Science.gov

Sample records for at-rich genomic environment

  1. Topoisomerase IIβ Activates a Subset of Neuronal Genes that Are Repressed in AT-Rich Genomic Environment

    PubMed Central

    Tsutsui, Kimiko M.; Tsutsui, Ken

    2008-01-01

    DNA topoisomerase II (topo II) catalyzes a strand passage reaction in that one duplex is passed through a transient brake or gate in another. Completion of late stages of neuronal development depends on the presence of active β isoform (topo IIβ). The enzyme appears to aid the transcriptional induction of a limited number of genes essential for neuronal maturation. However, this selectivity and underlying molecular mechanism remains unknown. Here we show a strong correlation between the genomic location of topo IIβ action sites and the genes it regulates. These genes, termed group A1, are functionally biased towards membrane proteins with ion channel, transporter, or receptor activities. Significant proportions of them encode long transcripts and are juxtaposed to a long AT-rich intergenic region (termed LAIR). We mapped genomic sites directly targeted by topo IIβ using a functional immunoprecipitation strategy. These sites can be classified into two distinct classes with discrete local GC contents. One of the classes, termed c2, appears to involve a strand passage event between distant segments of genomic DNA. The c2 sites are concentrated both in A1 gene boundaries and the adjacent LAIR, suggesting a direct link between the action sites and the transcriptional activation. A higher-order chromatin structure associated with AT richness and gene poorness is likely to serve as a silencer of gene expression, which is abrogated by topo IIβ releasing nearby genes from repression. Positioning of these genes and their control machinery may have developed recently in vertebrate evolution to support higher functions of central nervous system. PMID:19116664

  2. The most deviated codon position in AT-rich bacterial genomes: a function related analysis.

    PubMed

    Ma, Bin-Guang; Chen, Ling-Ling

    2005-10-01

    We have performed systematic study on more than 120 archaeal and bacterial genomes. Based on the index proposed in the current paper, clear patterns are observed showing the relation between the base compositional deviation at three codon positions and the genomic GC content. For AT-rich genomes, the Most Deviated Codon Position (MDCP) is the 1st codon position, while for GC-rich genomes, MDCP appears at the 2nd or 3rd codon position alternatively. According to MDCP, the CDSs of a genome can be classified into two types: typical and atypical. In AT-rich genomes the typical represent the majority and account for about 3/4 of all the CDSs. Based on the functional classification of COG database, the two types of CDSs are examined. An apparent bias of distribution is observed that the CDSs with the function of 'information processing' are more likely to present in typical type. PMID:16060688

  3. OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes

    PubMed Central

    Testa, Alison C.; Oliver, Richard P.; Hane, James K.

    2016-01-01

    We present a novel method to measure the local GC-content bias in genomes and a survey of published fungal species. The method, enacted as “OcculterCut” (https://sourceforge.net/projects/occultercut, last accessed April 30, 2016), identified species containing distinct AT-rich regions. In most fungal taxa, AT-rich regions are a signature of repeat-induced point mutation (RIP), which targets repetitive DNA and decreases GC-content though the conversion of cytosine to thymine bases. RIP has in turn been identified as a driver of fungal genome evolution, as RIP mutations can also occur in single-copy genes neighboring repeat-rich regions. Over time RIP perpetuates “two speeds” of gene evolution in the GC-equilibrated and AT-rich regions of fungal genomes. In this study, genomes showing evidence of this process are found to be common, particularly among the Pezizomycotina. Further analysis highlighted differences in amino acid composition and putative functions of genes from these regions, supporting the hypothesis that these regions play an important role in fungal evolution. OcculterCut can also be used to identify genes undergoing RIP-assisted diversifying selection, such as small, secreted effector proteins that mediate host-microbe disease interactions. PMID:27289099

  4. OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes.

    PubMed

    Testa, Alison C; Oliver, Richard P; Hane, James K

    2016-01-01

    We present a novel method to measure the local GC-content bias in genomes and a survey of published fungal species. The method, enacted as "OcculterCut" (https://sourceforge.net/projects/occultercut, last accessed April 30, 2016), identified species containing distinct AT-rich regions. In most fungal taxa, AT-rich regions are a signature of repeat-induced point mutation (RIP), which targets repetitive DNA and decreases GC-content though the conversion of cytosine to thymine bases. RIP has in turn been identified as a driver of fungal genome evolution, as RIP mutations can also occur in single-copy genes neighboring repeat-rich regions. Over time RIP perpetuates "two speeds" of gene evolution in the GC-equilibrated and AT-rich regions of fungal genomes. In this study, genomes showing evidence of this process are found to be common, particularly among the Pezizomycotina. Further analysis highlighted differences in amino acid composition and putative functions of genes from these regions, supporting the hypothesis that these regions play an important role in fungal evolution. OcculterCut can also be used to identify genes undergoing RIP-assisted diversifying selection, such as small, secreted effector proteins that mediate host-microbe disease interactions. PMID:27289099

  5. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome.

    PubMed

    Nicholson, Matthew J; Theodorou, Michael K; Brookman, Jayne L

    2005-01-01

    The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens

  6. Isolation of extremely AT-rich genomic DNA and analysis of genes encoding carbohydrate-degrading enzymes from Orpinomyces sp. strain PC-2.

    PubMed

    Chen, Huizhong; Hopper, Sherryll L; Li, Xin-Liang; Ljungdahl, Lars G; Cerniglia, Carl E

    2006-11-01

    An effective method for extraction of intact genomic DNA from the extremely AT-rich polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has been developed. This procedure involves removal of glycogen-like storage polysaccharides using hexadecyltrimethylammonium bromide (CTAB) and high salt washes. The DNA was digested with various restriction enzymes and was suitable for use as a PCR template, for Southern blotting, and for genomic library construction. Genomic DNA analysis of three representative genes (celE, bgl1, and xynA) encoding (hemi-) cellulolytic enzymes of the fungus revealed multiplicity of family 5 endocellulase genes (celE-like), and family 1 beta-glucosidase genes (bgl1-like), but only a single copy of family 11 xylanase gene (xynA). PMID:17019643

  7. Comparative analysis of the mitochondrial genomes of Callitettixini Spittlebugs (Hemiptera: Cercopidae) confirms the overall high evolutionary speed of the AT-rich region but reveals the presence of short conservative elements at the tribal level.

    PubMed

    Liu, Jie; Bu, Cuiping; Wipfler, Benjamin; Liang, Aiping

    2014-01-01

    The present study compares the mitochondrial genomes of five species of the spittlebug tribe Callitettixini (Hemiptera: Cercopoidea: Cercopidae) from eastern Asia. All genomes of the five species sequenced are circular double-stranded DNA molecules and range from 15,222 to 15,637 bp in length. They contain 22 tRNA genes, 13 protein coding genes (PCGs) and 2 rRNA genes and share the putative ancestral gene arrangement of insects. The PCGs show an extreme bias of nucleotide and amino acid composition. Significant differences of the substitution rates among the different genes as well as the different codon position of each PCG are revealed by the comparative evolutionary analyses. The substitution speeds of the first and second codon position of different PCGs are negatively correlated with their GC content. Among the five species, the AT-rich region features great differences in length and pattern and generally shows a 2-5 times higher substitution rate than the fastest PCG in the mitochondrial genome, atp8. Despite the significant variability in length, short conservative segments were identified in the AT-rich region within Callitettixini, although absent from the other groups of the spittlebug superfamily Cercopoidea. PMID:25285442

  8. Comparative Analysis of the Mitochondrial Genomes of Callitettixini Spittlebugs (Hemiptera: Cercopidae) Confirms the Overall High Evolutionary Speed of the AT-Rich Region but Reveals the Presence of Short Conservative Elements at the Tribal Level

    PubMed Central

    Liu, Jie; Bu, Cuiping; Wipfler, Benjamin; Liang, Aiping

    2014-01-01

    The present study compares the mitochondrial genomes of five species of the spittlebug tribe Callitettixini (Hemiptera: Cercopoidea: Cercopidae) from eastern Asia. All genomes of the five species sequenced are circular double-stranded DNA molecules and range from 15,222 to 15,637 bp in length. They contain 22 tRNA genes, 13 protein coding genes (PCGs) and 2 rRNA genes and share the putative ancestral gene arrangement of insects. The PCGs show an extreme bias of nucleotide and amino acid composition. Significant differences of the substitution rates among the different genes as well as the different codon position of each PCG are revealed by the comparative evolutionary analyses. The substitution speeds of the first and second codon position of different PCGs are negatively correlated with their GC content. Among the five species, the AT-rich region features great differences in length and pattern and generally shows a 2–5 times higher substitution rate than the fastest PCG in the mitochondrial genome, atp8. Despite the significant variability in length, short conservative segments were identified in the AT-rich region within Callitettixini, although absent from the other groups of the spittlebug superfamily Cercopoidea. PMID:25285442

  9. Fungal Genomics for Energy and Environment

    SciTech Connect

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  10. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Zimmer, Carl [New York Times

    2013-01-22

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  11. Keynote Presentation: Genome Beat (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Zimmer, Carl

    2012-03-20

    Carl Zimmer, a reporter for the New York Times, speaks on "The Genome Beat," the opening keynote presentation at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  12. [Nutritional genomics: an approach to the genome-environment interaction].

    PubMed

    Xacur-García, Fiona; Castillo-Quan, Jorge I; Hernández-Escalante, Víctor M; Laviada-Molina, Hugo

    2008-11-01

    Nutritional genomics forms part of the genomic sciences and addresses the interaction between genes and the human diet, its influence on metabolism and subsequent susceptibility to develop common diseases. It encompasses both nutrigenomics, which explores the effects of nutrients on the genome, proteome and metabolome; and nutrigenetics, that explores the effects of genetic variations on the diet/disease interaction. A number of mechanisms drive the gene/diet interaction: elements in the diet can act as links for transcription factor receptors and after intermediary concentrations, thereby modifying chromatin and impacting genetic regulation; affect signal pathways, regulating phosphorylation of tyrosine in receptors; decrease signaling through the inositol pathway; and act through epigenetic mechanisms, silencing DNA fragments by methylation of cytosine. The signals generated by polyunsaturated fatty acids are so powerful that they can even bypass insulin mediated lipogenesis, stimulated by carbohydrates. Some fatty acids modify the expression of genes that participate in fatty acid transport by lipoproteins. Nutritional genomics has myriad possible therapeutic and preventive applications: in patients with enzymatic deficiencies; in those with a genetic predisposition to complex diseases such as dyslipidemia, diabetes and cancer; in those that already suffer these diseases; in those with altered mood or memory; during the aging process; in pregnant women; and as a preventive measure in the healthy population. PMID:19301779

  13. Explaining human uniqueness: genome interactions with environment, behaviour and culture

    PubMed Central

    Varki, Ajit; Geschwind, Daniel H.; Eichler, Evan E.

    2009-01-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, ‘anthropogeny’ (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any ‘genes versus environment’ dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture — perhaps relaxing allowable thresholds for large-scale genomic diversity. PMID:18802414

  14. Genome-environment associations in sorghum landraces predict adaptive traits.

    PubMed

    Lasky, Jesse R; Upadhyaya, Hari D; Ramu, Punna; Deshpande, Santosh; Hash, C Tom; Bonnette, Jason; Juenger, Thomas E; Hyma, Katie; Acharya, Charlotte; Mitchell, Sharon E; Buckler, Edward S; Brenton, Zachary; Kresovich, Stephen; Morris, Geoffrey P

    2015-07-01

    Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these could be used to predict phenotypic variation for adaptive traits. We tested this proposition in the global food crop Sorghum bicolor, characterizing 1943 georeferenced landraces at 404,627 SNPs and quantifying allelic associations with bioclimatic and soil gradients. Environment explained a substantial portion of SNP variation, independent of geographical distance, and genic SNPs were enriched for environmental associations. Further, environment-associated SNPs predicted genotype-by-environment interactions under experimental drought stress and aluminum toxicity. Our results suggest that genomic signatures of environmental adaptation may be useful for crop improvement, enhancing germplasm identification and marker-assisted selection. Together, genome-environment associations and phenotypic analyses may reveal the basis of environmental adaptation. PMID:26601206

  15. Genome-environment associations in sorghum landraces predict adaptive traits

    PubMed Central

    Lasky, Jesse R.; Upadhyaya, Hari D.; Ramu, Punna; Deshpande, Santosh; Hash, C. Tom; Bonnette, Jason; Juenger, Thomas E.; Hyma, Katie; Acharya, Charlotte; Mitchell, Sharon E.; Buckler, Edward S.; Brenton, Zachary; Kresovich, Stephen; Morris, Geoffrey P.

    2015-01-01

    Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these could be used to predict phenotypic variation for adaptive traits. We tested this proposition in the global food crop Sorghum bicolor, characterizing 1943 georeferenced landraces at 404,627 SNPs and quantifying allelic associations with bioclimatic and soil gradients. Environment explained a substantial portion of SNP variation, independent of geographical distance, and genic SNPs were enriched for environmental associations. Further, environment-associated SNPs predicted genotype-by-environment interactions under experimental drought stress and aluminum toxicity. Our results suggest that genomic signatures of environmental adaptation may be useful for crop improvement, enhancing germplasm identification and marker-assisted selection. Together, genome-environment associations and phenotypic analyses may reveal the basis of environmental adaptation. PMID:26601206

  16. Teaching "Biological Identity" as Genome/Environment Interactions

    ERIC Educational Resources Information Center

    Forissier, Thomas; Clement, Pierre

    2003-01-01

    "Biological identity" is the result of interactions between the environment and the genome. These interactions, however, were not taught before 2001. In the French syllabus for 16-year-old students, two of the five sections on genetics deal with biological identity. We analysed the texts and images of the chapters relating to these two sections in…

  17. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH < 3) have been published, many of which are from bioleaching and other biomining environments, or are closely related to such microorganisms. In addition, there are over 20 metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  18. Sockeye: a 3D environment for comparative genomics.

    PubMed

    Montgomery, Stephen B; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A Gordon; Sleumer, Monica; Siddiqui, Asim S; Jones, Steven J M

    2004-05-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  19. Genomic Selection in Multi-environment Crop Trials.

    PubMed

    Oakey, Helena; Cullis, Brian; Thompson, Robin; Comadran, Jordi; Halpin, Claire; Waugh, Robbie

    2016-01-01

    Genomic selection in crop breeding introduces modeling challenges not found in animal studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible single-stage genomic selection approach that resolves these issues. Our linear mixed model incorporates spatial variation through environment-specific terms, and also randomization-based design terms. It considers marker, and marker by environment interactions using ridge regression best linear unbiased prediction to extend genomic selection to multiple environments. Since the approach uses the raw data from line replicates, the line genetic variation is partitioned into marker and nonmarker residual genetic variation (i.e., additive and nonadditive effects). This results in a more precise estimate of marker genetic effects. Using barley height data from trials, in 2 different years, of up to 477 cultivars, we demonstrate that our new genomic selection model improves predictions compared to current models. Analyzing single trials revealed improvements in predictive ability of up to 5.7%. For the multiple environment trial (MET) model, combining both year trials improved predictive ability up to 11.4% compared to a single environment analysis. Benefits were significant even when fewer markers were used. Compared to a single-year standard model run with 3490 markers, our partitioned MET model achieved the same predictive ability using between 500 and 1000 markers depending on the trial. Our approach can be used to increase accuracy and confidence in the selection of the best lines for breeding and/or, to reduce costs by using fewer markers. PMID:26976443

  20. Genomic Selection in Multi-environment Crop Trials

    PubMed Central

    Oakey, Helena; Cullis, Brian; Thompson, Robin; Comadran, Jordi; Halpin, Claire; Waugh, Robbie

    2016-01-01

    Genomic selection in crop breeding introduces modeling challenges not found in animal studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible single-stage genomic selection approach that resolves these issues. Our linear mixed model incorporates spatial variation through environment-specific terms, and also randomization-based design terms. It considers marker, and marker by environment interactions using ridge regression best linear unbiased prediction to extend genomic selection to multiple environments. Since the approach uses the raw data from line replicates, the line genetic variation is partitioned into marker and nonmarker residual genetic variation (i.e., additive and nonadditive effects). This results in a more precise estimate of marker genetic effects. Using barley height data from trials, in 2 different years, of up to 477 cultivars, we demonstrate that our new genomic selection model improves predictions compared to current models. Analyzing single trials revealed improvements in predictive ability of up to 5.7%. For the multiple environment trial (MET) model, combining both year trials improved predictive ability up to 11.4% compared to a single environment analysis. Benefits were significant even when fewer markers were used. Compared to a single-year standard model run with 3490 markers, our partitioned MET model achieved the same predictive ability using between 500 and 1000 markers depending on the trial. Our approach can be used to increase accuracy and confidence in the selection of the best lines for breeding and/or, to reduce costs by using fewer markers. PMID:26976443

  1. The Sunflower Genome and its Evolution (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Rieseberg, Loren [University of British Columbia

    2013-01-15

    Loren Rieseberg from the University of British Columbia on "The Sunflower Genome and its Evolution" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  2. Using Genomics to Dissect Seed Development (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment Meeting)

    ScienceCinema

    Goldberg, Robert [UCLA

    2013-01-22

    Robert Goldberg of UCLA presents "Using Genomics to Dissect Seed Development" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  3. The Sunflower Genome and its Evolution (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Rieseberg, Loren

    2012-03-21

    Loren Rieseberg from the University of British Columbia on "The Sunflower Genome and its Evolution" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  4. Using Genomics to Dissect Seed Development (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment Meeting)

    SciTech Connect

    Goldberg, Robert

    2012-03-21

    Robert Goldberg of UCLA presents "Using Genomics to Dissect Seed Development" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  5. Genomics of Climate Resilience (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Bermingham, Eldredge

    2013-03-27

    Eldredge Bermingham of the Smithsonian Tropical Research Institute-Panama on "Genomics of climate resilience" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  6. Camelid genomes reveal evolution and adaptation to desert environments.

    PubMed

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-01-01

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments. PMID:25333821

  7. Genome-to-Watershed Predictive Understanding of Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.

    2014-12-01

    Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and

  8. Analysis of pufferfish homologues of the AT-rich human APP gene.

    PubMed

    Villard, L; Tassone, F; Crnogorac-Jurcević, T; Clancy, K; Gardiner, K

    1998-03-27

    Mutations in the beta-amyloid precursor protein (APP) gene are associated with some forms of Familial Alzheimer's Disease. The human APP gene is large, the 19 exons span approximately 300 kb, and AT-rich, at 40% GC. We have examined the genomic structure and cDNA sequence of the APP gene in the pufferfish Fugu rubripes and Tetraodon fluviatilis, respectively. In contrast to human, the Fugu APP gene spans less than 10 kb of DNA, with the introns compacted 48-fold on average. Two axons, alternatively processed in humans, are absent in both pufferfish. APP is the largest, most AT-rich gene examined in Fugu and is also the most highly compressed. The genomic sequences spanning the human and the Fugu APP genes were analysed with a set of exon and gene prediction programs. Results show that these are highly reliable for the Fugu gene with lower false positive and false negative rates than are seen in the analysis of the human gene. Comparative analysis of Fugu sequences homologous to very AT-rich regions in the human genome may, therefore, be advantageous in gene-finding efforts, both for their highly reduced sizes and their reliable gene predictions. PMID:9599080

  9. Deciphering Genome-Environment-Wide Interactions Using Exposed Subjects Only

    PubMed Central

    Zhao, Lue Ping; Fan, Wenhong; Goodman, Gary; Radich, Jerry; Martin, Paul

    2015-01-01

    The recent successes of genome-wide association studies (GWAS) have renewed interest in genome-environment-wide interaction studies (GEWIS) to discover genetic factors that modulate penetrance of environmental exposures to human diseases. Indeed, gene-environment interactions (GxE), which have not been emphasized in the GWAS era, could be a source contributing to the missing heritability, a major bottleneck limiting continuing GWAS successes. In this manuscript, we describe a design and analytic strategy to focus on GxE using only exposed subjects, dubbed as e-GEWIS. Operationally, an e-GEWIS analysis is equivalent to a GWAS analysis on exposed subjects only, and it has actually been used in some earlier GWAS without being explicitly identified as such. Through both analytics and simulations, e-GEWIS have been shown better efficiency than the usual cross-product-based analysis of GxE interaction with both cases and controls (cc-GEWIS), and they have comparable efficiency to case-only analysis of GxE (c-GEWIS), with potentially smaller sample sizes. The formalization of e-GEWIS here provides a theoretical basis to legitimize this framework for routine investigation of GxE, for more efficient GxE study designs, and for improvement of reproducibility in replicating GEWIS findings. As an illustration, we apply e-GEWIS to a lung cancer GWAS dataset to perform a GEWIS, focusing on gene and smoking interaction. The e-GEWIS analysis successfully uncovered positive genetic associations on chromosome 15 among current smokers, suggesting a gene-smoking interaction. While this signal was detected earlier, the current finding here serves as a positive control in support of this e-GEWIS strategy. PMID:25694100

  10. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    PubMed

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education. PMID:26241308

  11. Increased prediction accuracy in wheat breeding trials using a marker x environment interaction genomic selection model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates of selection. Originally, these models were developed without considering genotype x environment interaction (GxE). Several authors have proposed extensions of the single-environment GS model th...

  12. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    PubMed Central

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  13. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level.

    PubMed

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources. PMID:27446038

  14. Genome Island: A Virtual Science Environment in Second Life

    ERIC Educational Resources Information Center

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  15. A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei

    PubMed Central

    Kim, Wonyong; Park, Jeong-Jin; Gang, David R.; Peever, Tobin L.

    2015-01-01

    Secondary metabolite genes are often clustered together and situated in particular genomic regions, like the subtelomere, that can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full-genome sequencing of the ascomycete Ascochyta rabiei revealed a solanapyrone biosynthesis gene cluster embedded in an AT-rich region proximal to a telomere end and surrounded by Tc1/Mariner-type transposable elements. The highly AT-rich environment of the solanapyrone cluster is likely the product of repeat-induced point mutations. Several secondary metabolism-related genes were found in the flanking regions of the solanapyrone cluster. Although the solanapyrone cluster appears to be resistant to repeat-induced point mutations, a P450 monooxygenase gene adjacent to the cluster has been degraded by such mutations. Among the six solanapyrone cluster genes (sol1 to sol6), sol4 encodes a novel type of Zn(II)2Cys6 zinc cluster transcription factor. Deletion of sol4 resulted in the complete loss of solanapyrone production but did not compromise growth, sporulation, or virulence. Gene expression studies with the sol4 deletion and sol4-overexpressing mutants delimited the boundaries of the solanapyrone gene cluster and revealed that sol4 is likely a specific regulator of solanapyrone biosynthesis and appears to be necessary and sufficient for induction of the solanapyrone cluster genes. Despite the dynamic surrounding genomic regions, the solanapyrone gene cluster has maintained its integrity, suggesting important roles of solanapyrones in fungal biology. PMID:26342019

  16. The Genome of Selaginella: A Remnant of an Ancient Vascular Plant Lineage (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    ScienceCinema

    Banks, Jody [Purdue University

    2013-01-22

    Jody Banks from Purdue University on "The Genome of Selaginella, a Remnant of an Ancient Vascular Plant Lineage" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  17. Genomic Analysis of Natural Variation for Seed and Plant Size in Maize ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Kaeppler, Shawn

    2012-03-21

    Shawn Kaeppler from the University of Wisconsin-Madison on "Genomic Analysis of Biofuel Traits in Maize and Switchgrass" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  18. The Challenges and Opportunities for Extending Plant Genomics to Climate (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Weston, David

    2013-03-01

    David Weston of Oak Ridge National Laboratory on "The challenges and opportunities for extending plant genomics to climate" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  19. The Genome of Selaginella: A Remnant of an Ancient Vascular Plant Lineage (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    SciTech Connect

    Banks, Jody

    2012-03-21

    Jody Banks from Purdue University on "The Genome of Selaginella, a Remnant of an Ancient Vascular Plant Lineage" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  20. New Approaches and Technologies to Sequence de novo Plant reference Genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schmutz, Jeremy

    2013-03-01

    Jeremy Schmutz of the HudsonAlpha Institute for Biotechnology on "New approaches and technologies to sequence de novo plant reference genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  1. Genomic Analysis of Natural Variation for Seed and Plant Size in Maize ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Kaeppler, Shawn [University of Wisconsin, Madison

    2013-01-15

    Shawn Kaeppler from the University of Wisconsin-Madison on "Genomic Analysis of Biofuel Traits in Maize and Switchgrass" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  2. Increased prediction accuracy in wheat breeding trials using a marker x environment interaction genomic selection model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates for selection. Originally these models were developed without considering genotype ' environment interaction (GE). Several authors have proposed extensions of the cannonical GS model that accomm...

  3. Closing Keynote Presentation on the Genomics of Energy and the Environment (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Benner, Stephen [Foundation for Applied Molecular Evolution, Westheimer Institute of Science and Technology

    2013-01-22

    Steve Benner, a distinguished chemist at the Foundation for Applied Molecular Evolution, Westheimer Institute of Science and Technology, provides the closing keynote address for the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  4. Closing Keynote Presentation on the Genomics of Energy and the Environment (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Benner, Stephen

    2012-03-22

    Steve Benner, a distinguished chemist at the Foundation for Applied Molecular Evolution, Westheimer Institute of Science and Technology, provides the closing keynote address for the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  5. Multiplex genomic walking: Integration of the wet lab and computer lab into a single prototyping environment

    SciTech Connect

    Gillevet, P.M.

    1993-12-31

    The authors are presently sequencing the entire genome of Mycoplasma capricolum, one of the smallest of free living organisms by a Multiplex Genomic Walking strategy. This technique involves the repetitive hybridization of sequencing membranes with oligonucleotide probes to acquire sequence data in discrete steps along the genome. The technique allows one to walk a genome in a directed manner eliminating the problems associated with random shotgun assembly. Furthermore, the repetitive stripping and hybridization process is relatively simple to reproduce and has the potential to be easily automated. The Genetic Data Environment (GDE), an X Windows based Graphic User Interface has allowed the seamless integration of a core multiple sequence editor with pre-existing external sequence analysis programs and internally developed programs into a single prototypic environment. This system has facilitated linkage of the 9 Harvard Genome Lab`s internal database and automated data control systems into one Graphic User Interface which can handle the archiving and analysis of both random fluorescent sequencing data and genomic walking data from the Mycoplasma project. Finally, it has facilitated the integration of the Genomic sequence data into a PROLOG database environment for the comparative analysis of Mycoplasma capricolum and other organisms.

  6. A Post-Genomic View of Behavioral Development and Adaptation to the Environment

    ERIC Educational Resources Information Center

    LaFreniere, Peter; MacDonald, Kevin

    2013-01-01

    Recent advances in molecular genetics and epigenetics are reviewed that have major implications for the bio-behavioral sciences and for understanding how organisms adapt to their environments at both phylogenetic and ontogenic levels. From a post-genomics perspective, the environment is as crucial as the DNA sequence for constructing the…

  7. A Model of Genome Size Evolution for Prokaryotes in Stable and Fluctuating Environments

    PubMed Central

    Bentkowski, Piotr; Van Oosterhout, Cock; Mock, Thomas

    2015-01-01

    Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand how organisms evolve under different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity. Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results show that a greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to adapt. PMID:26242601

  8. The Plastid Genome of Najas flexilis: Adaptation to Submersed Environments Is Accompanied by the Complete Loss of the NDH Complex in an Aquatic Angiosperm

    PubMed Central

    Peredo, Elena L.; King, Ursula M.; Les, Donald H.

    2013-01-01

    The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater. Water-pollinated Alismatales include seagrasses and water nymphs (Najas), the latter being the only freshwater genus in the family Hydrocharitaceae with subsurface water-pollination. We have determined the complete nucleotide sequence of the plastid genome of Najas flexilis. The plastid genome of N. flexilis is a circular AT-rich DNA molecule of 156 kb, which displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) from the small single copy (SSC) regions. In N. flexilis, as in other Alismatales, the rps19 and trnH genes are localized in the LSC region instead of within the IR regions as in other monocots. However, the N. flexilis plastid genome presents some anomalous modifications. The size of the SSC region is only one third of that reported for closely related species. The number of genes in the plastid is considerably less. Both features are due to loss of the eleven ndh genes in the Najas flexilis plastid. In angiosperms, the absence of ndh genes has been related mainly to the loss of photosynthetic function in parasitic plants. The ndh genes encode the NAD(P)H dehydrogenase complex, believed essential in terrestrial environments, where it increases photosynthetic efficiency in variable light intensities. The modified structure of the N. flexilis plastid genome suggests that adaptation to submersed environments, where light is scarce, has involved the loss of the NDH complex in at least some photosynthetic angiosperms. PMID:23861923

  9. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm.

    PubMed

    Peredo, Elena L; King, Ursula M; Les, Donald H

    2013-01-01

    The re-colonization of aquatic habitats by angiosperms has presented a difficult challenge to plants whose long evolutionary history primarily reflects adaptations to terrestrial conditions. Many aquatics must complete vital stages of their life cycle on the water surface by means of floating or emergent leaves and flowers. Only a few species, mainly within the order Alismatales, are able to complete all aspects of their life cycle including pollination, entirely underwater. Water-pollinated Alismatales include seagrasses and water nymphs (Najas), the latter being the only freshwater genus in the family Hydrocharitaceae with subsurface water-pollination. We have determined the complete nucleotide sequence of the plastid genome of Najas flexilis. The plastid genome of N. flexilis is a circular AT-rich DNA molecule of 156 kb, which displays a quadripartite structure with two inverted repeats (IR) separating the large single copy (LSC) from the small single copy (SSC) regions. In N. flexilis, as in other Alismatales, the rps19 and trnH genes are localized in the LSC region instead of within the IR regions as in other monocots. However, the N. flexilis plastid genome presents some anomalous modifications. The size of the SSC region is only one third of that reported for closely related species. The number of genes in the plastid is considerably less. Both features are due to loss of the eleven ndh genes in the Najas flexilis plastid. In angiosperms, the absence of ndh genes has been related mainly to the loss of photosynthetic function in parasitic plants. The ndh genes encode the NAD(P)H dehydrogenase complex, believed essential in terrestrial environments, where it increases photosynthetic efficiency in variable light intensities. The modified structure of the N. flexilis plastid genome suggests that adaptation to submersed environments, where light is scarce, has involved the loss of the NDH complex in at least some photosynthetic angiosperms. PMID:23861923

  10. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    PubMed Central

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  11. Enacting the molecular imperative: How gene-environment interaction research links bodies and environments in the post-genomic age.

    PubMed

    Darling, Katherine Weatherford; Ackerman, Sara L; Hiatt, Robert H; Lee, Sandra Soo-Jin; Shim, Janet K

    2016-04-01

    Despite a proclaimed shift from 'nature versus nurture' to 'genes and environment' paradigms within biomedical and genomic science, capturing the environment and identifying gene-environment interactions (GEIs) has remained a challenge. What does 'the environment' mean in the post-genomic age? In this paper, we present qualitative data from a study of 33 principal investigators funded by the U.S. National Institutes of Health to conduct etiological research on three complex diseases (cancer, cardiovascular disease and diabetes). We examine their research practices and perspectives on the environment through the concept of molecularization: the social processes and transformations through which phenomena (diseases, identities, pollution, food, racial/ethnic classifications) are re-defined in terms of their molecular components and described in the language of molecular biology. We show how GEI researchers' expansive conceptualizations of the environment ultimately yield to the imperative to molecularize and personalize the environment. They seek to 'go into the body' and re-work the boundaries between bodies and environments. In the process, they create epistemic hinges to facilitate a turn from efforts to understand social and environmental exposures outside the body, to quantifying their effects inside the body. GEI researchers respond to these emergent imperatives with a mixture of excitement, ambivalence and frustration. We reflect on how GEI researchers struggle to make meaning of molecules in their work, and how they grapple with molecularization as a methodological and rhetorical imperative as well as a process transforming biomedical research practices. PMID:26994357

  12. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    SciTech Connect

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  13. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

    PubMed

    Travisany, Dante; Cortés, María Paz; Latorre, Mauricio; Di Genova, Alex; Budinich, Marko; Bobadilla-Fazzini, Roberto A; Parada, Pilar; González, Mauricio; Maass, Alejandro

    2014-11-01

    Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments. PMID:25148779

  14. Genome-environment associations in sorghum landraces predict adaptive traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these ...

  15. Epigenetic Mechanisms as an Interface Between the Environment and Genome.

    PubMed

    Herceg, Zdenko

    2016-01-01

    Recent advances in epigenetics have had tremendous impact on our thinking and understanding of biological phenomena and the impact of environmental stressors on complex diseases, notably cancer. Environmental and lifestyle factors are thought to be implicated in the development of a wide range of human cancers by eliciting epigenetic changes, however, the underlying mechanisms remain poorly understood. Epigenetic mechanisms can be viewed as an interface between the genome and environmental influence, therefore aberrant epigenetic events associated with environmental stressors and factors in the cell microenvironment are likely to play an important role in the onset and progression of different human malignancies. At the cellular level, aberrant epigenetic events influence critical cellular events (such as gene expression, carcinogen detoxification, DNA repair, and cell cycle), which are further modulated by risk factor exposures and thus may define the severity/subtype of cancer. This review summarizes recent progress in our understanding of the epigenetic mechanisms through which environmental stressors and endogenous factors may promote tumor development and progression. PMID:27343085

  16. Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction.

    PubMed

    Montesinos-López, Abelardo; Montesinos-López, Osval A; Crossa, José; Burgueño, Juan; Eskridge, Kent M; Falconi-Castillo, Esteban; He, Xinyao; Singh, Pawan; Cichy, Karen

    2016-01-01

    Genomic tools allow the study of the whole genome, and facilitate the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with a large sample size ([Formula: see text]) and a small number of parameters (p) cannot be used for genomic-enabled prediction where the number of parameters (p) is larger than the sample size ([Formula: see text]). Here, we propose a Bayesian mixed-negative binomial (BMNB) genomic regression model for counts that takes into account genotype by environment [Formula: see text] interaction. We also provide all the full conditional distributions to implement a Gibbs sampler. We evaluated the proposed model using a simulated data set, and a real wheat data set from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. Results indicate that our BMNB model provides a viable option for analyzing count data. PMID:26921298

  17. Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction

    PubMed Central

    Montesinos-López, Abelardo; Montesinos-López, Osval A.; Crossa, José; Burgueño, Juan; Eskridge, Kent M.; Falconi-Castillo, Esteban; He, Xinyao; Singh, Pawan; Cichy, Karen

    2016-01-01

    Genomic tools allow the study of the whole genome, and facilitate the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with a large sample size (nT) and a small number of parameters (p) cannot be used for genomic-enabled prediction where the number of parameters (p) is larger than the sample size (nT). Here, we propose a Bayesian mixed-negative binomial (BMNB) genomic regression model for counts that takes into account genotype by environment (G×E) interaction. We also provide all the full conditional distributions to implement a Gibbs sampler. We evaluated the proposed model using a simulated data set, and a real wheat data set from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. Results indicate that our BMNB model provides a viable option for analyzing count data. PMID:26921298

  18. Landscape community genomics: understanding eco-evolutionary processes in complex environments.

    PubMed

    Hand, Brian K; Lowe, Winsor H; Kovach, Ryan P; Muhlfeld, Clint C; Luikart, Gordon

    2015-03-01

    Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments. PMID:25650350

  19. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    DOE PAGESBeta

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L.; Reysenbach, Anna-Louise; Podar, Mircea

    2016-07-05

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism’s physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi’) and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus’ are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Lastly, genomic and proteomicmore » comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.« less

  20. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    PubMed Central

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L.; Reysenbach, Anna-Louise; Podar, Mircea

    2016-01-01

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus' are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea. PMID:27378076

  1. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment

    PubMed Central

    Kelley, Joanna L.; Peyton, Justin T.; Fiston-Lavier, Anna-Sophie; Teets, Nicholas M.; Yee, Muh-Ching; Johnston, J. Spencer; Bustamante, Carlos D.; Lee, Richard E.; Denlinger, David L.

    2014-01-01

    The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment. PMID:25118180

  2. Landscape community genomics: understanding eco-evolutionary processes in complex environments

    USGS Publications Warehouse

    Hand, Brian K.; Lowe, Winsor H.; Kovach, Ryan P.; Muhlfeld, Clint C.; Luikart, Gordon

    2015-01-01

    Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.

  3. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment.

    PubMed

    Wurch, Louie; Giannone, Richard J; Belisle, Bernard S; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L; Reysenbach, Anna-Louise; Podar, Mircea

    2016-01-01

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota ('Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of 'Nanopusillus' are among the smallest known cellular organisms (100-300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea. PMID:27378076

  4. Draft Genome Sequence of an Antifungal Bacterium Isolated from the Breeding Environment of Dorcus hopei binodulosus

    PubMed Central

    Kenzaka, Takehiko; Yamada, Yasuhiro

    2014-01-01

    Burkholderia sp. strain A1 was isolated from a decaying log present in the breeding environment of a stag beetle. The draft genome sequence indicates that strain A1 harbors many biosynthesis molecules, which have antimicrobial properties, and thus potentially eliminates the fungi by producing antifungal compounds, such as siderophores. PMID:24831148

  5. Draft Genome Sequences of 10 Microbacterium spp., with Emphasis on Heavy Metal-Contaminated Environments

    PubMed Central

    Corretto, Erika; Antonielli, Livio; Sessitsch, Angela; Kidd, Petra; Weyens, Nele

    2015-01-01

    Microbacterium spp. isolated from heavy metal (HM)-contaminated environments (soil and plants) can play a role in mobilization processes and in the phytoextraction of HM. Here, we report the whole-genome sequences and annotation of 10 Microbacterium spp. isolated from both HM-contaminated and -noncontaminated compartments. PMID:25977426

  6. Health Consequences of the Interaction of Our Genome with Our Environment

    EPA Science Inventory

    Health Consequences Of The Interaction Of Our Genome With Our Environment DM DeMarini, US EPA, RTP, NC 27711 Our primary exposures to potentially mutagenic agents are via the air, water, soil, combustion emissions, and food. Thus, characterizing the mutations induced by these...

  7. Genomics and Health: Behavior, Environment, and Genetic Factors All Have a Role in Causing People to be Overweight and ....

    MedlinePlus

    ... Diseases Genomic Resources Behavior, environment, and genetic factors all have a role in causing people to be ... increased consumption of high-calorie foods. However, not all people living in such environments will become obese, ...

  8. Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Reeve, Wayne

    2013-03-01

    Wayne Reeve of Murdoch University on "Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  9. Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas

    PubMed Central

    Freel, Kelle C.; Krueger, Martin C.; Farasin, Julien; Brochier-Armanet, Céline; Barbe, Valérie; Andrès, Jeremy; Cholley, Pierre-Etienne; Dillies, Marie-Agnès; Jagla, Bernd; Koechler, Sandrine; Leva, Yann; Magdelenat, Ghislaine; Plewniak, Frédéric; Proux, Caroline; Coppée, Jean-Yves; Bertin, Philippe N.; Heipieper, Hermann J.; Arsène-Ploetze, Florence

    2015-01-01

    Acid mine drainage (AMD) is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As). Thiomonas (Tm.) bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site) and Tm. intermedia K12 (isolated from a sewage pipe). A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs) were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7). Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments. PMID:26422469

  10. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes

    PubMed Central

    Fang, Xiaodong; Seim, Inge; Huang, Zhiyong; Gerashchenko, Maxim V.; Xiong, Zhiqiang; Turanov, Anton A.; Zhu, Yabing; Lobanov, Alexei V.; Fan, Dingding; Yim, Sun Hee; Yao, Xiaoming; Ma, Siming; Yang, Lan; Lee, Sang-Goo; Kim, Eun Bae; Bronson, Roderick T.; Šumbera, Radim; Buffenstein, Rochelle; Zhou, Xin; Krogh, Anders; Park, Thomas J.; Zhang, Guojie; Wang, Jun; Gladyshev, Vadim N.

    2014-01-01

    SUMMARY Subterranean mammals spend their lives in dark, unventilated environments rich in carbon dioxide and ammonia, and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analysis, along with transcriptomes of related subterranean rodents, reveal candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, aberrant melatonin system, pain insensitivity, and novel processing of 28S rRNA. Together, the new genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance and longevity. PMID:25176646

  11. Community structure and metabolism through reconstruction of microbial genomes from the environment

    SciTech Connect

    Tyson, Gene W.; Chapman, Jarrod; Hugenholtz, Phillip; Allen, Eric E.; Rachna, Ram J.; Richardson, Paul M.; Solovyev, Victor V.; Rubin, Edward M.; Rokhsar, Daniel S.; Banfield, Jillian F.

    2004-01-01

    Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.

  12. Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Wullschleger, Stan

    2012-03-22

    Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

  13. Applications of Genome-based Science in Shaping Citrus Industries of the World (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    ScienceCinema

    Gmitter Jr, Fred [University of Florida

    2013-01-15

    Fred Gmitter from the University of Florida on "Applications of Genome-based Science in Shaping the Future of the World's Citrus Industries" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  14. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Shih, Patrick [Kerfeld Lab, UC Berkeley and JGI

    2013-01-22

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  15. Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Wullschleger, Stan [ORNL

    2013-01-22

    Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

  16. Applications of Genome-based Science in Shaping Citrus Industries of the World (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    SciTech Connect

    Gmitter Jr, Fred

    2012-03-21

    Fred Gmitter from the University of Florida on "Applications of Genome-based Science in Shaping the Future of the World's Citrus Industries" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  17. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Shih, Patrick

    2012-03-22

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  18. Reconstructing Viral Genomes from the Environment Using Fosmid Clones: The Case of Haloviruses

    PubMed Central

    Garcia-Heredia, Inmaculada; Martin-Cuadrado, Ana-Belen; Mojica, Francisco J. M.; Santos, Fernando; Mira, Alex; Antón, Josefa; Rodriguez-Valera, Francisco

    2012-01-01

    Background Metaviriomes, the viral genomes present in an environment, have been studied by direct sequencing of the viral DNA or by cloning in small insert libraries. The short reads generated by both approaches make it very difficult to assemble and annotate such flexible genomic entities. Many environmental viruses belong to unknown groups or prey on uncultured and little known cellular lineages, and hence might not be present in databases. Methodology and Principal Findings Here we have used a different approach, the cloning of viral DNA into fosmids before sequencing, to obtain natural contigs that are close to the size of a viral genome. We have studied a relatively low diversity extreme environment: saturated NaCl brines, which simplifies the analysis and interpretation of the data. Forty-two different viral genomes were retrieved, and some of these were almost complete, and could be tentatively identified as head-tail phages (Caudovirales). Conclusions and Significance We found a cluster of phage genomes that most likely infect Haloquadratum walsbyi, the square archaeon and major component of the community in these hypersaline habitats. The identity of the prey could be confirmed by the presence of CRISPR spacer sequences shared by the virus and one of the available strain genomes. Other viral clusters detected appeared to prey on the Nanohaloarchaea and on the bacterium Salinibacter ruber, covering most of the diversity of microbes found in this type of environment. This approach appears then as a viable alternative to describe metaviriomes in a much more detailed and reliable way than by the more common approaches based on direct sequencing. An example of transfer of a CRISPR cluster including repeats and spacers was accidentally found supporting the dynamic nature and frequent transfer of this peculiar prokaryotic mechanism of cell protection. PMID:22479446

  19. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Muchero, Wellington

    2012-03-22

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  20. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Muchero, Wellington [Oak Ridge National Laboratory

    2013-01-22

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  1. Living with genome instability: the adaptation of phytoplasmas todiverse environments of their insect and plant hosts

    SciTech Connect

    Bai, Xiaodong; Zhang, Jianhua; Ewing, Adam; Miller, Sally A.; Radek, Agnes; Shevchenko, Dimitriy; Tsukerman, Kiryl; Walunas, Theresa; Lapidus, Alla; Campbell, John W.; Hogenhout Saskia A.

    2006-02-17

    Phytoplasmas (Candidatus Phytoplasma, Class Mollicutes) cause disease in hundreds of economically important plants, and are obligately transmitted by sap-feeding insects of the order Hemiptera, mainly leafhoppers and psyllids. The 706,569-bp chromosome and four plasmids of aster yellows phytoplasma strain witches broom (AY-WB) were sequenced and compared to the onion yellows phytoplasma strain M (OY-M) genome. The phytoplasmas have small repeat-rich genomes. The repeated DNAs are organized into large clusters, potential mobile units (PMUs), which contain tra5 insertion sequences (ISs), and specialized sigma factors and membrane proteins. So far, PMUs are unique to phytoplasmas. Compared to mycoplasmas, phytoplasmas lack several recombination and DNA modification functions, and therefore phytoplasmas probably use different mechanisms of recombination, likely involving PMUs, for the creation of variability, allowing phytoplasmas to adjust to the diverse environments of plants and insects. The irregular GC skews and presence of ISs and large repeated sequences in the AY-WB and OY-M genomes are indicative of high genomic plasticity. Nevertheless, segments of {approx}250 kb, located between genes lplA and glnQ are syntenic between the two phytoplasmas, contain the majority of the metabolic genes and no ISs. AY-WB is further along in the reductive evolution process than OY-M. The AY-WB genome is {approx}154 kb smaller than the OY-M genome, primarily as a result of fewer multicopy sequences, including PMUs. Further, AY-WB lacks genes that are truncated and are part of incomplete pathways in OY-M. This is the first comparative phytoplasma genome analysis and report of the existence of PMUs in phytoplasma genomes.

  2. Adaptive evolution of an artificial RNA genome to a reduced ribosome environment.

    PubMed

    Mizuuchi, Ryo; Ichihashi, Norikazu; Usui, Kimihito; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-03-20

    The reconstitution of an artificial system that has the same evolutionary ability as a living thing is a major challenge in the in vitro synthetic biology. In this study, we tested the adaptive evolutionary ability of an artificial RNA genome replication system, termed the translation-coupled RNA replication (TcRR) system. In a previous work, we performed a study of the long-term evolution of the genome with an excess amount of ribosome. In this study, we continued the evolution experiment in a reduced-ribosome environment and observed that the mutant genome compensated for the reduced ribosome concentration. This result demonstrated the ability of the TcRR system to adapt and may be a step toward generating living things with evolutionary ability. PMID:24933578

  3. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model.

    PubMed

    Lopez-Cruz, Marco; Crossa, Jose; Bonnett, David; Dreisigacker, Susanne; Poland, Jesse; Jannink, Jean-Luc; Singh, Ravi P; Autrique, Enrique; de los Campos, Gustavo

    2015-04-01

    Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates of selection. Originally, these models were developed without considering genotype × environment interaction(G×E). Several authors have proposed extensions of the single-environment GS model that accommodate G×E using either covariance functions or environmental covariates. In this study, we model G×E using a marker × environment interaction (M×E) GS model; the approach is conceptually simple and can be implemented with existing GS software. We discuss how the model can be implemented by using an explicit regression of phenotypes on markers or using co-variance structures (a genomic best linear unbiased prediction-type model). We used the M×E model to analyze three CIMMYT wheat data sets (W1, W2, and W3), where more than 1000 lines were genotyped using genotyping-by-sequencing and evaluated at CIMMYT's research station in Ciudad Obregon, Mexico, under simulated environmental conditions that covered different irrigation levels, sowing dates and planting systems. We compared the M×E model with a stratified (i.e., within-environment) analysis and with a standard (across-environment) GS model that assumes that effects are constant across environments (i.e., ignoring G×E). The prediction accuracy of the M×E model was substantially greater of that of an across-environment analysis that ignores G×E. Depending on the prediction problem, the M×E model had either similar or greater levels of prediction accuracy than the stratified analyses. The M×E model decomposes marker effects and genomic values into components that are stable across environments (main effects) and others that are environment-specific (interactions). Therefore, in principle, the interaction model could shed light over which variants have effects that are stable across environments and which ones are responsible for G×E. The data set and the scripts required to reproduce the analysis are

  4. Increased Prediction Accuracy in Wheat Breeding Trials Using a Marker × Environment Interaction Genomic Selection Model

    PubMed Central

    Lopez-Cruz, Marco; Crossa, Jose; Bonnett, David; Dreisigacker, Susanne; Poland, Jesse; Jannink, Jean-Luc; Singh, Ravi P.; Autrique, Enrique; de los Campos, Gustavo

    2015-01-01

    Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates of selection. Originally, these models were developed without considering genotype × environment interaction(G×E). Several authors have proposed extensions of the single-environment GS model that accommodate G×E using either covariance functions or environmental covariates. In this study, we model G×E using a marker × environment interaction (M×E) GS model; the approach is conceptually simple and can be implemented with existing GS software. We discuss how the model can be implemented by using an explicit regression of phenotypes on markers or using co-variance structures (a genomic best linear unbiased prediction-type model). We used the M×E model to analyze three CIMMYT wheat data sets (W1, W2, and W3), where more than 1000 lines were genotyped using genotyping-by-sequencing and evaluated at CIMMYT’s research station in Ciudad Obregon, Mexico, under simulated environmental conditions that covered different irrigation levels, sowing dates and planting systems. We compared the M×E model with a stratified (i.e., within-environment) analysis and with a standard (across-environment) GS model that assumes that effects are constant across environments (i.e., ignoring G×E). The prediction accuracy of the M×E model was substantially greater of that of an across-environment analysis that ignores G×E. Depending on the prediction problem, the M×E model had either similar or greater levels of prediction accuracy than the stratified analyses. The M×E model decomposes marker effects and genomic values into components that are stable across environments (main effects) and others that are environment-specific (interactions). Therefore, in principle, the interaction model could shed light over which variants have effects that are stable across environments and which ones are responsible for G×E. The data set and the scripts required to reproduce the analysis

  5. Space environment induced mutations prefer to occur at polymorphic sites of rice genomes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, M.; Cheng, Z.; Sun, Y.

    To explore the genomic characteristics of rice mutants induced by space environment, space-induced mutants 971-5, 972-4, and R955, which acquired new traits after space flight such as increased yield, reduced resistance to rice blast, and semi-dwarfism compared with their on-ground controls, 971ck, 972ck, and Bing95-503, respectively, together with other 8 japonica and 3 indica rice varieties, 17 in total, were analyzed by amplified fragment length polymorphism (AFLP) method. We chose 16 AFLP primer-pairs which generated a total of 1251 sites, of which 745 (59.6%) were polymorphic over all the genotypes. With the 16 pairs of primer combinations, 54 space-induced mutation sites were observed in 971-5, 86 in 972-4, and 5 in R955 compared to their controls, and the mutation rates were 4.3%, 6.9% and 0.4%, respectively. Interestingly, 75.9%, 84.9% and 100% of the mutation sites identified in 971-5, 972-4, and R955 occurred in polymorphic sites. This result suggests that the space environment preferentially induced mutations at polymorphic sites in rice genomes and might share a common mechanism with other types of mutagens. It also implies that polymorphic sites in genomes are potential "hotspots" for mutations induced by the space environment.

  6. Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world.

    PubMed

    Vrieze, Scott I; Iacono, William G; McGue, Matt

    2012-11-01

    This article serves to outline a research paradigm to investigate main effects and interactions of genes, environment, and development on behavior and psychiatric illness. We provide a historical context for candidate gene studies and genome-wide association studies, including benefits, limitations, and expected payoffs. Using substance use and abuse as our driving example, we then turn to the importance of etiological psychological theory in guiding genetic, environmental, and developmental research, as well as the utility of refined phenotypic measures, such as endophenotypes, in the pursuit of etiological understanding and focused tests of genetic and environmental associations. Phenotypic measurement has received considerable attention in the history of psychology and is informed by psychometrics, whereas the environment remains relatively poorly measured and is often confounded with genetic effects (i.e., gene-environment correlation). Genetically informed designs, which are no longer limited to twin and adoption studies thanks to ever-cheaper genotyping, are required to understand environmental influences. Finally, we outline the vast amount of individual difference in structural genomic variation, most of which remains to be leveraged in genetic association tests. Although the genetic data can be massive and burdensome (tens of millions of variants per person), we argue that improved understanding of genomic structure and function will provide investigators with new tools to test specific a priori hypotheses derived from etiological psychological theory, much like current candidate gene research but with less confusion and more payoff than candidate gene research has to date. PMID:23062291

  7. Plants from Chernobyl zone could shed light on genome stability in radioactive environment

    NASA Astrophysics Data System (ADS)

    Shevchenko, Galina; Talalaiev, Oleksandr; Doonan, John

    2016-07-01

    For nearly 30 years, despite of chronic radiation, flora in Chernobyl zone continue to flourish, evidencing the adaptation of plants to such an environment. Keeping in mind interplanetary missions, this phenomenon is a challenge for plant space research since it highlights the possible mechanisms of genome protection and stabilization in harmful environment. Plants are sessile organisms and, contrary to animals, could not escape the external impact. Therefore, plants should evolve the robust system allowing DNA-protection against damage, which is of special interest. Our investigations show that Arabidopsis thaliana from Chernobyl zone tolerate radiomimetics and heavy metals better than control plants from non-polluted areas. Besides, its genome is less affected by such mutagens. qPCR investigations have revealed up-regulation of some genes involved in DNA damage response. In particular, expression of ATR is increased slightly and downstream expression of CycB1:1 gene is increased significantly after bleomycin treatment suggesting role of ATR-dependent pathway in genome stabilization. Several DNA repair pathways are known to exist in plants. We continue investigations on gene expression from different DNA repair pathways as well as cell cycle regulation and investigation of PCD hallmarks in order to reveal the mechanism of plant tolerance to radiation environment. Our investigations provide unique information for space researchers working on biotechnology of radiation tolerant plants.

  8. Post-genomic approaches to understanding interactions between fungi and their environment

    SciTech Connect

    de Vries, Ronald P.; Benoit, Isabelle; Doehlemann, Gunther; Kobayashi, Tetsuo; Magnuson, Jon K.; Panisko, Ellen A.; Baker, Scott E.; Lebrun, Marc-Henri

    2011-05-24

    Fungi inhabit every natural and anthropogenic environment on Earth. They have highly varied life-styles including saprobes (using only dead biomass as a nutrient source), pathogens (feeding on living biomass), and symbionts (co-existing with other organisms). These distinctions are not absolute as many species employ several life styles (e.g. saprobe and opportunistic pathogen, saprobe and mycorrhiza). To efficiently survive in these different and often changing environments, fungi need to be able to modify their physiology and in some cases will even modify their local environment. Understanding the interaction between fungi and their environments has been a topic of study for many decades. However, recently these studies have reached a new dimension. The availability of fungal genomes and development of postgenomic technologies for fungi, such as transcriptomics, proteomics and metabolomics, have enabled more detailed studies into this topic resulting in new insights. Based on a Special Interest Group session held during IMC9, this paper provides examples of the recent advances in using (post-)genomic approaches to better understand fungal interactions with their environments.

  9. Genome analysis of Pseudoalteromonas flavipulchra JG1 reveals various survival advantages in marine environment

    PubMed Central

    2013-01-01

    Background Competition between bacteria for habitat and resources is very common in the natural environment and is considered to be a selective force for survival. Many strains of the genus Pseudoalteromonas were confirmed to produce bioactive compounds that provide those advantages over their competitors. In our previous study, P. flavipulchra JG1 was found to synthesize a Pseudoalteromonas flavipulchra antibacterial Protein (PfaP) with L-amino acid oxidase activity and five small chemical compounds, which were the main competitive agents of the strain. In addition, the genome of this bacterium has been previously sequenced as Whole Genome Shotgun project (PMID: 22740664). In this study, more extensive genomic analysis was performed to identify specific genes or gene clusters which related to its competitive feature, and further experiments were carried out to confirm the physiological roles of these genes when competing with other microorganisms in marine environment. Results The antibacterial protein PfaP may also participate in the biosynthesis of 6-bromoindolyl-3-acetic acid, indicating a synergistic effect between the antibacterial macromolecule and small molecules. Chitinases and quorum quenching enzymes present in P. flavipulchra, which coincide with great chitinase and acyl homoserine lactones degrading activities of strain JG1, suggest other potential mechanisms contribute to antibacterial/antifungal activities. Moreover, movability and rapid response mechanisms to phosphorus starvation and other stresses, such as antibiotic, oxidative and heavy metal stress, enable JG1 to adapt to deleterious, fluctuating and oligotrophic marine environments. Conclusions The genome of P. flavipulchra JG1 exhibits significant genetic advantages against other microorganisms, encoding antimicrobial agents as well as abilities to adapt to various adverse environments. Genes involved in synthesis of various antimicrobial substances enriches the antagonistic mechanisms of P

  10. Understanding Historical Human Migration Patterns and Interbreeding (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Willerslev, Eske [University of Copenhagen

    2013-01-15

    Eske Willerslev from the University of Copenhagen on "Understanding Historical Human Migration Patterns and Interbreeding Using the Ancient Genomes of a Palaeo-Eskimo and an Aboriginal Australian" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  11. Understanding Historical Human Migration Patterns and Interbreeding (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Willerslev, Eske

    2012-03-21

    Eske Willerslev from the University of Copenhagen on "Understanding Historical Human Migration Patterns and Interbreeding Using the Ancient Genomes of a Palaeo-Eskimo and an Aboriginal Australian" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  12. Genomic Features of a Bumble Bee Symbiont Reflect Its Host Environment

    PubMed Central

    Magoc, Tanja; Koch, Hauke; Salzberg, Steven L.; Moran, Nancy A.

    2014-01-01

    Here, we report the genome of one gammaproteobacterial member of the gut microbiota, for which we propose the name “Candidatus Schmidhempelia bombi,” that was inadvertently sequenced alongside the genome of its host, the bumble bee, Bombus impatiens. This symbiont is a member of the recently described bacterial order Orbales, which has been collected from the guts of diverse insect species; however, “Ca. Schmidhempelia” has been identified exclusively with bumble bees. Metabolic reconstruction reveals that “Ca. Schmidhempelia” lacks many genes for a functioning NADH dehydrogenase I, all genes for the high-oxygen cytochrome o, and most genes in the tricarboxylic acid (TCA) cycle. “Ca. Schmidhempelia” has retained NADH dehydrogenase II, the low-oxygen specific cytochrome bd, anaerobic nitrate respiration, mixed-acid fermentation pathways, and citrate fermentation, which may be important for survival in low-oxygen or anaerobic environments found in the bee hindgut. Additionally, a type 6 secretion system, a Flp pilus, and many antibiotic/multidrug transporters suggest complex interactions with its host and other gut commensals or pathogens. This genome has signatures of reduction (2.0 megabase pairs) and rearrangement, as previously observed for genomes of host-associated bacteria. A survey of wild and laboratory B. impatiens revealed that “Ca. Schmidhempelia” is present in 90% of individuals and, therefore, may provide benefits to its host. PMID:24747890

  13. Computational design of genomic transcriptional networks with adaptation to varying environments.

    PubMed

    Carrera, Javier; Elena, Santiago F; Jaramillo, Alfonso

    2012-09-18

    Transcriptional profiling has been widely used as a tool for unveiling the coregulations of genes in response to genetic and environmental perturbations. These coregulations have been used, in a few instances, to infer global transcriptional regulatory models. Here, using the large amount of transcriptomic information available for the bacterium Escherichia coli, we seek to understand the design principles determining the regulation of its transcriptome. Combining transcriptomic and signaling data, we develop an evolutionary computational procedure that allows obtaining alternative genomic transcriptional regulatory network (GTRN) that still maintains its adaptability to dynamic environments. We apply our methodology to an E. coli GTRN and show that it could be rewired to simpler transcriptional regulatory structures. These rewired GTRNs still maintain the global physiological response to fluctuating environments. Rewired GTRNs contain 73% fewer regulated operons. Genes with similar functions and coordinated patterns of expression across environments are clustered into longer regulated operons. These synthetic GTRNs are more sensitive and show a more robust response to challenging environments. This result illustrates that the natural configuration of E. coli GTRN does not necessarily result from selection for robustness to environmental perturbations, but that evolutionary contingencies may have been important as well. We also discuss the limitations of our methodology in the context of the demand theory. Our procedure will be useful as a novel way to analyze global transcription regulation networks and in synthetic biology for the de novo design of genomes. PMID:22927389

  14. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Gallivan, Justin [Emory University

    2013-01-22

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  15. Regulation of Flowering in Brachypodium distachyon (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Amasino, Rick

    2013-03-01

    Rick Amasino of the University of Wisconsin on "Regulation of Flowering in Brachypodium distachyon" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  16. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Gallivan, Justin

    2012-03-21

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  17. PMI: Plant-Microbe Interfaces (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Schadt, Christopher

    2013-03-01

    Christopher Schadt of Oak Ridge National Laboratory on "Plant-Microbe Interactions" in the context of poplar trees at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 held in Walnut Creek, Calif.

  18. Improving biofuel feedstocks by modifying xylan biosynthesis (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Lau, Jane

    2013-03-01

    Jane Lau of the Joint BioEnergy Institute on "Improving biofuel feedstocks by modifying xylan biosynthesis" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  19. Draft Genome Sequence of Salmonella enterica subsp. enterica Serotype Saintpaul Strain S-70, Isolated from an Aquatic Environment

    PubMed Central

    Estrada-Acosta, Mitzi; Medrano-Félix, Andrés; Jiménez, Maribel; Gómez-Gil, Bruno; León-Félix, Josefina; Amarillas, Luis

    2013-01-01

    Salmonella is a pathogen of worldwide importance, causing disease in a vast range of hosts, including humans. We report the genome sequence of Salmonella enterica subsp. enterica serotype Saintpaul strain S-70, isolated from an aquatic environment. PMID:24336367

  20. Putting the Genome in Context: Gene-Environment Interactions in Type 2 Diabetes.

    PubMed

    Franks, Paul W; Paré, Guillaume

    2016-07-01

    The genome is often the conduit through which environmental exposures convey their effects on health and disease. Whilst not all diseases act by directly perturbing the genome, the phenotypic responses are often genetically determined. Hence, whilst diseases are often defined has having differing degrees of genetic determination, genetic and environmental factors are, with few exceptions, inseparable features of most diseases, not least type 2 diabetes. It follows that to optimize diabetes, prevention and treatment will require that the etiological roles of genetic and environmental risk factors be jointly considered. As we discuss here, studies focused on quantifying gene-environment and gene-treatment interactions are gathering momentum and may eventually yield data that helps guide health-related choices and medical interventions for type 2 diabetes and other complex diseases. PMID:27155607

  1. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment.

    PubMed

    Norton, Jeanette M; Klotz, Martin G; Stein, Lisa Y; Arp, Daniel J; Bottomley, Peter J; Chain, Patrick S G; Hauser, Loren J; Land, Miriam L; Larimer, Frank W; Shin, Maria W; Starkenburg, Shawn R

    2008-06-01

    The complete genome of the ammonia-oxidizing bacterium Nitrosospira multiformis (ATCC 25196(T)) consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2,827 putative proteins. Of the 2,827 putative proteins, 2,026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and Nitrosomonas eutropha were the best match for 42% of the predicted genes in N. multiformis. The N. multiformis genome contains three nearly identical copies of amo and hao gene clusters as large repeats. The features of N. multiformis that distinguish it from N. europaea include the presence of gene clusters encoding urease and hydrogenase, a ribulose-bisphosphate carboxylase/oxygenase-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced genomes of ammonia-oxidizing bacteria. Gene clusters encoding proteins associated with outer membrane and cell envelope functions, including transporters, porins, exopolysaccharide synthesis, capsule formation, and protein sorting/export, were abundant. Numerous sensory transduction and response regulator gene systems directed toward sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate, and cyanophycin storage and utilization were identified, providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments. PMID:18390676

  2. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population

    PubMed Central

    Otowa, Takeshi; Kawamura, Yoshiya; Tsutsumi, Akizumi; Kawakami, Norito; Kan, Chiemi; Shimada, Takafumi; Umekage, Tadashi; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa

    2016-01-01

    Stressful events have been identified as a risk factor for depression. Although gene–environment (G × E) interaction in a limited number of candidate genes has been explored, no genome-wide search has been reported. The aim of the present study is to identify genes that influence the association of stressful events with depression. Therefore, we performed a genome-wide G × E interaction analysis in the Japanese population. A genome-wide screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array 6.0. Stressful life events were assessed using the Social Readjustment Rating Scale (SRRS) and depression symptoms were assessed with self-rating questionnaires using the Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions between single nucleotide polymorphisms (SNPs) and stressful events were calculated using the linear regression model adjusted for sex and age. After quality control of genotype data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although none surpassed the level of the genome-wide significance, a marginal significant association of interaction between SRRS and rs10510057 with depression were found (p = 4.5 × 10−8). The SNP is located on 10q26 near Regulators of G-protein signaling 10 (RGS10), which encodes a regulatory molecule involved in stress response. When we investigated a similar G × E interaction between depression (K6 scale) and work-related stress in an independent sample (n = 439), a significant G × E effect on depression was observed (p = 0.015). Our findings suggest that rs10510057, interacting with stressors, may be involved in depression risk. Incorporating G × E interaction into GWAS can contribute to find susceptibility locus that are potentially missed by conventional GWAS. PMID:27529621

  3. The First Pilot Genome-Wide Gene-Environment Study of Depression in the Japanese Population.

    PubMed

    Otowa, Takeshi; Kawamura, Yoshiya; Tsutsumi, Akizumi; Kawakami, Norito; Kan, Chiemi; Shimada, Takafumi; Umekage, Tadashi; Kasai, Kiyoto; Tokunaga, Katsushi; Sasaki, Tsukasa

    2016-01-01

    Stressful events have been identified as a risk factor for depression. Although gene-environment (G × E) interaction in a limited number of candidate genes has been explored, no genome-wide search has been reported. The aim of the present study is to identify genes that influence the association of stressful events with depression. Therefore, we performed a genome-wide G × E interaction analysis in the Japanese population. A genome-wide screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array 6.0. Stressful life events were assessed using the Social Readjustment Rating Scale (SRRS) and depression symptoms were assessed with self-rating questionnaires using the Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions between single nucleotide polymorphisms (SNPs) and stressful events were calculated using the linear regression model adjusted for sex and age. After quality control of genotype data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although none surpassed the level of the genome-wide significance, a marginal significant association of interaction between SRRS and rs10510057 with depression were found (p = 4.5 × 10-8). The SNP is located on 10q26 near Regulators of G-protein signaling 10 (RGS10), which encodes a regulatory molecule involved in stress response. When we investigated a similar G × E interaction between depression (K6 scale) and work-related stress in an independent sample (n = 439), a significant G × E effect on depression was observed (p = 0.015). Our findings suggest that rs10510057, interacting with stressors, may be involved in depression risk. Incorporating G × E interaction into GWAS can contribute to find susceptibility locus that are potentially missed by conventional GWAS. PMID:27529621

  4. Multivariate whole genome average interval mapping: QTL analysis for multiple traits and/or environments.

    PubMed

    Verbyla, Arūnas P; Cullis, Brian R

    2012-09-01

    A major aim in some plant-based studies is the determination of quantitative trait loci (QTL) for multiple traits or across multiple environments. Understanding these QTL by trait or QTL by environment interactions can be of great value to the plant breeder. A whole genome approach for the analysis of QTL is presented for such multivariate applications. The approach is an extension of whole genome average interval mapping in which all intervals on a linkage map are included in the analysis simultaneously. A random effects working model is proposed for the multivariate (trait or environment) QTL effects for each interval, with a variance-covariance matrix linking the variates in a particular interval. The significance of the variance-covariance matrix for the QTL effects is tested and if significant, an outlier detection technique is used to select a putative QTL. This QTL by variate interaction is transferred to the fixed effects. The process is repeated until the variance-covariance matrix for QTL random effects is not significant; at this point all putative QTL have been selected. Unlinked markers can also be included in the analysis. A simulation study was conducted to examine the performance of the approach and demonstrated the multivariate approach results in increased power for detecting QTL in comparison to univariate methods. The approach is illustrated for data arising from experiments involving two doubled haploid populations. The first involves analysis of two wheat traits, α-amylase activity and height, while the second is concerned with a multi-environment trial for extensibility of flour dough. The method provides an approach for multi-trait and multi-environment QTL analysis in the presence of non-genetic sources of variation. PMID:22692445

  5. Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments

    SciTech Connect

    Chen, F.; Liu, C.; Tschaplinski, T. J.; Zhao, N.

    2009-09-01

    Populus trees face constant challenges from the environment during their life cycle. To ensure their survival and reproduction, Populus trees deploy various types of defenses, one of which is the production of a myriad of secondary metabolites. Compounds derived from the shikimate-phenylpropanoid pathway are the most abundant class of secondary metabolites synthesized in Populus. Among other major classes of secondary metabolites in Populus are terpenoids and fatty acid-derivatives. Some of the secondary metabolites made by Populus trees have been functionally characterized. Some others have been associated with certain biological/ecological processes, such as defense against insects and microbial pathogens or acclimation or adaptation to abiotic stresses. Functions of many Populus secondary metabolites remain unclear. The advent of various novel genomic tools will enable us to explore in greater detail the complexity of secondary metabolism in Populus. Detailed data mining of the Populus genome sequence can unveil candidate genes of secondary metabolism. Metabolomic analysis will continue to identify new metabolites synthesized in Populus. Integrated genomics that combines various 'omics' tools will prove to be the most powerful approach in revealing the molecular and biochemical basis underlying the biosynthesis of secondary metabolites in Populus. Characterization of the biological/ecological functions of secondary metabolites as well as their biosynthesis will provide knowledge and tools for genetically engineering the production of seconday metabolites that can lead to the generation of novel, improved Populus varieties.

  6. G-language genome analysis environment with REST and SOAP web service interfaces.

    PubMed

    Arakawa, Kazuharu; Kido, Nobuhiro; Oshita, Kazuki; Tomita, Masaru

    2010-07-01

    G-language genome analysis environment (G-language GAE) contains more than 100 programs that focus on the analysis of bacterial genomes, including programs for the identification of binding sites by means of information theory, analysis of nucleotide composition bias and the distribution of particular oligonucleotides, calculation of codon bias and prediction of expression levels, and visualization of genomic information. We have provided a collection of web services for these programs by utilizing REST and SOAP technologies. The REST interface, available at http://rest.g-language.org/, provides access to all 145 functions of the G-language GAE. These functions can be accessed from other online resources. All analysis functions are represented by unique universal resource identifiers. Users can access the functions directly via the corresponding universe resource locators (URLs), and biological web sites can readily embed the functions by simply linking to these URLs. The SOAP services, available at http://www.g-language.org/wiki/soap/, provide language-independent programmatic access to 77 analysis programs. The SOAP service Web Services Definition Language file can be readily loaded into graphical clients such as the Taverna workbench to integrate the programs with other services and workflows. PMID:20439313

  7. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions

    PubMed Central

    Bellas, Christopher M.; Anesio, Alexandre M.; Barker, Gary

    2015-01-01

    Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts

  8. The Genome of Spironucleus salmonicida Highlights a Fish Pathogen Adapted to Fluctuating Environments

    PubMed Central

    Xu, Feifei; Jerlström-Hultqvist, Jon; Einarsson, Elin; Ástvaldsson, Ásgeir; Svärd, Staffan G.; Andersson, Jan O.

    2014-01-01

    Spironucleus salmonicida causes systemic infections in salmonid fish. It belongs to the group diplomonads, binucleated heterotrophic flagellates adapted to micro-aerobic environments. Recently we identified energy-producing hydrogenosomes in S. salmonicida. Here we present a genome analysis of the fish parasite with a focus on the comparison to the more studied diplomonad Giardia intestinalis. We annotated 8067 protein coding genes in the ∼12.9 Mbp S. salmonicida genome. Unlike G. intestinalis, promoter-like motifs were found upstream of genes which are correlated with gene expression, suggesting a more elaborate transcriptional regulation. S. salmonicida can utilise more carbohydrates as energy sources, has an extended amino acid and sulfur metabolism, and more enzymes involved in scavenging of reactive oxygen species compared to G. intestinalis. Both genomes have large families of cysteine-rich membrane proteins. A cluster analysis indicated large divergence of these families in the two diplomonads. Nevertheless, one of S. salmonicida cysteine-rich proteins was localised to the plasma membrane similar to G. intestinalis variant-surface proteins. We identified S. salmonicida homologs to cyst wall proteins and showed that one of these is functional when expressed in Giardia. This suggests that the fish parasite is transmitted as a cyst between hosts. The extended metabolic repertoire and more extensive gene regulation compared to G. intestinalis suggest that the fish parasite is more adapted to cope with environmental fluctuations. Our genome analyses indicate that S. salmonicida is a well-adapted pathogen that can colonize different sites in the host. PMID:24516394

  9. Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome.

    PubMed

    Ramasubramanyan, Sharada; Osborn, Kay; Flower, Kirsty; Sinclair, Alison J

    2012-02-01

    The ability of Epstein-Barr virus (EBV) to establish latency allows it to evade the immune system and to persist for the lifetime of its host; one distinguishing characteristic is the lack of transcription of the majority of viral genes. Entry into the lytic cycle is coordinated by the viral transcription factor, Zta (BZLF1, ZEBRA, and EB1), and downstream effectors, while viral genome replication requires the concerted action of Zta and six other viral proteins at the origins of lytic replication. We explored the chromatin context at key EBV lytic cycle promoters (BZLF1, BRLF1, BMRF1, and BALF5) and the origins of lytic replication during latency and lytic replication. We show that a repressive heterochromatin-like environment (trimethylation of histone H3 at lysine 9 [H3K9me3] and lysine 27 [H3K27me3]), which blocks the interaction of some transcription factors with DNA, encompasses the key early lytic regulatory regions. Epigenetic silencing of the EBV genome is also imposed by DNA methylation during latency. The chromatin environment changes during the lytic cycle with activation of histones H3, H4, and H2AX occurring at both the origins of replication and at the key lytic regulatory elements. We propose that Zta is able to reverse the effects of latency-associated repressive chromatin at EBV early lytic promoters by interacting with Zta response elements within the H3K9me3-associated chromatin and demonstrate that these interactions occur in vivo. Since the interaction of Zta with DNA is not inhibited by DNA methylation, it is clear that Zta uses two routes to overcome epigenetic silencing of its genome. PMID:22090141

  10. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment.

    PubMed

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M P

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. PMID:25838495

  11. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    PubMed Central

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. PMID:25838495

  12. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotype by environment interaction (G*E) is one of the key issues when analyzing phenotypes. The use of environment data to model G*E has long been a subject of interest but is limited by the same problems as those addressed by genomic selection GS methods: a large number of correlated predictors e...

  13. Altered expression of AT-rich interactive domain 1A in hepatocellular carcinoma.

    PubMed

    Abe, Hiroyuki; Hayashi, Akimasa; Kunita, Akiko; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Shibahara, Junji; Kokudo, Norihiro; Fukayama, Masashi

    2015-01-01

    AT-rich interactive domain 1A (ARID1A) is a subunit of the Switch/Sucrose non-fermentable (SWI/SNF) chromatin remodeling complex. Recently, genome-wide whole exome sequencing revealed frequent mutations of ARID1A in hepatocellular carcinoma, but clinicopathological significance of ARID1A alteration has not been clarified yet. In this study, expression of ARID1A was investigated immunohistochemically in 290 cases of hepatocellular carcinomas. In the evaluation of tissue microarrays, cases of ARID1A alteration (63 total cases, 21.7%) consisted of 11 (3.8%) cases showing loss of expression and 52 (17.9%) with weak expression. Alteration of ARID1A was correlated with larger tumor size (P=0.034) and well or moderate differentiation of tumor histology (P=0.035). There was no significant correlation with age, sex, cirrhosis, TNM stage, tumor size, number of tumors, vascular invasion, patient survival, HBV infection, HCV infection, heavy use of alcohol, nor diabetes mellitus. EBER in situ hybridization was negative in all 11 cases with loss of ARID1A. Altered expression of ARID1A was inversely correlated with nuclear expression of p53 (P=0.018) or beta-catenin (P=0.025). There was some heterogeneity of ARID1A alteration within each case, and immunohistochemistry of the whole sections demonstrated that four of 11 cases with loss of ARID1A in TMA analysis showed localized positive area within the tumor. Alteration of ARID1A may accelerate tumor growth in a subset of hepatocellular carcinoma, and this pathway may be distinct from p53 and beta-catenin pathways. PMID:26045782

  14. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client

  15. The genomic determinants of genotype × environment interactions in gene expression.

    PubMed

    Grishkevich, Vladislav; Yanai, Itai

    2013-08-01

    Predicting phenotype from genotype is greatly complicated by the polygenic nature of most traits and by the complex interactions between phenotype and the environment. Here, we review recent whole-genome approaches to understand the underlying principles, mechanisms, and evolutionary impacts of genotype × environment (G×E) interactions, defined as genotype-specific phenotypic responses to different environments. There is accumulating evidence that G×E interactions are ubiquitous, accounting perhaps for the greater part of the phenotypic variation seen across genotypes. Such interactions appear to be the consequence of changes to upstream regulators as opposed to local changes to promoters. Moreover, genes are not equally likely to exhibit G×E interactions; promoter architecture, expression level, regulatory complexity, and essentiality correlate with the differential regulation of a gene by the environment. One implication of this correlation is that expression variation across genotypes alone could be used as a proxy for G×E interactions in those experimental cases where identifying environmental variation is costly or impossible. PMID:23769209

  16. Complete genome of Kangiella geojedonensis KCTC 23420(T), putative evidence for recent genome reduction in marine environments.

    PubMed

    Choe, Hanna; Kim, Seil; Oh, Jeongsu; Nasir, Arshan; Kim, Byung Kwon; Kim, Kyung Mo

    2015-12-01

    Kangiella geojedonensis KCTC 23420(T) is an aerobic, Gram-negative, non-motile, non-spore-forming, rod-shaped bacterium that was isolated from seawater off the southern coast of Korea. We here report the complete genome of K. geojedonensis KCTC 23420(T), which consists of 2,495,242 bp (G+C content of 43.78%) with 2,257 protein-coding genes, 41 tRNAs, 2 rRNA operons. The genome is smaller than the other closely related genomes, indicating that K. geojedonensis has recently experienced reductive evolution. PMID:26044616

  17. AT-rich sequences from the arbuscular mycorrhizal fungus Gigaspora rosea exhibit ARS function in the yeast Saccharomyces cerevisiae.

    PubMed

    Bergero, Roberta

    2006-05-01

    Autonomous replicating sequences are DNA elements that trigger DNA replication and are widely used in the development of episomal transformation vectors for fungi. In this paper, a genomic library from the mycorrhizal fungus Gigaspora rosea was constructed in the integrative plasmid YIp5 and screened in the budding yeast Saccharomyces cerevisiae for sequences that act as ARS and trigger plasmid replication. Two genetic elements (GrARS2, GrARS6) promoted high-rates of yeast transformation. Sequence analysis of these elements shows them to be AT-rich (72-80%) and to contain multiple near-matches to the yeast autonomous consensus sequences ACS and EACS. GrARS2 contained a putative miniature inverted-repeat transposable element (MITE) delimited by 28-bp terminal inverted repeats (TIRs). Disruption of this element and removal of one TIR increased plasmid stability several fold. The potential for palindromes to affect DNA replication is discussed. PMID:16504551

  18. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters

    PubMed Central

    Lavender, Christopher A.; Hoffman, Jackson A.; Trotter, Kevin W.; Gilchrist, Daniel A.; Bennett, Brian D.; Burkholder, Adam B.; Fargo, David C.; Archer, Trevor K.

    2016-01-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  19. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    PubMed

    Lavender, Christopher A; Cannady, Kimberly R; Hoffman, Jackson A; Trotter, Kevin W; Gilchrist, Daniel A; Bennett, Brian D; Burkholder, Adam B; Burd, Craig J; Fargo, David C; Archer, Trevor K

    2016-08-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  20. Methods for Investigating Gene-Environment Interactions in Candidate Pathway and Genome-Wide Association Studies

    PubMed Central

    Thomas, Duncan

    2010-01-01

    Despite the considerable enthusiasm about the yield of novel and replicated discoveries of genetic associations from the new generation of genome-wide association studies (GWAS), the proportion of the heritability of most complex diseases that have been studied to date remains small. Some of this “dark matter” could be due to gene-environment (G×E) interactions or more complex pathways involving multiple genes and exposures. We review the basic epidemiologic study design and statistical analysis approaches to studying G×E interactions individually and then consider more comprehensive approaches to studying entire pathways or GWAS data. In addition to the usual issues in genetic association studies, particular care is needed in exposure assessment and very large sample sizes are required. Although hypothesis-driven pathway-based and “agnostic” GWAS approaches are generally viewed as opposite poles, we suggest that the two can be usefully married using hierarchical modeling strategies that exploit external pathway knowledge in mining genome-wide data. PMID:20070199

  1. Genomic Evidence that Sexual Selection Impedes Adaptation to a Novel Environment.

    PubMed

    Chenoweth, Stephen F; Appleton, Nicholas C; Allen, Scott L; Rundle, Howard D

    2015-07-20

    Sexual selection is widely appreciated for generating remarkable phenotypic diversity, but its contribution to adaptation and the purging of deleterious mutations is unresolved. To provide insight into the impact of sexual selection on naturally segregating polymorphisms across the genome, we previously evolved 12 populations of Drosophila serrata in a novel environment employing a factorial manipulation of the opportunities for natural and sexual selection. Here, we genotype more than 1,400 SNPs in the evolved populations and reveal that sexual selection affected many of the same genomic regions as natural selection, aligning with it as often as opposing it. Intriguingly, more than half of the 80 SNPs showing treatment effects revealed an interaction between natural and sexual selection. For these SNPs, while sexual selection alone often caused a change in allele frequency in the same direction as natural selection alone, when natural and sexual selection occurred together, changes in allele frequency were greatly reduced or even reversed. This suggests an antagonism between natural and sexual selection arising from male-induced harm to females. Behavioral experiments showed that males preferentially courted and mated with high-fitness females, and that the harm associated with this increased male attention eliminated the female fitness advantage. During our experiment, females carrying otherwise adaptive alleles may therefore have disproportionally suffered male-induced harm due to their increased sexual attractiveness. These results suggest that a class of otherwise adaptive mutations may not contribute to adaptation when mating systems involve sexual conflict and male mate preferences. PMID:26119752

  2. Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola

    PubMed Central

    Campbell, Barbara J.; Smith, Julie L.; Hanson, Thomas E.; Klotz, Martin G.; Stein, Lisa Y.; Lee, Charles K.; Wu, Dongying; Robinson, Jeffrey M.; Khouri, Hoda M.; Eisen, Jonathan A.; Cary, S. Craig

    2009-01-01

    Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment—some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20°C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere—anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles

  3. Transcriptomic and genomic evidence for Streptococcus agalactiae adaptation to the bovine environment

    PubMed Central

    2013-01-01

    Background Streptococcus agalactiae is a major cause of bovine mastitis, which is the dominant health disorder affecting milk production within the dairy industry and is responsible for substantial financial losses to the industry worldwide. However, there is considerable evidence for host adaptation (ecotypes) within S. agalactiae, with both bovine and human sourced isolates showing a high degree of distinctiveness, suggesting differing ability to cause mastitis. Here, we (i) generate RNAseq data from three S. agalactiae isolates (two putative bovine adapted and one human) and (ii) compare publicly available whole genome shotgun sequence data from an additional 202 isolates, obtained from six host species, to elucidate possible genetic factors/adaptations likely important for S. agalactiae growth and survival in the bovine mammary gland. Results Tests for differential expression showed distinct expression profiles for the three isolates when grown in bovine milk. A key finding for the two putatively bovine adapted isolates was the up regulation of a lactose metabolism operon (Lac.2) that was strongly correlated with the bovine environment (all 36 bovine sourced isolates on GenBank possessed the operon, in contrast to only 8/151 human sourced isolates). Multi locus sequence typing of all genome sequences and phylogenetic analysis using conserved operon genes from 44 S. agalactiae isolates and 16 additional Streptococcus species provided strong evidence for acquisition of the operon via multiple lateral gene transfer events, with all Streptococcus species known to be major causes of mastitis, identified as possible donors. Furthermore, lactose fermentation tests were only positive for isolates possessing Lac.2. Combined, these findings suggest that lactose metabolism is likely an important adaptation to the bovine environment. Additional up regulation in the bovine adapted isolates included genes involved in copper homeostasis, metabolism of purine, pyrimidine

  4. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment.

    PubMed

    Kim, E-S; Elbeltagy, A R; Aboul-Naga, A M; Rischkowsky, B; Sayre, B; Mwacharo, J M; Rothschild, M F

    2016-03-01

    Goats and sheep are versatile domesticates that have been integrated into diverse environments and production systems. Natural and artificial selection have shaped the variation in the two species, but natural selection has played the major role among indigenous flocks. To investigate signals of natural selection, we analyzed genotype data generated using the caprine and ovine 50K SNP BeadChips from Barki goats and sheep that are indigenous to a hot arid environment in Egypt's Coastal Zone of the Western Desert. We identify several candidate regions under selection that spanned 119 genes. A majority of the genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. In particular, selection signatures spanning several genes that directly or indirectly influenced traits for adaptation to hot arid environments, such as thermo-tolerance (melanogenesis) (FGF2, GNAI3, PLCB1), body size and development (BMP2, BMP4, GJA3, GJB2), energy and digestive metabolism (MYH, TRHDE, ALDH1A3), and nervous and autoimmune response (GRIA1, IL2, IL7, IL21, IL1R1) were identified. We also identified eight common candidate genes under selection in the two species and a shared selection signature that spanned a conserved syntenic segment to bovine chromosome 12 on caprine and ovine chromosomes 12 and 10, respectively, providing, most likely, the evidence for selection in a common environment in two different but closely related species. Our study highlights the importance of indigenous livestock as model organisms for investigating selection sweeps and genome-wide association mapping. PMID:26555032

  5. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment.

    PubMed

    Alcaraz, Luis David; Olmedo, Gabriela; Bonilla, Germán; Cerritos, René; Hernández, Gustavo; Cruz, Alfredo; Ramírez, Enrique; Putonti, Catherine; Jiménez, Beatriz; Martínez, Eva; López, Varinia; Arvizu, Jacqueline L; Ayala, Francisco; Razo, Francisco; Caballero, Juan; Siefert, Janet; Eguiarte, Luis; Vielle, Jean-Philippe; Martínez, Octavio; Souza, Valeria; Herrera-Estrella, Alfredo; Herrera-Estrella, Luis

    2008-04-15

    The Cuatro Ciénegas Basin (CCB) in the central part of the Chihuahan desert (Coahuila, Mexico) hosts a wide diversity of microorganisms contained within springs thought to be geomorphological relics of an ancient sea. A major question remaining to be answered is whether bacteria from CCB are ancient marine bacteria that adapted to an oligotrophic system poor in NaCl, rich in sulfates, and with extremely low phosphorus levels (<0.3 microM). Here, we report the complete genome sequence of Bacillus coahuilensis, a sporulating bacterium isolated from the water column of a desiccation lagoon in CCB. At 3.35 Megabases this is the smallest genome sequenced to date of a Bacillus species and provides insights into the origin, evolution, and adaptation of B. coahuilensis to the CCB environment. We propose that the size and complexity of the B. coahuilensis genome reflects the adaptation of an ancient marine bacterium to a novel environment, providing support to a "marine isolation origin hypothesis" that is consistent with the geology of CCB. This genomic adaptation includes the acquisition through horizontal gene transfer of genes involved in phosphorous utilization efficiency and adaptation to high-light environments. The B. coahuilensis genome sequence also revealed important ecological features of the bacterial community in CCB and offers opportunities for a unique glimpse of a microbe-dominated world last seen in the Precambrian. PMID:18408155

  6. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment

    PubMed Central

    Alcaraz, Luis David; Olmedo, Gabriela; Bonilla, Germán; Cerritos, René; Hernández, Gustavo; Cruz, Alfredo; Ramírez, Enrique; Putonti, Catherine; Jiménez, Beatriz; Martínez, Eva; López, Varinia; Arvizu, Jacqueline L.; Ayala, Francisco; Razo, Francisco; Caballero, Juan; Siefert, Janet; Eguiarte, Luis; Vielle, Jean-Philippe; Martínez, Octavio; Souza, Valeria; Herrera-Estrella, Alfredo; Herrera-Estrella, Luis

    2008-01-01

    The Cuatro Ciénegas Basin (CCB) in the central part of the Chihuahan desert (Coahuila, Mexico) hosts a wide diversity of microorganisms contained within springs thought to be geomorphological relics of an ancient sea. A major question remaining to be answered is whether bacteria from CCB are ancient marine bacteria that adapted to an oligotrophic system poor in NaCl, rich in sulfates, and with extremely low phosphorus levels (<0.3 μM). Here, we report the complete genome sequence of Bacillus coahuilensis, a sporulating bacterium isolated from the water column of a desiccation lagoon in CCB. At 3.35 Megabases this is the smallest genome sequenced to date of a Bacillus species and provides insights into the origin, evolution, and adaptation of B. coahuilensis to the CCB environment. We propose that the size and complexity of the B. coahuilensis genome reflects the adaptation of an ancient marine bacterium to a novel environment, providing support to a “marine isolation origin hypothesis” that is consistent with the geology of CCB. This genomic adaptation includes the acquisition through horizontal gene transfer of genes involved in phosphorous utilization efficiency and adaptation to high-light environments. The B. coahuilensis genome sequence also revealed important ecological features of the bacterial community in CCB and offers opportunities for a unique glimpse of a microbe-dominated world last seen in the Precambrian. PMID:18408155

  7. Needles: Toward Large-Scale Genomic Prediction with Marker-by-Environment Interaction.

    PubMed

    De Coninck, Arne; De Baets, Bernard; Kourounis, Drosos; Verbosio, Fabio; Schenk, Olaf; Maenhout, Steven; Fostier, Jan

    2016-05-01

    Genomic prediction relies on genotypic marker information to predict the agronomic performance of future hybrid breeds based on trial records. Because the effect of markers may vary substantially under the influence of different environmental conditions, marker-by-environment interaction effects have to be taken into account. However, this may lead to a dramatic increase in the computational resources needed for analyzing large-scale trial data. A high-performance computing solution, called Needles, is presented for handling such data sets. Needles is tailored to the particular properties of the underlying algebraic framework by exploiting a sparse matrix formalism where suited and by utilizing distributed computing techniques to enable the use of a dedicated computing cluster. It is demonstrated that large-scale analyses can be performed within reasonable time frames with this framework. Moreover, by analyzing simulated trial data, it is shown that the effects of markers with a high environmental interaction can be predicted more accurately when more records per environment are available in the training data. The availability of such data and their analysis with Needles also may lead to the discovery of highly contributing QTL in specific environmental conditions. Such a framework thus opens the path for plant breeders to select crops based on these QTL, resulting in hybrid lines with optimized agronomic performance in specific environmental conditions. PMID:26936924

  8. Genome-wide gene-environment interactions on quantitative traits using family data.

    PubMed

    Sitlani, Colleen M; Dupuis, Josée; Rice, Kenneth M; Sun, Fangui; Pitsillides, Achilleas N; Cupples, L Adrienne; Psaty, Bruce M

    2016-07-01

    Gene-environment interactions may provide a mechanism for targeting interventions to those individuals who would gain the most benefit from them. Searching for interactions agnostically on a genome-wide scale requires large sample sizes, often achieved through collaboration among multiple studies in a consortium. Family studies can contribute to consortia, but to do so they must account for correlation within families by using specialized analytic methods. In this paper, we investigate the performance of methods that account for within-family correlation, in the context of gene-environment interactions with binary exposures and quantitative outcomes. We simulate both cross-sectional and longitudinal measurements, and analyze the simulated data taking family structure into account, via generalized estimating equations (GEE) and linear mixed-effects models. With sufficient exposure prevalence and correct model specification, all methods perform well. However, when models are misspecified, mixed modeling approaches have seriously inflated type I error rates. GEE methods with robust variance estimates are less sensitive to model misspecification; however, when exposures are infrequent, GEE methods require modifications to preserve type I error rate. We illustrate the practical use of these methods by evaluating gene-drug interactions on fasting glucose levels in data from the Framingham Heart Study, a cohort that includes related individuals. PMID:26626313

  9. Getting to the Root of Things: Spatiotemporal Regulatory Networks (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Brady, Siobhan [UC Davis

    2013-01-22

    Siobhan Brady from University of California, Davis, gives a talk titled "tGetting to the Root of things: Spatiotemporal Regulatory Networks" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  10. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Sayre, Richard [LANL

    2013-01-22

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  11. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Sayre, Richard

    2012-03-22

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  12. Getting to the Root of Things: Spatiotemporal Regulatory Networks (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Brady, Siobhan

    2012-03-22

    Siobhan Brady from University of California, Davis, gives a talk titled "tGetting to the Root of things: Spatiotemporal Regulatory Networks" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  13. Draft Genome Sequence of Salmonella enterica subsp. enterica Serotype Oranienburg Strain S-76, Isolated from an Aquatic Environment

    PubMed Central

    Medrano-Félix, Andrés; Estrada-Acosta, Mitzi; Jiménez, Maribel; Gómez-Gil, Bruno; León-Félix, Josefina; Amarillas, Luis

    2013-01-01

    Salmonella is a widespread microorganism and a common causative agent of food-borne illnesses. Salmonella enterica subsp. enterica serotype Oranienburg is highly prevalent in surface water from tropical ecosystems and is not commonly related to illnesses. Here, we report the first genome sequence of Salmonella Oranienburg strain S-76, isolated from an aquatic environment. PMID:24336368

  14. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.

    PubMed

    Zhang, Pingye; Lewinger, Juan Pablo; Conti, David; Morrison, John L; Gauderman, W James

    2016-07-01

    A genome-wide association study (GWAS) typically is focused on detecting marginal genetic effects. However, many complex traits are likely to be the result of the interplay of genes and environmental factors. These SNPs may have a weak marginal effect and thus unlikely to be detected from a scan of marginal effects, but may be detectable in a gene-environment (G × E) interaction analysis. However, a genome-wide interaction scan (GWIS) using a standard test of G × E interaction is known to have low power, particularly when one corrects for testing multiple SNPs. Two 2-step methods for GWIS have been previously proposed, aimed at improving efficiency by prioritizing SNPs most likely to be involved in a G × E interaction using a screening step. For a quantitative trait, these include a method that screens on marginal effects [Kooperberg and Leblanc, 2008] and a method that screens on variance heterogeneity by genotype [Paré et al., 2010] In this paper, we show that the Paré et al. approach has an inflated false-positive rate in the presence of an environmental marginal effect, and we propose an alternative that remains valid. We also propose a novel 2-step approach that combines the two screening approaches, and provide simulations demonstrating that the new method can outperform other GWIS approaches. Application of this method to a G × Hispanic-ethnicity scan for childhood lung function reveals a SNP near the MARCO locus that was not identified by previous marginal-effect scans. PMID:27230133

  15. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment

    PubMed Central

    Suzuki, Haruo; Hickey, Roxana J.; Forney, Larry J.

    2014-01-01

    Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health. PMID:24488312

  16. Genome-wide analysis of gestational gene-environment interactions in the developing kidney

    PubMed Central

    Yan, Lei; Yao, Xiao; Bachvarov, Dimcho; Saifudeen, Zubaida

    2014-01-01

    The G protein-coupled bradykinin B2 receptor (Bdkrb2) plays an important role in regulation of blood pressure under conditions of excess salt intake. Our previous work has shown that Bdkrb2 also plays a developmental role since Bdkrb2−/− embryos, but not their wild-type or heterozygous littermates, are prone to renal dysgenesis in response to gestational high salt intake. Although impaired terminal differentiation and apoptosis are consistent findings in the Bdkrb2−/− mutant kidneys, the developmental pathways downstream of gene-environment interactions leading to the renal phenotype remain unknown. Here, we performed genome-wide transcriptional profiling on embryonic kidneys from salt-stressed Bdkrb2+/+ and Bdkrb2−/− embryos. The results reveal significant alterations in key pathways regulating Wnt signaling, apoptosis, embryonic development, and cell-matrix interactions. In silico analysis reveal that nearly 12% of differentially regulated genes harbor one or more Pax2 DNA-binding sites in their promoter region. Further analysis shows that metanephric kidneys of salt-stressed Bdkrb2−/− have a significant downregulation of Pax2 gene expression. This was corroborated in Bdkrb2−/−;Pax2GFP+/tg mice, demonstrating that Pax2 transcriptional activity is significantly repressed by gestational salt-Bdkrb2 interactions. We conclude that gestational gene (Bdkrb2) and environment (salt) interactions cooperate to impact gene expression programs in the developing kidney. Suppression of Pax2 likely contributes to the defects in epithelial survival, growth, and differentiation in salt-stressed BdkrB2−/− mice. PMID:25005792

  17. Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children.

    PubMed

    Bauer, Tobias; Trump, Saskia; Ishaque, Naveed; Thürmann, Loreen; Gu, Lei; Bauer, Mario; Bieg, Matthias; Gu, Zuguang; Weichenhan, Dieter; Mallm, Jan-Philipp; Röder, Stefan; Herberth, Gunda; Takada, Eiko; Mücke, Oliver; Winter, Marcus; Junge, Kristin M; Grützmann, Konrad; Rolle-Kampczyk, Ulrike; Wang, Qi; Lawerenz, Christian; Borte, Michael; Polte, Tobias; Schlesner, Matthias; Schanne, Michaela; Wiemann, Stefan; Geörg, Christina; Stunnenberg, Hendrik G; Plass, Christoph; Rippe, Karsten; Mizuguchi, Junichiro; Herrmann, Carl; Eils, Roland; Lehmann, Irina

    2016-03-01

    Epigenetic mechanisms have emerged as links between prenatal environmental exposure and disease risk later in life. Here, we studied epigenetic changes associated with maternal smoking at base pair resolution by mapping DNA methylation, histone modifications, and transcription in expectant mothers and their newborn children. We found extensive global differential methylation and carefully evaluated these changes to separate environment associated from genotype-related DNA methylation changes. Differential methylation is enriched in enhancer elements and targets in particular "commuting" enhancers having multiple, regulatory interactions with distal genes. Longitudinal whole-genome bisulfite sequencing revealed that DNA methylation changes associated with maternal smoking persist over years of life. Particularly in children prenatal environmental exposure leads to chromatin transitions into a hyperactive state. Combined DNA methylation, histone modification, and gene expression analyses indicate that differential methylation in enhancer regions is more often functionally translated than methylation changes in promoters or non-regulatory elements. Finally, we show that epigenetic deregulation of a commuting enhancer targeting c-Jun N-terminal kinase 2 (JNK2) is linked to impaired lung function in early childhood. PMID:27013061

  18. The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Antropogenic Environments

    SciTech Connect

    Janssen, P.J.; van der Lelie, D.; Van Houdt, R.; Moors, H.; Monsieurs, P.; Morin, N.; Michaux, A.; Benotmane, M. A.; Leys, N.; Vallaeys, T.; Lapidus, A.; Monchy, S.; Medique, C.; Taghavi, S.; McCorkle, S.; Dunn, J.; Mergeay, M.

    2010-05-01

    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.

  19. The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments

    PubMed Central

    Janssen, Paul J.; Van Houdt, Rob; Moors, Hugo; Monsieurs, Pieter; Morin, Nicolas; Michaux, Arlette; Benotmane, Mohammed A.; Leys, Natalie; Vallaeys, Tatiana; Lapidus, Alla; Monchy, Sébastien; Médigue, Claudine; Taghavi, Safiyh; McCorkle, Sean; Dunn, John; van der Lelie, Daniël; Mergeay, Max

    2010-01-01

    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals. PMID:20463976

  20. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments.

    PubMed

    Janssen, Paul J; Van Houdt, Rob; Moors, Hugo; Monsieurs, Pieter; Morin, Nicolas; Michaux, Arlette; Benotmane, Mohammed A; Leys, Natalie; Vallaeys, Tatiana; Lapidus, Alla; Monchy, Sébastien; Médigue, Claudine; Taghavi, Safiyh; McCorkle, Sean; Dunn, John; van der Lelie, Daniël; Mergeay, Max

    2010-01-01

    Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals. PMID:20463976

  1. The impact of selection, gene flow and demographic history on heterogeneous genomic divergence: three-spine sticklebacks in divergent environments.

    PubMed

    Ferchaud, Anne-Laure; Hansen, Michael M

    2016-01-01

    Heterogeneous genomic divergence between populations may reflect selection, but should also be seen in conjunction with gene flow and drift, particularly population bottlenecks. Marine and freshwater three-spine stickleback (Gasterosteus aculeatus) populations often exhibit different lateral armour plate morphs. Moreover, strikingly parallel genomic footprints across different marine-freshwater population pairs are interpreted as parallel evolution and gene reuse. Nevertheless, in some geographic regions like the North Sea and Baltic Sea, different patterns are observed. Freshwater populations in coastal regions are often dominated by marine morphs, suggesting that gene flow overwhelms selection, and genomic parallelism may also be less pronounced. We used RAD sequencing for analysing 28 888 SNPs in two marine and seven freshwater populations in Denmark, Europe. Freshwater populations represented a variety of environments: river populations accessible to gene flow from marine sticklebacks and large and small isolated lakes with and without fish predators. Sticklebacks in an accessible river environment showed minimal morphological and genomewide divergence from marine populations, supporting the hypothesis of gene flow overriding selection. Allele frequency spectra suggested bottlenecks in all freshwater populations, and particularly two small lake populations. However, genomic footprints ascribed to selection could nevertheless be identified. No genomic regions were consistent freshwater-marine outliers, and parallelism was much lower than in other comparable studies. Two genomic regions previously described to be under divergent selection in freshwater and marine populations were outliers between different freshwater populations. We ascribe these patterns to stronger environmental heterogeneity among freshwater populations in our study as compared to most other studies, although the demographic history involving bottlenecks should also be considered in the

  2. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility

    PubMed Central

    Osorio, Héctor; Martínez, Verónica; Nieto, Pamela A; Holmes, David S; Quatrini, Raquel

    2008-01-01

    reflect their obligatory occupation of extremely low pH environments where high concentrations of soluble iron may always be available and were oxidized sulfur species might not compromise iron speciation dynamics. Presence of bacterioferritin in the Acidithiobacilli, polyphosphate accumulation functions and variants of FieF-like diffusion facilitators in both Acidithiobacilli and Leptospirilla, indicate that they may remove or store iron under conditions of variable availability. In addition, the Fe(II)-oxidizing capacity of both A. ferrooxidans and Leptospirilla could itself be a way to evade iron stress imposed by readily available Fe(II) ions at low pH. Fur regulatory sites have been predicted for a number of gene clusters including iron related and non-iron related functions in both the Acidithiobacilli and Leptospirilla, laying the foundation for the future discovery of iron regulated and iron-phosphate coordinated regulatory control circuits. Conclusion In silico analyses of the genomes of acidophilic bacteria are beginning to tease apart the mechanisms that mediate iron uptake and homeostasis in low pH environments. Initial models pinpoint significant differences in abundance and diversity of iron management mechanisms between Leptospirilla and Acidithiobacilli, and begin to reveal how these two groups respond to iron cycling and iron fluctuations in naturally acidic environments and in industrial operations. Niche partitions and ecological successions between acidophilic microorganisms may be partially explained by these observed differences. Models derived from these analyses pave the way for improved hypothesis testing and well directed experimental investigation. In addition, aspects of these models should challenge investigators to evaluate alternative iron management strategies in non-acidophilic model organisms. PMID:19025650

  3. Genome-Wide Patterns of Adaptation to Temperate Environments Associated with Transposable Elements in Drosophila

    PubMed Central

    González, Josefa; Karasov, Talia L.; Messer, Philipp W.; Petrov, Dmitri A.

    2010-01-01

    Investigating spatial patterns of loci under selection can give insight into how populations evolved in response to selective pressures and can provide monitoring tools for detecting the impact of environmental changes on populations. Drosophila is a particularly good model to study adaptation to environmental heterogeneity since it is a tropical species that originated in sub-Saharan Africa and has only recently colonized the rest of the world. There is strong evidence for the adaptive role of Transposable Elements (TEs) in the evolution of Drosophila, and TEs might play an important role specifically in adaptation to temperate climates. In this work, we analyzed the frequency of a set of putatively adaptive and putatively neutral TEs in populations with contrasting climates that were collected near the endpoints of two known latitudinal clines in Australia and North America. The contrasting results obtained for putatively adaptive and putatively neutral TEs and the consistency of the patterns between continents strongly suggest that putatively adaptive TEs are involved in adaptation to temperate climates. We integrated information on population behavior, possible environmental selective agents, and both molecular and functional information of the TEs and their nearby genes to infer the plausible phenotypic consequences of these insertions. We conclude that adaptation to temperate environments is widespread in Drosophila and that TEs play a significant role in this adaptation. It is remarkable that such a diverse set of TEs located next to a diverse set of genes are consistently adaptive to temperate climate-related factors. We argue that reverse population genomic analyses, as the one described in this work, are necessary to arrive at a comprehensive picture of adaptation. PMID:20386746

  4. Genomic polymorphism and protein changes of soybean mutant induced by space environment

    NASA Astrophysics Data System (ADS)

    He, J.; Gao, Y.; Sun, Y.

    Soybean 194 4126 of excellent agricultural qualities such as high yield and rounder and wider leaf was selected in six generation after abroad recoverable satellite 15 days in 1996 from Soybean 72163 featured with long-leaf white-blossom grey-hair and infinitude-poding To explore the mechanisms of plant mutation induced by space environment we have experimented at genome and proteome level on Soybean 194 4126 and its control Soybean 72163 Amplified Fragment Length Polymorphism AFLP was used to identify mutated sits and the result shows that 36 polymorphic bands varying between 100 and 900 bp in 2022 DNA bands varying between 100 and 1500 bp have been amplified out of 64 pairs of primer combinations between mutant Soybean 194 4126 and the control plant So the mutation degree of DNA is 3 56 The protein two-dimensional electrophoresis 2-DE and peptide mass fingerprint PMF assays were used to investigate the difference of proteins in fruits and leaves between Soybean 194 4126 and its control Results indicate that 62 protein dots specially appear in Soybean 72163 and 39 dots specially in the mutant Soybean 194 4126 by image analysis software PDQuest in the 2-DE maps of soybean seeds Using PMF assay and protein data-base searching to investigate two distinct protein dots we found that the protein specially expressed in the seed of mutant Soybean 194 4126 may be Dehydrin and the other protein specially expressed in the seed of the control Soybean 72163 may be maturation-associated protein MAT1 Because Dehydrin and MAT1 are

  5. Specific Mg 2+ binding to AT-rich regions of chromatin in the evolution of eukaryotes

    NASA Astrophysics Data System (ADS)

    Strissel, P. L.; Gavrilov, K. L.; Levi-Setti, R.; Strick, R.

    2006-07-01

    At SIMS XIV, we reported SIMS evidence of specific Mg 2+ binding to the AT-rich regions of human metaphase chromosomes represented by G-bands. Subsequent Mg 2+-depletion experiments supported a direct role for Mg 2+ in promoting and maintaining the higher order chromatin structure originating G-bands, possibly due to both Mg 2+-DNA and Mg 2+-protein interactions. An in-depth study, reported elsewhere, implicated also Ca 2+ in the maintenance of chromatin ultrastructure in the scaffold of mammalian chromosomes, in association with topoisomerase II. We examine here the association of Mg 2+ with AT-rich regions of chromatin in the chromosomes of the Indian muntjac deer (IMD), leading to conclusions similar to the above. To answer the question whether the presumed divalent cation role in the chromosomes of advanced eukaryotes had an evolutionary history to be traced back to earlier evolutionary stages, we have SIMS-mapped Ca 2+ and Mg 2+ in BrdU-labeled polytene chromosomes from the salivary gland of the Dipteran Drosophila melanogaster. Striking Ca 2+ and Mg 2+ SIMS banding patterns correlating with those of the Br label (a thymidine analogue) implicate unequivocally a close association of both these cations with the AT-rich regions of DNA for these primitive eukaryotes.

  6. Genome-environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica.

    PubMed

    Pluess, Andrea R; Frank, Aline; Heiri, Caroline; Lalagüe, Hadrien; Vendramin, Giovanni G; Oddou-Muratorio, Sylvie

    2016-04-01

    The evolutionary potential of long-lived species, such as forest trees, is fundamental for their local persistence under climate change (CC). Genome-environment association (GEA) analyses reveal if species in heterogeneous environments at the regional scale are under differential selection resulting in populations with potential preadaptation to CC within this area. In 79 natural Fagus sylvatica populations, neutral genetic patterns were characterized using 12 simple sequence repeat (SSR) markers, and genomic variation (144 single nucleotide polymorphisms (SNPs) out of 52 candidate genes) was related to 87 environmental predictors in the latent factor mixed model, logistic regressions and isolation by distance/environmental (IBD/IBE) tests. SSR diversity revealed relatedness at up to 150 m intertree distance but an absence of large-scale spatial genetic structure and IBE. In the GEA analyses, 16 SNPs in 10 genes responded to one or several environmental predictors and IBE, corrected for IBD, was confirmed. The GEA often reflected the proposed gene functions, including indications for adaptation to water availability and temperature. Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes. Thereby, adaptation processes are likely to take place in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC. PMID:26777878

  7. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals.

    PubMed

    Romiguier, Jonathan; Ranwez, Vincent; Delsuc, Frédéric; Galtier, Nicolas; Douzery, Emmanuel J P

    2013-09-01

    Despite the rapid increase of size in phylogenomic data sets, a number of important nodes on animal phylogeny are still unresolved. Among these, the rooting of the placental mammal tree is still a controversial issue. One difficulty lies in the pervasive phylogenetic conflicts among genes, with each one telling its own story, which may be reliable or not. Here, we identified a simple criterion, that is, the GC content, which substantially helps in determining which gene trees best reflect the species tree. We assessed the ability of 13,111 coding sequence alignments to correctly reconstruct the placental phylogeny. We found that GC-rich genes induced a higher amount of conflict among gene trees and performed worse than AT-rich genes in retrieving well-supported, consensual nodes on the placental tree. We interpret this GC effect mainly as a consequence of genome-wide variations in recombination rate. Indeed, recombination is known to drive GC-content evolution through GC-biased gene conversion and might be problematic for phylogenetic reconstruction, for instance, in an incomplete lineage sorting context. When we focused on the AT-richest fraction of the data set, the resolution level of the placental phylogeny was greatly increased, and a strong support was obtained in favor of an Afrotheria rooting, that is, Afrotheria as the sister group of all other placentals. We show that in mammals most conflicts among gene trees, which have so far hampered the resolution of the placental tree, are concentrated in the GC-rich regions of the genome. We argue that the GC content-because it is a reliable indicator of the long-term recombination rate-is an informative criterion that could help in identifying the most reliable molecular markers for species tree inference. PMID:23813978

  8. Pseudomonas lini Strain ZBG1 Revealed Carboxylic Acid Utilization and Copper Resistance Features Required for Adaptation to Vineyard Soil Environment: A Draft Genome Analysis

    PubMed Central

    Chan, Kok-Gan; Chong, Teik-Min; Adrian, Tan-Guan-Sheng; Kher, Heng Leong; Grandclément, Catherine; Faure, Denis; Yin, Wai-Fong; Dessaux, Yves; Hong, Kar-Wai

    2016-01-01

    Pseudomonas lini strain ZBG1 was isolated from the soil of vineyard in Zellenberg, France and the draft genome was reported in this study. Bioinformatics analyses of the genome revealed presence of genes encoding tartaric and malic acid utilization as well as copper resistance that correspond to the adaptation this strain in vineyard soil environment. PMID:27512520

  9. Predicting Essential Metabolic Genome Content of Niche-Specific Enterobacterial Human Pathogens during Simulation of Host Environments

    PubMed Central

    Baumler, David J.

    2016-01-01

    Microorganisms have evolved to occupy certain environmental niches, and the metabolic genes essential for growth in these locations are retained in the genomes. Many microorganisms inhabit niches located in the human body, sometimes causing disease, and may retain genes essential for growth in locations such as the bloodstream and urinary tract, or growth during intracellular invasion of the hosts’ macrophage cells. Strains of Escherichia coli (E. coli) and Salmonella spp. are thought to have evolved over 100 million years from a common ancestor, and now cause disease in specific niches within humans. Here we have used a genome scale metabolic model representing the pangenome of E. coli which contains all metabolic reactions encoded by genes from 16 E. coli genomes, and have simulated environmental conditions found in the human bloodstream, urinary tract, and macrophage to determine essential metabolic genes needed for growth in each location. We compared the predicted essential genes for three E. coli strains and one Salmonella strain that cause disease in each host environment, and determined that essential gene retention could be accurately predicted using this approach. This project demonstrated that simulating human body environments such as the bloodstream can successfully lead to accurate computational predictions of essential/important genes. PMID:26885654

  10. Evolutionary Perspectives on Diversity of Lignocellulose Decay Mechanisms in Basidionycetes (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Hibbett, David [Clark University

    2013-01-15

    David Hibbett from Clark University on "Evolutionary Perspectives on Diversity of Lignocellulose Decay Mechanisms in Basidiomycetes" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  11. Delineating Molecular Interaction Mechanisms in an In Vitro Microbial-Plant Community (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Larsen, Peter

    2013-03-01

    Peter Larsen of Argonne National Lab on "Delineating molecular interaction mechanisms in an in vitro microbial-plant community" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  12. Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Hazen, Sam

    2013-03-01

    Sam Hazen of the University of Massachusetts on "Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  13. Succession of Phylogeny and Function During Plant Litter Decomposition (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Brodie, Eoin

    2013-03-01

    Eoin Brodie of Berkeley Lab on "Succession of phylogeny and function during plant litter decomposition" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  14. Modulation of Root Microbiome Community Assembly by the Plant Immune Response (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Lebeis, Sarah

    2013-03-01

    Sarah Lebeis of University of North Carolina on "Modulation of root microbiome community assembly by the plant immune response" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  15. TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Karsenti, Eric

    2013-03-01

    Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  16. Assembly-driven metagenomics of a hypersaline microbial ecosystem (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Allen, Eric

    2013-03-01

    Eric Allen of Scripps and UC San Diego on "Assembly-driven metagenomics of a hypersaline microbial ecosystem" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  17. Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Gordon, Sean

    2013-03-01

    Sean Gordon of the USDA on "Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  18. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Gilbert, Tom

    2013-03-01

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  19. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  20. Evolutionary Perspectives on Diversity of Lignocellulose Decay Mechanisms in Basidionycetes (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Hibbett, David

    2012-03-21

    David Hibbett from Clark University on "Evolutionary Perspectives on Diversity of Lignocellulose Decay Mechanisms in Basidiomycetes" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  1. Draft Genome Sequence of Vibrio parahaemolyticus VH3, Isolated from an Aquaculture Environment in Greece.

    PubMed

    Castillo, Daniel; Jun, Jin Woo; D'Alvise, Paul; Middelboe, Mathias; Gram, Lone; Liu, Siyang; Katharios, Pantelis

    2015-01-01

    Vibrio parahaemolyticus is an important foodborne pathogen responsible for gastroenteritis outbreaks globally. It has also been identified as an important pathogen in aquatic organisms. Here, we report a draft genome sequence of V. parahaemolyticus, strain VH3, isolated from farmed juvenile greater amberjack, Seriola dumerili, in Greece. PMID:26139725

  2. Draft Genome Sequence of Vibrio parahaemolyticus VH3, Isolated from an Aquaculture Environment in Greece

    PubMed Central

    Castillo, Daniel; Jun, Jin Woo; D’Alvise, Paul; Middelboe, Mathias; Gram, Lone; Liu, Siyang

    2015-01-01

    Vibrio parahaemolyticus is an important foodborne pathogen responsible for gastroenteritis outbreaks globally. It has also been identified as an important pathogen in aquatic organisms. Here, we report a draft genome sequence of V. parahaemolyticus, strain VH3, isolated from farmed juvenile greater amberjack, Seriola dumerili, in Greece. PMID:26139725

  3. Using genomic prediction to characterize environments and optimize prediction accuracy in applied breeding data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation and empirical studies of genomic selection (GS) show accuracies sufficient to generate rapid annual genetic gains. It also shifts the focus from the evaluation of lines to the evaluation of alleles. Consequently, new methods should be developed to optimize the use of large historic multi-...

  4. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date and anthesis-silking interva...

  5. Privacy-preserving genome-wide association studies on cloud environment using fully homomorphic encryption

    PubMed Central

    2015-01-01

    Objective Developed sequencing techniques are yielding large-scale genomic data at low cost. A genome-wide association study (GWAS) targeting genetic variations that are significantly associated with a particular disease offers great potential for medical improvement. However, subjects who volunteer their genomic data expose themselves to the risk of privacy invasion; these privacy concerns prevent efficient genomic data sharing. Our goal is to presents a cryptographic solution to this problem. Methods To maintain the privacy of subjects, we propose encryption of all genotype and phenotype data. To allow the cloud to perform meaningful computation in relation to the encrypted data, we use a fully homomorphic encryption scheme. Noting that we can evaluate typical statistics for GWAS from a frequency table, our solution evaluates frequency tables with encrypted genomic and clinical data as input. We propose to use a packing technique for efficient evaluation of these frequency tables. Results Our solution supports evaluation of the D′ measure of linkage disequilibrium, the Hardy-Weinberg Equilibrium, the χ2 test, etc. In this paper, we take χ2 test and linkage disequilibrium as examples and demonstrate how we can conduct these algorithms securely and efficiently in an outsourcing setting. We demonstrate with experimentation that secure outsourcing computation of one χ2 test with 10, 000 subjects requires about 35 ms and evaluation of one linkage disequilibrium with 10, 000 subjects requires about 80 ms. Conclusions With appropriate encoding and packing technique, cryptographic solutions based on fully homomorphic encryption for secure computations of GWAS can be practical. PMID:26732892

  6. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT

    PubMed Central

    Ding, Pengfei; McFarland, Kirsty A.; Jin, Shujuan; Tong, Grace; Duan, Bo; Yang, Ally; Hughes, Timothy R.; Liu, Jun; Dove, Simon L.; Navarre, William Wiley; Xia, Bin

    2015-01-01

    Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an “AT-pincer” motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA. PMID:26068099

  7. FW: An R Package for Finlay–Wilkinson Regression that Incorporates Genomic/Pedigree Information and Covariance Structures Between Environments

    PubMed Central

    Lian, Lian; de los Campos, Gustavo

    2015-01-01

    The Finlay–Wilkinson regression (FW) is a popular method among plant breeders to describe genotype by environment interaction. The standard implementation is a two-step procedure that uses environment (sample) means as covariates in a within-line ordinary least squares (OLS) regression. This procedure can be suboptimal for at least four reasons: (1) in the first step environmental means are typically estimated without considering genetic-by-environment interactions, (2) in the second step uncertainty about the environmental means is ignored, (3) estimation is performed regarding lines and environment as fixed effects, and (4) the procedure does not incorporate genetic (either pedigree-derived or marker-derived) relationships. Su et al. proposed to address these problems using a Bayesian method that allows simultaneous estimation of environmental and genotype parameters, and allows incorporation of pedigree information. In this article we: (1) extend the model presented by Su et al. to allow integration of genomic information [e.g., single nucleotide polymorphism (SNP)] and covariance between environments, (2) present an R package (FW) that implements these methods, and (3) illustrate the use of the package using examples based on real data. The FW R package implements both the two-step OLS method and a full Bayesian approach for Finlay–Wilkinson regression with a very simple interface. Using a real wheat data set we demonstrate that the prediction accuracy of the Bayesian approach is consistently higher than the one achieved by the two-step OLS method. PMID:26715095

  8. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9

    PubMed Central

    2011-01-01

    Background Streptococcus thermophilus represents the only species among the streptococci that has “Generally Regarded As Safe” status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. Results The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9

  9. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment.

    PubMed

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. PMID:23940263

  10. The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment

    PubMed Central

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world’s terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. PMID:23940263

  11. Genome anchored QTLs for biomass productivity in Hybrid Populus: Heterosis and detection across Contrasting Environments.

    SciTech Connect

    Muchero, Wellington; Sewell, Mitchell; Gunter, Lee E; Tschaplinski, Timothy J; Yin, Tongming; DiFazio, Steven P; Tuskan, Gerald A

    2013-01-01

    Traits related to biomass production were analyzed for the presence of quantitative trait loci (QTLs) in an interspecific F2 population derived from an outbred Populus trichocarpa P. deltoides parental cross. Three years of phenotypic data for stem growth traits (height and diameter) were collected from two parental, two F1 and 339 F2 trees in a clonal trial replicated both within and among two environmentally contrasting sites in the North American Pacific Northwest. A genetic linkage map comprised of 841 SSR, AFLP, and RAPD markers and phenotypic data from 310 progeny were used to identify genomic regions harboring QTL using the Multiple-QTL Model (MQM) package of the statistical program MapQTL 6. A total of twelve QTLs, nine putative and three suggestive, were identified with eight of these being identified at both sites in at least one experiment. Of these, three putative QTL BM-1, BM-2, BM-7, on LGs I, II, and XIV, respectively, were identified in all three years for both height and diameter. Two QTLs BM-2 and BM-7, on LG II and XIV, respectively, exhibited significant evidence of over-dominance in all three years for both traits. Conversely a QTL on BM-6 LG XIII exhibited out-breeding depression in two years for both height and diameter. The remaining nine QTLs showed difference levels of dominance and additive effects. Seven of the nine QTL were successfully anchored and QTL peak positions were estimated for each one on the P. trichocarpa genome assembly using flanking SSR markers with known physical positions positions. QTL BM-7 on LG XIV had been anchored on the genome assembly in a previous study, therefore eight QTLs identified in this study were assigned genome assembly positions. Physical distances encompassed by each QTL regions ranged from 1.3 to 8.8 Mb.

  12. Draft Genome Sequences of Four Thermophilic Spore Formers Isolated from a Dairy-Processing Environment

    PubMed Central

    Caspers, Martien P. M.; Boekhorst, Jos; de Jong, Anne; Kort, Remco; Nierop Groot, Masja

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearothermophilus TNO-09.027, and two Anoxybacillus flavithermus isolates (TNO-09.014 and TNO-09.016). PMID:27516503

  13. Draft Genome Sequences of Four Thermophilic Spore Formers Isolated from a Dairy-Processing Environment.

    PubMed

    Caspers, Martien P M; Boekhorst, Jos; de Jong, Anne; Kort, Remco; Nierop Groot, Masja; Abee, Tjakko

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearothermophilus TNO-09.027, and two Anoxybacillus flavithermus isolates (TNO-09.014 and TNO-09.016). PMID:27516503

  14. Analysis of the Pseudoalteromonas tunicata Genome Reveals Properties of a Surface-Associated Life Style in the Marine Environment

    PubMed Central

    Thomas, Torsten; Evans, Flavia F.; Schleheck, David; Mai-Prochnow, Anne; Burke, Catherine; Penesyan, Anahit; Dalisay, Doralyn S.; Stelzer-Braid, Sacha; Saunders, Neil; Johnson, Justin; Ferriera, Steve; Kjelleberg, Staffan; Egan, Suhelen

    2008-01-01

    Background Colonisation of sessile eukaryotic host surfaces (e.g. invertebrates and seaweeds) by bacteria is common in the marine environment and is expected to create significant inter-species competition and other interactions. The bacterium Pseudoalteromonas tunicata is a successful competitor on marine surfaces owing primarily to its ability to produce a number of inhibitory molecules. As such P. tunicata has become a model organism for the studies into processes of surface colonisation and eukaryotic host-bacteria interactions. Methodology/Principal Findings To gain a broader understanding into the adaptation to a surface-associated life-style, we have sequenced and analysed the genome of P. tunicata and compared it to the genomes of closely related strains. We found that the P. tunicata genome contains several genes and gene clusters that are involved in the production of inhibitory compounds against surface competitors and secondary colonisers. Features of P. tunicata's oxidative stress response, iron scavenging and nutrient acquisition show that the organism is well adapted to high-density communities on surfaces. Variation of the P. tunicata genome is suggested by several landmarks of genetic rearrangements and mobile genetic elements (e.g. transposons, CRISPRs, phage). Surface attachment is likely to be mediated by curli, novel pili, a number of extracellular polymers and potentially other unexpected cell surface proteins. The P. tunicata genome also shows a utilisation pattern of extracellular polymers that would avoid a degradation of its recognised hosts, while potentially causing detrimental effects on other host types. In addition, the prevalence of recognised virulence genes suggests that P. tunicata has the potential for pathogenic interactions. Conclusions/Significance The genome analysis has revealed several physiological features that would provide P. tunciata with competitive advantage against other members of the surface-associated community

  15. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the Arctic environment

    USGS Publications Warehouse

    Welch, Andreanna J.; Bedoya-Reina, Oscar C.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte

    2014-01-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate if polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex, and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide, which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of nitric oxide as an adaptive response to control trade-offs between energy production in the form of ATP versus generation of heat (thermogenesis).

  16. Polar bears exhibit genome-wide signatures of bioenergetic adaptation to life in the arctic environment.

    PubMed

    Welch, Andreanna J; Bedoya-Reina, Oscar C; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D; Lindqvist, Charlotte

    2014-02-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis). PMID:24504087

  17. Polar Bears Exhibit Genome-Wide Signatures of Bioenergetic Adaptation to Life in the Arctic Environment

    PubMed Central

    Welch, Andreanna J.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte

    2014-01-01

    Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis). PMID:24504087

  18. Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments

    PubMed Central

    Windhausen, Vanessa S.; Atlin, Gary N.; Hickey, John M.; Crossa, Jose; Jannink, Jean-Luc; Sorrells, Mark E.; Raman, Babu; Cairns, Jill E.; Tarekegne, Amsal; Semagn, Kassa; Beyene, Yoseph; Grudloyma, Pichet; Technow, Frank; Riedelsheimer, Christian; Melchinger, Albrecht E.

    2012-01-01

    Genomic prediction is expected to considerably increase genetic gains by increasing selection intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize (Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross progenies of 30 F2-derived lines from each of five populations. Although up to 25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction of testcross performance of F2-derived lines using marker effects estimated in the diversity panel was on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing in mean performance. When performance was predicted separately for each breeding population on the basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain yield). These results suggest that prediction resulted mostly from differences in mean performance of the breeding populations and less from the relationship between the training and validation sets or linkage disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed analysis of the population structure before performing cross validation, and (3) larger training sets with strong genetic relationship to the validation set. PMID:23173094

  19. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses

    PubMed Central

    2012-01-01

    Background Viruses are known to be the most abundant organisms on earth, yet little is known about their collective origin and evolutionary history. With exceptionally high rates of genetic mutation and mosaicism, it is not currently possible to resolve deep evolutionary histories of the known major virus groups. Metagenomics offers a potential means of establishing a more comprehensive view of viral evolution as vast amounts of new sequence data becomes available for comparative analysis. Results Bioinformatic analysis of viral metagenomic sequences derived from a hot, acidic lake revealed a circular, putatively single-stranded DNA virus encoding a major capsid protein similar to those found only in single-stranded RNA viruses. The presence and circular configuration of the complete virus genome was confirmed by inverse PCR amplification from native DNA extracted from lake sediment. The virus genome appears to be the result of a RNA-DNA recombination event between two ostensibly unrelated virus groups. Environmental sequence databases were examined for homologous genes arranged in similar configurations and three similar putative virus genomes from marine environments were identified. This result indicates the existence of a widespread but previously undetected group of viruses. Conclusions This unique viral genome carries implications for theories of virus emergence and evolution, as no mechanism for interviral RNA-DNA recombination has yet been identified, and only scant evidence exists that genetic exchange occurs between such distinct virus lineages. Reviewers This article was reviewed by EK, MK (nominated by PF) and AM. For the full reviews, please go to the Reviewers' comments section. PMID:22515485

  20. A validated genome wide association study to breed cattle adapted to an environment altered by climate change.

    PubMed

    Hayes, Ben J; Bowman, Phil J; Chamberlain, Amanda J; Savin, Keith; van Tassell, Curt P; Sonstegard, Tad S; Goddard, Mike E

    2009-01-01

    Continued production of food in areas predicted to be most affected by climate change, such as dairy farming regions of Australia, will be a major challenge in coming decades. Along with rising temperatures and water shortages, scarcity of inputs such as high energy feeds is predicted. With the motivation of selecting cattle adapted to these changing environments, we conducted a genome wide association study to detect DNA markers (single nucleotide polymorphisms) associated with the sensitivity of milk production to environmental conditions. To do this we combined historical milk production and weather records with dense marker genotypes on dairy sires with many daughters milking across a wide range of production environments in Australia. Markers associated with sensitivity of milk production to feeding level and sensitivity of milk production to temperature humidity index on chromosome nine and twenty nine respectively were validated in two independent populations, one a different breed of cattle. As the extent of linkage disequilibrium across cattle breeds is limited, the underlying causative mutations have been mapped to a small genomic interval containing two promising candidate genes. The validated marker panels we have reported here will aid selection for high milk production under anticipated climate change scenarios, for example selection of sires whose daughters will be most productive at low levels of feeding. PMID:19688089

  1. Evolution of the AT-rich mitochondrial DNA of the root knot nematode, Meloidogyne hapla.

    PubMed

    Hugall, A; Stanton, J; Moritz, C

    1997-01-01

    Mitochondrial DNA of the root knot nematode Meloidogyne hapla was investigated for intraspecific diversity and divergence from other parthenogenetic root knot nematodes. A 1,900-bp fragment containing COII, tRNAHis, 16S rRNA, ND3 and Cyt b genes has been cloned and sequenced from one individual and an 1,188-bp region within this region was sequenced from four other Australian isolates. M. hapla mtDNA is more than 80% AT-rich, like other Meloidogyne spp. Nucleotide diversity within M. hapla is some 10-fold higher than across three other parthenogenetic species of root-knot nematode (M. arenaria, M. javanica, and M. incognita), implying an earlier origin for M. hapla. Nucleotide divergence between M. hapla and its congener M. javanica is as great as that between Ascaris suum and Caenorhabditis elegans, members of different nematode subclasses, while amino acid sequence difference between Meloidogyne is more than twice as great. This is interpreted as an AT-bias-induced acceleration of the amino acid substitution rate, over and above saturation of nucleotide divergence in the strongly AT-biased DNA, on three lines of evidence: (1) in conserved blocks in 16S rDNA congeneric Meloidogyne have no more differences than between A. suum and C. elegans; (2) the Meloidogyne lineage has more amino acid changes relative to the Ascaris/Caenorhabditis lineage with respect to four of five outgroups, the exceptional outgroup being the only species (Apis) as AT-rich as Meloidogyne; and (3) between the two Meloidogyne there are more first and second but fewer third codon position changes than between the other nematode species. M. hapla is also found to contain a 102-bp tandem repeat of at least 40 copies; a size, arrangement, and position the same as in M. javanica, but sequence comparisons did not demonstrate homology between the two repeats. PMID:9000752

  2. Genomic analysis of Ascochyta rabiei identifies dynamic genome environments of solanapyrone biosynthesis gene cluster and a novel type of pathway-specific regulator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary metabolite genes are often clustered together and situated in particular genomic regions such as the subtelomere, which can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full genome sequencing of...

  3. The little bacteria that can – diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments

    PubMed Central

    Taş, Neslihan; Van Eekert, Miriam H. A.; De Vos, Willem M.; Smidt, Hauke

    2010-01-01

    Summary The fate and persistence of chlorinated organics in the environment have been a concern for the past 50 years. Industrialization and extensive agricultural activities have led to the accumulation of these pollutants in the environment, while their adverse impact on various ecosystems and human health also became evident. This review provides an update on the current knowledge of specialized anaerobic bacteria, namely ‘Dehalococcoides’ spp., which are dedicated to the transformation of various chlorinated organic compounds via reductive dechlorination. Advances in microbiology and molecular techniques shed light into the diversity and functioning of Dehalococcoides spp. in several different locations. Recent genome sequencing projects revealed a large number of genes that are potentially involved in reductive dechlorination. Molecular approaches towards analysis of diversity and expression especially of reductive dehalogenase‐encoding genes are providing a growing body of knowledge on biodegradative pathways active in defined pure and mixed cultures as well as directly in the environment. Moreover, several successful field cases of bioremediation strengthen the notion of dedicated degraders such as Dehalococcoides spp. as key players in the restoration of contaminated environments. PMID:21255338

  4. Gene-environment interactions in common mental disorders: an update and strategy for a genome-wide search.

    PubMed

    Uher, Rudolf

    2014-01-01

    A decade of research has demonstrated the explanatory potential of interplay between genetic variants and environmental factors in the development of common mental disorders. Initial findings have undergone tests of replicability and specificity. Some gene-environment interactions have been confirmed, some have not replicated and yet other turned out to be more specific than initially thought. Specific and complementary roles of genetic factors have been delineated: a common functional length polymorphism in the serotonin transporter gene (5-HTTLPR) moderated the effect of childhood maltreatment on chronic depression in adulthood, but did not substantially influence the effects of adult stressful life events on the onset of new depressive episodes; in contrast, a common functional polymorphism in the brain-derived neurotrophic factor gene (BDNF) moderated the effect of stressful life events in adulthood in triggering new depressive episodes, but did not influence the effects of childhood maltreatment. Molecular mechanisms underlying gene-environment interactions are being uncovered, including DNA methylation and other epigenetic modifications. New gene-environment interactions continue to be reported, still largely from hypothesis-driven research. Statistical and biological prioritization strategies are proposed to facilitate a systematic discovery of novel gene-environment interactions in genome-wide analyses. PMID:24323294

  5. QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments

    PubMed Central

    2011-01-01

    Background The genomic architecture of bud phenology and height growth remains poorly known in most forest trees. In non model species, QTL studies have shown limited application because most often QTL data could not be validated from one experiment to another. The aim of our study was to overcome this limitation by basing QTL detection on the construction of genetic maps highly-enriched in gene markers, and by assessing QTLs across pedigrees, years, and environments. Results Four saturated individual linkage maps representing two unrelated mapping populations of 260 and 500 clonally replicated progeny were assembled from 471 to 570 markers, including from 283 to 451 gene SNPs obtained using a multiplexed genotyping assay. Thence, a composite linkage map was assembled with 836 gene markers. For individual linkage maps, a total of 33 distinct quantitative trait loci (QTLs) were observed for bud flush, 52 for bud set, and 52 for height growth. For the composite map, the corresponding numbers of QTL clusters were 11, 13, and 10. About 20% of QTLs were replicated between the two mapping populations and nearly 50% revealed spatial and/or temporal stability. Three to four occurrences of overlapping QTLs between characters were noted, indicating regions with potential pleiotropic effects. Moreover, some of the genes involved in the QTLs were also underlined by recent genome scans or expression profile studies. Overall, the proportion of phenotypic variance explained by each QTL ranged from 3.0 to 16.4% for bud flush, from 2.7 to 22.2% for bud set, and from 2.5 to 10.5% for height growth. Up to 70% of the total character variance could be accounted for by QTLs for bud flush or bud set, and up to 59% for height growth. Conclusions This study provides a basic understanding of the genomic architecture related to bud flush, bud set, and height growth in a conifer species, and a useful indicator to compare with Angiosperms. It will serve as a basic reference to functional and

  6. Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment.

    PubMed

    Maroui, Mohamed Ali; Callé, Aleth; Cohen, Camille; Streichenberger, Nathalie; Texier, Pascale; Takissian, Julie; Rousseau, Antoine; Poccardi, Nolwenn; Welsch, Jérémy; Corpet, Armelle; Schaeffer, Laurent; Labetoulle, Marc; Lomonte, Patrick

    2016-09-01

    Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely "multiple-acute"). Viral genomes in the "multiple-acute" pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the "multiple-latency" pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably

  7. Genome of Methanoregula boonei 6A8 reveals adaptations to oligotrophic peatland environments.

    PubMed

    Bräuer, Suzanna; Cadillo-Quiroz, Hinsby; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Detter, Chris; Podell, Sheila; Yavitt, Joseph B; Zinder, Stephen H

    2015-08-01

    Analysis of the genome sequence of Methanoregula boonei strain 6A8, an acidophilic methanogen isolated from an ombrotrophic (rain-fed) peat bog, has revealed unique features that likely allow it to survive in acidic, nutrient-poor conditions. First, M. boonei is predicted to generate ATP using protons that are abundant in peat, rather than sodium ions that are scarce, and the sequence of a membrane-bound methyltransferase, believed to pump Na+ in all methanogens, shows differences in key amino acid residues. Further, perhaps reflecting the hypokalemic status of many peat bogs, M. boonei demonstrates redundancy in the predicted potassium uptake genes trk, kdp and kup, some of which may have been horizontally transferred to methanogens from bacteria, possibly Geobacter spp. Overall, the putative functions of the potassium uptake, ATPase and methyltransferase genes may, at least in part, explain the cosmopolitan success of group E1/E2 and related methanogenic archaea in acidic peat bogs. PMID:25998264

  8. Genome of Enterobacteriophage Lula/phi80 and Insights into Its Ability To Spread in the Laboratory Environment

    PubMed Central

    Rotman, Ella; Kouzminova, Elena; Plunkett, Guy

    2012-01-01

    The novel temperate bacteriophage Lula, contaminating laboratory Escherichia coli strains, turned out to be the well-known lambdoid phage phi80. Our previous studies revealed that two characteristics of Lula/phi80 facilitate its spread in the laboratory environment: cryptic lysogen productivity and stealthy infectivity. To understand the genetics/genomics behind these traits, we sequenced and annotated the Lula/phi80 genome, encountering an E. coli-toxic gene revealed as a gap in the sequencing contig and analyzing a few genes in more detail. Lula/phi80's genome layout copies that of lambda, yet homology with other lambdoid phages is mostly limited to the capsid genes. Lula/phi80's DNA is resistant to cutting with several restriction enzymes, suggesting DNA modification, but deletion of the phage's damL gene, coding for DNA adenine methylase, did not make DNA cuttable. The damL mutation of Lula/phi80 also did not change the phage titer in lysogen cultures, whereas the host dam mutation did increase it almost 100-fold. Since the high phage titer in cultures of Lula/phi80 lysogens is apparently in response to endogenous DNA damage, we deleted the only Lula/phi80 SOS-controlled gene, dinL. We found that dinL mutant lysogens release fewer phage in response to endogenous DNA damage but are unchanged in their response to external DNA damage. The toxic gene of Lula/phi80, gamL, encodes an inhibitor of the host ATP-dependent exonucleases, RecBCD and SbcCD. Its own antidote, agt, apparently encoding a modifier protein, was found nearby. Interestingly, Lula/phi80 lysogens are recD and sbcCD phenocopies, so GamL and Agt are part of lysogenic conversion. PMID:23042999

  9. Genome of Enterobacteriophage Lula/phi80 and insights into its ability to spread in the laboratory environment.

    PubMed

    Rotman, Ella; Kouzminova, Elena; Plunkett, Guy; Kuzminov, Andrei

    2012-12-01

    The novel temperate bacteriophage Lula, contaminating laboratory Escherichia coli strains, turned out to be the well-known lambdoid phage phi80. Our previous studies revealed that two characteristics of Lula/phi80 facilitate its spread in the laboratory environment: cryptic lysogen productivity and stealthy infectivity. To understand the genetics/genomics behind these traits, we sequenced and annotated the Lula/phi80 genome, encountering an E. coli-toxic gene revealed as a gap in the sequencing contig and analyzing a few genes in more detail. Lula/phi80's genome layout copies that of lambda, yet homology with other lambdoid phages is mostly limited to the capsid genes. Lula/phi80's DNA is resistant to cutting with several restriction enzymes, suggesting DNA modification, but deletion of the phage's damL gene, coding for DNA adenine methylase, did not make DNA cuttable. The damL mutation of Lula/phi80 also did not change the phage titer in lysogen cultures, whereas the host dam mutation did increase it almost 100-fold. Since the high phage titer in cultures of Lula/phi80 lysogens is apparently in response to endogenous DNA damage, we deleted the only Lula/phi80 SOS-controlled gene, dinL. We found that dinL mutant lysogens release fewer phage in response to endogenous DNA damage but are unchanged in their response to external DNA damage. The toxic gene of Lula/phi80, gamL, encodes an inhibitor of the host ATP-dependent exonucleases, RecBCD and SbcCD. Its own antidote, agt, apparently encoding a modifier protein, was found nearby. Interestingly, Lula/phi80 lysogens are recD and sbcCD phenocopies, so GamL and Agt are part of lysogenic conversion. PMID:23042999

  10. Is the Gene-Environment Interaction Paradigm Relevant to Genome-Wide Studies? The Case of Education and Body Mass Index

    PubMed Central

    Boardman, Jason D.; Domingue, Benjamin W.; Blalock, Casey L.; Haberstick, Brett C.; Harris, Kathleen Mullan; McQueen, Matthew B.

    2014-01-01

    This study uses data from the Framingham Heart Study to examine the relevance of the gene-environment interaction paradigm for genome-wide association studies (GWAS). We use completed college education as our environmental measure and estimate the interactive effect of genotype and education on body mass index (BMI) using 260,402 single-nucleotide polymorphisms (SNPs). Our results highlight the sensitivity of parameter estimates obtained from GWAS models and the difficulty of framing genome-wide results using the existing gene-environment interaction typology. We argue that SNP-environment interactions across the human genome are not likely to provide consistent evidence regarding genetic influences on health that differ by environment. Nevertheless, genome-wide data contain rich information about individual respondents, and we demonstrate the utility of this type of data. We highlight the fact that GWAS is just one use of genome-wide data, and we encourage demographers to develop methods that incorporate this vast amount of information from respondents into their analyses. PMID:24281739

  11. 76 FR 38399 - Assessing the Current Research, Policy, and Practice Environment in Public Health Genomics

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Assessing the Current Research, Policy, and..., and other information helpful to assess the current research, policy, and practice environment...

  12. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    ERIC Educational Resources Information Center

    Winham, Stacey J.; Biernacka, Joanna M.

    2013-01-01

    Background: Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized…

  13. Whole-Genome Sequencing Allows for Improved Identification of Persistent Listeria monocytogenes in Food-Associated Environments

    PubMed Central

    Oliver, Haley F.; Wiedmann, Martin; den Bakker, Henk C.

    2015-01-01

    While the food-borne pathogen Listeria monocytogenes can persist in food associated environments, there are no whole-genome sequence (WGS) based methods to differentiate persistent from sporadic strains. Whole-genome sequencing of 188 isolates from a longitudinal study of L. monocytogenes in retail delis was used to (i) apply single-nucleotide polymorphism (SNP)-based phylogenetics for subtyping of L. monocytogenes, (ii) use SNP counts to differentiate persistent from repeatedly reintroduced strains, and (iii) identify genetic determinants of L. monocytogenes persistence. WGS analysis revealed three prophage regions that explained differences between three pairs of phylogenetically similar populations with pulsed-field gel electrophoresis types that differed by ≤3 bands. WGS-SNP-based phylogenetics found that putatively persistent L. monocytogenes represent SNP patterns (i) unique to a single retail deli, supporting persistence within the deli (11 clades), (ii) unique to a single state, supporting clonal spread within a state (7 clades), or (iii) spanning multiple states (5 clades). Isolates that formed one of 11 deli-specific clades differed by a median of 10 SNPs or fewer. Isolates from 12 putative persistence events had significantly fewer SNPs (median, 2 to 22 SNPs) than between isolates of the same subtype from other delis (median up to 77 SNPs), supporting persistence of the strain. In 13 events, nearly indistinguishable isolates (0 to 1 SNP) were found across multiple delis. No individual genes were enriched among persistent isolates compared to sporadic isolates. Our data show that WGS analysis improves food-borne pathogen subtyping and identification of persistent bacterial pathogens in food associated environments. PMID:26116683

  14. Whole-Genome Sequencing Allows for Improved Identification of Persistent Listeria monocytogenes in Food-Associated Environments.

    PubMed

    Stasiewicz, Matthew J; Oliver, Haley F; Wiedmann, Martin; den Bakker, Henk C

    2015-09-01

    While the food-borne pathogen Listeria monocytogenes can persist in food associated environments, there are no whole-genome sequence (WGS) based methods to differentiate persistent from sporadic strains. Whole-genome sequencing of 188 isolates from a longitudinal study of L. monocytogenes in retail delis was used to (i) apply single-nucleotide polymorphism (SNP)-based phylogenetics for subtyping of L. monocytogenes, (ii) use SNP counts to differentiate persistent from repeatedly reintroduced strains, and (iii) identify genetic determinants of L. monocytogenes persistence. WGS analysis revealed three prophage regions that explained differences between three pairs of phylogenetically similar populations with pulsed-field gel electrophoresis types that differed by ≤3 bands. WGS-SNP-based phylogenetics found that putatively persistent L. monocytogenes represent SNP patterns (i) unique to a single retail deli, supporting persistence within the deli (11 clades), (ii) unique to a single state, supporting clonal spread within a state (7 clades), or (iii) spanning multiple states (5 clades). Isolates that formed one of 11 deli-specific clades differed by a median of 10 SNPs or fewer. Isolates from 12 putative persistence events had significantly fewer SNPs (median, 2 to 22 SNPs) than between isolates of the same subtype from other delis (median up to 77 SNPs), supporting persistence of the strain. In 13 events, nearly indistinguishable isolates (0 to 1 SNP) were found across multiple delis. No individual genes were enriched among persistent isolates compared to sporadic isolates. Our data show that WGS analysis improves food-borne pathogen subtyping and identification of persistent bacterial pathogens in food associated environments. PMID:26116683

  15. Isolation of genomic DNA suitable for community analysis from mature trees adapted to arid environment.

    PubMed

    Gupta, Amit Kumar; Harish; Rai, Manoj Kumar; Phulwaria, Mahendra; Shekhawat, Narpat Singh

    2011-11-10

    Isolation of intact and pure genomic DNA (gDNA) is essential for many molecular biology applications. It is difficult to isolate pure DNA from mature trees of hot and dry desert regions because of the accumulation of high level of polysaccharides, phenolic compounds, tannins etc. We hereby report the standardized protocol for the isolation and purification of gDNA from seven ecologically and medically important tree species of Combretaceae viz. Anogeissus (Anogeissus sericea var. nummularia, Anogeissus pendula, and Anogeissus latifolia) and Terminalia (Terminalia arjuna, Terminalia bellirica, Terminalia catappa and Terminalia chebula). This method involves (i) washing the sample twice with Triton buffer (2%) then (ii) isolation of gDNA by modified-CTAB (cetyl trimethyl ammonium bromide) method employing a high concentration (4%) of PVP (Polyvinylpyrrolidone) and 50mM ascorbic acid, and (iii) purification of this CTAB-isolated gDNA by spin-column. gDNA isolated by modified CTAB or spin-column alone were not found suitable for PCR amplification. The Triton washing step is also critical. The quality of DNA was determined by the A(260)/A(280) absorbance ratio. gDNA was also observed for its intactness by running on 0.8% agarose gel. The suitability of extracted DNA for PCR was tested by amplification with RAPD primers, which was successful. Further, rbcLa (barcoding gene) was amplified and sequenced to check the quality of extracted gDNA for its downstream applications. PMID:21827837

  16. Gene duplication as a mechanism of genomic adaptation to a changing environment

    PubMed Central

    Kondrashov, Fyodor A.

    2012-01-01

    A subject of extensive study in evolutionary theory has been the issue of how neutral, redundant copies can be maintained in the genome for long periods of time. Concurrently, examples of adaptive gene duplications to various environmental conditions in different species have been described. At this point, it is too early to tell whether or not a substantial fraction of gene copies have initially achieved fixation by positive selection for increased dosage. Nevertheless, enough examples have accumulated in the literature that such a possibility should be considered. Here, I review the recent examples of adaptive gene duplications and make an attempt to draw generalizations on what types of genes may be particularly prone to be selected for under certain environmental conditions. The identification of copy-number variation in ecological field studies of species adapting to stressful or novel environmental conditions may improve our understanding of gene duplications as a mechanism of adaptation and its relevance to the long-term persistence of gene duplications. PMID:22977152

  17. Fungal metabolic gene clusters—caravans traveling across genomes and environments

    PubMed Central

    Wisecaver, Jennifer H.; Rokas, Antonis

    2015-01-01

    Metabolic gene clusters (MGCs), physically co-localized genes participating in the same metabolic pathway, are signature features of fungal genomes. MGCs are most often observed in specialized metabolism, having evolved in individual fungal lineages in response to specific ecological needs, such as the utilization of uncommon nutrients (e.g., galactose and allantoin) or the production of secondary metabolic antimicrobial compounds and virulence factors (e.g., aflatoxin and melanin). A flurry of recent studies has shown that several MGCs, whose functions are often associated with fungal virulence as well as with the evolutionary arms race between fungi and their competitors, have experienced horizontal gene transfer (HGT). In this review, after briefly introducing HGT as a source of gene innovation, we examine the evidence for HGT's involvement on the evolution of MGCs and, more generally of fungal metabolism, enumerate the molecular mechanisms that mediate such transfers and the ecological circumstances that favor them, as well as discuss the types of evidence required for inferring the presence of HGT in MGCs. The currently available examples indicate that transfers of entire MGCs have taken place between closely related fungal species as well as distant ones and that they sometimes involve large chromosomal segments. These results suggest that the HGT-mediated acquisition of novel metabolism is an ongoing and successful ecological strategy for many fungal species. PMID:25784900

  18. Genomic analysis of the interactions between social environment and social communication systems in honey bees (Apis mellifera).

    PubMed

    Malka, Osnat; Niño, Elina L; Grozinger, Christina M; Hefetz, Abraham

    2014-04-01

    Social context is often a primary regulator of social behavior, but genes that affect or are affected by social context have rarely been investigated. In social insects, caste specific pheromones are key modulators of social behavior, e.g., in honey bees the queen mandibular gland (MG) pheromone mediates reproductive dominance, its absence prompting ovary activation and queen pheromone production in workers. Here, we investigate the effect of social environment on genome-wide expression patterns in the MG, to determine how social context modulates expression of genes that, in turn alter social environment. We used microarrays to examine the MGs of virgin and mated queens, and queenright (QR) and queenless (QL) workers with or without activated ovaries. Approximately 2554 transcripts were significantly differentially expressed among these groups, with caste and social context being the main regulators of gene expression patterns, while physiological state (ovary activation) only minimally affecting gene expression. Thus, social context strongly regulates expression of genes, which, in turn, shape social environment. Among these, 25 genes that are putatively involved in caste selective production of the fatty-acid derived MG pheromone were differentially expressed in queens and workers. These genes whose functions correspond with enzymatic or transport processes emphasize the occurrence of disparate pheromone biosynthetic pathways for queens and workers, adding another dimension regarding the regulation of these important pheromones. Gene ontology analysis also revealed genes of different functional categories whose expression was impacted by caste or by the social environment, suggesting that the MG has broader functions than pheromone biosynthesis. PMID:24486775

  19. Caenorhabditis elegans Genomic Response to Soil Bacteria Predicts Environment-Specific Genetic Effects on Life History Traits

    PubMed Central

    Coolon, Joseph D.; Jones, Kenneth L.; Todd, Timothy C.; Carr, Bryanua C.; Herman, Michael A.

    2009-01-01

    With the post-genomic era came a dramatic increase in high-throughput technologies, of which transcriptional profiling by microarrays was one of the most popular. One application of this technology is to identify genes that are differentially expressed in response to different environmental conditions. These experiments are constructed under the assumption that the differentially expressed genes are functionally important in the environment where they are induced. However, whether differential expression is predictive of functional importance has yet to be tested. Here we have addressed this expectation by employing Caenorhabditis elegans as a model for the interaction of native soil nematode taxa and soil bacteria. Using transcriptional profiling, we identified candidate genes regulated in response to different bacteria isolated in association with grassland nematodes or from grassland soils. Many of the regulated candidate genes are predicted to affect metabolism and innate immunity suggesting similar genes could influence nematode community dynamics in natural systems. Using mutations that inactivate 21 of the identified genes, we showed that most contribute to lifespan and/or fitness in a given bacterial environment. Although these bacteria may not be natural food sources for C. elegans, we show that changes in food source, as can occur in environmental disturbance, can have a large effect on gene expression, with important consequences for fitness. Moreover, we used regression analysis to demonstrate that for many genes the degree of differential gene expression between two bacterial environments predicted the magnitude of the effect of the loss of gene function on life history traits in those environments. PMID:19503598

  20. KCTD8 Gene and Brain Growth in Adverse Intrauterine Environment: A Genome-wide Association Study

    PubMed Central

    Bernard, Manon; Chakravarty, M. Mallar; Davey Smith, George; Gillis, Jesse; Lourdusamy, Anbarasu; Melka, Melkaye G.; Leonard, Gabriel; Pavlidis, Paul; Perron, Michel; Pike, G. Bruce; Richer, Louis; Schumann, Gunter; Timpson, Nicholas; Toro, Roberto; Veillette, Suzanne; Pausova, Zdenka

    2012-01-01

    The most dramatic growth of the human brain occurs in utero and during the first 2 years of postnatal life. Genesis of the cerebral cortex involves cell proliferation, migration, and apoptosis, all of which may be influenced by prenatal environment. Here, we show that variation in KCTD8 (potassium channel tetramerization domain 8) is associated with brain size in female adolescents (rs716890, P = 5.40 × 10−09). Furthermore, we found that the KCTD8 locus interacts with prenatal exposure to maternal cigarette smoking vis-à-vis cortical area and cortical folding: In exposed girls only, the KCTD8 locus explains up to 21% of variance. Using head circumference as a proxy of brain size at 7 years of age, we have replicated this gene–environment interaction in an independent sample. We speculate that KCTD8 might modulate adverse effects of smoking during pregnancy on brain development via apoptosis triggered by low intracellular levels of potassium, possibly reducing the number of progenitor cells. PMID:22156575

  1. KCTD8 gene and brain growth in adverse intrauterine environment: a genome-wide association study.

    PubMed

    Paus, Tomás; Bernard, Manon; Chakravarty, M Mallar; Davey Smith, George; Gillis, Jesse; Lourdusamy, Anbarasu; Melka, Melkaye G; Leonard, Gabriel; Pavlidis, Paul; Perron, Michel; Pike, G Bruce; Richer, Louis; Schumann, Gunter; Timpson, Nicholas; Toro, Roberto; Veillette, Suzanne; Pausova, Zdenka

    2012-11-01

    The most dramatic growth of the human brain occurs in utero and during the first 2 years of postnatal life. Genesis of the cerebral cortex involves cell proliferation, migration, and apoptosis, all of which may be influenced by prenatal environment. Here, we show that variation in KCTD8 (potassium channel tetramerization domain 8) is associated with brain size in female adolescents (rs716890, P = 5.40 × 10(-09)). Furthermore, we found that the KCTD8 locus interacts with prenatal exposure to maternal cigarette smoking vis-à-vis cortical area and cortical folding: In exposed girls only, the KCTD8 locus explains up to 21% of variance. Using head circumference as a proxy of brain size at 7 years of age, we have replicated this gene-environment interaction in an independent sample. We speculate that KCTD8 might modulate adverse effects of smoking during pregnancy on brain development via apoptosis triggered by low intracellular levels of potassium, possibly reducing the number of progenitor cells. PMID:22156575

  2. In Situ Expression of Acidic and Thermophilic Carbohydrate Active Enzymes by Filamentous Fungi (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Mosier, Annika [Stanford University

    2013-01-22

    Annika Mosier, graduate student from Stanford University presents a talk titled "In Situ Expression of Acidic and Thermophilic Carbohydrate Active Enzymes by Filamentous Fungi" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  3. Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Glass, N Louise [UC Berkeley

    2013-01-25

    N. Louise Glass from the University of California, Berkeley, presents a talk titled "Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  4. The genome and transcriptome of Trichormus sp. NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau.

    PubMed

    Qiao, Qin; Huang, Yanyan; Qi, Ji; Qu, Mingzhi; Jiang, Chen; Lin, Pengcheng; Li, Renhui; Song, Lirong; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M James C; Chen, Fan; Zhang, Ticao; Zhong, Yang

    2016-01-01

    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP. PMID:27381465

  5. In Situ Expression of Acidic and Thermophilic Carbohydrate Active Enzymes by Filamentous Fungi (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Mosier, Annika

    2012-03-22

    Annika Mosier, graduate student from Stanford University presents a talk titled "In Situ Expression of Acidic and Thermophilic Carbohydrate Active Enzymes by Filamentous Fungi" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, Calif

  6. Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Glass, N Louise

    2012-03-22

    N. Louise Glass from the University of California, Berkeley, presents a talk titled "Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  7. The genome and transcriptome of Trichormus sp. NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    PubMed Central

    Qiao, Qin; Huang, Yanyan; Qi, Ji; Qu, Mingzhi; Jiang, Chen; Lin, Pengcheng; Li, Renhui; Song, Lirong; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M. James C.; Chen, Fan; Zhang, Ticao; Zhong, Yang

    2016-01-01

    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP. PMID:27381465

  8. The Chthonomonas calidirosea Genome Is Highly Conserved across Geographic Locations and Distinct Chemical and Microbial Environments in New Zealand's Taupō Volcanic Zone

    PubMed Central

    Lee, Kevin C.; Stott, Matthew B.; Dunfield, Peter F.; Huttenhower, Curtis; McDonald, Ian R.

    2016-01-01

    ABSTRACT Chthonomonas calidirosea T49T is a low-abundance, carbohydrate-scavenging, and thermophilic soil bacterium with a seemingly disorganized genome. We hypothesized that the C. calidirosea genome would be highly responsive to local selection pressure, resulting in the divergence of its genomic content, genome organization, and carbohydrate utilization phenotype across environments. We tested this hypothesis by sequencing the genomes of four C. calidirosea isolates obtained from four separate geothermal fields in the Taupō Volcanic Zone, New Zealand. For each isolation site, we measured physicochemical attributes and defined the associated microbial community by 16S rRNA gene sequencing. Despite their ecological and geographical isolation, the genome sequences showed low divergence (maximum, 1.17%). Isolate-specific variations included single-nucleotide polymorphisms (SNPs), restriction-modification systems, and mobile elements but few major deletions and no major rearrangements. The 50-fold variation in C. calidirosea relative abundance among the four sites correlated with site environmental characteristics but not with differences in genomic content. Conversely, the carbohydrate utilization profiles of the C. calidirosea isolates corresponded to the inferred isolate phylogenies, which only partially paralleled the geographical relationships among the sample sites. Genomic sequence conservation does not entirely parallel geographic distance, suggesting that stochastic dispersal and localized extinction, which allow for rapid population homogenization with little restriction by geographical barriers, are possible mechanisms of C. calidirosea distribution. This dispersal and extinction mechanism is likely not limited to C. calidirosea but may shape the populations and genomes of many other low-abundance free-living taxa. IMPORTANCE This study compares the genomic sequence variations and metabolisms of four strains of Chthonomonas calidirosea, a rare

  9. Comparison of the Gene Coding Contents and Other Unusual Features of the GC-Rich and AT-Rich Branch Probosciviruses

    PubMed Central

    Ling, Paul D.; Long, Simon Y.; Zong, Jian-Chao; Heaggans, Sarah Y.; Qin, Xiang

    2016-01-01

    ABSTRACT Nearly 100 cases of lethal acute hemorrhagic disease in young Asian elephants have been reported worldwide. All tested cases contained high levels of elephant endotheliotropic herpesvirus (EEHV) DNA in pathological blood or tissue samples. Seven known major types of EEHVs have been partially characterized and shown to all belong to the novel Proboscivirus genus. However, the recently determined 206-kb EEHV4 genome proved to represent the prototype of a GC-rich branch virus that is very distinct from the previously published 180-kb EEHV1A, EEHV1B, and EEHV5A genomes, which all fall within an alternative AT-rich branch. Although EEHV4 retains the large family of 7xTM and vGPCR-like genes, six are unique to either just one or the other branch. While both branches display a highly enriched distribution of A and T tracts in intergenic domains, they are generally much larger within the GC-rich branch. Both branches retain the vGCNT1 acetylglucosamine transferase and at least one vOX-2 gene, but the two branches differ by 25 genes overall, with the AT-rich branch encoding a fucosyl transferase (vFUT9) plus two or three more vOX2 proteins and an immunoglobulin-like gene family that are all absent from the GC-rich branch. Several envelope glycoproteins retain only 15 to 20% protein identity or less across the two branches. Finally, the two plausible predicted transcriptional regulatory proteins display no homology at all to those in the alpha-, beta-, or gammaherpesvirus subfamilies. These results reinforce our previous proposal that the probosciviruses should be designated a new subfamily of mammalian herpesviruses. IMPORTANCE Multiple species of herpesviruses from three different lineages of the Proboscivirus genus (EEHV1/6, EEHV2/5, and EEHV3/4/7) infect either Asian or African elephants, but the highly lethal hemorrhagic disease is largely confined to Asian elephant calves and is predominantly associated with EEHV1. In the accompanying paper [P. D. Ling et al

  10. Comparison of the Gene Coding Contents and Other Unusual Features of the GC-Rich and AT-Rich Branch Probosciviruses.

    PubMed

    Ling, Paul D; Long, Simon Y; Zong, Jian-Chao; Heaggans, Sarah Y; Qin, Xiang; Hayward, Gary S

    2016-01-01

    Nearly 100 cases of lethal acute hemorrhagic disease in young Asian elephants have been reported worldwide. All tested cases contained high levels of elephant endotheliotropic herpesvirus (EEHV) DNA in pathological blood or tissue samples. Seven known major types of EEHVs have been partially characterized and shown to all belong to the novel Proboscivirus genus. However, the recently determined 206-kb EEHV4 genome proved to represent the prototype of a GC-rich branch virus that is very distinct from the previously published 180-kb EEHV1A, EEHV1B, and EEHV5A genomes, which all fall within an alternative AT-rich branch. Although EEHV4 retains the large family of 7xTM and vGPCR-like genes, six are unique to either just one or the other branch. While both branches display a highly enriched distribution of A and T tracts in intergenic domains, they are generally much larger within the GC-rich branch. Both branches retain the vGCNT1 acetylglucosamine transferase and at least one vOX-2 gene, but the two branches differ by 25 genes overall, with the AT-rich branch encoding a fucosyl transferase (vFUT9) plus two or three more vOX2 proteins and an immunoglobulin-like gene family that are all absent from the GC-rich branch. Several envelope glycoproteins retain only 15 to 20% protein identity or less across the two branches. Finally, the two plausible predicted transcriptional regulatory proteins display no homology at all to those in the alpha-, beta-, or gammaherpesvirus subfamilies. These results reinforce our previous proposal that the probosciviruses should be designated a new subfamily of mammalian herpesviruses. IMPORTANCE Multiple species of herpesviruses from three different lineages of the Proboscivirus genus (EEHV1/6, EEHV2/5, and EEHV3/4/7) infect either Asian or African elephants, but the highly lethal hemorrhagic disease is largely confined to Asian elephant calves and is predominantly associated with EEHV1. In the accompanying paper [P. D. Ling et al., m

  11. Structure and DNA-Binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-Specific DNA Recognition

    SciTech Connect

    Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean; Isern, Nancy G.; Chen, Yuan

    2004-04-16

    2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We have solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.

  12. Genomic Measures to Predict Adaptation to Novel Sensorimotor Environments and Improve Personalization of Countermeasure Design

    NASA Technical Reports Server (NTRS)

    Kreutzberg, G. A.; Zanello, S.; Seidler, R. D.; Peters, B.; De Dios, Y. E.; Gadd, N. E.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Introduction. Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may affect crewmembers' ability to perform mission-critical functional tasks. Interestingly, astronauts have shown significant inter-subject variation in adaptive capability during gravitational transitions. The ability to predict the manner and degree to which individual astronauts would be affected would improve the efficacy of personalized countermeasure training programs designed to enhance sensorimotor adaptability. The success of such an approach depends on the development of predictive measures of sensorimotor adaptation, which would ascertain each crewmember's adaptive capacity. The goal of this study is to determine whether specific genetic polymorphisms have significant influence on sensorimotor adaptability, which can help inform the design of personalized training countermeasures. Methods. Subjects (n=15) were tested on their ability to negotiate a complex obstacle course for ten test trials while wearing up-down vision-displacing goggles. This presented a visuomotor challenge while doing a full body task. The first test trial time and the recovery rate over the ten trials were used as adaptability performance metrics. Four single nucleotide polymorphisms (SNPs) were selected for their role in neural pathways underlying sensorimotor adaptation and were identified in subjects' DNA extracted from saliva samples: catechol-O-methyl transferase (COMT, rs4680), dopamine receptor D2 (DRD2, rs1076560), brain-derived neurotrophic factor genes (BDNF, rs6265), and the DraI polymorphism of the alpha-2 adrenergic receptor. The relationship between the SNPs and test performance was assessed by assigning subjects a rank score based on their adaptability performance metrics and comparing gene expression between the top half and bottom half performers

  13. Comparative community genomics in the Dead Sea: an increasingly extreme environment.

    PubMed

    Bodaker, Idan; Sharon, Itai; Suzuki, Marcelino T; Feingersch, Roi; Shmoish, Michael; Andreishcheva, Ekaterina; Sogin, Mitchell L; Rosenberg, Mira; Maguire, Michael E; Belkin, Shimshon; Oren, Aharon; Béjà, Oded

    2010-03-01

    Owing to the extreme salinity ( approximately 10 times saltier than the oceans), near toxic magnesium levels (approximately 2.0 M Mg(2+)), the dominance of divalent cations, acidic pH (6.0) and high-absorbed radiation flux rates, the Dead Sea represents a unique and harsh ecosystem. Measures of microbial presence (microscopy, pigments and lipids) indicate that during rare bloom events after exceptionally rainy seasons, the microbial communities can reach high densities. However, most of the time, when the Dead Sea level is declining and halite is precipitating from the water column, it is difficult to reliably measure the presence of microorganisms and their activities. Although a number of halophilic Archaea have been previously isolated from the Dead Sea, polar lipid analyses of biomass collected during Dead Sea blooms suggested that these isolates were not the major components of the microbial community of these blooms. In this study, in an effort to characterize the perennial microbial community of the Dead Sea and compare it with bloom assemblages, we performed metagenomic analyses of concentrated biomass from hundreds of liters of brine and of microbial material from the last massive Dead Sea bloom. The difference between the two conditions was reflected in community composition and diversity, in which the bloom was different and less diverse from the residual brine population. The distributional patterns of microbial genes suggested Dead Sea community trends in mono- and divalent cation metabolisms as well as in transposable elements. This may indicate possible mechanisms and pathways enabling these microbes to survive in such a harsh environment. PMID:20033072

  14. Expression Quantitative Trait Locus Mapping across Water Availability Environments Reveals Contrasting Associations with Genomic Features in Arabidopsis[C][W][OPEN

    PubMed Central

    Lowry, David B.; Logan, Tierney L.; Santuari, Luca; Hardtke, Christian S.; Richards, James H.; DeRose-Wilson, Leah J.; McKay, John K.; Sen, Saunak; Juenger, Thomas E.

    2013-01-01

    The regulation of gene expression is crucial for an organism’s development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression. PMID:24045022

  15. Estimation of copy number using SYBR Green: confounding by AT-rich DNA and by variation in amplicon length.

    PubMed

    Colborn, James M; Byrd, Brian D; Koita, Ousmane A; Krogstad, Donald J

    2008-12-01

    Although SYBR Green is used to estimate copy number, its fluorescence varies with amplicon length and adenine/thymine (AT) content. As a result, threshold cycle (Ct) values obtained using real-time polymerase chain reaction (PCR) are lower for longer amplicons (P<0.001) and amplicons with greater AT content (P<0.001). In contrast, neither amplicon length nor AT content affects the Ct with TaqMan probes or LUX-labeled primers. Because SYBR Green yields lower Cts with AT-rich templates and longer templates, it overestimates copy number for those templates. Therefore, sequence-specific methods such as TaqMan probes or LUX-labeled primers should be considered when using real-time PCR to estimate copy number if the amplicons generated are AT-rich or vary in length. PMID:19052298

  16. The Structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains (ARIDs) recognize DNA

    SciTech Connect

    Iwahara, Junji; Iwahara, Mizuho; Daughdrill, Gary W.; Ford, Joe J.; Clubb, Robert T.

    2002-03-01

    The AT-rich interaction domain (ARID) is a DNA-binding module found in many eukaryotic transcription factors. Using NMR Spectroscopy, we have determined the first ever three-dimensional structure of an ARID-DNA complex (mol.wt 25.7 kDa) formed by Dead ringer from Drosophila melanogaster, ARIDs recognize DNA through a novel mechanism involving major groove immobilization of a large loop that connects the helices of a non-canonical helix-turn-helix motif, and through a concomitant structural rearrangement. that produces stabilizing contacts from a B-hairpin. Dead ringer's preference for a AT-rich DNA originates from three positions within the ARID fold that form energetically significant contacts to an adenine thymine base step.

  17. From Genes to Environment: Using Integrative Genomics to Build a "Systems-Level" Understanding of Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Hu, Valerie W.

    2013-01-01

    Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that affect an estimated 1 in 110 individuals. Although there is a strong genetic component associated with these disorders, this review focuses on the multifactorial nature of ASD and how different genome-wide (genomic) approaches contribute to our understanding of autism.…

  18. Draft Genome Assembly of Two Pseudoclavibacter helvolus Strains, G8 and W3, Isolated from Slaughterhouse Environments

    PubMed Central

    Raghupathi, Prem K.; Herschend, Jakob; Røder, Henriette L.; Sørensen, Søren J.

    2016-01-01

    We report the draft genome sequences of two Pseudoclavibacter helvolus strains. Strain G8 was isolated from a meat chopper and strain W3 isolated from the wall of a small slaughterhouse in Denmark. The two annotated genomes are 3.91 Mb and 4.00 Mb in size, respectively. PMID:27034481

  19. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments

    PubMed Central

    Dunn, Barbara; Richter, Chandra; Kvitek, Daniel J.; Pugh, Tom; Sherlock, Gavin

    2012-01-01

    Although the budding yeast Saccharomyces cerevisiae is arguably one of the most well-studied organisms on earth, the genome-wide variation within this species—i.e., its “pan-genome”—has been less explored. We created a multispecies microarray platform containing probes covering the genomes of several Saccharomyces species: S. cerevisiae, including regions not found in the standard laboratory S288c strain, as well as the mitochondrial and 2-μm circle genomes–plus S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. kluyveri, and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) on 83 different S. cerevisiae strains collected across a wide range of habitats; of these, 69 were commercial wine strains, while the remaining 14 were from a diverse set of other industrial and natural environments. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole-genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae. PMID:22369888

  20. Environment.

    ERIC Educational Resources Information Center

    White, Gilbert F.

    1980-01-01

    Presented are perspectives on the emergence of environmental problems. Six major trends in scientific thinking are identified including: holistic approaches to examining environments, life support systems, resource management, risk assessment, streamlined methods for monitoring environmental change, and emphasis on the global framework. (Author/SA)

  1. The Genome of the Self-Fertilizing Mangrove Rivulus Fish, Kryptolebias marmoratus: A Model for Studying Phenotypic Plasticity and Adaptations to Extreme Environments

    PubMed Central

    Kelley, Joanna L.; Yee, Muh-Ching; Brown, Anthony P.; Richardson, Rhea R.; Tatarenkov, Andrey; Lee, Clarence C.; Harkins, Timothy T.; Bustamante, Carlos D.; Earley, Ryan L.

    2016-01-01

    The mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions. Temperature mediates the development of primary males and also sex change between hermaphrodites and secondary males, which makes the system ideal for the study of sex determination and sexual plasticity. Mangrove rivulus also exhibit remarkable adaptations to living in extreme environments, and the system has great promise to shed light on the evolution of terrestrial locomotion, aerial respiration, and broad tolerances to hypoxia, salinity, temperature, and environmental pollutants. Genome assembly of the mangrove rivulus allows the study of genes and gene families associated with the traits described above. Here we present a de novo assembled reference genome for the mangrove rivulus, with an approximately 900 Mb genome, including 27,328 annotated, predicted, protein-coding genes. Moreover, we are able to place more than 50% of the assembled genome onto a recently published linkage map. The genome provides an important addition to the linkage map and transcriptomic tools recently developed for this species that together provide critical resources for epigenetic, transcriptomic, and proteomic analyses. Moreover, the genome will serve as the foundation for addressing key questions in behavior, physiology, toxicology, and evolutionary biology. PMID:27324916

  2. The Genome of the Self-Fertilizing Mangrove Rivulus Fish, Kryptolebias marmoratus: A Model for Studying Phenotypic Plasticity and Adaptations to Extreme Environments.

    PubMed

    Kelley, Joanna L; Yee, Muh-Ching; Brown, Anthony P; Richardson, Rhea R; Tatarenkov, Andrey; Lee, Clarence C; Harkins, Timothy T; Bustamante, Carlos D; Earley, Ryan L

    2016-01-01

    The mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions. Temperature mediates the development of primary males and also sex change between hermaphrodites and secondary males, which makes the system ideal for the study of sex determination and sexual plasticity. Mangrove rivulus also exhibit remarkable adaptations to living in extreme environments, and the system has great promise to shed light on the evolution of terrestrial locomotion, aerial respiration, and broad tolerances to hypoxia, salinity, temperature, and environmental pollutants. Genome assembly of the mangrove rivulus allows the study of genes and gene families associated with the traits described above. Here we present a de novo assembled reference genome for the mangrove rivulus, with an approximately 900 Mb genome, including 27,328 annotated, predicted, protein-coding genes. Moreover, we are able to place more than 50% of the assembled genome onto a recently published linkage map. The genome provides an important addition to the linkage map and transcriptomic tools recently developed for this species that together provide critical resources for epigenetic, transcriptomic, and proteomic analyses. Moreover, the genome will serve as the foundation for addressing key questions in behavior, physiology, toxicology, and evolutionary biology. PMID:27324916

  3. Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34melT

    PubMed Central

    Pavan, María Elisa; Pavan, Esteban E.; López, Nancy I.; Levin, Laura

    2015-01-01

    Aeromonas salmonicida subsp. pectinolytica 34melT can be considered an extremophile due to the characteristics of the heavily polluted river from which it was isolated. While four subspecies of A. salmonicida are known fish pathogens, 34melT belongs to the only subspecies isolated solely from the environment. Genome analysis revealed a high metabolic versatility, the capability to cope with diverse stress agents, and the lack of several virulence factors found in pathogenic Aeromonas. The most relevant phenotypic characteristics of 34melT are pectin degradation, a distinctive trait of A. salmonicida subsp. pectinolytica, and melanin production. Genes coding for three pectate lyases were detected in a cluster, unique to this microorganism, that contains all genes needed for pectin degradation. Melanin synthesis in 34melT is hypothesized to occur through the homogentisate pathway, as no tyrosinases or laccases were detected and the homogentisate 1,2-dioxygenase gene is inactivated by a transposon insertion, leading to the accumulation of the melanin precursor homogentisate. Comparative genome analysis of other melanogenic Aeromonas strains revealed that this gene was inactivated by transposon insertions or point mutations, indicating that melanin biosynthesis in Aeromonas occurs through the homogentisate pathway. Horizontal gene transfer could have contributed to the adaptation of 34melT to a highly polluted environment, as 13 genomic islands were identified in its genome, some of them containing genes coding for fitness-related traits. Heavy metal resistance genes were also found, along with others associated with oxidative and nitrosative stresses. These characteristics, together with melanin production and the ability to use different substrates, may explain the ability of this microorganism to live in an extremely polluted environment. PMID:26025898

  4. Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34melT.

    PubMed

    Pavan, María Elisa; Pavan, Esteban E; López, Nancy I; Levin, Laura; Pettinari, M Julia

    2015-08-01

    Aeromonas salmonicida subsp. pectinolytica 34mel(T) can be considered an extremophile due to the characteristics of the heavily polluted river from which it was isolated. While four subspecies of A. salmonicida are known fish pathogens, 34mel(T) belongs to the only subspecies isolated solely from the environment. Genome analysis revealed a high metabolic versatility, the capability to cope with diverse stress agents, and the lack of several virulence factors found in pathogenic Aeromonas. The most relevant phenotypic characteristics of 34mel(T) are pectin degradation, a distinctive trait of A. salmonicida subsp. pectinolytica, and melanin production. Genes coding for three pectate lyases were detected in a cluster, unique to this microorganism, that contains all genes needed for pectin degradation. Melanin synthesis in 34mel(T) is hypothesized to occur through the homogentisate pathway, as no tyrosinases or laccases were detected and the homogentisate 1,2-dioxygenase gene is inactivated by a transposon insertion, leading to the accumulation of the melanin precursor homogentisate. Comparative genome analysis of other melanogenic Aeromonas strains revealed that this gene was inactivated by transposon insertions or point mutations, indicating that melanin biosynthesis in Aeromonas occurs through the homogentisate pathway. Horizontal gene transfer could have contributed to the adaptation of 34mel(T) to a highly polluted environment, as 13 genomic islands were identified in its genome, some of them containing genes coding for fitness-related traits. Heavy metal resistance genes were also found, along with others associated with oxidative and nitrosative stresses. These characteristics, together with melanin production and the ability to use different substrates, may explain the ability of this microorganism to live in an extremely polluted environment. PMID:26025898

  5. Genome-Wide Identification of Small RNAs in Bifidobacterium animalis subsp. lactis KLDS 2.0603 and Their Regulation Role in the Adaption to Gastrointestinal Environment

    PubMed Central

    Zhu, De-Quan; Liu, Fei; Sun, Yu; Yang, Li-Mei; Xin, Li; Meng, Xiang-Chen

    2015-01-01

    Objective Bifidobacteria are one of the predominant bacterial species in the human gastrointestinal tract (GIT) and play a vital role in the host’s health by acting as probiotics. However, how they regulate themselves to adapt to GIT of their host remains unknown. Methods Eighteen bifidobacterial strains were used to analyze their adaptive capacities towards simulated GIT environment. The strain with highest survival rate and adhesion ability was selected for comparative genome as well as transcriptomic analysis. Results The Bifidobacterium animalis subsp. lactis KLDS 2.0603 strain was demonstrated to have the highest survival rate and adhesion ability in simulated GIT treatments. The comparative genome analysis revealed that the KLDS 2.0603 has most similar whole genome sequence compared with BB-12 strain. Eleven intergenic sRNAs were identified after genomes prediction and transcriptomic analysis of KLDS 2.0603. Transcriptomic analysis also showed that genes (mainly sRNAs targeted genes) and sRNAs were differentially expressed in different stress conditions, suggesting that sRNAs might play a crucial role in regulating genes involved in the stress resistance of this strain towards environmental changes. Conclusions This study first provided deep and comprehensive insights into the regulation of KLDS 2.0603 strain at transcription and post-transcription level towards environmental. PMID:25706951

  6. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  7. The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment

    PubMed Central

    Ortet, Philippe; Fochesato, Sylvain; Jourlin-Castelli, Cécile; Ansaldi, Mireille; Py, Béatrice; Fichant, Gwennaele; Coutinho, Pedro M.; Voulhoux, Romé; Bastien, Olivier; Maréchal, Eric; Henrissat, Bernard; Quentin, Yves; Noirot, Philippe; Filloux, Alain; Méjean, Vincent; DuBow, Michael S.; Barras, Frédéric; Barbe, Valérie; Weissenbach, Jean; Mihalcescu, Irina; Verméglio, André; Achouak, Wafa; Heulin, Thierry

    2011-01-01

    Ramlibacter tataouinensis TTB310T (strain TTB310), a betaproteobacterium isolated from a semi-arid region of South Tunisia (Tataouine), is characterized by the presence of both spherical and rod-shaped cells in pure culture. Cell division of strain TTB310 occurs by the binary fission of spherical “cyst-like” cells (“cyst-cyst” division). The rod-shaped cells formed at the periphery of a colony (consisting mainly of cysts) are highly motile and colonize a new environment, where they form a new colony by reversion to cyst-like cells. This unique cell cycle of strain TTB310, with desiccation tolerant cyst-like cells capable of division and desiccation sensitive motile rods capable of dissemination, appears to be a novel adaptation for life in a hot and dry desert environment. In order to gain insights into strain TTB310's underlying genetic repertoire and possible mechanisms responsible for its unusual lifestyle, the genome of strain TTB310 was completely sequenced and subsequently annotated. The complete genome consists of a single circular chromosome of 4,070,194 bp with an average G+C content of 70.0%, the highest among the Betaproteobacteria sequenced to date, with total of 3,899 predicted coding sequences covering 92% of the genome. We found that strain TTB310 has developed a highly complex network of two-component systems, which may utilize responses to light and perhaps a rudimentary circadian hourglass to anticipate water availability at the dew time in the middle/end of the desert winter nights and thus direct the growth window to cyclic water availability times. Other interesting features of the strain TTB310 genome that appear to be important for desiccation tolerance, including intermediary metabolism compounds such as trehalose or polyhydroxyalkanoate, and signal transduction pathways, are presented and discussed. PMID:21912644

  8. Genome Analysis of Listeria monocytogenes Sequence Type 8 Strains Persisting in Salmon and Poultry Processing Environments and Comparison with Related Strains

    PubMed Central

    Fagerlund, Annette; Langsrud, Solveig; Schirmer, Bjørn C. T.; Møretrø, Trond; Heir, Even

    2016-01-01

    Listeria monocytogenes is an important foodborne pathogen responsible for the disease listeriosis, and can be found throughout the environment, in many foods and in food processing facilities. The main cause of listeriosis is consumption of food contaminated from sources in food processing environments. Persistence in food processing facilities has previously been shown for the L. monocytogenes sequence type (ST) 8 subtype. In the current study, five ST8 strains were subjected to whole-genome sequencing and compared with five additionally available ST8 genomes, allowing comparison of strains from salmon, poultry and cheese industry, in addition to a human clinical isolate. Genome-wide analysis of single-nucleotide polymorphisms (SNPs) confirmed that almost identical strains were detected in a Danish salmon processing plant in 1996 and in a Norwegian salmon processing plant in 2001 and 2011. Furthermore, we show that L. monocytogenes ST8 was likely to have been transferred between two poultry processing plants as a result of relocation of processing equipment. The SNP data were used to infer the phylogeny of the ST8 strains, separating them into two main genetic groups. Within each group, the plasmid and prophage content was almost entirely conserved, but between groups, these sequences showed strong divergence. The accessory genome of the ST8 strains harbored genetic elements which could be involved in rendering the ST8 strains resilient to incoming mobile genetic elements. These included two restriction-modification loci, one of which was predicted to show phase variable recognition sequence specificity through site-specific domain shuffling. Analysis indicated that the ST8 strains harbor all important known L. monocytogenes virulence factors, and ST8 strains are commonly identified as the causative agents of invasive listeriosis. Therefore, the persistence of this L. monocytogenes subtype in food processing facilities poses a significant concern for food safety

  9. Genome Analysis of Listeria monocytogenes Sequence Type 8 Strains Persisting in Salmon and Poultry Processing Environments and Comparison with Related Strains.

    PubMed

    Fagerlund, Annette; Langsrud, Solveig; Schirmer, Bjørn C T; Møretrø, Trond; Heir, Even

    2016-01-01

    Listeria monocytogenes is an important foodborne pathogen responsible for the disease listeriosis, and can be found throughout the environment, in many foods and in food processing facilities. The main cause of listeriosis is consumption of food contaminated from sources in food processing environments. Persistence in food processing facilities has previously been shown for the L. monocytogenes sequence type (ST) 8 subtype. In the current study, five ST8 strains were subjected to whole-genome sequencing and compared with five additionally available ST8 genomes, allowing comparison of strains from salmon, poultry and cheese industry, in addition to a human clinical isolate. Genome-wide analysis of single-nucleotide polymorphisms (SNPs) confirmed that almost identical strains were detected in a Danish salmon processing plant in 1996 and in a Norwegian salmon processing plant in 2001 and 2011. Furthermore, we show that L. monocytogenes ST8 was likely to have been transferred between two poultry processing plants as a result of relocation of processing equipment. The SNP data were used to infer the phylogeny of the ST8 strains, separating them into two main genetic groups. Within each group, the plasmid and prophage content was almost entirely conserved, but between groups, these sequences showed strong divergence. The accessory genome of the ST8 strains harbored genetic elements which could be involved in rendering the ST8 strains resilient to incoming mobile genetic elements. These included two restriction-modification loci, one of which was predicted to show phase variable recognition sequence specificity through site-specific domain shuffling. Analysis indicated that the ST8 strains harbor all important known L. monocytogenes virulence factors, and ST8 strains are commonly identified as the causative agents of invasive listeriosis. Therefore, the persistence of this L. monocytogenes subtype in food processing facilities poses a significant concern for food safety

  10. Peculiarities of the incorporation of (/sup 3/H)thymidine into AT-rich regions of DNA during replicative synthesis

    SciTech Connect

    Khudolii, G.A.; Khakimov, K.A.; Gorelova, T.V.; Akif'ev, A.P.

    1985-11-01

    The authors studied the role of the AT-rich regions in DNA replication in vivo. The authors selected cells of humans and Drosophila - organisms belonging to different types of alternation of unique and repetitive sequences - as the objects of investigation. The authors then studied the behavior of the AT-rich sequences in replication by the method of thermoelution of (/sup 3/H)thymidine-labeled DNA, fragmented by ultrasound to 350 nucleotide pairs. By measuring the amount of DNA and the amount of the label in the fractions, the authors were able to construct curves of the change in the specific activity of DNA as a function of the temperature of elution from HAP and, consequently, as a function of the AT composition. The authors call them differential temperature chromatograms (DTC). Human peripheral blood lymphocytes were cultured according to the standard procedure with PHA (Difco P). A culture of D. melanogaster cells was labeled with (/sup 3/H)thymidine in the logarithmic phase of growth for 1.2 and 42 h. At the end of the labeling, cell DNA was isolated from the lymphocytes and cell and nuclear DNA from a Drosophila tissue culture by the standard methods.

  11. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments

    SciTech Connect

    Aklujkar, Muktak; Young, Nelson D; Holmes, Dawn; Chavan, Milind; Risso, Carla; Kiss, Hajnalka; Han, Cliff; Land, Miriam L; Lovley, Derek

    2010-01-01

    Background. Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results. Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion. Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in

  12. Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment

    PubMed Central

    2013-01-01

    investigation of the unclear association of dairy and clinical Sii with human diseases. Conclusions The genome of the African dairy isolate Sii CJ18 clearly differs from the human isolate ATCC BAA-102T. CJ18 possesses a high natural competence predisposition likely explaining the enlarged genome. Metabolic adaptations to the dairy environment are evident and especially lactose uptake corresponds to S. thermophilus. Genome decay is not as advanced as in S. thermophilus (10-19%) possibly due to a shorter history in dairy fermentations. PMID:23521820

  13. A validated genome wide association study to breed cattle adapted to an environment altered by climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continued production of food in areas predicted to be most affected by climate change, such as dairy farming regions of Australia, will be a major challenge in coming decades. Along with rising temperatures and water shortages, scarcity of inputs such as high energy feeds is predicted. Genomic sel...

  14. Genotype by environment interaction and the use of unbalanced historical data for genomic selection in an international wheat breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic selection (GS) offers breeders the possibility of using historic data and unbalanced breeding trials to form training populations for predicting the performance of new lines. However, in using datasets that are unbalanced over time and space, there is increasing exposure to particular genoty...

  15. An AT-rich region in the APC gene may cause misinterpretation of familial adenomatous polyposis molecular screening.

    PubMed

    Palmirotta, Raffaele; De Marchis, Maria Laura; Ludovici, Giorgia; Leone, Barbara; Valente, Maria Giovanna; Alessandroni, Jhessica; Spila, Antonella; Della-Morte, David; Guadagni, Fiorella

    2012-05-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominant condition mainly due to a mutation of the adenomatous polyposis coli (APC) gene. The present study reports evidence of a technical issue occurring during the mutational analysis of APC exon 4. Genetic conventional direct sequence analysis of a repetitive AT-rich region in the splice acceptor site of APC intron 3 could be misinterpreted as a pathogenetic frameshift result. However, this potential bias may be bypassed adopting a method for random mutagenesis of DNA based on the use of a triphosphate nucleoside analogues mixture. Using this method as a second-level analysis, we also demonstrated the nonpathogenic nature of the variant in the poly A trait in APC exon 4 region (c.423-4delA) that do not result in aberrant splicing of APC exons 3-4; conversely, we did not find a previously reported T deletion/insertion polymorphism. PMID:22447671

  16. Genomic sequence analysis of a plant-associated Photobacterium halotolerans MELD1: from marine to terrestrial environment?

    PubMed

    Mathew, Dony Chacko; Lo, Shou-Chen; Mathew, Gincy Marina; Chang, Kung-Hao; Huang, Chieh-Chen

    2016-01-01

    Mercury impacts the function and development of the central nervous system in both humans and wildlife by being a potent neurotoxin. Microbial bioremediation is an important means of remediation of mercury-contaminated soil. The rhizospheric Photobacterium halotolerans strain MELD1 was isolated from mercury and dioxin contaminated site from Tainan, Taiwan. It has been shown to reduce Hg(2+) to Hg(0). The 4,758,027 bp genome of P. halotolerans MELD1 has a G + C content of 50.88 % and contains 4198 protein-coding and 106 RNA genes. Genomic analysis revealed the presence of a number of interesting gene cluster that maybe involved in heavy metal resistance, rhizosphere competence and colonization of the host plant. PMID:27594975

  17. Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment

    PubMed Central

    Milani, Christian; Turroni, Francesca; Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Ferrario, Chiara; van Sinderen, Douwe

    2015-01-01

    Bifidobacteria represent one of the dominant microbial groups that occur in the gut of various animals, being particularly prevalent during the suckling period of humans and other mammals. Their ability to compete with other gut bacteria is largely attributed to their saccharolytic features. Comparative and functional genomic as well as transcriptomic analyses have revealed the genetic background that underpins the overall saccharolytic phenotype for each of the 47 bifidobacterial (sub)species representing the genus Bifidobacterium, while also generating insightful information regarding carbohydrate resource sharing and cross-feeding among bifidobacteria. The abundance of bifidobacterial saccharolytic features in human microbiomes supports the notion that metabolic accessibility to dietary and/or host-derived glycans is a potent evolutionary force that has shaped the bifidobacterial genome. PMID:26590291

  18. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  19. Survival in extreme environment by "preserve-expand-specialize" strategy: lessons from comparative genomics of an anhydrobiotic midge.

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg; Sugimoto, Manabu; Novikova, Nataliya; Sychev, Vladimir; Okuda, Takashi; Kikawada, Takahiro

    2012-07-01

    Anhydrobiotic chironomid larvae of Polypedilum vanderplanki (Diptera) can withstand prolonged complete desiccation as well as other external stresses including ionizing radiation. Recent experiments showed that this insect is able to survive long-tern exposure to real outer space. At the same time, we found that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. Analysis of several remote populations of the chironomid in Africa that desiccation-related DNA damage might be a driving genetic force for rapid radiation within the species. First results of ongoing genome project suggest that origin and evolution of anhydrobiosis in this single insect species related to rapid duplication of the genes, coding late embryogenesis abundant proteins (LEA) and other molecular agents directly involved in desiccation resistance in the cells. Analysis of genome-wide mRNA expression profiles in the larvae subjected to desiccation shows that joint-activity of large multiple-genes coding regions in the genome involved in control of anhydrobiosis-related molecular adaptations in the chironomid.

  20. Genotype-Environment Interactions in Microsatellite Stable/Microsatellite Instability-Low Colorectal Cancer: Results from a Genome-Wide Association Study

    PubMed Central

    Figueiredo, Jane C.; Lewinger, Juan Pablo; Song, Chi; Campbell, Peter T.; Conti, David V.; Edlund, Christopher K.; Duggan, Dave J.; Rangrej, Jagadish; Lemire, Mathieu; Hudson, Thomas; Zanke, Brent; Cotterchio, Michelle; Gallinger, Steven; Jenkins, Mark; Hopper, John; Haile, Robert; Newcomb, Polly; Potter, John; Baron, John A.; Marchand, Loic Le; Casey, Graham

    2011-01-01

    Background Genome-wide association studies (GWAS) have led to the identification of a number of common susceptibility loci for colorectal cancer (CRC); however, none of these GWAS have considered gene-environment (GxE) interactions. Therefore, it is unclear whether current hits are modified by environmental exposures or whether there are additional hits whose effects are dependent on environmental exposures. Methods We conducted a systematic search for GxE interactions using genome wide data from the Colon Cancer Family Registry that included 1,191 cases of microsatellite stable (MSS) or microsatellite instability (MSI)-low CRC and 999 controls genotyped using either the Illumina Human1M or Human1M-Duo BeadChip. We tested for interactions between genotypes and 14 environmental factors using three methods: a traditional case-control test, a case-only test, and the recently proposed two-step method by Murcray et al. All potentially significant findings were replicated in the ARCTIC Study. Results No GxE interactions were identified that reached genome-wide significance by any of the three methods. When analyzing previously reported susceptibility loci, seven significant GxE interactions were found at a 5% significance level. We investigated these seven interactions in an independent sample and none of the interactions were replicated. Conclusions Identifying GxE interactions will present challenges in a GWAS setting. Our power calculations illustrate the need for larger sample sizes; however, since CRC is a heterogeneous disease, a tradeoff between increasing sample size and heterogeneity needs to be considered. Impact The results from this first genome-wide analysis of GxE in CRC identify several challenges, which may be addressed by large consortium efforts. PMID:21357381

  1. Interaction identification of Zif268 and TATA(ZF) proteins with GC-/AT-rich DNA sequence: A theoretical study.

    PubMed

    Yang, Bo; Zhu, Yanyan; Wang, Yan; Chen, Guangju

    2011-02-01

    Molecular dynamics (MD) simulations for Zif268 (a zinc-finger-protein binding specifically to the GC-rich DNA)-d(A(1) G(2) C(3) G(4) T(5) G(6) G(7) G(8) C(9) A(10) C(11) )(2) and TATA(ZF) (a zinc-finger-protein recognizing the AT-rich DNA)-d(A(1) C(2) G(3) C(4) T(5) A(6) T(7) A(8) A(9) A(10) A(11) G(12) G(13) )(2) complexes have been performed for investigating the DNA binding affinities and specific recognitions of zinc fingers to GC-rich and AT-rich DNA sequences. The binding free energies for the two systems have been further analyzed by using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The calculations of the binding free energies reveal that the affinity energy of Zif268-DNA complex is larger than that of TATA(ZF) -DNA one. The affinity between the zinc-finger-protein and DNA is mainly driven by more favorable van-der-Waals and nonpolar/solvation interactions in both complexes. However, the affinity energy difference of the two binding systems is mainly caused by the difference of van-der-Waals interactions and entropy components. The decomposition analysis of MM-PBSA free energies on each residue of the proteins predicts that the interactions between the residues with the positive charges and DNA favor the binding process; while the interactions between the residues with the negative charges and DNA behave in the opposite way. The interhydrogen-bonds at the protein-DNA interface and the induced intrafinger hydrogen bonds between the residues of protein for the Zif268-DNA complex have been identified at some key contact sites. However, only the interhydrogen-bonds between the residues of protein and DNA for TATA(ZF) -DNA complex have been found. The interactions of hydrogen-bonds, electrostatistics and van-der-Waals type at some new contact sites have been identified. Moreover, the recognition characteristics of the two studied zinc-finger-proteins have also been discussed. PMID:20658568

  2. Identification of Jumonji AT-Rich Interactive Domain 1A Inhibitors and Their Effect on Cancer Cells

    PubMed Central

    2015-01-01

    Jumonji AT-rich interactive domain 1A (JARID1A), one of the jumonji C domain-containing histone demethylase (JHDM) family members, plays key roles in cancer cell proliferation and development of drug tolerance. Therefore, selective JARID1A inhibitors are potential anticancer agents. In this study, we searched for cell-active JARID1A inhibitors by screening hydroxamate compounds in our in-house library and the structural optimization based on docking study of the hit-compound to a homology model of JARID1A. As a result, we identified compound 6j, which selectively inhibits JARID1A over three other JHDM family members. Compound 7j, a prodrug form of compound 6j, induced a selective increase in the level of trimethylation of histone H3 lysine 4, a substrate of JARID1A. Furthermore, compound 7j synergistically enhanced A549 human lung cancer cell growth inhibition induced by vorinostat, a histone deacetylase inhibitor. These findings support the idea that JARID1A inhibitors have potential as anticancer agents. PMID:26101571

  3. Genomic Encyclopedia of Fungi

    SciTech Connect

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  4. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  5. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs.

    PubMed

    Zhang, X; Pérez-Rodríguez, P; Semagn, K; Beyene, Y; Babu, R; López-Cruz, M A; San Vicente, F; Olsen, M; Buckler, E; Jannink, J-L; Prasanna, B M; Crossa, J

    2015-03-01

    One of the most important applications of genomic selection in maize breeding is to predict and identify the best untested lines from biparental populations, when the training and validation sets are derived from the same cross. Nineteen tropical maize biparental populations evaluated in multienvironment trials were used in this study to assess prediction accuracy of different quantitative traits using low-density (~200 markers) and genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs), respectively. An extension of the Genomic Best Linear Unbiased Predictor that incorporates genotype × environment (GE) interaction was used to predict genotypic values; cross-validation methods were applied to quantify prediction accuracy. Our results showed that: (1) low-density SNPs (~200 markers) were largely sufficient to get good prediction in biparental maize populations for simple traits with moderate-to-high heritability, but GBS outperformed low-density SNPs for complex traits and simple traits evaluated under stress conditions with low-to-moderate heritability; (2) heritability and genetic architecture of target traits affected prediction performance, prediction accuracy of complex traits (grain yield) were consistently lower than those of simple traits (anthesis date and plant height) and prediction accuracy under stress conditions was consistently lower and more variable than under well-watered conditions for all the target traits because of their poor heritability under stress conditions; and (3) the prediction accuracy of GE models was found to be superior to that of non-GE models for complex traits and marginal for simple traits. PMID:25407079

  6. The influence of landscape configuration and environment on population genetic structure in a sedentary passerine: insights from loci located in different genomic regions.

    PubMed

    Ferrer, E S; García-Navas, V; Bueno-Enciso, J; Barrientos, R; Serrano-Davies, E; Cáliz-Campal, C; Sanz, J J; Ortego, J

    2016-01-01

    The study of the factors structuring genetic variation can help to infer the neutral and adaptive processes shaping the demographic and evolutionary trajectories of natural populations. Here, we analyse the role of isolation by distance (IBD), isolation by resistance (IBR, defined by landscape composition) and isolation by environment (IBE, estimated as habitat and elevation dissimilarity) in structuring genetic variation in 25 blue tit (Cyanistes caeruleus) populations. We typed 1385 individuals at 26 microsatellite loci classified into two groups by considering whether they are located into genomic regions that are actively (TL; 12 loci) or not (NTL; 14 loci) transcribed to RNA. Population genetic differentiation was mostly detected using the panel of NTL. Landscape genetic analyses showed a pattern of IBD for all loci and the panel of NTL, but genetic differentiation estimated at TL was only explained by IBR models considering high resistance for natural vegetation and low resistance for agricultural lands. Finally, the absence for IBE suggests a lack of divergent selection pressures associated with differences in habitat and elevation. Overall, our study shows that markers located in different genomic regions can yield contrasting inferences on landscape-level patterns of realized gene flow in natural populations. PMID:26492434

  7. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.

    PubMed

    Yin, T; Wensch-Dorendorf, M; Simianer, H; Swalve, H H; König, S

    2014-06-01

    The objective of the present study was to compare genetic gain and inbreeding coefficients of dairy cattle in organic breeding program designs by applying stochastic simulations. Evaluated breeding strategies were: (i) selecting bulls from conventional breeding programs, and taking into account genotype by environment (G×E) interactions, (ii) selecting genotyped bulls within the organic environment for artificial insemination (AI) programs and (iii) selecting genotyped natural service bulls within organic herds. The simulated conventional population comprised 148 800 cows from 2976 herds with an average herd size of 50 cows per herd, and 1200 cows were assigned to 60 organic herds. In a young bull program, selection criteria of young bulls in both production systems (conventional and organic) were either 'conventional' estimated breeding values (EBV) or genomic estimated breeding values (GEBV) for two traits with low (h 2=0.05) and moderate heritability (h 2=0.30). GEBV were calculated for different accuracies (r mg), and G×E interactions were considered by modifying originally simulated true breeding values in the range from r g=0.5 to 1.0. For both traits (h 2=0.05 and 0.30) and r mg⩾0.8, genomic selection of bulls directly in the organic population and using selected bulls via AI revealed higher genetic gain than selecting young bulls in the larger conventional population based on EBV; also without the existence of G×E interactions. Only for pronounced G×E interactions (r g=0.5), and for highly accurate GEBV for natural service bulls (r mg>0.9), results suggests the use of genotyped organic natural service bulls instead of implementing an AI program. Inbreeding coefficients of selected bulls and their offspring were generally lower when basing selection decisions for young bulls on GEBV compared with selection strategies based on pedigree indices. PMID:24703184

  8. Evolution of a Genome-Encoded Bias in Amino Acid Biosynthetic Pathways Is a Potential Indicator of Amino Acid Dynamics in the Environment

    PubMed Central

    Fasani, Rick A.; Savageau, Michael A.

    2014-01-01

    Overcoming the stress of starvation is one of an organism’s most challenging phenotypic responses. Those organisms that frequently survive the challenge, by virtue of their fitness, will have evolved genomes that are shaped by their specific environments. Understanding this genotype–environment–phenotype relationship at a deep level will require quantitative predictive models of the complex molecular systems that link these aspects of an organism’s existence. Here, we treat one of the most fundamental molecular systems, protein synthesis, and the amino acid biosynthetic pathways involved in the stringent response to starvation. These systems face an inherent logical dilemma: Building an amino acid biosynthetic pathway to synthesize its product—the cognate amino acid of the pathway—may require that very amino acid when it is no longer available. To study this potential “catch-22,” we have created a generic model of amino acid biosynthesis in response to sudden starvation. Our mathematical analysis and computational results indicate that there are two distinctly different outcomes: Partial recovery to a new steady state, or full system failure. Moreover, the cell’s fate is dictated by the cognate bias, the number of cognate amino acids in the corresponding biosynthetic pathway relative to the average number of that amino acid in the proteome. We test these implications by analyzing the proteomes of over 1,800 sequenced microbes, which reveals statistically significant evidence of low cognate bias, a genetic trait that would avoid the biosynthetic quandary. Furthermore, these results suggest that the pattern of cognate bias, which is readily derived by genome sequencing, may provide evolutionary clues to an organism’s natural environment. PMID:25118252

  9. Jumonji AT-rich interactive domain 1B overexpression is associated with the development and progression of glioma

    PubMed Central

    FANG, LIPING; ZHAO, JIUHAN; WANG, DAN; ZHU, LIYU; WANG, JIAN; JIANG, KUI

    2016-01-01

    Previous studies have suggested that jumonji AT-rich interactive domain 1B (JARID1B) plays an important role in the genesis of some types of cancer, and it is therefore considered to be an important drug target protein. Although the expression of JARID1B has been researched in some types of cancer, little is known about JARID1B expression in glioma and its function in the tumorigenesis of gliomas. In the present study, we examined the expression of JARID1B in glioma. In addition, RT-PCR, western blot analysis and immunohistochemical analysis were performed using glioma tissue samples and the results revealed that JARID1B expression increased according to the histological grade of glioma. However, in the normal brain tissue samples JARID1B expression was barely detected. Kaplan-Meier analysis revealed that higher JARID1B expression in patients with glioma was associated with a poorer prognosis. The overexpression of JARID1B stimulated the proliferation and migration of glioma cells as well as sphere formation, whereas suppressing the expression of JARID1B produced opposite effects. The overexpression of JARID1B increased the tumorigenicity of glioma cells in vivo in a nude mouse xenograft model of glioma. Moreover, the activation of phosphorylated (p-)Smad2 contributes to JARID1B-induced oncogenic activities. These findings suggest that JARID1B is involved in the pathogenesis of glioma, and that the downregulation of JARID1B in glioma cells may be a therapeutic target for the treatment of patients with glioma. PMID:27246838

  10. Jumonji AT-rich interactive domain 1B overexpression is associated with the development and progression of glioma.

    PubMed

    Fang, Liping; Zhao, Jiuhan; Wang, Dan; Zhu, Liyu; Wang, Jian; Jiang, Kui

    2016-07-01

    Previous studies have suggested that jumonji AT-rich interactive domain 1B (JARID1B) plays an important role in the genesis of some types of cancer, and it is therefore considered to be an important drug target protein. Although the expression of JARID1B has been researched in some types of cancer, little is known about JARID1B expression in glioma and its function in the tumorigenesis of gliomas. In the present study, we examined the expression of JARID1B in glioma. In addition, RT-PCR, western blot analysis and immunohistochemical analysis were performed using glioma tissue samples and the results revealed that JARID1B expression increased according to the histological grade of glioma. However, in the normal brain tissue samples JARID1B expression was barely detected. Kaplan‑Meier analysis revealed that higher JARID1B expression in patients with glioma was associated with a poorer prognosis. The overexpression of JARID1B stimulated the proliferation and migration of glioma cells as well as sphere formation, whereas suppressing the expression of JARID1B produced opposite effects. The overexpression of JARID1B increased the tumorigenicity of glioma cells in vivo in a nude mouse xenograft model of glioma. Moreover, the activation of phosphorylated (p-)Smad2 contributes to JARID1B-induced oncogenic activities. These findings suggest that JARID1B is involved in the pathogenesis of glioma, and that the downregulation of JARID1B in glioma cells may be a therapeutic target for the treatment of patients with glioma. PMID:27246838

  11. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  12. Complete mitochondrial genome of Thitarodes pui (Lepidoptera: Hepialidae).

    PubMed

    Yi, Jiequn; Que, Shengquan; Xin, Tianrong; Xia, Bin; Zou, Zhiwen

    2016-01-01

    To know the genetic structure and phylogeny status, the complete mitochondrial genome of Thitarodes pui was the first time to be sequenced. The genome was 15,064 bp in length and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, as well as an AT rich region. The base composition of the genome was A (40.93%), T (39.80%), C (11.72%) and G (7.55%), with an AT content of 80.73%. It is interesting to that the COI would start with CGA. The tRNA order between ND2 and AT rich region was tRNA(Ile)-tRNA(Gln)-tRNA(Met), which confirms the thesis that Thitarodes has the ancestral gene arrangement. It is surprised that AT-rich region was 287 bp in length and became the shortest in contrast to other insects of Hepialidae. PMID:24438300

  13. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes.

    PubMed

    Ribeiro, Teresa; Barrela, Ricardo M; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A P

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus. PMID:27148332

  14. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes

    PubMed Central

    Ribeiro, Teresa; Barrela, Ricardo M.; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A. P.

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus. PMID:27148332

  15. Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome

    PubMed Central

    Liu, Qiang; Wang, Xue-Feng; Ma, Jian; He, Xi-Jun; Wang, Xiao-Jun; Zhou, Jian-Hua

    2015-01-01

    Human immunodeficiency virus (HIV)-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV) is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED) cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS), which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs) and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs) in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors. PMID:26102582

  16. The Nucleoid Binding Protein H-NS Biases Genome-Wide Transposon Insertion Landscapes

    PubMed Central

    Kimura, Satoshi; Hubbard, Troy P.; Davis, Brigid M.

    2016-01-01

    ABSTRACT Transposon insertion sequencing (TIS; also known as TnSeq) is a potent approach commonly used to comprehensively define the genetic loci that contribute to bacterial fitness in diverse environments. A key presumption underlying analyses of TIS datasets is that loci with a low frequency of transposon insertions contribute to fitness. However, it is not known whether factors such as nucleoid binding proteins can alter the frequency of transposon insertion and thus whether TIS output may systematically reflect factors that are independent of the role of the loci in fitness. Here, we investigated whether the histone-like nucleoid structuring (H-NS) protein, which preferentially associates with AT-rich sequences, modulates the frequency of Mariner transposon insertion in the Vibrio cholerae genome, using comparative analysis of TIS results from wild-type (wt) and Δhns V. cholerae strains. These analyses were overlaid on gene classification based on GC content as well as on extant genome-wide identification of H-NS binding loci. Our analyses revealed a significant dearth of insertions within AT-rich loci in wt V. cholerae that was not apparent in the Δhns insertion library. Additionally, we observed a striking correlation between genetic loci that are overrepresented in the Δhns insertion library relative to their insertion frequency in wt V. cholerae and loci previously found to physically interact with H-NS. Collectively, our findings reveal that factors other than genetic fitness can systematically modulate the frequency of transposon insertions in TIS studies and add a cautionary note to interpretation of TIS data, particularly for AT-rich sequences. PMID:27578758

  17. Genomic Potential of Stenotrophomonas maltophilia in Bioremediation with an Assessment of Its Multifaceted Role in Our Environment

    PubMed Central

    Mukherjee, Piyali; Roy, Pranab

    2016-01-01

    The gram negative bacterium Stenotrophomonas is rapidly evolving as a nosocomial pathogen in immuno-compromised patients. Treatment of Stenotrophomonas maltophilia infections is problematic because of their increasing resistance to multiple antibiotics. This article aims to review the multi-disciplinary role of Stenotrophomonas in our environment with special focus on their metabolic and genetic potential in relation to bioremediation and phytoremediation. Current and emerging treatments and diagnosis for patients infected with S. maltophilia are discussed besides their capability of production of novel bioactive compounds. The plant growth promoting characteristics of this bacterium has been considered with special reference to secondary metabolite production. Nano-particle synthesis by Stenotrophomonas has also been reviewed in addition to their applications as effective biocontrol agents in plant and animal pathogenesis. PMID:27446008

  18. Evolution of Linked Avirulence Effectors in Leptosphaeria maculans Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants

    PubMed Central

    Van de Wouw, Angela P.; Cozijnsen, Anton J.; Hane, James K.; Brunner, Patrick C.; McDonald, Bruce A.; Oliver, Richard P.; Howlett, Barbara J.

    2010-01-01

    Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a ‘gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans. PMID:21079787

  19. EXPRESSION OF AN AT-RICH XYLANASE GENE FROM THE ANAEROBIC FUNGUS ORPINOMYCES SP. STRAIN PC-2 IN AND SECRETION OF THE HETEROLOGOUS ENZYME BY HYPOCREA JECORINA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AT-rich xylanase A gene (xynA) of the anaerobic fungus Orpinomyces sp. strain PC-2 codes for a polypeptide comprising a glycoside hydrolase family 11 catalytic domain linked by a hinge to two docking domains. The catalytic domain-coding region was used for the heterologous production of a xylan...

  20. Identifying novel interventional strategies for psychiatric disorders: integrating genomics, 'enviromics' and gene-environment interactions in valid preclinical models.

    PubMed

    McOmish, Caitlin E; Burrows, Emma L; Hannan, Anthony J

    2014-10-01

    Psychiatric disorders affect a substantial proportion of the population worldwide. This high prevalence, combined with the chronicity of the disorders and the major social and economic impacts, creates a significant burden. As a result, an important priority is the development of novel and effective interventional strategies for reducing incidence rates and improving outcomes. This review explores the progress that has been made to date in establishing valid animal models of psychiatric disorders, while beginning to unravel the complex factors that may be contributing to the limitations of current methodological approaches. We propose some approaches for optimizing the validity of animal models and developing effective interventions. We use schizophrenia and autism spectrum disorders as examples of disorders for which development of valid preclinical models, and fully effective therapeutics, have proven particularly challenging. However, the conclusions have relevance to various other psychiatric conditions, including depression, anxiety and bipolar disorders. We address the key aspects of construct, face and predictive validity in animal models, incorporating genetic and environmental factors. Our understanding of psychiatric disorders is accelerating exponentially, revealing extraordinary levels of genetic complexity, heterogeneity and pleiotropy. The environmental factors contributing to individual, and multiple, disorders also exhibit breathtaking complexity, requiring systematic analysis to experimentally explore the environmental mediators and modulators which constitute the 'envirome' of each psychiatric disorder. Ultimately, genetic and environmental factors need to be integrated via animal models incorporating the spatiotemporal complexity of gene-environment interactions and experience-dependent plasticity, thus better recapitulating the dynamic nature of brain development, function and dysfunction. PMID:24846457

  1. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  2. Genomic variation in the MMP-1 promoter influences estrogen receptor mediated activity in a mechanically activated environment: potential implications for microgravity risk assessment

    NASA Astrophysics Data System (ADS)

    Thaler, John; Myers, Ken; Lu, Ting; Hart, David

    examine the potential impact of the 1G/2G SNP on the cellular response to mechanical loading. HIG-82 cells are estrogen receptor (ER) negative and were transiently transfected with SV40 expression vectors for either ER-α or ER-β isoforms. Cells grown on glass slides were also co-transfected with either a 1G or 2G MMP-1 promoter-luciferase construct. Transfected cells were subjected to dynamic shear stress in a Flexcell Streamer Shear Stress Device. The dynamic loading regime was 0.5 Hz, 10 dyn/cm2 shear for 1 minute followed by 14 minutes rest and repeated for 8 hrs. A Promega Dual Luciferase Reporter Assay System was used to assess MMP-1 promoter activity. Results: Shear stress loading increased both 1G and 2G MMP-1 promoter activity compared to unloaded controls, however the 2G promoter had significantly higher rates of expression than the 1G promoter across all loading regimes and ER co-transfections. Transfection with ER-β resulted in higher MMP-1 promoter activity than that in cells expressing ER-α or in ER-neg cells. Conclusions: Specific genomic variations can lead to differences in cellular responses to changes in mechanical loading environments such as are encountered in microgravity environments or earth-based analogs. These genomic differences may predispose individuals to greater risk of bone loss. It is important to understand the combined effects of mechanical loading, genetic variation and sex hormones on bone maintenance so that risks can be identified for microgravity or analog environments, and specific interventions developed to counteract such risk or even exclude some individuals from prolonged space environments due to the extent of the risk.

  3. Genetic environment of the KPC gene in Acinetobacter baumannii ST2 clone from Puerto Rico and genomic insights into its drug resistance.

    PubMed

    Martinez, Teresa; Martinez, Idali; Vazquez, Guillermo J; Aquino, Edna E; Robledo, Iraida E

    2016-08-01

    Carbapenems are considered the last-resort antibiotics to treat infections caused by multidrug-resistant Gram-negative bacilli. The Klebsiella pneumoniae carbapenemase (KPC) enzyme hydrolyses β-lactam antibiotics including the carbapenems. KPC has been detected worldwide in Enterobacteriaceae and Pseudomonas aeruginosa isolates associated with transposon Tn4401 commonly located in plasmids. Acinetobacter baumannii has become an important multidrug-resistant nosocomial pathogen. KPC-producing A. baumannii has been reported to date only in Puerto Rico. The objective of this study was to determine the whole genomic sequence of a KPC-producing A. baumannii in order to (i) define its allelic diversity, (ii) identify the location and genetic environment of the blaKPC and (iii) detect additional mechanisms of antimicrobial resistance. Next-generation sequencing, Southern blot, PFGE, multilocus sequence typing and bioinformatics analysis were performed. The organism was assigned to the international ST2 clone. The blaKPC-2 was identified on a novel truncated version of Tn4401e (tentatively named Tn4401h), located in the chromosome within an IncA/C plasmid fragment derived from an Enterobacteriaceae, probably owing to insertion sequence IS26. A chromosomally located truncated Tn1 transposon harbouring a blaTEM-1 was found in a novel genetic environment within an antimicrobial resistance cluster. Additional resistance mechanisms included efflux pumps, non-β-lactam antibiotic inactivating enzymes within and outside a resistance island, two class 1 integrons, In439 and the novel In1252, as well as mutations in the topoisomerase and DNA gyrase genes which confer resistance to quinolones. The presence of the blaKPC in an already globally disseminated A. baumannii ST2 presents a serious threat of further dissemination. PMID:27259867

  4. Prokaryotic Nucleotide Composition Is Shaped by Both Phylogeny and the Environment

    PubMed Central

    Reichenberger, Erin R.; Rosen, Gail; Hershberg, Uri; Hershberg, Ruth

    2015-01-01

    The causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences in nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences—which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated. PMID:25861819

  5. Complete Genome Sequence of Bacillus subtilis subsp. subtilis Strain ∆6

    PubMed Central

    Reuß, Daniel R.; Thürmer, Andrea; Daniel, Rolf; Quax, Wim J.

    2016-01-01

    Bacillus subtilis ∆6 is a genome-reduced strain that was cured from six prophages and AT-rich islands. This strain is of great interest for biotechnological applications. Here, we announce the full-genome sequence of this strain. Interestingly, the conjugative element ICEBs1 has most likely undergone self-excision in B. subtilis ∆6. PMID:27469946

  6. Immunity related genes in dipterans share common enrichment of AT-rich motifs in their 5' regulatory regions that are potentially involved in nucleosome formation

    PubMed Central

    Hernandez-Romano, Jesus; Carlos-Rivera, Francisco J; Salgado, Heladia; Lamadrid-Figueroa, Hector; Valverde-Garduño, Veronica; Rodriguez, Mario H; Martinez-Barnetche, Jesus

    2008-01-01

    Background Understanding the transcriptional regulation mechanisms in response to environmental challenges is of fundamental importance in biology. Transcription factors associated to response elements and the chromatin structure had proven to play important roles in gene expression regulation. We have analyzed promoter regions of dipteran genes induced in response to immune challenge, in search for particular sequence patterns involved in their transcriptional regulation. Results 5' upstream regions of D. melanogaster and A. gambiae immunity-induced genes and their corresponding orthologous genes in 11 non-melanogaster drosophilid species and Ae. aegypti share enrichment in AT-rich short motifs. AT-rich motifs are associated with nucleosome formation as predicted by two different algorithms. In A. gambiae and D. melanogaster, many immunity genes 5' upstream sequences also showed NFκB response elements, located within 500 bp from the transcription start site. In A. gambiae, the frequency of ATAA motif near the NFκB response elements was increased, suggesting a functional link between nucleosome formation/remodelling and NFκB regulation of transcription. Conclusion AT-rich motif enrichment in 5' upstream sequences in A. gambiae, Ae. aegypti and the Drosophila genus immunity genes suggests a particular pattern of nucleosome formation/chromatin organization. The co-occurrence of such motifs with the NFκB response elements suggests that these sequence signatures may be functionally involved in transcriptional activation during dipteran immune response. AT-rich motif enrichment in regulatory regions in this group of co-regulated genes could represent an evolutionary constrained signature in dipterans and perhaps other distantly species. PMID:18613977

  7. The Bluejay genome browser.

    PubMed

    Soh, Jung; Gordon, Paul M K; Sensen, Christoph W

    2012-03-01

    The Bluejay genome browser is a stand-alone visualization tool for the multi-scale viewing of annotated genomes and other genomic elements. Bluejay allows users to customize display features to suit their needs, and produces publication-quality graphics. Bluejay provides a multitude of ways to interrelate biological data at the genome scale. Users can load gene expression data into a genome display for expression visualization in context. Multiple genomes can be compared concurrently, including time series expression data, based on Gene Ontology labels. External, context-sensitive biological Web Services are linked to the displayed genomic elements ad hoc for in-depth genomic data analysis and interpretation. Users can mark multiple points of interest in a genome by creating waypoints, and exploit them for easy navigation of single or multiple genomes. Using this comprehensive visual environment, users can study a gene not just in relation to its genome, but also its transcriptome and evolutionary origins. Written in Java, Bluejay is platform-independent and is freely available from http://bluejay.ucalgary.ca. PMID:22389011

  8. Complete Genome Sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment.

    PubMed

    Hwang, C; Copeland, A; Lucas, S; Lapidus, A; Barry, K; Glavina Del Rio, T; Dalin, E; Tice, H; Pitluck, S; Sims, D; Brettin, T; Bruce, D C; Detter, J C; Han, C S; Schmutz, J; Larimer, F W; Land, M L; Hauser, L J; Kyrpides, N; Lykidis, A; Richardson, P; Belieav, A; Sanford, R A; Löeffler, F E; Fields, M W

    2015-01-01

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium's genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation. PMID:25614562

  9. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

    DOE PAGESBeta

    Hwang, C.; Copeland, A.; Lucas, Susan; Lapidus, Alla; Barry, Kerrie W.; Glavina del Rio, T.; Dalin, Eileen; Tice, Hope; Pitluck, S.; Sims, David R.; et al

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  10. First Azospirillum genome from aquatic environments: Whole-genome sequence of Azospirillum thiophilum BV-S(T), a novel diazotroph harboring a capacity of sulfur-chemolithotrophy from a sulfide spring.

    PubMed

    Kwak, Yunyoung; Shin, Jae-Ho

    2016-02-01

    Azospirillum thiophilum BV-S(T), isolated from a sulfide spring, is a novel nitrogen-fixing bacterium harboring sulfur-lithotrophy. In order to identify genetic characteristics with habitat- and metabolic features contrasting to those from terrestrial Azospirillum species, we present here the genome sequence of a novel species A. thiophilum BV-S(T), with a significance of first genome report in the aquatic Azospirillum species. The genome of strain BV-S(T) is comprised of 7.6Mb chromosome with a GC content of 68.2%. This information will contribute to expand understandings of sulfur-oxidizer microbes that preserve inherencies as a diazotroph, and further it will provide insights into genome plasticity of the genus Azospirillum for niche specific adaptations. PMID:26545806

  11. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments

    PubMed Central

    Zhang, Qian; Gou, Wenyu; Wang, Xiaotong; Zhang, Yawen; Ma, Jun; Zhang, Hongliang; Zhang, Ying; Zhang, Hao

    2016-01-01

    Tibetan chicken, unlike their lowland counterparts, exhibit specific adaptations to high-altitude conditions. The genetic mechanisms of such adaptations in highland chickens were determined by resequencing the genomes of four highland (Tibetan and Lhasa White) and four lowland (White Leghorn, Lindian, and Chahua) chicken populations. Our results showed an evident genetic admixture in Tibetan chickens, suggesting a history of introgression from lowland gene pools. Genes showing positive selection in highland populations were related to cardiovascular and respiratory system development, DNA repair, response to radiation, inflammation, and immune responses, indicating a strong adaptation to oxygen scarcity and high-intensity solar radiation. The distribution of allele frequencies of nonsynonymous single nucleotide polymorphisms between highland and lowland populations was analyzed using chi-square test, which showed that several differentially distributed genes with missense mutations were enriched in several functional categories, especially in blood vessel development and adaptations to hypoxia and intense radiation. RNA sequencing revealed that several differentially expressed genes were enriched in gene ontology terms related to blood vessel and respiratory system development. Several candidate genes involved in the development of cardiorespiratory system (FGFR1, CTGF, ADAM9, JPH2, SATB1, BMP4, LOX, LPR, ANGPTL4, and HYAL1), inflammation and immune responses (AIRE, MYO1F, ZAP70, DDX60, CCL19, CD47, JSC, and FAS), DNA repair, and responses to radiation (VCP, ASH2L, and FANCG) were identified to play key roles in the adaptation to high-altitude conditions. Our data provide new insights into the unique adaptations of highland animals to extreme environments. PMID:26907498

  12. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.

    PubMed

    Zhang, Qian; Gou, Wenyu; Wang, Xiaotong; Zhang, Yawen; Ma, Jun; Zhang, Hongliang; Zhang, Ying; Zhang, Hao

    2016-03-01

    Tibetan chicken, unlike their lowland counterparts, exhibit specific adaptations to high-altitude conditions. The genetic mechanisms of such adaptations in highland chickens were determined by resequencing the genomes of four highland (Tibetan and Lhasa White) and four lowland (White Leghorn, Lindian, and Chahua) chicken populations. Our results showed an evident genetic admixture in Tibetan chickens, suggesting a history of introgression from lowland gene pools. Genes showing positive selection in highland populations were related to cardiovascular and respiratory system development, DNA repair, response to radiation, inflammation, and immune responses, indicating a strong adaptation to oxygen scarcity and high-intensity solar radiation. The distribution of allele frequencies of nonsynonymous single nucleotide polymorphisms between highland and lowland populations was analyzed using chi-square test, which showed that several differentially distributed genes with missense mutations were enriched in several functional categories, especially in blood vessel development and adaptations to hypoxia and intense radiation. RNA sequencing revealed that several differentially expressed genes were enriched in gene ontology terms related to blood vessel and respiratory system development. Several candidate genes involved in the development of cardiorespiratory system (FGFR1, CTGF, ADAM9, JPH2, SATB1, BMP4, LOX, LPR, ANGPTL4, and HYAL1), inflammation and immune responses (AIRE, MYO1F, ZAP70, DDX60, CCL19, CD47, JSC, and FAS), DNA repair, and responses to radiation (VCP, ASH2L, and FANCG) were identified to play key roles in the adaptation to high-altitude conditions. Our data provide new insights into the unique adaptations of highland animals to extreme environments. PMID:26907498

  13. Genome-Wide Gene by Environment Interaction Analysis Identifies Common SNPs at 17q21.2 that Are Associated with Increased Body Mass Index Only among Asthmatics

    PubMed Central

    Wang, Leyao; Murk, William; DeWan, Andrew T.

    2015-01-01

    Asthmatics have an increased risk of being overweight/obese. Although the underlying mechanisms of this are unclear, genetic factors are believed to play an essential role. To identify common genetic variants that are associated with asthma-related BMI increase, we performed a genome-wide gene by environment (asthma) interaction analysis for the outcome of BMI in the Multi-Ethnic Study of Atherosclerosis (MESA) study (N = 2474 Caucasians, 257 asthmatics), and replicated findings in the Framingham Heart Study (FHS) offspring cohort (N = 1408 Caucasians, 382 asthmatics). The replicable tagging SNP, rs2107212, was further examined in stratified analyses. Seven SNPs clustered in 17q21.2 were identified to be associated with higher BMI among asthmatics (interaction p < 5×10−7 in MESA and p < 0.05 in FHS). In both MESA and FHS asthmatics, subjects carrying the A allele on rs2107212 had significantly higher odds of obesity than non-carriers, which was not the case for non-asthmatics. We further examined BMI change subsequent to asthma diagnosis over a period of 26 years in FHS and demonstrated greater BMI increase among asthmatics compared to non-asthmatics. Asthmatics carrying the A allele at rs2107212 had significantly greater net BMI increase over the 26-year period compared to non-asthmatics. In this study, we found that common genetic variants on 17q21.2 are associated with post-asthma BMI increase among Caucasians. This finding will help elucidate pathways involved in the comorbidity of asthma and obesity. PMID:26672748

  14. On the molecular mechanism of GC content variation among eubacterial genomes

    PubMed Central

    2012-01-01

    Background As a key parameter of genome sequence variation, the GC content of bacterial genomes has been investigated for over half a century, and many hypotheses have been put forward to explain this GC content variation and its relationship to other fundamental processes. Previously, we classified eubacteria into dnaE-based groups (the dimeric combination of DNA polymerase III alpha subunits), according to a hypothesis where GC content variation is essentially governed by genome replication and DNA repair mechanisms. Further investigation led to the discovery that two major mutator genes, polC and dnaE2, may be responsible for genomic GC content variation. Consequently, an in-depth analysis was conducted to evaluate various potential intrinsic and extrinsic factors in association with GC content variation among eubacterial genomes. Results Mutator genes, especially those with dominant effects on the mutation spectra, are biased towards either GC or AT richness, and they alter genomic GC content in the two opposite directions. Increased bacterial genome size (or gene number) appears to rely on increased genomic GC content; however, it is unclear whether the changes are directly related to certain environmental pressures. Certain environmental and bacteriological features are related to GC content variation, but their trends are more obvious when analyzed under the dnaE-based grouping scheme. Most terrestrial, plant-associated, and nitrogen-fixing bacteria are members of the dnaE1|dnaE2 group, whereas most pathogenic or symbiotic bacteria in insects, and those dwelling in aquatic environments, are largely members of the dnaE1|polV group. Conclusion Our studies provide several lines of evidence indicating that DNA polymerase III α subunit and its isoforms participating in either replication (such as polC) or SOS mutagenesis/translesion synthesis (such as dnaE2), play dominant roles in determining GC variability. Other environmental or bacteriological factors, such

  15. Unlocking hidden genomic sequence

    PubMed Central

    Keith, Jonathan M.; Cochran, Duncan A. E.; Lala, Gita H.; Adams, Peter; Bryant, Darryn; Mitchelson, Keith R.

    2004-01-01

    Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs. PMID:14973330

  16. Genomic Imprinting

    PubMed Central

    Bajrami, Emirjeta; Spiroski, Mirko

    2016-01-01

    BACKGROUND: Genomic imprinting is the inheritance out of Mendelian borders. Many of inherited diseases and human development violates Mendelian law of inheritance, this way of inheriting is studied by epigenetics. AIM: The aim of this review is to analyze current opinions and options regarding to this way of inheriting. RESULTS: Epigenetics shows that gene expression undergoes changes more complex than modifications in the DNA sequence; it includes the environmental influence on the gametes before conception. Humans inherit two alleles from mother and father, both are functional for the majority of the genes, but sometimes one is turned off or “stamped” and doesn’t show in offspring, that gene is imprinted. Imprinting means that that gene is silenced, and gene from other parent is expressed. The mechanisms for imprinting are still incompletely defined, but they involve epigenetic modifications that are erased and then reset during the creation of eggs and sperm. Genomic imprinting is a process of silencing genes through DNA methylation. The repressed allele is methylated, while the active allele is unmethylated. The most well-known conditions include Prader-Willi syndrome, and Angelman syndrome. Both of these syndromes can be caused by imprinting or other errors involving genes on the long arm of chromosome 15. CONCLUSIONS: Genomic imprinting and other epigenetic mechanisms such as environment is shown that plays role in offspring neurodevelopment and autism spectrum disorder. PMID:27275355

  17. Metabolic Environments and Genomic Features Associated with Pathogenic and Mutualistic Interactions between Bacteria and Plants is accepted for publication in MPMI

    SciTech Connect

    Karpinets, Tatiana V; Park, Byung H; Syed, Mustafa H; Klotz, Martin G; Uberbacher, Edward C

    2014-01-01

    Most bacterial symbionts of plants are phenotypically characterized by their parasitic or matualistic relationship with the host; however, the genomic characteristics that likely discriminate mutualistic symbionts from pathogens of plants are poorly understood. This study comparatively analyzed the genomes of 54 plant-symbiontic bacteria, 27 mutualists and 27 pathogens, to discover genomic determinants of their parasitic and mutualistic nature in terms of protein family domains, KEGG orthologous groups, metabolic pathways and families of carbohydrate-active enzymes (CAZymes). We further used all bacteria with sequenced genomesl, published microarrays and transcriptomics experimental datasets, and literature to validate and to explore results of the comparison. The analysis revealed that genomes of mutualists are larger in size and higher in GC content and encode greater molecular, functional and metabolic diversity than the investigated genomes of pathogens. This enriched molecular and functional enzyme diversity included constructive biosynthetic signatures of CAZymes and metabolic pathways in genomes of mutualists compared with catabolic signatures dominant in the genomes of pathogens. Another discriminative characteristic of mutualists is the co-occurence of gene clusters required for the expression and function of nitrogenase and RuBisCO. Analysis of previously published experimental data indicate that nitrogen-fixing mutualists may employ Rubisco to fix CO2 not in the canonical Calvin-Benson-Basham cycle but in a novel metabolic pathway, here called Rubisco-based glycolysis , to increase efficiency of sugar utilization during the symbiosis with plants. An important discriminative characteristic of plant pathogenic bacteria is two groups of genes likely encoding effector proteins involved in host invasion and a genomic locus encoding a putative secretion system that includes a DUF1525 domain protein conserved in pathogens of plants and of other organisms. The

  18. OsARID3, an AT-rich Interaction Domain-containing protein, is required for shoot meristem development in rice.

    PubMed

    Xu, Yan; Zong, Wei; Hou, Xin; Yao, Jialing; Liu, Hongbo; Li, Xianghua; Zhao, Yunde; Xiong, Lizhong

    2015-09-01

    The shoot apical meristem (SAM) produces all of the plant's aerial organs. The SAM is established either during embryogenesis or experimentally in in vitro tissue culture. Although several factors including the Class I KNOTTED1-LIKE HOMEOBOX (KNOXI) proteins, auxin, and cytokinin are known to play essential roles in SAM development, the underlying mechanisms of SAM formation and maintenance are still largely not understood. Herein we demonstrate that OsARID3, a member of the rice (Oryza sativa) AT-rich Interaction Domain (ARID) family, is required for SAM development. Disruption of OsARID3 leads to a defective SAM, early seedling lethality, and impaired capacity of in vitro shoot regeneration. We show that the expression levels of several KNOXI genes and the biosynthetic genes for auxin and cytokinin are significantly altered in the Osarid3 mutant calli. Moreover, we determine that auxin concentrations are increased, whereas cytokinin levels are decreased, in Osarid3 calli. Furthermore, chromatin immunoprecipitation results demonstrate that OsARID3 binds directly to the KNOXI gene OSH71, the auxin biosynthetic genes OsYUC1 and OsYUC6, and the cytokinin biosynthetic genes OsIPT2 and OsIPT7. We also show through electrophoretic mobility shift assays that OsARID3 specifically binds to the AT-rich DNA sequences of the identified target genes. We conclude that OsARID3 is an AT-rich specific DNA-binding protein and that it plays a major role in SAM development in rice. PMID:26121094

  19. On the Sequence-Directed Nature of Human Gene Mutation: The Role of Genomic Architecture and the Local DNA Sequence Environment in Mediating Gene Mutations Underlying Human Inherited Disease

    PubMed Central

    Cooper, David N.; Bacolla, Albino; Férec, Claude; Vasquez, Karen M.; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min

    2011-01-01

    Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher-order features of the genomic architecture. The human genome is now recognized to contain ‘pervasive architectural flaws’ in that certain DNA sequences are inherently mutation-prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of non-canonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair, and may serve to increase mutation frequencies in generalized fashion (i.e. both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. PMID:21853507

  20. Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  1. [Landscape and ecological genomics].

    PubMed

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25508669

  2. [Landscape and ecological genomics].

    PubMed

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment. PMID:25474890

  3. The Genome Sequence of Methanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    SciTech Connect

    Spring, Stefan; Scheuner, Carmen; Lapidus, Alla L.; Lucas, Susan; Glavina Del Rio, Tijana; Tice, Hope; Copeland, A; Cheng, Jan-Fang; Chen, Feng; Nolan, Matt; Saunders, Elizabeth H; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Lykidis, A; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Goodwin, Lynne A.; Detter, J. Chris; Brettin, Thomas S; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLPT was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.

  4. The Genome Sequence of Methanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    SciTech Connect

    Spring, Stefan; Scheuner, Carmen; Lapidus, Alla L.; Lucas, Susan; Glavina Del Rio, Tijana; Tice, Hope; Copeland, A; Cheng, Jan-Fang; Chen, Feng; Nolan, Matt; Saunders, Elizabeth H; Pitluck, Samuel; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Lykidis, A; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia D; Goodwin, Lynne A.; Detter, J. Chris; Brettin, Thomas S; Rohde, Manfred; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpidis, Nikos C; Klenk, Hans-Peter

    2010-12-01

    Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLPT was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.

  5. The Genome Sequence of Methanohalophilus mahii SLP T Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    DOE PAGESBeta

    Spring, Stefan; Scheuner, Carmen; Lapidus, Alla; Lucas, Susan; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Chen, Feng; Nolan, Matt; et al

    2010-01-01

    Methanohalophilus mahii is the type species of the genus Methanohalophilus , which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLP T was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of themore » reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.« less

  6. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most important applications of genomic selection in maize breeding is to predict and identify the best untested lines from biparental populations, when the training and validation sets are derived from the same cross. Nineteen tropical maize biparental populations evaluated in multienviro...

  7. Draft Genome Sequences of Paenibacillus polymyxa NRRL B-30509 and Paenibacillus terrae NRRL B-30644, Strains from a Poultry Environment That Produce Tridecaptin A and Paenicidins

    PubMed Central

    Lohans, Christopher T.; Vederas, John C.

    2015-01-01

    Paenibacillus polymyxa NRRL B-30509 and Paenibacillus terrae NRRL B-30644 produce tridecaptin A that is inhibitory to Campylobacter jejuni, as well as lantibiotics in the paenicidin family. Here, we report the draft genome sequences of P. polymyxa NRRL B-30509 and P. terrae NRRL B-30644 that contain gene clusters for various nonribosomal lipopeptides. PMID:25908148

  8. Genomic prediction in bi-parental tropical maize populations in water-stressed and well-watered environments using low density and GBS SNPs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most important applications of genomic selection in maize breeding is to predict and identify the best-untested individuals from bi-parental populations, when the training and validation sets are derived from the same cross. Nineteen tropical maize bi-parental populations evaluated in mul...

  9. Genomic Insights into Bifidobacteria

    PubMed Central

    Lee, Ju-Hoon; O'Sullivan, Daniel J.

    2010-01-01

    Summary: Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments. PMID:20805404

  10. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation

    PubMed Central

    2010-01-01

    Background Zunongwangia profunda SM-A87, which was isolated from deep-sea sediment, is an aerobic, gram-negative bacterium that represents a new genus of Flavobacteriaceae. This is the first sequenced genome of a deep-sea bacterium from the phylum Bacteroidetes. Results The Z. profunda SM-A87 genome has a single 5 128 187-bp circular chromosome with no extrachromosomal elements and harbors 4 653 predicted protein-coding genes. SM-A87 produces a large amount of capsular polysaccharides and possesses two polysaccharide biosynthesis gene clusters. It has a total of 130 peptidases, 61 of which have signal peptides. In addition to extracellular peptidases, SM-A87 also has various extracellular enzymes for carbohydrate, lipid and DNA degradation. These extracellular enzymes suggest that the bacterium is able to hydrolyze organic materials in the sediment, especially carbohydrates and proteinaceous organic nitrogen. There are two clustered regularly interspaced short palindromic repeats in the genome, but their spacers do not match any sequences in the public sequence databases. SM-A87 is a moderate halophile. Our protein isoelectric point analysis indicates that extracellular proteins have lower predicted isoelectric points than intracellular proteins. SM-A87 accumulates organic osmolytes in the cell, so its extracelluar proteins are more halophilic than its intracellular proteins. Conclusion Here, we present the first complete genome of a deep-sea sedimentary bacterium from the phylum Bacteroidetes. The genome analysis shows that SM-A87 has some common features of deep-sea bacteria, as well as an important capacity to hydrolyze sedimentary organic nitrogen. PMID:20398413

  11. Genome Fragmentation Is Not Confined to the Peridinin Plastid in Dinoflagellates

    PubMed Central

    Espelund, Mari; Minge, Marianne A.; Gabrielsen, Tove M.; Nederbragt, Alexander J.; Shalchian-Tabrizi, Kamran; Otis, Christian; Turmel, Monique; Lemieux, Claude; Jakobsen, Kjetill S.

    2012-01-01

    When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3′-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates. PMID:22719952

  12. Genome fragmentation is not confined to the peridinin plastid in dinoflagellates.

    PubMed

    Espelund, Mari; Minge, Marianne A; Gabrielsen, Tove M; Nederbragt, Alexander J; Shalchian-Tabrizi, Kamran; Otis, Christian; Turmel, Monique; Lemieux, Claude; Jakobsen, Kjetill S

    2012-01-01

    When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3'-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates. PMID:22719952

  13. A matter of life or death: how microsatellites emerge in and vanish from the human genome.

    PubMed

    Kelkar, Yogeshwar D; Eckert, Kristin A; Chiaromonte, Francesca; Makova, Kateryna D

    2011-12-01

    Microsatellites--tandem repeats of short DNA motifs--are abundant in the human genome and have high mutation rates. While microsatellite instability is implicated in numerous genetic diseases, the molecular processes involved in their emergence and disappearance are still not well understood. Microsatellites are hypothesized to follow a life cycle, wherein they are born and expand into adulthood, until their degradation and death. Here we identified microsatellite births/deaths in human, chimpanzee, and orangutan genomes, using macaque and marmoset as outgroups. We inferred mutations causing births/deaths based on parsimony, and investigated local genomic environments affecting them. We also studied birth/death patterns within transposable elements (Alus and L1s), coding regions, and disease-associated loci. We observed that substitutions were the predominant cause for births of short microsatellites, while insertions and deletions were important for births of longer microsatellites. Substitutions were the cause for deaths of microsatellites of virtually all lengths. AT-rich L1 sequences exhibited elevated frequency of births/deaths over their entire length, while GC-rich Alus only in their 3' poly(A) tails and middle A-stretches, with differences depending on transposable element integration timing. Births/deaths were strongly selected against in coding regions. Births/deaths occurred in genomic regions with high substitution rates, protomicrosatellite content, and L1 density, but low GC content and Alu density. The majority of the 17 disease-associated microsatellites examined are evolutionarily ancient (were acquired by the common ancestor of simians). Our genome-wide investigation of microsatellite life cycle has fundamental applications for predicting the susceptibility of birth/death of microsatellites, including many disease-causing loci. PMID:21994250

  14. Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait Loci in bread wheat grown in a water-limited environment.

    PubMed

    Hill, Camilla B; Taylor, Julian D; Edwards, James; Mather, Diane; Bacic, Antony; Langridge, Peter; Roessner, Ute

    2013-07-01

    Drought is a major environmental constraint responsible for grain yield losses of bread wheat (Triticum aestivum) in many parts of the world. Progress in breeding to improve complex multigene traits, such as drought stress tolerance, has been limited by high sensitivity to environmental factors, low trait heritability, and the complexity and size of the hexaploid wheat genome. In order to obtain further insight into genetic factors that affect yield under drought, we measured the abundance of 205 metabolites in flag leaf tissue sampled from plants of 179 cv Excalibur/Kukri F1-derived doubled haploid lines of wheat grown in a field experiment that experienced terminal drought stress. Additionally, data on 29 agronomic traits that had been assessed in the same field experiment were used. A linear mixed model was used to partition and account for nongenetic and genetic sources of variation, and quantitative trait locus analysis was used to estimate the genomic positions and effects of individual quantitative trait loci. Comparison of the agronomic and metabolic trait variation uncovered novel correlations between some agronomic traits and the levels of certain primary metabolites, including metabolites with either positive or negative associations with plant maturity-related or grain yield-related traits. Our analyses demonstrate that specific regions of the wheat genome that affect agronomic traits also have distinct effects on specific combinations of metabolites. This approach proved valuable for identifying novel biomarkers for the performance of wheat under drought and could facilitate the identification of candidate genes involved in drought-related responses in bread wheat. PMID:23660834

  15. Flexible genomic islands as drivers of genome evolution.

    PubMed

    Rodriguez-Valera, Francisco; Martin-Cuadrado, Ana-Belen; López-Pérez, Mario

    2016-06-01

    Natural prokaryotic populations are composed of multiple clonal lineages that are different in their core genomes in a range that varies typically between 95 and 100% nucleotide identity. Each clonal lineage also carries a complement of not shared flexible genes that can be very large. The compounded flexible genome provides polyclonal populations with enormous gene diversity that can be used to efficiently exploit resources. This has fundamental repercussions for interpreting individual bacterial genomes. They are better understood as parts rather than the whole. Multiple genomes are required to understand how the population interacts with its biotic and abiotic environment. PMID:27085300

  16. Variant mapping of the Apo(B) AT rich minisatellite. Dependence on nucleotide sequence of the copy number variations. Instability of the non-canonical alleles.

    PubMed Central

    Desmarais, E; Vigneron, S; Buresi, C; Cambien, F; Cambou, J P; Roizes, G

    1993-01-01

    Because of its variations in length, the AT rich Hyper-Variable Region (HVR) of the 3' end of the Apolipoprotein B gene is used as a polymorphic maker in genetic studies. It contains a SspI site in its repeated motif and we used this feature to precisely analyse the internal structure of the different alleles found at this locus in a Caucasian population. We performed total digestion on 194 alleles as well as Minisatellite Variant Repeat mapping (MVR mapping: partial digestion) on 54. The results show that the level of length variability (in copy number) of the 5' end of this locus is at least two times higher than that of the 3' end. This could be correlated with the difference in nucleotide sequence between the two parts of the HVR and suggests the dependence on the primary structure of the mechanism that produces length variability. A molecular model is proposed to explain this result. Moreover, the sharp analysis of the minisatellite structure by the distribution of SspI sites reveals differences between long and short alleles, indicating that in most cases, no recombination occurs between alleles of different sizes. Finally the rare alleles exhibit a non-canonical structure. These important points could explain the bimodal distribution of the frequencies of the alleles in the population. Images PMID:8502559

  17. Histone Demethylase Jumonji AT-rich Interactive Domain 1B (JARID1B) Controls Mammary Gland Development by Regulating Key Developmental and Lineage Specification Genes*

    PubMed Central

    Zou, Mike Ran; Cao, Jian; Liu, Zongzhi; Huh, Sung Jin; Polyak, Kornelia; Yan, Qin

    2014-01-01

    The JmjC domain-containing H3K4 histone demethylase jumonji AT-rich interactive domain 1B (JARID1B) (also known as KDM5B and PLU1) is overexpressed in breast cancer and is a potential target for breast cancer treatment. To investigate the in vivo function of JARID1B, we developed Jarid1b−/− mice and characterized their phenotypes in detail. Unlike previously reported Jarid1b−/− strains, the majority of these Jarid1b−/− mice were viable beyond embryonic and neonatal stages. This allowed us to further examine phenotypes associated with the loss of JARID1B in pubertal development and pregnancy. These Jarid1b−/− mice exhibited decreased body weight, premature mortality, decreased female fertility, and delayed mammary gland development. Related to these phenotypes, JARID1B loss decreased serum estrogen level and reduced mammary epithelial cell proliferation in early puberty. In mammary epithelial cells, JARID1B loss diminished the expression of key regulators for mammary morphogenesis and luminal lineage specification, including FOXA1 and estrogen receptor α. Mechanistically, JARID1B was required for GATA3 recruitment to the Foxa1 promoter to activate Foxa1 expression. These results indicate that JARID1B positively regulates mammary ductal development through both extrinsic and cell-autonomous mechanisms. PMID:24802759

  18. A genomic view on epilepsy and autism candidate genes.

    PubMed

    Jabbari, Kamel; Nürnberg, Peter

    2016-07-01

    Epilepsy is a common complex disorder most frequently associated with psychiatric and neurological diseases. Massive parallel sequencing of individual or cohort genomes and exomes led the identification of several disease associated genes. We review here the candidate genes in epilepsy genetics with focus on exome and gene panel data. Together with the examination of brain expressed genes and post synaptic proteome the results show that: (1) Non-metabolic epilepsies and autism candidate genes tend to be AT-rich and (2) large transcript size and local AT-richness are characteristic features of genes involved in developmental brain disorders and synaptic functions. These results point to the preferential location of core epilepsy and autism candidate genes in late replicating, GC-poor chromosomal regions (isochores). These results indicate that the genomic alterations leading to some brain disorders are confined to responsive chromatin areas harboring brain critical genes. PMID:26772991

  19. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  20. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat induced point mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome sequence of the phytopathogenic fungus Leptosphaeria maculans has been determined. It has a unique bipartite structure, divided between distinct GC-equilibrated and AT-rich regions (isochores), reminiscent of some plants and animals but not previously observed in fungi. The GC-equilibrate...

  1. The complete mitochondrial genome of Tetrastemma olgarum (Nemertea: Hoplonemertea).

    PubMed

    Sun, Wen-Yan; Shen, Chun-Yang; Sun, Shi-Chun

    2016-01-01

    The complete mitochondrial genome (mitogenome) of Tetrastemma olgarum is sequenced. It is 14,580 bp in length and contains 37 genes typical for metazoan mitogenomes. The gene order is identical to that of the previously published Hoplonemertea mitogenomes. All genes are encoded on the heavy strand except for trnT and trnP. The coding strand is AT-rich, accounting for 69.2% of overall nucleotide composition. PMID:24975556

  2. Genome-Targeted Drug Design: Understanding the Netropsin-DNA Interaction

    PubMed Central

    Fang, Ya-Yin; Morris, Vernon R.; Lingani, Guy M.; Long, Eric C.; Southerland, William M.

    2011-01-01

    Knowledge of the sequence of the human genome has provided significant opportunities to exploit DNA as a target in the rational design of therapeutic agents. Among agents that target DNA, netropsin exhibits a strong preference for binding A/T rich regions. In order to investigate the key factors responsible for DNA recognition and binding by netropsin, molecular dynamics simulations were carried out on a DNA-netropsin complex in which two netropsin molecules are bound to each AATT site of the 16-mer d(CTTAATTCGAATTAAG)2. In this complex, the two netropsins are bound to the DNA minor groove in a head-to-head orientation with the guanidinium-termini of both netropsins pointed toward the center of the DNA. Despite their identical environments, molecular dynamics simulations showed that the two netropsins exhibited differences in their respective RMS behaviors, binding energies, minor groove width fluctuations, and rotations of their structural planes. These observations suggest that DNA recognition and binding by small molecules may be governed by mechanism(s) that are much more complex than initially anticipated and may represent unexpected challenges in genome-targeted drug design. PMID:21297883

  3. The Genome of the Moderate Halophile Amycolicicoccus subflavus DQS3-9A1T Reveals Four Alkane Hydroxylation Systems and Provides Some Clues on the Genetic Basis for Its Adaptation to a Petroleum Environment

    PubMed Central

    Nie, Yong; Fang, Hui; Li, Yan; Chi, Chang-Qiao; Tang, Yue-Qin; Wu, Xiao-Lei

    2013-01-01

    The moderate halophile Amycolicicoccus subflavus DQS3-9A1T is the type strain of a novel species in the recently described novel genus Amycolicicoccus, which was isolated from oil mud precipitated from oil produced water. The complete genome of A. subflavus DQS3-9A1T has been sequenced and is characteristic of harboring the genes for adaption to the harsh petroleum environment with salinity, high osmotic pressure, and poor nutrient levels. Firstly, it characteristically contains four types of alkane hydroxylases, including the integral-membrane non-heme iron monooxygenase (AlkB) and cytochrome P450 CYP153, a long-chain alkane monooxygenase (LadA) and propane monooxygenase. It also accommodates complete pathways for the response to osmotic pressure. Physiological tests proved that the strain could grow on n-alkanes ranging from C10 to C36 and propane as the sole carbon sources, with the differential induction of four kinds of alkane hydroxylase coding genes. In addition, the strain could grow in 1–12% NaCl with the putative genes responsible for osmotic stresses induced as expected. These results reveal the effective adaptation of the strain DQS3-9A1T to harsh oil environment and provide a genome platform to investigate the global regulation of different alkane metabolisms in bacteria that are crucially important for petroleum degradation. To our knowledge, this is the first report to describe the co-existence of such four types of alkane hydroxylases in a bacterial strain. PMID:23967144

  4. Genome walking.

    PubMed

    Shapter, Frances M; Waters, Daniel L E

    2014-01-01

    Genome walking is a method for determining the DNA sequence of unknown genomic regions flanking a region of known DNA sequence. The Genome walking has the potential to capture 6-7 kb of sequence in a single round. Ideal for identifying gene promoter regions where only the coding region. Genome walking also has significant utility for capturing homologous genes in new species when there are areas in the target gene with strong sequence conservation to the characterized species. The increasing use of next-generation sequencing technologies will see the principles of genome walking adapted to in silico methods. However, for smaller projects, PCR-based genome walking will remain an efficient method of characterizing unknown flanking sequence. PMID:24243201

  5. Prophage Genomics

    PubMed Central

    Canchaya, Carlos; Proux, Caroline; Fournous, Ghislain; Bruttin, Anne; Brüssow, Harald

    2003-01-01

    The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and γ-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and γ-proteobacteria. PMID:12794192

  6. Genomic breeding value prediction for simple maize hybrid yield using total effects of associated markers, under different imbalance levels and environments.

    PubMed

    Cantelmo, N F; Von Pinho, R G; Balestre, M

    2016-01-01

    The main objective of a maize breeding program is to generate hybrid combinations that are more productive than those pre-existing in the market. However, the number of parents, and consequently the number of crosses, increases so rapidly that the phenotypic evaluation of all the possible combinations becomes economically and technically infeasible. In this context, predicting the performance of the most promising genotypes may increase the genetic gains with increased selection intensity and reduced breeding cycles. Thus, the present study aimed to use the total effects of associated markers method to predict genomic breeding values (GBVs) via cross-validation and by using different imbalance levels (10, 30, 50, and 70%). A set of 51 genotyped strains was used with 79 microsatellite markers and 273 hybrids that were generated by a partial diallel. A total of 186 and 272 hybrids were analyzed in the experiments within the southern and central regions of Brazil, respectively. The GBVs were, thus, predicted for each location in both the regions, and for training in one region and validation in another region. The correlation between the predicted and observed GBVs ranged from 0.48 to 0.91, depending on the imbalance level and the region analyzed. Overall, the results obtained in the present study were promising, particularly considering that a small number of markers were used and that the training and predictions occurred in the very distinct regions of southern and central Brazil. PMID:26985952

  7. Aquaculture Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  8. Genomics for Weed Science

    PubMed Central

    Horvath, David

    2010-01-01

    Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and evolutionary processes of weedy plants. Genomics-based tools such as extensive EST databases and microarrays have been developed for a limited number of weedy species, although application of information and resources developed for model plants and crops are possible and have been exploited. These tools have just begun to provide insights into the response of these weeds to herbivore and pathogen attack, survival of extreme environmental conditions, and interaction with crops. The potential of these tools to illuminate mechanisms controlling the traits that allow weeds to invade novel habitats, survive extreme environments, and that make weeds difficult to eradicate have potential for both improving crops and developing novel methods to control weeds. PMID:20808523

  9. Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae).

    PubMed

    Stewart, James Bruce; Beckenbach, Andrew T

    2005-02-01

    We present the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Auchenorrhyncha: Cercopoidae). This contribution represents the second mitochondrial genome from the Hemiptera and the second of the three hemipteran suborders sampled. The genome is a circular molecule of 16 324 bp with a total A+T content of 77.0% and 76.7% for coding regions only. The gene content, order, and structure are consistent with the Drosophila yakuba genome structure (Clary and Wolstenholme 1985) and the hypothesized ancestral arthropod genome arrangement (Crease 1999). Nucleotide composition and codon usage are near the means observed in other insect mitochondria sequenced to date but have a higher A+T richness compared with the other hemipteran example, the kissing bug Triatoma dimidiata (Dotson and Beard. 2001. Insect Mol. Biol. 10: 205-215). The major noncoding region (the A+T rich region or putative control region) between the small ribosomal subunit and the tRNAIle gene includes two extensive repeat regions. The first repeat region includes 19 tandem repeats of a 46-bp sequence, whereas the second contains a longer sequence (146 bp) tandemly repeated four times. PMID:15729396

  10. The complete mitochondria genome of Ravinia pernix (Diptera: Sarcophagidae).

    PubMed

    Guo, Juanjuan; Xie, Kai; Che, Kexin; Hu, Zhenyu; Guo, Yadong

    2016-05-01

    Ravinia pernix is considered to be a forensically important fly species of the family Sarcophagidae. In this study, we present the complete mitochondrial genome of Ravinia pernix for the first time. There is one encoding region including 37 genes and one non-coding AT-rich region observed in the 15,778 bp circular genome, containing 13 protein-encoding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The arrangement of the genes is the same as that found in the ancestral arthropod. The base compositions of A, T, G and C are 39.57%, 37.60%, 9.36% and 13.47%, respectively. The mitochondrial genome of Ravinia pernix presented will be valuable and useful for enriching the dipteran mitochondrial genomes, resolving phylogenetic relationships within the family Sarcophagidae and the order Diptera, and providing a molecular tool for species identifications for forensic purposes. PMID:25418624

  11. Complete mitochondrial genome of brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae) and phylogenetic relationships of Hemipteran suborders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The newly sequenced complete mitochondrial genome of the brown marmorated stink bug, Halyomorpha halys (Stal) (Hemiptera: Pentatomidae), is a circular molecule of 16,518 bp with a total A+T content of 76.4% and two extensive repeat regions in A+T rich region. Nucleotide composition and codon usage ...

  12. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711.

    PubMed

    Shoemaker, William R; Muscarella, Mario E; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  13. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    PubMed Central

    Shoemaker, William R.; Muscarella, Mario E.

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  14. Genomic Testing

    MedlinePlus

    ... Working Group Independent Web site Informing the effective integration of genomics into health practice—Lynch syndrome ACCE Model for Evaluating Genetic Tests Recommendations by the EGAPP Working Group Top of ... ...

  15. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  16. Hawaiian Drosophila genomes: size variation and evolutionary expansions.

    PubMed

    Craddock, Elysse M; Gall, Joseph G; Jonas, Mark

    2016-02-01

    This paper reports genome sizes of one Hawaiian Scaptomyza and 16 endemic Hawaiian Drosophila species that include five members of the antopocerus species group, one member of the modified mouthpart group, and ten members of the picture wing clade. Genome size expansions have occurred independently multiple times among Hawaiian Drosophila lineages, and have resulted in an over 2.3-fold range of genome sizes among species, with the largest observed in Drosophila cyrtoloma (1C = 0.41 pg). We find evidence that these repeated genome size expansions were likely driven by the addition of significant amounts of heterochromatin and satellite DNA. For example, our data reveal that the addition of seven heterochromatic chromosome arms to the ancestral haploid karyotype, and a remarkable proportion of ~70 % satellite DNA, account for the greatly expanded size of the D. cyrtoloma genome. Moreover, the genomes of 13/17 Hawaiian picture wing species are composed of substantial proportions (22-70 %) of detectable satellites (all but one of which are AT-rich). Our results suggest that in this tightly knit group of recently evolved species, genomes have expanded, in large part, via evolutionary amplifications of satellite DNA sequences in centric and pericentric domains (especially of the X and dot chromosomes), which have resulted in longer acrocentric chromosomes or metacentrics with an added heterochromatic chromosome arm. We discuss possible evolutionary mechanisms that may have shaped these patterns, including rapid fixation of novel expanded genomes during founder-effect speciation. PMID:26790663

  17. The complete mitochondrial genome of the Epacanthaclisis banksi (Neuroptera: Myrmeleontidae).

    PubMed

    Cheng, Chunhui; Sun, Xiaoyan; Gai, Yonghua; Hao, Jiasheng

    2015-01-01

    The mitochondrial genome of Epacanthaclisis banksi (Neuroptera: Myrmeleontidae) is a circular molecule of 15,870 bp in length, containing 37 typical mitochondrial genes: 13 protein-coding genes (PCGs), 2 ribosomal RNAs, 22 transfer RNAs and a non-coding AT-rich region. Its gene order and arrangement are identical to the common type found in most insect mitogenomes. All PCGs start with a typical ATN codon except for the COI which uses TTA as its start codon; all PCGs terminate in the common stop codon TAA or TAG, except for the COI, COII, ND3 and ND5 which use single T as their stop codons. The non-coding AT-rich region is 1065 bp long, located between rrnS and tRNAlle genes. It contains some structures of repeated motifs and microsatellite-like elements characteristic of the neuropterids. PMID:24409839

  18. The complete mitochondrial genome of Bryodema miramae (Orthoptera: Oedipodidae).

    PubMed

    Hao, Jing; Liu, Nian; Zhou, Fei; Huang, Yuan

    2016-07-01

    The complete circular mitochondrial genome (mitogenome) of Bryodema miramae is 15,919 bp in length, containing 37 typical genes and 1 non-coding AT-rich region. The AT content of the AT-rich region is 84.7%. All protein-coding genes (PCGs) start with standard ATN initiation codon and end with complete termination codons TAG or TAA except for cox1 gene using an incomplete stop codon T. tRNA genes are predicted with a characteristic cloverleaf secondary structure except for trnS(AGN), whose dihydrouridine (DHU) arm is replaced by a simple loop. The lengths of the large and small ribosomal RNA genes are 1319 and 836 bp, respectively. Phylogenetic analysis found: (i) Bryodema miramae has a close relationship with Bryodema luctuosum luctuosum, but with low credibility, the bootstrap value was under 50% and (ii) the Bryodema clade forms a sister group with another clade containing Orinhippus tibetanus and Pacris xizangensis. PMID:26024137

  19. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  20. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  1. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans

    PubMed Central

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-01-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  2. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-08-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  3. Privacy in the Genomic Era

    PubMed Central

    NAVEED, MUHAMMAD; AYDAY, ERMAN; CLAYTON, ELLEN W.; FELLAY, JACQUES; GUNTER, CARL A.; HUBAUX, JEAN-PIERRE; MALIN, BRADLEY A.; WANG, XIAOFENG

    2015-01-01

    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward. PMID:26640318

  4. Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts.

    PubMed

    Newton, Irene L G; Clark, Michael E; Kent, Bethany N; Bordenstein, Seth R; Qu, Jiaxin; Richards, Stephen; Kelkar, Yogeshwar D; Werren, John H

    2016-01-01

    Wolbachia pipientis are obligate intracellular bacteria commonly found in many arthropods. They can induce various reproductive alterations in hosts, including cytoplasmic incompatibility, male-killing, feminization, and parthenogenetic development, and can provide host protection against some viruses and other pathogens. Wolbachia differ from many other primary endosymbionts in arthropods because they undergo frequent horizontal transmission between hosts and are well known for an abundance of mobile elements and relatively high recombination rates. Here, we compare the genomes of two closely related Wolbachia (with 0.57% genome-wide synonymous divergence) that differ in their reproductive effects on hosts. wVitA induces a sperm-egg incompatibility (also known as cytoplasmic incompatibility) in the parasitoid insect Nasonia vitripennis, whereas wUni causes parthenogenetic development in a different parasitoid, Muscidifurax uniraptor Although these bacteria are closely related, the genomic comparison reveals rampant rearrangements, protein truncations (particularly in proteins predicted to be secreted), and elevated substitution rates. These changes occur predominantly in the wUni lineage, and may be due in part to adaptations by wUni to a new host environment, or its phenotypic shift to parthenogenesis induction. However, we conclude that the approximately 8-fold elevated synonymous substitution rate in wUni is due to a either an elevated mutation rate or a greater number of generations per year in wUni, which occurs in semitropical host species. We identify a set of genes whose loss or pseudogenization in the wUni lineage implicates them in the phenotypic shift from cytoplasmic incompatibility to parthenogenesis induction. Finally, comparison of these closely related strains allows us to determine the fine-scale mutation patterns in Wolbachia Although Wolbachia are AT rich, mutation probabilities estimated from 4-fold degenerate sites are not AT biased, and

  5. Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts

    PubMed Central

    Newton, Irene L.G.; Clark, Michael E.; Kent, Bethany N.; Bordenstein, Seth R.; Qu, Jiaxin; Richards, Stephen; Kelkar, Yogeshwar D.; Werren, John H.

    2016-01-01

    Wolbachia pipientis are obligate intracellular bacteria commonly found in many arthropods. They can induce various reproductive alterations in hosts, including cytoplasmic incompatibility, male-killing, feminization, and parthenogenetic development, and can provide host protection against some viruses and other pathogens. Wolbachia differ from many other primary endosymbionts in arthropods because they undergo frequent horizontal transmission between hosts and are well known for an abundance of mobile elements and relatively high recombination rates. Here, we compare the genomes of two closely related Wolbachia (with 0.57% genome-wide synonymous divergence) that differ in their reproductive effects on hosts. wVitA induces a sperm–egg incompatibility (also known as cytoplasmic incompatibility) in the parasitoid insect Nasonia vitripennis, whereas wUni causes parthenogenetic development in a different parasitoid, Muscidifurax uniraptor. Although these bacteria are closely related, the genomic comparison reveals rampant rearrangements, protein truncations (particularly in proteins predicted to be secreted), and elevated substitution rates. These changes occur predominantly in the wUni lineage, and may be due in part to adaptations by wUni to a new host environment, or its phenotypic shift to parthenogenesis induction. However, we conclude that the approximately 8-fold elevated synonymous substitution rate in wUni is due to a either an elevated mutation rate or a greater number of generations per year in wUni, which occurs in semitropical host species. We identify a set of genes whose loss or pseudogenization in the wUni lineage implicates them in the phenotypic shift from cytoplasmic incompatibility to parthenogenesis induction. Finally, comparison of these closely related strains allows us to determine the fine-scale mutation patterns in Wolbachia. Although Wolbachia are AT rich, mutation probabilities estimated from 4-fold degenerate sites are not AT biased, and

  6. Whither genomics?

    PubMed Central

    Murray, Andrew W

    2000-01-01

    The flood of data from genome-wide analysis is transforming biology. We need to develop new, interdisciplinary approaches to convert these data into information about the components and structures of individual biological pathways and to use the resulting information to yield knowledge about general principles that explain the functions and evolution of life. PMID:11104516

  7. GenColors-based comparative genome databases for small eukaryotic genomes

    PubMed Central

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources. PMID:23193285

  8. The UCSC Archaeal Genome Browser: 2012 update.

    PubMed

    Chan, Patricia P; Holmes, Andrew D; Smith, Andrew M; Tran, Danny; Lowe, Todd M

    2012-01-01

    The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of the vertebrate UCSC Genome Browser, but also integrates archaeal and bacterial-specific tracks with a few graphic display enhancements. The browser currently contains 115 archaeal genomes, plus 31 genomes of viruses known to infect archaea. Some of the recently developed or enhanced tracks visualize data from published high-throughput RNA-sequencing studies, the NCBI Conserved Domain Database, sequences from pre-genome sequencing studies, predicted gene boundaries from three different protein gene prediction algorithms, tRNAscan-SE gene predictions with RNA secondary structures and CRISPR locus predictions. We have also developed a companion resource, the Archaeal COG Browser, to provide better search and display of arCOG gene function classifications, including their phylogenetic distribution among available archaeal genomes. PMID:22080555

  9. The complete mitochondrial genome of Danaus chrysippus (Lepidoptera: Nymphalidae: Danainae).

    PubMed

    Gan, Shan-Shan; Sun, Xiao-Yan; Gai, Yong-Hua; Hao, Jia-Sheng

    2015-01-01

    The complete mitochondrial genome sequence of Danaus chrysippus (Lepidoptera: Nymphalidae: Danainae) was determined. The 15,236 bp long genome encodes 13 putative proteins, two ribosomal RNAs, 22 tRNAs and a non-coding AT-rich region. Its gene arrangement pattern is identical to most of other lepidopteran species. All protein-coding genes start with a typical ATN codon with the exception of COI gene which uses CGA as its initial codon; all PCGs terminate in the common stop TAA or TAG, except COI, COII, ND5 and ND4 which use single T as their stop codons. A total of 102 bp intergenic spacers and a total of 33 bp overlapping sequences are interspersed throughout the whole genome. The mitogenome harbors 22 txRNAs as those of most insect species and all tRNA genes evidence the typical clover leaf secondary structures with the exception of tRNAser (AGN) who loses its dihydrouridine (DHU) arm. The lrRNA and srRNA genes are 1339 and 783 bp, with the AT contents of 84.1 and 84.8%, respectively. The non-coding AT-rich region is 418 bp long, and contains the motif ATAGA followed by a 21-bp poly-T stretch and a microsatellite-like (AT)9 element preceded by the ATTTA motif. PMID:24409860

  10. The complete mitochondrial genome of Angaracris barabensis Pallas (Orthoptera: Acridoidea).

    PubMed

    Han, Haibin; Zhou, Xiaorong; Pang, Baoping

    2016-05-01

    Angaracris barabensis Pallas (Orthoptera: Acridoidea) is one of important pests in the grasslands in northern China. The complete mitochondrial genome of this insect was sequenced. This genome is 15,930 bp long, with an AT content of 75.5%, containing 37 typical animal mitochondrial genes and a AT-rich region. All genes were arranged in the same order as most of other Acridoidea. All 13 mitochondrial PCGs share the start codon ATN, and the usual termination codons (TAA) are found from 13 protein-coding genes, except for ND2, COII, ND3 (T). All of the 22 typical animal tRNA genes were found in A. barabensis mt-genome, and most of the tRNAs could be folded into the classic cloverleaf secondary structure except for tRNA-Ser (AGN), which lacks the dihydrouracil (DHU) stem. The sizes of the large and small ribosomal RNA genes are 1319 and 830 bp, respectively. The AT content of the AT-rich region is 85.6%. PMID:25317639

  11. The complete mitochondrial genome of Galeruca daurica (Joannis) (Coleoptera: Chrysomelidae).

    PubMed

    Zhou, Xiaorong; Han, Haibin; Pang, Baoping; Zhang, Pengfei

    2016-07-01

    Abstracts Galeruca daurica (Joannis) (Coleoptera: Chrysomelidae) is one of important pests in the Inner Mongolia grasslands. The complete mitochondrial genome was sequenced. The genome is 16 615 bp long, with an AT content of 78.1%, containing 37 typical animal mitochondrial genes and an AT-rich region. All 13 PCGs share the start codon ATN, and the usual termination codons (TAA and TAG) are found from 13 protein-coding genes, except for COI, COII, and ND4 (T). All the 22 typical animal tRNA genes are found in G. daurica mt-genome, and most of the tRNAs could be folded into the classic cloverleaf secondary structure except for tRNA-Ser (AGN), which lacks the dihydrouracil (DHU) stem. The sizes of the large ribosomal RNA genes are 1276 bp long and small ribosomal RNA genes are 747 bp long. The AT content of the AT-rich region is 79.0%. Phylogenetic analysis supports that the coleopteran insects from the same family cluster in the same group, and Chrysomelidae and Tenebrionidae are basal to the Cerambycidae. Galeruca daurica has a closest relationship with Diabrotica barberi and Diabrotica virgifera. PMID:26122336

  12. The complete sequence of the chloroplast genome of the green microalga Lobosphaera (Parietochloris) incisa.

    PubMed

    Tourasse, Nicolas J; Barbi, Tommaso; Waterhouse, Janet C; Shtaida, Nastassia; Leu, Stefan; Boussiba, Sammy; Purton, Saul; Vallon, Olivier

    2016-05-01

    We hereby report the complete chloroplast genome sequence of the green unicellular alga Lobosphaera (Parietochloris) incisa (strain SAG 2468). The genome consists of a circular chromosome of 156,028 bp, which is 72% A-T rich and does not contain a large rRNA-encoding inverted repeat. It is predicted to encode a total of 111 genes including 78 protein-coding, three rRNA, and 30 tRNA genes. The genome sequence also carries a self-splicing group I intron and a group II intron remnant. Overall, the gene and intron content of the L. incisa chloroplast genome is highly similar to that of other species of Trebouxiophyceae. In contrast, the L. incisa chloroplast genome harbors 88 copies of various intergenic dispersed DNA repeat sequences that are all unique to L. incisa. PMID:25423517

  13. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries.

    PubMed

    Binnewies, Tim T; Motro, Yair; Hallin, Peter F; Lund, Ole; Dunn, David; La, Tom; Hampson, David J; Bellgard, Matthew; Wassenaar, Trudy M; Ussery, David W

    2006-07-01

    It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this

  14. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  15. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  16. Endosymbiont evolution: predictions from theory and surprises from genomes.

    PubMed

    Wernegreen, Jennifer J

    2015-12-01

    Genome data have created new opportunities to untangle evolutionary processes shaping microbial variation. Among bacteria, long-term mutualists of insects represent the smallest and (typically) most AT-rich genomes. Evolutionary theory provides a context to predict how an endosymbiotic lifestyle may alter fundamental evolutionary processes--mutation, selection, genetic drift, and recombination--and thus contribute to extreme genomic outcomes. These predictions can then be explored by comparing evolutionary rates, genome size and stability, and base compositional biases across endosymbiotic and free-living bacteria. Recent surprises from such comparisons include genome reduction among uncultured, free-living species. Some studies suggest that selection generally drives this streamlining, while drift drives genome reduction in endosymbionts; however, this remains an hypothesis requiring additional data. Unexpected evidence of selection acting on endosymbiont GC content hints that even weak selection may be effective in some long-term mutualists. Moving forward, intraspecific analysis offers a promising approach to distinguish underlying mechanisms, by testing the null hypothesis of neutrality and by quantifying mutational spectra. Such analyses may clarify whether endosymbionts and free-living bacteria occupy distinct evolutionary trajectories or, alternatively, represent varied outcomes of similar underlying forces. PMID:25866055

  17. The Mitochondrial Genome of Baylisascaris procyonis

    PubMed Central

    Xie, Yue; Zhang, Zhihe; Niu, Lili; Wang, Qiang; Wang, Chengdong; Lan, Jingchao; Deng, Jiabo; Fu, Yan; Nie, Huaming; Yan, Ning; Yang, Deying; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2011-01-01

    Background Baylisascaris procyonis (Nematoda: Ascaridida), an intestinal nematode of raccoons, is emerging as an important helminthic zoonosis due to serious or fatal larval migrans in animals and humans. Despite its significant veterinary and public health impact, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. Mitochondrial (mt) genomes can provide a foundation for investigations in these areas and assist in the diagnosis and control of B. procyonis. In this study, the first complete mt genome sequence of B. procyonis was determined using a polymerase chain reaction (PCR)-based primer-walking strategy. Methodology/Principal Findings The circular mt genome (14781 bp) of B. procyonis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes congruent with other chromadorean nematodes. Interestingly, the B. procyonis mtDNA featured an extremely long AT-rich region (1375 bp) and a high number of intergenic spacers (17), making it unique compared with other secernentean nematodes characterized to date. Additionally, the entire genome displayed notable levels of AT skew and GC skew. Based on pairwise comparisons and sliding window analysis of mt genes among the available 11 Ascaridida mtDNAs, new primer pairs were designed to amplify specific short fragments of the genes cytb (548 bp fragment) and rrnL (200 bp fragment) in the B. procyonis mtDNA, and tested as possible alternatives to existing mt molecular beacons for Ascaridida. Finally, phylogenetic analysis of mtDNAs provided novel estimates of the interrelationships of Baylisasaris and Ascaridida. Conclusions/Significance The complete mt genome sequence of B. procyonis sequenced here should contribute to molecular diagnostic methods, epidemiological investigations and ecological studies of B. procyonis and other related ascaridoids. The information will be important in refining the phylogenetic relationships within the order Ascaridida and

  18. Fueling the Future with Fungal Genomes

    SciTech Connect

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  19. The complete mitochondrial genome of Lerema accius and its phylogenetic implications.

    PubMed

    Cong, Qian; Grishin, Nick V

    2016-01-01

    Butterflies and moths (Lepidoptera) are becoming model organisms for genetics and evolutionary biology. Decoding the Lepidoptera genomes, both nuclear and mitochondrial, is an essential step in these studies. Here we describe a protocol to assemble mitogenomes from Next Generation Sequencing reads obtained through whole-genome sequencing and report the 15,338 bp mitogenome of Lerema accius. The mitogenome is AT-rich and encodes 13 proteins, 22 transfer-RNAs, and two ribosomal-RNAs, with a gene order typical for Lepidoptera mitogenomes. A phylogenetic study based on the protein sequences using both Bayesian Inference and Maximum Likelihood methods consistently place Lerema accius with other grass skippers (Hesperiinae). PMID:26788426

  20. The complete mitochondrial genome of Lerema accius and its phylogenetic implications

    PubMed Central

    Cong, Qian

    2016-01-01

    Butterflies and moths (Lepidoptera) are becoming model organisms for genetics and evolutionary biology. Decoding the Lepidoptera genomes, both nuclear and mitochondrial, is an essential step in these studies. Here we describe a protocol to assemble mitogenomes from Next Generation Sequencing reads obtained through whole-genome sequencing and report the 15,338 bp mitogenome of Lerema accius. The mitogenome is AT-rich and encodes 13 proteins, 22 transfer-RNAs, and two ribosomal-RNAs, with a gene order typical for Lepidoptera mitogenomes. A phylogenetic study based on the protein sequences using both Bayesian Inference and Maximum Likelihood methods consistently place Lerema accius with other grass skippers (Hesperiinae). PMID:26788426

  1. Sequence analysis of a complete 1.66 Mb Prochlorococcus marinus MED4 genome cloned in yeast

    PubMed Central

    Tagwerker, Christian; Dupont, Christopher L.; Karas, Bogumil J.; Ma, Li; Chuang, Ray-Yuan; Benders, Gwynedd A.; Ramon, Adi; Novotny, Mark; Montague, Michael G.; Venepally, Pratap; Brami, Daniel; Schwartz, Ariel; Andrews-Pfannkoch, Cynthia; Gibson, Daniel G.; Glass, John I.; Smith, Hamilton O.; Venter, J. Craig; Hutchison, Clyde A.

    2012-01-01

    Marine cyanobacteria of the genus Prochlorococcus represent numerically dominant photoautotrophs residing throughout the euphotic zones in the open oceans and are major contributors to the global carbon cycle. Prochlorococcus has remained a genetically intractable bacterium due to slow growth rates and low transformation efficiencies using standard techniques. Our recent successes in cloning and genetically engineering the AT-rich, 1.1 Mb Mycoplasma mycoides genome in yeast encouraged us to explore similar methods with Prochlorococcus. Prochlorococcus MED4 has an AT-rich genome, with a GC content of 30.8%, similar to that of Saccharomyces cerevisiae (38%), and contains abundant yeast replication origin consensus sites (ACS) evenly distributed around its 1.66 Mb genome. Unlike Mycoplasma cells, which use the UGA codon for tryptophane, Prochlorococcus uses the standard genetic code. Despite this, we observed no toxic effects of several partial and 15 whole Prochlorococcus MED4 genome clones in S. cerevisiae. Sequencing of a Prochlorococcus genome purified from yeast identified 14 single base pair missense mutations, one frameshift, one single base substitution to a stop codon and one dinucleotide transversion compared to the donor genomic DNA. We thus provide evidence of transformation, replication and maintenance of this 1.66 Mb intact bacterial genome in S. cerevisiae. PMID:22941652

  2. Tracing Lifestyle Adaptation in Prokaryotic Genomes

    PubMed Central

    Altermann, Eric

    2012-01-01

    Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of new environments is a major driving force for genetic changes in their respective genomes. Moving into more specialized niches often results in the acquisition of new gene sets via horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements can be observed, such as the incorporation of whole genetic islands, providing a range of new phenotypic capabilities. Until recently these changes could not be comprehensively followed and identified due to the lack of complete microbial genome sequences. The advent of high-throughput DNA sequencing has dramatically changed the scientific landscape and today microbial genomes have become increasingly abundant. Currently, more than 2,900 genomes are published and more than 11,000 genome projects are listed in the Genomes Online Database‡. Although this wealth of information provides many new opportunities to assess microbial functionality, it also creates a new array of challenges when a comparison between multiple microbial genomes is required. Here, functional genome distribution (FGD) is introduced, analyzing the diversity between microbes based on their predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing the assessments of gene complements. To further facilitate the comparison between two or more genomes, degrees of amino-acid similarities between ORFeomes can be visualized in the Artemis comparison tool, graphically depicting small and large scale genome rearrangements, insertion and deletion events, and levels of similarity between individual open reading frames. FGD provides a new tool for comparative microbial genomics and the interpretation of differences in the genetic makeup of bacteria. PMID:22363326

  3. Tracing lifestyle adaptation in prokaryotic genomes.

    PubMed

    Altermann, Eric

    2012-01-01

    Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of new environments is a major driving force for genetic changes in their respective genomes. Moving into more specialized niches often results in the acquisition of new gene sets via horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements can be observed, such as the incorporation of whole genetic islands, providing a range of new phenotypic capabilities. Until recently these changes could not be comprehensively followed and identified due to the lack of complete microbial genome sequences. The advent of high-throughput DNA sequencing has dramatically changed the scientific landscape and today microbial genomes have become increasingly abundant. Currently, more than 2,900 genomes are published and more than 11,000 genome projects are listed in the Genomes Online Database. Although this wealth of information provides many new opportunities to assess microbial functionality, it also creates a new array of challenges when a comparison between multiple microbial genomes is required. Here, functional genome distribution (FGD) is introduced, analyzing the diversity between microbes based on their predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing the assessments of gene complements. To further facilitate the comparison between two or more genomes, degrees of amino-acid similarities between ORFeomes can be visualized in the Artemis comparison tool, graphically depicting small and large scale genome rearrangements, insertion and deletion events, and levels of similarity between individual open reading frames. FGD provides a new tool for comparative microbial genomics and the interpretation of differences in the genetic makeup of bacteria. PMID:22363326

  4. Genome plasticity and systems evolution in Streptomyces

    PubMed Central

    2012-01-01

    Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A

  5. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  6. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  7. Decoding the human genome sequence.

    PubMed

    Bentley, D R

    2000-10-01

    The year 2000 is marked by the production of the sequence of the human genome. A 'working draft' of high quality sequence covering 90% of the genome has been determined and a quarter is in finished form, including the first two completed chromosomes. All sequence data from the project is made freely available to the community via the Internet, for further analysis and exploitation. The challenge which lies ahead is to decipher the information. Knowledge of the human genome sequence will enable us to understand how the genetic information determines the development, structure and function of the human body. We will be able to explore how variations within our DNA sequence cause disease, how they affect our interaction with our environment and ultimately to develop new and effective ways to improve human health. PMID:11005789

  8. Environmental Influences on Genomic Imprinting

    PubMed Central

    Kappil, Maya; Lambertini, Luca; Chen, Jia

    2015-01-01

    Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development. PMID:26029493

  9. Genes and environment in neonatal intraventricular hemorrhage.

    PubMed

    Ment, Laura R; Ådén, Ulrika; Bauer, Charles R; Bada, Henrietta S; Carlo, Waldemar A; Kaiser, Jeffrey R; Lin, Aiping; Cotten, Charles Michael; Murray, Jeffrey; Page, Grier; Hallman, Mikko; Lifton, Richard P; Zhang, Heping

    2015-12-01

    Emerging data suggest intraventricular hemorrhage (IVH) of the preterm neonate is a complex disorder with contributions from both the environment and the genome. Environmental analyses suggest factors mediating both cerebral blood flow and angiogenesis contribute to IVH, while candidate gene studies report variants in angiogenesis, inflammation, and vascular pathways. Gene-by-environment interactions demonstrate the interaction between the environment and the genome, and a non-replicated genome-wide association study suggests that both environmental and genetic factors contribute to the risk for severe IVH in very low-birth weight preterm neonates. PMID:26516117

  10. The complete mitochondrial genome of Babylonia borneensis (Gastropoda: Neogastropoda: Buccinidae).

    PubMed

    Sung, Chia-Hsuan; Tseng, Chen-Te; Wang, Liang-Jong; Li, Yu-Chi; Lu, Jenn-Kan

    2016-09-01

    The complete mitochondrial genome sequence of the Babylonia borneensis is reported for the first time in this study. The length of genome was 15 556 bp, including 13 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. The nucleotide composition of the mitogenome showed AT-rich feature, with the AT content of 68.2%. Comparison of the identity of the B. borneensis mitogenome with B. areolata, B. lani and B. lutosa was 87.5%, 87.4% and 86.9%, respectively. The construction of phylogenetic tree showed high bootstrap support value. Babylonia borneensis grouped together with other Babylons and the lineages of Buccinidae was strongly supported. In this study, our results could provide a further understanding in the phylogenetic relationships of the Neogastropoda. PMID:27158871

  11. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  12. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  13. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  14. The complete chloroplast genome sequence of the Bambusa multiplex (Poaceae: Bambusoideae).

    PubMed

    Gao, Ju; Li, Kui; Gao, Li-zhi

    2016-01-01

    The complete nucleotide sequence of the Bambusa multiplex chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,394 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,875 and 82,923 bp, respectively. The B. multiplex cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.20% of the genome sequence encodes proteins. The B. multiplex cp genome is AT-rich (61.08%). In these genes, fourteen genes contained one intron, while one gene had two introns. PMID:24938112

  15. The complete chloroplast genome sequence of the Phyllostachys sulphurea (Poaceae: Bambusoideae).

    PubMed

    Gao, Ju; Gao, Li-zhi

    2016-01-01

    The complete nucleotide sequence of the Phyllostachys sulphurea chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,731 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,879 and 83,256 bp, respectively. The P. sulphurea cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.06% of the genome sequence encodes proteins. The P. sulphurea cp genome is AT-rich (61.11%). In these genes, fourteen genes contained one intron, while one gene had two introns. PMID:24938113

  16. The complete mitochondrial genome of Callerebia suroia (Lepidoptera: Nymphalidae: Satyrinae).

    PubMed

    Shi, Qinghui; Zhang, Wei; Hao, Jiasheng

    2016-01-01

    The complete mitochondrial genome (mitogenome) of Callerebia suroia (Lepidoptera: Nymphalidae: Satyrinae) was determined and analyzed in this paper. The circular genome is 15,208 bp long, including 37 typical mitochondrial genes and one non-coding AT-rich region. All protein-coding genes (PCGs) started with ATN, except for COI gene with CGA(R), which is often found in other butterflies; nine PCGs harbor the typical stop codon TAA, whereas COI, COII, ND5 and ND4 end with a single T. All tRNA genes display typical secondary clover-leaf structures, except for tRNA(Ser)(AGN), whose dihydrouridine (DHU) arm is replaced by a simple loop. The lrRNA and srRNA genes are 1,347 bp and 753 bp in length, with their AT contents of 84.4% and 85.4%, respectively. The 417 bp AT-rich region contains non repetitive sequences, but harbor several features common to the lepidopterans, including the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA)8 element preceded by the ATTTA motif. PMID:25162732

  17. GOLD: The Genomes Online Database

    DOE Data Explorer

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • GIPSy: Genomic island prediction software.

      PubMed

      Soares, Siomar C; Geyik, Hakan; Ramos, Rommel T J; de Sá, Pablo H C G; Barbosa, Eudes G V; Baumbach, Jan; Figueiredo, Henrique C P; Miyoshi, Anderson; Tauch, Andreas; Silva, Artur; Azevedo, Vasco

      2016-08-20

      Bacteria are highly diverse organisms that are able to adapt to a broad range of environments and hosts due to their high genomic plasticity. Horizontal gene transfer plays a pivotal role in this genome plasticity and in evolution by leaps through the incorporation of large blocks of genome sequences, ordinarily known as genomic islands (GEIs). GEIs may harbor genes encoding virulence, metabolism, antibiotic resistance and symbiosis-related functions, namely pathogenicity islands (PAIs), metabolic islands (MIs), resistance islands (RIs) and symbiotic islands (SIs). Although many software for the prediction of GEIs exist, they only focus on PAI prediction and present other limitations, such as complicated installation and inconvenient user interfaces. Here, we present GIPSy, the genomic island prediction software, a standalone and user-friendly software for the prediction of GEIs, built on our previously developed pathogenicity island prediction software (PIPS). We also present four application cases in which we crosslink data from literature to PAIs, MIs, RIs and SIs predicted by GIPSy. Briefly, GIPSy correctly predicted the following previously described GEIs: 13 PAIs larger than 30kb in Escherichia coli CFT073; 1 MI for Burkholderia pseudomallei K96243, which seems to be a miscellaneous island; 1 RI of Acinetobacter baumannii AYE, named AbaR1; and, 1 SI of Mesorhizobium loti MAFF303099 presenting a mosaic structure. GIPSy is the first life-style-specific genomic island prediction software to perform analyses of PAIs, MIs, RIs and SIs, opening a door for a better understanding of bacterial genome plasticity and the adaptation to new traits. PMID:26376473

    • The complete mitochondrial genome of Cephalothrix simula (Iwata) (Nemertea: Palaeonemertea).

      PubMed

      Chen, Hai-Xia; Sundberg, Per; Norenburg, Jon L; Sun, Shi-Chun

      2009-08-01

      The first complete mitochondrial genome sequence for a nemertean, Cephalothrix simula, was determined by conventional and long PCR and sequencing with primer walking methods. This circular genome is 16,296 bp in size and encodes 37 genes (13 protein-coding genes, 2 ribosomal RNAs, and 22 transfer RNAs) typically found in metazoans. All genes are encoded on H-strand except two tRNAs (trnT and trnP). It differs from those reported for other metazoans, but some gene junctions are shared with those of other protostomes. Structure of the mitochondrial genome of C. simula is mostly concordant with the partial mitochondrial genome known for Cephalothrix rufifrons, but notable differences include three large indel events and transposition of 2 tRNAs. Nucleotide composition of the mitochondrial genome of C. simula is highly A+T biased. The compositional skew is strongly reflected in the codon-usage patterns and the amino acid compositions of the mitochondrial proteins. An AT-rich noncoding region with potential to form stem-loop structures may be involved in the initiation of replication or transcription. Gene adjacencies and phylogenetic analysis based on the 12 concatenated amino acid sequences (except atp8) of mitochondrial protein-coding genes show that the nemertean is close to the coelomate lophotrochozoans, rather than the acoelomate platyhelminths. PMID:19397957

    • Funding Opportunity: Genomic Data Centers

      Cancer.gov

      Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  1. Observing copepods through a genomic lens

    PubMed Central

    2011-01-01

    Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for

  2. Next-Generation Genomics: an Integrative Approach

    PubMed Central

    Hawkins, R. David; Hon, Gary C.; Ren, Bing

    2011-01-01

    Integrating results from diverse experiments is an essential process in our effort to understand the logic of complex systems, such as development, homeostasis and responses to the environment. With the advent of high-throughput methods - including genome-wide association studies (GWAS), ChIP-Seq, and RNA-Seq, etc., - acquisition of genome-scale data has never been easier. Epigenetics, transcriptomics, proteomics and genomics each provide an insightful, and yet single-dimensional, view of genome function; integrative analysis promises a unified, global view. However, the large amount of information and diverse technology platforms pose multiple challenges for data access and processing. This Review discusses emerging issues and strategies related to data integration in the era of next-generation genomics. PMID:20531367

  3. Adaptation to nocturnality - learning from avian genomes.

    PubMed

    Le Duc, Diana; Schöneberg, Torsten

    2016-07-01

    The recent availability of multiple avian genomes has laid the foundation for a huge variety of comparative genomics analyses including scans for changes and signatures of selection that arose from adaptions to new ecological niches. Nocturnal adaptation in birds, unlike in mammals, is comparatively recent, a fact that makes birds good candidates for identifying early genetic changes that support adaptation to dim-light environments. In this review, we give examples of comparative genomics analyses that could shed light on mechanisms of adaptation to nocturnality. We present advantages and disadvantages of both "data-driven" and "hypothesis-driven" approaches that lead to the discovery of candidate genes and genetic changes promoting nocturnality. We anticipate that the accessibility of multiple genomes from the Genome 10K Project will allow a better understanding of evolutionary mechanisms and adaptation in general. PMID:27172298

  4. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  5. Genomes Behave as Social Entities: Alien Chromatin Minorities Evolve Through Specificities Reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization and chromosome doubling entailed by allopolyploidization requires genetic and epigenetic modifications, resulting in the adjustment of different genomes to the same nuclear environment. Recently, the main role of retrotransposon/microsatellite-rich regions of the genome in DNA sequenc...

  6. Exploring Other Genomes: Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  7. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  8. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  9. Characterization of the complete mitochondrial genome of the firefly, Luciola substriata (Coleoptera: Lampyridae).

    PubMed

    Mu, Feng-Juan; Ao, Liang; Zhao, Hua-Bin; Wang, Kai

    2016-09-01

    The firefly, Luciola substriata (Coleoptera: Lampyridae), is an aquatic firefly species, whose larvae inhabit ponds or lakes. Here we present the complete mitochondrial (mt) genome of the firefly (GenBank accession number KP313820) and provide its annotation. This circular genome is 16,248 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a non-coding AT-rich region. Similar to other firefly species, the base composition of this mitochondrial genome is also biased toward A and T (44.09% A, 34.00% T, 12.89% C, and 9.01% G). All 13 protein-coding genes start with a typical mitochondrial start codon, and terminate with a usual stop codon TAA, or TAG or a single T. The non-coding AT-rich region (1636 bp in length) include one (A)20, and two (T)15 tandem repeats, and one (AAT)5 element. This mitochondrial genome sequence will promote a better understanding for firefly evolution in the future. PMID:25714154

  10. The problem of the eukaryotic genome size.

    PubMed

    Patrushev, L I; Minkevich, I G

    2008-12-01

    The current state of knowledge concerning the unsolved problem of the huge interspecific eukaryotic genome size variations not correlating with the species phenotypic complexity (C-value enigma also known as C-value paradox) is reviewed. Characteristic features of eukaryotic genome structure and molecular mechanisms that are the basis of genome size changes are examined in connection with the C-value enigma. It is emphasized that endogenous mutagens, including reactive oxygen species, create a constant nuclear environment where any genome evolves. An original quantitative model and general conception are proposed to explain the C-value enigma. In accordance with the theory, the noncoding sequences of the eukaryotic genome provide genes with global and differential protection against chemical mutagens and (in addition to the anti-mutagenesis and DNA repair systems) form a new, third system that protects eukaryotic genetic information. The joint action of these systems controls the spontaneous mutation rate in coding sequences of the eukaryotic genome. It is hypothesized that the genome size is inversely proportional to functional efficiency of the anti-mutagenesis and/or DNA repair systems in a particular biological species. In this connection, a model of eukaryotic genome evolution is proposed. PMID:19216716

  11. The UCSC Genome Browser database: 2014 update

    PubMed Central

    Karolchik, Donna; Barber, Galt P.; Casper, Jonathan; Clawson, Hiram; Cline, Melissa S.; Diekhans, Mark; Dreszer, Timothy R.; Fujita, Pauline A.; Guruvadoo, Luvina; Haeussler, Maximilian; Harte, Rachel A.; Heitner, Steve; Hinrichs, Angie S.; Learned, Katrina; Lee, Brian T.; Li, Chin H.; Raney, Brian J.; Rhead, Brooke; Rosenbloom, Kate R.; Sloan, Cricket A.; Speir, Matthew L.; Zweig, Ann S.; Haussler, David; Kuhn, Robert M.; Kent, W. James

    2014-01-01

    The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser’s web-based tools provide an integrated environment for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic data sets. As of September 2013, the database contained genomic sequence and a basic set of annotation ‘tracks’ for ∼90 organisms. Significant new annotations include a 60-species multiple alignment conservation track on the mouse, updated UCSC Genes tracks for human and mouse, and several new sets of variation and ENCODE data. New software tools include a Variant Annotation Integrator that returns predicted functional effects of a set of variants uploaded as a custom track, an extension to UCSC Genes that displays haplotype alleles for protein-coding genes and an expansion of data hubs that includes the capability to display remotely hosted user-provided assembly sequence in addition to annotation data. To improve European access, we have added a Genome Browser mirror (http://genome-euro.ucsc.edu) hosted at Bielefeld University in Germany. PMID:24270787

  12. PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in R

    PubMed Central

    Pfeifer, Bastian; Wittelsbürger, Ulrich; Ramos-Onsins, Sebastian E.; Lercher, Martin J.

    2014-01-01

    Although many computer programs can perform population genetics calculations, they are typically limited in the analyses and data input formats they offer; few applications can process the large data sets produced by whole-genome resequencing projects. Furthermore, there is no coherent framework for the easy integration of new statistics into existing pipelines, hindering the development and application of new population genetics and genomics approaches. Here, we present PopGenome, a population genomics package for the R software environment (a de facto standard for statistical analyses). PopGenome can efficiently process genome-scale data as well as large sets of individual loci. It reads DNA alignments and single-nucleotide polymorphism (SNP) data sets in most common formats, including those used by the HapMap, 1000 human genomes, and 1001 Arabidopsis genomes projects. PopGenome also reads associated annotation files in GFF format, enabling users to easily define regions or classify SNPs based on their annotation; all analyses can also be applied to sliding windows. PopGenome offers a wide range of diverse population genetics analyses, including neutrality tests as well as statistics for population differentiation, linkage disequilibrium, and recombination. PopGenome is linked to Hudson’s MS and Ewing’s MSMS programs to assess statistical significance based on coalescent simulations. PopGenome’s integration in R facilitates effortless and reproducible downstream analyses as well as the production of publication-quality graphics. Developers can easily incorporate new analyses methods into the PopGenome framework. PopGenome and R are freely available from CRAN (http://cran.r-project.org/) for all major operating systems under the GNU General Public License. PMID:24739305

  13. The complete mitochondrial genome of Bombyx mori strain Yu39 (Lepidoptera: Bombycidae).

    PubMed

    Zhang, Yong-Liang; Zhao, Jin-Hui; Zhou, Qi-Ming

    2016-09-01

    The complete mitochondrial genome of Bombyx mori strain Yu39 (Lepidoptera: Bombycidae) is a circular molecule of 15,652 bp in length, containing 37 typical mitochondrial genes: 13 protein-coding genes (PCGs), 22 transfer RNAs, 2 ribosomal RNAs and a non-coding AT-rich region. Its gene order and arrangement are identical to the common type found in most insect mitogenomes. All PCGs start with a typical ATN codon, except for the cox1 gene, which begins with uncertained codon. All PCGs terminate in the common stop codon TAA, except for the cox1 and cox2, which use single T as their stop codons. The non-coding AT-rich region is 494-bp long, located between rrnS and trnM genes. It contains some structures of repeated motifs and microsatellite-like elements characteristic of the other lepidopterons. PMID:25676361

  14. Genomics and Health Impact Update

    MedlinePlus

    ... Genomics in Practice Newborn Screening Pharmacogenomics Reproductive Health Tools and Databases About the Genomics & Health Impact Update The Office of Public Health Genomics provides updated and credible ...

  15. Genomics of Extinct and Endangered Species (2011 JGI User Meeting)

    ScienceCinema

    Shuster, Stephen [Penn State University

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Stephen Shuster of Penn State University gives a presentation on "Genomics of Extinct and Endangered Species" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  16. Genomic Speciation and Adaptation in Aquilegia (2011 JGI User Meeting)

    SciTech Connect

    Hodges, Scott

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Scott Hodges of the University of California, Santa Barbara gives a presentation on "Genomic Speciation and Adaptation in Aquilegia" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  17. Genomic Speciation and Adaptation in Aquilegia (2011 JGI User Meeting)

    ScienceCinema

    Hodges, Scott [University of California, Santa Barbara

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Scott Hodges of the University of California, Santa Barbara gives a presentation on "Genomic Speciation and Adaptation in Aquilegia" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  18. Genomics of Extinct and Endangered Species (2011 JGI User Meeting)

    SciTech Connect

    Shuster, Stephen

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Stephen Shuster of Penn State University gives a presentation on "Genomics of Extinct and Endangered Species" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  19. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  20. Genes, Environment, and Human Behavior.

    ERIC Educational Resources Information Center

    Bloom, Mark V.; Cutter, Mary Ann; Davidson, Ronald; Dougherty, Michael J.; Drexler, Edward; Gelernter, Joel; McCullough, Laurence B.; McInerney, Joseph D.; Murray, Jeffrey C.; Vogler, George P.; Zola, John

    This curriculum module explores genes, environment, and human behavior. This book provides materials to teach about the nature and methods of studying human behavior, raise some of the ethical and public policy dilemmas emerging from the Human Genome Project, and provide professional development for teachers. An extensive Teacher Background…

  1. Evolutionary genomics of animal personality.

    PubMed

    van Oers, Kees; Mueller, Jakob C

    2010-12-27

    Research on animal personality can be approached from both a phenotypic and a genetic perspective. While using a phenotypic approach one can measure present selection on personality traits and their combinations. However, this approach cannot reconstruct the historical trajectory that was taken by evolution. Therefore, it is essential for our understanding of the causes and consequences of personality diversity to link phenotypic variation in personality traits with polymorphisms in genomic regions that code for this trait variation. Identifying genes or genome regions that underlie personality traits will open exciting possibilities to study natural selection at the molecular level, gene-gene and gene-environment interactions, pleiotropic effects and how gene expression shapes personality phenotypes. In this paper, we will discuss how genome information revealed by already established approaches and some more recent techniques such as high-throughput sequencing of genomic regions in a large number of individuals can be used to infer micro-evolutionary processes, historical selection and finally the maintenance of personality trait variation. We will do this by reviewing recent advances in molecular genetics of animal personality, but will also use advanced human personality studies as case studies of how molecular information may be used in animal personality research in the near future. PMID:21078651

  2. Ecological Genomics of Marine Picocyanobacteria†

    PubMed Central

    Scanlan, D. J.; Ostrowski, M.; Mazard, S.; Dufresne, A.; Garczarek, L.; Hess, W. R.; Post, A. F.; Hagemann, M.; Paulsen, I.; Partensky, F.

    2009-01-01

    Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level. PMID:19487728

  3. Whole-Genome Mapping of Agronomic and Metabolic Traits to Identify Novel Quantitative Trait Loci in Bread Wheat Grown in a Water-Limited Environment1[W][OA

    PubMed Central

    Hill, Camilla B.; Taylor, Julian D.; Edwards, James; Mather, Diane; Bacic, Antony; Langridge, Peter; Roessner, Ute

    2013-01-01

    Drought is a major environmental constraint responsible for grain yield losses of bread wheat (Triticum aestivum) in many parts of the world. Progress in breeding to improve complex multigene traits, such as drought stress tolerance, has been limited by high sensitivity to environmental factors, low trait heritability, and the complexity and size of the hexaploid wheat genome. In order to obtain further insight into genetic factors that affect yield under drought, we measured the abundance of 205 metabolites in flag leaf tissue sampled from plants of 179 cv Excalibur/Kukri F1-derived doubled haploid lines of wheat grown in a field experiment that experienced terminal drought stress. Additionally, data on 29 agronomic traits that had been assessed in the same field experiment were used. A linear mixed model was used to partition and account for nongenetic and genetic sources of variation, and quantitative trait locus analysis was used to estimate the genomic positions and effects of individual quantitative trait loci. Comparison of the agronomic and metabolic trait variation uncovered novel correlations between some agronomic traits and the levels of certain primary metabolites, including metabolites with either positive or negative associations with plant maturity-related or grain yield-related traits. Our analyses demonstrate that specific regions of the wheat genome that affect agronomic traits also have distinct effects on specific combinations of metabolites. This approach proved valuable for identifying novel biomarkers for the performance of wheat under drought and could facilitate the identification of candidate genes involved in drought-related responses in bread wheat. PMID:23660834

  4. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  5. Success stories in genomic medicine from resource-limited countries.

    PubMed

    Mitropoulos, Konstantinos; Al Jaibeji, Hayat; Forero, Diego A; Laissue, Paul; Wonkam, Ambroise; Lopez-Correa, Catalina; Mohamed, Zahurin; Chantratita, Wasun; Lee, Ming Ta Michael; Llerena, Adrian; Brand, Angela; Ali, Bassam R; Patrinos, George P

    2015-01-01

    In recent years, the translation of genomic discoveries into mainstream medical practice and public health has gained momentum, facilitated by the advent of new technologies. However, there are often major discrepancies in the pace of implementation of genomic medicine between developed and developing/resource-limited countries. The main reason does not only lie in the limitation of resources but also in the slow pace of adoption of the new findings and the poor understanding of the potential that this new discipline offers to rationalize medical diagnosis and treatment. Here, we present and critically discuss examples from the successful implementation of genomic medicine in resource-limited countries, focusing on pharmacogenomics, genome informatics, and public health genomics, emphasizing in the latter case genomic education, stakeholder analysis, and economics in pharmacogenomics. These examples can be considered as model cases and be readily replicated for the wide implementation of pharmacogenomics and genomic medicine in other resource-limited environments. PMID:26081768

  6. The genomic CDS sandbox: An assessment among domain experts.

    PubMed

    Aziz, Ayesha; Kawamoto, Kensaku; Eilbeck, Karen; Williams, Marc S; Freimuth, Robert R; Hoffman, Mark A; Rasmussen, Luke V; Overby, Casey L; Shirts, Brian H; Hoffman, James M; Welch, Brandon M

    2016-04-01

    Genomics is a promising tool that is becoming more widely available to improve the care and treatment of individuals. While there is much assertion, genomics will most certainly require the use of clinical decision support (CDS) to be fully realized in the routine clinical setting. The National Human Genome Research Institute (NHGRI) of the National Institutes of Health recently convened an in-person, multi-day meeting on this topic. It was widely recognized that there is a need to promote the innovation and development of resources for genomic CDS such as a CDS sandbox. The purpose of this study was to evaluate a proposed approach for such a genomic CDS sandbox among domain experts and potential users. Survey results indicate a significant interest and desire for a genomic CDS sandbox environment among domain experts. These results will be used to guide the development of a genomic CDS sandbox. PMID:26778834

  7. The Genomic CDS Sandbox: An Assessment Among Domain Experts

    PubMed Central

    Aziz, Ayesha; Kawamoto, Kensaku; Eilbeck, Karen; Williams, Marc S.; Freimuth, Robert R.; Hoffman, Mark A.; Rasmussen, Luke V.; Overby, Casey L.; Shirts, Brian H.; Hoffman, James M.; Welch, Brandon M.

    2016-01-01

    Genomics is a promising tool that is becoming more widely available to improve the care and treatment of individuals. While there is much assertion, genomics will most certainly require the use of clinical decision support (CDS) to be fully realized in the routine clinical setting. The National Human Genome Research Institute (NHGRI) of the National Institutes of Health recently convened an in-person, multi-day meeting on this topic. It was widely recognized that there is a need to promote the innovation and development of resources for genomic CDS such as a CDS sandbox. The purpose of this study was to evaluate a proposed approach for such a genomic CDS sandbox among domain experts and potential users. Survey results indicate a significant interest and desire for a genomic CDS sandbox environment among domain experts. These results will be used to guide the development of a genomic CDS sandbox. PMID:26778834

  8. Comparative Genomic and Phylogenomic Analyses Reveal a Conserved Core Genome Shared by Estuarine and Oceanic Cyanopodoviruses

    PubMed Central

    Huang, Sijun; Zhang, Si; Jiao, Nianzhi; Chen, Feng

    2015-01-01

    Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation. PMID:26569403

  9. Genomic Data Commons | Office of Cancer Genomics

    Cancer.gov

    The NCI’s Center for Cancer Genomics launches the Genomic Data Commons (GDC), a unified data sharing platform for the cancer research community. The mission of the GDC is to enable data sharing across the entire cancer research community, to ultimately support precision medicine in oncology.

  10. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  11. Libraries for genomic SELEX.

    PubMed Central

    Singer, B S; Shtatland, T; Brown, D; Gold, L

    1997-01-01

    An increasing number of proteins are being identified that regulate gene expression by binding specific nucleic acidsin vivo. A method termed genomic SELEX facilitates the rapid identification of networks of protein-nucleic acid interactions by identifying within the genomic sequences of an organism the highest affinity sites for any protein of the organism. As with its progenitor, SELEX of random-sequence nucleic acids, genomic SELEX involves iterative binding, partitioning, and amplification of nucleic acids. The two methods differ in that the variable region of the nucleic acid library for genomic SELEX is derived from the genome of an organism. We have used a quick and simple method to construct Escherichia coli, Saccharomyces cerevisiae, and human genomic DNA PCR libraries that can be transcribed with T7 RNA polymerase. We present evidence that the libraries contain overlapping inserts starting at most of the positions within the genome, making these libraries suitable for genomic SELEX. PMID:9016629

  12. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  13. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  14. Complete genome sequence of Aeromonas hydrophila AL06-06

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeromonas hydrophila occurs in freshwater environments and infects fish and mammals. In this work, we report the complete genome sequence of Aeromonas hydrophila AL06-06, which was isolated from diseased goldfish and is being used for comparative genomic studies with A. hydrophila strains causing ba...

  15. The complete mitochondrial genome of Bombyx mori strain Baiyun (Lepidoptera: Bombycidae).

    PubMed

    Zhang, Huixian; Li, Fengbo; Zhu, Xinrong; Meng, Zhiqi

    2016-05-01

    The complete mitochondrial genome of Bombyx mori strain Baiyun (Lepidoptera: Bombycidae) was determined in this study. The genome was 15,629 bp long with 37 typical animal mitochondrial genes and 1 non-coding A + T-rich region. Its gene content and order were identical to those of other lepidopteran mitochondrial genomes. All protein-coding genes (PCGs) were initiated by ATN codons except for the COI gene, which began with CGA codon. Eleven PCGs stopped with termination codon TAA, whereas the COI and COII genes ended with single T. All the tRNA genes showed typical secondary cloverleaf structures. The 496 bp AT-rich region contains several features common to other lepidopterans, such as the motif ATAGA followed by an 18-bp poly-T stretch and two microsatellite-like (TA)8 and (AT)9 elements preceded by the ATTTA motif. PMID:25211086

  16. The complete mitochondrial genome of Bombyx mori strain Huayu (Lepidoptera: Bombycidae).

    PubMed

    Zhang, Yong-Liang; Zhou, Qi-Ming

    2016-05-01

    The complete mitochondrial genome of Bombyx mori strain Huayu (Lepidoptera: Bombycidae) is determined in this study. The genome was 15,666 bp long, with 37 typical animal mitochondrial genes and 1 non-coding A + T-rich region. Its gene content and order were identical to those of other lepidopteran mitochondrial genomes. All protein-coding genes (PCGs) were initiated by ATN codons except for the COI gene, which began with uncertained codon. Eleven PCGs stopped with termination codon TAA, whereas the COI and COII genes ended with single T. All tRNAs have typical structures of insect mitochondrial tRNAs. The 494 bp AT-rich region contains several features common to other lepidopterans, such as the motif ATAGA followed by an 18 bp poly-T stretch and an 11 bp poly-A element upstream of transfer RNA M (trnM) gene. PMID:25431820

  17. A deep coverage Dictyostelium discoideum genomic DNA library replicates stably in Escherichia coli.

    PubMed

    Rosengarten, Rafael D; Beltran, Pamela R; Shaulsky, Gad

    2015-10-01

    The natural history of the amoeba Dictyostelium discoideum has inspired scientific inquiry for seventy-five years. A genetically tractable haploid eukaryote, D. discoideum appeals as a laboratory model as well. However, certain rote molecular genetic tasks, such as PCR and cloning, are difficult due to the AT-richness and low complexity of its genome. Here we report on the construction of a ~20 fold coverage D. discoideum genomic library in Escherichia coli, cloning 4-10 kilobase partial restriction fragments into a linear vector. End-sequencing indicates that most clones map to the six chromosomes in an unbiased distribution. Over 70% of these clones contain at least one complete open reading frame. We demonstrate that individual clones and library composition are stable over multiple replication cycles. Our library will enable numerous molecular biological applications and the completion of additional species' genome sequences, and suggests a path towards the long-elusive goal of genetic complementation. PMID:26028264

  18. Reconstruction of Bacterial and Viral Genomes from Multiple Metagenomes.

    PubMed

    Gupta, Ankit; Kumar, Sanjiv; Prasoodanan, Vishnu P K; Harish, K; Sharma, Ashok K; Sharma, Vineet K

    2016-01-01

    Several metagenomic projects have been accomplished or are in progress. However, in most cases, it is not feasible to generate complete genomic assemblies of species from the metagenomic sequencing of a complex environment. Only a few studies have reported the reconstruction of bacterial genomes from complex metagenomes. In this work, Binning-Assembly approach has been proposed and demonstrated for the reconstruction of bacterial and viral genomes from 72 human gut metagenomic datasets. A total 1156 bacterial genomes belonging to 219 bacterial families and, 279 viral genomes belonging to 84 viral families could be identified. More than 80% complete draft genome sequences could be reconstructed for a total of 126 bacterial and 11 viral genomes. Selected draft assembled genomes could be validated with 99.8% accuracy using their ORFs. The study provides useful information on the assembly expected for a species given its number of reads and abundance. This approach along with spiking was also demonstrated to be useful in improving the draft assembly of a bacterial genome. The Binning-Assembly approach can be successfully used to reconstruct bacterial and viral genomes from multiple metagenomic datasets obtained from similar environments. PMID:27148174

  19. Reconstruction of Bacterial and Viral Genomes from Multiple Metagenomes

    PubMed Central

    Gupta, Ankit; Kumar, Sanjiv; Prasoodanan, Vishnu P. K.; Harish, K.; Sharma, Ashok K.; Sharma, Vineet K.

    2016-01-01

    Several metagenomic projects have been accomplished or are in progress. However, in most cases, it is not feasible to generate complete genomic assemblies of species from the metagenomic sequencing of a complex environment. Only a few studies have reported the reconstruction of bacterial genomes from complex metagenomes. In this work, Binning-Assembly approach has been proposed and demonstrated for the reconstruction of bacterial and viral genomes from 72 human gut metagenomic datasets. A total 1156 bacterial genomes belonging to 219 bacterial families and, 279 viral genomes belonging to 84 viral families could be identified. More than 80% complete draft genome sequences could be reconstructed for a total of 126 bacterial and 11 viral genomes. Selected draft assembled genomes could be validated with 99.8% accuracy using their ORFs. The study provides useful information on the assembly expected for a species given its number of reads and abundance. This approach along with spiking was also demonstrated to be useful in improving the draft assembly of a bacterial genome. The Binning-Assembly approach can be successfully used to reconstruct bacterial and viral genomes from multiple metagenomic datasets obtained from similar environments. PMID:27148174

  20. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  1. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome

  2. COMPARATIVE GENOMICS IN LEGUMES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The legume plant family will soon include three sequenced genomes. The majority of the gene-containing portions of the model legumes Medicago truncatula and Lotus japonicus have been sequenced in clone-by-clone projects, and the sequencing of the soybean genome is underway in a whole-genome shotgun ...

  3. Whole Genome Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole genome selection (WGS) is an approach to using DNA markers that are distributed throughout the entire genome. Genes affecting most economically-important traits are distributed throughout the genome and there are relatively few that have large effects with many more genes with progressively sm...

  4. A Plant-Associated Microbe Genome Initiative

    SciTech Connect

    Jan E. Leach; Scott Gold; Sue Tolin; Kellye Eversole

    2003-03-06

    Plant-associated microorganisms are critical to agricultural and food security and are key components in maintaining the balance of our ecosystems. Some of these diverse microbes, which include viruses, bacteria, oomycetes, fungi, and nematodes, cause plant diseases, whereas others prevent diseases or enhance plant growth. Despite their importance, we know little about them on a genomic level. To intervene in disease and understand the basis of biological control or symbiotic relationships, a concerted and coordinated genomic analysis of these microbes is essential. Genome analysis, in this context, refers to the structural and functional analysis of the microbe DNA including the genes, the proteins encoded by those genes, as well as noncoding sequences involved in genome dynamics and function. The ultimate emphasis is on understanding genomic functions involved in plant associations. Members of The American Phytopathological Society (APS) developed a prioritized list of plant-associated microbes for genome analysis. With this list as a foundation for discussions, a Workshop on Genomic Analysis of Plant-Associated Microorganisms was held in Washington, D.C., on 9 to 11 April 2002. The workshop was organized by the Public Policy Board of APS, and was funded by the Department of Energy (DOE), the National Science Foundation (NSF), U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), and USDA-National Research Initiatives (USDA-NRI). The workshop included academic, industrial, and governmental experts from the genomics and microbial research communities and observers from the federal funding agencies. After reviewing current and near-term technologies, workshop participants proposed a comprehensive, international initiative to obtain the genomic information needed to understand these important microbes and their interactions with host plants and the environment. Specifically, the recommendations call for a 5-year, $500 million international public

  5. A plant-associated microbe genome initiative.

    PubMed

    Leach, Jan E; Gold, Scott; Tolin, Sue; Eversole, Kellye

    2003-05-01

    ABSTRACT Plant-associated microorganisms are critical to agricultural and food security and are key components in maintaining the balance of our ecosystems. Some of these diverse microbes, which include viruses, bacteria, oomycetes, fungi, and nematodes, cause plant diseases, whereas others prevent diseases or enhance plant growth. Despite their importance, we know little about them on a genomic level. To intervene in disease and understand the basis of biological control or symbiotic relationships, a concerted and coordinated genomic analysis of these microbes is essential. Genome analysis, in this context, refers to the structural and functional analysis of the microbe DNA including the genes, the proteins encoded by those genes, as well as noncoding sequences involved in genome dynamics and function. The ultimate emphasis is on understanding genomic functions involved in plant associations. Members of The American Phytopathological Society (APS) developed a prioritized list of plant-associated microbes for genome analysis. With this list as a foundation for discussions, a Workshop on Genomic Analysis of Plant-Associated Microorganisms was held in Washington, D.C., on 9 to 11 April 2002. The workshop was organized by the Public Policy Board of APS, and was funded by the Department of Energy (DOE), the National Science Foundation (NSF), U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), and USDA-National Research Initiatives (USDA-NRI). The workshop included academic, industrial, and governmental experts from the genomics and microbial research communities and observers from the federal funding agencies. After reviewing current and near-term technologies, workshop participants proposed a comprehensive, international initiative to obtain the genomic information needed to understand these important microbes and their interactions with host plants and the environment. Specifically, the recommendations call for a 5-year, $500 million

  6. The Complete Chloroplast and Mitochondrial Genomes of the Green Macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta)

    PubMed Central

    Melton, James T.; Leliaert, Frederik; Tronholm, Ana; Lopez-Bautista, Juan M.

    2015-01-01

    Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales). PMID:25849557

  7. The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta).

    PubMed

    Melton, James T; Leliaert, Frederik; Tronholm, Ana; Lopez-Bautista, Juan M

    2015-01-01

    Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales). PMID:25849557

  8. Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88

    PubMed Central

    Ladero, Victor; Alvarez-Sieiro, Patricia; Redruello, Begoña; del Rio, Beatriz; Linares, Daniel M.; Martin, M. Cruz; Fernández, María

    2013-01-01

    Here, we report a 3.2-Mbp draft assembly for the genome of Lactobacillus plantarum IPLA 88. The sequence of this sourdough isolate provides insight into the adaptation of this versatile species to different environments. PMID:23887921

  9. Genomics and functional genomics with haloarchaea.

    PubMed

    Soppa, J; Baumann, A; Brenneis, M; Dambeck, M; Hering, O; Lange, C

    2008-09-01

    The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed. PMID:18493745

  10. Chromium and Genomic Stability

    PubMed Central

    Wise, Sandra S.; Wise, John Pierce

    2014-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability. PMID:22192535

  11. The Genomic Medicine Game.

    PubMed

    Tran, Elvis; de Andrés-Galiana, Enrique J; Benitez, Sonia; Martin-Sanchez, Fernando; Lopez-Campos, Guillermo H

    2016-01-01

    With advancements in genomics technology, health care has been improving and new paradigms of medicine such as genomic medicine have evolved. The education of clinicians, researchers and students to face the challenges posed by these new approaches, however, has been often lagging behind. From this the Genomic Medicine Game, an educational tool, was created for the purpose of conceptualizing the key components of Genomic Medicine. A number of phenotype-genotype associations were found through a literature review, which was used to be a base for the concepts the Genomic Medicine Game would focus on. Built in Java, the game was successfully tested with promising results. PMID:27577486

  12. Genome Evolution in the Eremothecium Clade of the Saccharomyces Complex Revealed by Comparative Genomics

    PubMed Central

    Wendland, Jürgen; Walther, Andrea

    2011-01-01

    We used comparative genomics to elucidate the genome evolution within the pre–whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy–type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth α-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential. PMID:22384365

  13. Genome evolution in the eremothecium clade of the Saccharomyces complex revealed by comparative genomics.

    PubMed

    Wendland, Jürgen; Walther, Andrea

    2011-12-01

    We used comparative genomics to elucidate the genome evolution within the pre-whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy-type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth α-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential. PMID:22384365

  14. The complete mitochondrial genome of Eurema hecabe (Lepidoptera: Pieridae: Coliadinae).

    PubMed

    Sun, Xiaoyan; Shao, Lili; Peng, Chaomin; Hao, Jiasheng; Yang, Qun

    2015-01-01

    The complete mitochondrial genome (mitogenome) of Linnaeus Eurema hecabe (Lepidoptera: Pieridae: Coliadinae) is determined to be 15,160 bp in length, including 37 typical mitochondrial genes and an AT-rich region. Its gene order and orientation are identical to those of other butterfly species. All PCGs are initiated by typical ATN codons, except for CO1 gene which is started by CAG codon. Nine genes use complete termination codon (TAA), whereas the CO1, CO2, ND4 and ND5 genes end with single T. The two rRNA genes (rrnL and rrnS) are 1322 and 832 bp respectively; except for trnS1(AGN), all tRNA genes display typical secondary cloverleaf structures as those of other insects. The 315 bp long AT-rich region contains several features common to the other lepidopterans, such as the ATAGA motif followed by a 19 bp poly-T stretch, two microsatellite-like (TAA)5 and (AT)6 elements, a 9 bp poly-A stretch immediately upstream of trnM gene. PMID:24409905

  15. The complete mitochondrial genome of Coptotermes testaceus (Isoptera: Rhinotermitidae).

    PubMed

    Li, Ya-Xiao; Wang, Xin-Guo; Ou, Jing; Yao, Fu-Jiao; Yang, Yan; Wei, Zhao-Ming

    2016-09-01

    The complete circular mitochondrial genome (mitogenome) of Coptotermes testaceus is 15 752bp in size, containing 37 typical genes and one non-coding AT-rich region. The AT content of the AT-rich region is 68.3%. All protein coding genes (PCGs) start with standard ATN initiation codons and end with complete termination codons TAA or TAG except for cox2, atp8, and nad5 genes using an incomplete stop codon T. tRNA genes are predicted with a characteristic cloverleaf secondary structure except for trnS1(()(AGN)()), whose dihydrouridine (DHU) arm is replaced by a simple loop. The size of the large and small ribosomal RNA genes are 1315 and 818 bp, respectively. Phylogenetic analysis found that (i) the C. testaceus clade formed the sister group with another clade containing Coptotermes lacteus and Coptotermes formosanus; and (ii) Coptotermes lacteus had a close relationship with Coptotermes clade, but with lower credibility than other clades, the bootstrap value was 97%. PMID:26242721

  16. The complete mitochondrial genome of Rondotia menciana (Lepidoptera: Bombycidae)

    PubMed Central

    Kong, Weiqing; Yang, Jinhong

    2015-01-01

    The mulberry white caterpillar, Rondotia menciana Moore (Lepidoptera: Bombycidae) is a species with closest relationship with Bombyx mori and Bombyx mandarina, and the genetic information of R. menciana is important for understanding the diversity of the Bombycidae. In this study, the mitochondrial genome (mitogenome) of R. menciana was amplified by polymerase chain reaction and sequenced. The mitogenome of R. menciana was determined to be 15,301 bp, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and an AT-rich region. The A+T content (78.87%) was lower than that observed for other Bombycidae insects. All PCGs were initiated by ATN codons and terminated with the canonical stop codons, except for coxII, which was terminated by a single T. All the tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The length of AT-rich region (360 bp) of R. menciana mitogenome is shorter than that of other Bombycidae species. Phylogenetic analysis showed that the R. menciana was clustered on one branch with B. mori and B. mandarina from Bombycidae. PMID:25888706

  17. Microbial genomic taxonomy.

    PubMed

    Thompson, Cristiane C; Chimetto, Luciane; Edwards, Robert A; Swings, Jean; Stackebrandt, Erko; Thompson, Fabiano L

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132

  18. The complete mitochondrial genome of Angaracris rhodopa Fischer & Walheim (Orthoptera: Acridoidea).

    PubMed

    Han, Haibin; Zhou, Xiaorong; Pang, Baoping

    2016-05-01

    Angaracris rhodopa Fischer & Walheim (Orthoptera: Acridoidea) is one of the important pests in the grasslands in northern China. The complete mitochondrial genome of this insect was sequenced. This genome is 15,930 bp long, with an AT content of 75.4%, containing 37 typical animal mitochondrial genes and an AT-rich region. All 13 PCGs share the start codon ATN, and the usual termination codons (TAA) are found from 13 protein-coding genes, except for ND2, COII, ND3 (T). All of the 22 typical animal tRNA genes were found in A. rhodopa mt-genome, and most of the tRNAs could be folded into the classic cloverleaf secondary structure except for tRNA-Ser (AGN), which lacks the dihydrouracil (DHU) stem. The sizes of the large and small ribosomal RNA genes are 1319 and 830 bp long, respectively. The AT content of the AT-rich region is 85.3%. PMID:25418622

  19. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  20. UCSC genome browser tutorial.

    PubMed

    Zweig, Ann S; Karolchik, Donna; Kuhn, Robert M; Haussler, David; Kent, W James

    2008-08-01

    The University of California Santa Cruz (UCSC) Genome Bioinformatics website consists of a suite of free, open-source, on-line tools that can be used to browse, analyze, and query genomic data. These tools are available to anyone who has an Internet browser and an interest in genomics. The website provides a quick and easy-to-use visual display of genomic data. It places annotation tracks beneath genome coordinate positions, allowing rapid visual correlation of different types of information. Many of the annotation tracks are submitted by scientists worldwide; the others are computed by the UCSC Genome Bioinformatics group from publicly available sequence data. It also allows users to upload and display their own experimental results or annotation sets by creating a custom track. The suite of tools, downloadable data files, and links to documentation and other information can be found at http://genome.ucsc.edu/. PMID:18514479

  1. Variations in genome mass.

    PubMed

    Wachtel, S S; Tiersch, T R

    1993-02-01

    1. Genome size varies considerably among vertebrates, ranging from less than 1 pg to more than 200 pg; the amount of DNA differing among individuals in a population can equal the amount in the entire structural gene complement. 2. Recent technological advances permit evaluation of genome size variation at several levels including sub-chromosomal, chromosomal and cellular. 3. Genome size variation may also be viewed from taxonomic levels, and across evolutionary time frames. 4. As sources of genome size variation are identified and studied, the conundrum of the C-value paradox (lack of correlations among genome size, genomic complexity and phylogenetic status of organisms) may prove to be more apparent than real. 5. For example, the limited and relatively constant genome size of avians may be related to the physiological constraints of flight. PMID:8462275

  2. Complete Genome Sequence of the Hyperthermophilic Sulfate-Reducing Bacterium Thermodesulfobacterium geofontis OPF15T.

    PubMed

    Elkins, James G; Hamilton-Brehm, Scott D; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Davenport, Karen W; Detter, John C; Han, Cliff S; Tapia, Roxanne; Land, Miriam L; Hauser, Loren; Kyrpides, Nikos C; Ivanova, Natalia N; Pagani, Ioanna; Bruce, David; Woyke, Tanja; Cottingham, Robert W

    2013-01-01

    Thermodesulfobacterium geofontis OPF15(T) (ATCC BAA-2454, JCM 18567) was isolated from Obsidian Pool, Yellowstone National Park, and grows optimally at 83°C. The 1.6-Mb genome sequence was finished at the Joint Genome Institute and has been deposited for future genomic studies pertaining to microbial processes and nutrient cycles in high-temperature environments. PMID:23580711

  3. Complete Genome Sequence of the hyperthermophilic sulfate-reducing bacterium Thermodesulfobacterium geofontis OPF15T

    SciTech Connect

    Elkins, James G.; Hamilton-Brehm, Scott; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Walston Davenport, Karen; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam L.; Hauser, Loren; Kyrpides, Nikos C.; Ivanova, Natalia N.; Pagani, Ioanna; Bruce, David; Woyke, Tanja; Cottingham, Robert W.

    2013-04-11

    Thermodesulfobacterium geofontis OPF15T was isolated from Obsidian Pool, Yellowstone National Park and grows optimally at 83 oC. The OPF15T genome was finished at the Joint Genome Institute and the 1.6 Mb sequence has been annotated and deposited for future genomic studies aimed at understanding microbial processes and nutrient cycles in high-temperature environments.

  4. Complete Genome Sequence of the Hyperthermophilic Sulfate-Reducing Bacterium Thermodesulfobacterium geofontis OPF15T

    PubMed Central

    Hamilton-Brehm, Scott D.; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Davenport, Karen W.; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam L.; Hauser, Loren; Kyrpides, Nikos C.; Ivanova, Natalia N.; Pagani, Ioanna; Bruce, David; Woyke, Tanja; Cottingham, Robert W.

    2013-01-01

    Thermodesulfobacterium geofontis OPF15T (ATCC BAA-2454, JCM 18567) was isolated from Obsidian Pool, Yellowstone National Park, and grows optimally at 83°C. The 1.6-Mb genome sequence was finished at the Joint Genome Institute and has been deposited for future genomic studies pertaining to microbial processes and nutrient cycles in high-temperature environments. PMID:23580711

  5. MycoCosm portal: gearing up for 1000 fungal genomes

    PubMed Central

    Grigoriev, Igor V.; Nikitin, Roman; Haridas, Sajeet; Kuo, Alan; Ohm, Robin; Otillar, Robert; Riley, Robert; Salamov, Asaf; Zhao, Xueling; Korzeniewski, Frank; Smirnova, Tatyana; Nordberg, Henrik; Dubchak, Inna; Shabalov, Igor

    2014-01-01

    MycoCosm is a fungal genomics portal (http://jgi.doe.gov/fungi), developed by the US Department of Energy Joint Genome Institute to support integration, analysis and dissemination of fungal genome sequences and other ‘omics’ data by providing interactive web-based tools. MycoCosm also promotes and facilitates user community participation through the nomination of new species of fungi for sequencing, and the annotation and analysis of resulting data. By efficiently filling gaps in the Fungal Tree of Life, MycoCosm will help address important problems associated with energy and the environment, taking advantage of growing fungal genomics resources. PMID:24297253

  6. MycoCosm portal: gearing up for 1000 fungal genomes

    SciTech Connect

    Grigoriev, Igor V.; Nikitin, Roman; Haridas, Sajeet; Kuo, Alan; Ohm, Robin; Riley, Robert; Salamov, Asaf; Zhao, Xueling; Korzeniewski, Frank; Smirnova, Tatyana; Nordberg, Henrik; Dubchak, Inna; Shabalov, Igor

    2013-10-09

    MycoCosm is a fungal genomics portal (http://jgi.doe.gov/fungi), developed by the US Department of Energy Joint Genome Institute to support integration, analysis and dissemination of fungal genome sequences and other omics data by providing interactive web-based tools. MycoCosm also promotes and facilitates user community participation through the nomination of new species of fungi for sequencing, and the annotation and analysis of resulting data. By efficiently filling gaps in the Fungal Tree of Life, MycoCosm will help address important problems associated with energy and the environment, taking advantage of growing fungal genomics resources.

  7. [Do the glutamate excitotoxicity theory and potential free radicals implication in schizophrenia aetiopathogenesis provide a new enlightenment to links between: genome, environment and biology in the determinism of that disorder?].

    PubMed

    Nguimfack Mbodie, P C

    2002-01-01

    The aetiopathogenesis of schizophrenia constitutes nowadays one of the major points of interest for researchers on this cosmopolitan disorder which involves about 1% of the world population and which significantly alters the social functioning of the individual. Numerous studies have focused on the role played by genome, environmental factors and biology in the development of symptoms. The neurodevelopmental theory is an illustration with the perinatal period considered as the main provider of environmental factors (hypertension, infections, bleedings during pregnancy, acute and chronic fetal distress.). Many authors found significant associations between such factors, the occurrence of brain lesions and finally schizophrenic symptoms. Although no convincing genetic model had been established to date for schizophrenia, nevertheless it appears that a predisposition not inheritable under the mendelian mode exists and authors showed that disease gets more and more severe over schizophrenic descendants. The risk to be schizophrenic being a first degree relative of the schizophrenic person is about ten time superior than in general population. Indeed, this risk is also about ten time superior in biological parents of schizophrenic adoptees than in biological parents of healthy adoptees. Studies done in monozygotic comparing to dizygotic twins are in favour of an important role played by genetic factors more than socioeducational or psychological factors. Concerning biology, the dopaminergic hypothesis remains shared by numerous authors although direct links with incriminated factors are not well established. Now is suspected the glutamate excitotoxicity with implication of free radicals in schizophrenia. These free radicals are products of various enzymatic activations led by overstimulation of post synaptic receptors (NMDA and AMPA) by the excess glutamate. Therefore, according to that concept, some amino acids as glutamate and derivatives could have through free

  8. The complete mitochondrial genome of the facultative entomopathogenic nematode Oscheius chongmingensis (Rhabditida: Rhabditidae).

    PubMed

    Jarošová, Andrea; Půža, Vladimír; Žurovcová, Martina

    2016-09-01

    We determined the complete mitochondrial genome of the facultative entomopathogenic nematode Oscheius chongmingensis. The mitogenome length was 15,413 bp and similar to other Rhabditids contains genes for 2 rRNAs, 22 tRNAs, and 12 proteins (ATPase subunit 8 is missing). Predicted tRNAs indicated the secondary structure typical for chromadorean nematodes. Gene order is similar to that observed in the genus Caenorhabditis. The control AT-rich region is considerably large (2061 bp, 84% of AT), positioned in between tRNA(Ala) and tRNA(Pro) and has several microsatellite-like (AT)n elements. PMID:25758048

  9. The genome of Tetranychus urticae reveals herbivorous pest adaptations

    PubMed Central

    Grbić, Miodrag; Van Leeuwen, Thomas; Clark, Richard M.; Rombauts, Stephane; Rouzé, Pierre; Grbić, Vojislava; Osborne, Edward J.; Dermauw, Wannes; Ngoc, Phuong Cao Thi; Ortego, Félix; Hernández-Crespo, Pedro; Diaz, Isabel; Martinez, Manuel; Navajas, Maria; Sucena, Élio; Magalhães, Sara; Nagy, Lisa; Pace, Ryan M.; Djuranović, Sergej; Smagghe, Guy; Iga, Masatoshi; Christiaens, Olivier; Veenstra, Jan A.; Ewer, John; Villalobos, Rodrigo Mancilla; Hutter, Jeffrey L.; Hudson, Stephen D.; Velez, Marisela; Yi, Soojin V.; Zeng, Jia; Pires-daSilva, Andre; Roch, Fernando; Cazaux, Marc; Navarro, Marie; Zhurov, Vladimir; Acevedo, Gustavo; Bjelica, Anica; Fawcett, Jeffrey A.; Bonnet, Eric; Martens, Cindy; Baele, Guy; Wissler, Lothar; Sanchez-Rodriguez, Aminael; Tirry, Luc; Blais, Catherine; Demeestere, Kristof; Henz, Stefan R.; Gregory, T. Ryan; Mathieu, Johannes; Verdon, Lou; Farinelli, Laurent; Schmutz, Jeremy; Lindquist, Erika; Feyereisen, René; Van de Peer, Yves

    2016-01-01

    The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant–herbivore interactions, and provides unique opportunities for developing novel plant protection strategies. PMID:22113690

  10. Marine Microbial Metagenomics: From Individual to the Environment

    PubMed Central

    Tseng, Ching-Hung; Tang, Sen-Lin

    2014-01-01

    Microbes are the most abundant biological entities on earth, therefore, studying them is important for understanding their roles in global ecology. The science of metagenomics is a relatively young field of research that has enjoyed significant effort since its inception in 1998. Studies using next-generation sequencing techniques on single genomes and collections of genomes have not only led to novel insights into microbial genomics, but also revealed a close association between environmental niches and genome evolution. Herein, we review studies investigating microbial genomics (largely in the marine ecosystem) at the individual and community levels to summarize our current understanding of microbial ecology in the environment. PMID:24857918

  11. The complete mitochondrial genome of the flea beetle Agasicles hygrophila.

    PubMed

    Li, Na; Wei, Jia-Ning; Jia, Dong; Li, Shuang; Ma, Rui-Yan

    2016-09-01

    To provide molecular markers for population genetic analysis of the flea beetle Agasicles hygrophila, we determined its mitochondrial genome (mitogenome) for the first time. The mitogenome of A. hygrophila was 15 917 bp in length with an AT content of 75.15%. It had the typical set of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an AT-rich control region. Compared with the ancestral mitogenome of insects, no gene rearrangement occurred in A. hygrophila. Incomplete stop codons were present in PCGs of A. hygrophila. All tRNA genes except for trnS(AGN) could form the typical clover-leaf secondary structures. The phylogenetic analysis indicated that A. hygrophila was close to other species belonging to the same family of Chrysomelidae. PMID:26368047

  12. Beef cattle body temperature during climatic stress: a genome-wide association study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle are sold for use in multiple environments that differ greatly in multiple climactic parameters, making the ability to regulate body temperature across multiple environments essential. Collecting phenotypic body temperature measurements is difficult and expensive, thus a genomics approach is ...

  13. Metagenomics: Application of Genomics to Uncultured Microorganisms

    PubMed Central

    Handelsman, Jo

    2004-01-01

    Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na+(Li+)/H+ antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies. PMID:15590779

  14. Unveiling Mycoplasma hyopneumoniae Promoters: Sequence Definition and Genomic Distribution

    PubMed Central

    Weber, Shana de Souto; Sant'Anna, Fernando Hayashi; Schrank, Irene Silveira

    2012-01-01

    Several Mycoplasma species have had their genome completely sequenced, including four strains of the swine pathogen Mycoplasma hyopneumoniae. Nevertheless, little is known about the nucleotide sequences that control transcriptional initiation in these microorganisms. Therefore, with the objective of investigating the promoter sequences of M. hyopneumoniae, 23 transcriptional start sites (TSSs) of distinct genes were mapped. A pattern that resembles the σ70 promoter −10 element was found upstream of the TSSs. However, no −35 element was distinguished. Instead, an AT-rich periodic signal was identified. About half of the experimentally defined promoters contained the motif 5′-TRTGn-3′, which was identical to the −16 element usually found in Gram-positive bacteria. The defined promoters were utilized to build position-specific scoring matrices in order to scan putative promoters upstream of all coding sequences (CDSs) in the M. hyopneumoniae genome. Two hundred and one signals were found associated with 169 CDSs. Most of these sequences were located within 100 nucleotides of the start codons. This study has shown that the number of promoter-like sequences in the M. hyopneumoniae genome is more frequent than expected by chance, indicating that most of the sequences detected are probably biologically functional. PMID:22334569

  15. WGE: a CRISPR database for genome engineering

    PubMed Central

    Hodgkins, Alex; Farne, Anna; Perera, Sajith; Grego, Tiago; Parry-Smith, David J.; Skarnes, William C.; Iyer, Vivek

    2015-01-01

    Summary: The rapid development of CRISPR-Cas9 mediated genome editing techniques has given rise to a number of online and stand-alone tools to find and score CRISPR sites for whole genomes. Here we describe the Wellcome Trust Sanger Institute Genome Editing database (WGE), which uses novel methods to compute, visualize and select optimal CRISPR sites in a genome browser environment. The WGE database currently stores single and paired CRISPR sites and pre-calculated off-target information for CRISPRs located in the mouse and human exomes. Scoring and display of off-target sites is simple, and intuitive, and filters can be applied to identify high-quality CRISPR sites rapidly. WGE also provides a tool for the design and display of gene targeting vectors in the same genome browser, along with gene models, protein translation and variation tracks. WGE is open, extensible and can be set up to compute and present CRISPR sites for any genome. Availability and implementation: The WGE database is freely available at www.sanger.ac.uk/htgt/wge Contact: vvi@sanger.ac.uk or skarnes@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25979474

  16. Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288T)

    SciTech Connect

    Sikorski, Johannes; Lapidus, Alla L.; Chertkov, Olga; Lucas, Susan; Copeland, A; Glavina Del Rio, Tijana; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Brambilla, Evelyne-Marie; Pitluck, Sam; Liolios, Konstantinos; Ivanova, N; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Goodwin, Lynne A.; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Rohde, Manfred; Goker, Markus; Spring, Stefan; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Acetohalobium arabaticum Zhilina and Zavarzin 1990 is of special interest because of its physiology and its participation in the anaerobic C1-trophic chain in hypersaline environments. This is the first completed genome sequence of the family Halobacteroidaceae and only the second genome sequence in the order Halanaerobiales. The 2,469,596 bp long genome with its 2,353 protein-coding and 90 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Using CAVE technology for functional genomics studies.

    PubMed

    Sensen, Christoph W

    2002-01-01

    We have established the first Java 3D-enabled CAVE (CAVE automated virtual environment). The Java application programming interface allows the complete separation of the program development from the program execution, opening new application domains for the CAVE technology. Programs can be developed on any Java-enabled computer platform, including Windows, Macintosh, and Linux workstations, and executed in the CAVE without modification. The introduction of Java, one of the major programming environments for bioinformatics, into the CAVE environment allows the rapid development applications for genome research, especially for the analysis of the spatial and temporal data that are being produced by functional genomics experiments. The CAVE technology will play a major role in the modeling of biological systems that is necessary to understand how these systems are organized and how they function. PMID:12614491

  18. Genomics of sorghum.

    PubMed

    Paterson, Andrew H

    2008-01-01

    Sorghum (Sorghum bicolor (L.) Moench) is a subject of plant genomics research based on its importance as one of the world's leading cereal crops, a biofuels crop of high and growing importance, a progenitor of one of the world's most noxious weeds, and a botanical model for many tropical grasses with complex genomes. A rich history of genome analysis, culminating in the recent complete sequencing of the genome of a leading inbred, provides a foundation for invigorating progress toward relating sorghum genes to their functions. Further characterization of the genomes other than Saccharinae cereals may shed light on mechanisms, levels, and patterns of evolution of genome size and structure, laying the foundation for further study of sugarcane and other economically important members of the group. PMID:18483564

  19. The tiniest tiny genomes.

    PubMed

    Moran, Nancy A; Bennett, Gordon M

    2014-01-01

    Starting in 2006, surprisingly tiny genomes have been discovered from numerous bacterial symbionts of insect hosts. Despite their size, each retains some genes that enable provisioning of limiting nutrients or other capabilities required by hosts. Genome sequence analyses show that genome reduction is an ongoing process, resulting in a continuum of sizes, with the smallest genome currently known at 112 kilobases. Genome reduction is typical in host-restricted symbionts and pathogens, but the tiniest genomes are restricted to symbionts required by hosts and restricted to specialized host cells, resulting from long coevolution with hosts. Genes are lost in all functional categories, but core genes for central informational processes, including genes encoding ribosomal proteins, are mostly retained, whereas genes underlying production of cell envelope components are especially depleted. Thus, these entities retain cell-like properties but are heavily dependent on coadaptation of hosts, which continuously evolve to support the symbionts upon which they depend. PMID:24995872

  20. Querying genomic databases

    SciTech Connect

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  1. Genome Aliquoting Revisited

    NASA Astrophysics Data System (ADS)

    Warren, Robert; Sankoff, David

    We prove that the genome aliquoting problem, the problem of finding a recent polyploid ancestor of a genome, with breakpoint distance can be solved in polynomial time. We propose an aliquoting algorithm that is a 2-approximation for the genome aliquoting problem with double cut and join distance, improving upon the previous best solution to this problem, Feijão and Meidanis' 4-approximation algorithm.

  2. Physician Assistant Genomic Competencies.

    PubMed

    Goldgar, Constance; Michaud, Ed; Park, Nguyen; Jenkins, Jean

    2016-09-01

    Genomic discoveries are increasingly being applied to the clinical care of patients. All physician assistants (PAs) need to acquire competency in genomics to provide the best possible care for patients within the scope of their practice. In this article, we present an updated version of PA genomic competencies and learning outcomes in a framework that is consistent with the current medical education guidelines and the collaborative nature of PAs in interprofessional health care teams. PMID:27490287

  3. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    PubMed

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains. PMID:23826978

  4. Genetics and genomics of primary biliary cirrhosis.

    PubMed

    Juran, Brian D; Lazaridis, Konstantinos N

    2008-05-01

    The etiologic and pathogenic factors contributing to primary biliary cirrhosis (PBC) development, progression, response to treatment, and outcome remain a mystery. Recognition of the genomic regions harboring risk factors is hindered by the rarity and late onset of PBC. Recent advancements in genomics hold promise for understanding, prevention, and therapy of PBC. Large registries and biospecimen repositories of patients who have PBC, their family members, and controls are needed. Haplotype mapping-based association studies are necessary for defining genetic predisposition. Experimental data will provide the means for fine mapping studies, resequencing efforts, functional experimentation, and elucidation of gene-environment and gene-gene interaction. PMID:18456185

  5. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes. PMID:25790500

  6. Filarial and Wolbachia genomics.

    PubMed

    Scott, A L; Ghedin, E; Nutman, T B; McReynolds, L A; Poole, C B; Slatko, B E; Foster, J M

    2012-01-01

    Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi- representing the first helminth parasite genome to be sequenced - has been followed in rapid succession by projects that have resulted in the genome sequencing of six additional filarial species, seven nonfilarial nematode parasites of animals and nearly 30 plant parasitic and free-living species. Parallel to the genomic sequencing, transcriptomic and proteomic projects have facilitated genome annotation, expanded our understanding of stage-associated gene expression and provided a first look at the role of epigenetic regulation of filarial genomes through microRNAs. The expansion in filarial genomics will also provide a significant enrichment in our knowledge of the diversity and variability in the genomes of the endosymbiotic bacterium Wolbachia leading to a better understanding of the genetic principles that govern filarial-Wolbachia mutualism. The goal here is to provide an overview of the trends and advances in filarial and Wolbachia genomics. PMID:22098559

  7. Genomics of Clostridium tetani.

    PubMed

    Brüggemann, Holger; Brzuszkiewicz, Elzbieta; Chapeton-Montes, Diana; Plourde, Lucile; Speck, Denis; Popoff, Michel R

    2015-05-01

    Genomic information about Clostridium tetani, the causative agent of the tetanus disease, is scarce. The genome of strain E88, a strain used in vaccine production, was sequenced about 10 years ago. One additional genome (strain 12124569) has recently been released. Here we report three new genomes of C. tetani and describe major differences among all five C. tetani genomes. They all harbor tetanus-toxin-encoding plasmids that contain highly conserved genes for TeNT (tetanus toxin), TetR (transcriptional regulator of TeNT) and ColT (collagenase), but substantially differ in other plasmid regions. The chromosomes share a large core genome that contains about 85% of all genes of a given chromosome. The non-core chromosome comprises mainly prophage-like genomic regions and genes encoding environmental interaction and defense functions (e.g. surface proteins, restriction-modification systems, toxin-antitoxin systems, CRISPR/Cas systems) and other fitness functions (e.g. transport systems, metabolic activities). This new genome information will help to assess the level of genome plasticity of the species C. tetani and provide the basis for detailed comparative studies. PMID:25638019

  8. Between two fern genomes.

    PubMed

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  9. Between Two Fern Genomes

    PubMed Central

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  10. The complete mitochondrial genome sequence of the tubeworm Lamellibrachia satsuma and structural conservation in the mitochondrial genome control regions of Order Sabellida.

    PubMed

    Patra, Ajit Kumar; Kwon, Yong Min; Kang, Sung Gyun; Fujiwara, Yoshihiro; Kim, Sang-Jin

    2016-04-01

    The control region of the mitochondrial genomes shows high variation in conserved sequence organizations, which follow distinct evolutionary patterns in different species or taxa. In this study, we sequenced the complete mitochondrial genome of Lamellibrachia satsuma from the cold-seep region of Kagoshima Bay, as a part of whole genome study and extensively studied the structural features and patterns of the control region sequences. We obtained 15,037 bp of mitochondrial genome using Illumina sequencing and identified the non-coding AT-rich region or control region (354 bp, AT=83.9%) located between trnH and trnR. We found 7 conserved sequence blocks (CSB), scattered throughout the control region of L. satsuma and other taxa of Annelida. The poly-TA stretches, which commonly form the stem of multiple stem-loop structures, are most conserved in the CSB-I and CSB-II regions. The mitochondrial genome of L. satsuma encodes a unique repetitive sequence in the control region, which forms a unique secondary structure in comparison to Lamellibrachia luymesi. Phylogenetic analyses of all protein-coding genes indicate that L. satsuma forms a monophyletic clade with L. luymesi along with other tubeworms found in cold-seep regions (genera: Lamellibrachia, Escarpia, and Seepiophila). In general, the control region sequences of Annelida could be aligned with certainty within each genus, and to some extent within the family, but with a higher rate of variation in conserved regions. PMID:26776396

  11. The Materials Genome Project

    NASA Astrophysics Data System (ADS)

    Aourag, H.

    2008-09-01

    In the past, the search for new and improved materials was characterized mostly by the use of empirical, trial- and-error methods. This picture of materials science has been changing as the knowledge and understanding of fundamental processes governing a material's properties and performance (namely, composition, structure, history, and environment) have increased. In a number of cases, it is now possible to predict a material's properties before it has even been manufactured thus greatly reducing the time spent on testing and development. The objective of modern materials science is to tailor a material (starting with its chemical composition, constituent phases, and microstructure) in order to obtain a desired set of properties suitable for a given application. In the short term, the traditional "empirical" methods for developing new materials will be complemented to a greater degree by theoretical predictions. In some areas, computer simulation is already used by industry to weed out costly or improbable synthesis routes. Can novel materials with optimized properties be designed by computers? Advances in modelling methods at the atomic level coupled with rapid increases in computer capabilities over the last decade have led scientists to answer this question with a resounding "yes'. The ability to design new materials from quantum mechanical principles with computers is currently one of the fastest growing and most exciting areas of theoretical research in the world. The methods allow scientists to evaluate and prescreen new materials "in silico" (in vitro), rather than through time consuming experimentation. The Materials Genome Project is to pursue the theory of large scale modeling as well as powerful methods to construct new materials, with optimized properties. Indeed, it is the intimate synergy between our ability to predict accurately from quantum theory how atoms can be assembled to form new materials and our capacity to synthesize novel materials atom

  12. Population Genomics of Human Adaptation.

    PubMed

    Lachance, Joseph; Tishkoff, Sarah A

    2013-11-01

    Recent advances in genotyping technologies have facilitated genome-wide scans for natural selection. Identification of targets of natural selection will shed light on processes of human adaptation and evolution and could be important for identifying variation that influences both normal human phenotypic variation as well as disease susceptibility. Here we focus on studies of natural selection in modern humans who originated ~200,000 years go in Africa and migrated across the globe ~50,000 - 100,000 years ago. Movement into new environments, as well as changes in culture and technology including plant and animal domestication, resulted in local adaptation to diverse environments. We summarize statistical approaches for detecting targets of natural selection and for distinguishing the effects of demographic history from natural selection. On a genome-wide scale, immune-related genes appear to be major targets of positive selection. Genes associated with reproduction and fertility also appear to be fast evolving. Additional examples of recent human adaptation include genes associated with lactase persistence, eccrine glands, and response to hypoxia. Lastly, we emphasize the need to supplement scans of selection with functional studies to demonstrate the physiologic impact of candidate loci. PMID:25383060

  13. Population Genomics of Human Adaptation

    PubMed Central

    Lachance, Joseph; Tishkoff, Sarah A.

    2014-01-01

    Recent advances in genotyping technologies have facilitated genome-wide scans for natural selection. Identification of targets of natural selection will shed light on processes of human adaptation and evolution and could be important for identifying variation that influences both normal human phenotypic variation as well as disease susceptibility. Here we focus on studies of natural selection in modern humans who originated ~200,000 years go in Africa and migrated across the globe ~50,000 – 100,000 years ago. Movement into new environments, as well as changes in culture and technology including plant and animal domestication, resulted in local adaptation to diverse environments. We summarize statistical approaches for detecting targets of natural selection and for distinguishing the effects of demographic history from natural selection. On a genome-wide scale, immune-related genes appear to be major targets of positive selection. Genes associated with reproduction and fertility also appear to be fast evolving. Additional examples of recent human adaptation include genes associated with lactase persistence, eccrine glands, and response to hypoxia. Lastly, we emphasize the need to supplement scans of selection with functional studies to demonstrate the physiologic impact of candidate loci. PMID:25383060

  14. Genomics and Autism Spectrum Disorder

    PubMed Central

    Johnson, Norah L.; Giarelli, Ellen; Lewis, Celine; Rice, Catherine E.

    2015-01-01

    Purpose To present the current state of the evidence regarding translation of genetics (the study of single genes) and genomics (the study of all genes and gene-gene or gene-environment interactions) into health care of children with autism spectrum disorder (ASD). Methods This article presents an overview of ASD as an international health challenge, the emerging science related to broad diagnostic criteria, and the role of the nurse in research, education, and practice. Findings Much progress is being made in the understanding of genetics and genomics of ASD. Environmental factors are thought to contribute to the risk of developing ASD by interacting with a number of genes in different ways, thus suggesting causal heterogeneity. The rising identified prevalence of ASD, the changing diagnostic criteria for ASD, and the complexity of the core and associated features have made it difficult to define the ASD phenotype (observable behaviors that result from gene-environment interaction). Because early identification improves opportunities for intervention, researchers are looking for a useful biomarker to detect ASD. This search is complicated by the likelihood that there are multiple causes for multiple expressions that are defined as the autism spectrum. Conclusions To date, genetic and genomic research on ASD have underscored the complexity of the causes of ASD indicating that there are very complex genetic processes involved that are still not well understood. Clinical Relevance Nurses will benefit from new knowledge related to early identification, diagnosis, and implications for the family to promote early intervention. Families who have a child with ASD will require nursing support for advocacy for optimal health outcomes. PMID:23368711

  15. Iowa's Environment.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1994-01-01

    This theme issue explores the changes in Iowa's environment. When Native Americans lived in Iowa hundreds of years ago, the land was rich in tall grasslands, fertile soil, wildlife, wetlands, and unpolluted waters. When European-American pioneers settled Iowa in 1833, they changed the environment in order to survive. The first article in this…

  16. Aquatic Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic microbiology can be defined as the study of microorganisms and microbial communities in water environments. Aquatic environments occupy more than 70% of the earth’s surface including oceans, estuaries, rivers, lakes, wetlands, streams, springs, and aquifers. Water is essential for life and m...

  17. Genomic and systems evolution in Vibrionaceae species

    PubMed Central

    Gu, Jianying; Neary, Jennifer; Cai, Hong; Moshfeghian, Audrey; Rodriguez, Stephen A; Lilburn, Timothy G; Wang, Yufeng

    2009-01-01

    Background The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family Vibrionaceae is found in the Gammaproteobacteria and is abundant in aquatic environments. Taxa from the family Vibrionaceae are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE). Results Here we present the results of a detailed comparison of the genomes of eleven Vibrionaceae strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%–50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven Vibrionaceae strains, with 1–11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and

  18. Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts

    PubMed Central

    Newton, Irene LG; Girguis, Peter R; Cavanaugh, Colleen M

    2008-01-01

    Background The Vesicomyidae (Bivalvia: Mollusca) are a family of clams that form symbioses with chemosynthetic gamma-proteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a reduced gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. Recently, two vesicomyid symbiont genomes were sequenced, illuminating the possible nutritional contributions of the symbiont to the host and making genome-wide evolutionary analyses possible. Results To examine the genomic evolution of the vesicomyid symbionts, a comparative genomics framework, including the existing genomic data combined with heterologous microarray hybridization results, was used to analyze conserved gene content in four vesicomyid symbiont genomes. These four symbionts were chosen to include a broad phylogenetic sampling of the vesicomyid symbionts and represent distinct chemosynthetic environments: cold seeps and hydrothermal vents. Conclusion The results of this comparative genomics analysis emphasize the importance of the symbionts' chemoautotrophic metabolism within their hosts. The fact that these symbionts appear to be metabolically capable autotrophs underscores the extent to which the host depends on them for nutrition and reveals the key to invertebrate colonization of these challenging environments. PMID:19055818

  19. Genomics of Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This edited book represents the 23rd symposium in the Stadler Genetics Symposia series, and the general theme of this conference was "The Genomics of Disease." The 24 national and international speakers were invited to discuss their world-class research into the advances that genomics has made on c...

  20. Genomics for Weed Science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous genomic-based studies have provided insight to the physiological and evolutionary processes involved in developmental and environmental processes of model plants such as arabidopsis and rice. However, far fewer efforts have been attempted to use genomic resources to study physiological and ...

  1. Unlocking the bovine genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The draft genome sequence of cattle (Bos taurus) has now been analyzed by the Bovine Genome Sequencing and Analysis Consortium and the Bovine HapMap Consortium, which together represent an extensive collaboration involving more than 300 scientists from 25 different countries. ...

  2. Genetics and Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Good progress is being made on genetics and genomics of sugar beet, however it is in process and the tools are now being generated and some results are being analyzed. The GABI BeetSeq project released a first draft of the sugar beet genome of KWS2320, a dihaploid (see http://bvseq.molgen.mpg.de/Gen...

  3. Development of Genomic GMACE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of genomics to enhance national genetic evaluation systems of dairy cattle is quickly becoming standard practice. The current MACE procedure used by Interbull may not accommodate these new “genomically-enhanced” national evaluations. An important assumption in MACE may no longer be valid in ...

  4. GENOME OF HORSEPOX VIRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212 kbp genome contained 7.5 kbp inverted terminal repeats (ITR) and lacked extensive terminal tandem repetition. HSPV contained 236 ORFs with sim...

  5. Boechera, a model system for ecological genomics

    PubMed Central

    Rushworth, Catherine A.; Song, Bao-Hua; Lee, Cheng-Ruei; Mitchell-Olds, Thomas

    2011-01-01

    The selection and development of a study system for evolutionary and ecological functional genomics (EEFG) depends on a variety of factors. Here we present the genus Boechera as an exemplary system with which to address ecological and evolutionary questions. Our focus on Boechera is based on several characteristics: 1) native populations in undisturbed habitats where current environments reflect historical conditions over several thousand years; 2) functional genomics benefitting from its close relationship to Arabidopsis thaliana; 3) inbreeding tolerance enabling development of recombinant inbred lines, near-isogenic lines, and positional cloning; 4) interspecific crosses permitting mapping for genetic analysis of speciation; 5) apomixis (asexual reproduction by seeds) in a genetically tractable diploid; and 6) broad geographic distribution in North America, permitting ecological genetics for a large research community. These characteristics, along with the current sequencing of three Boechera species by the Joint Genome Institute, position Boechera as a rapidly advancing system for EEFG studies. PMID:22059452

  6. Boechera, a model system for ecological genomics.

    PubMed

    Rushworth, Catherine A; Song, Bao-Hua; Lee, Cheng-Ruei; Mitchell-Olds, Thomas

    2011-12-01

    The selection and development of a study system for evolutionary and ecological functional genomics (EEFG) depend on a variety of factors. Here, we present the genus Boechera as an exemplary system with which to address ecological and evolutionary questions. Our focus on Boechera is based on several characteristics as follows: (i) native populations in undisturbed habitats where current environments reflect historical conditions over several thousand years; (ii) functional genomics benefitting from its close relationship to Arabidopsis thaliana; (iii) inbreeding tolerance enabling development of recombinant inbred lines, near-isogenic lines and positional cloning; (iv) interspecific crosses permitting mapping for genetic analysis of speciation; (v) apomixis (asexual reproduction by seeds) in a genetically tractable diploid; and (vi) broad geographic distribution in North America, permitting ecological genetics for a large research community. These characteristics, along with the current sequencing of three Boechera species by the Joint Genome Institute, position Boechera as a rapidly advancing system for EEFG studies. PMID:22059452

  7. Population genomics of intrapatient HIV-1 evolution.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. PMID:26652000

  8. Genomic Instability and Cancer

    PubMed Central

    Yao, Yixin; Dai, Wei

    2014-01-01

    Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression. PMID:25541596

  9. Microbial Genomes Multiply

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2002-01-01

    The publication of the first complete sequence of a bacterial genome in 1995 was a signal event, underscored by the fact that the article has been cited more than 2,100 times during the intervening seven years. It was a marvelous technical achievement, made possible by automatic DNA-sequencing machines. The feat is the more impressive in that complete genome sequencing has now been adopted in many different laboratories around the world. Four years ago in these columns I examined the situation after a dozen microbial genomes had been completed. Now, with upwards of 60 microbial genome sequences determined and twice that many in progress, it seems reasonable to assess just what is being learned. Are new concepts emerging about how cells work? Have there been practical benefits in the fields of medicine and agriculture? Is it feasible to determine the genomic sequence of every bacterial species on Earth? The answers to these questions maybe Yes, Perhaps, and No, respectively.

  10. Sequencing and Comparative Genome Analysis of Two Pathogenic Streptococcus gallolyticus Subspecies: Genome Plasticity, Adaptation and Virulence

    PubMed Central

    Teng, Yu-Ting; Wu, Hui-Lun; Liu, Yen-Ming; Wu, Keh-Ming; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2011-01-01

    Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here, we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2). The genomic differences between the two biotypes were characterized with comparative genomic analyses. The chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively. The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34, where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome (constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment, whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the two S. gallolyticus biotypes and the type of disease an infected patient eventually develops. PMID:21633709

  11. The partial mitochondrial genome of the Cephalothrix rufifrons (Nemertea, Palaeonemertea): characterization and implications for the phylogenetic position of Nemertea.

    PubMed

    Turbeville, J M; Smith, D M

    2007-06-01

    A continuous 10.1kb fragment of the Cephalothrix rufifrons (Nemertea, Palaeonemertea) mitochondrial genome was sequenced and characterized to further assess organization of protostome mitochondrial genomes and evaluate the phylogenetic potential of gene arrangement and amino acid characters. The genome is A-T rich (72%), and this biased base composition is partly reflected in codon usage. Inferred tRNA secondary structures are typical of those reported for other metazoan mitochondrial DNAs. The arrangement of the 26 genes contained in the fragment exhibits marked similarity to those of many protostome taxa, most notably molluscs with highly conserved arrangements and a phoronid. Separate and simultaneous phylogenetic analyses of inferred amino acid sequences and gene adjacencies place the nemertean within the protostomes among coelomate lophotrochozoan taxa, but do not find a well-supported sister taxon link. PMID:17210260

  12. Phytozome Comparative Plant Genomics Portal

    SciTech Connect

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  13. Complete mitochondrial genome of Chinese bamboo rat, Rhizomys sinensis and species divergence comparison.

    PubMed

    Xu, Yu; Liu, Xiaohua; Tu, Feiyun

    2016-05-01

    The Chinese bamboo rat Rhizomys sinensis belongs to family Spalacidae, and is distributed in China, Myanmar, and Vietnam. In this study, the entire mitochondrial genome of R. sinensis was firstly determined. The genome is 16,564 bases in length, containing 13 protein coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a putative control region. The composition and arrangement of its genes are identical to most other mammals. The whole base composition of the mitogenome is A 31.9%, G 12.0%, T 31.2% and C 24.9%, with an A+T rich pattern. The species divergence between R. sinensis and R. pruinosus is 0.113, in accordance with a "10× rule", as the intraspecific barcode variation averaged 1%. The mitogenome data of R. sumatrensis is required to better understand the phylogenetic relationships within Rhizomys. PMID:25264842

  14. Genome size evolution: sizing mammalian genomes.

    PubMed

    Redi, C A; Capanna, E

    2012-01-01

    The study of genome size (GS) and its variation is so fascinating to the scientific community because it constitutes the link between the present-day analytical and molecular studies of the genome and the old trunk of the holistic and synthetic view of the genome. The GS of several taxa vary over a broad range and do not correlate with the complexity of the organisms (the C-value paradox). However, the biology of transposable elements has let us reach a satisfactory view of the molecular mechanisms that give rise to GS variation and novelties, providing a less perplexing view of the significance of the GS (C-enigma). The knowledge of the composition and structure of a genome is a pre-requisite for trying to understand the evolution of the main genome signature: its size. The radiation of mammals provides an approximately 180-million-year test case for theories of how GS evolves. It has been found from data-mining GS databases that GS is a useful cyto-taxonomical instrument at the level of orders/superorders, providing genomic signatures characterizing Monotremata, Marsupialia, Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. A hypothetical ancestral mammalian-like GS of 2.9-3.7 pg has been suggested. This value appears compatible with the average values calculated for the high systematic levels of the extant Monotremata (∼2.97 pg) and Marsupialia (∼4.07 pg), suggesting invasion of mobile DNA elements concurrently with the separation of the older clades of Afrotheria (∼5.5 pg) and Xenarthra (∼4.5 pg) with larger GS, leaving the Euarchontoglires (∼3.4 pg) and Laurasiatheria (∼2.8 pg) genomes with fewer transposable elements. However, the paucity of GS data (546 mammalian species sized from 5,488 living species) for species, genera, and families calls for caution. Considering that mammalian species may be vanished even before they are known, GS data are sorely needed to phenotype the effects brought about by their variation and to validate any

  15. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  16. Genome-Scale Variation of Tubeworm Symbionts

    NASA Astrophysics Data System (ADS)

    Robidart, J.; Felbeck, H.

    2005-12-01

    Hydrothermal vent tubeworms are completely dependent on their bacterial symbionts for nutrition. Despite this dependency, many studies have concluded that bacterial symbionts are acquired anew from the environment, every generation rather than the more reliable mode of symbiont transmission from parent directly to offspring. Ribosomal 16S sequences have shown little variation of symbiont phylogeny from worm to worm, but higher resolution genome-scale analyses have found that there is genomic heterogeneity between symbionts from worms in different environments. What genes can be "spared," while resulting in an intact symbiosis? Have symbionts from one environment gained physiological capabilities that make them more fit in that environment? In order to answer these questions, subtractive hybridization was used on symbionts of Riftia pachyptila tubeworms from different environments to gain insight into which genes are present in one symbiont and absent in the other. Many genes were found to be unique to each symbiont and these results will be presented. This technique will be applied to answer many fundamental questions regarding microbial symbiont evolution to a specific physico-chemical environment, to a different host species, and more.

  17. Status of duckweed genomics and transcriptomics.

    PubMed

    Wang, W; Messing, J

    2015-01-01

    Duckweeds belong to the smallest flowering plants that undergo fast vegetative growth in an aquatic environment. They are commonly used in wastewater treatment and animal feed. Whereas duckweeds have been studied at the biochemical level, their reduced morphology and wide environmental adaption had not been subjected to molecular analysis until recently. Here, we review the progress that has been made in using a DNA barcode system and the sequences of chloroplast and mitochondrial genomes to identify duckweed species at the species or population level. We also review analysis of the nuclear genome sequence of Spirodela that provides new insights into fundamental biological questions. Indeed, reduced gene families and missing genes are consistent with its compact morphogenesis, aquatic floating and suppression of juvenile-to-adult transition. Furthermore, deep RNA sequencing of Spirodela at the onset of dormancy and Landoltia in exposure of nutrient deficiency illustrate the molecular network for environmental adaption and stress response, constituting major progress towards a post-genome sequencing phase, where further functional genomic details can be explored. Rapid advances in sequencing technologies could continue to promote a proliferation of genome sequences for additional ecotypes as well as for other duckweed species. PMID:24995947

  18. Personalized medicine: new genomics, old lessons.

    PubMed

    Offit, Kenneth

    2011-07-01

    Personalized medicine uses traditional, as well as emerging concepts of the genetic and environmental basis of disease to individualize prevention, diagnosis and treatment. Personalized genomics plays a vital, but not exclusive role in this evolving model of personalized medicine. The distinctions between genetic and genomic medicine are more quantitative than qualitative. Personalized genomics builds on principles established by the integration of genetics into medical practice. Principles shared by genetic and genomic aspects of medicine, include the use of variants as markers for diagnosis, prognosis, prevention, as well as targets for treatment, the use of clinically validated variants that may not be functionally characterized, the segregation of these variants in non-Mendelian as well as Mendelian patterns, the role of gene--environment interactions, the dependence on evidence for clinical utility, the critical translational role of behavioral science, and common ethical considerations. During the current period of transition from investigation to practice, consumers should be protected from harms of premature translation of research findings, while encouraging the innovative and cost-effective application of those genomic discoveries that improve personalized medical care. PMID:21706342

  19. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth's Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa.

    PubMed

    Kavembe, Geraldine D; Franchini, Paolo; Irisarri, Iker; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2015-10-01

    The Magadi tilapia (Alcolapia grahami) is a cichlid fish that inhabits one of the Earth's most extreme aquatic environments, with high pH (~10), salinity (~60% of seawater), high temperatures (~40 °C), and fluctuating oxygen regimes. The Magadi tilapia evolved several unique behavioral, physiological, and anatomical adaptations, some of which are constituent and thus retained in freshwater conditions. We conducted a transcriptomic analysis on A. grahami to study the evolutionary basis of tolerance to multiple stressors. To identify the adaptive regulatory changes associated with stress responses, we massively sequenced gill transcriptomes (RNAseq) from wild and freshwater-acclimated specimens of A. grahami. As a control, corresponding transcriptome data from Oreochromis leucostictus, a closely related freshwater species, were generated. We found expression differences in a large number of genes with known functions related to osmoregulation, energy metabolism, ion transport, and chemical detoxification. Over-representation of metabolism-related gene ontology terms in wild individuals compared to laboratory-acclimated specimens suggested that freshwater conditions greatly decrease the metabolic requirements of this species. Twenty-five genes with diverse physiological functions related to responses to water stress showed signs of divergent natural selection between the Magadi tilapia and its freshwater relative, which shared a most recent common ancestor only about four million years ago. The complete set of genes responsible for urea excretion was identified in the gill transcriptome of A. grahami, making it the only fish species to have a functional ornithine-urea cycle pathway in the gills--a major innovation for increasing nitrogenous waste efficiency. PMID:26345661

  20. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  1. The chloroplast genome sequence of an important medicinal plant Dioscorea nipponica.

    PubMed

    Wu, Lan; Wang, Bo; Yang, Jun; Song, Chi; Wang, Ping; Chen, Shilin; Sun, Wei

    2016-07-01

    Dioscorea nipponica is an important medicinal plant belonging to Dioscoreaceae, a family which is vital for the evolution of monocotyledon. In the present study, the nucleotide sequence of the D. nipponica chloroplast genome was determined. It was an AT-rich (63.3%) chloroplast genome with 152,946 bp in length, containing a pair of 23,113 bp inverted repeats, which were separated by a large and a small single copy region of 83,557 bp and 23,064 bp in length, respectively. It encodes 120 unique genes, including 89 protein-coding genes, 27 tRNA genes and 4 rRNA genes. The predicted gene-coding regions covered 58.7% of the genome sequences. Ten genes contained one intron, while two genes had two introns. Phylogenetic analyses showed the present chloroplast genome can be used as a potential supper barcode to distinguish D. nipponica from its closely related species. Furthermore, the chloroplast genome provides a molecular base for the next investigation on this important medicinal species. PMID:26017048

  2. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403

    PubMed Central

    Bolotin, Alexander; Wincker, Patrick; Mauger, Stéphane; Jaillon, Olivier; Malarme, Karine; Weissenbach, Jean; Ehrlich, S. Dusko; Sorokin, Alexei

    2001-01-01

    Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus Streptococcus and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire genome and a shotgun polishing step. The genome contains 2,365,589 base pairs and encodes 2310 proteins, including 293 protein-coding genes belonging to six prophages and 43 insertion sequence (IS) elements. Nonrandom distribution of IS elements indicates that the chromosome of the sequenced strain may be a product of recent recombination between two closely related genomes. A complete set of late competence genes is present, indicating the ability of L. lactis to undergo DNA transformation. Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration. It also indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of Salmonella-Escherichia group. [The sequence data described in this paper has been submitted to the GenBank data library under accession no. AE005176.] PMID:11337471

  3. Inverse PCR-based method for isolating novel SINEs from genome.

    PubMed

    Han, Yawei; Chen, Liping; Guan, Lihong; He, Shunping

    2014-04-01

    Short interspersed elements (SINEs) are moderately repetitive DNA sequences in eukaryotic genomes. Although eukaryotic genomes contain numerous SINEs copy, it is very difficult and laborious to isolate and identify them by the reported methods. In this study, the inverse PCR was successfully applied to isolate SINEs from Opsariichthys bidens genome in Eastern Asian Cyprinid. A group of SINEs derived from tRNA(Ala) molecular had been identified, which were named Opsar according to Opsariichthys. SINEs characteristics were exhibited in Opsar, which contained a tRNA(Ala)-derived region at the 5' end, a tRNA-unrelated region, and AT-rich region at the 3' end. The tRNA-derived region of Opsar shared 76 % sequence similarity with tRNA(Ala) gene. This result indicated that Opsar could derive from the inactive or pseudogene of tRNA(Ala). The reliability of method was tested by obtaining C-SINE, Ct-SINE, and M-SINEs from Ctenopharyngodon idellus, Megalobrama amblycephala, and Cyprinus carpio genomes. This method is simpler than the previously reported, which successfully omitted many steps, such as preparation of probes, construction of genomic libraries, and hybridization. PMID:24122282

  4. Ensembl comparative genomics resources

    PubMed Central

    Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J.; Searle, Stephen M. J.; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  5. Genome instability and aging.

    PubMed

    Vijg, Jan; Suh, Yousin

    2013-01-01

    Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span. PMID:23398157

  6. Ensembl comparative genomics resources.

    PubMed

    Herrero, Javier; Muffato, Matthieu; Beal, Kathryn; Fitzgerald, Stephen; Gordon, Leo; Pignatelli, Miguel; Vilella, Albert J; Searle, Stephen M J; Amode, Ridwan; Brent, Simon; Spooner, William; Kulesha, Eugene; Yates, Andrew; Flicek, Paul

    2016-01-01

    Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org. PMID:26896847

  7. Center for Cancer Genomics | Office of Cancer Genomics

    Cancer.gov

    The Center for Cancer Genomics (CCG) was established to unify the National Cancer Institute's activities in cancer genomics, with the goal of advancing genomics research and translating findings into the clinic to improve the precise diagnosis and treatment of cancers. In addition to promoting genomic sequencing approach

  8. Synthetic environments

    NASA Astrophysics Data System (ADS)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  9. Human Genome Project

    SciTech Connect

    Block, S.; Cornwall, J.; Dally, W.; Dyson, F.; Fortson, N.; Joyce, G.; Kimble, H. J.; Lewis, N.; Max, C.; Prince, T.; Schwitters, R.; Weinberger, P.; Woodin, W. H.

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  10. Genomic taxonomy of vibrios

    PubMed Central

    Thompson, Cristiane C; Vicente, Ana Carolina P; Souza, Rangel C; Vasconcelos, Ana Tereza R; Vesth, Tammi; Alves, Nelson; Ussery, David W; Iida, Tetsuya; Thompson, Fabiano L

    2009-01-01

    Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online

  11. Human Genome Program

    SciTech Connect

    Not Available

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  12. What Is a Genome?

    PubMed Central

    Goldman, Aaron David; Landweber, Laura F.

    2016-01-01

    The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification. Here, we explore ways in which a deeper understanding of genomic diversity and cell physiology is challenging the concepts of physical permanence attached to the genome as well as its role as the sole information source for an organism. PMID:27442251

  13. Comparative primate genomics: emerging patterns of genome content and dynamics

    PubMed Central

    Rogers, Jeffrey; Gibbs, Richard A.

    2014-01-01

    Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753

  14. Comparative primate genomics: emerging patterns of genome content and dynamics.

    PubMed

    Rogers, Jeffrey; Gibbs, Richard A

    2014-05-01

    Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future. PMID:24709753

  15. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    ScienceCinema

    Robinson, Gene

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  16. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    SciTech Connect

    Robinson, Gene

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  17. Thermophiles in the genomic era: Biodiversity, science, and applications.

    PubMed

    Urbieta, M Sofía; Donati, Edgardo R; Chan, Kok-Gan; Shahar, Saleha; Sin, Lee Li; Goh, Kian Mau

    2015-11-01

    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era. PMID:25911946

  18. Genome maintenance in the context of 4D chromatin condensation.

    PubMed

    Yu, Sonia; Yang, Fan; Shen, Wen H

    2016-08-01

    The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome-epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission. PMID:27098512

  19. From bacterial genomics to metagenomics: concept, tools and recent advances.

    PubMed

    Sharma, Pooja; Kumari, Hansi; Kumar, Mukesh; Verma, Mansi; Kumari, Kirti; Malhotra, Shweta; Khurana, Jitendra; Lal, Rup

    2008-06-01

    In the last 20 years, the applications of genomics tools have completely transformed the field of microbial research. This has primarily happened due to revolution in sequencing technologies that have become available today. This review therefore, first describes the discoveries, upgradation and automation of sequencing techniques in a chronological order, followed by a brief discussion on microbial genomics. Some of the recently sequenced bacterial genomes are described to explain how complete genome data is now being used to derive interesting findings. Apart from the genomics of individual microbes, the study of unculturable microbiota from different environments is increasingly gaining importance. The second section is thus dedicated to the concept of metagenomics describing environmental DNA isolation, metagenomic library construction and screening methods to look for novel and potentially important genes, enzymes and biomolecules. It also deals with the pioneering studies in the area of metagenomics that are offering new insights into the previously unappreciated microbial world. PMID:23100712

  20. Minke whale genome and aquatic adaptation in cetaceans

    PubMed Central

    Yim, Hyung-Soon; Cho, Yun Sung; Guang, Xuanmin; Kang, Sung Gyun; Jeong, Jae-Yeon; Cha, Sun-Shin; Oh, Hyun-Myung; Lee, Jae-Hak; Yang, Eun Chan; Kwon, Kae Kyoung; Kim, Yun Jae; Kim, Tae Wan; Kim, Wonduck; Jeon, Jeong Ho; Kim, Sang-Jin; Choi, Dong Han; Jho, Sungwoong; Kim, Hak-Min; Ko, Junsu; Kim, Hyunmin; Shin, Young-Ah; Jung, Hyun-Ju; Zheng, Yuan; Wang, Zhuo; Chen, Yan

    2014-01-01

    The shift from terrestrial to aquatic life by whales was a substantial evolutionary event. Here we report the whole-genome sequencing and de novo assembly of the minke whale genome, as well as the whole-genome sequences of three minke whales, a fin whale, a bottlenose dolphin and a finless porpoise. Our comparative genomic analysis identified an expansion in the whale lineage of gene families associated with stress-responsive proteins and anaerobic metabolism, whereas gene families related to body hair and sensory receptors were contracted. Our analysis also identified whale-specific mutations in genes encoding antioxidants and enzymes controlling blood pressure and salt concentration. Overall the whale-genome sequences exhibited distinct features that are associated with the physiological and morphological changes needed for life in an aquatic environment, marked by resistance to physiological stresses caused by a lack of oxygen, increased amounts of reactive oxygen species and high salt levels. PMID:24270359