reduction via gray-scale invariant ranklet texture features

    SciTech Connect

    Masotti, Matteo; Lanconelli, Nico; Campanini, Renato

    2009-02-15

    In this work, gray-scale invariant ranklet texture features are proposed for false positive reduction (FPR) in computer-aided detection (CAD) of breast masses. Two main considerations are at the basis of this proposal. First, false positive (FP) marks surviving our previous CAD system seem to be characterized by specific texture properties that can be used to discriminate them from masses. Second, our previous CAD system achieves invariance to linear/nonlinear monotonic gray-scale transformations by encoding regions of interest into ranklet images through the ranklet transform, an image transformation similar to the wavelet transform, yet dealing with pixels' ranks rather than with their gray-scale values. Therefore, the new FPR approach proposed herein defines a set of texture features which are calculated directly from the ranklet images corresponding to the regions of interest surviving our previous CAD system, hence, ranklet texture features; then, a support vector machine (SVM) classifier is used for discrimination. As a result of this approach, texture-based information is used to discriminate FP marks surviving our previous CAD system; at the same time, invariance to linear/nonlinear monotonic gray-scale transformations of the new CAD system is guaranteed, as ranklet texture features are calculated from ranklet images that have this property themselves by construction. To emphasize the gray-scale invariance of both the previous and new CAD systems, training and testing are carried out without any in-between parameters' adjustment on mammograms having different gray-scale dynamics; in particular, training is carried out on analog digitized mammograms taken from a publicly available digital database, whereas testing is performed on full-field digital mammograms taken from an in-house database. Free-response receiver operating characteristic (FROC) curve analysis of the two CAD systems demonstrates that the new approach achieves a higher reduction of FP marks

  13. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2.

    PubMed

    Zorick, Todd; Mandelkern, Mark A

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness. PMID:26696860

  14. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2

    PubMed Central

    Zorick, Todd; Mandelkern, Mark A.

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness. PMID:26696860

  15. A novel and robust rotation and scale invariant structuring elements based descriptor for pedestrian classification in infrared images

    NASA Astrophysics Data System (ADS)

    Soundrapandiyan, Rajkumar; Chandra Mouli, P. V. S. S. R.

    2016-09-01

    In this paper, a novel and robust rotation and scale invariant structuring elements based descriptor (RSSED) for pedestrian classification in infrared (IR) images is proposed. In addition, a segmentation method using difference of Gaussian (DoG) and horizontal intensity projection is proposed. The three major steps are moving object segmentation, feature extraction and classification of objects as pedestrian or non-pedestrian. The segmentation result is used to extract the RSSED feature descriptor. To extract features, the segmentation result is encoded using local directional pattern (LDP). This helps in the identification of local textural patterns. The LDP encoded image is further quantized adaptively to four levels. Finally the proposed RSSED is used to formalize the descriptor from the quantized image. Support vector machine is employed for classification of the moving objects in a given IR image into pedestrian and non-pedestrian classes. The segmentation results shows the robustness in extracting the moving objects. The classification results obtained from SVM classifier shows the efficacy of the proposed method.

  16. Scale invariant feature transform in adaptive radiation therapy: a tool for deformable image registration assessment and re-planning indication

    NASA Astrophysics Data System (ADS)

    Paganelli, Chiara; Peroni, Marta; Riboldi, Marco; Sharp, Gregory C.; Ciardo, Delia; Alterio, Daniela; Orecchia, Roberto; Baroni, Guido

    2013-01-01

    Adaptive radiation therapy (ART) aims at compensating for anatomic and pathological changes to improve delivery along a treatment fraction sequence. Current ART protocols require time-consuming manual updating of all volumes of interest on the images acquired during treatment. Deformable image registration (DIR) and contour propagation stand as a state of the ART method to automate the process, but the lack of DIR quality control methods hinder an introduction into clinical practice. We investigated the scale invariant feature transform (SIFT) method as a quantitative automated tool (1) for DIR evaluation and (2) for re-planning decision-making in the framework of ART treatments. As a preliminary test, SIFT invariance properties at shape-preserving and deformable transformations were studied on a computational phantom, granting residual matching errors below the voxel dimension. Then a clinical dataset composed of 19 head and neck ART patients was used to quantify the performance in ART treatments. For the goal (1) results demonstrated SIFT potential as an operator-independent DIR quality assessment metric. We measured DIR group systematic residual errors up to 0.66 mm against 1.35 mm provided by rigid registration. The group systematic errors of both bony and all other structures were also analyzed, attesting the presence of anatomical deformations. The correct automated identification of 18 patients who might benefit from ART out of the total 22 cases using SIFT demonstrated its capabilities toward goal (2) achievement.

  17. Connection between Dirichlet distributions and a scale-invariant probabilistic model based on Leibniz-like pyramids

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Tsallis, C.

    2014-12-01

    We show that the N → ∞ limiting probability distributions of a recently introduced family of d-dimensional scale-invariant probabilistic models based on Leibniz-like (d + 1)-dimensional hyperpyramids (Rodríguez and Tsallis 2012 J. Math. Phys. 53 023302) are given by Dirichlet distributions for d = 1, 2, …. It was formerly proved by Rodríguez et al that, for the one-dimensional case (d = 1), the corresponding limiting distributions are q-Gaussians (\\propto e_q- β x^2 , with e_1-β x^2=e-β x^2) . The Dirichlet distributions generalize the so-called Beta distributions to higher dimensions. Consistently, we make a connection between one-dimensional q-Gaussians and Beta distributions via a linear transformation. In addition, we discuss the probabilistically admissible region of parameters q and β defining a normalizable q-Gaussian, focusing particularly on the possibility of having both bell-shaped and U-shaped q-Gaussians, the latter corresponding, in an appropriate physical interpretation, to negative temperatures.

  18. A Scale-Invariant Model of Statistical Mechanics and Modified Forms of the First and the Second Laws of Thermodynamics

    NASA Technical Reports Server (NTRS)

    Sohrab, Siavash H.; Pitch, Nancy (Technical Monitor)

    1999-01-01

    A scale-invariant statistical theory of fields is presented that leads to invariant definition of density, velocity, temperature, and pressure, The definition of Boltzmann constant is introduced as k(sub k) = m(sub k)v(sub k)c = 1.381 x 10(exp -23) J x K(exp -1), suggesting that the Kelvin absolute temperature scale is equivalent to a length scale. Two new state variables called the reversible heat Q(sub rev) = TS and the reversible work W(sub rev) = PV are introduced. The modified forms of the first and second law of thermodynamics are presented. The microscopic definition of heat (work) is presented as the kinetic energy due to the random (peculiar) translational, rotational, and pulsational motions. The Gibbs free energy of an element at scale Beta is identified as the total system energy at scale (Beta-1), thus leading to an invariant form of the first law of thermodynamics U(sub Beta) = Q(sub Beta) - W(sub Beta) +N(e3)U(sub Beta-1).

  19. Galactic rotation curves, the baryon-to-dark-halo-mass relation and space-time scale invariance

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Kroupa, Pavel

    2015-01-01

    Low-acceleration space-time scale invariant dynamics (SID) predicts two fundamental correlations known from observational galactic dynamics: the baryonic Tully-Fisher relation and a correlation between the observed mass discrepancy and acceleration (MDA) in the low-acceleration regime for disc galaxies. SID corresponds to the deep Modified Newtonian Dynamics limit. The MDA data emerging in cold/warm dark matter (C/WDM) cosmological simulations disagree significantly with the tight MDA correlation of the observed galaxies. Therefore, the most modern simulated disc galaxies, which are delicately selected to have a quiet merging history in a standard dark matter cosmological model, still do not represent the correct rotation curves. Also, the observed tight correlation contradicts the postulated stochastic formation of galaxies in low-mass dark matter haloes. Moreover, we find that SID predicts a baryonic to apparent virial halo (dark matter) mass relation which agrees well with the correlation deduced observationally assuming Newtonian dynamics to be valid, while the baryonic to halo mass relation predicted from CDM models does not. The distribution of the observed ratios of dark matter halo masses to baryonic masses may be empirical evidence for the external field effect, which is predicted in SID as a consequence of the forces acting between two galaxies depending on the position and mass of a third galaxy. Applying the external field effect, we predict the masses of galaxies in the proximity of the dwarf galaxies in the Miller et al. sample. Classical non-relativistic gravitational dynamics is thus best described as being Milgromian, rather than Newtonian.

  20. Global scale-invariance of small-scale magnetic fluctuations in solar wind turbulence as seen by CLUSTER

    NASA Astrophysics Data System (ADS)

    Kiyani, K. H.; Chapman, S. C.; Khotyaintsev, Y. V.; Dunlop, M. W.; Sahraoui, F.

    2009-12-01

    Spacecraft measurements of magnetic fluctuations of collisionless plasma turbulence in the solar wind typically show an ‘inertial range’ of MHD turbulence with a power-law power spectra. At higher frequencies a spectral break is seen around the ion-gyroscale with a subsequent steeper power-law, indicating a cross-over to spatial-temporal scales where kinetic effects become important. Theories for this second scaling range, also known as the “dissipation/dispersion” range focus on the spectral slope and the associated scaling exponents. We will present some results from very high-frequency magnetic field data from the four Cluster II spacecraft in intervals where the spacecraft were in quasi-stationary ambient solar wind and where the instruments were operating in burst mode. The magnetic field data are from the fluxgate and search-coil magnetometers from the Cluster FGM experiment (~67Hz), and the STAFF experiment (~450 Hz). These data sets provide observations of this dissipation/dispersion range over approximately two decades in frequency. This high cadence allows a better determination of the statistics at these small scales; especially the estimation of scaling exponents. We present a robust multiscale statistical analysis focusing on power spectra, PDFs of field fluctuations and higher-order statistics to quantify the scaling of fluctuations; as well as describing the degree of anisotropy in the fluctuations parallel and perpendicular to the average magnetic field. Both neutral fluid and MHD turbulence share a ‘‘classic’’ statistical signature - namely an intermittent multifractal scaling seen in the higher-order statistics. We test the statistical properties of the dissipation range and find in contrast monoscaling behavior, i.e., a global scale invariance. This provides a strong discriminator for the physics and phenomenology of the dissipation range in collisionless plasmas. Reference article: K. H. Kiyani, S. C. Chapman, Yu. V. Khotyaintsev

  1. Some Implications of a Scale-Invariant Model of Statistical Mechanics to Classical and Black Hole Thermodynamics

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    2016-03-01

    A scale-invariant model of statistical mechanics is applied to described modified forms of four laws of classical thermodynamics. Following de Broglie formula λrk = h /mkvrk , frequency of matter waves is defined as νrk = k /mkvrk leading to stochastic definitions of (Planck, Boltzmann) universal constants (h =mk <λrk > c , k =mk <νrk > c), λrkνrk = c , relating to spatiotemporal Casimir vacuum fluctuations. Invariant Mach number Maβ = v /vrβ is introduced leading to hierarchy of ``supersonic'' flow separated by shock front, viewed as ``event-horizon'' EHβ, from subsonic flow that terminates at surface of stagnant condensate of ``atoms'' defined as ``black-hole'' BHβ at scale β thus resulting in hierarchy of embedded ``black holes'' at molecular- atomic-, electron-, photon-, tachyon-. . . scales, ad infinitum. Classical black hole will correspond to solid phase photon or solid-light. It is argued that Bardeen-Carter-Hawking (1973) first law of black hole mechanics δM = (κ / 8 π) δA +ΩH δJ +ΦH δQ , instead of dE = TdS - PdV suggested by Bekenstein (1973), is analogous to first law of thermodynamics expressed as TdS = PdV + dE such that entropy of black hole, rather than to its horizon surface area, will be related to its total energy hence enthalpy H = TS leading to SBH = 4 kN in exact agreement with prediction of Major and Setter.

  2. Stratification Pattern of Static and Scale-Invariant Dynamic Measures of Heartbeat Fluctuations Across Sleep Stages in Young and Elderly

    PubMed Central

    Schmitt, Daniel T.; Stein, Phyllis K.; Ivanov, Plamen Ch.

    2010-01-01

    Cardiac dynamics exhibit complex variability characterized by scale-invariant and nonlinear temporal organization related to the mechanism of neuroautonomic control, which changes with physiologic states and pathologic conditions. Changes in sleep regulation during sleep stages are also related to fluctuations in autonomic nervous activity. However, the interaction between sleep regulation and cardiac autonomic control remains not well understood. Even less is known how this interaction changes with age, as aspects of both cardiac dynamics and sleep regulation differ in healthy elderly compared to young subjects. We hypothesize that because of the neuroautonomic responsiveness in young subjects, fractal and nonlinear features of cardiac dynamics exhibit a pronounced stratification pattern across sleep stages, while in elderly these features will remain unchanged due to age-related loss of cardiac variability and decline of neuroautonomic responsiveness. We analyze the variability and the temporal fractal organization of heartbeat fluctuations across sleep stages in both young and elderly. We find that independent linear and nonlinear measures of cardiac control consistently exhibit the same ordering in their values across sleep stages, forming a robust stratification pattern. Despite changes in sleep architecture and reduced heart rate variability in elderly subjects, this stratification surprisingly does not break down with advanced age. Moreover, the difference between sleep stages for some linear, fractal, and nonlinear measures exceeds the difference between young and elderly, suggesting that the effect of sleep regulation on cardiac dynamics is significantly stronger than the effect of healthy aging. Quantifying changes in this stratification pattern may provide insights into how alterations in sleep regulation contribute to increased cardiac risk. PMID:19203874

  3. The social brain: scale-invariant layering of Erdős-Rényi networks in small-scale human societies.

    PubMed

    Harré, Michael S; Prokopenko, Mikhail

    2016-05-01

    The cognitive ability to form social links that can bind individuals together into large cooperative groups for safety and resource sharing was a key development in human evolutionary and social history. The 'social brain hypothesis' argues that the size of these social groups is based on a neurologically constrained capacity for maintaining long-term stable relationships. No model to date has been able to combine a specific socio-cognitive mechanism with the discrete scale invariance observed in ethnographic studies. We show that these properties result in nested layers of self-organizing Erdős-Rényi networks formed by each individual's ability to maintain only a small number of social links. Each set of links plays a specific role in the formation of different social groups. The scale invariance in our model is distinct from previous 'scale-free networks' studied using much larger social groups; here, the scale invariance is in the relationship between group sizes, rather than in the link degree distribution. We also compare our model with a dominance-based hierarchy and conclude that humans were probably egalitarian in hunter-gatherer-like societies, maintaining an average maximum of four or five social links connecting all members in a largest social network of around 132 people. PMID:27194482

  4. Asymptotes in Polar Coordinates.

    ERIC Educational Resources Information Center

    Fay, Temple H.

    1986-01-01

    An old way to determine asymptotes for curves described in polar coordinates is presented. Practice in solving trigonometric equations, in differentiation, and in calculating limits is involved. (MNS)

  5. Scale invariance of the η-deformed AdS5 × S5 superstring, T-duality and modified type II equations

    NASA Astrophysics Data System (ADS)

    Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, A. A.

    2016-02-01

    We consider the ABF background underlying the η-deformed AdS5 ×S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R-R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS3 ×S3 ×T4and AdS2 ×S2 ×T6models.

  6. Asymptotic entropy bounds

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2016-07-01

    We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focusing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the quantum null energy condition, of the generalized Second Law, and of the quantum Bousso bound.

  7. Occupational Clusters.

    ERIC Educational Resources Information Center

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  8. Asymptotics for spherical needlets

    NASA Astrophysics Data System (ADS)

    Baldi, P.; Kerkyacharian, G.; Marinucci, D.; Picard, D.

    We investigate invariant random fields on the sphere using a new type of spherical wavelets, called needlets. These are compactly supported in frequency and enjoy excellent localization properties in real space, with quasi-exponentially decaying tails. We show that, for random fields on the sphere, the needlet coefficients are asymptotically uncorrelated for any fixed angular distance. This property is used to derive CLT and functional CLT convergence results for polynomial functionals of the needlet coefficients: here the asymptotic theory is considered in the high-frequency sense. Our proposals emerge from strong empirical motivations, especially in connection with the analysis of cosmological data sets.

  9. Asymptotically safe Higgs inflation

    SciTech Connect

    Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: hjhe@tsinghua.edu.cn

    2014-10-01

    We construct a new inflation model in which the standard model Higgs boson couples minimally to gravity and acts as the inflaton. Our construction of Higgs inflation incorporates the standard model with Einstein gravity which exhibits asymptotic safety in the ultraviolet region. The slow roll condition is satisfied at large field value due to the asymptotically safe behavior of Higgs self-coupling at high energies. We find that this minimal construction is highly predictive, and is consistent with both cosmological observations and collider experiments.

  10. An asymptotical machine

    NASA Astrophysics Data System (ADS)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  11. 3D SMoSIFT: three-dimensional sparse motion scale invariant feature transform for activity recognition from RGB-D videos

    NASA Astrophysics Data System (ADS)

    Wan, Jun; Ruan, Qiuqi; Li, Wei; An, Gaoyun; Zhao, Ruizhen

    2014-03-01

    Human activity recognition based on RGB-D data has received more attention in recent years. We propose a spatiotemporal feature named three-dimensional (3D) sparse motion scale-invariant feature transform (SIFT) from RGB-D data for activity recognition. First, we build pyramids as scale space for each RGB and depth frame, and then use Shi-Tomasi corner detector and sparse optical flow to quickly detect and track robust keypoints around the motion pattern in the scale space. Subsequently, local patches around keypoints, which are extracted from RGB-D data, are used to build 3D gradient and motion spaces. Then SIFT-like descriptors are calculated on both 3D spaces, respectively. The proposed feature is invariant to scale, transition, and partial occlusions. More importantly, the running time of the proposed feature is fast so that it is well-suited for real-time applications. We have evaluated the proposed feature under a bag of words model on three public RGB-D datasets: one-shot learning Chalearn Gesture Dataset, Cornell Activity Dataset-60, and MSR Daily Activity 3D dataset. Experimental results show that the proposed feature outperforms other spatiotemporal features and are comparative to other state-of-the-art approaches, even though there is only one training sample for each class.

  12. Asymptotic behavior of dynamical variables and naked singularity formation in spherically symmetric gravitational collapse

    SciTech Connect

    Kawakami, Hayato; Mitsuda, Eiji; Nambu, Yasusada; Tomimatsu, Akira

    2009-07-15

    In considering the gravitational collapse of matter, it is an important problem to clarify what kind of conditions leads to the formation of naked singularity. For this purpose, we apply the 1+3 orthonormal frame formalism introduced by Uggla et al. to the spherically symmetric gravitational collapse of a perfect fluid. This formalism allows us to construct an autonomous system of evolution and constraint equations for scale-invariant dynamical variables normalized by the volume expansion rate of the timelike orthonormal frame vector. We investigate the asymptotic evolution of such dynamical variables towards the formation of a central singularity and present a conjecture that the steep spatial gradient for the normalized density function is a characteristic of the naked singularity formation.

  13. Asymptotic symmetries from finite boxes

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2016-01-01

    It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a 'box.' This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the anti-de Sitter and Poincaré asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2 + 1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS3 and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.

  14. Occupational asthma

    MedlinePlus

    Asthma - occupational exposure; Irritant-induced reactive airways disease ... the workplace can trigger asthma symptoms, leading to occupational asthma. The most common triggers are wood dust, grain ...

  15. Dynamics of Dollard asymptotic variables. Asymptotic fields in Coulomb scattering

    NASA Astrophysics Data System (ADS)

    Morchio, G.; Strocchi, F.

    2016-03-01

    Generalizing Dollard’s strategy, we investigate the structure of the scattering theory associated to any large time reference dynamics UD(t) allowing for the existence of Møller operators. We show that (for each scattering channel) UD(t) uniquely identifies, for t →±∞, asymptotic dynamics U±(t); they are unitary groups acting on the scattering spaces, satisfy the Møller interpolation formulas and are interpolated by the S-matrix. In view of the application to field theory models, we extend the result to the adiabatic procedure. In the Heisenberg picture, asymptotic variables are obtained as LSZ-like limits of Heisenberg variables; their time evolution is induced by U±(t), which replace the usual free asymptotic dynamics. On the asymptotic states, (for each channel) the Hamiltonian can by written in terms of the asymptotic variables as H = H±(qout/in,pout/in), H±(q,p) the generator of the asymptotic dynamics. As an application, we obtain the asymptotic fields ψout/in in repulsive Coulomb scattering by an LSZ modified formula; in this case, U±(t) = U0(t), so that ψout/in are free canonical fields and H = H0(ψout/in).

  16. Asymptotic entropic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Adamczak, Radosław; Latała, Rafał; Puchała, Zbigniew; Życzkowski, Karol

    2016-03-01

    We analyze entropic uncertainty relations for two orthogonal measurements on a N-dimensional Hilbert space, performed in two generic bases. It is assumed that the unitary matrix U relating both bases is distributed according to the Haar measure on the unitary group. We provide lower bounds on the average Shannon entropy of probability distributions related to both measurements. The bounds are stronger than those obtained with use of the entropic uncertainty relation by Maassen and Uffink, and they are optimal up to additive constants. We also analyze the case of a large number of measurements and obtain strong entropic uncertainty relations, which hold with high probability with respect to the random choice of bases. The lower bounds we obtain are optimal up to additive constants and allow us to prove a conjecture by Wehner and Winter on the asymptotic behavior of constants in entropic uncertainty relations as the dimension tends to infinity. As a tool we develop estimates on the maximum operator norm of a submatrix of a fixed size of a random unitary matrix distributed according to the Haar measure, which are of independent interest.

  17. Occupational asthma.

    PubMed

    Kenyon, Nicholas J; Morrissey, Brian M; Schivo, Michael; Albertson, Timothy E

    2012-08-01

    Occupational asthma is the most common occupational lung disease. Work-aggravated asthma and occupational asthma are two forms of asthma causally related to the workplace, while reactive airways dysfunction syndrome is a separate entity and a subtype of occupational asthma. The diagnosis of occupational asthma is most often made on clinical grounds. The gold standard test, specific inhalation challenge, is rarely used. Low molecular weight isocyanates are the most common compounds that cause occupational asthma. Workers with occupational asthma secondary to low molecular weight agents may not have elevated specific IgE levels. The mechanisms of occupational asthma associated with these compounds are partially described. Not all patients with occupational asthma will improve after removal from the workplace. PMID:21573916

  18. Asymptotic Parachute Performance Sensitivity

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.

    2006-01-01

    In 2010, the Mars Science Laboratory mission will pioneer the next generation of robotic Entry, Descent, and Landing systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than any other mission to Mars, Mars Science Laboratory will also provide scientists with unprecedented access to regions of Mars that have been previously unreachable. By providing an Entry, Descent, and Landing system capable of landing at altitudes as high as 2 km above the reference gravitational equipotential surface, or areoid, as defined by the Mars Orbiting Laser Altimeter program, Mars Science Laboratory will demonstrate sufficient performance to land on 83% of the planet s surface. By contrast, the highest altitude landing to date on Mars has been the Mars Exploration Rover at 1.3 km below the areoid. The coupling of this improved altitude performance with latitude limits as large as 60 degrees off of the equator and a precise delivery to within 10 km of a surface target, will allow the science community to select the Mars Science Laboratory landing site from thousands of scientifically interesting possibilities. In meeting these requirements, Mars Science Laboratory is extending the limits of the Entry, Descent, and Landing technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Specifically, the drag deceleration provided by a Viking-heritage 16.15 m supersonic Disk-Gap-Band parachute in the thin atmosphere of Mars is insufficient, at the altitudes and ballistic coefficients under consideration by the Mars Science Laboratory project, to maintain necessary altitude performance and timeline margin. This paper defines and discusses the asymptotic parachute performance observed in Monte Carlo simulation and performance analysis and its effect on the Mars Science Laboratory Entry, Descent, and Landing architecture.

  19. Exponential tilting in Bayesian asymptotics

    PubMed Central

    Kharroubi, S. A.; Sweeting, T. J.

    2016-01-01

    We use exponential tilting to obtain versions of asymptotic formulae for Bayesian computation that do not involve conditional maxima of the likelihood function, yielding a more stable computational procedure and significantly reducing computational time. In particular we present an alternative version of the Laplace approximation for a marginal posterior density. Implementation of the asymptotic formulae and a modified signed root based importance sampler are illustrated with an example. PMID:27279661

  20. Asymptotic dynamics of monopole walls

    NASA Astrophysics Data System (ADS)

    Cross, R.

    2015-08-01

    We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are Abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.

  1. Polynomial Asymptotes of the Second Kind

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2011-01-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…

  2. Occupational Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    When choosing a career, jobseekers often want to know which occupations offer the best prospects. Generally, occupations that have rapid job growth, many new jobs, or many job openings--and good wages--promise better opportunities. This paper shows how employment in particular occupations is projected to change from 2010 to 2020. It presents…

  3. Occupational Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    When choosing a career, jobseekers often want to know which occupations offer the best prospects. Generally, occupations that have rapid job growth, many new jobs, or many job openings--and good wages--promise better opportunities. This article shows how employment in particular occupations is projected to change over the 2008-2018 decade. The…

  4. Asymptotic vacua with higher derivatives

    NASA Astrophysics Data System (ADS)

    Cotsakis, Spiros; Kadry, Seifedine; Kolionis, Georgios; Tsokaros, Antonios

    2016-04-01

    We study limits of vacuum, isotropic universes in the full, effective, four-dimensional theory with higher derivatives. We show that all flat vacua as well as general curved ones are globally attracted by the standard, square root scaling solution at early times. Open vacua asymptote to horizon-free, Milne states in both directions while closed universes exhibit more complex logarithmic singularities, starting from initial data sets of a possibly smaller dimension. We also discuss the relation of our results to the asymptotic stability of the passage through the singularity in ekpyrotic and cyclic cosmologies.

  5. Asymptotic Rayleigh instantaneous unit hydrograph

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.

    1988-01-01

    The instantaneous unit hydrograph for a channel network under general linear routing and conditioned on the network magnitude, N, tends asymptotically, as N grows large, to a Rayleigh probability density function. This behavior is identical to that of the width function of the network, and is proven under the assumption that the network link configuration is topologically random and the link hydraulic and geometric properties are independent and identically distributed random variables. The asymptotic distribution depends only on a scale factor, {Mathematical expression}, where ?? is a mean link wave travel time. ?? 1988 Springer-Verlag.

  6. Occupational Consciousness

    PubMed Central

    Ramugondo, Elelwani L.

    2015-01-01

    Occupational consciousness refers to ongoing awareness of the dynamics of hegemony and recognition that dominant practices are sustained through what people do every day, with implications for personal and collective health. The emergence of the construct in post-apartheid South Africa signifies the country’s ongoing struggle with negotiating long-standing dynamics of power that were laid down during colonialism, and maintained under black majority rule. Consciousness, a key component of the new terminology, is framed from post-colonial perspectives – notably work by Biko and Fanon – and grounded in the philosophy of liberation, in order to draw attention to continuing unequal intersubjective relations that play out through human occupation. The paper also draws important links between occupational consciousness and other related constructs, namely occupational possibilities, occupational choice, occupational apartheid, and collective occupation. The use of the term ‘consciousness’ in sociology, with related or different meanings, is also explored. Occupational consciousness is then advanced as a critical notion that frames everyday doing as a potentially liberating response to oppressive social structures. This paper advances theorizing as a scholarly practice in occupational science, and could potentially expand inter or transdisciplinary work for critical conceptualizations of human occupation. PMID:26549984

  7. Asymptotic Safety in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin; Saueressig, Frank

    2013-06-01

    Asymptotic Safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. The essence of Asymptotic Safety is the observation that nontrivial renormalization group fixed points can be used to generalize the procedure of perturbative renormalization. In an asymptotically safe theory the couplings do not need to be small or tend to zero in the high energy limit but rather tend to finite values: they approach a nontrivial UV fixed point. The running of the coupling constants, i.e. their scale dependence described by the renormalization group (RG), is thus special in its UV limit in the sense that all their dimensionless combinations remain finite. This suffices to avoid unphysical divergences, e.g. in scattering amplitudes. The requirement of a UV fixed point restricts the form of the bare action and the values of the bare coupling constants, which become predictions of the Asymptotic Safety program rather than inputs. As for gravity, the standard procedure of perturbative renormalization fails since Newton's constant, the relevant expansion parameter, has negative mass dimension rendering general relativity perturbatively nonrenormalizable. This has driven the search for nonperturbative frameworks describing quantum gravity, including Asymptotic Safety which -- in contrast to other approaches -- is characterized by its use of quantum field theory

  8. Higher dimensional nonclassical eigenvalue asymptotics

    NASA Astrophysics Data System (ADS)

    Camus, Brice; Rautenberg, Nils

    2015-02-01

    In this article, we extend Simon's construction and results [B. Simon, J. Funct. Anal. 53(1), 84-98 (1983)] for leading order eigenvalue asymptotics to n-dimensional Schrödinger operators with non-confining potentials given by Hn α = - Δ + ∏ i = 1 n |x i| α i on ℝn (n > 2), α ≔ ( α 1 , … , α n ) ∈ ( R+ ∗ ) n . We apply the results to also derive the leading order spectral asymptotics in the case of the Dirichlet Laplacian -ΔD on domains Ωn α = { x ∈ R n : ∏ j = 1 n }x j| /α j α n < 1 } .

  9. Asymptotic safety goes on shell

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario

    2012-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.

  10. Asymptotic safety: A simple example

    SciTech Connect

    Braun, Jens; Gies, Holger; Scherer, Daniel D.

    2011-04-15

    We use the Gross-Neveu model in 2asymptotic safety scenario: despite being perturbatively nonrenormalizable, the model defines an interacting quantum field theory being valid to arbitrarily high momentum scales owing to the existence of a non-Gaussian fixed point. Using the functional renormalization group, we study the uv behavior of the model in both the purely fermionic as well as a partially bosonized language. We show that asymptotic safety is realized at non-Gaussian fixed points in both formulations, the universal critical exponents of which we determine quantitatively. The partially bosonized formulation allows to make contact to the large-N{sub f} expansion where the model is known to be renormalizable to all orders. In this limit, the fixed-point action as well as all universal critical exponents can be computed analytically. As asymptotic safety has become an important scenario for quantizing gravity, our description of a well-understood model is meant to provide for an easily accessible and controllable example of modern nonperturbative quantum field theory.

  11. Occupational Rhinitis.

    PubMed

    Grammer, Leslie C

    2016-05-01

    Occupational rhinitis (OR) involves nasal congestion, rhinorrhea, nasal itching, and/or sneezing resulting from workplace exposures. OR can have a significant negative effect on quality of life and productivity. OR can be divided into allergic or nonallergic subgroups based on the underlying pathogenesis. Certain occupational exposures place employees at greater risk for developing disease. Primary treatment is avoidance of implicated exposures. Antihistamines, saline rinses, and nasal steroids may be useful. OR can coexist with occupational asthma, and rhinitis symptoms have been reported to precede those of the lower respiratory tract. OR is has both medical and socioeconomic implications. PMID:27083106

  12. Supersymmetric asymptotic safety is not guaranteed

    NASA Astrophysics Data System (ADS)

    Intriligator, Kenneth; Sannino, Francesco

    2015-11-01

    It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those of an asymptotically free (perhaps magnetic dual) extension.

  13. Occupational Health

    MedlinePlus

    Occupational health problems occur at work or because of the kind of work you do. These problems can include ... by exposure to radiation Exposure to germs in health care settings Good job safety and prevention practices ...

  14. The maximum drag reduction asymptote

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  15. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  16. [Occupational epidemiology].

    PubMed

    Ahrens, W; Behrens, T; Mester, B; Schmeisser, N

    2008-03-01

    The aim of occupational epidemiology is to describe workplace-related diseases and to identify their underlying causes. Its primary goal is to protect workers from hazardous effects of the working process by applying work-related primary and secondary prevention measures. To assess health risks different study designs and a wide array of complex study instruments and methods are frequently employed that cannot be replaced by toxicological investigations. This paper primarily addresses health risks by agent exposures. In this context a central task of occupational epidemiology is careful assessment of exposure. Different data sources, such as work site measurements, register data, archive material, experts' opinion, and the workers' personal estimates of exposure may be used during this process. In addition, biological markers can complement exposure assessment. Since thorough occupational epidemiologic studies allow assessment of disease risks under realistic exposure conditions, their results should be more frequently used to derive workplace-related threshold limit values. PMID:18311483

  17. [Occupational eczema].

    PubMed

    Lachapelle, J M

    1998-05-01

    Cases of occupational allergic contact dermatitis are less frequent nowadays than in the past: for instance the prevalence of allergic contact dermatitis to cement chromates is decreasing steadily among building workers. On the other hand, new haptens do occur in our environment, due to the diversification of industrial techniques; e.g. methylchloro- and methylisothiazolinone (MCI/MI) present as a preservative in paints or varnishes, acrylates and methacrylates, or, at the hospital, glutaraldehyde, propacetamol or various antibiotics. A new entity has been clinically characterized: protein contact dermatitis. The prevention of occupational allergic contact dermatitis is multidisciplinary. It includes all aspects of prevention: primary, secondary and tertiary. PMID:11767354

  18. Numerical Asymptotic Solutions Of Differential Equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  19. Occupational Education.

    ERIC Educational Resources Information Center

    Morris, William R.

    Although fiscal support for occupational programs in California Community Colleges is provided primarily by state and local district taxes, about ten percent of the total support is provided through federal sources. Federal regulations under the Vocational Education Act (VEA) require the recipients of federal funds to provide consultative,…

  20. [Occupational asthma].

    PubMed

    Pauli, G; Bessot, J C; Gourdon, C

    1992-12-01

    The diagnosis of occupational asthma requires the integration of a multiplicity of data; the history, cutaneous skin tests, biological tests, respiratory function tests and non-specific tests of bronchial hyperreactivity and specific bronchial provocation test. The history search for the presence of an atopic state, the occurrence of similar disorders in members of the same firm and also the timing of symptoms in relation to the occupational activities. Cutaneous tests are particularly helpful in IgE-mediated asthma in relation to the inhalation of animal or vegetable materials of glycoprotein origin. For haptens, the need for their prior coupling to a protein carrier causes problems which have not been entirely resolved. Laboratory tests run into the same snags. Respiratory function and non-specific bronchial provocation tests, confirm the diagnosis of asthma and enable the medium and long term prognostic to be assessed. Specific bronchial provocation tests are the most appropriate tests to establish an aetiological diagnosis in occupational asthma. Different technical methods are possible: quantitative administration of allergen aerosols, realistic tests, and tests using exposure chambers to achieve true test doses. The products responsible for occupational asthma are multiple. The different substances are characterised in a simplified manner: first animal matter (mammalian and arthropod allergens), secondly substances of vegetable origin (roots, leaves, flowers, grain and flour, wood and its derivates) and finally chemical products. The chemical products are primarily from the pharmaceutical and metal industries and above all from the plastics industry. PMID:1296320

  1. Health Occupations

    MedlinePlus

    ... care industry is one of largest providers of jobs in the United States. Many health jobs are in hospitals. Others are in nursing homes, ... clinics and laboratories. To work in a health occupation, you often must have special training. Some, like ...

  2. Asymptotically optimal topological quantum compiling.

    PubMed

    Kliuchnikov, Vadym; Bocharov, Alex; Svore, Krysta M

    2014-04-11

    We address the problem of compiling quantum operations into braid representations for non-Abelian quasiparticles described by the Fibonacci anyon model. We classify the single-qubit unitaries that can be represented exactly by Fibonacci anyon braids and use the classification to develop a probabilistically polynomial algorithm that approximates any given single-qubit unitary to a desired precision by an asymptotically depth-optimal braid pattern. We extend our algorithm in two directions: to produce braids that allow only single-strand movement, called weaves, and to produce depth-optimal approximations of two-qubit gates. Our compiled braid patterns have depths that are 20 to 1000 times shorter than those output by prior state-of-the-art methods, for precisions ranging between 10(-10) and 10(-30). PMID:24765934

  3. Plane Wave and Coulomb Asymptotics

    NASA Astrophysics Data System (ADS)

    Mulligan, P. G.; Crothers, D. S. F.

    2004-01-01

    A simple plane wave solution of the Schrödinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.

  4. 8. Asymptotically Flat and Regular Cauchy Data

    NASA Astrophysics Data System (ADS)

    Dain, Sergio

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  5. Einstein-Yang-Mills theory: Asymptotic symmetries

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Lambert, Pierre-Henry

    2013-11-01

    Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four-dimensional asymptotically flat case.

  6. An asymptotic model of the F layer

    NASA Astrophysics Data System (ADS)

    Oliver, W. L.

    2012-01-01

    A model of the F layer of the ionosphere is presented that consists of a bottomside asymptote that ignores transport and a topside asymptote that ignores chemistry. The asymptotes connect at the balance height dividing the chemistry and transport regimes. A combination of these two asymptotes produces a good approximation to the true F layer. Analogously, a model of F layer response to an applied vertical drift is presented that consists of two asymptotic responses, one that ignores transport and one that ignores chemistry. The combination of these asymptotic responses produces a good approximation to the response of the true F layer. This latter response is identical to the “servo” response of Rishbeth et al. (1978), derived from the continuity equation. The asymptotic approach bypasses the continuity equation in favor of “force balance” arguments and so replaces a differential equation with simpler algebraic equations. This new approach provides a convenient and intuitive mean for first-order estimates of the change in F layer peak height and density in terms of changes in neutral density, composition, temperature, winds, and electric fields. It is applicable at midlatitudes and at magnetically quiet times at high latitudes. Forensic inverse relations are possible but are not unique. The validity of the asymptotic relations is shown through numerical simulation.

  7. Occupational asthma.

    PubMed Central

    Chan-Yeung, M.; Grzybowski, S.

    1976-01-01

    Occupational asthma is probably much more common than is generally realized. Though many causes have been described, undoubtedly many more are yet to be recognized. One of the diagnostic difficulties lies in the fact that in most forms of this disease a late asthmatic reaction occurs in the evening rather than at work. The pathogenetic mechanisms differ in various forms of occupational asthma. In some, an immunologic mechanism is likely; in others, a "pharmacologic" action of the offending agent is implicated. Asthma due to inhalation of dusts of western red cedar, isocyanates, detergent enzymes and textiles is considered in detail. Periodic examination of workers at risk is of value for early diagnosis and prevention of irrversible airway obstruction. PMID:766943

  8. Scale-invariant breaking of conformal symmetry

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Zhiboedov, Alexander

    2015-10-01

    Known examples of unitary relativistic scale but not conformal-invariant field theories (SFTs) can be embedded into conventional conformal field theories (CFTs). We show that any SFT which is a subsector of a unitary CFT is a free theory. Our discussion applies to an arbitrary number of spacetime dimensions and explains triviality of known SFTs in four spacetime dimensions. We comment on examples of unitary SFTs which are not captured by our construction.

  9. Scale invariance and universality in economic phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Amaral, L. A. N.; Gopikrishnan, P.; Plerou, V.; Salinger, M. A.

    2002-03-01

    This paper discusses some of the similarities between work being done by economists and by computational physicists seeking to contribute to economics. We also mention some of the differences in the approaches taken and seek to justify these different approaches by developing the argument that by approaching the same problem from different points of view, new results might emerge. In particular, we review two such new results. Specifically, we discuss the two newly discovered scaling results that appear to be `universal', in the sense that they hold for widely different economies as well as for different time periods: (i) the fluctuation of price changes of any stock market is characterized by a probability density function, which is a simple power law with exponent -4 extending over 102 standard deviations (a factor of 108 on the y-axis); this result is analogous to the Gutenberg-Richter power law describing the histogram of earthquakes of a given strength; (ii) for a wide range of economic organizations, the histogram that shows how size of organization is inversely correlated to fluctuations in size with an exponent ≈0.2. Neither of these two new empirical laws has a firm theoretical foundation. We also discuss results that are reminiscent of phase transitions in spin systems, where the divergent behaviour of the response function at the critical point (zero magnetic field) leads to large fluctuations. We discuss a curious `symmetry breaking' for values of Σ above a certain threshold value Σc here Σ is defined to be the local first moment of the probability distribution of demand Ω - the difference between the number of shares traded in buyer-initiated and seller-initiated trades. This feature is qualitatively identical to the behaviour of the probability density of the magnetization for fixed values of the inverse temperature.

  10. Snow Avalanche Release, Scale Invariance and Criticallity

    NASA Astrophysics Data System (ADS)

    Dendievel, R.; Faillettaz, J.; Daudon, D.; Louchet, F.

    It is widely recognised that a number of geophysical phenomena as volcanic eruptions, landslides, etc, obey the so-called Gutenberg-Richter relation, first established for the frequency-magnitude statistics of earthquakes, where is the occurence frequency of earthquakes with a magnitude greater than m. This power law behaviour, character- istic of critical phenomena, is usually evidenced in the form of a linear distribution in a double logarithmic plot, in a way similar to the self organised criticality of a sand pile (2). We have shown very recently and for the first time that snow avalanche release exhibited such a behaviour (3). The only reliable parameter we had at that time was the amplitude of the acoustic emission associated with the avalanche release. Since it was not possible to record several events in the same gully, data were taken in sev- eral gullys of the same mountain range. Yet, the data aligned quite well on a unique straight line, with a critical exponent of about 1.6. This observation suggests that the very nature of the release mechanism is independent of the average slope and mor- phology of the gully. In order to understand the origin of this critical behaviour and to further investigate the mechanisms responsible for avalanche release, the avalanche release is studied in the present paper both by discrete elements simulations and cel- lular automata, and compared to further field data. The discrete elements simulations deal with a population of spheres on a slope, experiencing both a gravitational stress, interactions with the substrate, and mutual contact interactions. A gradual increase of the slope or a gradual change in contact forces (accounting for thermal snow mi- crostructure evolution) eventually result in avalanche release. The conditions are ad- justed until the frequency-magnitude of avalanches exhibit a critical behaviour. The cellular automaton is more or less similar to a game of life: a 2-d grid of boxes repre- sents the interface between the substrate and the snow slab, loaded in shear by the slab weight. Each box can be in one of two states labelled 0 and 1, according whether the slab/substrate interface is locally cracked or not. The state of a box can be changed ac- cording whether a given number of neighbours are in a 0 state or in a 1 state. A group of adjacent boxes in the 0 state represents a crack. The automaton is run from vari- ous randomly generated initial populations. Avalanches of various sizes are recorded. The local rules are adjusted until the avalanche frequency- size distribution aligns on a critical line. In both cases, the critical slopes are compared to field data. 1 (1) B. Gutenberg and C.F. Richter, seismicity of the earth and associated phenomenon, 2d edition, Princeton University Press, Princeton (1954) (2) P. Bak, How Nature Works, Springer Verlag (1996) (3) F. Louchet, J. Faillettaz, D. Daudon, N. Bédouin, E. Collet, J. Lhuissier and A-M. Portal XXVI General Assembly of the European Geophysical Society, Nice (F), 25-30 mars 2001 2

  11. Scale Invariant Fluctuations of Proteins Native States

    NASA Astrophysics Data System (ADS)

    Tang, Qian-Yuan; Zhang, Yang-Yang; Wang, Jun; Wang, Wei; Chialvo, Dante R.

    Long-range correlations in biological systems often hints for the presence of universal mechanism at work. Here we study protein native dynamics by analyzing a large set of structure ensembles determined by solution NMR. For proteins of diverse sizes, the average distance-dependent cross-correlation functions ϕ (r) and its correlation length ξϕ are analyzed. The analysis uncovered the presence of nontrivial scaling in the proteins' equilibrium dynamics around native states. We show that the correlation length is proportional to the gyration radius of the molecule, implying that the motion of any residue could influence all the others, up to the entire molecule. In addition, it is found that certain shapes are favored, such that for any given protein size the folding process ``chooses'' the shape with the maximum susceptibility. These results suggest that the proteins native state is critical in the same sense with other slowly built self-organized critical systems, which once posed near the minimum of the energy landscape, preserve their dynamic flexibility. Supported by Natural Science Foundation of China (Grants 11334004, 11174133, 81421091) and National Basic Research Program of China (Grant 2013CB834100).

  12. Occupational Sex Roles and Occupational Prestige.

    ERIC Educational Resources Information Center

    Simerly, D. Emily; Ruback, R. Barry

    Past studies on the sex-typing of occupations have used a single bipolar scale, ranging from masculinity to femininity. An empirical examination of both occupational sex roles and occupational prestige was conducted using two unipolar scales to assess masculinity and femininity. College students (N=183) rated 94 occupations, which were then…

  13. Detecting communities using asymptotical surprise

    NASA Astrophysics Data System (ADS)

    Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.

    2015-08-01

    Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.

  14. [Occupational rhinitis].

    PubMed

    Endre, László

    2010-06-01

    Occupational rhinitis (OR) is an inflammatory disease of the nose, which is characterized by intermittent or persistent symptoms, arising out of causes and conditions attributable to a particular work environment and not to stimuli encountered outside the workplace. Its clinical symptoms (nasal congestion, sneezing, rhinorrhea, itching, nasal airflow limitation) are very similar with the symptoms of the allergic rhinitis caused by other (classical) agents. According to the 27/1996 NM Departmental Order, OR in Hungary is a notifiable disease. Despite, between year 1997 and 2009, not even a single case was reported in Hungary. In the last 20 years the only Hungarian reference in this field was published in 2004, in the Textbook of Occupational Medicine, edited by Ungváry. This disease is not unknown in other European countries. It can be produced by both high and low molecular weight agents. For example, according to the publications, its prevalence among bakers can be 18-29%, and among workers with diisocyanates (painters, urethane mould workers) 36-42%. Risk factors are atopy, high concentration and multiple irritant agents in the air of workplace. Atopy has been associated with an increased risk of specific sensitization to a variety of HMW agents. Beside of the clinical and occupational history, objective investigations have to be used as well, for the diagnosis of OR. The gold standard for confirming the diagnosis of OR is the nasal provocation test. Objective methods that can be used for assessing nasal patency during the investigation of OR include rhinomanometry, acoustic rhinometry, peak nasal inspiratory flow, and gravimetry of the nasal secret. The management of the OR needs environmental interventions. These are: increasing the ventilation, decreasing the time of exposure, substitution of the irritant agent, investigation of possible asthma in all workers with OR. Medical treatments are: oral antihistamines, local (nasal) corticosteroids, combined

  15. EMC effect: asymptotic freedom with nuclear targets

    SciTech Connect

    West, G.B.

    1984-01-01

    General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references.

  16. Hermite polynomials and quasi-classical asymptotics

    SciTech Connect

    Ali, S. Twareque; Engliš, Miroslav

    2014-04-15

    We study an unorthodox variant of the Berezin-Toeplitz type of quantization scheme, on a reproducing kernel Hilbert space generated by the real Hermite polynomials and work out the associated quasi-classical asymptotics.

  17. Occupational asthma.

    PubMed Central

    Chan-Yeung, M

    1995-01-01

    Many toxic compounds found in air emissions may induce bronchoconstriction. In the workplace, workers are exposed to these compounds, often in much higher concentrations. Some of these compounds act as sensitizers. Of these, some compounds induce asthma by producing specific IgE antibodies to the compound or its protein conjugate, while others induce asthma through yet unidentified immunologic mechanisms. Some compounds, when inhaled in high concentrations, act as irritants and produce bronchoconstriction probably by inducing acute airway inflammation. The latter condition is called Reactive Airways Dysfunction Syndrome (RADS) or irritant-induced asthma. Occupational asthma is an excellent model to study the pathogenesis and the natural history of adult onset asthma because the responsible agent can be identified, complete avoidance is possible, and exposure can be measured or estimated. PMID:8549481

  18. Maximal hypersurfaces in asymptotically stationary spacetimes

    NASA Astrophysics Data System (ADS)

    Chrusciel, Piotr T.; Wald, Robert M.

    1992-12-01

    The purpose of the work is to extend the results on the existence of maximal hypersurfaces to encompass some situations considered by other authors. The existence of maximal hypersurface in asymptotically stationary spacetimes is proven. Existence of maximal surface and of foliations by maximal hypersurfaces is proven in two classes of asymptotically flat spacetimes which possess a one parameter group of isometries whose orbits are timelike 'near infinity'. The first class consists of strongly causal asymptotically flat spacetimes which contain no 'blackhole or white hole' (but may contain 'ergoregions' where the Killing orbits fail to be timelike). The second class of space times possess a black hole and a white hole, with the black and white hole horizon intersecting in a compact 2-surface S.

  19. Dispersive shock wave interactions and asymptotics.

    PubMed

    Ablowitz, Mark J; Baldwin, Douglas E

    2013-02-01

    Dispersive shock waves (DSWs) are physically important phenomena that occur in systems dominated by weak dispersion and weak nonlinearity. The Korteweg-de Vries (KdV) equation is the universal model for systems with weak dispersion and weak, quadratic nonlinearity. Here we show that the long-time-asymptotic solution of the KdV equation for general, steplike data is a single-phase DSW; this DSW is the "largest" possible DSW based on the boundary data. We find this asymptotic solution using the inverse scattering transform and matched-asymptotic expansions. So while multistep data evolve to have multiphase dynamics at intermediate times, these interacting DSWs eventually merge to form a single-phase DSW at large time. PMID:23496590

  20. Asymptotic structure of hydromagnetically driven relativistic winds

    NASA Technical Reports Server (NTRS)

    Chiueh, Tzihong; Li, Zhi-Yun; Begelman, Mitchell C.

    1991-01-01

    A fully relativistic analysis has been performed of the asymptotic structure of stationary axisymmetric hydromagnetic winds. If a flow fills the region containing the rotation axis, then the flux surfaces in the flow must collimate to a set of current-carrying cylindrical surface extending to infinite transverse radius, collimate to a set of cylindrical surfaces extending to a finite radius, or collimate to a current-free paraboloidal field configuration which fills up the entire space. If an asymptotically cylindrical flow carries a finite current at radii well beyond the light cylinder, then the Lorentz factor of the terminal flow speed on a given flux surface is proportional to the total current enclosed within this flux surface. If a flow is of type II paraboloidal, then its asymptotic energy flux is carried entirely by the gas motion rather than the electromagnetic fields.

  1. Asymptotics of a horizontal liquid bridge

    NASA Astrophysics Data System (ADS)

    Haynes, M.; O'Brien, S. B. G.; Benilov, E. S.

    2016-04-01

    This paper uses asymptotic techniques to find the shape of a two dimensional liquid bridge suspended between two vertical walls. We model the equilibrium bridge shape using the Laplace-Young equation. We use the Bond number as a small parameter to deduce an asymptotic solution which is then compared with numerical solutions. The perturbation approach demonstrates that equilibrium is only possible if the contact angle lies within a hysteresis interval and the analysis relates the width of this interval to the Bond number. This result is verified by comparison with a global force balance. In addition, we examine the quasi-static evolution of such a two dimensional bridge.

  2. Asymptotic behavior of degenerate logistic equations

    NASA Astrophysics Data System (ADS)

    Arrieta, José M.; Pardo, Rosa; Rodríguez-Bernal, Aníbal

    2015-12-01

    We analyze the asymptotic behavior of positive solutions of parabolic equations with a class of degenerate logistic nonlinearities of the type λu - n (x)uρ. An important characteristic of this work is that the region where the logistic term n (ṡ) vanishes, that is K0 = { x : n (x) = 0 }, may be non-smooth. We analyze conditions on λ, ρ, n (ṡ) and K0 guaranteeing that the solution starting at a positive initial condition remains bounded or blows up as time goes to infinity. The asymptotic behavior may not be the same in different parts of K0.

  3. Selected Health Service Occupations.

    ERIC Educational Resources Information Center

    Coleman, Arthur D.

    Prepared by an occupational analyst of the Utah Department of Employment Security, this manual provides job guides for 39 health service occupations concerned mainly with doctors, nurses, and related hospital-medical-health consultants and services. Classified according to "The Dictionary of Occupational Titles," each occupational description…

  4. Health Occupations Survey.

    ERIC Educational Resources Information Center

    Willett, Lynn H.

    A survey was conducted to determine the need for health occupations personnel in the Moraine Valley Community College district, specifically to: (1) describe present employment for selected health occupations; (2) project health occupation employment to 1974; (3) identify the supply of applicants for the selected occupations; and (4) identify…

  5. Occupant Protection Project

    NASA Technical Reports Server (NTRS)

    Bopp, Genie; Somers, Jeff; Granderson, Brad; Gernhardt, Mike; Currie, Nancy; Lawrence, Chuck

    2010-01-01

    Topics include occupant protection overview with a focus on crew protection during dynamic phases of flight; occupant protection collaboration; modeling occupant protection; occupant protection considerations; project approach encompassing analysis tools, injury criteria, and testing program development; injury criteria update methodology, unique effects of pressure suits and other factors; and a summary.

  6. Occupational Therapy Assistant.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of occupational therapy assistant, lists technical competencies and competency builders for 16 units pertinent to the health technologies cluster in general as well as those specific to the occupation of occupational therapy assistant. The…

  7. Asymptotic behaviour of backward elastic scattering

    NASA Astrophysics Data System (ADS)

    Germond, J. F.; Lombard, R. J.

    1988-05-01

    We discuss a compact formula proposed by Dias de Deus and Pimenta for the asymptotic value of the elastic scattering amplitude at backward angles. Improvements and generalization are obtained by means of the saddle-point method which corroborate old calculations by Serber.

  8. Exponential asymptotics of the Voigt functions

    NASA Astrophysics Data System (ADS)

    Paris, R. B.

    2015-06-01

    We obtain the asymptotic expansion of the Voigt functionss K( x, y) and L( x, y) for large (real) values of the variables x and y, paying particular attention to the exponentially small contributions. A Stokes phenomenon is encountered as with x > 0 fixed. Numerical examples are presented to demonstrate the accuracy of these new expansions.

  9. Lectures on renormalization and asymptotic safety

    SciTech Connect

    Nagy, Sandor

    2014-11-15

    A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross–Neveu model, the nonlinear σ model, the sine–Gordon model, and we consider the model of quantum Einstein gravity which seems to show asymptotic safety, too. We also give a detailed analysis of infrared behavior of such scalar models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The theory spaces of these models show several similar properties, namely the models have the same phase and fixed point structure. The quantum Einstein gravity also exhibits similarities when considering the global aspects of its theory space since the appearing two phases there show analogies with the symmetric and the broken phases of the scalar models. These results be nicely uncovered by the functional renormalization group method.

  10. Asymptotic theory of relativistic, magnetized jets

    SciTech Connect

    Lyubarsky, Yuri

    2011-01-15

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  11. Layer tracking, asymptotics, and domain decomposition

    NASA Technical Reports Server (NTRS)

    Brown, D. L.; Chin, R. C. Y.; Hedstrom, G. W.; Manteuffel, T. A.

    1991-01-01

    A preliminary report is presented on the work on the tracking of internal layers in a singularly-perturbed convection-diffusion equation. It is shown why such tracking may be desirable, and it is also shown how to do it using domain decomposition based on asymptotic analysis.

  12. Eigenvalue asymptotics for Dirac-Bessel operators

    NASA Astrophysics Data System (ADS)

    Hryniv, Rostyslav O.; Mykytyuk, Yaroslav V.

    2016-06-01

    In this paper, we establish the eigenvalue asymptotics for non-self-adjoint Dirac-Bessel operators on (0, 1) with arbitrary real angular momenta and square integrable potentials, which gives the first step for solution of the related inverse problem. The approach is based on a careful examination of the corresponding characteristic functions and their zero distribution.

  13. Asymptotic coefficients for one-interacting-level Voigt profiles

    NASA Astrophysics Data System (ADS)

    Cope, D.; Lovett, R. J.

    1988-02-01

    The asymptotic behavior of general Voigt profiles with general width and shift functions has been determined by Cope and Lovett (1987). The resulting asymptotic coefficients are functions of the perturber/radiator mass ratio; also, the coefficients for the one-interacting-level (OIL) profiles proposed by Ward et al. (1974) were studied. In this paper, the behavior of the OIL asymptotic coefficients for large mass ratio values is determined, thereby providing a complete picture of OIL asymptotics for all mass ratios.

  14. Occupational Clusters. Occupational Investigation Guide. First Edition.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    This occupational investigation guide contains learning activities for instruction in fifteen occupational clusters: (1) agribusiness and natural resources, (2) business and office, (3) communications and media, (4) construction, (5) consumer and homemaking, (6) environment, (7) fine arts and humanities, (8) health, (9) hospitality and recreation,…

  15. Brane model with two asymptotic regions

    SciTech Connect

    Lubo, Musongela

    2005-02-15

    Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.

  16. Brane model with two asymptotic regions

    NASA Astrophysics Data System (ADS)

    Lubo, Musongela

    2005-02-01

    Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.

  17. Asymptotics of Determinants of Bessel Operators

    NASA Astrophysics Data System (ADS)

    Basor, Estelle L.; Ehrhardt, Torsten

    For aL∞(+)∩L1(+) the truncated Bessel operator Bτ(a) is the integral operator acting on L2[0,τ] with the kernel where Jν stands for the Bessel function with ν>-1. In this paper we determine the asymptotics of the determinant det(I+Bτ(a)) as τ-->∞ for sufficiently smooth functions a for which a(x)≠1 for all x[0,∞). The asymptotic formula is of the form det(I+Bτ(a)) GτE with certain constants G and E, and thus similar to the well-known Szegö-Akhiezer-Kac formula for truncated Wiener-Hopf determinants.

  18. Asymptotically flat space–times: an enigma

    NASA Astrophysics Data System (ADS)

    Newman, Ezra T.

    2016-07-01

    We begin by emphasizing that we are dealing with standard Einstein or Einstein–Maxwell theory—absolutely no new physics has been inserted. The fresh item is that the well-known asymptotically flat solutions of the Einstein–Maxwell theory are transformed to a new coordinate system with surprising and (seemingly) inexplicable results. We begin with the standard description of (Null) asymptotically flat space–times described in conventional Bondi-coordinates. After transforming the variables (mainly the asymptotic Weyl tensor components) to a very special set of Newman-Unti (NU) coordinates, we find a series of relations totally mimicking standard Newtonian classical mechanics and Maxwell theory. The surprising and troubling aspect of these relations is that the associated motion and radiation does not take place in physical space–time. Instead these relations takes place in an unusual inherited complex four-dimensional manifold referred to as H-space that has no immediate relationship with space–time. In fact these relations appear in two such spaces, H-space and its dual space \\bar{H}.

  19. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1988-01-01

    Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.

  20. Asymptotic dynamics of the exceptional Bianchi cosmologies

    NASA Astrophysics Data System (ADS)

    Hewitt, C. G.; Horwood, J. T.; Wainwright, J.

    2003-05-01

    In this paper we give, for the first time, a qualitative description of the asymptotic dynamics of a class of non-tilted spatially homogeneous (SH) cosmologies, the so-called exceptional Bianchi cosmologies, which are of Bianchi type VI$_{-1/9}$. This class is of interest for two reasons. Firstly, it is generic within the class of non-tilted SH cosmologies, being of the same generality as the models of Bianchi types VIII and IX. Secondly, it is the SH limit of a generic class of spatially inhomogeneous $G_{2}$ cosmologies. Using the orthonormal frame formalism and Hubble-normalized variables, we show that the exceptional Bianchi cosmologies differ from the non-exceptional Bianchi cosmologies of type VI$_{h}$ in two significant ways. Firstly, the models exhibit an oscillatory approach to the initial singularity and hence are not asymptotically self-similar. Secondly, at late times, although the models are asymptotically self-similar, the future attractor for the vacuum-dominated models is the so-called Robinson-Trautman SH model instead of the vacuum SH plane wave models.

  1. Health Occupations Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    Intended to assist the vocational teacher in designing and implementing a cluster program in health occupations, this guide suggests ideas for teaching the specific knowledge and skills that qualify students for entry-level employment in the health occupations field. The knowledge and skills are applicable to 12 occupations: dental assistant;…

  2. Asymptotic form of the Kohn-Sham correlation potential

    SciTech Connect

    Joubert, D. P.

    2007-07-15

    The density-functional correlation potential of a finite system is shown to asymptotically approach a nonzero constant along a nodal surface of the energetically highest occupied orbital and zero everywhere else. This nonuniform asymptotic form of the correlation potential exactly cancels the nonuniform asymptotic behavior of the exact exchange potential discussed by Della Sala and Goerling [Phys. Rev. Lett. 89, 33003 (2002)]. The sum of the exchange and correlation potentials therefore asymptotically tends to -1/r everywhere, consistent with the asymptotic form of the Kohn-Sham potential as analyzed by Almbladh and von Barth [Phys. Rev. B 31, 3231 (1985)].

  3. Construction of space-time ray asymptotics from stationary high-frequency asymptotics in nonstationary problems

    NASA Astrophysics Data System (ADS)

    Plachenov, A. B.

    An algorithm is proposed for the transition from the short-wave asymptotics of stationary problems to the space-time asymptotics of nonstationary problems of linear wave propagation. The relationship between this algorithm and constructs of the spatial-temporal ray tracing method is examined. As an example, the algorithm is applied to the problem of the detection of a diffraction wave in the deep shade behind a smooth convex obstacle in the case where the incident wave is specified by its spatial-temporal ray expansion.

  4. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1992-01-01

    Asymptotic Modal Analysis (AMA) is a method which is used to model linear dynamical systems with many participating modes. The AMA method was originally developed to show the relationship between statistical energy analysis (SEA) and classical modal analysis (CMA). In the limit of a large number of modes of a vibrating system, the classical modal analysis result can be shown to be equivalent to the statistical energy analysis result. As the CMA result evolves into the SEA result, a number of systematic assumptions are made. Most of these assumptions are based upon the supposition that the number of modes approaches infinity. It is for this reason that the term 'asymptotic' is used. AMA is the asymptotic result of taking the limit of CMA as the number of modes approaches infinity. AMA refers to any of the intermediate results between CMA and SEA, as well as the SEA result which is derived from CMA. The main advantage of the AMA method is that individual modal characteristics are not required in the model or computations. By contrast, CMA requires that each modal parameter be evaluated at each frequency. In the latter, contributions from each mode are computed and the final answer is obtained by summing over all the modes in the particular band of interest. AMA evaluates modal parameters only at their center frequency and does not sum the individual contributions from each mode in order to obtain a final result. The method is similar to SEA in this respect. However, SEA is only capable of obtaining spatial averages or means, as it is a statistical method. Since AMA is systematically derived from CMA, it can obtain local spatial information as well.

  5. Asymptotic symmetries of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Strominger, Andrew

    2014-07-01

    Asymptotic symmetries at future null infinity ( +) of Minkowski space for electrodynamics with massless charged fields, as well as nonabelian gauge theories with gauge group G, are considered at the semiclassical level. The possibility of charge/color flux through + suggests the symmetry group is infinite-dimensional. It is conjectured that the symmetries include a G Kac-Moody symmetry whose generators are "large" gauge transformations which approach locally holomorphic functions on the conformal two-sphere at + and are invariant under null translations. The Kac-Moody currents are constructed from the gauge field at the future boundary of +. The current Ward identities include Weinberg's soft photon theorem and its colored extension.

  6. Exact and asymptotic distributions of LULU smoothers

    NASA Astrophysics Data System (ADS)

    Conradie, W. J.; de Wet, T.; Jankowitz, M.

    2006-02-01

    This paper considers a class of non-linear smoothers, called LULU smoothers, introduced by Rohwer in the late eighties in the mathematics literature, and since then investigated fairly extensively by a number of authors for its mathematical properties. They have been successfully applied in various engineering and scientific problems. However, to date their distribution theory has not received any attention in the literature. In this paper we derive their exact as well as asymptotic distributions and show their relationship to the upper order statistics.

  7. Listing Occupational Carcinogens

    PubMed Central

    Siemiatycki, Jack; Richardson, Lesley; Straif, Kurt; Latreille, Benoit; Lakhani, Ramzan; Campbell, Sally; Rousseau, Marie-Claude; Boffetta, Paolo

    2004-01-01

    The occupational environment has been a most fruitful one for investigating the etiology of human cancer. Many recognized human carcinogens are occupational carcinogens. There is a large volume of epidemiologic and experimental data concerning cancer risks in different work environments. It is important to synthesize this information for both scientific and public health purposes. Various organizations and individuals have published lists of occupational carcinogens. However, such lists have been limited by unclear criteria for which recognized carcinogens should be considered occupational carcinogens, and by inconsistent and incomplete information on the occupations and industries in which the carcinogenic substances may be found and on their target sites of cancer. Based largely on the evaluations published by the International Agency for Research on Cancer, and augmented with additional information, the present article represents an attempt to summarize, in tabular form, current knowledge on occupational carcinogens, the occupations and industries in which they are found, and their target organs. We have considered 28 agents as definite occupational carcinogens, 27 agents as probable occupational carcinogens, and 113 agents as possible occupational carcinogens. These tables should be useful for regulatory or preventive purposes and for scientific purposes in research priority setting and in understanding carcinogenesis. PMID:15531427

  8. ON ASYMPTOTIC DISTRIBUTION AND ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMATORS OF SPATIAL VARIOGRAM PARAMETERS. (R827257)

    EPA Science Inventory

    Abstract

    In this article, we consider the least-squares approach for estimating parameters of a spatial variogram and establish consistency and asymptotic normality of these estimators under general conditions. Large-sample distributions are also established under a sp...

  9. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.; Peretti, Linda F.

    1990-01-01

    The sound field of a structural-acoustic enclosure was subject to experimental analysis and theoretical description in order to develop an efficient and accurate method for predicting sound pressure levels in enclosures such as aircraft fuselages. Asymptotic Modal Analysis (AMA) is the method under investigation. AMA is derived from classical modal analysis (CMA) by considering the asymptotic limit of the sound pressure level as the number of acoustic and/or structural modes approaches infinity. Using AMA, results identical to those of Statistical Energy Analysis (SEA) were obtained for the spatially-averaged sound pressure levels in the interior. AMA is systematically derived from CMA and therefore the degree of generality of the end result can be adjusted through the choice of appropriate simplifying assumptions. For example, AMA can be used to obtain local sound pressure levels at particular points inside the enclosure, or to include the effects of varying the size and/or location of the sound source. AMA theoretical results were compared with CMA theory and also with experiment for the case where the structural-acoustic enclosure is a rectangular cavity with part of one wall flexible and vibrating, while the rest of the cavity is rigid.

  10. Asymptotically Lifshitz brane-world black holes

    SciTech Connect

    Ranjbar, Arash Sepangi, Hamid Reza Shahidi, Shahab

    2012-12-15

    We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: Black-Right-Pointing-Pointer Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. Black-Right-Pointing-Pointer Studying the thermodynamical behavior of asymptotically Lifshitz black holes. Black-Right-Pointing-Pointer Showing that the entropy imposes the critical exponent z to be bounded from above. Black-Right-Pointing-Pointer Discussing the phase transition for different spatial topologies.

  11. Vacuum polarization in asymptotically Lifshitz black holes

    NASA Astrophysics Data System (ADS)

    Quinta, Gonçalo M.; Flachi, Antonino; Lemos, José P. S.

    2016-06-01

    There has been considerable interest in applying the gauge-gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed, focused on incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes and, to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, nonminimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti-de Sitter black holes. The basics are similar to previous calculations; however, in the Lifshitz case, one needs to extend the previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulas are shown to reduce to the anti-de Sitter (AdS) case studied before once the value of the dynamical exponent is set to unity and the metric functions are accordingly chosen. The analytical results we present are general and can be applied to a variety of cases, in fact, to all spherically symmetric Lifshitz black hole solutions. We also implement the numerical analysis choosing some known Lifshitz black hole solutions as illustration.

  12. Structural aspects of asymptotically safe black holes

    NASA Astrophysics Data System (ADS)

    Koch, Benjamin; Saueressig, Frank

    2014-01-01

    We study the quantum modifications of classical, spherically symmetric Schwarzschild (anti-) de Sitter black holes within quantum Einstein gravity. The quantum effects are incorporated through the running coupling constants Gk and Λk, computed within the exact renormalization group approach, and a common scale-setting procedure. We find that, in contrast to common intuition, it is actually the cosmological constant that determines the short-distance structure of the RG-improved black hole: in the asymptotic UV the structure of the quantum solutions is universal and given by the classical Schwarzschild-de Sitter solution, entailing a self-similarity between the classical and quantum regime. As a consequence asymptotically safe black holes evaporate completely and no Planck-size remnants are formed. Moreover, the thermodynamic entropy of the critical Nariai black hole is shown to agree with the microstate count based on the effective average action, suggesting that the entropy originates from quantum fluctuations around the mean-field geometry.

  13. Asymptotic role of entanglement in quantum metrology

    NASA Astrophysics Data System (ADS)

    Augusiak, R.; Kołodyński, J.; Streltsov, A.; Bera, M. N.; Acín, A.; Lewenstein, M.

    2016-07-01

    Quantum systems allow one to sense physical parameters beyond the reach of classical statistics—with resolutions greater than 1 /N , where N is the number of constituent particles independently probing a parameter. In the canonical phase-sensing scenario the Heisenberg limit 1 /N2 may be reached, which requires, as we show, both the relative size of the largest entangled block and the geometric measure of entanglement to be nonvanishing as N →∞ . Yet, we also demonstrate that in the asymptotic N limit any precision scaling arbitrarily close to the Heisenberg limit (1 /N2 -ɛ with any ɛ >0 ) may be attained, even though the system gradually becomes noisier and separable, so that both the above entanglement quantifiers asymptotically vanish. Our work shows that sufficiently large quantum systems achieve nearly optimal resolutions despite their relative amount of entanglement being arbitrarily small. In deriving our results, we establish the continuity relation of the quantum Fisher information evaluated for a phaselike parameter, which lets us link it directly to the geometry of quantum states, and hence naturally to the geometric measure of entanglement.

  14. An asymptotic analysis of mixing loss

    SciTech Connect

    Fritsch, G.; Giles, M.B.

    1995-07-01

    The objective of this paper is to establish, in a rigorous mathematical manner, a link between the dissipation of unsteadiness in a two-dimensional compressible flow and the resulting mixing loss. A novel asymptotic approach and a control-volume argument are central to the analysis. It represents the first work clearly identifying the separate contributions to the mixing loss from simultaneous linear disturbances, i.e., from unsteady entropy, vorticity, and pressure waves. The results of the analysis have important implications for numerical simulations of turbomachinery flows; the mixing loss at the stator/rotor interface in steady simulations and numerical smoothing are discussed in depth. For a transonic turbine, the entropy rise through the stage is compared for a steady and an unsteady viscous simulation. The large interface mixing loss in the steady simulation is pointed out and its physical significance is discussed. The asymptotic approach is then applied to the first detailed analysis of interface mixing loss. Contributions from different wave types and wavelengths are quantified and discussed.

  15. Asymptotic accuracy of two-class discrimination

    SciTech Connect

    Ho, T.K.; Baird, H.S.

    1994-12-31

    Poor quality-e.g. sparse or unrepresentative-training data is widely suspected to be one cause of disappointing accuracy of isolated-character classification in modern OCR machines. We conjecture that, for many trainable classification techniques, it is in fact the dominant factor affecting accuracy. To test this, we have carried out a study of the asymptotic accuracy of three dissimilar classifiers on a difficult two-character recognition problem. We state this problem precisely in terms of high-quality prototype images and an explicit model of the distribution of image defects. So stated, the problem can be represented as a stochastic source of an indefinitely long sequence of simulated images labeled with ground truth. Using this sequence, we were able to train all three classifiers to high and statistically indistinguishable asymptotic accuracies (99.9%). This result suggests that the quality of training data was the dominant factor affecting accuracy. The speed of convergence during training, as well as time/space trade-offs during recognition, differed among the classifiers.

  16. Occupational lung cancer.

    PubMed

    Cone, J E

    1987-01-01

    The author addresses the attribution of lung cancer to cigarette smoking and the problems of confounding synergistic effects of occupational and other carcinogenic risk factors, as well as the divergent trends of declining smoking rates and increasing rates of lung cancer. He also reviews the existing literature to document associations between lung cancer and occupational exposures. Finally, interventions for prevention of occupational lung cancer are discussed. PMID:3303381

  17. Occupational lung cancer

    SciTech Connect

    Cone, J.E.

    1987-04-01

    The author addresses the attribution of lung cancer to cigarette smoking and the problems of confounding synergistic effects of occupational and other carcinogenic risk factors, as well as the divergent trends of declining smoking rates and increasing rates of lung cancer. He also reviews the existing literature to document associations between lung cancer and occupational exposures. Finally, interventions for prevention of occupational lung cancer are discussed.

  18. Estimation of an Occupational Choice Model when Occupations Are Misclassified

    ERIC Educational Resources Information Center

    Sullivan, Paul

    2009-01-01

    This paper develops an empirical occupational choice model that corrects for misclassification in occupational choices and measurement error in occupation-specific work experience. The model is used to estimate the extent of measurement error in occupation data and quantify the bias that results from ignoring measurement error in occupation codes…

  19. Asymptotic behaviour of solutions of semilinear parabolic equations

    SciTech Connect

    Egorov, Yu V; Kondratiev, V A

    2008-04-30

    The asymptotic behaviour of solutions of a second-order semilinear parabolic equation is analyzed in a cylindrical domain that is bounded in the space variables. The dominant term of the asymptotic expansion of the solution as t{yields}+{infinity} is found. It is shown that the solution of this problem is asymptotically equivalent to the solution of a certain non-linear ordinary differential equation. Bibliography: 8 titles.

  20. Numerical integration of asymptotic solutions of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  1. Occupational cancer in Italy.

    PubMed Central

    Merler, E; Vineis, P; Alhaique, D; Miligi, L

    1999-01-01

    This article is a discussion of occupational cancer in Italy. The introduction provides the necessary context of Italian industrialization and occupational health regulation. This is followed by a review of Italian epidemiologic studies of occupational cancer risks considered in terms of relative measures of risk and attributable risk of carcinogenic agents or exposure circumstances. We attempt to establish the number of workers exposed to carcinogens in Italy and the intensity of their exposures. Finally, the Italian system of compensation for occupational cancer is discussed. Several cohort and case-control studies have addressed the issue of occupational risks, mostly among male workers. The results of these studies suggest that the growing incidence of and mortality by mesothelioma is explained by the widespread and intense exposure to asbestos in some Italian industrial settings. A high attributable risk of lung tumors among male populations in industrial areas of northern Italy is explained by occupational exposures. However, insufficient data are available for clear definition of the extent and intensity of occupational exposure to carcinogenic substances. In Italy, we must prioritize and maximize resources in occupational cancer epidemiology and revitalize the role of national institutions. Recent legislation has established new regulations on the handling of carcinogenic substances in industrial settings, a new list of occupational diseases, and a national registry of mesothelioma linked to asbestos exposure. These legislative changes are expected to have positive effects. PMID:10350509

  2. Asymptotic stability of Riemann waves for conservation laws

    NASA Astrophysics Data System (ADS)

    Chen, G.-Q.; Frid, H.; Marta

    We are concerned with the asymptotic behavior of entropy solutions of conservation laws. A new notion about the asymptotic stability of Riemann solutions is introduced, and corresponding analytical frameworks are developed. The correlation between the asymptotic problem and many important topics in conservation laws and nonlinear analysis is recognized and analyzed, such as zero dissipation limits, uniqueness of entropy solutions, entropy analysis, and divergence-measure fields in L∞ . Then this theory is applied to understanding the asymptotic behavior of entropy solutions for many important systems of conservation laws.

  3. Teacher's Guide to Occupational Orientation.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This guide is specifically designed to accompany materials developed for occupational orientation (particularly in Illinois) in the following five cluster areas: Applied biological and agricultural occupations; personal and public service occupations; health occupations; business, marketing, and management occupations; and industrial oriented…

  4. Welding. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP), which is one of a series of OCAPs developed to identify the skills that Ohio employers deem necessary to entering a given occupation/occupational area, lists the occupational, academic, and employability skills required of individuals entering the occupation of welder. The introduction explains…

  5. International occupational health.

    PubMed

    LaDou, Joseph

    2003-08-01

    Working conditions for the majority of the world's workers do not meet the minimum standards and guidelines set by international agencies. Occupational health and safety laws cover only about 10 percent of the population in developing countries, omitting many major hazardous industries and occupations. With rare exception, most countries defer to the United Nations the responsibility for international occupational health. The UN's international agencies have had limited success in bringing occupational health to the industrializing countries. The International Labor Organization (ILO) conventions are intended to guide all countries in the promotion of workplace safety and in managing occupational health and safety programs. ILO conventions and recommendations on occupational safety and health are international agreements that have legal force only if they are ratified by ILO member states. The most important ILO Convention on Occupational Safety and Health has been ratified by only 37 of the 175 ILO member states. Only 23 countries have ratified the ILO Employment Injury Benefits Convention that lists occupational diseases for which compensation should be paid. The World Health Organization (WHO) is responsible for the technical aspects of occupational health and safety, the promotion of medical services and hygienic standards. Limited WHO and ILO funding severely impedes the development of international occupational health. The U.S. reliance on international agencies to promote health and safety in the industrializing countries is not nearly adequate. This is particularly true if occupational health continues to be regarded primarily as an academic exercise by the developed countries, and a budgetary triviality by the international agencies. Occupational health is not a goal achievable in isolation. It should be part of a major institutional development that touches and reforms every level of government in an industrializing country. Occupational health and safety

  6. Occupation and Thyroid Cancer

    PubMed Central

    Aschebrook-Kilfoy, Briseis; Ward, Mary H.; Valle, Curt T. Della; Friesen, Melissa C.

    2014-01-01

    Objectives Numerous occupational and environmental exposures have been shown to disrupt thyroid hormones, but much less is known about their relationships with thyroid cancer. Here we review the epidemiology studies of occupations and occupational exposures and thyroid cancer incidence to provide insight into preventable risk factors for thyroid cancer. Methods The published literature was searched using the Web of Knowledge database for all articles through August 2013 that had in their text “occupation” “job” ”employment” or “work” and “thyroid cancer”. After excluding 10 mortality studies and 4 studies with less than 5 exposed incident cases, we summarized the findings of 30 articles that examined thyroid cancer incidence in relation to occupations or occupational exposure. The studies were grouped by exposure/occupation category, study design, and exposure assessment approach. Where available, gender stratified results are reported. Results The most studied (19 of 30 studies) and the most consistent associations were observed for radiation-exposed workers and health care occupations. Suggestive, but inconsistent, associations were observed in studies of pesticide-exposed workers and agricultural occupations. Findings for other exposures and occupation groups were largely null. The majority of studies had few exposed cases and assessed exposure based on occupation or industry category, self-report, or generic (population-based) job exposure matrices. Conclusion The suggestive, but inconsistent findings for many of the occupational exposures reviewed here indicate that more studies with larger numbers of cases and better exposure assessment are necessary, particularly for exposures known to disrupt thyroid homeostasis. PMID:24604144

  7. Occupational asthma: a review.

    PubMed Central

    Lombardo, L J; Balmes, J R

    2000-01-01

    Occupational asthma is the most common form of occupational lung disease in the developed world at the present time. In this review, the epidemiology, pathogenesis/mechanisms, clinical presentations, management, and prevention of occupational asthma are discussed. The population attributable risk of asthma due to occupational exposures is considerable. Current understanding of the mechanisms by which many agents cause occupational asthma is limited, especially for low-molecular-weight sensitizers and irritants. The diagnosis of occupational asthma is generally established on the basis of a suggestive history of a temporal association between exposure and the onset of symptoms and objective evidence that these symptoms are related to airflow limitation. Early diagnosis, elimination of exposure to the responsible agent, and early use of inhaled steroids may play important roles in the prevention of long-term persistence of asthma. Persistent occupational asthma is often associated with substantial disability and consequent impacts on income and quality of life. Prevention of new cases is the best approach to reducing the burden of asthma attributable to occupational exposures. Future research needs are identified. PMID:10931788

  8. Counselling for Occupational Development

    ERIC Educational Resources Information Center

    Nwamuo, P. A.; Ugonna, C. E.

    2015-01-01

    The aim of the study was to ascertain the general attitude which senior secondary school students display towards counselling for occupational development while determining gender difference in students' attitude towards occupational information. It is also aimed at discovering whether these students seek vocational guidance in their choice of…

  9. Occupational Health Manual.

    ERIC Educational Resources Information Center

    Naval Medical Training Inst., Bethesda, MD.

    This manual is designed to be used for "Administrative Aspects of Occupational Medicine," one of two officer correspondence courses offered by the Naval Medical Training Institute. Part one comprises guidelines for setting up occupational health clinics, covering the areas of staffing, layout, equipment, other services, and records maintenance.…

  10. Testosterone and Occupational Achievement.

    ERIC Educational Resources Information Center

    Dabbs, James M., Jr.

    1992-01-01

    Archival data on 4,462 military veterans linked higher levels of serum testosterone to lower-status occupations. A structural equation model was supported in which higher testosterone, mediated through lower intellectual ability, greater antisocial behavior, and lower education, leads away from white-collar occupations. Contains 49 references.…

  11. Occupational Assimilation of Refugees.

    ERIC Educational Resources Information Center

    Finnan, Christine Robinson

    1981-01-01

    Presents a model explaining how refugee communities help their members accept the downward occupational mobility usually associated with refugee resettlement. Describes how refugees shape an image of themselves consistent with the occupational role, while shaping an image of the role consistent with their self-image. (Author MK)

  12. Bricklayer. Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Cap, Orest; Cap, Ihor; Semenovych, Viktor

    This analysis covers tasks performed by a bricklayer, an occupational title some provinces and territories of Canada have also identified as bricklayer-mason, brick and stone mason, and mason. A guide to analysis discusses development, structure, and validation method; scope of the occupation; trends; and safety. To facilitate understanding the…

  13. Cabinetmaker. Occupational Analysis Series.

    ERIC Educational Resources Information Center

    Chinien, Chris; Boutin, France

    This document contains the analysis of the occupation of cabinetmaker, or joiner, that is accepted by the Canadian Council of Directors as the national standard for the occupation. The front matter preceding the analysis includes exploration of the development of the analysis, structure of the analysis, validation method, scope of the cabinetmaker…

  14. Occupational Survival Skills

    ERIC Educational Resources Information Center

    Leach, James A.; Nelson, Robert E.

    1978-01-01

    The author describes a set of twelve curriculum modules called "Occupational Survival Skills" relating to the "human" aspects of work organizations. The modules were based on information from opinion surveys of workers, students, parents, and teachers on what occupational survival skills are and how to teach them. (MF)

  15. Barriers to Occupational Achievement.

    ERIC Educational Resources Information Center

    Gurman, Ernest B.

    The under-representation of women in prestigious occupations and the lower average pay women earn has been of concern for many years. This study investigated two alternative explanations for this under-representation of females in prestigious and higher paying occupations. The first explanation was external barriers such as discrimination, and the…

  16. Characteristics of Occupational Entrants.

    ERIC Educational Resources Information Center

    Carey, Max L.

    1989-01-01

    The United States is mobile society, and mobility is evident in the jobs people hold. From one year to the next, almost 1 worker in 5 enters or returns to an occupation that he/she did not work in 12 months earlier. A worker's age, sex, race, and ethnicity influence likelihood of changing occupations. (Contains detailed data tables.) (JOW)

  17. Occupations and the Farm.

    ERIC Educational Resources Information Center

    Ewert-Krocker, Laurie

    2001-01-01

    Describes "occupation" as a Montessori term, which the Hershey Montessori Farm School, in Huntsburg, Ohio, has adopted for any task arising from the needs of the farm that then generates a scientific or historic study. Includes lists of occupations pursued during 2000-2001 and samples of record forms students used to manage their work. (Author/KB)

  18. Occupations, U. S. A.

    ERIC Educational Resources Information Center

    Geneva Area City Schools, OH.

    The booklet divides job titles, selected from the Dictionary of Occupational Titles, into 15 career clusters: agribusiness and natural resources, business and office education, communication and media, construction, consumer and home economics, fine arts and humanities, health occupations, hospitality and recreation, manufacturing, marine science,…

  19. Asymptotics for metamaterials and photonic crystals.

    PubMed

    Antonakakis, T; Craster, R V; Guenneau, S

    2013-04-01

    Metamaterial and photonic crystal structures are central to modern optics and are typically created from multiple elementary repeating cells. We demonstrate how one replaces such structures asymptotically by a continuum, and therefore by a set of equations, that captures the behaviour of potentially high-frequency waves propagating through a periodic medium. The high-frequency homogenization that we use recovers the classical homogenization coefficients in the low-frequency long-wavelength limit. The theory is specifically developed in electromagnetics for two-dimensional square lattices where every cell contains an arbitrary hole with Neumann boundary conditions at its surface and implemented numerically for cylinders and split-ring resonators. Illustrative numerical examples include lensing via all-angle negative refraction, as well as omni-directive antenna, endoscope and cloaking effects. We also highlight the importance of choosing the correct Brillouin zone and the potential of missing interesting physical effects depending upon the path chosen. PMID:23633908

  20. Introduction to Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    El Eid, Mounib F.

    2016-04-01

    A brief introduction on the main characteristics of the asymptotic giant branch stars (briefly: AGB) is presented. We describe a link to observations and outline basic features of theoretical modeling of these important evolutionary phases of stars. The most important aspects of the AGB stars is not only because they are the progenitors of white dwarfs, but also they represent the site of almost half of the heavy element formation beyond iron in the galaxy. These elements and their isotopes are produced by the s-process nucleosynthesis, which is a neutron capture process competing with the β- radioactive decay. The neutron source is mainly due to the reaction 13C(α,n)16O reaction. It is still a challenging problem to obtain the right amount of 13 C that can lead to s-process abundances compatible with observation. Some ideas are presented in this context.

  1. Asymptotic Linear Stability of Solitary Water Waves

    NASA Astrophysics Data System (ADS)

    Pego, Robert L.; Sun, Shu-Ming

    2016-06-01

    We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions of the linearized equations decay at an exponential rate in an energy norm with exponential weight translated with the wave profile. This holds for all solutions with no component in (that is, symplectically orthogonal to) the two-dimensional neutral-mode space arising from infinitesimal translational and wave-speed variation of solitary waves. We also obtain spectral stability in an unweighted energy norm.

  2. Asymptotic theory of quantum statistical inference

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito

    Part I: Hypothesis Testing: Introduction to Part I -- Strong Converse and Stein's lemma in quantum hypothesis testing/Tomohiro Ogawa and Hiroshi Nagaoka -- The proper formula for relative entropy and its asymptotics in quantum probability/Fumio Hiai and Dénes Petz -- Strong Converse theorems in Quantum Information Theory/Hiroshi Nagaoka -- Asymptotics of quantum relative entropy from a representation theoretical viewpoint/Masahito Hayashi -- Quantum birthday problems: geometrical aspects of Quantum Random Coding/Akio Fujiwara -- Part II: Quantum Cramèr-Rao Bound in Mixed States Model: Introduction to Part II -- A new approach to Cramèr-Rao Bounds for quantum state estimation/Hiroshi Nagaoka -- On Fisher information of Quantum Statistical Models/Hiroshi Nagaoka -- On the parameter estimation problem for Quantum Statistical Models/Hiroshi Nagaoka -- A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to Quantum Estimation Theory/Hiroshi Nagaoka -- A linear programming approach to Attainable Cramèr-Rao Type Bounds/Masahito Hayashi -- Statistical model with measurement degree of freedom and quantum physics/Masahito Hayashi and Keiji Matsumoto -- Asymptotic Quantum Theory for the Thermal States Family/Masahito Hayashi -- State estimation for large ensembles/Richard D. Gill and Serge Massar -- Part III: Quantum Cramèr-Rao Bound in Pure States Model: Introduction to Part III-- Quantum Fisher Metric and estimation for Pure State Models/Akio Fujiwara and Hiroshi Nagaoka -- Geometry of Quantum Estimation Theory/Akio Fujiwara -- An estimation theoretical characterization of coherent states/Akio Fujiwara and Hiroshi Nagaoka -- A geometrical approach to Quantum Estimation Theory/Keiji Matsumoto -- Part IV: Group symmetric approach to Pure States Model: Introduction to Part IV -- Optimal extraction of information from finite quantum ensembles/Serge Massar and Sandu Popescu -- Asymptotic Estimation Theory for a Finite-Dimensional Pure

  3. Chiral fermions in asymptotically safe quantum gravity

    NASA Astrophysics Data System (ADS)

    Meibohm, J.; Pawlowski, J. M.

    2016-05-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  4. Rubidium-rich asymptotic giant branch stars.

    PubMed

    García-Hernández, D A; García-Lario, P; Plez, B; D'Antona, F; Manchado, A; Trigo-Rodríguez, J M

    2006-12-15

    A long-debated issue concerning the nucleosynthesis of neutron-rich elements in asymptotic giant branch (AGB) stars is the identification of the neutron source. We report intermediate-mass (4 to 8 solar masses) AGB stars in our Galaxy that are rubidium-rich as a result of overproduction of the long-lived radioactive isotope (87)Rb, as predicted theoretically 40 years ago. This finding represents direct observational evidence that the (22)Ne(alpha,n)(25)Mg reaction must be the dominant neutron source in these stars. These stars challenge our understanding of the late stages of the evolution of intermediate-mass stars and would have promoted a highly variable Rb/Sr environment in the early solar nebula. PMID:17095658

  5. An asymptotic approach for assessing fatigue reliability

    SciTech Connect

    Tang, J.

    1996-12-01

    By applying the cumulative fatigue damage theory to the random process reliability problem, and the introduction of a new concept of unified equivalent stress level in fatigue life prediction, a technical reliability model for the random process reliability problem under fatigue failure is proposed. The technical model emphasizes efficiency in the design choice and also focuses on the accuracy of the results. Based on this model, an asymptotic method for fatigue reliability under stochastic process loadings is developed. The proposed method uses the recursive iteration algorithm to achieve results which include reliability and corresponding life. The method reconciles the requirement of accuracy and efficiency for the random process reliability problems under fatigue failure. The accuracy and analytical and numerical efforts required are compared. Through numerical example, the advantage of the proposed method is demonstrated.

  6. The asymptotics of large constrained graphs

    NASA Astrophysics Data System (ADS)

    Radin, Charles; Ren, Kui; Sadun, Lorenzo

    2014-05-01

    We show, through local estimates and simulation, that if one constrains simple graphs by their densities ɛ of edges and τ of triangles, then asymptotically (in the number of vertices) for over 95% of the possible range of those densities there is a well-defined typical graph, and it has a very simple structure: the vertices are decomposed into two subsets V1 and V2 of fixed relative size c and 1 - c, and there are well-defined probabilities of edges, gjk, between vj ∈ Vj, and vk ∈ Vk. Furthermore the four parameters c, g11, g22 and g12 are smooth functions of (ɛ, τ) except at two smooth ‘phase transition’ curves.

  7. Nucleosynthesis in asymptotic giant branch stars

    SciTech Connect

    El Eid, Mounib F.

    2014-05-09

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  8. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  9. Dissipation of atmospheric waves: An asymptotic approach

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.

    2014-05-01

    Wave energy dissipation through irreversible thermodynamic processes is a major factor influencing propagation of acoustic and gravity waves in the Earth's atmosphere. Accurate modeling of the wave dissipation is important in a wide range of problems from understanding the momentum and energy transport by waves into the upper atmosphere to predicting long-range propagation of infrasound to the acoustic remote sensing of mesospheric and thermospheric winds. Variations with height of the mass density, kinematic viscosity, and other physical parameters of the atmosphere have a profound effect on the wave dissipation and its frequency dependence. To characterize the wave dissipation, it is typical to consider an idealized environment, which admits plane-wave solutions. For instance, kinematic viscosity is often assumed to be constant in derivations of dispersion equations of acoustic-gravity waves in the atmosphere. While the assumption of constant shear viscosity coefficient would be much more realistic, it does not lead to plane-wave solutions. Here, we use an asymptotic approach to derivation of dispersion equations of acoustic-gravity waves in dissipative fluids. The approach does not presuppose existence of any plane-wave solutions and relies instead on the assumption that spatial variations of environmental parameters are gradual. The atmosphere is modeled as a neutral, horizontally stratified, moving ideal gas of variable composition. Linearized hydrodynamic equations for compressible fluids in a gravity field are solved asymptotically, leading to a self-consistent version of the Wentzel-Kramers-Brillouin approximation for acoustic-gravity waves. Dissipative processes are found to affect both the eikonal and the geometric (Berry) phase of the wave. Newly found expressions for acoustic-gravity wave attenuation due to viscosity and thermal conductivity of the air are compared to results previously reported in the literature. Effects of the wind on the wave

  10. Perspectives in Occupational Dermatology

    PubMed Central

    Mathias, C. G. Toby; Maibach, Howard I.

    1982-01-01

    Because large surface areas of the skin are exposed directly to the environment, skin is an organ particularly vulnerable to occupationally induced disease. Statistics show that, excluding accidental injury, nearly half of all occupational illnesses occur in this organ; a fourth of all workers suffering from occupational skin disease lose an average of 10 to 12 workdays. The constant evolution of new industrial chemicals and methods of manufacture continue to bring new skin hazards and disease into the workplace. Occupational health physicians and practitioners, who usually have minimal training in dermatology, must diagnose and treat unfamiliar diseases in a setting of even less familiar, often overwhelming, technology. A thorough understanding of cutaneous defense mechanisms, clinical patterns of occupational skin disease and methods for establishing accurate diagnoses is essential. PMID:6219498

  11. Model Occupational Therapy Practice Act

    ERIC Educational Resources Information Center

    American Journal of Occupational Therapy, 1975

    1975-01-01

    The Model Occupational Therapy Practice Act has been assembled by the Government Affairs Department, American Occupational Therapy Association, for use as a guide for affiliate organizations concerned with developing legislation to regulate the practice of occupational therapy. (Author/JA)

  12. Occupations: Military--Civilian Occupational Source Book.

    ERIC Educational Resources Information Center

    Armed Forces Vocational Testing Group, Universal City, TX.

    Information on enlisted military occupations is offered in the source book to arrive at a comprehensive statement of job tasks in the military service and their similarities to jobs in civilian life. Basic information about five areas of the U.S. military services (Army, Navy, Air Force, Marine Corps, and Coast Guard) focuses on their military…

  13. The Occupations of Literacy: Occupational Therapy's Role

    ERIC Educational Resources Information Center

    Frolek Clark, Gloria

    2016-01-01

    Nationally, student proficiency in reading and writing is very low and requires ongoing focus from state and local agencies. With almost 25% of occupational therapists working in early intervention and school settings (AOTA, 2015), their role of facilitating literacy (e.g., reading, writing, speaking and listening) is critical. Occupational…

  14. Asymptotic Formula for Quantum Harmonic Oscillator Tunneling Probabilities

    NASA Astrophysics Data System (ADS)

    Jadczyk, Arkadiusz

    2015-10-01

    Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.

  15. Asymptotic analysis, Working Note No. 1: Basic concepts and definitions

    SciTech Connect

    Garbey, M.; Kaper, H.G.

    1993-07-01

    In this note we introduce the basic concepts of asymptotic analysis. After some comments of historical interest we begin by defining the order relations O, o, and O{sup {number_sign}}, which enable us to compare the asymptotic behavior of functions of a small positive parameter {epsilon} as {epsilon} {down_arrow} 0. Next, we introduce order functions, asymptotic sequences of order functions and more general gauge sets of order functions and define the concepts of an asymptotic approximation and an asymptotic expansion with respect to a given gauge set. This string of definitions culminates in the introduction of the concept of a regular asymptotic expansion, also known as a Poincare expansion, of a function f : (0, {epsilon}{sub o}) {yields} X, where X is a normed vector space of functions defined on a domain D {epsilon} R{sup N}. We conclude the note with the asymptotic analysis of an initial value problem whose solution is obtained in the form of a regular asymptotic expansion.

  16. Asymptotic expansions for the reciprocal of the gamma function

    NASA Astrophysics Data System (ADS)

    Withers, Christopher S.; Nadarajah, Saralees

    2014-05-01

    Asymptotic expansions are derived for the reciprocal of the gamma function. We show that the coefficients of the expansion are the same, up to a sign change, as the asymptotic expansions for the gamma function obtained by exponentiating the expansions of its logarithm due to Stirling and de Moivre. Expressions for the coefficients are given in terms of Bell polynomials.

  17. Asymptotic distribution of stage-grouped population models.

    PubMed

    Zetlaoui, M; Picard, N; Bar-Hen, A

    2006-03-01

    Matrix models are often used to predict the dynamics of size-structured or age-structured populations. The asymptotic behaviour of such models is defined by their malthusian growth rate lambda, and by their stationary distribution w that gives the asymptotic proportion of individuals in each stage. As the coefficients of the transition matrix are estimated from a sample of observations, lambda and w can be considered as random variables whose law depends on the distribution of the observations. The goal of this study is to specify the asymptotic law of lambda and w when using the maximum likelihood estimators of the coefficients of the transition matrix. We prove that lambda and w are asymptotically normal, and the expressions of the asymptotic variance of lambda and of the asymptotic covariance matrix of w are given. The convergence speed of lambda and w towards their asymptotic law is studied using simulations. The results are applied to a real case study that consists of a Usher model for a tropical rain forest in French Guiana. They permit to assess the number of trees to measure to get a given precision on the estimated asymptotic diameter distribution, which is an important information on tropical forest management. PMID:16427655

  18. Analysis of leaching data using asymptotic expansion techniques

    SciTech Connect

    Simonson, S.A.; Machiels, A.J.

    1983-01-01

    Asymptotic analysis constitutes a useful technique to determine the adjustable parameters appearing in mathematical models attempting to reproduce some experimental data. In particular, asymptotic expansions of a leach model proposed by A.J. Machiels and C. Pescatore are used to interpret leaching data from PNL 76-68 glass in terms of corrosion velocities and diffusion coefficients.

  19. Internal spin angular momentum of an asymptotically flat spacetime

    SciTech Connect

    Randono, Andrew; Sloan, David

    2009-08-15

    In this paper we investigate the manner in which the internal spin angular momentum of a spinor field is encoded in the gravitational field at asymptotic infinity. The inclusion of internal spin requires us to reanalyze our notion of asymptotic flatness. In particular, the Poincare symmetry at asymptotic infinity must be replaced by a spin-enlarged Poincare symmetry. Likewise, the generators of the asymptotic symmetry group must be supplemented to account for the internal spin. In the Hamiltonian framework of first-order Einstein-Cartan gravity, the extra generator comes from the boundary term of the Gauss constraint in the asymptotically flat context. With the additional term, we establish the relations among the Noether charges of a Dirac field, the Komar integral, and the asymptotic Arnowitt-Deser-Misner-like geometric integral. We show that by imposing mild restraints on the generating functionals of gauge transformations at asymptotic infinity, the phase space is rendered explicitly finite. We construct the energy-momentum and the new total (spin+orbital) angular momentum boundary integrals that satisfy the appropriate algebra to be the generators of the spin-enlarged Poincare symmetry. This demonstrates that the internal spin is encoded in the tetrad at asymptotic infinity. In addition, we find that a new conserved and (spin-enlarged) Poincare invariant charge emerges that is associated with the global structure of a gauge transformation.

  20. Asymptotic behaviour of the Boltzmann equation as a cosmological model

    NASA Astrophysics Data System (ADS)

    Lee, Ho

    2016-08-01

    As a Newtonian cosmological model the Vlasov-Poisson-Boltzmann system is considered, and a slightly modified Boltzmann equation, which describes the stability of an expanding universe, is derived. Asymptotic behaviour of solutions turns out to depend on the expansion of the universe, and in this paper we consider the soft potential case and will obtain asymptotic behaviour.

  1. Scattering in an external electric field asymptotically constant in time

    SciTech Connect

    Adachi, Tadayoshi; Ishida, Atsuhide

    2011-06-15

    We show the asymptotic completeness for two-body quantum systems in an external electric field asymptotically non-zero constant in time. One of the main ingredients of this paper is to give some propagation estimates for physical propagators generated by time-dependent Hamiltonians which govern the systems under consideration.

  2. Asymptotic approximations to posterior distributions via conditional moment equations

    USGS Publications Warehouse

    Yee, J.L.; Johnson, W.O.; Samaniego, F.J.

    2002-01-01

    We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.

  3. An asymptotic homogenized neutron diffusion approximation. II. Numerical comparisons

    SciTech Connect

    Trahan, T. J.; Larsen, E. W.

    2012-07-01

    In a companion paper, a monoenergetic, homogenized, anisotropic diffusion equation is derived asymptotically for large, 3-D, multiplying systems with a periodic lattice structure [1]. In the present paper, this approximation is briefly compared to several other well known diffusion approximations. Although the derivation is different, the asymptotic diffusion approximation matches that proposed by Deniz and Gelbard, and is closely related to those proposed by Benoist. The focus of this paper, however, is a numerical comparison of the various methods for simple reactor analysis problems in 1-D. The comparisons show that the asymptotic diffusion approximation provides a more accurate estimate of the eigenvalue than the Benoist diffusion approximations. However, the Benoist diffusion approximations and the asymptotic diffusion approximation provide very similar estimates of the neutron flux. The asymptotic method and the Benoist methods both outperform the standard homogenized diffusion approximation, with flux weighted cross sections. (authors)

  4. An asymptotic expansion for energy eigenvalues of anharmonic oscillators

    SciTech Connect

    Gaudreau, Philippe; Slevinsky, Richard M.; Safouhi, Hassan

    2013-10-15

    In the present contribution, we derive an asymptotic expansion for the energy eigenvalues of anharmonic oscillators for potentials of the form V(x)=κx{sup 2q}+ωx{sup 2},q=2,3,… as the energy level n approaches infinity. The asymptotic expansion is obtained using the WKB theory and series reversion. Furthermore, we construct an algorithm for computing the coefficients of the asymptotic expansion for quartic anharmonic oscillators, leading to an efficient and accurate computation of the energy values for n≥6. -- Highlights: •We derived the asymptotic expansion for energy eigenvalues of anharmonic oscillators. •A highly efficient recursive algorithm for computing S{sub k}{sup ′}(z) for WKB. •We contributed to series reversion theory by reverting a new form of asymptotic series. •Our numerical algorithm achieves high accuracy for higher energy levels.

  5. Mechanisms of occupational asthma.

    PubMed

    Maestrelli, Piero; Boschetto, Piera; Fabbri, Leonardo M; Mapp, Cristina E

    2009-03-01

    Inhalation of agents in the workplace can induce asthma in a relatively small proportion of exposed workers. Like nonoccupational asthma, occupational asthma is probably the result of multiple genetic, environmental, and behavioral influences. It is important that occupational asthma be recognized clinically because it has serious medical and socioeconomic consequences. Environmental factors that can affect the initiation of occupational asthma include the intrinsic characteristics of causative agents as well as the influence of the level and route of exposure at the workplace. The identification of host factors, polymorphisms, and candidate genes associated with occupational asthma may improve our understanding of mechanisms involved in asthma. High-molecular-weight compounds from biological sources and low-molecular-weight chemicals cause occupational asthma after a latent period of exposure. Although the clinical, functional, and pathologic features of occupational asthma caused by low-molecular-weight agents resemble those of allergic asthma, the failure to detect specific IgE antibodies against most low-molecular-weight agents has resulted in a search for alternative or complementary physiopathologic mechanisms leading to airway sensitization. Recent advances have been made in the characterization of the immune response to low-molecular-weight agents. In contrast, the mechanism of the type of occupational asthma that occurs without latency after high-level exposure to irritants remains undetermined. PMID:19281901

  6. Occupational cancer in Britain

    PubMed Central

    Chen, Yiqun; Osman, John

    2012-01-01

    Although only a relatively small proportion of cancer is attributable to occupational exposure to carcinogenic agents, the estimated number of deaths due to occupational cancer is high when compared to other deaths due to work-related ill health and injury. However, risk from occupational exposure to carcinogens can be minimised through proportionate but effective risk management. The Health and Safety Executive (HSE) is the regulator of workplace health and safety in Great Britain. As part of its aim to reduce ill health arising from failures to control properly exposure to hazards at work, HSE commissioned the research presented elsewhere in this supplement to enable it to identify priorities for preventing occupational cancer. The research has shown that occupational cancer remains a key health issue and that low-level exposure of a large number of workers to carcinogens is important. The finding that a small number of carcinogens have been responsible for the majority of the burden of occupational cancer provides key evidence in the development of priorities for significant reduction of occupational cancer. Although the research presented in this supplement reflects the consequences of past exposures to carcinogens, occupational cancer remains a problem. The potential for exposure to the agents considered in this research is still present in the workplace and the findings are relevant to prevention of future disease. In this article, the principle approaches for risk reduction are described. It provides supporting information on some of the initiatives already being undertaken, or those being put in place, to reduce occupational cancer in Great Britain. The need also for systematic collection of exposure information and the importance of raising awareness and changing behaviours are discussed. PMID:22710673

  7. Occupational health in Egypt.

    PubMed

    El-Ata, Gehad Ahmed Abo; Arnaout, Said N

    2002-01-01

    This review aims to evaluate current occupational health services (OHS) in Egypt. The authors begin with a background on the geography, population, and economy, and then briefly describe the labor force. They discuss the legislative aspects of OHS (including health insurance) and the environment; OHS training and education; and activities such as research, inspection, environmental monitoring, and management of occupational diseases. Occupational accidents and diseases, registered during 2000, are analyzed. Problems with OHS administration in Egypt are presented, along with relevant countermeasures. Various promotion and support measures for administrative policy are prioritized and discussed. PMID:12028958

  8. [Occupational asthma in Hungary].

    PubMed

    Endre, László

    2015-05-10

    Occupational asthma belongs to communicable diseases, which should be reported in Hungary. During a 24-year period between January 1990 and December 2013, 180 occupational asthma cases were reported in Hungary (52 cases between 1990 and 1995, 83 cases between 1996 and 2000, 40 cases between 2001 and 2006, and 5 cases between 2007 and 2013). These data are unusual, because according to the official report of the National Korányi Pulmonology Institute in Budapest, at least 14,000 new adult asthma cases were reported in every year between 2000 and 2012 in Hungary. Also, international data indicate that at least 2% of adult patients with asthma have occupational asthma and at least 50 out of 1 million employees develop occupational asthma in each year. In 2003, 631 new occupational asthma patients were reported in the United Kingdom, but only 7 cases in Hungary. Because it is unlikely that the occupational environment in Hungary is much better than anywhere else in the world, it seems that not all new occupational asthma cases are reported in Hungary. Of the 180 reported cases in Hungary, 55 were bakers or other workers in flour mills. There were 11 metal-workers, 10 health care assistants, 9 workers dealing with textiles (tailors, dressmakers, workers in textile industry) and 9 employees worked upon leather and animal fur. According to international data, the most unsafe profession is the animal keeper in scientific laboratories, but only 4 of them were reported as having occupational asthma during the studied 24 years in Hungary. Interestingly, 3 museologists with newly-diagnosed occupational asthma were reported in 2003, but not such cases occurred before or after that year. In this paper the Hungarian literature of occupational asthma is summarized, followed by a review on the classification, pathomechanism, clinical presentation, predisposing factors, diagnostics and therapeutic aspects of the disease. Epidemiological data of adult asthma in Hungary and data from

  9. Occupational Titles Including Job Descriptions for Health Occupations Education.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    This alphabetical compilation of 80 occupational titles for health occupations education is taken from the Dictionary of Occupational Titles, (DOT), 4th edition, 1977. An index shows the arrangement of the occupational titles (together with instructional program and DOT code) according to the United States Office of Education code numbers. For…

  10. Occupational Therapy (For Parents)

    MedlinePlus

    ... Ones & When? Smart School Lunches Emmy-Nominated Video "Cerebral Palsy: Shannon's Story" 5 Things to Know About Zika & ... traumatic amputations cancer severe hand injuries multiple sclerosis, cerebral palsy , and other chronic illnesses Occupational therapists might: help ...

  11. Paternal occupation and anencephaly

    SciTech Connect

    Brender, J.D.; Suarez, L. )

    1990-03-01

    It has been suggested that paternal occupational exposures to pesticides and solvents increase the risk of neural tube defects in offspring. With the use of Texas livebirth, fetal death, and linked livebirth-death records, the authors conducted a population-based case-control study among 1981-1986 Texas births to examine the association between paternal occupation and anencephalic births. Fathers employed in occupations associated with solvent exposure were more likely to have offspring with anencephaly (odds ratio (OR) = 2.53), with painters having the highest risk (OR = 3.43). A lesser association was found for fathers employed in occupations involving pesticide exposure (OR = 1.28). Further studies are indicated to clarify these associations.

  12. Occupational Noise Exposure

    MedlinePlus

    ... OF LABOR Occupational Safety and Health Administration 200 Constitution Ave., NW, Washington, DC 20210 800-321-6742 (OSHA) TTY www.OSHA.gov FEDERAL GOVERNMENT White House Affordable Care Act Disaster Recovery ...

  13. Occupational health in China.

    PubMed

    Christiani, David C; Tan, Xiaodong; Wang, Xiaorong

    2002-01-01

    China has been experiencing rapid industrialization and economic growth, resulting in a transformed industrial structure and expansion of the labor force. Occupational health and safety services, nonexistent before 1949, have made remarkable advances over the past decades. However, these services face greater challenges, consisting of both traditional and new occupational health problems. Poorly regulated work environments often lacking health services in recently developed and thriving small-scale industries and joint venture enterprises have created increasing risks for occupational diseases and work-related injuries. A special strategy based on cooperation among and contributions from the legal, administrative, social, economic, and scientific communities is critical to achieving the ultimate goal of control and prevention of these occupational health problems. PMID:12028948

  14. On the physical mechanism underlying asymptotic safety

    NASA Astrophysics Data System (ADS)

    Nink, Andreas; Reuter, Martin

    2013-01-01

    We identify a simple physical mechanism which is at the heart of Asymptotic Safety in Quantum Einstein Gravity (QEG) according to all available effective average action-based investigations. Upon linearization the gravitational field equations give rise to an inverse propagator for metric fluctuations comprising two pieces: a covariant Laplacian and a curvature dependent potential term. By analogy with elementary magnetic systems they lead to, respectively, dia- and paramagnetic-type interactions of the metric fluctuations with the background gravitational field. We show that above 3 spacetime dimensions the gravitational antiscreening occurring in QEG is entirely due to a strong dominance of the ultralocal paramagnetic interactions over the diamagnetic ones that favor screening. (Below 3 dimensions both the dia- and paramagnetic effects support antiscreening.) The spacetimes of QEG are interpreted as a polarizable medium with a "paramagnetic" response to external perturbations, and similarities with the vacuum state of Yang-Mills theory are pointed out. As a by-product, we resolve a longstanding puzzle concerning the beta function of Newton's constant in 2 + ɛ dimensional gravity.

  15. Asymptotic Dynamics of Inertial Particles with Memory

    NASA Astrophysics Data System (ADS)

    Langlois, Gabriel Provencher; Farazmand, Mohammad; Haller, George

    2015-12-01

    Recent experimental and numerical observations have shown the significance of the Basset-Boussinesq memory term on the dynamics of small spherical rigid particles (or inertial particles) suspended in an ambient fluid flow. These observations suggest an algebraic decay to an asymptotic state, as opposed to the exponential convergence in the absence of the memory term. Here, we prove that the observed algebraic decay is a universal property of the Maxey-Riley equation. Specifically, the particle velocity decays algebraically in time to a limit that is {O}(ɛ )-close to the fluid velocity, where 0<ɛ ≪ 1 is proportional to the square of the ratio of the particle radius to the fluid characteristic length scale. These results follow from a sharp analytic upper bound that we derive for the particle velocity. For completeness, we also present a first proof of the global existence and uniqueness of mild solutions to the Maxey-Riley equation, a nonlinear system of fractional differential equations.

  16. Asymptotic dynamics of reflecting spiral waves.

    PubMed

    Langham, Jacob; Biktasheva, Irina; Barkley, Dwight

    2014-12-01

    Resonantly forced spiral waves in excitable media drift in straight-line paths, their rotation centers behaving as pointlike objects moving along trajectories with a constant velocity. Interaction with medium boundaries alters this velocity and may often result in a reflection of the drift trajectory. Such reflections have diverse characteristics and are known to be highly nonspecular in general. In this context we apply the theory of response functions, which via numerically computable integrals, reduces the reaction-diffusion equations governing the whole excitable medium to the dynamics of just the rotation center and rotation phase of a spiral wave. Spiral reflection trajectories are computed by this method for both small- and large-core spiral waves in the Barkley model. Such calculations provide insight into the process of reflection as well as explanations for differences in trajectories across parameters, including the effects of incidence angle and forcing amplitude. Qualitative aspects of these results are preserved far beyond the asymptotic limit of weak boundary effects and slow resonant drift. PMID:25615159

  17. Asymptotic safety of gravity-matter systems

    NASA Astrophysics Data System (ADS)

    Meibohm, J.; Pawlowski, J. M.; Reichert, M.

    2016-04-01

    We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalization group setup put forward in [N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev. D 92, 121501 (2015).] for pure gravity. It includes full dynamical propagators and a genuine dynamical Newton's coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.

  18. Extended Analytic Device Optimization Employing Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  19. Asymptotic unitary equivalence in C*-algebras

    NASA Astrophysics Data System (ADS)

    Lin, H.; Niu, Z.

    2015-07-01

    Let C = C( X) be the unital C*-algebra of all continuous functions on a finite CW complex X and let A be a unital simple C*-algebra with tracial rank at most one. We show that two unital monomorphisms φ, ψ: C → A are asymptotically unitarily equivalent, i.e., there exists a continuous path of unitaries { u t : t ∈ [0, 1)} ⊂ A such that lim t→1 u* t φ( f) u t = ψ( f) for all f ∈ C( X) if and only if [ φ] = [ ψ] in KK( C, A), τ ◦ φ = τ ◦ ψ for all τ ∈ T( A), and φ † = ψ †, where T( A) is the simplex of tracial states of A and φ †, ψ †: U ∞( C)/ DU ∞( C) → U ∞( A)/ DU ∞( A) are the induced homomorphisms and where U ∞( A) = ∪ k=1 ∞ U( M k ( A)) and U ∞(C) = ∪ k=1 ∞ ( M k ( C)) are usual infinite unitary groups, respectively, and DU ∞( A) and DU ∞( C) are the commutator subgroups of U ∞( A) and U ∞( C), respectively. We actually prove a more general result for the case in which C is any general unital AH-algebra.

  20. Occupational health in Mexico.

    PubMed

    Carreón, Tania; Santos-Burgoa, Carlos; Baron, Sherry; Hernández, Sendy

    2002-01-01

    The authors discuss the maquiladoras and child labor, and offer an overview of the history of occupational safety and health in Mexico that covers laws and regulations, social security, unions, and enforcement of legislation. The organization and structure of the various institutions responsible for occupational safety and health (OSH), as well as administrative procedures, are described. This article concludes with a list of the new challenges for OSH in Mexico. PMID:12028953

  1. Occupational health in Malaysia.

    PubMed

    Rampal, Krishna Gopal; Aw, Tar-Ching; Jefferelli, Shamsul Bahrin

    2002-01-01

    This article provides a detailed examination of Malaysian occupational health agencies and their roles in formulating and enforcing standards, promoting occupational health and safety (OSH), and providing advisory services. Available OSH training is described, and the need for policies and personnel in various industries is outlined. Further, the authors discuss how international models and collaboration have influenced Malaysian OSH, and how some successes can be repeated and failures remedied. PMID:12028951

  2. Occupational cancer in Spain.

    PubMed Central

    González, C A; Agudo, A

    1999-01-01

    The knowledge of specific problems of occupational cancer in Spain is scarce. The environment of the workplace has improved over the last few years after a long period distinguished by bad working conditions, incomplete legislation, and insufficient safety measures and control. It has been estimated that 3,083,479 workers (25.4% of employees) were exposed to carcinogens. The most common occupational exposures to carcinogenic agents were solar radiation, environmental tobacco smoke, silica, and wood dust. The highest number of employees were exposed to silica crystalline (404,729), diesel engine exhaust (274,321), rubber products (99,804), benzene (89,932), ethylene dibromide (81,336), agents used in furniture and cabinet making (72,068), and formaldehyde (71,189). The percentage of total cancer deaths attributed to occupational exposure was 4% (6% in men, 0.9% in women). Compared with other European countries, the incidence of lung cancer and leukemia in Spain are one of the lowest, but it is rapidly increasing. The incidence of urinary bladder and larynx cancer, on the contrary, are one of the highest. Few studies on occupational cancer have been conducted in Spain. The main problems are the availability of death certificates and the quality of the information on occupation in mortality of statistics. It is necessary to improve methods of assessment of exposures using expert hygienists and biologic markers of exposure and diseases. Reduction of cancer by limiting or avoiding exposure to known occupational carcinogens is still necessary. PMID:10350510

  3. Secondary Health Occupations Education Curriculum.

    ERIC Educational Resources Information Center

    Matzen, Shelley; Muhl, V. Jane

    This color coded curriculum guide for secondary health occupations in Iowa provides units for the first phase of the curriculum, career exploration of the health occupations. The nine units cover the following topics: (1) introduction to health occupations; (2) health occupations career exploration; (3) communication skills; (4) self-care and…

  4. Occupational health in Brazil.

    PubMed

    Bedrikow, B; Algranti, E; Buschinelli, J T; Morrone, L C

    1997-01-01

    Brazil is a recently industrialised country with marked contrasts in social and economic development. The availability of public/private services in its different regions also varies. Health indicators follow these trends. Occupational health is a vast new field, as in other developing countries. Occupational medicine is a required subject in graduation courses for physicians. Specialisation courses for university graduated professionals have more than 700 hours of lectures and train occupational health physicians, safety engineers and nursing staff. At the technical level, there are courses with up to 1300 hours for the training of safety inspectors. Until 1986 about 19,000 occupational health physicians, 18,000 safety engineers and 51,000 safety inspectors had been officially registered. Although in its infancy, postgraduation has attracted professionals at university level, through residence programmes as well as masters and doctors degrees, whereby at least a hundred good-quality research studies have been produced so far. Occupational health activities are controlled by law. Undertakings with higher risks and larger number of employees are required to hire specialised technical staff. In 1995 the Ministry of Labour demanded programmes of medical control of occupational health (PCMSO) for every worker as well as a programme of prevention of environmental hazards (PPRA). This was considered as a positive measure for the improvement of working conditions and health at work. Physicians specialising in occupational medicine are the professionals more often hired by the enterprises. Reference centres (CRSTs) for workers' health are connected to the State or City Health Secretariat primary health care units. They exist in more populated areas and are accepted by workers as the best way to accomplish the diagnosis of occupational diseases. There is important participation by the trade unions in the management of these reference centres. For 30 years now employers

  5. Coulomb string tension, asymptotic string tension, and the gluon chain

    SciTech Connect

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  6. The asymptotic distribution of maxima in bivariate samples

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.; Tsokos, C. P.

    1973-01-01

    The joint distribution (as n tends to infinity) of the maxima of a sample of n independent observations of a bivariate random variable (X,Y) is studied. A method is developed for deriving the asymptotic distribution of the maxima, assuming that X and Y possess asymptotic extreme-value distributions and that the probability element dF(x,y) can be expanded in a canonical series. Applied both to the bivariate normal distribution and to the bivariate gamma and compound correlated bivariate Poisson distributions, the method shows that maxima from all these distributions are asymptotically uncorrelated.

  7. Semilocal density functional theory with correct surface asymptotics

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio

    2016-03-01

    Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.

  8. Asymptotic behavior of curvature of surface elements in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.

    1991-01-01

    The asymptotic behavior of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. Several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times, the (first five) moments of the logarithm of characteristic curvature and shape factor asymptote to values that are independent of the initial curvature or shape. This evidence strongly suggests that the asymptotic pdf's of the curvature and shape of material elements are stationary and independent of initial conditions. Irrespective of initial curvature or shape, the asymptotic shape of a material surface is cylindrical with a high probability.

  9. Asymptotic analysis of the Boltzmann equation for dark matter relics

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Sarkar, Sarben

    2012-10-01

    This paper presents an asymptotic analysis of the Boltzmann equations (Riccati differential equations) that describe the physics of thermal dark-matter-relic abundances. Two different asymptotic techniques are used, boundary-layer theory, which makes use of asymptotic matching, and the delta expansion, which is a powerful technique for solving nonlinear differential equations. Two different Boltzmann equations are considered. The first is derived from general relativistic considerations and the second arises in dilatonic string cosmology. The global asymptotic analysis presented here is used to find the long-time behavior of the solutions to these equations. In the first case, the nature of the so-called freeze-out region and the post-freeze-out behavior is explored. In the second case, the effect of the dilaton on cold dark-matter abundances is calculated and it is shown that there is a large-time power-law fall off of the dark-matter abundance.

  10. Asymptotic Safety of the CARTAN Induced Four-Fermion Interaction?

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2015-01-01

    The difference between Einstein's general relativity and its Cartan extension is analyzed within the scenario of asymptotic safety. In particular, the four-fermion interaction is studied which distinguishes the Einstein-Cartan theory from its Riemannian limit.

  11. Asymptotics for the Covariance of the Airy2 Process

    NASA Astrophysics Data System (ADS)

    Shinault, Gregory; Tracy, Craig A.

    2011-04-01

    In this paper we compute some of the higher order terms in the asymptotic behavior of the two point function {P}({A}2(0)≤ s1,A2(t)≤ s2), extending the previous work of Adler and van Moerbeke (arXiv:math.PR/0302329; Ann. Probab. 33, 1326-1361, 2005) and Widom (J. Stat. Phys. 115, 1129-1134, 2004). We prove that it is possible to represent any order asymptotic approximation as a polynomial and integrals of the Painlevé II function q and its derivative q'. Further, for up to tenth order we give this asymptotic approximation as a linear combination of the Tracy-Widom GUE density function f 2 and its derivatives. As a corollary to this, the asymptotic covariance is expressed up to tenth order in terms of the moments of the Tracy-Widom GUE distribution.

  12. Asymptotic formula for eigenvalues of one dimensional Dirac system

    NASA Astrophysics Data System (ADS)

    Ulusoy, Ismail; Penahlı, Etibar

    2016-06-01

    In this paper, we study the spectral problem for one dimensional Dirac system with Dirichlet boundary conditions. By using Counting lemma, we give an asymptotic formulas of eigenvalues of Dirac system.

  13. Quick asymptotic expansion aided by a variational principle

    SciTech Connect

    Hameiri, Eliezer

    2013-02-15

    It is shown how expanding asymptotically a variational functional can yield the asymptotic expansion of its Euler equation. The procedure is simple but novel and requires taking the variation of the expanded functional with respect to the leading order of the originally unknown function, even though the leading order of this function has already been determined in a previous order. An example is worked out that of a large aspect ratio tokamak plasma equilibrium state with relatively strong flows and high plasma beta.

  14. Asymptotic relation between Bell-inequality violations and entanglement distillability

    SciTech Connect

    Kwon, Younghun

    2010-11-15

    We investigate the asymptotic relation between violations of the Mermin-Belinskii-Klyshko inequality and the entanglement distillability of multipartite entangled states, as the number of parties increases. We in particular consider noisy multiqubit GHZ and so-called Duer states in the Mermin-Belinskii-Klyshko inequality, and show that, in the asymptotic limit of the number of parties, the violation of the inequality implies the distillability in almost all bipartitions.

  15. Asymptotic-induced numerical methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Garbey, Marc; Scroggs, Jeffrey S.

    1990-01-01

    Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.

  16. [Occupational epidemiology in Italy].

    PubMed

    Assennato, G; Bisceglia, L

    2003-01-01

    The development of Occupational Epidemiology in Italy is closely correlated with the political and social awareness of the needs of preventive strategies in the workplace. In the late '60s the Trade Unions supported a model of intervention based on the involvement of the so-called "Homogeneous group of workers" in the validation of the preventive measures taken on the workplace. In spite of the shortcomings of the model, it was extremely effective resulting in enhanced perception of the priority of preventive strategies and in the formation within the National Health Service of the Occupational Health Services. In Italy over the period 1973-2002 there has been an impressive trend of research in field of occupational epidemiology (a search on Medline shows an increasing trend over the years and, in terms of international comparison, higher figures than in Germany, France and Spain). Occupational Epidemiology is now present in the activities of the local Occupational Health Services and in the teaching activities of the Medical Schools throughout the country. PMID:14582235

  17. Occupational health in Argentina.

    PubMed

    Werner, A F

    2000-07-01

    Argentina is within the denominated "new industrialised countries", with the characteristic of having high contrasts in the urban population, based on service and industry, and in the rural population, based on agriculture and cattle, still the main sources of wealth in the country. The process of globalisation and the need to compete hard in international markets have provoked high unemployment and the transfer of workers from a formal market to an informal one. Legislation on occupational health is old and it is in the process of being updated. The system of prevention, assistance and compensation for accidents at work and for occupational illnesses has changed from being optative for employers, to the compulsory hiring of private insurance companies. The Government keeps the role of supervisor of the system. There are enough professionals in occupational health, hygiene and safety but not occupational nurses. The teaching is given by many universities and professional associations, some of which have an active profile in the occupational health of the country. PMID:10963410

  18. Occupation and gastric cancer.

    PubMed

    Raj, A; Mayberry, J F; Podas, T

    2003-05-01

    Gastric cancer is a cause of significant morbidity and mortality. There are several risk factors, with occupation emerging as one of these. There is considerable evidence that occupations in coal and tin mining, metal processing, particularly steel and iron, and rubber manufacturing industries lead to an increased risk of gastric cancer. Other "dusty" occupations-for example, wood processing, or work in high temperature environments have also been implicated but the evidence is not strong. The mechanism of pathogenesis of gastric cancer is unclear and the identification of causative agents can be difficult. Dust is thought to be a contributor to the pathological process, but well known carcinogens such as N-nitroso compounds have been detected in some environments. Further research on responsible agents is necessary and screening for detection of precursor gastric cancer lesions at the workplace merits consideration. PMID:12782770

  19. Occupational Cohort Time Scales

    PubMed Central

    Roth, H. Daniel

    2015-01-01

    Purpose: This study explores how highly correlated time variables (occupational cohort time scales) contribute to confounding and ambiguity of interpretation. Methods: Occupational cohort time scales were identified and organized through simple equations of three time scales (relational triads) and the connections between these triads (time scale web). The behavior of the time scales was examined when constraints were imposed on variable ranges and interrelationships. Results: Constraints on a time scale in a triad create high correlations between the other two time scales. These correlations combine with the connections between relational triads to produce association paths. High correlation between time scales leads to ambiguity of interpretation. Conclusions: Understanding the properties of occupational cohort time scales, their relational triads, and the time scale web is helpful in understanding the origins of otherwise obscure confounding bias and ambiguity of interpretation. PMID:25647318

  20. Occupational lung cancer

    SciTech Connect

    Coultas, D.B.; Samet, J.M. )

    1992-06-01

    The overall importance of occupational agents as a cause of lung cancer has been a controversial subject since the 1970s. A federal report, released in the late 1970s, projected a surprisingly high burden of occupational lung cancer; for asbestos and four other agents, from 61,000 to 98,000 cases annually were attributed to these agents alone. Many estimates followed, some much more conservative. For example, Doll and Peto estimated that 15% of lung cancer in men and 5% in women could be attributed to occupational exposures. A number of population-based case-control studies also provide relevant estimates. In a recent literature review, Vineis and Simonato cited attributable risk estimates for occupation and lung cancer that ranged from 4% to 40%; for asbestos alone, the estimates ranged from 1% to 5%. These estimates would be expected to vary across locations and over time. Nevertheless, these recent estimates indicate that occupation remains an important cause of lung cancer. Approaches to Prevention. Prevention of lung cancer mortality among workers exposed to agents or industrial processes that cause lung cancer may involve several strategies, including eliminating or reducing exposures, smoking cessation, screening, and chemo-prevention. For example, changes in industrial processes that have eliminated or reduced exposures to chloromethyl ethers and nickel compounds have provided evidence of reduced risk of lung cancer following these changes. Although occupational exposures are important causes of lung cancer, cigarette smoking is the most important preventable cause of lung cancer. For adults, the work site offers an important location to target smoking cessation efforts. In fact, the work site may be the only place to reach many smokers.

  1. Stardust from Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-06-01

    The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ≈ 0.008 (0.6 × solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ≈ 0.004. Masses of AGB stars that produce C-rich dust are in the range

  2. Occupational Sleep Medicine.

    PubMed

    Cheng, Philip; Drake, Christopher

    2016-03-01

    Sleep and circadian rhythms significantly impact almost all aspects of human behavior and are therefore relevant to occupational sleep medicine, which is focused predominantly around workplace productivity, safety, and health. In this article, 5 main factors that influence occupational functioning are reviewed: (1) sleep deprivation, (2) disordered sleep, (3) circadian rhythms, (4) common medical illnesses that affect sleep and sleepiness, and (5) medications that affect sleep and sleepiness. Consequences of disturbed sleep and sleepiness are also reviewed, including cognitive, emotional, and psychomotor functioning and drowsy driving. PMID:26972034

  3. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    PubMed Central

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID

  4. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.

    PubMed

    King, Richard B; Stanford, Kristin M; Jones, Peter C; Bekker, Kent

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID:26730712

  5. Asymptotics of bivariate generating functions with algebraic singularities

    NASA Astrophysics Data System (ADS)

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  6. Occupational Orientation: Applied Biological and Agricultural Occupations. Experimental Curriculum Materials.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield.

    These experimental curriculum materials, from one of five clusters developed for the occupational orientation program in Illinois, include a series of learning activity packages (LAPs) designed to acquaint the student with the wide range of occupational choices available in the applied biological and agricultural occupations. The 30 LAPs, each…

  7. British Communicator Occupations.

    ERIC Educational Resources Information Center

    Tunstall, Jeremy

    Occupations and organizations within the British press and broadcasting systems are examined in this paper. Its sections summarize recent British research on media communicators and discuss characteristics of craft unions and other media organizations; the historical development of the British press; the British Broadcasting Corporation (BBC) and…

  8. Hospitality Occupations. Curriculum Guide.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Homemaking Education.

    This curriculum guide on the hospitality occupations was developed to help secondary and postsecondary home economics teachers prepare individuals for entry-level jobs in the hospitality industry. The content is in seven sections. The first section presents organizational charts of a medium-size hotel, food and beverage division, housekeeping and…

  9. Occupational Diseases in Korea

    PubMed Central

    Kim, Eun A

    2010-01-01

    Korea has industrialized since the 1970s. Pneumoconiosis in coal miners was the most common occupational disease in the 1970s to 1980s. With the industrialization, the use of many chemicals have increased since the 1970s. As a consequence, there were outbreaks of occupational diseases caused by poisonous chemicals, such as heavy metal poisoning, solvent poisoning and occupational asthma in the late 1980s and early 1990s with civil movement for democracy. Many actions have been taken for prevention by the government, employers and employees or unions. In the 1990s most chemical related diseases and pneumoconiosis have rapidly decreased due to improving work environment. In the late 1990s, cerebro-cardiovascular diseases related to job stress or work overloads have abruptly increased especially after the economic crisis in 1998. After the year 2000, musculoskeletal disorders became a major problem especially in assembly lines in the manufacturing industry and they were expanded to the service industry. Mental diseases related to job stress have increased. Infectious diseases increased in health care workers and afforestation workers. Occupational cancers are increasing because of their long latency, although the use of carcinogenic substances are reduced, limited, and even banned. PMID:21258589

  10. Evaluating Occupational Programs.

    ERIC Educational Resources Information Center

    Long, James P.

    1987-01-01

    Stresses the importance of evaluating occupational programs on a regular basis. Offers a brief explanation of the approaches to program evaluation taken at the Dallas County Community College District (TX), South Puget Sound Community College (WA), and Triton College (IL). Offers a list of references on program evaluation. (CBC)

  11. Occupational Literacy Education.

    ERIC Educational Resources Information Center

    Rush, R. Timothy; And Others

    Intended for teachers of adult basic education as well as teachers in job retraining programs, this book focuses on the development of written and oral language competencies required in occupational and training settings. The first four chapters offer a concise synthesis of recent research on adult learning and on workplace literacy for ten…

  12. Occupational skin disease.

    PubMed

    Peate, W E

    2002-09-15

    Contact dermatitis, the most common occupational skin disease, is characterized by clearly demarcated areas of rash at sites of exposure. The rash improves on removal of the offending agent. In allergic contact dermatitis, even minute exposures to antigenic substances can lead to a skin rash. Common sensitizing agents include nickel and members of the Rhus genus (e.g., poison ivy, poison oak). Severe skin irritants tend to cause immediate red blisters or burns, whereas weaker irritants produce eczematous skin changes over time. An occupational cause should be suspected when rash occurs in areas that are in contact with oil, grease, or other substances. Direct skin testing (patch or scratch) or radioallergosorbent testing may help to identify a specific trigger. Skin cancer can have an occupational link in workers with prolonged exposure to sunlight and certain chemicals, although it can take decades for lesions to develop. In workers with occupational skin disease, workplace changes and protective measures are important to prevent future exposure. PMID:12358214

  13. Occupational diseases in Korea.

    PubMed

    Kang, Seong-Kyu; Kim, Eun A

    2010-12-01

    Korea has industrialized since the 1970s. Pneumoconiosis in coal miners was the most common occupational disease in the 1970s to 1980s. With the industrialization, the use of many chemicals have increased since the 1970s. As a consequence, there were outbreaks of occupational diseases caused by poisonous chemicals, such as heavy metal poisoning, solvent poisoning and occupational asthma in the late 1980s and early 1990s with civil movement for democracy. Many actions have been taken for prevention by the government, employers and employees or unions. In the 1990s most chemical related diseases and pneumoconiosis have rapidly decreased due to improving work environment. In the late 1990s, cerebro-cardiovascular diseases related to job stress or work overloads have abruptly increased especially after the economic crisis in 1998. After the year 2000, musculoskeletal disorders became a major problem especially in assembly lines in the manufacturing industry and they were expanded to the service industry. Mental diseases related to job stress have increased. Infectious diseases increased in health care workers and afforestation workers. Occupational cancers are increasing because of their long latency, although the use of carcinogenic substances are reduced, limited, and even banned. PMID:21258589

  14. Occupational Clothing Curriculum.

    ERIC Educational Resources Information Center

    Fraser, Annette J.

    Designed to provide individualized, hands-on experience for secondary or postsecondary students in gainful homemaking programs, this occupational clothing curriculum contains eight learning modules. The following topics are covered in the modules: plant production for the needle trades (needle trade structure and operation, terminology, history,…

  15. Occupational Training in Industry.

    ERIC Educational Resources Information Center

    Stromsdorfer, Ernst W.; Barclay, Suzanne

    A significant amount of on-the-job occupational training is occurring in the private sector, though the data on its extent and nature are extremely sketchy. Estimates of total economic costs in the 1974-75 period range from a crude measure of 100 billion dollars to one that is somewhat more reliable of about 40 to 50 billion dollars. Most of this…

  16. Occupational Burnout among Librarians.

    ERIC Educational Resources Information Center

    Haack, Mary; And Others

    1984-01-01

    Outlines stages of occupational burnout (enthusiasm, stagnation, frustration, apathy) and begins empirical assessment of burnout syndrome among librarians and other information professionals. Results of pilot survey conducted at one-day conference on reference service using two measures (Staff Burnout Scale for Health Professionals, projective…

  17. Pharmacist. Occupational Simulation Kit.

    ERIC Educational Resources Information Center

    Parsley, Nancy

    This career exploration instructional booklet on the pharmacist's occupation is one of several resulting from the rural southwestern Colorado CEPAC Project (Career Education Process of Attitude Change). Based on a job analysis and utilizing a programed instructional format, the following content is included: A brief description of two real…

  18. Marketing Occupations. Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This cluster guide, which is designed to show teachers what specific knowledge and skills qualify high school students for entry-level employment (or postsecondary training) in marketing occupations, is organized into three sections: (1) cluster organization and implementation, (2) instructional emphasis areas, and (3) assessment. The first…

  19. Occupational Hazards of Farming

    PubMed Central

    White, Gill; Cessna, Allan

    1989-01-01

    A number of occupational hazards exist for the farmer and farm worker. They include the hazards of farm machinery, biologic and chemical hazards, and social and environmental stresses. Recognizing of these hazards will help the family physician care for farmers and their families. PMID:21248929

  20. Foodservice Occupations Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    Intended to assist vocational teachers in developing and implementing a cluster program in food service occupations, this guide contains sections on cluster organization and implementation and instructional emphasis areas. The cluster organization and implementation section covers goal-based planning and includes a proposed cluster curriculum, a…

  1. Marketing occupational therapy.

    PubMed

    Jacobs, K

    1987-05-01

    Marketing is emerging as an important aspect of the delivery of health care services, including occupational therapy. An understanding of marketing and a knowledge of how to apply its principles will permit therapists to keep pace with the changing health care environment. This article introduces terminology, strategies, and applications of marketing. PMID:3688145

  2. Nursing. Occupational Simulation Kit.

    ERIC Educational Resources Information Center

    Robb, Mary Kaye

    This career exploration instructional booklet on nursing as an occupation is one of several resulting from the rural southwestern Colorado CEPAC Project (Career Education Process of Attitude Change). Based on a job analysis and utilizing a programed instructional format, the following content is included: A brief description of what nursing is; 14…

  3. Health Occupations. Nursing Assistant.

    ERIC Educational Resources Information Center

    Megow, Joye G.

    Materials contained in this package are designed for use with students interested in the occupation of nurses aide. The package has two sections, one which looks closely at the job and the student, and the other--the curriculum phase--which concerns actual student use of learning activity packages (LAPs). These two components together form a "job…

  4. Health Occupations Cluster.

    ERIC Educational Resources Information Center

    Walraven, Catherine; And Others

    These instructional materials consist of a series of curriculum worksheets that cover tasks to be mastered by students in health occupations cluster programs. Covered in the curriculum worksheets are diagnostic procedures; observing/recording/reporting/planning; safety; nutrition/elimination; hygiene/personal care/comfort;…

  5. Occupational cancer in Britain

    PubMed Central

    Van Tongeren, Martie; Jimenez, Araceli S; Hutchings, Sally J; MacCalman, Laura; Rushton, Lesley; Cherrie, John W

    2012-01-01

    To estimate the current occupational cancer burden due to past exposures in Britain, estimates of the number of exposed workers at different levels are required, as well as risk estimates of cancer due to the exposures. This paper describes the methods and results for estimating the historical exposures. All occupational carcinogens or exposure circumstances classified by the International Agency for Research on Cancer as definite or probable human carcinogens and potentially to be found in British workplaces over the past 20–40 years were included in this study. Estimates of the number of people exposed by industrial sector were based predominantly on two sources of data, the CARcinogen EXposure (CAREX) database and the UK Labour Force Survey. Where possible, multiple and overlapping exposures were taken into account. Dose–response risk estimates were generally not available in the epidemiological literature for the cancer–exposure pairs in this study, and none of the sources available for obtaining the numbers exposed provided data by different levels of exposure. Industrial sectors were therefore assigned using expert judgement to ‘higher'- and ‘lower'-exposure groups based on the similarity of exposure to the population in the key epidemiological studies from which risk estimates had been selected. Estimates of historical exposure prevalence were obtained for 41 carcinogens or occupational circumstances. These include exposures to chemicals and metals, combustion products, other mixtures or groups of chemicals, mineral and biological dusts, physical agents and work patterns, as well as occupations and industries that have been associated with increased risk of cancer, but for which the causative agents are unknown. There were more than half a million workers exposed to each of six carcinogens (radon, solar radiation, crystalline silica, mineral oils, non-arsenical insecticides and 2,3,7,8-tetrachlorodibenzo-p-dioxin); other agents to which a large

  6. Occupational Roles in Children's Literature

    ERIC Educational Resources Information Center

    Hillman, Judith Stevinson

    1976-01-01

    Compares children's literature of the 1930s and that of recent times in terms of occupational roles and sex typing. Little change was found in number or type of women's occupations despite the recent political, social and economic changes. (MS)

  7. Occupational Therapist Assistants and Aides

    MedlinePlus

    ... 700 [ XLSX ] <- Pay State & Area Data -> State & Area Data About this section Occupational Employment Statistics (OES) The ... the major industries employing the occupation. State & Area Data The State and Area Data tab provides links ...

  8. Identifying Occupationally Specific Affective Behaviors.

    ERIC Educational Resources Information Center

    Pucel, David J.

    1993-01-01

    Data from two groups of cosmetology instructors (n=15) and two groups of machinist instructors (n=17) validated the Occupational Affective Behavior Analysis instrument as capable of identifying affective behaviors viewed as important to success in a given occupation. (SK)

  9. Conserved Charges in Asymptotically (Locally) AdS Spacetimes

    NASA Astrophysics Data System (ADS)

    Marolf, Donald; Kelly, William; Fischetti, Sebastian

    When a physical system is complicated and nonlinear, global symmetries and the associated conserved quantities provide some of the most powerful analytic tools to understand its behavior. This is as true in theories with a dynamical spacetime metric as for systems defined on a fixed spacetime background. Chapter 17, 10.1007/978-3-642-41992-8_17 has already discussed the so-called Arnowitt-Deser-Misner (ADM) conserved quantities for asymptotically flat dynamical spacetimes, exploring in detail certain subtleties related to diffeomorphism invariance. In particular, it showed that the correct notion of global symmetry is given by the so-called asymptotic symmetries; equivalence classes of diffeomorphisms with the same asymptotic behavior at infinity. It was also noted that the notion of asymptotic symmetry depends critically on the choice of boundary conditions. Indeed, it is the imposition of boundary conditions that causes the true gauge symmetries to be only a subset of the full diffeomorphism group and thus allows the existence of nontrivial asymptotic symmetries at all.

  10. Superradiant instabilities of asymptotically anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.

    2016-06-01

    We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino–Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.

  11. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    NASA Astrophysics Data System (ADS)

    An, Ok Song; Cvetič, Mirjam; Papadimitriou, Ioannis

    2016-03-01

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for {N}=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called `subtracted geometries'. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.

  12. Occupational Employment Projections through 1995.

    ERIC Educational Resources Information Center

    Silvestri, George T.; And Others

    1983-01-01

    Presents current and projected occupational employment estimates that were developed by industry and are part of a national industry-occupational employment matrix. The data from this matrix will be the basis of the information in the 1984-85 education of the Occupational Outlook Handbook to be issued in the Spring of 1984. (NRJ)

  13. A Functional Classification of Occupations.

    ERIC Educational Resources Information Center

    McKinlay, Donald Bruce

    The need for more and better manpower information is hampered by the lack of adequate occupational data classification systems. The diversity of interests in occupations probably accounts for the absence of consensus regarding either the general outlines or the specific details of a standardized occupational classification system which would…

  14. Masonry. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP) for masonry occupations contains a competency list verified by expert workers and developed through a modified DACUM (Developing a Curriculum) involving business, industry, labor, and community agency representatives from Ohio. This OCAP identifies the occupational, academic, and employability…

  15. Random time-scale invariant diffusion and transport coefficients.

    PubMed

    He, Y; Burov, S; Metzler, R; Barkai, E

    2008-08-01

    Single particle tracking of mRNA molecules and lipid granules in living cells shows that the time averaged mean squared displacement delta2[over ] of individual particles remains a random variable while indicating that the particle motion is subdiffusive. We investigate this type of ergodicity breaking within the continuous time random walk model and show that delta2[over ] differs from the corresponding ensemble average. In particular we derive the distribution for the fluctuations of the random variable delta2[over ]. Similarly we quantify the response to a constant external field, revealing a generalization of the Einstein relation. Consequences for the interpretation of single molecule tracking data are discussed. PMID:18764430

  16. Scale Invariant Impacts of Valley Fills on Hydrology

    NASA Astrophysics Data System (ADS)

    Zegre, N.; Miller, A. J.

    2014-12-01

    Mountaintop removal mining and valley fill (MTM/VF) is a dominant driver of land cover change, impacting 6.8% of the largely forested 4.86 million ha Appalachian coal fields region. Recent catastrophic flooding and documented biological impairment downstream of MTM/VF has drawn sharp criticism of this practice. Despite its extent, scale, and continued use since the 1970's, the impacts of MTM/VF on hydrology is poorly understood. The goal of this research is to quantify the hydrological impacts of this practice in a headwater and a mesoscale catchment at storm, seasonal, and annual timeframes. Results show a general trend in the conversion of forests to mines, and significant decreases in maximum streamflow and variability, and increases in base flow ratio attributed to valley fills and deep mine drainage. Decreases in variability are shown across spatial and temporal scales having important implications for water quantity and quality.

  17. Scale invariance analysis of the premature ECG signals

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Cheng, Keqiang

    2012-06-01

    The multifractal detrended fluctuation analysis and detrending moving average algorithm were introduced in detail and applied to the study of the multifractal characteristics of the normal signals, the atrial premature beat (APB) signals and the premature ventricular contraction (PVC) signals. By analyzing the generalized Hurst exponents, Renyi exponents and multifractal spectrum and comparing the relation of h∼h(q) for original signals and their shuffled time series, the result indicated that the three signals have multifractality and present long-range correlation in a certain range. According to the mean value of Δα, we found that the strength of the multifractality is varying. The PVC signals is the strongest, and the Normal signals is the weakest. It is useful for clinical practice of medicine to distinguish APB signals with PVC signals.

  18. Scale invariance in the causal approach to renormalization theory

    NASA Astrophysics Data System (ADS)

    Grigore, Dan R.

    2001-06-01

    The dilation invariance is studied in the framework of Epstein-Glaser approach to renormalization theory. Some analogues of the Callan-Symanzik equations are found and they are applied to the scalar field theory and to Yang-Mills models. We find the interesting result that, if all fields of the theory have zero masses, then from purely cohomological consideration, one can obtain the anomalous terms of logarithmic type.

  19. Scale-invariant cascades in turbulence and evolution

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas Ryan

    In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a separation of spatial or temporal scales can enhance selection pressure on parameters that only matter several generations down the line. Because of this, I conclude that the prime candidates for the emergence of novel evolutionary mechanisms are biofilms and things living in oscillating environments. Finally, in the problem of social organization, I show that different types of control hierarchies - leaders or communal decision making - can emerge depending on the relationship between the environment in which members of the social group act and the development and exchange of information.

  20. Classically scale invariant inflation, supermassive WIMPs, and adimensional gravity

    NASA Astrophysics Data System (ADS)

    Farzinnia, Arsham; Kouwn, Seyen

    2016-03-01

    We introduce a minimal and yet comprehensive framework with C P and classical scale symmetries in order to simultaneously address the hierarchy problem, neutrino masses, dark matter, and inflation. One complex gauge singlet scalar and three flavors of the right-handed Majorana neutrinos are added to the standard model content, facilitating the see-saw mechanism, among others. An adimensional theory of gravity (Agravity) is employed, allowing for the trans-Planckian field excursions. The weak and Planck scales are induced by the Higgs portal and the scalar nonminimal couplings, respectively, once a Coleman-Weinberg dynamically generated vacuum expectation value for the singlet scalar is obtained. All scales are free from any mutual quadratic destabilization. The C P symmetry prevents a decay of the pseudoscalar singlet, rendering it a suitable WIMPzilla dark matter candidate with the correct observational relic abundance. Identifying the pseudo-Nambu-Goldstone boson of the (approximate) scale symmetry with the inflaton field, the model accommodates successful slow-roll inflation, compatible with the observational data. We reach the conclusion that a pseudo-Nambu-Goldstone inflaton, within a classically scale-symmetric framework, yields lighter WIMPzillas.

  1. Global scale-invariant dissipation in collisionless plasma turbulence.

    PubMed

    Kiyani, K H; Chapman, S C; Khotyaintsev, Yu V; Dunlop, M W; Sahraoui, F

    2009-08-14

    A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas. PMID:19792654

  2. Scale invariance in the 2003 2005 Iraq conflict

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, Jose; Rodriguez, Eduardo; Urrea, Rafael

    2007-04-01

    The number of reported social systems that apparently display power-law correlations (i.e., scale-free patterns) has increased dramatically in recent years, ranging from city growth and economics to global terrorism. Using the set of violence events in the 2003-2005 Iraq stabilization phase (i.e., from May 1, 2005), existence of scale-free patterns in event fatalities is shown. This property is also present in the tail of distributions of events divided into groups based on the type of used weapon. Lognormal distribution description was also tried, showing the superiority of the power-law function to describe the behavior of heavy tails. Time series for civilian and military fatalities were studied using the so-called detrended fluctuation analysis. Civilian fatalities showed uncorrelated behavior, implying a lack of memory effects on the evolution of daily civilian fatalities. In contrast, military fatalities displayed long-range correlated behavior.

  3. Scale-invariant properties of public-debt growth

    NASA Astrophysics Data System (ADS)

    Petersen, A. M.; Podobnik, B.; Horvatic, D.; Stanley, H. E.

    2010-05-01

    Public debt is one of the important economic variables that quantitatively describes a nation's economy. Because bankruptcy is a risk faced even by institutions as large as governments (e.g., Iceland), national debt should be strictly controlled with respect to national wealth. Also, the problem of eliminating extreme poverty in the world is closely connected to the study of extremely poor debtor nations. We analyze the time evolution of national public debt and find "convergence": initially less-indebted countries increase their debt more quickly than initially more-indebted countries. We also analyze the public debt-to-GDP ratio {\\cal R} , a proxy for default risk, and approximate the probability density function P({\\cal R}) with a Gamma distribution, which can be used to establish thresholds for sustainable debt. We also observe "convergence" in {\\cal R} : countries with initially small {\\cal R} increase their {\\cal R} more quickly than countries with initially large {\\cal R} . The scaling relationships for debt and {\\cal R} have practical applications, e.g. the Maastricht Treaty requires members of the European Monetary Union to maintain {\\cal R} < 0.6 .

  4. Fracture strength of disordered media: universality, interactions, and tail asymptotics.

    PubMed

    Manzato, Claudio; Shekhawat, Ashivni; Nukala, Phani K V V; Alava, Mikko J; Sethna, James P; Zapperi, Stefano

    2012-02-10

    We study the asymptotic properties of fracture strength distributions of disordered elastic media by a combination of renormalization group, extreme value theory, and numerical simulation. We investigate the validity of the "weakest-link hypothesis" in the presence of realistic long-ranged interactions in the random fuse model. Numerical simulations indicate that the fracture strength is well-described by the Duxbury-Leath-Beale (DLB) distribution which is shown to flow asymptotically to the Gumbel distribution. We explore the relation between the extreme value distributions and the DLB-type asymptotic distributions and show that the universal extreme value forms may not be appropriate to describe the nonuniversal low-strength tail. PMID:22401086

  5. Equivariant spectral asymptotics for h-pseudodifferential operators

    NASA Astrophysics Data System (ADS)

    Weich, Tobias

    2014-10-01

    We prove equivariant spectral asymptotics for h-pseudodifferential operators for compact orthogonal group actions generalizing results of El Houakmi and Helffer ["Comportement semi-classique en présence de symétries: Action d'un groupe de Lie compact," Asymp. Anal. 5(2), 91-113 (1991)] and Cassanas ["Reduced Gutzwiller formula with symmetry: Case of a Lie group," J. Math. Pures Appl. 85(6), 719-742 (2006)]. Using recent results for certain oscillatory integrals with singular critical sets [P. Ramacher, "Singular equivariant asymptotics and Weyl's law: On the distribution of eigenvalues of an invariant elliptic operator," J. Reine Angew. Math. (Crelles J.) (to be published)], we can deduce a weak equivariant Weyl law. Furthermore, we can prove a complete asymptotic expansion for the Gutzwiller trace formula without any additional condition on the group action by a suitable generalization of the dynamical assumptions on the Hamilton flow.

  6. Adaptive neural PD control with semiglobal asymptotic stabilization guarantee.

    PubMed

    Pan, Yongping; Yu, Haoyong; Er, Meng Joo

    2014-12-01

    This paper proves that adaptive neural plus proportional-derivative (PD) control can lead to semiglobal asymptotic stabilization rather than uniform ultimate boundedness for a class of uncertain affine nonlinear systems. An integral Lyapunov function-based ideal control law is introduced to avoid the control singularity problem. A variable-gain PD control term without the knowledge of plant bounds is presented to semiglobally stabilize the closed-loop system. Based on a linearly parameterized raised-cosine radial basis function neural network, a key property of optimal approximation is exploited to facilitate stability analysis. It is proved that the closed-loop system achieves semiglobal asymptotic stability by the appropriate choice of control parameters. Compared with previous adaptive approximation-based semiglobal or asymptotic stabilization approaches, our approach not only significantly simplifies control design, but also relaxes constraint conditions on the plant. Two illustrative examples have been provided to verify the theoretical results. PMID:25420247

  7. Asymptotic behavior and inverse problem in layered scattering media

    NASA Astrophysics Data System (ADS)

    Tualle, Jean-Michel; Nghiem, Ha Lien; Ettori, Dominique; Sablong, Raphael; Tinet, Eric; Avrillier, Sigrid

    2004-01-01

    The main challenge of noninvasive optical biopsy is to obtain an accurate value of the optical coefficients of an encapsulated organ (muscle, brain, etc.). The idea developed by us is that some interesting information could be deduced from the long-time behavior of the reflectance function. This asymptotic behavior is analyzed for layered media in the framework of the diffusion approximation. A new method is derived to obtain accurate values for the optical parameters of the deepest layers. This method is designed to work in a specific long-time regime that is still within the scope of standard time-of-flight experiments but far from being included in the mathematically defined asymptotic region. The limits of this method, linked to the cases where the asymptotic behavior is no longer governed by the deepest layer, are then discussed.

  8. Asymptotically Jλ -statistical equivalent sequences of weight g

    NASA Astrophysics Data System (ADS)

    Savaş, Ekrem

    2016-08-01

    This paper presents the following definition which is a natural combination of the definition for asymptotically equivalent of weight g, J -statistically limit, and λ - statistical convergence, where g :ℕ →[0 , ∞ ) is a function satisfying g (n) → ∞ and g(n) ↛ 0. The two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically Jg -statistical equivalent of weight g to multiple L provided that for every ɛ > 0, and δ > 0, {n ∈ℕ : 1/g (λn) |{k ∈In:|x/k yk -L | ≥ɛ }| ≥δ }∈J , (denoted by x ˜SλL(I) g y ) and simply asymptotically Jg -statistical equivalent of weight g if L = 1. In addition, we shall also present some inclusion theorems.

  9. Asymptotically free scaling solutions in non-Abelian Higgs models

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Zambelli, Luca

    2015-07-01

    We construct asymptotically free renormalization group trajectories for the generic non-Abelian Higgs model in four-dimensional spacetime. These ultraviolet-complete trajectories become visible by generalizing the renormalization/boundary conditions in the definition of the correlation functions of the theory. Though they are accessible in a controlled weak-coupling analysis, these trajectories originate from threshold phenomena which are missed in a conventional perturbative analysis relying on the deep Euclidean region. We identify a candidate three-parameter family of renormalization group trajectories interconnecting the asymptotically free ultraviolet regime with a Higgs phase in the low-energy limit. We provide estimates of their low-energy properties in the light of a possible application to the standard model Higgs sector. Finally, we find a two-parameter subclass of asymptotically free Coleman-Weinberg-type trajectories that do not suffer from a naturalness problem.

  10. Detailed ultraviolet asymptotics for AdS scalar field perturbations

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg; Jai-akson, Puttarak

    2016-04-01

    We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.

  11. Stable parabolic Higgs bundles as asymptotically stable decorated swamps

    NASA Astrophysics Data System (ADS)

    Beck, Nikolai

    2016-06-01

    Parabolic Higgs bundles can be described in terms of decorated swamps, which we studied in a recent paper. This description induces a notion of stability of parabolic Higgs bundles depending on a parameter, and we construct their moduli space inside the moduli space of decorated swamps. We then introduce asymptotic stability of decorated swamps in order to study the behaviour of the stability condition as one parameter approaches infinity. The main result is the existence of a constant, such that stability with respect to parameters greater than this constant is equivalent to asymptotic stability. This implies boundedness of all decorated swamps which are semistable with respect to some parameter. Finally, we recover the usual stability condition of parabolic Higgs bundles as asymptotic stability.

  12. Stability of Non-Isolated Asymptotic Profiles for Fast Diffusion

    NASA Astrophysics Data System (ADS)

    Akagi, Goro

    2016-07-01

    The stability of asymptotic profiles of solutions to the Cauchy-Dirichlet problem for fast diffusion equation (FDE, for short) is discussed. The main result of the present paper is the stability of any asymptotic profiles of least energy. It is noteworthy that this result can cover non-isolated profiles, e.g., those for thin annular domain cases. The method of proof is based on the Łojasiewicz-Simon inequality, which is usually used to prove the convergence of solutions to prescribed limits, as well as a uniform extinction estimate for solutions to FDE. Besides, local minimizers of an energy functional associated with this issue are characterized. Furthermore, the instability of positive radial asymptotic profiles in thin annular domains is also proved by applying the Łojasiewicz-Simon inequality in a different way.

  13. Holography of 3D asymptotically flat black holes

    NASA Astrophysics Data System (ADS)

    Fareghbal, Reza; Hosseini, Seyed Morteza

    2015-04-01

    We study the asymptotically flat rotating hairy black hole solution of a three-dimensional gravity theory which is given by taking the flat-space limit (zero cosmological constant limit) of new massive gravity. We propose that the dual field theory of the flat-space limit of new massive gravity can be described by a contracted conformal field theory which is invariant under the action of the BMS3 group. Using the flat/contracted conformal field theory correspondence, we construct a stress tensor which yields the conserved charges of the asymptotically flat black hole solution. We check that our expressions of the mass and angular momentum fit with the first law of black hole thermodynamics. Furthermore, by taking the appropriate limit of the Cardy formula in the parent conformal field theory, we find a Cardy-like formula which reproduces the Wald's entropy of the 3D asymptotically flat black hole.

  14. The asymptotic asymmetric-top rotational partition function

    NASA Astrophysics Data System (ADS)

    Watson, James K. G.

    The high-temperature asymptotic expansion of the rotational partition function of a rigid asymmetric-top molecule can be written in the form where g is the mean nuclear statistical weight and gζ is a nuclear statistical weight factor associated with the principal axis ζ. The asymptotic expansion of Q', which is calculated by two different methods, is expressed in the formulation of McDowell as where tMPH1377_images Here, α, β and γ are the dimensionless temperature-reduced rotational constants hcA/kT, hcB/kT and hcC/kT, and each sum is over the three cyclic permutations of (α, β, γ). For the Q'ζ, the principal asymptotic approximations tMPH1377_images are obtained, confirming results in the 1955 dissertation of Woolley.

  15. Biographical factors of occupational independence.

    PubMed

    Müller, G F

    2001-10-01

    The present study examined biographical factors of occupational independence including any kind of nonemployed profession. Participants were 59 occupationally independent and 58 employed persons of different age (M = 36.3 yr.), sex, and profession. They were interviewed on variables like family influence, educational background, occupational role models, and critical events for choosing a particular type of occupational career. The obtained results show that occupationally independent people reported stronger family ties, experienced fewer restrictions of formal education, and remembered fewer negative role models than the employed people. Implications of these results are discussed. PMID:11783553

  16. Occupational health in Cuba.

    PubMed Central

    Gomez, M R

    1981-01-01

    Health and safety regulation, training, and research were practically non-existent in Cuba before the Revolution in 1959. Since that time important advances have been made. Specialized inspectors, occupational physicians, and other such personnel are now trained in Cuba. An Occupational Health Institute, founded in 1976, provides training and specialized technical services, and conducts research. In 1978, a far reaching "Work Safety and Health Law" was enacted which defines the rights and responsibility of government agencies, workplace administrators, unions, and workers. Comprehensive control of toxic substances in workplaces, still at an early stage, is likely to increase in light of the new law, the growing availability of qualified personnel, and the mounting concern of public health authorities with the increasingly "developed" health profile of the population. PMID:7212141

  17. Occupation and gastric cancer

    PubMed Central

    Raj, A; Mayberry, J; Podas, T

    2003-01-01

    Gastric cancer is a cause of significant morbidity and mortality. There are several risk factors, with occupation emerging as one of these. There is considerable evidence that occupations in coal and tin mining, metal processing, particularly steel and iron, and rubber manufacturing industries lead to an increased risk of gastric cancer. Other "dusty" occupations—for example, wood processing, or work in high temperature environments have also been implicated but the evidence is not strong. The mechanism of pathogenesis of gastric cancer is unclear and the identification of causative agents can be difficult. Dust is thought to be a contributor to the pathological process, but well known carcinogens such as N-nitroso compounds have been detected in some environments. Further research on responsible agents is necessary and screening for detection of precursor gastric cancer lesions at the workplace merits consideration. PMID:12782770

  18. Occupational Contact Dermatitis

    PubMed Central

    2008-01-01

    Occupational contact dermatitis accounts for 90% of all cases of work-related cutaneous disorders. It can be divided into irritant contact dermatitis, which occurs in 80% of cases, and allergic contact dermatitis. In most cases, both types will present as eczematous lesions on exposed parts of the body, notably the hands. Accurate diagnosis relies on meticulous history taking, thorough physical examination, careful reading of Material Safety Data Sheets to distinguish between irritants and allergens, and comprehensive patch testing to confirm or rule out allergic sensitization. This article reviews the pathogenesis and clinical manifestations of occupational contact dermatitis and provides diagnostic guidelines and a rational approach to management of these often frustrating cases. PMID:20525126

  19. [Vaccines and exposed occupations].

    PubMed

    Gendrel, Dominique

    2007-04-01

    The use of safe and efficacious vaccines in occupational settings to protect workers from diseases to which they may be exposed is obvious and has been included in the employment law. Healthcare workers are particular exposed. Immunization has two purposes : protect the worker from contracting a disease, but also prevent him from disseminating the disease to weakened patients. It is important not only to take into account existing recommendations for immunization, but also to envisage their extension to teachers and staff of nurseries and primary schools. Routine vaccination against whooping cough, varicella, measles and hepatitis A is particularly warranted in these categories. Recommendations should also extend to medical students who are too often poorly protected and insufficiently warned against potential occupational exposure to pathogens and dissemination to their patients. PMID:17433233

  20. Occupational asthma in Japan.

    PubMed

    Dobashi, Kunio

    2012-07-01

    Research into occupational asthma (OA) in Japan has been led by the Japanese Society of Occupational and Environmental Allergy. The first report about allergic OA identified konjac asthma. After that, many kinds of OA have been reported. Cases of some types of OA, such as konjac asthma and sea squirt asthma, have been dramatically reduced by the efforts of medical personnel. Recently, with the development of new technologies, chemical antigen-induced asthma has increased in Japan. Due to advances in anti-asthma medication, control by medical treatment tends to be emphasized and the search for causative antigens seems to be neglected. Furthermore, we do not have a Japanese guideline for diagnosis and management of OA. This article discusses the current state of OA in Japan. PMID:22872819

  1. Asymptotic/numerical analysis of supersonic propeller noise

    NASA Technical Reports Server (NTRS)

    Myers, M. K.; Wydeven, R.

    1989-01-01

    An asymptotic analysis based on the Mach surface structure of the field of a supersonic helical source distribution is applied to predict thickness and loading noise radiated by high speed propeller blades. The theory utilizes an integral representation of the Ffowcs-Williams Hawkings equation in a fully linearized form. The asymptotic results are used for chordwise strips of the blade, while required spanwise integrations are performed numerically. The form of the analysis enables predicted waveforms to be interpreted in terms of Mach surface propagation. A computer code developed to implement the theory is described and found to yield results in close agreement with more exact computations.

  2. Asymptotic falloff of local waveform measurements in numerical relativity

    SciTech Connect

    Pollney, Denis; Reisswig, Christian; Dorband, Nils; Schnetter, Erik; Diener, Peter

    2009-12-15

    We examine current numerical relativity computations of gravitational waves, which typically determine the asymptotic waves at infinity by extrapolation from finite (small) radii. Using simulations of a black hole binary with accurate wave extraction at r=1000M, we show that extrapolations from the near zone are self-consistent in approximating measurements at this radius, although with a somewhat reduced accuracy. We verify that {psi}{sub 4} is the dominant asymptotic contribution to the gravitational energy (as required by the peeling theorem) but point out that gauge effects may complicate the interpretation of the other Weyl components.

  3. Asymptotic entanglement transformation between W and GHZ states

    SciTech Connect

    Vrana, Péter; Christandl, Matthias

    2015-02-15

    We investigate entanglement transformations with stochastic local operations and classical communication in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increases and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen, we also compute the conversion rate from W to GHZ states.

  4. Large Time Asymptotics for the Kadomtsev-Petviashvili Equation

    NASA Astrophysics Data System (ADS)

    Hayashi, Nakao; Naumkin, Pavel I.

    2014-08-01

    We study the large time asymptotic behavior of solutions to the Kadomtsev-Petviashvili equations ut + u_{xxx} + σ partialx^{-1}u_{yy} = -partialxu2, quad quad (x, y) in {R}2, t in {R},\\ u(0, x, y) = u0( x, y), quad quad qquad qquad (x, y) in {R}2, where σ = ±1 and {partialx^{-1} = int_{-infty}xdx^' } . We prove that the large time asymptotics of the derivative u x of the solution has a quasilinear character.

  5. Asymptotic analysis of spatial discretizations in implicit Monte Carlo

    SciTech Connect

    Densmore, Jeffery D

    2008-01-01

    We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large, We demonstrate the validity of our analysis with a set of numerical examples.

  6. Asymptotic analysis of spatial discretizations in implicit Monte Carlo

    SciTech Connect

    Densmore, Jeffery D

    2009-01-01

    We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.

  7. On the asymptotic distribution of block-modified random matrices

    NASA Astrophysics Data System (ADS)

    Arizmendi, Octavio; Nechita, Ion; Vargas, Carlos

    2016-01-01

    We study random matrices acting on tensor product spaces which have been transformed by a linear block operation. Using operator-valued free probability theory, under some mild assumptions on the linear map acting on the blocks, we compute the asymptotic eigenvalue distribution of the modified matrices in terms of the initial asymptotic distribution. Moreover, using recent results on operator-valued subordination, we present an algorithm that computes, numerically but in full generality, the limiting eigenvalue distribution of the modified matrices. Our analytical results cover many cases of interest in quantum information theory: we unify some known results and we obtain new distributions and various generalizations.

  8. Counting spanning trees on fractal graphs and their asymptotic complexity

    NASA Astrophysics Data System (ADS)

    Anema, Jason A.; Tsougkas, Konstantinos

    2016-09-01

    Using the method of spectral decimation and a modified version of Kirchhoff's matrix-tree theorem, a closed form solution to the number of spanning trees on approximating graphs to a fully symmetric self-similar structure on a finitely ramified fractal is given in theorem 3.4. We show how spectral decimation implies the existence of the asymptotic complexity constant and obtain some bounds for it. Examples calculated include the Sierpiński gasket, a non-post critically finite analog of the Sierpiński gasket, the Diamond fractal, and the hexagasket. For each example, the asymptotic complexity constant is found.

  9. Asymptotic analysis of rf-heated collisional plasma

    SciTech Connect

    Fisch, N.J.; Karney, C.F.F.

    1985-03-01

    It is shown that a distribution of electrons in resonance with traveling waves, but colliding with background distributions of electrons and ions, evolves to a steady state. Details of the steady state are given analytically in the asymptotic limit of high electron energy and are compared with numerical solutions. The asymptotic analytic solution may be useful for quickly relating emission data to likely excitations and is more reliable than conventional numerical solutions at high energy. A method of improving numerics at high energy is suggested.

  10. Asymptotic approach to special relativity compatible with a relativistic principle

    SciTech Connect

    Carmona, J. M.; Cortes, J. L.; Mazon, D.

    2010-10-15

    We propose a general framework to describe Planckian deviations from special relativity compatible with a relativistic principle. They are introduced as the leading corrections in an asymptotic approach to special relativity going beyond the energy power expansion of effective field theories. We discuss the conditions in which these Planckian effects might be experimentally observable in the near future, together with the nontrivial limits of applicability of this asymptotic approach that such a situation would produce, both at the very high (ultraviolet) and the very low (infrared) energy regimes.

  11. Asymptotic traveling wave solution for a credit rating migration problem

    NASA Astrophysics Data System (ADS)

    Liang, Jin; Wu, Yuan; Hu, Bei

    2016-07-01

    In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.

  12. Human occupancy detection

    NASA Astrophysics Data System (ADS)

    Brown, David A.

    1994-10-01

    In the area of security and surveillance technologies, the problem of the arrival in Canada of illegal and undesirable ship and truck cargo loads is steadily increasing. As the volumes of cargo arrivals increase so do the Immigration and Customs problems related to the determination of the validity of those cargo contents. Of special concern to Immigration Control Authorities around the world is the emerging and increasing trend of illegal smuggling of human beings hidden inside of shipping containers. Beginning in 1992, Immigration Control Authorities in Canada observed an escalation of alien people smuggling through the use of cargo shipping containers arriving in the Port of Montreal. This paper will present to the audience the recently completed Immigration Canada Human Occupancy Detection project by explaining the design, development and testing of human occupancy detectors. The devices are designed to electronically detect the presence of persons hiding inside of shipping containers, without the requirement of opening the container doors. The human occupancy detection concepts are based upon the presence of carbon dioxide or other human waste characteristics commonly found inside of shipping containers.

  13. Prognosis of occupational asthma.

    PubMed

    Paggiaro, P L; Vagaggini, B; Bacci, E; Bancalari, L; Carrara, M; Di Franco, A; Giannini, D; Dente, F L; Giuntini, C

    1994-04-01

    Several studies on the prognosis of occupational asthma have shown that a significant proportion of patients continue to experience asthmatic symptoms and nonspecific bronchial hyperresponsiveness after cessation of work. The determinants of this unfavourable prognosis of asthma are: long duration of exposure before the onset of asthma; long duration of symptoms before diagnosis; baseline airway obstruction; dual response after specific challenge test; and the persistence of markers of airway inflammation in bronchoalveolar lavage fluid and bronchial biopsy. The relevance of immunological markers in the outcome of occupational asthma has not yet been assessed. Further occupational exposure in sensitized subjects leads to persistence and sometimes to progressive deterioration of asthma, irrespective of the reduction of exposure to the specific sensitizer, and only the use of particular protective devices effectively prevents the progression of the disease. A long-term follow-up study of toluene diisocyanate (TDI)-induced asthma showed that the improvement in bronchial hyperresponsiveness to methacholine occurred in a small percentage of subjects and only a long time after work cessation. Bronchial sensitivity to TDI may disappear, but non-specific bronchial hyperresponsiveness often persists unchanged, suggesting a permanent deregulation of airway tone. Steroid treatment significantly reduces nonspecific bronchial hyperresponsiveness only when started immediately after diagnosis. PMID:8005260

  14. Asymptotics of surface-plasmon redshift saturation at subnanometric separations

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Giannini, Vincenzo; Craster, Richard V.; Maier, Stefan A.

    2016-01-01

    Many promising nanophotonics endeavors hinge upon the unique plasmonic properties of nanometallic structures with narrow nonmetallic gaps, which support superconcentrated bonding modes that singularly redshift with decreasing separations. In this Rapid Communication, we present a descriptive physical picture, complemented by elementary asymptotic formulas, of a nonlocal mechanism for plasmon redshift saturation at subnanometric gap widths. Thus, by considering the electron-charge and field distributions in the close vicinity of the metal-vacuum interface, we show that nonlocality is asymptotically manifested as an effective potential discontinuity. For bonding modes in the near-contact limit, the latter discontinuity is shown to be effectively equivalent to a widening of the gap. As a consequence, the resonance-frequency near-contact asymptotics are a renormalization of the corresponding local ones. Specifically, the renormalization furnishes an asymptotic plasmon-frequency lower bound that scales with the 1 /4 power of the Fermi wavelength. We demonstrate these remarkable features in the prototypical cases of nanowire and nanosphere dimers, showing agreement between our elementary expressions and previously reported numerical computations.

  15. Surface family with a common involute asymptotic curve

    NASA Astrophysics Data System (ADS)

    Bayram, Ergi˙n; Bi˙li˙ci˙, Mustafa

    2016-03-01

    We construct a surface family possessing an involute of a given curve as an asymptotic curve. We express necessary and sufficient conditions for that curve with the above property. We also present natural results for such ruled surfaces. Finally, we illustrate the method with some examples, e.g. circles and helices as given curves.

  16. Asymptotically robust variance estimation for person-time incidence rates.

    PubMed

    Scosyrev, Emil

    2016-05-01

    Person-time incidence rates are frequently used in medical research. However, standard estimation theory for this measure of event occurrence is based on the assumption of independent and identically distributed (iid) exponential event times, which implies that the hazard function remains constant over time. Under this assumption and assuming independent censoring, observed person-time incidence rate is the maximum-likelihood estimator of the constant hazard, and asymptotic variance of the log rate can be estimated consistently by the inverse of the number of events. However, in many practical applications, the assumption of constant hazard is not very plausible. In the present paper, an average rate parameter is defined as the ratio of expected event count to the expected total time at risk. This rate parameter is equal to the hazard function under constant hazard. For inference about the average rate parameter, an asymptotically robust variance estimator of the log rate is proposed. Given some very general conditions, the robust variance estimator is consistent under arbitrary iid event times, and is also consistent or asymptotically conservative when event times are independent but nonidentically distributed. In contrast, the standard maximum-likelihood estimator may become anticonservative under nonconstant hazard, producing confidence intervals with less-than-nominal asymptotic coverage. These results are derived analytically and illustrated with simulations. The two estimators are also compared in five datasets from oncology studies. PMID:26439107

  17. Asymptotic stability on slow time scales from periodic systems

    SciTech Connect

    Persek, S.C.

    1981-08-01

    Asymptotic stability for a periodic system of ordinary differential equations with a small parameter is shown to follow from the stability of the corresponding iterated-average system. Applications are made to biological systems experiencing varying seasonal factors, to large scale dynamical systems that are principally irrotational and to nuclear reactor dynamics. 7 refs.

  18. Cosmological attractors and asymptotic freedom of the inflaton field

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Linde, Andrei

    2016-06-01

    We show that the inflaton coupling to all other fields is exponentially suppressed during inflation in the cosmological α-attractor models. In the context of supergravity, this feature is a consequence of the underlying hyperbolic geometry of the moduli space which has a flat direction corresponding to the inflaton field. A combination of these factors protects the asymptotic flatness of the inflaton potential.

  19. Scattering asymptotic conditions in Euclidean relativistic quantum theory

    NASA Astrophysics Data System (ADS)

    Aiello, Gordon J.; Polyzou, W. N.

    2016-03-01

    We discuss the formulation of the scattering asymptotic condition as a strong limit in Euclidean quantum theories satisfying the Osterwalder-Schrader axioms. When used with the invariance principle this provides a constructive method to compute scattering observables directly in the Euclidean formulation of the theory, without an explicit analytic continuation.

  20. Asymptotic Behavior of Anomalous Diffusions Driven by alpha -Stable Noise

    NASA Astrophysics Data System (ADS)

    Michna, Z.

    2008-08-01

    In this paper we discuss decomposition principle for alpha -stable Lévy processes. We investigate asymptotic properties of components and stochastic integrals driven by such processes providing an important class of anomalous diffusions. We consider two case studies with integrands being fractional Brownian motion and gamma process.

  1. Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Andrianov, Igor V.; Pacheco, Pedro M. C. L.; Savi, Marcelo A.; Starushenko, Galina A.

    2016-08-01

    The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.

  2. Propagating gravitons vs. `dark matter' in asymptotically safe quantum gravity

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Reuter, Martin

    2014-12-01

    Within the Asymptotic Safety scenario, we discuss whether Quantum Einstein Gravity (QEG) can give rise to a semi-classical regime of propagating physical gravitons (gravitational waves) governed by an effective theory which complies with the standard rules of local quantum field theory. According to earlier investigations based on single-metric truncations there is a tension between this requirement and the condition of Asymptotic Safety since the former (latter) requires a positive (negative) anomalous dimension of Newton's constant. We show that the problem disappears using the bi-metric renormalization group flows that became available recently: they admit an asymptotically safe UV limit and, at the same time, a genuine semi-classical regime with a positive anomalous dimension. This brings the gravitons of QEG on a par with arbitrary (standard model, etc.) particles which exist as asymptotic states. We also argue that metric perturbations on almost Planckian scales might not be propagating, and we propose an interpretation as a form of `dark matter'.

  3. Asymptotic Learning of Alphanumeric Coding in Autobiographical Memory

    ERIC Educational Resources Information Center

    Martin, Maryanne; Jones, Gregory V.

    2007-01-01

    Studies of autobiographical memory have shown that observed levels of incidental learning are often relatively low. Do low levels of retention result simply from a low learning rate, or is learning also asymptotic? To address this question, it is necessary to trace performance over a large number of learning opportunities, and this was carried out…

  4. Fast evaluation of asymptotic waveforms from gravitational perturbations

    NASA Astrophysics Data System (ADS)

    Benedict, Alex G.; Field, Scott E.; Lau, Stephen R.

    2013-03-01

    In the context of black hole perturbation theory, we describe both exact evaluation of an asymptotic waveform from a time series recorded at a finite radial location and its numerical approximation. From the user’s standpoint our technique is easy to implement, affords high accuracy, and works for both axial (Regge-Wheeler) and polar (Zerilli) sectors. Our focus is on the ease of implementation with publicly available numerical tables, either as part of an existing evolution code or a post-processing step. Nevertheless, we also present a thorough theoretical discussion of asymptotic waveform evaluation and radiation boundary conditions, which need not be understood by a user of our methods. In particular, we identify (both in the time and frequency domains) analytical asymptotic waveform evaluation kernels, and describe their approximation by techniques developed by Alpert, Greengard, and Hagstrom. This paper also presents new results on the evaluation of far-field signals for the ordinary (acoustic) wave equation. We apply our method to study late-time decay tails at null-infinity, ‘teleportation’ of a signal between two finite radial values, and luminosities from extreme-mass-ratio binaries. Through numerical simulations with the outer boundary as close in as r = 30M, we compute asymptotic waveforms with late-time t-4 decay (ℓ = 2 perturbations), and also luminosities from circular and eccentric particle-orbits that respectively match frequency domain results to relative errors of better than 10-12 and 10-9. Furthermore, we find that asymptotic waveforms are especially prone to contamination by spurious junk radiation.

  5. Occupational arsine gas exposure.

    PubMed Central

    Pullen-James, Shayla; Woods, Scott E.

    2006-01-01

    Arsine gas exposure is a rare occupational event and can be completely prevented with the use of appropriate protective gear. Exposure often occurs when arsine gas is generated while arsenic-containing crude ores or metals are treated with acid. Cases of toxicity require an index of suspicion and a good history. In particular, it should be in the differential diagnosis in patients who present acutely with red/bronze skin and hemoglobinuria. Treatment is supportive and may include transfusions and dialysis in severe cases. Clinical severity is proportionate to the level of exposure, and severity is directly related to the onset of symptoms. Images Figure 2 PMID:17225850

  6. Occupational Health for Healthcare Providers

    MedlinePlus

    ... prevention practices. They can reduce your risk of health problems. Use protective equipment, follow infection control guidelines, ... manage stress. National Institute for Occupational Safety and Health

  7. Occupational Skin Diseases in Korea

    PubMed Central

    Kim, Min-Gi

    2010-01-01

    Skin disease is the most common occupational disease, but the reported number is small in Korea due to a difficulty of detection and diagnosis in time. We described various official statistics and data from occupational skin disease surveillance system, epidemiological surveys and cases published in scientific journals. Until 1981, 2,222 cases of occupational skin disease were reported by Korean employee's regular medical check-up, accounting for 4.9% of the total occupational diseases. There was no subsequent official statistics to figure out occupational skin diseases till 1998. From 1999, the Korea Occupational Safety and Health Agency (KOSHA) published the number of occupational skin diseases through the statistics of Cause Investigation for Industrial Accidents. A total of 301 cases were reported from 1999 to 2007. Recent one study showed the figures of compensated occupational skin diseases. Many of them belonged to daily-paid workers in the public service, especially forestry workers. Also, it described the interesting cases such as vitiligo and trichloroethylene-induced Stevens-Johnson Syndrome. Skin diseases are still important though the number of cases has decreased, and therefore it is recommended to grasp the status of occupational skin diseases through continuous surveillance system and to make policy protecting high-risk group. PMID:21258591

  8. [Current trends in occupational dermatology].

    PubMed

    Skudlik, Christoph; Geier, Johannes; John, Swen Malte

    2014-11-01

    In clinical practice occupational skin diseases usually present as hand dermatitis. Occupationally acquired contact allergies are of eminent relevance in many work place products e.g. skin care products, dyes and paints, epoxy resins or protective gloves. However, not infrequently, a range of other dermatoses of different etiology and localization can be occupationally induced and, at least in Germany, thus be medically treated and--if necessary--compensated for with full coverage by the statutory employers' liability insurance. Examples regarding non-eczematous skin diseases triggered by external factors are psoriatic lesions, cutaneous type-1-allergies, occupationally acquired infections, and dermatoses in other localizations which are occupationally exposed to irritant influences (e.g. feet in workers wearing occlusive safety boots). Moreover, outdoor workers deserve specific attention by the dermatologist if squamous cell carcinomas including precursor lesions like actinic keratoses or Bowen disease have occurred. In Germany, recently the scientific advisory committee to the Ministry of Labor has recommended including these skin cancers caused by occupational solar UV exposure in the national list of occupational diseases. The framework for dermatological preventive care of occupationally-induced inflammatory dermatoses has been continuously improved in the last years. The aim is to reach a similar level of care and preventive measures for patients with occupational skin cancer, including primary preventive workers' education. PMID:25359544

  9. [Peculiarity of the occupational physician].

    PubMed

    Pagliaro, G; Simonini, S; del Bufalo, P; Serra, A; Ramistella, E

    2011-01-01

    Aim of this contribution is to consider, although in a concise way, the peculiarity of the Occupational Physician's activity operating in Health care sector, that employs about 5% of Italian workers. Particularly, we bring into focus the global roll that the Occupational Physician must fulfil in a reality where he is the protagonist towards the safeguard of the worker's safe, already submitted to several occupational risks, and about the safety of the third parties, which is more important than in other sectors. Shared elaboration in this article shows that Occupational Physician of the Health care sector has the same problems and expectations everywhere, in our Country. PMID:23393851

  10. Occupational therapy in alcoholism.

    PubMed

    Rotert, D A

    1989-01-01

    Gorski describes "abstinence plus a full return to biopsychosocial functioning as the indicator of successful recovery," and "relapse ... as the process of becoming dysfunctional in recovery." Occupational therapy supports a biopsychosocial premise in assisting the alcoholic to establish a sober lifestyle for recovery as a part of treatment. Adolph Meyer said, "If the goal of alcoholism treatment is abstinence, then the alcoholic patient must be instructed and guided to organize his time and build up habits of work and leisure which are free of alcohol." In order to attain satisfaction in recovery, the alcoholic must develop a balanced lifestyle. This balanced lifestyle will be for competent role performance in all roles. Sobriety can restore something the alcoholic has lost. The alcoholic can be a contributing member of society; have feelings of self respect; participate in relationships with family, friends, and coworkers; and return to work, social, and leisure environments. Zackon identified lifestyle rehabilitation as the second track of recovery. He also listed the key tasks of secondary recovery as deaddiction, learning new pleasures, social integration, and creating new goals. It is in these key tasks that occupational therapy can provide significant input and feedback to the alcoholic. PMID:2658155

  11. Occupational allergies and asthma.

    PubMed Central

    Tarlo, S. M.

    1999-01-01

    OBJECTIVE: To review aspects of occupational allergies and asthma for primary care physicians recognizing, diagnosing, and managing patients with these conditions. QUALITY OF EVIDENCE: Studies in the medical literature mainly provide level 2 evidence, that is, from at least one well-designed clinical trial without randomization, from cohort or case-control analytical studies, from multiple time series, or from dramatic results in uncontrolled experiments. MAIN MESSAGE: Occupational allergies and asthma have the best prognosis with an early, accurate diagnosis and subsequent avoidance of exposure to the relevant sensitizer. These diagnoses can normally be suspected from the clinical history. Primary care physicians can also initiate investigations to make an objective diagnosis, can assess workplace exposure agents from the history, and can review appropriate data sheets on material safety. Specialist evaluation is likely to be needed for skin tests, however, and for other specialized tests (such as pulmonary function assessments at work and off work or specific challenges with the suspected workplace agent). Patients with a confirmed diagnosis need appropriate medical management of their allergic manifestations or asthma, but also often require psychosocial support during the period of investigation and management, especially in relation to required changes in their work and to compensation or insurance claims. CONCLUSIONS: Consider workplace exposure as a source of patients' allergies or asthma and aim to make an early, accurate diagnosis. PMID:10386216

  12. Occupational mononeuropathies in industry.

    PubMed

    Bonfiglioli, Roberta; Mattioli, Stefano; Violante, Francesco S

    2015-01-01

    Peripheral nerve injuries have the potential to cause significant disability and can be commonly associated with recreational and occupational activities. Acute nerve injuries are mainly related to violent trauma, while repeated mechanical trauma due to external forces or repetitive motions can produce chronic nerve compression injury. This chapter will present a narrative review of the existing evidence of the association between peripheral compressive nerve disorders and work-related risk factors. Carpal tunnel syndrome (CTS) is the most common peripheral neuropathy in the general population and in working populations employed in manual repetitive and forceful activities. The work-relatedness of CTS is essentially based on epidemiologic evidence and the results of experimental studies showing the capability of repetitive wrist extreme postures, associated with hand-wrist forceful exertions, to increase the pressure inside the carpal tunnel and to compress the median nerve. Assembly industry, food processing and packaging, hand-arm vibrating tools, and jobs involving high-repetition, high-force tasks put workers at risk for CTS. Less strong evidence exists of the association between ulnar elbow neuropathy and manual tasks or repetitive stretch on squatting and peroneal nerve neuropathy at the fibular head. Very few reports are available about the association between occupation and other compressive peripheral nerve injuries. PMID:26563800

  13. Instructional Support System--Occupational Education. Building Industries Occupations.

    ERIC Educational Resources Information Center

    Abramson, Theodore; And Others

    The modules which make up the bulk of this report are the result of a two-week workshop at which thirteen building industries occupations teachers worked toward the development of a student outcome oriented curriculum. These modules are divided into the following occupational units: (1) carpentry (containing hand tools; portable power tools;…

  14. Professional Development for Occupational Specialist: Occupational Competency Testing. Final Report.

    ERIC Educational Resources Information Center

    Purdue Univ., Lafayette, IN.

    The organization, scope, and activities of the Indiana Occupational Competency Testing Center were expanded to accommodate the requirements of the new Occupational Specialist Certificate for secondary vocational teacher credentialling. A pilot project involved three regional sites in the state. The director of the host area site acted as area…

  15. Health Occupations Module. Communication in Health Occupations--II.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on communication in health occupations is one of eight modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module contains an introduction to the module topic and one learning experience. The learning experience contains six activities (e.g., read…

  16. Asymptotic analysis of mathematical models for elastic composite media

    NASA Astrophysics Data System (ADS)

    Serkov, S. K.

    The main subject of the thesis is the asymptotic analysis of models in mechanics of composite materials. It is based on the extension of the theory of the Polya-Szego tensors to the problems of homogenization and fracture. Such a technique allows one to obtain an asymptotic solution to a problem where most of numerical algorithms fail due to the presence of a singular perturbation. As a result of this work, a number of interesting effects have been found in optimization of composites and inverse problems of crack-inclusion interaction. Chapter 1 is an introductory chapter that contains the main definitions and bibliographical remarks. In Chapter 2 the Polya-Szego dipole tensors are employed for analysis of plane elasticity problems in non-homogeneous media. Classes of equivalence for defects (cavities and rigid inclusions) are specified for the Laplace and Navier operators: composite materials with defects of the same class have the same effective elastic moduli. Explicit asymptotic formulae for the effective compliance matrices of dilute composites are obtained. The problem of the optimal cavity shape is analyzed in Chapter 3. The analysis uses the Polya-Szego tensors calculated in Chapter 2. A new type of structure which is optimal for shear loading has been found. Properties of the optimal cavity are described. The crack-inclusion interaction problem considered in Chapter 4 has been solved by the asymptotic methods. An analysis of crack trajectories is performed in Chapter 5 for different types of defects and interface conditions. The algorithm employs the Polya-Szego tensors as integral characteristics describing the defect. Comparison with experimental data (Ceramic Centre, Bologna) is presented. In Chapter 6 we use the method of compound asymptotic expansions to treat the homogenization problem for thin-walled composites. The technique of boundary layer fields is employed to derive the junction condition in the region connecting thin walls. The asymptotic

  17. Precision Machining Technologies. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP), which is one of a series of OCAPs developed to identify the skills that Ohio employers deem necessary to entering a given occupation/occupational area, lists the occupational, academic, and employability skills required of individuals entering the occupation of precision machinist. The…

  18. Asymptotic Fitness Distribution in the Bak-Sneppen Model of Biological Evolution with Four Species

    NASA Astrophysics Data System (ADS)

    Schlemm, Eckhard

    2012-08-01

    We suggest a new method to compute the asymptotic fitness distribution in the Bak-Sneppen model of biological evolution. As applications we derive the full asymptotic distribution in the four-species model, and give an explicit linear recurrence relation for a set of coefficients determining the asymptotic distribution in the five-species model.

  19. Asymptotically exact analysis of stochastic metapopulation dynamics with explicit spatial structure.

    PubMed

    Ovaskainen, Otso; Cornell, Stephen J

    2006-02-01

    We describe a mathematically exact method for the analysis of spatially structured Markov processes. The method is based on a systematic perturbation expansion around the deterministic, non-spatial mean-field theory, using the theory of distributions to account for space and the underlying stochastic differential equations to account for stochasticity. As an example, we consider a spatial version of the Levins metapopulation model, in which the habitat patches are distributed in the d-dimensional landscape Rd in a random (but possibly correlated) manner. Assuming that the dispersal kernel is characterized by a length scale L, we examine how the behavior of the metapopulation deviates from the mean-field model for a finite but large L. For example, we show that the equilibrium fraction of occupied patches is given by p(0)+c/L(d)+O(L(-3d/2)), where p(0) is the equilibrium state of the Levins model and the constant c depends on p(0), the dispersal kernel, and the structure of the landscape. We show that patch occupancy can be increased or decreased by spatial structure, but is always decreased by stochasticity. Comparison with simulations show that the analytical results are not only asymptotically exact (as L-->infinity), but a good approximation also when L is relatively small. PMID:16246386

  20. Ghost anomalous dimension in asymptotically safe quantum gravity

    SciTech Connect

    Eichhorn, Astrid; Gies, Holger

    2010-05-15

    We compute the ghost anomalous dimension within the asymptotic-safety scenario for quantum gravity. For a class of covariant gauge fixings and using a functional renormalization group scheme, the anomalous dimension {eta}{sub c} is negative, implying an improved UV behavior of ghost fluctuations. At the non-Gaussian UV fixed point, we observe a maximum value of {eta}{sub c{approx_equal}}-0.78 for the Landau-deWitt gauge within the given scheme and truncation. Most importantly, the backreaction of the ghost flow onto the Einstein-Hilbert sector preserves the non-Gaussian fixed point with only mild modifications of the fixed-point values for the gravitational coupling and cosmological constant and the associated critical exponents; also their gauge dependence is slightly reduced. Our results provide further evidence for the asymptotic-safety scenario of quantum gravity.

  1. Asymptotic state discrimination and a strict hierarchy in distinguishability norms

    NASA Astrophysics Data System (ADS)

    Chitambar, Eric; Hsieh, Min-Hsiu

    2014-11-01

    In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational advantage of using two-way classical communication over one-way communication in LOCC processing. With a simple two-qubit product state ensemble, we demonstrate a strict majorization of the two-way LOCC norm over the one-way norm.

  2. Gravitational Two-Loop Counterterm Is Asymptotically Safe.

    PubMed

    Gies, Holger; Knorr, Benjamin; Lippoldt, Stefan; Saueressig, Frank

    2016-05-27

    Weinberg's asymptotic safety scenario provides an elegant mechanism to construct a quantum theory of gravity within the framework of quantum field theory based on a non-Gaussian fixed point of the renormalization group flow. In this work we report novel evidence for the validity of this scenario, using functional renormalization group techniques to determine the renormalization group flow of the Einstein-Hilbert action supplemented by the two-loop counterterm found by Goroff and Sagnotti. The resulting system of beta functions comprises three scale-dependent coupling constants and exhibits a non-Gaussian fixed point which constitutes the natural extension of the one found at the level of the Einstein-Hilbert action. The fixed point exhibits two ultraviolet attractive and one repulsive direction supporting a low-dimensional UV-critical hypersurface. Our result vanquishes the long-standing criticism that asymptotic safety will not survive once a "proper perturbative counterterm" is included in the projection space. PMID:27284643

  3. Hadronic Form Factors in Asymptotically Free Field Theories

    DOE R&D Accomplishments Database

    Gross, D. J.; Treiman, S. B.

    1974-01-01

    The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.

  4. Asymptotic boundary conditions for dissipative waves: General theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  5. Asymptotic periodicity in networks of degrade-and-fire oscillators

    NASA Astrophysics Data System (ADS)

    Blumenthal, Alex; Fernandez, Bastien

    2016-06-01

    Networks of coupled degrade-and-fire (DF) oscillators are simple dynamical models of assemblies of interacting self-repressing genes. For mean-field interactions, which most mathematical studies have assumed so far, every trajectory must approach a periodic orbit. Moreover, asymptotic cluster distributions can be computed explicitly in terms of coupling intensity, and a massive collection of distributions collapses when this intensity passes a threshold. Here, we show that most of these dynamical features persist for an arbitrary coupling topology. In particular, we prove that, in any system of DF oscillators for which in and out coupling weights balance, trajectories with reasonable firing sequences must be asymptotically periodic, and periodic orbits are uniquely determined by their firing sequence. In addition to these structural results, illustrative examples are presented, for which the dynamics can be entirely described.

  6. Asymptotic learning of alphanumeric coding in autobiographical memory.

    PubMed

    Martin, Maryanne; Jones, Gregory V

    2007-02-01

    Studies of autobiographical memory have shown that observed levels of incidental learning are often relatively low. Do low levels of retention result simply from a low learning rate, or is learning also asymptotic? To address this question, it is necessary to trace performance over a large number of learning opportunities, and this was carried out in the context of the recent development of widespread texting behaviour. It was found that memory for the alphanumeric layout of a phone improved as a function of sending approximately the first 500 texts, but then the improvement stopped. The incidence of memory error was incompatible with a simple power-law relation but was modelled closely by an asymptotic relation. It is suggested that this pattern reflects a movement towards automaticity in the primary task which progressively closes down the possibility that incidental learning can occur. PMID:16554044

  7. Asymptotically Lifshitz spacetimes with universal horizons in (1 +2 ) dimensions

    NASA Astrophysics Data System (ADS)

    Basu, Sayandeb; Bhattacharyya, Jishnu; Mattingly, David; Roberson, Matthew

    2016-03-01

    Hořava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide a natural framework for Lifshitz holography. We derive the conditions on the two-derivative Hořava gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon in general relativity. Specializing to z =2 in 1 +2 dimensions, we then numerically construct such regular solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the asymptotically anti-de Sitter case, the first law applied to the universal horizon is straightforwardly compatible with a thermodynamic interpretation.

  8. The asymptotic convergence factor for a polygon under a perturbation

    SciTech Connect

    Li, X.

    1994-12-31

    Let Ax = b be a large system of linear equations, where A {element_of} C{sup NxN}, nonsingular and b {element_of} C{sup N}. A few iterative methods for solving have recently been presented in the case where A is nonsymmetric. Many of their algorithms consist of two phases: Phase I: estimate the extreme eigenvalues of A; Phase II: construct and apply an iterative method based on the estimates. For convenience, it is rewritten as an equivalent fixed-point form, x = Tx + c. Let {Omega} be a compact set excluding 1 in the complex plane, and let its complement in the extended complex plane be simply connected. The asymptotic convergence factor (ACF) for {Omega}, denoted by {kappa}({Omega}), measures the rate of convergence for the asymptotically optimal semiiterative methods for solving, where {sigma}(T) {contained_in} {Omega}.

  9. Inspiralling, nonprecessing, spinning black hole binary spacetime via asymptotic matching

    NASA Astrophysics Data System (ADS)

    Ireland, Brennan; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela

    2016-05-01

    We construct a new global, fully analytic, approximate spacetime which accurately describes the dynamics of nonprecessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.

  10. Asymptotic formulae for the zeros of orthogonal polynomials

    SciTech Connect

    Badkov, V M

    2012-09-30

    Let p{sub n}(t) be an algebraic polynomial that is orthonormal with weight p(t) on the interval [-1, 1]. When p(t) is a perturbation (in certain limits) of the Chebyshev weight of the first kind, the zeros of the polynomial p{sub n}( cos {tau}) and the differences between pairs of (not necessarily consecutive) zeros are shown to satisfy asymptotic formulae as n{yields}{infinity}, which hold uniformly with respect to the indices of the zeros. Similar results are also obtained for perturbations of the Chebyshev weight of the second kind. First, some preliminary results on the asymptotic behaviour of the difference between two zeros of an orthogonal trigonometric polynomial, which are needed, are established. Bibliography: 15 titles.

  11. Asymptotic Reissner-Nordström solution within nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-08-01

    A model of nonlinear electrodynamics coupled with the gravitational field is studied. We obtain the asymptotic black hole solutions at r →0 and r →∞ . The asymptotic at r →0 is shown, and we find corrections to the Reissner-Nordström solution and Coulomb's law at r →∞ . The mass of the black hole is evaluated having the electromagnetic origin. We investigate the thermodynamics of charged black holes and their thermal stability. The critical point corresponding to the second-order phase transition (where heat capacity diverges) is found. If the mass of the black hole is greater than the critical mass, the black hole becomes unstable.

  12. Asymptotic boundary conditions for dissipative waves - General theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1991-01-01

    An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  13. Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories

    SciTech Connect

    Bagchi, Arjun

    2010-10-22

    We find a surprising connection between asymptotically flat spacetimes and nonrelativistic conformal systems in one lower dimension. The Bondi-Metzner-Sachs (BMS) group is the group of asymptotic isometries of flat Minkowski space at null infinity. This is known to be infinite dimensional in three and four dimensions. We show that the BMS algebra in 3 dimensions is the same as the 2D Galilean conformal algebra (GCA) which is of relevance to nonrelativistic conformal symmetries. We further justify our proposal by looking at a Penrose limit on a radially infalling null ray inspired by nonrelativistic scaling and obtain a flat metric. The BMS{sub 4} algebra is also discussed and found to be the same as another class of GCA, called semi-GCA, in three dimensions. We propose a general BMS-GCA correspondence. Some consequences are discussed.

  14. Gravitational Two-Loop Counterterm Is Asymptotically Safe

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Knorr, Benjamin; Lippoldt, Stefan; Saueressig, Frank

    2016-05-01

    Weinberg's asymptotic safety scenario provides an elegant mechanism to construct a quantum theory of gravity within the framework of quantum field theory based on a non-Gaussian fixed point of the renormalization group flow. In this work we report novel evidence for the validity of this scenario, using functional renormalization group techniques to determine the renormalization group flow of the Einstein-Hilbert action supplemented by the two-loop counterterm found by Goroff and Sagnotti. The resulting system of beta functions comprises three scale-dependent coupling constants and exhibits a non-Gaussian fixed point which constitutes the natural extension of the one found at the level of the Einstein-Hilbert action. The fixed point exhibits two ultraviolet attractive and one repulsive direction supporting a low-dimensional UV-critical hypersurface. Our result vanquishes the long-standing criticism that asymptotic safety will not survive once a "proper perturbative counterterm" is included in the projection space.

  15. The Moduli Space of Asymptotically Cylindrical Calabi-Yau Manifolds

    NASA Astrophysics Data System (ADS)

    Conlon, Ronan J.; Mazzeo, Rafe; Rochon, Frédéric

    2015-09-01

    We prove that the deformation theory of compactifiable asymptotically cylindrical Calabi-Yau manifolds is unobstructed. This relies on a detailed study of the Dolbeault-Hodge theory and its description in terms of the cohomology of the compactification. We also show that these Calabi-Yau metrics admit a polyhomogeneous expansion at infinity, a result that we extend to asymptotically conical Calabi-Yau metrics as well. We then study the moduli space of Calabi-Yau deformations that fix the complex structure at infinity. There is a Weil-Petersson metric on this space, which we show is Kähler. By proving a local families L 2-index theorem, we exhibit its Kähler form as a multiple of the curvature of a certain determinant line bundle.

  16. Asymptotic state discrimination and a strict hierarchy in distinguishability norms

    SciTech Connect

    Chitambar, Eric; Hsieh, Min-Hsiu

    2014-11-15

    In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational advantage of using two-way classical communication over one-way communication in LOCC processing. With a simple two-qubit product state ensemble, we demonstrate a strict majorization of the two-way LOCC norm over the one-way norm.

  17. Asymptotically flat black holes in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Alkaç, Gökhan; Kilicarslan, Ercan; Tekin, Bayram

    2016-04-01

    Asymptotically flat black holes in 2 +1 dimensions are a rarity. We study the recently found black flower solutions (asymptotically flat black holes with deformed horizons), static black holes, rotating black holes and the dynamical black flowers (black holes with radiative gravitons) of the purely quadratic version of new massive gravity. We show how they appear in this theory and we also show that they are also solutions to the infinite order extended version of the new massive gravity, that is the Born-Infeld extension of new massive gravity with an amputated Einsteinian piece. The same metrics also solve the topologically extended versions of these theories, with modified conserved charges and the thermodynamical quantities, such as the Wald entropy. Besides these we find new conformally flat radiating type solutions to these extended gravity models. We also show that these metrics do not arise in Einstein's gravity coupled to physical perfect fluids.

  18. Asymptotic behavior of the entropy of chains placed on cylinders

    NASA Astrophysics Data System (ADS)

    Dantas, W. G.; de Oliveira, M. J.; Stilck, J. F.

    2007-09-01

    By using the transfer matrix approach, we investigate the asymptotic behavior of the entropy of flexible chains with M monomers each placed on strips with periodic boundary conditions (cylinders). In the limit of high density of monomers, we study the behavior of the entropy as a function of the density of monomers and the width of the strip, inspired by recent analytical studies of this problem for the particular case of dimers (M=2) . We obtain the entropy in the asymptotic regime of high densities for chains with M=2,…,9 monomers, as well as for the special case of polymers, where M→∞ , and find that the results show a regular behavior similar to the one found analytically for dimers. We also verify that in the low-density limit the mean-field expression for the entropy is followed by the results from our transfer matrix calculations.

  19. The Barrett-Crane model: asymptotic measure factor

    NASA Astrophysics Data System (ADS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2014-04-01

    The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V-1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett-Crane model in the large internal spin regime.

  20. Simplicial and asymptotical aspects of the holographic principle

    NASA Astrophysics Data System (ADS)

    Dappiaggi, Claudio

    2004-03-01

    In this thesis, we study some aspects of a possible holographic correspondence in two different systems: three dimensional Chern-Simons theory and asymptotically flat space-times. In the former we use simplicial techniques to study CS/WZW correspondence and in particular we construct the discretized WZW partition function for SU(2) group at level 1. In the latter we outline the main characteristics of a field theory living at null infinity invariant under the action of the asymptotic symmetry group: the BMS group. In particular, using fibre bundle techniques, we derive the covariant wave equations for fields carrying BMS representations in order to investigate the nature of boundary degrees of freedom.

  1. Asymptotic expansions of Mellin convolution integrals: An oscillatory case

    NASA Astrophysics Data System (ADS)

    López, José L.; Pagola, Pedro

    2010-01-01

    In a recent paper [J.L. López, Asymptotic expansions of Mellin convolution integrals, SIAM Rev. 50 (2) (2008) 275-293], we have presented a new, very general and simple method for deriving asymptotic expansions of for small x. It contains Watson's Lemma and other classical methods, Mellin transform techniques, McClure and Wong's distributional approach and the method of analytic continuation used in this approach as particular cases. In this paper we generalize that idea to the case of oscillatory kernels, that is, to integrals of the form , with c[set membership, variant]R, and we give a method as simple as the one given in the above cited reference for the case c=0. We show that McClure and Wong's distributional approach for oscillatory kernels and the summability method for oscillatory integrals are particular cases of this method. Some examples are given as illustration.

  2. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary

    NASA Astrophysics Data System (ADS)

    Chen, Liqun; Lim, C. W.; Hu, Qingquan; Ding, Hu

    2009-09-01

    Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach. The asymptotic solution is sought for a beam equation with a nonlinear boundary condition. The steady-state responses are determined in primary resonance and subharmonic resonance. The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition. Multivaluedness occurs in the relations as a consequence of the nonlinearity. The stability of steady-state responses is analyzed by use of the Lyapunov linearized stability theory. The stability analysis predicts the jumping phenomenon for certain parameters. The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales. The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.

  3. Occupational Resource Manual for Hawaii.

    ERIC Educational Resources Information Center

    Hawaii Univ., Honolulu.

    Developed cooperatively between the Occupational Informations and Guidance Services Center under the Community College System and the Department of Educational Psychology at the University of Hawaii, this occupational resource manual for Hawaii, bound in a 3-ring notebook, contains pertinent information for students, parents, counselors, and…

  4. Career and Occupational Development Items.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO. National Assessment of Educational Progress.

    The career and occupational development items contained in this document are part of a kit consisting of four documents which bring together different types of items that measure a number of career and occupational development (COD) objectives developed by the National Assessment of Educational Progress (NAEP). (NAEP--which completed a national…

  5. Horticulture. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP) contains a competency list verified by expert workers and developed through a modified DACUM (Developing a Curriculum) involving business, industry, labor, and community agency representatives from Ohio. This OCAP identifies the occupational, academic, and employability skills (competencies)…

  6. Business Financial Occupations: Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This report organizes the information provided by 71 individuals in finance-related occupations in 11 states into skills inventories for persons in these jobs. The skills inventories contain the following sections: (1) occupation-specific knowledge (communication, mathematics, science); (2) workplace behaviors (work ethics, interpersonal…

  7. CAREER GUIDE FOR DEMAND OCCUPATIONS.

    ERIC Educational Resources Information Center

    LEE, E.R.; WELCH, JOHN L.

    THIS PUBLICATION UPDATES THE "CAREER GUIDE FOR DEMAND OCCUPATIONS" PUBLISHED IN 1959 AND PROVIDES COUNSELORS WITH INFORMATION ABOUT OCCUPATIONS IN DEMAND IN MANY AREAS WHICH REQUIRE PREEMPLOYMENT TRAINING. IT PRESENTS, IN COLUMN FORM, THE EDUCATION AND OTHER TRAINING USUALLY REQUIRED BY EMPLOYERS, HIGH SCHOOL SUBJECTS OF PARTICULAR PERTINENCE TO…

  8. Carpentry. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP) contains a competency list verified by expert workers and developed through a modified DACUM (Developing a Curriculum) involving business, industry, labor, and community agency representatives from Ohio. This OCAP identifies the occupational, academic, and employability skills (competencies)…

  9. Occupational therapy in anorexia nervosa.

    PubMed

    Martin, J E

    1985-01-01

    The use of activity which is carefully planned so as to facilitate change in the patient is a unique characteristic of occupational therapy. Occupational therapy closely resembles the actual living situation more so than any other treatment setting and therefore provides a realistic environment in which the patient can test her developing skills in living. PMID:4045760

  10. The purpose of occupational medicine.

    PubMed Central

    Raffle, P A

    1975-01-01

    The purposes of occupational medicine are described in terms of its clinical medical, environmental medical, research, and administrative content. Each of these components is essential in different proportions in comprehensive occupational health services for different industries, and can only be satisfactorily provided by occupational physicians and occupational health nurses who are an integral part of their organizations. Two-thirds of the working population in the United Kingdom are without the benefits of occupational medicine. The reorganization of the National Health Service and of local government presents the opportunity to extend occupational health services to many more workers who need them. It is suggested that area health authorities should provide occupational health services for all National Health Service staff and, on an agency basis, for local government and associated services, eventually extending to local industry. Such area health authority based services, merged with the Employment Medical Advisory Service, could conveniently then be part of the National Health Service, as recommended by the British Medical Association, the Society of Occupational Medicine, and the Medical Services Review Committee. PMID:1131336

  11. Performance Specifications for Occupational Programs.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore. Div. of Career Technology and Adult Learning.

    This document lists and discusses the development of Maryland's performance specifications for occupational programs. The introduction explains the process used to develop performance standards and specifications for 10 career cluster majors that were identified by a task force of educators and employers as high-demand occupational areas in…

  12. Occupational Segregation: Analysis and Recommendations.

    ERIC Educational Resources Information Center

    Millsap, Mary Ann

    This paper presents an overview of occupational segregation, which keeps women in lower-paying job categories, especially as this segregation pertains to federal job programs. The first two sections of the paper survey occupational segregation in general, examining the statistics which show that women are heavily concentrated into a very limited…

  13. Electronics. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP) contains a competency list verified by expert workers and developed through a modified DACUM (Developing a Curriculum) involving business, industry, labor, and community agency representatives from Ohio. This OCAP identifies the occupational, academic, and employability skills (competencies)…

  14. Perceptions Concerning Occupational Survival Skills.

    ERIC Educational Resources Information Center

    Nelson, Robert E.

    This volume presents the reports of a series of interrelated studies which were part of a study that developed curriculum materials for teaching occupational survival skills. The first of six sections, Need for Teaching Occupational Survival Skills and Attitudes, discusses the importance of survival skills and describes twelve general topics which…

  15. Women in the Occupational World.

    ERIC Educational Resources Information Center

    Levitin, Teresa

    The purpose of this paper is to demonstrate that women do not receive occupational rewards commensurate with their achievement, rewards that are allocated to equally qualified men. The analysis of discrimination is directed toward 3 problems: (1) to what extent are women denied occupational rewards that, according to achievement ideology, they…

  16. Business Management Occupations: Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This report organizes the information provided by 77 individuals in business management occupations in 12 states into skills inventories for persons in these jobs. The skills inventories contain the following sections: (1) occupation-specific knowledge (communication, mathematics, science); (2) workplace behaviors (work ethics, interpersonal…

  17. Managing the Occupational Education Laboratory.

    ERIC Educational Resources Information Center

    Storm, George

    This guide for occupational educators deals with laboratory and instructional management on an interdisciplinary basis within the broad field of occupational education. The principles discussed are intended to be applied at all levels and in all types of laboratories. The text suggests effective ways of organizing laboratories so that students can…

  18. An Exploration of the Role of Occupation in School-Based Occupational Therapy Practice

    ERIC Educational Resources Information Center

    Benson, Jeryl DiSanti

    2010-01-01

    The purpose of this study was to explore the role of occupation in school-based occupational therapy practice. The research questions were (1) How do school-based occupational therapists describe the role of occupation during intervention? (2) Which theories of occupation do school-based occupational therapists associate with their own practice?…

  19. Occupational ergonomics in space

    NASA Technical Reports Server (NTRS)

    Stramler, J.

    1992-01-01

    Ergonomics is often defined simply as the study of work. Related or synonymous terms include human factors, human engineering, engineering psychology, and others. Occupational ergonomics is a term that has been proposed to describe the study of the working environment, including the physical consequences resulting from having an improperly designed workplace. The routine space working environment presents some problems not found in the typical Earthbound workplace. These include radiation, intravehicular contamination/pollution, temperature extremes, impact with other objects, limited psychosocial relationships, sensory deprivation, and reduced gravity. These are important workplace considerations, and may affect astronauts either directly at work or at some point during their life as a result of their work under these conditions. Some of the major issues associated with each of these hazards are presented.

  20. Occupational Medical Program

    Energy Science and Technology Software Center (ESTSC)

    1993-12-08

    The Occupational Medical Program (OMP) oversees all Idaho National Engineering Laboratory (INEL) health care, and provides services to all managing and operating (M&O) contractors at the INEL and for the Department of Energy Idaho Office (DOE-ID). The evolution of the automated OMP at the INEL is guided by the U.S. Department of Energy (DOE) directives and regulations. The OMP is developing a multiyear plan for the computerization of patient and demographics, epidemiology, medical records, andmore » surveillance. This plan will require the following six development phases: Employee Demographic Phase, Patient Surveillance Certification and Restrictions Phase, Electronic Notification Phase, Epidemiology-Industrial Hygiene/Radiation Exposure/OMP Integration Phase, Medical Scheduling Phase, and Medical Records Phase.« less