Science.gov

Sample records for atmospheric chemistry project

  1. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  2. Summary of completed project: 1991 Atmospheric Chemistry Gordon Research Conference

    SciTech Connect

    1995-04-01

    The focus of the Gordon Conference on Atmospheric Chemistry was to address and discuss several timely issues involving regional, continental and global scale chemical processes in both the troposphere and the stratosphere. These issues included photochemical pollution, tropospheric oxidative capacity, acid formation and deposition, greenhouse gas build-up, cloud and aerosol effects on chemical and radiation, biogeochemical cycling of trace atmospheric species and stratospheric ozone depletion. The technical sessions were organized along the topical lines used to define the US Global Tropospheric Chemistry Program with an added Policy and Perspective topic.

  3. Atmospheric chemistry

    SciTech Connect

    Sloane, C.S. ); Tesche, T.W. )

    1991-01-01

    This book covers the predictive strength of atmospheric models. The book covers all of the major important atmospheric areas, including large scale models for ozone depletion and global warming, regional scale models for urban smog (ozone and visibility impairment) and acid rain, as well as accompanying models of cloud processes and biofeedbacks.

  4. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    SciTech Connect

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  5. Atmospheric Chemistry and Greenhouse Gases

    SciTech Connect

    Ehhalt, D.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, Edward J.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M.; Berntsen, T.; Bey, I.; Brasseur, G.; Buja, L.; Collins, W. J.; Daniel, J. S.; DeMore, W. B.; Derek, N.; Dickerson, R.; Etheridge, D.; Feichter, J.; Fraser, P.; Friedl, R.; Fuglestvedt, J.; Gauss, M.; Grenfell, L.; Grubler, Arnulf; Harris, N.; Hauglustaine, D.; Horowitz, L.; Jackman, C.; Jacob, D.; Jaegle, L.; Jain, Atul K.; Kanakidou, M.; Karlsdottir, S.; Ko, M.; Kurylo, M.; Lawrence, M.; Logan, J. A.; Manning, M.; Mauzerall, D.; McConnell, J.; Mickley, L. J.; Montzka, S.; Muller, J. F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.; Thompson, A.; van Weele, M.; von Kuhlmann, R.; Wang, Y.; Weisenstein, D. K.; Wigley, T. M.; Wild, O.; Wuebbles, D.J.; Yantosca, R.; Joos, Fortunat; McFarland, M.

    2001-10-01

    Chapter 4 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 2414.1 Introduction 2434.2 Trace Gases: Current Observations, Trends and Budgets 2484.3 Projections of Future Emissions 2664.4 Projections of Atmospheric Composition for the 21st Century 2674.5 Open Questions 2774.6 Overall Impact of Global Atmospheric Chemistry Change 279

  6. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) project

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1991-01-01

    IGAC is an ambitious, decade-long and global research initiative concerned with major research challenges in the field of atmospheric chemistry; its chemists and ecosystem biologists are addressing the problems associated with global biomass burning (BMB). Among IGAC's goals is the achievement of a fundamental understanding of the natural and anthropogenic processes determining changes in atmospheric composition and chemistry, in order to allow century-long predictions. IGAC's studies have been organized into 'foci', encompassing the marine, tropical, polar, boreal, and midlatitude areas, as well as their global composite interactions. Attention is to be given to the effects of BMB on biogeochemical cycles.

  7. Introduction to Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.

    In thirty years of university teaching, Peter Hobbs of the Atmospheric Sciences Department at the University of Washington, has seen atmospheric chemistry grow from a relatively small branch of geosciences into one with which every student of atmospheric sciences needs familiarity Some students are captivated in their first course and make atmospheric chemistry a field of further study or a lifelong career. At the same time, courses of “global change” and emerging curricula in scientific policy require students from diverse backgrounds to develop sufficient knowledge to become well-informed policy-makers. A number of practicing atmospheric chemists are retrained on the job from other scientific backgrounds and need selfeducation in the basics of the field.

  8. (Chemistry of the global atmosphere)

    SciTech Connect

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  9. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  10. Atmospheric Chemistry Data Products

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This presentation poster covers data products from the Distributed Active Archive Center (DAAC) of the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Total Ozone Mapping Spectrometer products (TOMS) introduced in the presentation include TOMS Version 8 as well as Aura, which provides 25 years of TOMS and Upper Atmosphere Research Satellite (UARS) data. The presentation lists a number of atmospheric chemistry and dynamics data sets at DAAC.

  11. Atmospheric chemistry research

    SciTech Connect

    Saylor, R.D. )

    1990-01-01

    Global environmental changes are occurring all around us, and the energy industry is a major player in the changes that are taking place. Wise energy policy can only be generated from a position of informed enlightenment and understanding about the environmental consequences of energy production and utilization. The atmospheric chemistry research being conducted at the University of Kentucky's Center for Applied Energy Research is geared toward providing the knowledge necessary to allow industrial and legislative officials to make responsible energy decisions in the 1990's and beyond. Three programs are described: the Kentucky Acid Deposition Program Precipitation chemistry network; modeling of regional and urban photochemistry and acid deposition; and modeling of global tropospheric chemistry.

  12. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    SciTech Connect

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC

  13. Atmospheric Pseudohalogen Chemistry

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    Hydrogen cyanide is not usually considered in atmospheric chemical models. The paper presents three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. Firstly, HCN is a product and marker of biomass burning. Secondly, it is also likely that lightning is producing HCN, and as HCN is sparingly soluble it could be a useful long-lived "smoking gun" marker of lightning activity. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of the cyanide (CN) and NCO radicals. The NCO radical can be photolyzed in the visible portion of the spectrum yielding nitrogen atoms (N). The production of nitrogen atoms is significant as it leads to the titration of total nitrogen from the atmosphere via N+N->N2, where N2 is molecular nitrogen.

  14. Venus Middle Atmosphere Chemistry

    NASA Astrophysics Data System (ADS)

    Mills, F. P.; Sundaram, M.; Slanger, T. G.; Allen, M.; Yung, Y. L.

    2005-08-01

    Venus is the most similar planet to Earth, and years of research have sought to understand their similarities and differences. Yet, it is still not clear what chemical processes maintain the long-term stability of Venus' primarily CO2 atmosphere. CO2 dissociates into CO and O after absorbing photons at wavelengths < 210 nm. These O atoms should combine to form O2, and observations of intense airglow confirm rapid production of O2 on both day and night sides. CO and O2 are sufficiently stable that an initially pure CO2 atmosphere would rapidly evolve to have 7-8% CO and 3.5-4% O2 [1]. The observed upper limit on O2 (0.3 ppm [2]), however, indicates catalytic mechanisms [3], rapidly convert CO and oxygen into CO2. The current understanding of Venus middle atmosphere chemistry, the state of lab data, and prospects for advances based on Venus Express will be reviewed. Recent work evaluating newly proposed mechanisms for producing CO2, which could be important depending on the rates of poorly constrained reactions, will be described. This research was supported by funding from NASA's Planetary Atmospheres program and the Australian Research Council. Part of this work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. [1] Nair, et al., Icarus 111, 124 (1994), [2] Trauger and Lunine, Icarus 55, 272 (1983), [3] Pernice, et al., PNAS 101, 14007 (2004)

  15. Partial support for the International Global Atmospheric Chemistry Core Project Office

    SciTech Connect

    Prinn, Ronald G.

    2001-05-04

    IGAC provides an international framework for the planning, coordination, and execution of atmospheric--biospheric research with emphasis on projects which require resources beyond the capabilities of any single nation. The development of chemical emission inventories by IGAC scientists, the development and intercomparison under IGAC leadership of existing chemical transport models, the analysis of data gathered during IGAC-sponsored field campaigns, etc., has provided new scientific information essential to the development of the discipline.

  16. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    SciTech Connect

    Lamarque, J.-F.; Shindell, Drew; Josse, B.; Young, P. J.; Cionni, I.; Eyring, Veronika; Bergmann, D.; Cameron-Smith, Philip; Collins, W. J.; Doherty, R.; Dalsoren, S.; Faluvegi, G.; Folberth, G.; Ghan, Steven J.; Horowitz, L.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; Naik, Vaishali; Plummer, David; Righi, M.; Rumbold, S.; Schulz, M.; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Sudo, K.; Szopa, S.; Voulgarakis, A.; Zeng, G.

    2013-02-07

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.

  17. The chemistry of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1976-01-01

    Present knowledge concerning the chemistry of planetary atmospheres is reviewed along with the theories which attempt to explain observational data. The known gross atmospheric compositions of the terrestrial and giant planets are listed, differences between the atmospheres of earth and Venus are discussed, and the atmospheres of the giant planets are described. The origin and evolution of the atmospheres of earth, Venus, Mars, Jupiter, Saturn, and Uranus are outlined, and chemical processes in the atmospheres are examined, particularly cloud formation. The question of organic synthesis and evolution in the reducing atmospheres of the giant planets is considered. It is noted that laboratory work on the individual chemical processes and reactions involved in the evolution of organic compounds in planetary atmospheres, comets, and interstellar space points to the inevitability of organic-compound synthesis in all these situations and to the pervasiveness of organic chemistry throughout the universe.

  18. Evaluation of Present-day Aerosols over China Simulated from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Liao, H.; Chang, W.

    2014-12-01

    High concentrations of aerosols over China lead to strong radiative forcing that is important for both regional and global climate. To understand the representation of aerosols in China in current global climate models, we evaluate extensively the simulated present-day aerosol concentrations and aerosol optical depth (AOD) over China from the 12 models that participated in Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP), by using ground-based measurements and satellite remote sensing. Ground-based measurements of aerosol concentrations used in this work include those from the China Meteorological Administration (CMA) Atmosphere Watch Network (CAWNET) and the observed fine-mode aerosol concentrations collected from the literature. The ground-based measurements of AOD in China are taken from the AErosol RObotic NETwork (AERONET), the sites with CIMEL sun photometer operated by Institute of Atmospheric Physics, Chinese Academy of Sciences, and from Chinese Sun Hazemeter Network (CSHNET). We find that the ACCMIP models generally underestimate concentrations of all major aerosol species in China. On an annual mean basis, the multi-model mean concentrations of sulfate, nitrate, ammonium, black carbon, and organic carbon are underestimated by 63%, 73%, 54%, 53%, and 59%, respectively. The multi-model mean AOD values show low biases of 20-40% at studied sites in China. The ACCMIP models can reproduce seasonal variation of nitrate but cannot capture well the seasonal variations of other aerosol species. Our analyses indicate that current global models generally underestimate the role of aerosols in China in climate simulations.

  19. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    SciTech Connect

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University`s study of the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of {circ}OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations.

  20. Organic chemistry in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  1. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; vanNoije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  2. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-03-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m-2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the

  3. Heterogeneous Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Schryer, David R.

    In the past few years it has become increasingly clear that heterogeneous, or multiphase, processes play an important role in the atmosphere. Unfortunately the literature on the subject, although now fairly extensive, is still rather dispersed. Furthermore, much of the expertise regarding heterogeneous processes lies in fields not directly related to atmospheric science. Therefore, it seemed desirable to bring together for an exchange of ideas, information, and methodologies the various atmospheric scientists who are actively studying heterogeneous processes as well as other researchers studying similar processes in the context of other fields.

  4. Chemistry Of Atmospheric Brown Carbon

    SciTech Connect

    Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-05-27

    Organic carbon (OC) accounts for a large fraction of atmospheric aerosol and has profound effects on air quality, atmospheric chemistry and climate forcing. Molecular composition of the OC and its evolution during common processes of atmospheric aging have been a subject of extensive research over the last decade (see reviews of Ervens et al.,1 Hallquist et al.,2 Herckes et al.,3 Carlton et al.,4 Kroll and Seinfeld,5 Rudich et al.,6 and Kanakidou et al.7). Even though many fundamental advances have been reported in these studies, our understanding of the climate-related properties of atmospheric OC is still incomplete and the specific ways in which OC impacts atmospheric environment and climate forcing are just beginning to be understood. This review covers one topic of particular interest in this area –environmental chemistry of light-absorbing aerosol OC and its impact on radiative forcing.

  5. Dynamical climatology of the NASA Langley Research Center Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model

    NASA Astrophysics Data System (ADS)

    Pierce, R. Bradley; Al-Saadi, Jassim A.; Eckman, Richard S.; Fairlie, T. Duncan; Grose, William L.; Kleb, Mary M.; Natarajan, Murali; Olson, Jennifer R.

    2000-12-01

    A comparison of the NASA Langley Research Center (LaRC) Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model's dynamical characteristics with assimilated data sets and observations is presented to demonstrate the ability of the model to represent the dynamical characteristics of Earth's troposphere and stratosphere. The LaRC IMPACT model is a coupled chemical/dynamical general circulation model (GCM) of the Earth's atmosphere extending from the surface to the lower mesosphere. It has been developed as a tool for assessing the effects of chemical, dynamical, and radiative coupling in the stratosphere on the Earth's climate. The LaRC IMPACT model winds and temperatures are found to be in fairly good agreement with Upper Atmospheric Research Satellite (UARS) United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures in the lower stratosphere. The model upper stratospheric zonal mean temperatures are also in good agreement with the UARS-UKMO climatology except for a cold winter pole which results from the upward extension of the cold vortex temperatures and an elevated winter stratopause in the model. The cold pole bias is consistent with the overprediction of the winter stratospheric jet strength, and is characteristic of stratospheric GCMs in general. The model northern and southern hemisphere stratospheric eddy heat and momentum fluxes are within the expected interannual variability of the UARS-UKMO climatology. The combined effects of water vapor transport, radiative, convective, and planetary boundary layer parameterizations are shown to produce tropospheric winds and circulation statistics that are in good agreement with the UARS-UKMO climatology, although the model tropopause and upper tropospheric temperatures are generally cold relative to the UARS-UKMO temperatures. Comparisons between the model and UARS-UKMO climatology indicate that the model does a reasonable job in reproducing the frequency of observed

  6. Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States

    NASA Astrophysics Data System (ADS)

    Geddes, Jeffrey A.; Heald, Colette L.; Silva, Sam J.; Martin, Randall V.

    2016-02-01

    Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land-atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to the projected change in emissions is affected by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that 8 h average O3 exceeds 70 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. The influence of changes in dry deposition demonstrated here underscores the need to evaluate treatments of this physical process in models. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5-10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 and 2 µg m-3. Changes to reactive nitrogen oxide abundance and partitioning are also locally

  7. Atmospheric chemistry over southern Africa

    NASA Astrophysics Data System (ADS)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2012-03-01

    Changing Chemistry in a Changing Climate: Human and Natural Impacts Over Southern Africa (C4-SAR); Midrand, South Africa, 31 May to 3 June 2011 During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semipermanent atmospheric gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite- derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission on Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from Eskom, the South African power utility; and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa.

  8. Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States

    NASA Astrophysics Data System (ADS)

    Geddes, J. A.; Heald, C. L.; Silva, S. J.; Martin, R. V.

    2015-10-01

    Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land-atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to emissions is controlled by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that average 8 h O3 exceeds 65 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5-10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 to 2 μg m-3. Changes to reactive nitrogen oxide abundance and partitioning are also locally important. These simulations suggest that changes in biosphere-atmosphere exchange must be considered when predicting future air quality and climate. We point to

  9. Compilation and analyses of emissions inventories for NOAA`s atmospheric chemistry project. Progress report, August 1997

    SciTech Connect

    Benkovitz, C.M.; Mubaraki, M.A.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories.

  10. Computational solution of atmospheric chemistry problems

    NASA Technical Reports Server (NTRS)

    Jafri, J.; Ake, R. L.

    1986-01-01

    Extensive studies were performed on problems of interest in atmospheric chemistry. In addition to several minor projects, four major projects were performed and described (theoretical studies of ground and low-lying excited states of ClO2; ground and excited state potential energy surfaces of the methyl peroxy radical; electronic states ot the FO radical; and theoretical studies S02 (H2O) (sub n)).

  11. Atmospheric Chemistry Over Southern Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  12. Atmospheric Chemistry and Air Pollution

    DOE PAGESBeta

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  13. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  14. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    SciTech Connect

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  15. Atmospheric chemistry in volcanic plumes

    PubMed Central

    von Glasow, Roland

    2010-01-01

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis. PMID:20368458

  16. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis. PMID:20368458

  17. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    This is the third semi-annual report for NAS5-97039, covering January through June 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strengths and weaknesses of the next generation assessment models.

  18. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  19. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  20. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  1. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Li; Sze, N. D.

    1997-01-01

    This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry.

  2. Global changes to atmospheric chemistry

    SciTech Connect

    Brasseur, G.P.; Holland, E.A.

    1995-06-01

    Changes in atmospheric concentrations of trace gases provided early evidence of widespread changes within the biosphere. Trace gas production by plants and in soils increased in response to human pressures. Long lived trace gases like nitrous oxide and methane are greenhouse gases and play an important role in stratospheric chemistry. Photochemically active compounds, isoprene, nitric oxide, and carbon monoxide, are determinants of tropospheric ozone concentrations and thus regulate the oxidizing capacity of the troposphere. Inclusion of isoprene produced by plants in 3-D chemical transport models increases atmospheric concentrations of ozone and carbon monoxide substantially. In return, terrestrial ecosystems are sensitive to atmospheric composition, responding to increased N deposition with increased C uptake, and soil acidification, and responding to increased ozone concentrations and UV-B with decreased plant production.

  3. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Shia, Run-Lie; Scott, Courtney J.; Sze, Nien Dak

    1998-01-01

    This is the fourth semi-annual report for NAS5-97039, covering the time period July through December 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the Atmospheric and Environmental Research (AER) two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. For this six month period, we report on a modeling study of new rate constant which modify the NOx/NOy ratio in the lower stratosphere; sensitivity to changes in stratospheric water vapor in the future atmosphere; a study of N2O and CH4 observations which has allowed us to adjust diffusion in the 2-D CTM in order to obtain appropriate polar vortex isolation; a study of SF6 and age of air with comparisons of models and measurements; and a report on the Models and Measurements II effort.

  4. The chemistry of Venus' atmosphere

    NASA Technical Reports Server (NTRS)

    Sze, N. D.; Smith, W. H.

    1978-01-01

    A model for the Venus atmosphere involving photochemistry of oxygen, hydrogen, chlorine and sulfur species is presented. Sulfur reaction schemes and hydrogen and chlorine reaction schemes were included. The impact of sulfur on the oxygen budget and the subsequent production of H2SO4 molecules for the Venus cloud deck were explored. A major new reaction scheme for production of H2SO4 molecules involving sulfur and oxygen chemistry was established shown to dominate over the odd hydrogen scheme proposed earlier. The efficiency of the scheme in formation of H2SO4 is only about 50%, with the remaining sulfur residing in SO2 molecules. The calculated downward flux of H2SO4 may be sufficient to maintain a steady state sulfuric acid cloud if the resident time of H2SO4 droplets in the cloud is as long as a few years. If however, the resident time is half a year or shorter, additional chemistry capable of more efficient conversion of SO2 to SO3 is required.

  5. Frontiers in Atmospheric Chemistry Modelling

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  6. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; Cox, T.; Eyring, V.; Fowler, D.; Fuzzi, S.; Jockel, P.; Laj, P.; Lohmann, U.; Maione, M.; Monks, T.; Prevot, A. S. H.; Raes, F.; Richter, A.; Rognerud, B.; Schulz, M.; Shindell, D.; Stevenson, D. S.; Storelvmo, T.; Wang, W.-C.; vanWeele, M.; Wild, M.; Wuebbles, D.

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  7. Mars Atmospheric Chemistry and Astrobiology Workshop Summary

    NASA Astrophysics Data System (ADS)

    Allen, M.; Wennberg, P.

    2002-09-01

    The Mars Atmospheric Chemistry and Astrobiology (MACA) Workshop was held on the California Institute of Technology campus December 17-18, 2001. The prime objective of the workshop was to consider whether extant life beneath the surface, if it exists, would be in contact with the atmosphere and introduce a detectable signature in the atmosphere. To answer this question, the workshop also explored how well we understood the abiotic chemistry of the current atmosphere and other drivers of atmospheric composition (volcanoes, surface-atmosphere interactions, escape). The conclusions from this workshop will be presented.

  8. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Rodriguez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Junusz; Sze, Nien-Dak

    1999-01-01

    This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  9. Pre-industrial to End 21st Century Projections of Tropospheric Ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Archibald, A. T.; Bowman, K. W.; Lamarque, J.-F.; Naik, V.; Stevenson, D. S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; Cameron-Smith, P.; Cionni, I.; Collins, W. J.; Dalsoren, S. B.; Doherty, R. M.; Eyring, V.; Faluvegi, G.; Horowitz, L. W.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; Plummer, D. A.; Righi, M.; Strode, S. A.

    2013-01-01

    Present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean compares well against present day observations. The seasonal cycle correlates well, except for some locations in the tropical upper troposphere. Most (75 %) of the models are encompassed with a range of global mean tropospheric ozone column estimates from satellite data, but there is a suggestion of a high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere, which could indicate deficiencies with the ozone precursor emissions. Compared to the present day ensemble mean tropospheric ozone burden of 337+/-23 Tg, the ensemble mean burden for 1850 time slice is approx. 30% lower. Future changes were modelled using emissions and climate projections from four Representative Concentration Pathways (RCPs). Compared to 2000, the relative changes in the ensemble mean tropospheric ozone burden in 2030 (2100) for the different RCPs are: -4% (-16 %) for RCP2.6, 2% (-7%) for RCP4.5, 1% (-9%) for RCP6.0, and 7% (18 %) for RCP8.5. Model agreement on the magnitude of the change is greatest for larger changes. Reductions in most precursor emissions are common across the RCPs and drive ozone decreases in all but RCP8.5, where doubled methane and a 40-150% greater stratospheric influx (estimated from a subset of models) increase ozone. While models with a high ozone burden for the present day also have high ozone burdens for the other time slices, no model consistently predicts large or small ozone changes; i.e. the magnitudes of the burdens and burden changes do not appear to be related simply, and the models are sensitive to emissions and climate changes in different ways. Spatial patterns of ozone changes are well correlated across most models, but are notably different for models without time evolving stratospheric ozone concentrations

  10. Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility

    SciTech Connect

    Mroz, E.J.; Olivares, J.; Kok, G.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

  11. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  12. Modeling the atmospheric chemistry of TICs

    NASA Astrophysics Data System (ADS)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  13. Energy, atmospheric chemistry, and global climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  14. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.

    2012-10-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). We calculate a~value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 0.40 W m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (47%), nitrogen oxides (29%), carbon monoxide (15%) and non-methane volatile organic compounds (9%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 0.042 W m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (W m-2; relative to 1850 - add 0.04 W m-2 to make relative to 1750) for the Representative Concentration Pathways in 2030 (2100) of: RCP2.6: 0.31 (0.16); RCP4.5: 0.38 (0.26); RCP6.0: 0.33 (0.24); and RCP8.5: 0.42 (0.56). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport.

  15. Information-computational system: atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Adamov, Dmitri P.; Akhlyostin, Alexey Y.; Fazliev, Alexandre Z.; Gordov, Eugeni P.; Karyakin, Alexey S.; Mikhailov, Sergey A.; Rodimova, Olga B.

    1999-11-01

    The atmospheric chemistry information-computational system (ICS) with Internet access is presented. The ICS is aimed summarizing fundamental data on atmospheric processes, determining the dynamics of complex chemical systems and providing educational information. The system consist of three functional blocks: data preparation, computation and information blocks, within which a user may choose the chemical reactions and atmospheric models, drive relevant kinetic equations and conservation laws, solve the kinetic equations, visualize the results of calculations and get access to related information.

  16. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  17. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Rodriquez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Janusz; Sze, Nien-Dak; Stewart, Richard W. (Technical Monitor)

    1999-01-01

    This is the final report for NAS5-97039 for work performed between December 1996 and November 1999. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  18. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  19. CAPACITY: Operational Atmospheric Chemistry Monitoring Missions

    NASA Astrophysics Data System (ADS)

    Kelder, H.; Goede, A.; van Weele, M.

    The ESA project CAPACITY refers to future Operational Atmospheric Chemistry Monitoring Missions. Here operational is meant in the sense that a reliable service of specified information products can be established that satisfies user needs. Monitoring is meant in the sense that long-term continuity and consistency in the quality of the information products can be achieved. The objectives of the project are: To consult with user communities to develop high level information requirements and the form of the information products. To identify and prioritise mission objectives. To derive mission data requirements from the high level user information requirements and iterate these with the users. To set these requirements against observation systems available or approved for the future. To identify missing information products or information products of insufficient quality. To define a global observation system that would satisfy user requirements. The time frame of this operational system is projected to cover the period 2010 to 2020 concurrent with the operational satellites MetOp and NPOESS. In order to address these objectives a large European consortium has been formed consisting of approximately 30 partners from 9 ESA countries (F, D, UK, I, SW, N, DK, B, NL). The project is led by the Royal Netherlands Meteorological Institute (KNMI) and the core team includes the Rutherford Appleton Laboratory, Univ Leicester, Univ Bremen and industry. Four application areas are identified: Protocol Monitoring (Montreal and Kyoto) and Policy Support Air Quality Monitoring and Policy Support (CLRTAP) Long Term Science Issues and Climate Monitoring Forecast Capacity In the derivation of data level 2/3 requirements from high level user requirements the consortium relies on a large group of modellers using satellite data, and of space research institutes with expertise in retrieval and calibration/validation of satellite data as well as Industry with experience in building space

  20. Parallel computing in atmospheric chemistry models

    SciTech Connect

    Rotman, D.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  1. Perspective: Water cluster mediated atmospheric chemistry

    SciTech Connect

    Vaida, Veronica

    2011-07-14

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  2. ATMOSPHERIC ACIDIFICATION CHEMISTRY: A REVIEW

    EPA Science Inventory

    Atmospheric acidification is the result of the oxidation of sulfur, nitrogen, and organic compounds to form their corresponding acids. The gas and aqueous-phase pathways depend on the production of oxidizing free radicals (HO, CH3O2) that react directly with these compounds or pr...

  3. PNNL's 'PEGASUS' Advances Atmospheric Chemistry

    SciTech Connect

    Berkowitz, Carl M.; Eades, Robert A.

    2001-04-16

    Presented an overview of software design to maximize computational efficiency on a massively parallel computing system. Also gave highlights of scientific results from this code, focusing primarily on how we can distinguish between stratospheric ozone in remote atmospheres and ozone generated from NOx/VOC chemical mechanisms.

  4. Chemistry of Planetary Atmospheres: Insights and Prospects

    NASA Astrophysics Data System (ADS)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current

  5. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  6. 1999 Gordon Research Conference on Atmospheric Chemistry

    SciTech Connect

    Storm, C.

    2000-08-01

    The Gordon Research Conference (GRC) on Atmospheric Chemistry was held at Salve Regina University in Newport, Rhode Island, June 13-18, 1999. The conference was well attended with 151 participants. The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both US and foreign scientists, senior researchers, young investigators, and students.

  7. Photodissociation dynamics and atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.

    1993-07-01

    The paper uses data from the literature to explore photodissociation dynamics of molecules possessing three, four, and five atoms, as represented by O3 and CO2, NH3 and C2H2, and CH4, respectively. The results yield many details, even in regard to the disposal of energy into rotation, which have applications to atmospheric problems. For instance, experiments probing the translational energies of the O and the vibrational and rotational distributions in the CO suggest that a spin-forbidden channel operates as it does in ozone photolysis. The data for both O3 and CO2 suggest a relationship between the structure of the parent molecule and the dynamics of dissociation.

  8. The PHOCUS Project: Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Hedin, J.; Gumbel, J.; Khaplanov, M.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. Here we will describe the optical measurements of the atmospheric composition and present first results including comparison to the other simultaneous measurements. The atmospheric composition was probed by a set of optical instruments from Stockholm University. The idea behind the instrument setup was to combine the advantages of the sensitive resonance fluorescence with well-calibrated airglow photometry. The set of instruments consisted of two resonance fluorescence probes (each containing a lamp and a detector), one for atomic oxygen and one for atomic hydrogen, and two IR photometers for O2 and OH dayglow emissions in the near IR. The O2 IR Atmospheric system at 1.27 μm is related to the photolysis of O3, which during the day is in steady state with O and a retrieval of O is possible. The OH Meinel emission is produced by the reaction between mesospheric O3 and H, and H concentrations can be deduced by combining information from both photometers. Unfortunately, some of these measurements were corrupted by instrument problems or payload glow. O3 and O profiles will be presented and compared to the simultaneous measurements of ice and meteoric smoke particles, water vapour and the state of the background neutral and charged atmosphere.

  9. New insights into martian atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Boxe, C. S.; Francisco, J. S.; Shia, R.-L.; Yung, Y. L.; Nair, H.; Liang, M.-C.; Saiz-Lopez, A.

    2014-11-01

    HOx radicals are produced in the martian atmosphere by the photolysis of water vapor and subsequently participate in catalytic cycles that recycle carbon dioxide (CO2) from its photolysis product carbon monoxide (CO), providing a qualitative explanation for the stability of its atmosphere. Balancing CO2 production and loss based on our current understanding of martian gas-phase chemistry has, however, proven to be difficult. The photolysis of O3 produces O(1D), while oxidation of CO produces HOCO radicals, a new member of the HOx family. The O(1D) quantum yield has recently been updated, which quantifies nonzero quantum yields in the Huggins bands. In Earth's atmosphere HOCO is considered to be unimportant since it is quickly removed by abundant oxygen molecules. The smaller amount of O2 in the Mars' atmosphere causes HOCO's lifetime to be longer in Mars' atmosphere than Earth's (3 × 10-5 s to 1.2 days from Mars's surface to 240 km, respectively). Limited kinetic data on reactions involving HOCO prevented consideration of its reactions directly in atmospheric models. Therefore, the impact of HOCO reactions on martian chemistry is currently unknown. Here, we incorporate new literature rate constants for HOCO chemistry and an updated representation of the O(1D) quantum yield in the Caltech/JPL 1-D photochemical model for Mars' atmosphere. Our simulations exemplify perturbations to NOy, HOx, and COx species, ranging from 5% to 50%. The modified O(1D) quantum yield and new HOCO chemistry cause a 10% decrease and a 50% increase in OH and H2O2 total column abundances, respectively. At low altitudes, HOCO production contributes 5% towards CO2 production. Given recent experimentally-obtained branching ratios for the oxidation of CO, HOCO may contribute up to 70% toward the production of NOy, where HOx and NOy species are enhanced up to a factor 3, which has implications for rethinking the fundamental understanding of NOy, HOx, and CO/CO2 cycling on Mars. Two new reaction

  10. Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    SciTech Connect

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

    2013-03-05

    As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

  11. Is microbiolgy an alternative route to photochemistry in atmospheric chemistry?

    NASA Astrophysics Data System (ADS)

    Vaitilingom, M.; Parazols, M.; Sancelme, M.; Deguillaume, L.; Mailhot, G.; Delort, A.-M.

    2009-04-01

    Until very recently scientists from atmospheric sciences focussed their studies on physical and chemical phenomena taking place in cloud water phase neglecting the presence of active microorganisms in this medium. For instance, considering atmospheric chemistry, solar light is considered as the predominant catalyser for chemical reactions occurring in the atmosphere. However recent studies show that living and active microorganisms, including bacteria, yeasts and fungi, are present in the atmospheric water phase and could play an active role in chemistry of clouds. Indeed living microorganisms are clearly biocatalysts which could transform organic compounds as an alternative route to photochemistry. The objective of our project is to bring answers to this new scientific question by a multidisciplinary approach involving atmospheric physicists, photochemists and microbiologists. Microorganisms have been isolated and identified in cloud water sampled at the puy de Dôme summit which is an atmospheric observatory and a European referenced site. Laboratory experiments were carried out to evaluate the potential of organic species (carboxylic acids) degradation by the photochemical or microbiological ways. The project was centred on few carboxylic acids among them succinic, acetic, formic and oxalic acids (the most important organic acids in cloud water sampled at Puy de Dôme). Degradation rates were measured during biodegradation alone (Pseudomonas syringae), photochemistry alone (hydrogen peroxide + light) and combing both processed using artificial reconstituted cloud water. Our first results show that the obtained degradation rates are in the range of order.

  12. Chemistry and evolution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.

  13. Atmospheric Prebiotic Chemistry and Organic Hazes

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  14. Atmospheric Prebiotic Chemistry and Organic Hazes.

    PubMed

    Trainer, Melissa G

    2013-08-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  15. Atmospheric Prebiotic Chemistry and Organic Hazes

    PubMed Central

    Trainer, Melissa G.

    2013-01-01

    Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  16. DATA USER'S GUIDE TO THE MOUNTAIN CLOUD CHEMISTRY PROJECT

    EPA Science Inventory

    Atmospheric pollution is deposited on the forests of the eastern United States in a variety of forms. oncern has been raised that the exposure to and deposition of these atmospheric pollutants may play a role in the decline of these forests. he Mountain Cloud Chemistry Project (M...

  17. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  18. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  19. On the chemistry of Jupiter's upper atmosphere

    USGS Publications Warehouse

    Saslaw, W.C.; Wildey, R.L.

    1967-01-01

    We conduct a first investigation into the ion-molecule chemistry of the upper Jovian atmosphere. Experimental results show that intense ultraviolet radiation reacts with the constituents of the Jovian atmosphere to produce C2H4, C2H6, C3H8, and higher polymers. The general procedure for calculating both equilibrium and nonequilibrium abundances of these products is formulated and applied to the case of the surface passage of a satellite shadow. A specific example is made of ethylene, for which an analytical approximation gives 1010 molecules in an atmospheric column of 1 cm2 cross section after a very rapid rise to equilibrium. Such a concentration of ethylene does not substantially affect the infrared radiation in the shadow. ?? 1967.

  20. Chemistry of Earth's Putative Steam Atmosphere

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Schaefer, L.

    2007-12-01

    The concept of a steam atmosphere generated by impact devolatilization of planetesimals accreted during Earth's formation is over 20 years old (Matsui and Abe, 1986; Lange and Ahrens, 1982). Surprisingly, with the possible exception of a few qualitative remarks, no one has critically assessed this scenario. We use thermochemical equilibrium and, where relevant, thermochemical kinetic calculations to model the chemistry of the "steam" atmosphere produced by impact volatilization of different types of accreting material. We present results for our nominal conditions (1500 K, total P = 100 bar). We also studied the effects of variable temperature and total pressure. The composition of the accreting material is modeled using average compositions of the Orgueil CI chondrite, the Murchison CM2 chondrite, the Allende CV3 chondrite, average ordinary (H, L, LL) chondrites, and average enstatite (EH, EL) chondrites. The major gases released from CI and CM chondritic material are H2O, CO2, H2, H2S, CO, CH4, and SO2 in decreasing order of abundance. About 10% of the atmosphere is CO2. The major gases released from CV chondritic material are CO2, H2O, CO, H2, and SO2 in decreasing order of abundance. About 20% of the total atmosphere is steam. The major gases released from average ordinary chondritic material are H2, CO, H2O, CO2, CH4, H2S, and N2 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with steam being about 10% of the total atmosphere. The major gases released from EH chondritic material are H2, CO, H2O, CO2, N2, and CH4 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with about 10% of the total atmosphere as steam. This work was supported by the NASA Astrobiology and Origins Programs.

  1. Trace Element Chemistry in Urban Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Farhana, B.; Husain, L.

    2006-12-01

    Unlike in the United States, the concentration of trace elements in urban air is still high enough in South Asian cities to study the impact of trace elements on climate and human health. Hence, continuous sampling of PM2.5 (particulate matter of <2.5 μm aerodynamic diameter)was carried out using low volume sampler in winter (2005-2006) in Lahore, the second largest city of Pakistan, which is highly impacted by urban and agricultural emissions and has remained unexplored in terms of atmospheric chemistry. Aerosols collected on this campaign are likely to carry the signatures of emissions from Afghanistan, North and Central Pakistan, North India in addition to the local pollution sources. During sampling from December 2005 to January 2006, it was possible to collect several samples during brief fog episodes. Samples were analyzed for 25 elements (Be, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Tl and Pb) using inductively coupled plasma mass spectrometry. High pollutant concentrations were observed throughout the study, for instance, Cr concentrations up to 1.4 μgm-3, As, 135 ngm-3, Cd, 93 ngm-3, Sn, 988 ngm-3 and Sb, 157 ngm-3. Pb and Zn concentrations respectively up to 12 and 48 μgm-3 were observed. Calculation of enrichment factor and crustal correction illustrate the attribution of Cr, Co, Ni, Zn, As, Se, Mo, Ag Cd, Sn, Sb, Tl and Pb to non-crustal sources. Air parcel back trajectories, interelemental relationships and meteorological observations have been used to explain the sources and the impacts of fog chemistry and mixing heights on atmospheric processing of trace elements in PM2.5. Atmospheric stagnation appeared to be one of factors causing episodic high concentrations. Crustal correction and interelemental relationships apparently suggest the emissions from coal and oil combustion, industrial processes, building construction sites and biomass burning as the prime role players in the atmospheric pollution in

  2. Preindustrial to Present-Day Changes in Tropospheric Hydroxyl Radical and Methane Lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Naik, V.; Voulgarakis, A.; Fiore, A. M.; Horowitz, L. W.; Lamarque, J.-F.; Lin, M.; Prather, M. J.; Young, P. J.; Bergmann, D.; Cameron-Smith, P. J.; Cionni, I.; Collins, W. J.; Dalsoren, S. B.; Doherty, R.; Eyring, V.; Faluvegi, G.; Folberth, G. A.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; vanNoije, T. P. C.; Plummer, D. A.; Righi, M.; Rumbold, S. T.; Skeie, R.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Sudo, K.; Szopa, S.; Zeng, G.

    2013-01-01

    We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6%) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  3. Atmospheric chemistry - Response to human influence

    NASA Technical Reports Server (NTRS)

    Logan, J. A.; Prather, M. J.; Wofsy, S. G.; Mcelroy, M. B.

    1978-01-01

    Global atmospheric chemistry is surveyed, and the agreement of models with observed distribution of gases is considered. The influence of human perturbations due to combustion, agriculture, and chloro-carbon releases is examined with emphasis on ozone. Effects of combustion-related releases of CO on the abundances of other gases as well as possible effects of CO on tropospheric ozone are discussed. Other topics include the contribution of the chlorocarbon industry to stratospheric chloride and the recombination of nitrogen fixed by agriculture and combustion.

  4. Ion Chemistry in Atmospheric and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Fox, J. L.

    1994-01-01

    There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an

  5. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  6. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, S.; Horowitz, L. W.; McConnell, J. R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, J.-H.

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  7. The atmospheric chemistry of iodine monoxide

    SciTech Connect

    Laszlo, B.; Huie, R.E.

    1995-12-01

    The possible role of iodine on tropospheric ozone arid, more recently, stratospheric ozone has been of considerable interest. There have been, however relatively few experimental determination of the chemistry of the important radical, IO. Laser flash photolysis with two-wavelength transient absorption experiments were performed on N{sub 2}O/I{sub 2}+X{sub 2}/N{sub 2} mixtures (X{sub 2} = halogen) at room temperature and total pressure between 8 and 80 kPa. An extended IO absorption spectrum, experimental rate coefficients of IO+IO, IO+O({sup 3}P), IO+BrO, BrO+I and IO+ClO reactions will be presented. Preliminary results show the atmospheric importance of reaction between alkylperoxy radicals and iodine atoms or iodine monoxide radicals. These reactions seem to be important tropospheric iodine sinks.

  8. Jupiter: Aerosol Chemistry in the Polar Atmosphere.

    PubMed

    Wong; Lee; Yung; Ajello

    2000-05-10

    Aromatic compounds have been considered a likely candidate for enhanced aerosol formation in the polar region of Jupiter. We develop a new chemical model for aromatic compounds in the Jovian auroral thermosphere/ionosphere. The model is based on a previous model for hydrocarbon chemistry in the Jovian atmosphere and is constrained by observations from Voyager, Galileo, and the Infrared Space Observatory. Precipitation of energetic electrons provides the major energy source for the production of benzene and other heavier aromatic hydrocarbons. The maximum mixing ratio of benzene in the polar model is 2x10-9, a value that can be compared with the observed value of 2+2-1x10-9 in the north polar auroral region. Sufficient quantities of the higher ring species are produced so that their saturated vapor pressures are exceeded. Condensation of these molecules is expected to lead to aerosol formation. PMID:10813686

  9. Atmospheric Chemistry Experiment (ACE) Measurements of Tropospheric and Stratospheric Chemistry and Long-Term Trends

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray

    2007-01-01

    We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm

  10. Tampa Bay Regional Atmospheric Chemistry Experiment: Overview

    NASA Astrophysics Data System (ADS)

    Atkeson, T. D.

    2003-12-01

    The Tampa Bay Estuary Program (TBEP) was formed in 1991 to assist in developing a comprehensive plan to restore and protect Tampa Bay in Florida, USA. An ecological indicator of the health of the Bay is the coverage of seagrasses, historically in decline, which are important to the aquatic habitat and food web of the bay. Seagrass decline is linked to excess of plant-stimulating forms of nitrogen to the bay, promoting algae growth, which shades out light needed to sustain seagrasses. One element of the TBEP is a private-local-state, multi-agency Nitrogen Management Consortium that seeks to limit nitrogen loading to the Bay to the 1992-1994 average. Present estimates suggest atmospheric deposition comprises ~ 30% of the nitrogen budget of the Bay. This estimate was based, however, on limited ambient monitoring data and simple models, typical of such national estuary program efforts nationwide. In the Bay Regional Atmospheric Chemistry Experiment Florida DEP joined with TBEP to increase the intensity, sophistication and spatial scope of monitoring and modeling and provide better information on air quality in the Tampa Bay area. The result will be improved estimates of the effects of local and regional emissions of oxides of nitrogen (NOx) on the Bay and the benefits to be gained from implementation of emissions reduction strategies.

  11. Technique for atmospheric rate chemistry calculations. [of SST exhaust

    NASA Technical Reports Server (NTRS)

    Matloff, G. L.

    1976-01-01

    The possibility that predictions of atmospheric photochemistry/transport models are sensitive to uncertainties in reaction rates and other inputs stresses the need for rapid numerical integration schemes in rate photochemistry problems. Reducing the computational burden has a major merit in facilitating sensitivity studies to assess the effect of uncertainties on predicted ozone diminutions from NOx (NO + NO2) in the exhaust plume of SST engines. The paper discusses the validity of an algorithmic approach to integration of rate chemistry problems in combustion, developed by Rubel and Baronti for an approximate calculation of the production rate of the i-th chemical species involved. An analysis of two projected SST engines confirms the validity of the proposed algorithm. Because of the relative arithmetical simplicity, it may be easier to treat diffusion rate chemistry calculations using the Rubel and Baronti approximation than would be possible by other approaches.

  12. Atmospheric Chemistry of Acenaphthalene and Acenaphthylene

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Wenger, J. C.

    2009-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are released into the atmosphere as a by-product of combustion processes and have been detected in ambient air at urban locations around the world. In the atmosphere, PAHs containing two and three rings are found predominantly in the gas-phase, whilst those containing six or more rings principally adsorb to particles. PAHs with four or five rings are found in both phases. The gas-phase PAHs can be chemically transformed in the lower troposphere via reaction with hydroxyl (OH) and nitrate (NO3) radicals and ozone. These reactions lead to the formation of a range of oxidation products including phenols, nitro-PAHs and carbonyls, in addition to other pollutants such as ozone and secondary organic aerosol (SOA). Despite their importance, relatively little is known about the atmospheric chemistry of the PAHs, mainly because of the difficulty of working with these compounds and also the variety and complexity of the reaction products formed. Up to now only one kinetic study on the reaction of acenaphthalene and acenaphthylene with OH, NO3 and ozone has been reported in the peer-reviewed literature. In this study, we have determined rate coefficients for the gas-phase reactions of acenaphthalene and acenaphthylene with OH, NO3 and ozone using the relative rate method. The results are compared with previous measurements and used to provide estimates of the tropospheric lifetimes of these compounds. A recently developed denuder-filter sampling technique was used to investigate the gas and particle phase products arising from the photooxidation of the PAHs. Chemical analysis was performed using gas chromatography - mass spectrometry using O-(2,3,4,5,6- pentafluorobenzyl)-hydroxylamine (PFBHA) and pentafluorobenzyl bromide (PFBBr) as derivatizing agents for carbonyls and phenols respectively. The results provide new data on the gas-particle partitioning behavior of the oxidation products and useful information on the products likely to

  13. Measurement and Chemistry of Atmospheric Organic Nitrates

    NASA Astrophysics Data System (ADS)

    Buhr, Martin Patrick

    1990-01-01

    Organic nitrates are important reservoir species for NO_{rm x} (NO + NO_2) in the atmosphere. Typically formed in and around urban areas, the organic nitrates sequester NO_{rm x} and allow it to be transported to rural and remote regions, wherein it may be released into the atmosphere and participate in catalytic cycles leading to the formation of ozone. The research described in this work focusses on two problems related to our understanding of the atmospheric chemistry of the organic nitrates, (1) measuring the organic nitrates contributions to total reactive nitrogen (NO_ {rm y}) in the atmosphere, and (2) determining the conditions under which the organic nitrates release NO_{rm x} into the atmosphere and thereby participate in ozone formation. The work performed included development of measurement methods for the organic nitrates, ambient measurements of several organic nitrates made under a variety of conditions, and data interpretation using a combination of bivariate and multivariate analysis. The instrument development that was performed centered around incorporation of capillary column technology in a gas chromatographic method. Use of a capillary column resulted in improved chromatographic resolution and instrument sensitivity. In addition to the work on the chromatographic separation of the organic nitrates, some work was done regarding the sensitivity of the electron capture detector (ECD) as a function of electrical mode of operation. Ambient measurements of several of the organic nitrates were made during three field experiments in conjunction with NOAA's Aeronomy laboratory, including PAN rm CH_3C(O)O_2NO_2), PPN rm (C_2H_5C(O)O_2NO _2), and the C_1-C _5 alkyl nitrates (RONO_2 ). The measurements were made in conjunction with a wide variety of other chemical and physical parameters. Data interpretation was performed using bivariate analysis in order to understand the diurnal variation of the concentrations of the organic nitrates and their

  14. The Atmospheric Chemistry of Methyl Chavicol (Estragole)

    NASA Astrophysics Data System (ADS)

    Bloss, W. J.; Alam, M. S.; Rickard, A. R.; Hamilton, J. F.; Pereira, K. F.; Camredon, M.; Munoz, A.; Vazquez, M.; Alacreu, P.; Rodenas, M.; Vera, T.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and secondary organic aerosols (SOA), with consequences for health, air quality, crop yields, atmospheric chemistry and radiative transfer. It is estimated that ca. 90 % of VOC emissions to the atmosphere originate from biogenic sources (BVOC); such emissions may increase under future climates. Recent field observations have identified Methyl Chavicol ("MC" hereafter, also known as Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA [Bouvier-Brown et al., 2009], and within an oil palm plantation in Malaysian Borneo, where it was found that MC could represent the highest single floral contribution of reactive carbon to the atmosphere [Misztal et al., 2010]. Palm oil cultivation, and hence emissions of MC, may be expected to increase with societal food and biofuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE (European Photoreactor) facility in Valencia, Spain (200 m3 outdoor smog chamber), investigating the degradation of MC by reaction with OH, O3 and NO3. An extensive range of measurement instrumentation was used to monitor precursor and product formation, including stable species (FTIR, PTR-MS, GC-FID and GC-MS), radical intermediates (LIF), inorganic components (NOx, O3, HONO (LOPAP and aerosol production (SMPS) and composition (PILS and filters; analysed offline by LC-MS and FTICR-MS). Experiments were conducted at a range of NOx:VOC ratios, and in the presence and absence of radical (OH) scavenger compounds. This chamber dataset is used to determine the rate constants for reaction of MC with OH, O3 and NO3, the ozonolysis radical yields, and identify the primary degradation products for each initiation route, alongside the aerosol mass yields. Aerosol composition measurements are analysed to identify markers for MC contributions to

  15. A Cooperative Chemistry Project: Chemsource.

    ERIC Educational Resources Information Center

    Giles, Catherine Y.

    1994-01-01

    Chemsource is a set of instructional materials designed as a resource for high school chemistry teachers, particularly those not trained in the discipline. Materials consist of a videotape demonstrating both generic and science-specific teaching skills and a textbook on varied chemistry topics, including suggested teaching techniques and…

  16. Parametric Analyses of Potential Effects on Stratospheric and Tropospheric Ozone Chemistry by a Fleet of Supersonic Business Jets Projected in a 2020 Atmosphere

    NASA Technical Reports Server (NTRS)

    Wey, Chowen (Technical Monitor); Dutta, M.; Patten, K.; Wuebbles, D.

    2004-01-01

    A class of new supersonic aircraft for business purposes is currently under consideration for use starting around 2015 to 2020. These aircraft, which can accommodate about 12 to 13 passengers, will fly at a speed of Mach 1.6 to 2 and are commonly termed as Supersonic Business Jets (SSBJs). A critical issue that needs to be addressed during the conception phase of such aircraft is the potential impact of emissions from such aircraft on the atmosphere especially on stratospheric ozone. Although these SSBJs will be much smaller in size and will have smaller engines than the hypothetical fleets of commercial passenger High Speed Civil Transport (HSCT) aircraft that we have studied previously, they will still emit nitrogen oxides (NOx = NO + NO2), carbon dioxide (CO2), water vapor (H2O) and sulfur, the latter if it is still in the fuel. Thus, it is important to design these SSBJs in a manner so that a projected fleet of these aircraft will not have a significant effect on ozone or on climate. This report analyzes the potential impact of a fleet of SSBJs in a set of parametric analyses that examine the envelope of potential effects on ozone over a range of total fuel burns, emission indices of nitrogen oxides (E.I.(NOx)), and cruise altitudes, using the current version of the UIUC zonally-averaged two-dimensional model of the global atmosphere.

  17. National Chemistry Week 2003: Earth's Atmosphere and Beyond. JCE Resources for Chemistry and the Atmosphere

    NASA Astrophysics Data System (ADS)

    Jacobsen, Erica K.

    2003-10-01

    This annotated bibliography collects the best that past issues of the Journal of Chemical Education have to offer for use with this year's National Chemistry Week theme: Earth's Atmosphere and Beyond. Each article has been characterized as a demonstration, experiment, activity, informational, or software/video item; several fit in more than one classification. The most recent articles are listed first. Also included is an evaluation as to which levels the article may serve. Articles that appeared adaptable to other levels, but are not designed explicitly for those levels, are labeled "poss. h.s." "poss. elem.", and so forth.

  18. [Global Atmospheric Chemistry/Transport Modeling and Data-Analysis

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1999-01-01

    This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.

  19. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  20. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  1. Session on coupled atmospheric/chemistry coupled models

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1993-01-01

    The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.

  2. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    SciTech Connect

    Park, Sung-Jin; Eden, James Gary

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  3. LABORATORY AND COMPUTATIONAL CHEMISTRY INVESTIGATIONS OF THE GAS PHASE ATMOSPHERIC CHEMISTRY OF AIR TOXIC COMPOUNDS

    EPA Science Inventory

    A full assessment of the impact of the release of air toxic compounds into the atmospheric requires a detailed understanding of their atmospheres lifetimes and fates. To address this issue a detailed review of the atmospheric chemistry of each of these classes was carried out t...

  4. Sulfur Chemistry in the Early and Present Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Summers, M. E.

    2011-01-01

    Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.

  5. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry MechanismsChemistry Mechanisms

    EPA Science Inventory

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RAC...

  6. Concluding remarks: Faraday Discussion on chemistry in the urban atmosphere.

    PubMed

    Jimenez, Jose L

    2016-07-18

    This article summarises the Concluding remarks from the Faraday Discussion on Chemistry in the Urban Atmosphere. The following themes are addressed: (a) new results that inform our understanding of the evolving sources and composition of the urban atmosphere ("News"); (b) results that identify gaps in our understanding that necessitate further work ("Gaps"); PMID:27363779

  7. COMPUTATIONAL CHEMISTRY: AN EMERGING TECHNOLOGY FOR SOLVING PROBLEMS IN ATMOSPHERIC CHEMISTRY

    EPA Science Inventory

    Over the past three decades, atmospheric chemistry has served as an important component in developing strategies for reducing ambient concentrations of air pollutants. Laboratory studies are carried out to investigate the key chemical reactions that determine the fates and lif...

  8. Hydrogen chemistry - Perspective on experiment and theory. [atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1975-01-01

    A review is presented of the advantages and limitations of various experimental methods for the investigation of the kinetics of hydrogen chemistry, including classic thermal and photochemical methods and the crossed molecular beam method. Special attention is given to the flash photolysis-resonance fluorescence apparatus developed by Braun et al, in which repetitive vacuum UV flashes result in the photolytic generation of the desired species, and to the discharge-flow technique. The use of various theoretical methods for the selection or elimination of kinetic data is considered in a brief discussion of the rate theory of two-body encounters and recombination-dissociation processes in neutral reactions. Recent kinetic studies of a series of OH reactions and of a major loss process for odd H in the stratosphere are summarized.

  9. Air-snow interactions and atmospheric chemistry.

    PubMed

    Dominé, Florent; Shepson, Paul B

    2002-08-30

    The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species. PMID:12202818

  10. Atmospheric chemistry: The return of ethane

    NASA Astrophysics Data System (ADS)

    Hakola, Hannele; Hellén, Heidi

    2016-07-01

    Ethane emissions can lead to ozone pollution. Measurements at 49 sites show that long-declining atmospheric ethane concentrations started rising in 2010 in the Northern Hemisphere, largely due to greater oil and gas production in the USA.

  11. Air-Snow Interactions and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Dominé, Florent; Shepson, Paul B.

    2002-08-01

    The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species.

  12. Chemistry [Sahuarita High School Career Curriculum Project].

    ERIC Educational Resources Information Center

    Lane, Robert

    This course entitled "Chemistry" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of three packages, the first dealing with solids, liquids and solutions, the second with acids, bases and anions, and the third with cation analysis. These packages are…

  13. Chemistry and Writing: A Collaborative Writing Project.

    ERIC Educational Resources Information Center

    Hamilton, Todd M.

    2000-01-01

    Describes a collaborative writing project at Adrian College in Michigan. Students in a general chemistry class collaborated with those from a freshman writing course; the intention was to have students combine their talents to improve their ability to express scientific ideas in a clear and accurate manner. Discusses student reactions and…

  14. Multiple oscillations in Neoarchaean atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Izon, Gareth; Zerkle, Aubrey L.; Zhelezinskaia, Iadviga; Farquhar, James; Newton, Robert J.; Poulton, Simon W.; Eigenbrode, Jennifer L.; Claire, Mark W.

    2015-12-01

    The Great Oxidation Event (GOE) represents a crucial juncture in Earth history, signifying the rise in atmospheric oxygen from parts per million to percent levels at ∼2.45-2.32 billion-years-ago (Ga). Although planetary oxygenation undoubtedly led to the inception of the contemporary Earth system, the trigger(s) and mechanism(s) controlling this chemical reorganisation remain elusive. Quantitative estimates of the atmosphere's composition in the prelude to the GOE are central to understanding this oxygenation event. Previous analyses of 2.65-2.5 Ga sediments from the Griqualand Basin (South Africa) invoke a tantalising picture of an unusual Earth environment, alluding to an atmosphere periodically dominated by a layer of organic particles ("haze") formed from methane photolysis. However, as yet this hypothesis has remained untested. Here we present four new coupled carbon and quadruple sulphur isotope records from distal, time equivalent (2.7-2.5 Ga), sedimentary successions from South Africa and Western Australia. These extended records reveal similar chemostratigraphic trends, supporting a dynamic terminal-Neoarchaean atmosphere, oscillating between a hazy state at elevated methane concentrations, and a haze-free anoxic background state. We suggest these atmospheric aberrations were related to heightened biogenic methane fluxes fuelled by enhanced nutrient delivery from climatically or weathering induced feedbacks. These data question the canonical view of a simple, unidirectional planetary oxygenation and signify that the overture to the GOE was governed by complex feedbacks within the Earth-biosphere system.

  15. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    SciTech Connect

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C. E-mail: melott@ku.edu

    2010-05-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV. An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV–1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  16. NESTED GRID MESOSCALE ATMOSPHERIC CHEMISTRY MODEL

    EPA Science Inventory

    A nested grid version of the Regional Acid Deposition Model (RADM) has been developed. he horizontal grid interval size of the nested model is 3 times smaller than that of RADM (80/3 km 26.7 km). herefore the nested model is better able to simulate mesoscale atmospheric processes...

  17. Real-time atmospheric chemistry field instrumentation.

    PubMed

    Farmer, Delphine K; Jimenez, Jose L

    2010-10-01

    Quantifying the concentrations of trace atmospheric species in complex, reactive, and constantly changing gas and particle mixtures is challenging. This article provides a broad overview of recent advances in instrumentation used for analyzing ambient gases and particles continuously and with fast time resolution during field campaigns. PMID:20722374

  18. Multiphase Chemistry of Pyruvic Acid Under Atmospherically Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Vaida, V.; Monod, A.; Doussin, J. F.; Reed Harris, A. E.; Griffith, E. C.; Kroll, J. A.; Rapf, R.

    2014-12-01

    Chemistry in the natural environment proceeds in multiple phases and is subject to effects from atmospheric constituents and conditions. This presentation will use pyruvic acid as a case study to demonstrate the complexity of atmospheric multiphase chemistry. The photophysics and photochemistry of pyruvic acid proceeds on different potential energy surfaces with different reaction mechanisms, rates, and products in gas versus the aqueous phase. While the gas phase reaction generally decreases the complexity of products, the aqueous chemistry creates higher molecular weight, surface-active compounds. The studies presented involve a combination of laboratory studies that focus on the photochemistry of pyruvic acid in both the gas and aqueous phases. Further, experiments in an environmental simulation chamber (CESAM) that follow the photochemistry chemistry of pyruvic acid under atmospherically relevant conditions will be presented to highlight the effect of pressure, oxygen, relative humidity, and phase on the photochemistry of pyruvic acid. The results provide new input for atmospheric chemistry models that is required to better describe the behavior of α-keto acids in the environment.

  19. Atmospherically relevant ion chemistry of ozone and its cation.

    PubMed

    de Petris, Giulia

    2003-01-01

    The importance of ionic processes that occur in terrestrial, planetary, and stellar atmospheres is receiving increasing recognition. Actually, ions play important, often crucial, roles in a variety of atmospheric processes throughout the universe, and a strong link with the neutral chemistry is also apparent. In the terrestrial atmosphere, the ionic reactions are most relevant in those transient and fleeting events, e.g., lightning, coronas (in thunderstorm clouds and along power lines), where the local ion density is much higher than in unperturbed air, and the chemical systems are typically far from equilibrium. In such cases, ozone, a key molecule for the terrestrial atmosphere, is also present in high local concentrations; it is formed from O(2) by the same transient event. Accordingly, this review provides a survey of the positive ion chemistry of ozone with several of the most important "atmospheric" species: the reactions, the products, and the importance of the examined processes are discussed also in the light of the local thermodynamic disequilibrium (LTD) approach to the chemistry of transient atmospheric events. In all such studies, mass spectrometry is traditionally, and remains today, the experimental technique of choice. The novel application of mass spectrometry to the study of neutral species (NRMS), highly successful for the preparation and positive detection of long-sought, otherwise inaccessible, short-lived neutrals, makes mass spectrometry the most powerful tool now available for the study of the species and processes that are relevant to atmospheric chemistry. Selected examples of the interlink between the neutral and the ionic chemistry are also illustrated. PMID:12884389

  20. ATMOSPHERIC CHEMISTRY OF SELECTED HYDROXYCARBONYLS. (R825252)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Response of lightning NOx emissions and ozone production to climate change: Insights from the Atmospheric Chemistry and Climate Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Finney, D. L.; Doherty, R. M.; Wild, O.; Young, P. J.; Butler, A.

    2016-05-01

    Results from an ensemble of models are used to investigate the response of lightning nitrogen oxide emissions to climate change and the consequent impacts on ozone production. Most models generate lightning using a parameterization based on cloud top height. With this approach and a present-day global emission of 5 TgN, we estimate a linear response with respect to changes in global surface temperature of +0.44 ± 0.05 TgN K-1. However, two models using alternative approaches give +0.14 and -0.55 TgN K-1 suggesting that the simulated response is highly dependent on lightning parameterization. Lightning NOx is found to have an ozone production efficiency of 6.5 ± 4.7 times that of surface NOx sources. This wide range of efficiencies across models is partly due to the assumed vertical distribution of the lightning source and partly to the treatment of nonmethane volatile organic compound (NMVOC) chemistry. Careful consideration of the vertical distribution of emissions is needed, given its large influence on ozone production.

  2. Parallel processing of atmospheric chemistry calculations: Preliminary considerations

    SciTech Connect

    Elliott, S.; Jones, P.

    1995-01-01

    Global climate calculations are already saturating the class modern vector supercomputers with only a few central processing units. Increased resolution and inclusion of routines to deal with biogeochemical portions of the terrestrial climate system will soon demand massively parallel approaches. The atmospheric photochemistry ensemble is intimately linked to climate through the trace greenhouse gases ozone and methane and modules for representing it are being attached to global three dimensional transport and GCM frameworks. Atmospheric kinetics involve dozens of highly interactive tracers and so will accentuate the need for parallel processing of earth system simulations. In the present text we lay some of the groundwork for addition of atmospheric kinetics packages to GCM and global scale atmospheric models on multiply parallel computers. The discussion is tailored for consumption by the photochemical modelling community. After a review of numerical atmospheric chemistry methods, we examine how kinetics can be implemented on a parallel computer. We concentrate especially on data layout and flexibility and how these can be implemented in various programming models. We conclude that chemistry can be implemented rather easily within existing frameworks of several parallel atmospheric models. However, memory limitations may preclude high resolution studies of global chemistry.

  3. Equilibrium and Disequilibrium Chemistry in Evolved Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2015-11-01

    It has been found that sub-Neptune-sized planets, although not existing in our Solar System, are ubiquitous in our interstellar neighborhood. This revelation is profound because, due to their special sizes and proximity to their host stars, Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres. I will discuss helium-dominated atmospheres as one of the outcomes of extensive atmospheric evolution on warm Neptune- and sub-Neptune-sized exoplanets. Due to depleted hydrogen abundance, the dominant carbon and oxygen species may not be methane or water on these evolved planets. Equilibrium and disequilibrium chemistry models are used to compute the molecular compositions of the atmospheres and their spectral features. Applications to GJ 436 b and other Neptune- and sub-Neptune-sized exoplanets will be discussed. As the observations to obtain the spectra of these planets continue to flourish, we will have the opportunity to study unconventional atmospheric chemical processes and test atmosphere evolution theories

  4. Equilibrium and Disequilibrium Chemistry in Evolved Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2015-12-01

    It has been found that sub-Neptune-sized planets, although not existing in our Solar System, are ubiquitous in our interstellar neighborhood. This revelation is profound because, due to their special sizes and proximity to their host stars, Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres. I will discuss helium-dominated atmospheres as one of the outcomes of extensive atmospheric evolution on warm Neptune- and sub-Neptune-sized exoplanets. Due to depleted hydrogen abundance, the dominant carbon and oxygen species may not be methane or water on these evolved planets. Equilibrium and disequilibrium chemistry models are used to compute the molecular compositions of the atmospheres and their spectral features. Applications to GJ 436 b and other Neptune- and sub-Neptune-sized exoplanets will be discussed. As the observations to obtain the spectra of these planets continue to flourish, we will have the opportunity to study unconventional atmospheric chemical processes and test atmosphere evolution theories

  5. Effects of Deep Convection on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2007-01-01

    This presentation will trace the important research developments of the last 20+ years in defining the roles of deep convection in tropospheric chemistry. The role of deep convection in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep convection have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep convection occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-convective enhancements of ozone production were estimated for convection occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that convective transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that convective downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep convection are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in convective outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within convective clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of convective transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning

  6. Ozone Depletion, UVB and Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1999-01-01

    The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.

  7. Laboratory Studies of Atmospheric Heterogeneous Chemistry

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.; Leu, M-T.

    1993-01-01

    In the laboratory, ice films formed by freezing from the liquid or more frequently by deposition from the vapor phase have been used to simulate stratospheric cloud surfaces for measurements of reaction and uptake rates. To obtain intrinsic surface reaction probabilities that can be used in atmospheric models, the area of the film surface that actually takes part in the reaction must be known. It is important to know not only the total surface area but also the film morphology in order to determine where and how the surface is situated and, thus, what fraction of it is available for reaction. Information on the structure of these ice films has been obtained by using several experimental methods. In the sections that follow, these methods will be discussed, then the results will be used to construct a working model of the ice films, and finally the model will be applied to an experimental study of HC1 uptake by H_2O ice.

  8. Atmospheric chemistry of i-butanol.

    PubMed

    Andersen, V F; Wallington, T J; Nielsen, O J

    2010-12-01

    Smog chamber/FTIR techniques were used to determine rate constants of k(Cl + i-butanol) = (2.06 ± 0.40) × 10(-10), k(Cl + i-butyraldehyde) = (1.37 ± 0.08) × 10(-10), and k(OH + i-butanol) = (1.14 ± 0.17) × 10(-11) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 ± 2K. The UV irradiation of i-butanol/Cl(2)/N(2) mixtures gave i-butyraldehyde in a molar yield of 53 ± 3%. The chlorine atom initiated oxidation of i-butanol in the absence of NO gave i-butyraldehyde in a molar yield of 48 ± 3%. The chlorine atom initiated oxidation of i-butanol in the presence of NO gave (molar yields): i-butyraldehyde (46 ± 3%), acetone (35 ± 3%), and formaldehyde (49 ± 3%). The OH radical initiated oxidation of i-butanol in the presence of NO gave acetone in a yield of 61 ± 4%. The reaction of chlorine atoms with i-butanol proceeds 51 ± 5% via attack on the α-position to give an α-hydroxy alkyl radical that reacts with O(2) to give i-butyraldehyde. The atmospheric fate of (CH(3))(2)C(O)CH(2)OH alkoxy radicals is decomposition to acetone and CH(2)OH radicals. The atmospheric fate of OCH(2)(CH(3))CHCH(2)OH alkoxy radicals is decomposition to formaldehyde and CH(3)CHCH(2)OH radicals. The results are consistent with, and serve to validate, the mechanism that has been assumed in the estimation of the photochemical ozone creation potential of i-butanol. PMID:21049965

  9. Chemistry in the near-surface atmosphere at Ganymede

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.

    2013-09-01

    Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy satellites in the Jovian and Kronian systems are of great importance for assessing the biological potential of these satellites. Depending on the satellite mass the formation of the rarefied exosphere with the relatively dense near-surface layer is possible as, for example, in the case of the relatively heavy Galilean satellites Europa and Ganymede in the Jovian system [1-3]. Ganymede is of special interest, because observations indicate that Ganymede has a significant O2 near - surface atmosphere, probably subsurface ocean, and is the only satellite with its own magnetosphere. Processes of formation of the rarefied gaseous envelope of Ganymede and chemical exchange between atmosphere and icy surface will be considered. The water vapour is usually the domin ant parent species in such gaseous envelope because of the ejection from the satellite icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface. The photochemis try of water vapour in the near - surface atmospheric layer [4] and the radiolysis of icy regolith [5] result in the supplement of the atmosphere by an admixture of H2, O2, OH and O. Returning molecules have species-dependent behaviour on contact with icy surface of the satellite and non-thermal energy distributions for the chemical radicals. The H2 and O2 molecules stick with very low efficiency and are immediately desorbed thermally, but returning H2O, OH, H and O stick to the grains in the icy regolith with unit efficiency. The suprathermal radicals OH, H, and O entering the regolith can drive the surface chemistry. The numerical kinetic model to investigate on the molecular level the chemistry of the atmosphere - surface interface of the rarefied Н2О-dominant gaseous envelope at Ganymede was developed. Such numerical model simulates the gas-phase and diffusive surface

  10. Multiple steady states in atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    1993-01-01

    The equations describing the distributions and concentrations of trace species are nonlinear and may thus possess more than one solution. This paper develops methods for searching for multiple physical solutions to chemical continuity equations and applies these to subsets of equations describing tropospheric chemistry. The calculations are carried out with a box model and use two basic strategies. The first strategy is a 'search' method. This involves fixing model parameters at specified values, choosing a wide range of initial guesses at a solution, and using a Newton-Raphson technique to determine if different initial points converge to different solutions. The second strategy involves a set of techniques known as homotopy methods. These do not require an initial guess, are globally convergent, and are guaranteed, in principle, to find all solutions of the continuity equations. The first method is efficient but essentially 'hit or miss' in the sense that it cannot guarantee that all solutions which may exist will be found. The second method is computationally burdensome but can, in principle, determine all the solutions of a photochemical system. Multiple solutions have been found for models that contain a basic complement of photochemical reactions involving O(x), HO(x), NO(x), and CH4. In the present calculations, transitions occur between stable branches of a multiple solution set as a control parameter is varied. These transitions are manifestations of hysteresis phenomena in the photochemical system and may be triggered by increasing the NO flux or decreasing the CH4 flux from current mean tropospheric levels.

  11. Future impact of transport emissions on the global atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Koffi, B.; Szopa, S.; Cozic, A.

    2009-04-01

    Emissions of air pollutants by road, air traffic and international shipping affect air quality and climate. Besides their effect on the ozone concentration and its related radiative forcing, they also affect the OH-concentration, i.e. the oxidizing capacity of the atmosphere. The pollutants are emitted by the three transport sectors into highly different environments. The O3 and OH potential productions induced by each of these sectors thus differ strongly. These transport emissions are expected to show drastic quantitative and geographic changes in the next decades, because of new emission regulations, increasing mobility, as well as demographic and economic growths. In addition to changes in emissions, significant changes in climate parameters such as H2O, temperature, and dynamics are expected to occur in the future global atmosphere. They will affect the oxidation processes and thereby the changes in the atmospheric concentrations induced by transport emissions. Within the EU-project QUANTIFY (Quantifying the Climate Impact of Global and European Transport Systems) the LMDz-INCA climate-chemistry model was used to estimate the effect of transport emissions on the global atmospheric chemical composition. In a first step, up-to-date emission datasets were used for the transport and non-transport anthropogenic emissions for present (2000) and future (2050, SRES A1b and B1 scenarios) using 2003 nudged meteorology. A strong reduction of the road emissions and a moderate (B1) to high (A1b) increase of the ship and aircraft emissions are expected by the year 2050. As a consequence, the impact of road emissions on ozone is shown to decrease drastically, whereas aviation would become the major transport sources of tropospheric ozone perturbation at global scale. According to the most likely scenario (A1b), the contribution of all transport modes to the ozone column would increase everywhere, reaching up to 13% in some areas such as Asia. In a second step of the study

  12. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.

    PubMed Central

    Atkinson, R; Arey, J

    1994-01-01

    The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products. PMID:7821285

  13. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    NASA Astrophysics Data System (ADS)

    Liang, H.; Chen, Z. M.; Huang, D.; Wu, Q. Q.; Huang, L. B.

    2015-01-01

    The existence and importance of peroxyformic acid (PFA) in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(O)O2) and formaldehyde or the hydroperoxyl radical (HO2) were likely to be the major source and degradation into formic acid (FA) was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(O)O2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(O)O2 and PFA chemistry on radical cycling was dependent on the yield of HC(O)O2 radical from HC(O) + O2 reaction. When this yield exceeded 50%, the HC(O)O2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(O)O2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  14. Chemistry of the atmosphere: Its impact on global change

    SciTech Connect

    Birks, J.W.; Calvert, J.G.; Sievers, R.E.

    1993-12-31

    This book is a summary of the plenary lectures of the CHEMRAWN VII Conference held in Baltimore, Maryland, 2-7 December 1991. The book draws together some interesting perspectives relating to global change from the atmospheric chemistry community from more of a chemist`s point of view than a meteorologist`s. In fact, Chemical Research Applied to World Needs (CHEMRAWN) illustrates how the international atmospheric chemistry community (the meeting was cosponsored by the International Union of Pure and Applied Chemistry and the American Chemical Society) has traditionally put forth a considerable effort to understand the global environmental impact of dumping chemicals into the atmosphere. The primary benefit of this book is the concise summary of the research issues confronting the atmospheric science community regarding global change. Being a summary of plenary lectures, the technical depth of the papers is not great. Therefore the book offers a good presentation of material to the nonspecialist who seeks to understand the issues around which the global change research community has focused.

  15. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    NASA Astrophysics Data System (ADS)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  16. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  17. What makes urban atmospheric chemistry different and special?

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.

    2016-04-01

    There has been a tendency in the atmospheric chemistry community to regard urban atmospheric chemistry as no different to global processes and to differentiate only in terms of the emissions density in models. Such an approach may be suitable for assessing the impact of urban emissions upon regional and global processes but is unsuited to generating a clear understanding of processes within the urban atmosphere itself. The urban atmosphere differentiates itself from the global atmosphere in terms of its density of emissions and relatively short timescales for chemical reaction processes, a consequence of which is that the key processes in the urban atmosphere are often different from those in the regional and remote atmosphere. This lecture will give relevant examples. One of the key aspects of both urban and rural/remote atmospheres is the oxidation of primary pollutants and the formation of secondary species. Such processes may differ markedly between urban and non-urban environments as there are major differences in the behaviour of key oxidants such as ozone, hydroxyl and NO3 radical. In the remote atmosphere the key production process for hydroxyl is through the photolysis of ozone to form excited state oxygen atoms which react with water vapour to form OH. In the urban atmosphere, concentrations of ozone are typically depressed relative to the rural atmosphere and hence this source of OH is less favourable. There are likely to be much higher concentrations of both nitrous acid and formaldehyde in the urban atmosphere whose photolysis is probably the major source of OH. Additionally, there is far more possibility for nocturnal formation of OH in the urban atmosphere from reactions of Criegee intermediates resulting from the oxidation of alkenes. As a consequence, it has been shown that winter to summer ratios of hydroxyl radical concentrations are much higher in the urban atmosphere than is typical of rural atmospheres in northern mid-latitudes. In rural

  18. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  19. Middle atmospheric ion chemistry during energetic particle events, and impacts on the neutral chemistry

    NASA Astrophysics Data System (ADS)

    Sinnhuber, M.; Winkler, H.; Wieters, N.; Kazeminejad, S.; Wissing, J. M.; Kallenrode, M.-B.; Stiller, G. P.; von Clarmann, T.

    2009-04-01

    It is well established that solar proton events (SPEs) are sources of distinct chemical disturbances in the Earth's polar atmosphere. While the observed SPE caused production of NOx, and the subsequent destruction of ozone can be reproduces quite well by atmospheric models using basic parametrizations for NOx and HOx release as a function of the particle impact ionisation rate, there are significant differences between measurements and model predictions concerning several other chemical compounds. For instance, during the October 2003 SPE, measurements of a number of species were obtained from the MIPAS instrument on-board the ENVISAT satellite. These measurements show significant enhancements of HNO3 and N2O5 as well as an increase of several chlorine species, i.e., ClO, HOCl and ClONO2. Atmospheric models cannot reproduce these chemical effects if only production of NOx and HOx is considered. The impact of positive and negative ion chemistry on the neutral composition of the middle atmosphere is investigated combining model results from the University of Bremen Ion Chemistry model UBIC with different neutral stratosphere-mesosphere models, particularly the new Bremen three-dimensional Chemistry and Transport model of the middle atmosphere. Focus of the investigation will be the impact of negative ion chemistry on the activation of chlorine radicals, and on the partitioning of NOy species. Model results will be compared to measurement data of different satellite instruments (HALOE, MIPAS, MLS) for several large SPEs (e.g., the July 2000, Oct/Nov 2003, and January 2005 events) to show that the observed chlorine activation and the increase of HNO3 can be reproduced much better if full negative ion chemistry is considered additionally to the NOx and HOx production.

  20. Evaluated kinetic and photochemical data for atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T.

    1980-01-01

    This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude). Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species.

  1. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry.

    PubMed

    Glasius, Marianne; Goldstein, Allen H

    2016-03-15

    Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry. PMID:26862779

  2. Equilibrium Chemistry Calculations for Model Hot-Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Bowman, M. Oliver; Blecic, Jasmina

    2014-11-01

    Every planet in our solar system has different elemental abundances from our sun's. It is thus necessary to explore a variety of elemental abundances when investigating exoplanet atmospheres. Composition is key to unraveling a planet's formation history and determines the radiative behavior of an atmosphere, including its spectrum (Moses et al. 2013). We consider here two commonly discussed situations: [C]/[O] > 1 and 10x and 100x heavy-element enrichment. For planets above 1200 K, equilibrium chemistry is a valid starting point in atmospheric analysis. For HD 209458b, this assumption was verified by comparing the results of a robust kinetics code (non-ideal behavior) to the results of an equilibrium chemistry code (ideal behavior). Both codes output similar results for the dayside of the planet (Agundez et al. 2012). Using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996), we calculate the molecular abundances of species of interest across the dayside of model planets with a range of: elemental abundance profiles, degree of redistribution, relevant substellar temperatures, and pressures. We then explore the compositional gradient of each model planet atmosphere layer using synthetic abundance images of target spectroscopic species (water, methane, carbon monoxide). This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program NNX13AF38G.

  3. A new mechanism for regional atmospheric chemistry modeling

    NASA Astrophysics Data System (ADS)

    Stockwell, William R.; Kirchner, Frank; Kuhn, Michael; Seefeld, Stephan

    1997-11-01

    A new gas-phase chemical mechanism for the modeling of regional atmospheric chemistry, the "Regional Atmospheric Chemistry Mechanism" (RACM) is presented. The mechanism is intended to be valid for remote to polluted conditions and from the Earth's surface through the upper troposphere. The RACM mechanism is based upon the earlier Regional Acid Deposition Model, version 2 (RADM2) mechanism [Stockwell et al., 1990] and the more detailed Euro-RADM mechanism [Stockwell and Kley, 1994]. The RACM mechanism includes rate constants and product yields from the most recent laboratory measurements, and it has been tested against environmental chamber data. A new condensed reaction mechanism is included for biogenic compounds: isoprene, α-pinene, and d-limonene. The branching ratios for alkane decay were reevaluated, and in the revised mechanism the aldehyde to ketone ratios were significantly reduced. The relatively large amounts of nitrates resulting from the reactions of unbranched alkenes with NO3 are now included, and the production of HO from the ozonolysis of alkenes has a much greater yield. The aromatic chemistry has been revised through the use of new laboratory data. The yield of cresol production from aromatics was reduced, while the reactions of HO, NO3, and O3 with unsaturated dicarbonyl species and unsaturated peroxynitrate are now included in the RACM mechanism. The peroxyacetyl nitrate chemistry and the organic peroxy radical-peroxy radical reactions were revised, and organic peroxy radical +NO3 reactions were added.

  4. Chemistry of the atmospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir

    Photochemistry of the Martian lower and middle atmosphere involves CO2 and its products (CO, O, O _{2}, O _{3}, O _{2}( (1) Delta _{g})) and H _{2}O and its products (H, OH, HO _{2}, H _{2}O _{2}, H _{2}). This photochemistry is comparatively simple and well studied in the laboratory. However, all global-mean models predict CO abundances that are significantly smaller than the observed values. Heterogeneous loss of odd hydrogen on water ice aerosol cannot solve the problem. Another possibility is a significant decrease in photolysis of H _{2}O near 190 nm at low temperatures. Combination of the significant obliquity with the elliptic orbit results in strong seasonal, latitudinal, and local time variations in the comparatively thin atmosphere of Mars. These variations are challenging in both observation and modeling. While some aspects of these variations were simulated by 1D models, the best tool for their study is photochemical general circulation models. The LMD GCM (Lefevre and Forget 2009 and references therein) accounts for the martian photochemistry in full and reproduces with reasonable accuracy the observed variations of the main photochemical tracers (O _{3}, O _{2}( (1) Delta _{g}), and H _{2}O _{2}). Ground-based observations of methane after 2006 gave only upper limits and generally do not contradict the TLS/Curiosity non-detection. However, significant variations of methane are not supported by photochemistry. Chemistry of Venus’ atmosphere involves seven elements (O, C, S, H, Cl, N, F) and the very dense and hot lower atmosphere. Formation of the sulfuric acid clouds is the main feature of photochemistry of the middle atmosphere. This process greatly reduces the abundances of H _{2}O and SO _{2} above 70 km that become very sensitive to small variations of eddy diffusion and the H _{2}O/SO _{2} ratio in the cloud layer. The observed an order of magnitude variations are therefore readily explained and do not require exotic volcanoes. Chlorine

  5. The Department of Energy's Atmospheric Chemistry Program: A critical review

    SciTech Connect

    Not Available

    1991-01-01

    In response to a request from the Department of Energy's (DOE) Office of Health and Environmental Research (OHER), the Committee on Atmospheric Chemistry has reviewed OHER's Atmospheric Chemistry Program (ACP). This report contains the committee's evaluation and critique arising from that review. The review process included a two-day symposium held at the National Academy of Sciences on September 25 and 26, 1990, that focused on presenting the ACP's current components, recent scientific accomplishments, and scientific plans. Following the symposium, committee members met in a one-day executive session to formulate and outline this report. In undertaking this review, OHER and ACP management requested that the committee attempt to answer several specific questions involving the program's technical capability and productivity, its leadership and organization, and its future direction. These questions are given in the Appendix. This report represents the committee's response to the questions posed in the Appendix. Chapter I explores the committee's view of the role that atmospheric chemistry could and should assume within the DOE and its prospective National Energy Strategy. Chapter 2 assesses the current ACP, Chapter 3 presents recommendations for revising and strengthening it, and Chapter 4 restates the committee's conclusions and recommendations.

  6. Role of Double Hydrogen Atom Transfer Reactions in Atmospheric Chemistry.

    PubMed

    Kumar, Manoj; Sinha, Amitabha; Francisco, Joseph S

    2016-05-17

    Hydrogen atom transfer (HAT) reactions are ubiquitous and play a crucial role in chemistries occurring in the atmosphere, biology, and industry. In the atmosphere, the most common and traditional HAT reaction is that associated with the OH radical abstracting a hydrogen atom from the plethora of organic molecules in the troposphere via R-H + OH → R + H2O. This reaction motif involves a single hydrogen transfer. More recently, in the literature, there is an emerging framework for a new class of HAT reactions that involves double hydrogen transfers. These reactions are broadly classified into four categories: (i) addition, (ii) elimination, (iii) substitution, and (iv) rearrangement. Hydration and dehydration are classic examples of addition and elimination reactions, respectively whereas tautomerization or isomerization belongs to a class of rearrangement reactions. Atmospheric acids and water typically mediate these reactions. Organic and inorganic acids are present in appreciable levels in the atmosphere and are capable of facilitating two-point hydrogen bonding interactions with oxygenates possessing an hydroxyl and/or carbonyl-type functionality. As a result, acids influence the reactivity of oxygenates and, thus, the energetics and kinetics of their HAT-based chemistries. The steric and electronic effects of acids play an important role in determining the efficacy of acid catalysis. Acids that reduce the steric strain of 1:1 substrate···acid complex are generally better catalysts. Among a family of monocarboxylic acids, the electronic effects become important; barrier to the catalyzed reaction correlates strongly with the pKa of the acid. Under acid catalysis, the hydration of carbonyl compounds leads to the barrierless formation of diols, which can serve as seed particles for atmospheric aerosol growth. The hydration of sulfur trioxide, which is the principle mechanism for atmospheric sulfuric acid formation, also becomes barrierless under acid catalysis

  7. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5

  8. The DaVinci Project: Multimedia in Art and Chemistry.

    ERIC Educational Resources Information Center

    Simonson, Michael; Schlosser, Charles

    1998-01-01

    Provides an overview of the DaVinci Project, a collaboration of students, teachers, and researchers in chemistry and art to develop multimedia materials for grades 3-12 visualizing basic concepts in chemistry and visual art. Topics addressed include standards in art and science; the conceptual framework for the project; and project goals,…

  9. Equilibrium and Disequilibrium Chemistry in Evolved Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2015-08-01

    It has been found that sub-Neptune-sized planets, although not existing in our Solar System, are ubiquitous in our interstellar neighborhood. This revelation is profound because, due to their special sizes and proximity to their host stars, Neptune- and sub-Neptune-sized exoplanets may have highly evolved atmospheres. I will discuss helium-dominated atmospheres as one of the outcomes of extensive atmospheric evolution on warm Neptune- and sub-Neptune-sized exoplanets. Due to depleted hydrogen abundance, the dominant carbon and oxygen species may not be methane or water on these evolved planets. Equilibrium and disequilibrium chemistry models are used to compute the molecular compositions of the atmospheres and their spectral features. Applications to GJ 436 b, HD 97658 b, and other Neptune- and sub-Neptune-sized exoplanets will be discussed. As the observations to obtain the spectra of these planets continue to flourish, we will have the opportunity to study unconventional atmospheric chemical processes and test atmosphere evolution theories.

  10. The Workshop Chemistry Project: Peer-Led Team Learning.

    ERIC Educational Resources Information Center

    Gosser, David K., Jr.; Roth, Vicki

    1998-01-01

    Describes the Workshop Chemistry project, a coalition of faculty, students, and learning specialists, and the development of a peer-led team-learning model for teaching and learning chemistry. The model includes freedom to discuss and debate chemistry in a challenging yet supportive environment, connection to mentors, and the power of working as…

  11. Spectroscopy and chemistry of the atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Gautier, Daniel; Owen, Tobias; Prinn, Ronald G.

    1991-01-01

    A comprehensive review of the chemistry and spectroscopy of the Uranian atmosphere is presented by means of earth-based, earth-orbital, and Voyager 2 observations covering the UV, visible, infrared, and radio wavelength regions. It is inferred from these observations, in concert with the average density of about 1.3 g/cu cm, that the Uranian atmosphere is enriched in heavy elements relative to solar composition. Pre-Voyager earth-based observations of CH4 bands in the visible region and Voyager radio occultation data imply a CH4/H2 volume mixing ratio of about 2 percent corresponding to an enrichment of approximately 24 times the solar value of 0.000835. In contrast to CH4, microwave observations indicate an apparent depletion of NH3 in the 155-to-200-K region of the atmosphere by 100 to 200 times relative to the solar NH3/H2 mixing ratio of -0.000174. It is suggested that the temporal and latitudinal variations deduced for the NH3/H2 mixing ratio in this region of the Uranian atmosphere are due to atmospheric circulation effects.

  12. Geospatial visualization of atmospheric chemistry satellite data using Google Earth

    NASA Astrophysics Data System (ADS)

    Burke, John

    2008-08-01

    Earth observation satellites employ various types of remote-sensing instruments to peer into the secrets of the atmosphere. Many of these instruments collect two-dimensional data stored as raster images which can be easily georeferenced and overlaid onto a virtual globe, with stunning results. However, certain instruments collect threedimensional science data which can pose a significant challenge for visualization efforts. The Tropospheric Emission Spectrometer (TES) is such an instrument which collects scientific data about atmospheric chemistry and stores the outputs in an Oracle database. With some imaginative programming, the data is transformed into interesting and information-packed visualizations using shell scripts, SQL scripts and Oracle stored procedures to yield Google Earthformatted files. This Google Earth content is hosted on the TES external web site for use by the public.

  13. Putting a Human Face on Chemistry: A Project for Liberal Arts Chemistry.

    ERIC Educational Resources Information Center

    Kriz, George; Popejoy, Kate

    A collaborative project in liberal arts chemistry, involving faculty in chemistry and science education, is described. The project includes various components: an introductory test (DAST) to examine students' perceptions of scientists, a group library research exercise, oral and written presentation of the results of the library research, a…

  14. EDITORIAL: Ice in the environment: connections to atmospheric chemistry Ice in the environment: connections to atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    McNeill, V. Faye; Hastings, Meredith G.

    2008-12-01

    Ice in the environment, whether in the form of ice particles in clouds or sea ice and snow at the Earth's surface, has a profound influence on atmospheric composition and climate. The interaction of trace atmospheric gases with snow and sea ice surfaces largely controls atmospheric composition in polar regions. The heterogeneous chemistry of ice particles in clouds also plays critical roles in polar stratospheric ozone depletion and in tropospheric chemistry. A quantitative physical understanding of the interactions of snow and ice with trace gases is critical for predicting the effects of climate change on atmospheric composition, for the interpretation of ice core chemical records, and for modeling atmospheric chemistry. The motivation behind this focus issue of Environmental Research Letters (ERL), and the special session at the Fall 2007 meeting of the American Geophysical Union that generated it, was to enhance communication and interactions among field and laboratory scientists and modelers working in this area. Members of these three groups are each working toward a mutual goal of understanding and quantifying the connections between the chemistry of snow and ice in the environment and atmospheric composition, and communication and collaboration across these traditional disciplinary boundaries pose a challenge for the community. We are pleased to present new work from several current leaders in the field and laboratory communities in this focus issue. Topics include the interaction of organics and mercury with snow and ice surfaces, halogen activation from halide ice, and the emissions of reactive nitrogen oxides from snow. Novel experimental techniques are presented that make progress towards overcoming the experimental challenges of quantifying the chemistry of realistic snow samples and ice chemistry at temperatures relevant to the polar boundary layer. Several of the papers in this issue also touch on one of the significant gaps in our current

  15. The global change research center atmospheric chemistry model

    SciTech Connect

    Moraes, F.P. Jr.

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the O{sub x}, HO{sub x}, NO{sub x}, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  16. The nitrate radical: Physics, chemistry, and the atmosphere

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P.; Canosa-Mas, C. E.; Hjorth, J.; Le Bras, G.; Moortgat, G. K.; Perner, D.; Poulet, G.; Restelli, G.; Sidebottom, H.

    This review surveys the present state of knowledge of the nitrate (NO 3 radical. Laboratory data on the physics and chemistry of the radical and atmospheric determination of the concentrations of the radical are both considered. One aim of the review is to highlight the relationship between the laboratory and the atmospheric studies. Although the emphasis of the review is on gas-phase processes, relevant studies conducted in condensed phases are mentioned because of their potential importance in the interpretation of cloud and aerosol chemistry. The spectroscopy, structure, and photochemistry of the radical are examined. Here, the object is to establich the spectroscopic basis for detection of the radical and measurement of its concentration in the laboratory and in the atmosphere. Infrared, visible, and paramagnetic resonance spectra are considered. An important quantity discussed is the absorption cross section in the visible region, which is required for quantitative measurements. Interpretation of the spectroscopic features requires an understanding of the geometrical and electronic structure of the radical in its ground and excited states; there is still some controversy about the groundstate geometry, but the most recent experimental evidence 9eg from laser induced fluorescence) and theoretical calculations suggest that the radical has D3h symmetry. Photodissociation of the radical is important in the atmosphere, and the product channels, quantum yields, and dissociation dynamics are discussed. A short examination of the thermodynamics (heat and entropy of formation) of the radical is presented. The main exposition of laboratory studies of the chemistry of the nitrate radical is preceded by a consideration of the techniques used for kinetic and mechanistic studies. Methods for the generation and detection of the radical and the kinetic tools employed are all presented. The exact nature of the technique used in individual studies has some relevance to the way

  17. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  18. Portsmouth Atmospheric Science School (PASS) Project

    NASA Technical Reports Server (NTRS)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  19. Modeling of Large Methane Releases and their affect on the Chemistry of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bergmann, D. J.; Cameron-Smith, P. J.; Elliot, S.; Reagan, M. T.; Maltrud, M. E.

    2009-12-01

    A vast quantity of methane is locked in solid phase as methane clathrates in ocean sediments (as much carbon as all other fossil fuels combined). Rapid destabilization of the clathrates due to climate warming would significantly increase methane emissions from the ocean. This would result in a number of affects including strong greenhouse heating, increased surface ozone, reduced stratospheric ozone, and intensification of the ozone hole. Many of the affects in the chemistry of the atmosphere are non-linear and difficult to estimate without a detailed model. As part of the DOE IMPACTS project on abrupt climate change we have used our 3D global atmospheric chemistry model (IMPACT) to take a first look at some of these affects. This model includes detailed chemistry of the troposphere (including isoprene and other hydrocarbons) and the stratosphere (including the important chlorine and bromine compounds). We ran the model at 4x5 degree resolution with methane simply scaled to present day emissions. We show results for 1x, 2x, 10x, 100x, and 1000x emission scenarios. We analyzed the results after the simulations have reached steady state (many years of simulation) and show the affect of these large releases on tropospheric air quality, the “health” of the stratosphere, and greenhouse heating. Substantial increases were seen in atmospheric methane lifetime, a positive feedback, due to the increased methane reducing the OH concentration. In the future we will couple our atmospheric chemistry to a complete Earth system model (based on CCSM) for methane including ocean ecosystem, ocean sediment and boreal land models to give more accurate estimates of the emission term and to look at the full system response.

  20. Nitrate chemistry in the snow and atmosphere at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Hastings, M. G.; Dibb, J. E.; Nenes, A.; Chen, D.

    2013-12-01

    Atmospheric nitrate deposition to snow surfaces results from reactions of NOx (NO + NO2) with oxidants to produce HNO3. There has been enormous interest in using the isotopic composition of nitrate in ice cores to trace past NOx chemistry and sources. With the rapid cycling of NO and NO2, the oxygen isotopic signal reflects the oxidants that NOx reacts with to form nitrate, while the nitrogen isotopes could contain information about the NOx sources. In two spring/summer field seasons at Summit, Greenland (May-June 2010 and 2011), surface snow was collected at high time resolution and was measured for the complete N and O isotopic composition of nitrate. The oxygen isotopes (δ18O and Δ17O = δ17O - 0.52*δ18O) display the same very strong linear relationship (Δ17O = 0.46 * δ18O - 6.9, R2 = 0.9) in both seasons. This relationship indicates that there is very little photolysis of the nitrate at Summit and an unaltered nitrate signal is preserved in the snowpack. In addition, a suite of atmospheric measurements was made at Summit and none of the constituents measured show any correlation with concentration or isotopes of nitrate in the snow. This indicates that local chemistry is not contributing significantly to the nitrate in the snow. The combination of nitrogen and oxygen isotopes provides a richer picture of the data. There are three nitrate signatures that contribute to total nitrate deposition to Summit in both seasons. These sources can be described by the following isotopic compositions: δ15N, Δ17O, δ18O (per mil vs. air N2 or VSMOW): (1) -8, 27, 74 (2) 6, 40, 100 and (3) 16, 0, 23. While the same three nitrate sources are contributing in the two years, there is a very different balance of importance in 2010 compared to 2011. With limited source δ15N data it is difficult to assign each point to a specific NOx source, however the complete isotopic composition, atmospheric measurements and differences between the two seasons allow for tentative source

  1. Pilot Project for Chemistry Teaching in Asia.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand).

    The major portion of this publication is devoted to the presentation of 20 chemistry experiments dealing with corrosion of metals. The experiments are intended for high school level students or for chemistry teachers for demonstration purposes. Diagrams and illustrations accompany the written directions. Also included in this publication are…

  2. An Atmospheric Instrument Development Outreach Project

    NASA Astrophysics Data System (ADS)

    Guerra, David; Cordella, Nick; Bracy, Sue

    2002-04-01

    In an effort to cultivate the interest in atmospheric science of middle school students, we have established a long-term outreach program in which students become active participants in an instrument development study. This project was motivated by the low cost, $20.00, hand-held haze detector (HHHD) developed by Forrest Mims III and the capabilities of the instruments located 5 miles away as part of the Saint Anselm Atmospheric Sensing Experiment (SAASE). The focus of the project, for the past two academic years, has been the development and data collected with two different HHHDs, operated by eighth graders from Mountain View Middle School (MVMS). This data is then compared to the solar irradiance measurements made with SAASE's automated multifilter shadow band radiometer (MFSBR). This type of outreach project not only teaches students about the atmosphere but also the process of instrument development and the creative aspects of science.

  3. Hydrogen atom initiated chemistry. [chemical evolution in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hong, J. H.; Becker, R. S.

    1979-01-01

    H Atoms have been created by the photolysis of H2S. These then initiated reactions in mixtures involving acetylene-ammonia-water and ethylene-ammonia-water. In the case of the acetylene system, the products consisted of two amino acids, ethylene and a group of primarily cyclic thio-compounds, but no free sulfur. In the case of the ethylene systems, seven amino acids, including an aromatic one, ethane, free sulfur, and a group of solely linear thio-compounds were produced. Total quantum yields for the production of amino acids were about 3 x 10 to the -5th and about 2 x 10 to the -4th with ethylene and acetylene respectively as carbon substrates. Consideration is given of the mechanism for the formation of some of the products and implications regarding planetary atmosphere chemistry, particularly that of Jupiter, are explored.

  4. TROPOLITE, on the path of atmospheric chemistry made simple

    NASA Astrophysics Data System (ADS)

    Maresi, Luca; Van Der Meulen, Wencke; Vink, Rob

    2014-10-01

    Accurate, reliable and stable long term measurements of Earth's Atmospheric Chemistry from Space are currently done by complex instruments, whose mass is in excess of 100 Kg. TROPOMI is the more recent instrument being developed jointly by ESA and NSO and due for launch in 2015. TROPOMI, consisting of four spectrometers ranging from UV to SWIR, is paving the way to the development of high performance spectrometers that will compose the backbone of the European Copernicus system. The objective of TROPOMI is to measure trace gases with an accuracy one order of magnitude better of what is currently done from Space. While teams of engineers are still busy finalizing TROPOMI, ESA, NSO, and TNO have launched an initiative along a different development axis: to explore the possibility of a lighter version of TROPOMI, to address a market valuing a cost effective instrument for Atmospheric Chemistry. TROPOLITE, as it is dubbed, leverages on all the technology developments and the lessons learnt from TROPOMI, but with the clear objective of a design to cost solution. Furthermore, mass and power of the instrument shall be within the envelope of a payload of a small satellite, namely 20kg and 30W and possibly within a volume of 20 x 20 x 40 cm3. The scope of TROPOLITE is to address a larger user base that is interested in an affordable instrument to perform from a small satellite some specific tasks relevant to Air Quality and/or Climate. The paper, after a short overview of the TROPOMI design and current status, presents the design philosophy of TROPOLITE, and shows what are the technologies and processes stemming from the experience gained with TROPOMI that make possible a simplified, but still very performing, version of TROPOMI. A comparison in terms of performance and functionalities of the two instruments is discussed. Finally, the development plan from the current development status of TROPOLITE up to Qualification Model is presented.

  5. The Unsolved Mysteries of Atmospheric Chemistry for High School Students and Teachers

    NASA Astrophysics Data System (ADS)

    Simonich, S. L.

    2011-12-01

    The grant "CAREER: New Molecular Markers of Asian Air Emissions - Anthropogenic Semi-Volatile Organic Compounds" (ATM-0239823) was funded by NSF from 2003-2008. The CAREER proposal described the integration of research and outreach education activities in the field of atmospheric chemistry, specifically atmospheric measurements and atmospheric transport. The primary objective of the research was to identify anthropogenic semi-volatile organic compounds (SOCs) that could be used as molecular markers for Asian air emissions and trans-Pacific atmospheric transport. The outreach education activity was integrated with the research by developing curriculum to introduce underrepresented minority high school students, and their teachers, to atmospheric chemistry and atmospheric measurements through Oregon State University's National Institute of Environmental Health Sciences funded Hydroville Curriculum Project (http://www.hydroville.org/iaq_resources). A curriculum was developed to allow students to assume the role of "Air Quality Scientist" and measure air temperature, air flow, relative humidity, CO, CO2, O3, and volatile organic compounds in out-door and in-door air. The students gained an understanding of atmospheric transport and compared measured concentrations to recommended guidelines. In addition, the outreach education activities included the development of the "Unsolved Mysteries of Human Health" website (http://www.unsolvedmysteries.oregonstate.edu/), including a specific module on the research conducted under the CAREER grant (http://www.unsolvedmysteries.oregonstate.edu /Gas-Chromatography-Mass-Spectrometry-Overview). The PI of the CAREER proposal, Dr. Staci Massey Simonich, is now a full professor at Oregon State University. To date, she has published over 50 peer-review journal articles, as well as mentored 9 undergraduate students, 20 graduate students, 3 post-doctoral scholars, and 3 international visiting scientists in her laboratory.

  6. Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Leone, Stephen R.

    1992-01-01

    The purpose of the project is to perform laboratory measurements of reaction rate coefficients at low temperature. The reactions and temperatures of interest are those that are important in the chemistry of the hydrocarbon rich atmospheres of the outer planets and their satellites. In this stage of the study we are investigating reactions of ethynyl radicals, C2H, with acetylene (C2H2), methane (CH4), and hydrogen (H2). In the previous status report from 24 Jan. 1992, we reported on the development of the experimental apparatus and the first, preliminary data for the C2H + C2H2 reaction.

  7. A Chemistry Laboratory Project to Develop Thinking and Writing Skills.

    ERIC Educational Resources Information Center

    Goodman, W. Daniel; Bean, John C.

    1983-01-01

    Describes a method for conducting a sophomore organic chemistry laboratory which included integrating projects with a writing task involving peer group interaction. Also includes background/theory, chemistry tasks, writing tasks, and evaluation. Included in appendices are an analytic worksheet and grading scale. (JN)

  8. "The Chemicals Project": Connecting General Chemistry to Students' Lives

    NASA Astrophysics Data System (ADS)

    Stout, Roland

    2000-10-01

    "The Chemicals Project" described here strives to bring freshman chemistry alive for students by emphasizing its connection to the real world and to their own lives and experiences. Its major assignments deal with chemical phobias, recognizing the chemicals found in everyday life and chemical hazards (using Material Data Safety Sheets). The project is described in a cooperative learning format, employs portfolio grading, and includes a significant writing component. Ways of linking this project with the course lecture and student evaluations of the project are described. The bottom line: pre- and post-testing shows that it works. The Chemicals Project brings chemistry alive for students.

  9. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  10. Ion Chemistry and Dust Aerosols in the Martian Lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Sheel, Varun; Haider, Syed A.

    2012-07-01

    Models of the daytime upper ionosphere and nighttime models have been able to explain some of the observations of the Martian atmosphere. However, not much attention has been paid to the ionosphere below 100 km. We have developed a detailed chemistry model of 35 ions and 12 neutral species with galactic cosmic rays as the primary source of ionization to calculate the densities of ions in the daytime lower atmosphere of Mars (Haider et al., 2008). The chemical model couples various processes through 101 chemical reactions. We do a quantitative comparison between various production and loss processes, in order to tag each of them with their relative importance in determining the ion densities. Impact of galactic cosmic rays initially produces CO_{2}^{+} and O_{2}^{+} ions, but the ion chemistry eventually leads to the dominance of hydrated positive and negative ions with maximum densities of about 10^{3} cm^{-3}. It is found that out of all the processes included in the model, the most important process is the ion-neutral collisions wherein the reaction of H_{3}O^{+}(H_{2}O)_{2,3} with water and air molecules having the highest rates of ˜10^5 cm^{-3} s^{-1} (Sheel et al., PSS, in press). These ions can charge dust aerosols in the lower ionosphere of Mars. Periodical massive dust storms with high surface winds disturb surface sediments and lift large amounts of dust into the atmosphere. We have extended the ion model to study the effect of dust on ions in the troposphere of Mars. The dust vertical profile, used as an input to our model, is calculated using the Conrath parametrisation and constrained with dust opacities observed by THEMIS onboard the Mars Odyssey. We observe that the major positive and negative hydrated ions decrease by upto two orders of magnitude in the presence of dust (Haider at al, 2010). These results will be presented and dust variability observed by MGS and Mars Odyssey will also be discussed in the talk. Our calculations provide an initial

  11. Microwave Studies of Chemistry of the Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Sandor, Brad J.

    The purpose of this study has been to investigate O_3 chemistry in Earth's middle atmosphere. The NRAO 12-meter radio telescope at Kitt Peak, AZ was used to observe lambda = 1 mm emission spectra of trace species at altitudes 50 -70 km. Brightness of the emission lines was used to determine abundance of the emitting species, and shapes of the pressure broadened lines were used to obtain altitude resolution of these abundances. Observations of ^{18}O^{16}O, CO, and O_3 were used to establish a calibration appropriate for atmospheric observations with a telescope primarily used for astronomical work. Diurnal variation of O_2(^1 Delta_{g}) was observed and compared with photochemical model results. Observed O_2(^1Delta_ {g}) abundances were 20% higher than model abundances, and model results can be brought into agreement with observations by reducing the rate coefficient for O_2(^1Delta_ {g}) quenching by 20% below the accepted value. The behavior of O_2(^1Delta _{g}) through the afternoon and evening was observed to agree with model calculations. Symmetric and asymmetric isotopomers of ^{50}O_3 were observed. Previous workers have found large, highly variable, and unexplained enhancements of ^{50}O _3 in the stratosphere. We extend the range of observations to the mesosphere. Significant variability in the abundance of the asymmetric isotopomer was observed. Diurnal variations of HO_2 were observed in conjunction with H_2O and O_3. Comparisons were made with photochemical model results. At mid-day HO _2 abundances were observed to be ~40% higher than model predictions. Model results for this time period can be brought into agreement with observations by reducing the rate coefficient for rm HO_2 + O--> OH + O _2 by 40%. Observed HO_2 altitude profiles in the early morning, late afternoon, and early evening are very different from model predictions.

  12. Urban Climate Effects on Air Pollution and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Rasoul, Tara; Bloss, William; Pope, Francis

    2016-04-01

    Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.

  13. Projections of atmospheric radiocarbon content to 2100

    NASA Astrophysics Data System (ADS)

    Graven, Heather

    2014-05-01

    The radiocarbon content of atmospheric CO2 has undergone dramatic changes over the past century. Radiocarbon in CO2 has been diluted by the combustion of 14C-free fossil fuels since the industrial revolution, causing a slow decline in the relative abundance of 14C to total carbon (Δ14C) in the early 1900s. This decline was interrupted by nuclear weapons testing in the 1950s and 60s, which nearly doubled the atmospheric inventory of 14C. Following the extraordinary rise in radiocarbon content, a quasi-exponential decrease was observed as excess radiocarbon was assimilated by carbon reservoirs in the ocean and on land. Recently, fossil fuel emissions have once again become the dominant influence on the long-term trend in Δ14C of CO2. This presentation will investigate the trajectory of atmospheric Δ14C to 2100 in relation to the Representative Concentration Pathways (RCPs) using a simple carbon cycle model. In all scenarios, Δ14C of CO2 is projected to drop below the zero per mil level in the next decade. Simulated atmospheric Δ14C is lower than -200 per mil in 2100 in the scenario with the largest growth in fossil fuel emissions, while the most ambitious emission reductions are projected to sustain Δ14C near zero per mil. The presentation will discuss the implications of these changes in atmospheric composition on isotopic disequilibria and net fluxes of radiocarbon between different reservoirs, including the sensitivity of atmospheric Δ14C to fossil fuel emissions on global and regional scales.

  14. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    ERIC Educational Resources Information Center

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  15. Incorporating Student-Designed Research Projects in the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Iimoto, Devin S.; Frederick, Kimberley A.

    2011-01-01

    Although many chemistry students at small liberal arts colleges participate in undergraduate research projects with faculty members, they do not get much experience framing their own research questions and designing their own projects, which is an important part of science. We have implemented a developmental process to help students design and…

  16. A new model for magnesium chemistry in the upper atmosphere.

    PubMed

    Plane, John M C; Whalley, Charlotte L

    2012-06-21

    This paper describes the kinetic study of a number of gas-phase reactions involving neutral Mg-containing species, which are important for the chemistry of meteor-ablated magnesium in the upper mesosphere/lower thermosphere region. The study is motivated by the very recent observation of the global atomic Mg layer around 90 km, using satellite-born UV-visible spectroscopy. In the laboratory, Mg atoms were produced thermally in the upstream section of a fast flow tube and then converted to the molecular species MgO, MgO(2), OMgO(2), and MgCO(3) by the addition of appropriate reagents. Atomic O was added further downstream, and Mg was detected at the downstream end of the flow tube by laser-induced fluorescence. The following rate coefficients were determined at 300 K: k(MgO + O → Mg + O(2)) = (6.2 ± 1.1) × 10(-10); k(MgO(2) + O → MgO + O(2)) = (8.4 ± 2.8) × 10(-11); k(MgCO(3) + O → MgO(2) + CO(2)) ≥ 4.9 × 10(-12); and k(MgO + CO → Mg + CO(2)) = (1.1 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1). Electronic structure calculations of the relevant potential energy surfaces combined with RRKM theory were performed to interpret the experimental results and also to explore the likely reaction pathways that convert MgCO(3) and OMgO(2) into long-lived reservoir species such as Mg(OH)(2). Although no reaction was observed in the laboratory between OMgO(2) and O, this is most likely due to the rapid recombination of O(2) with the product MgO(2) to form the relatively stable O(2)MgO(2). Indeed, one significant finding is the role of O(2) in the mesosphere, where it initiates holding cycles by recombining with radical species such as MgO(2) and MgOH. A new atmospheric model was then constructed which combines these results together with recent work on magnesium ion-molecule chemistry. The model is able to reproduce satisfactorily some of the key features of the Mg and Mg(+) layers, including the heights of the layers, the seasonal variations of their column

  17. Molecular identification of organic compounds in atmospheric complex mixtures and relationship to atmospheric chemistry and sources.

    PubMed Central

    Mazurek, Monica A

    2002-01-01

    This article describes a chemical characterization approach for complex organic compound mixtures associated with fine atmospheric particles of diameters less than 2.5 m (PM2.5). It relates molecular- and bulk-level chemical characteristics of the complex mixture to atmospheric chemistry and to emission sources. Overall, the analytical approach describes the organic complex mixtures in terms of a chemical mass balance (CMB). Here, the complex mixture is related to a bulk elemental measurement (total carbon) and is broken down systematically into functional groups and molecular compositions. The CMB and molecular-level information can be used to understand the sources of the atmospheric fine particles through conversion of chromatographic data and by incorporation into receptor-based CMB models. Once described and quantified within a mass balance framework, the chemical profiles for aerosol organic matter can be applied to existing air quality issues. Examples include understanding health effects of PM2.5 and defining and controlling key sources of anthropogenic fine particles. Overall, the organic aerosol compositional data provide chemical information needed for effective PM2.5 management. PMID:12634131

  18. Some Tests For Adaptative Observations In Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Quélo, D.; Michelangeli, P.-A.; Sportisse, B.

    Air pollution forecast requires the coupling of models with data through data assimi- lation. A key question is related to the choice of observations (apart from technical require- ments). One wants to choose in a judicious way the species to observe, in which loca- tions and at which moments. The appropriate strategies are related to the techniques of "targeting" and "adaptative observations". We will investigate these techniques on a simplified model. The first part reports the influence of the slow-fast behaviour of atmospheric chem- istry. The second part presents the use of singular vectors and second-order adjoint techniques in order to determine the "optimal" choice of observations. This project is led in the framework of the INRIA Cooperative Research Action CO- MODE (COupling MOdels and Data in Environment).

  19. GEOLOGIC AND ATMOSPHERIC INPUT FACTORS AFFECTING WATERSHED CHEMISTRY IN UPPER MICHIGAN

    EPA Science Inventory

    The relationships between watershed variables and lakewater chemistry were examined for 53 lakes in the Upper Peninsula of Michigan to identify factors influencing lake sensitivity to atmospheric inputs. The lakes lie in three distinct geologic/geomorphic regions. Acid neutraliza...

  20. Stereoscopic Projection in the Chemistry Classroom

    ERIC Educational Resources Information Center

    McGrew, LeRoy A.

    1972-01-01

    Describes the development of a three-dimensional projection system used to present structural principles by means of slides. Polarization of images from two planar projectors and viewing through polarized lenses gives stereo results. Techniques used in producing the slides and constructing the equipment are given. (TS)

  1. Chemistry-Materials Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Chemistry-Materials Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or substituting material related to class interests; as a guide book for…

  2. An Integrated Biology-Chemistry Freshman Laboratory Project in Biotechnology.

    ERIC Educational Resources Information Center

    Schendel, Marilyn Shimizu

    1999-01-01

    Describes a freshman biology laboratory project that uses the polymerase chain reaction to introduce students to the interrelationship between biology and chemistry. Students must develop their own experimental protocol, perform calculations introduced in freshman classes, and evaluate group dynamics. (Author/WRM)

  3. Final-Year Education Projects for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Page, Elizabeth

    2011-01-01

    The Undergraduate Ambassadors Scheme provides an opportunity for students in their final year of the chemistry degree course at the University of Reading to choose an educational project as an alternative to practical research. The undergraduates work in schools where they can be regarded as role models and offer one way of inspiring pupils to…

  4. Simulating the impacts of large scale insect- and disease-driven tree mortality on atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Geddes, J.; Heald, C. L.; Silva, S. J.; Martin, R.

    2015-12-01

    Land-use and land-cover change (LUC) is an important driver of global change through the alteration of local energy, moisture, and carbon exchanges. LUC can also directly impact the emission and deposition of important reactive trace gases, altering the oxidative chemistry of the atmosphere and subsequently air quality and climate. Large-scale tree mortality as a result of insects and disease may therefore have unexplored feedbacks on atmospheric chemistry. Between 2013 and 2027, over 80 million acres of treed land in the United States is predicted to experience basal area mortality rates exceeding 25%. We harmonized the description of land cover across the relevant surface-atmosphere exchange processes in the GEOS-Chem chemical transport model to facilitate LUC simulations, and used this adapted model to test the impact of projected tree mortality according to the 2012 USDA National Insect and Disease Risk Assessment. Nation-wide biogenic VOC emissions were reduced by 5%, with local impacts approaching 50% in some regions. By themselves, these emission reductions resulted in lower surface-level O3 mixing ratios, but this was counteracted by decreases in the O3 deposition velocity (by up to 10%) due to the reduction in vegetation density. Organic aerosol mass concentrations were also significantly affected across the United States, decreasing by 5-10% across the eastern U.S. and the northwest, with local impacts exceeding 25% in some regions. We discuss the general impacts on air quality in clean and polluted regions of the US, and point to developments needed for a more robust understanding of land cover change feedbacks.

  5. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of

  6. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere

  7. Alternative Solvents through Green Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  8. CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS

    SciTech Connect

    Schaefer, Laura; Fegley, Bruce E-mail: bfegley@levee.wustl.ed

    2009-10-01

    We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O{sub 2}, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds such as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.

  9. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS).

    PubMed

    Nielsen, Claus J; Herrmann, Hartmut; Weller, Christian

    2012-10-01

    This critical review addresses the atmospheric gas phase and aqueous phase amine chemistry that is relevant to potential emissions from amine-based carbon capture and storage (CCS). The focus is on amine, nitrosamine and nitramine degradation, and nitrosamine and nitramine formation processes. A comparison between the relative importance of the various atmospheric sinks for amines, nitrosamines and nitramines is presented. PMID:22729147

  10. Advanced Placement Chemistry: Project Advance and the Advanced Placement Program: A Comparison of Students' Performance on the AP Chemistry Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Syracuse University Project Advance (PA) chemistry students (N=35) with advanced placement (AP) candidates on the AP chemistry examination. PA students scored slightly above the national average on the examination, and students who performed well (B or better) in AP chemistry also did well on the examination. (JN)

  11. Investigating Titan's Atmospheric Chemistry at Low Temperature in Support of the NASA Cassini Mission

    NASA Technical Reports Server (NTRS)

    Sciamma-O'Brien, Ella; Salama, Farid

    2013-01-01

    Titan's atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn's magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSMIC simulation chamber at NASA Ames in order to study the different steps of Titan's atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature (approx. 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2,-CH4 chemistry (C2H2, C2H4, C6H6...) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan's atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan fs atmospheric chemistry as well as specific chemical pathways leading to Titan fs haze formation.

  12. On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): new advances.

    PubMed

    Spurny, K R

    1998-08-01

    The existing data about the epidemiology, toxicology, physics and chemistry of atmospheric particulate pollutants were recently essentially completed and extended. They do support the hypothesis that the fine and very fine dispersed fraction of the atmospheric anthropogenic aerosols (UAAA) are responsible for the aggravation of the health risk potential of the polluted atmosphere during the last decade. The recently published data dealing primarily with the physics, chemistry, sampling and analysis of these highly dispersed particulate air pollutants are reviewed, summarized and critically evaluated. PMID:9820675

  13. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  14. NASA's Atmospheric Effects of Aviation Project

    NASA Technical Reports Server (NTRS)

    Cofer, W. Randy, III; Anderson, Bruce E.; Connors, V. S.; Wey, C. C.; Sanders, T.; Winstead, E. L.; Pui, C.; Chen, Da-ren; Hagen, D. E.; Whitefield, P.

    2001-01-01

    During August 1-14, 1999, NASA's Atmospheric Effects of Aviation Project (AEAP) convened a workshop at the NASA Langley Research Center to try to determine why such a wide variation in aerosol emissions indices and chemical and physical properties has been reported by various independent AEAP-supported research teams trying to characterize the exhaust emissions of subsonic commercial aircraft. This workshop was divided into two phases, a laboratory phase and a field phase. The laboratory phase consisted of supplying known particle number densities (concentrations) and particle size distributions to a common manifold for the participating research teams to sample and analyze. The field phase was conducted on an aircraft run-up pad. Participating teams actually sampled aircraft exhaust generated by a Langley T-38 Talon aircraft at 1 and 9 m behind the engine at engine powers ranging from 48 to 100 percent. Results from the laboratory phase of this intercomparison workshop are reported in this paper.

  15. A lookup table to compute high energy cosmic ray effects on terrestrial atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. We have created a table that, with the use of the NGSFC code, can be used to simulate the effects of high energy cosmic rays (10 GeV - 1 PeV ) ionizing the atmosphere. By interpolation, the table can be used to generate values for other uses which depend upon atmospheric energy deposition by ensembles of high-energy cosmic rays. We discuss the table, its use, weaknesses, and strengths.

  16. Atmospheric model intercomparison project: Monsoon simulations

    SciTech Connect

    Sperber, K.R.; Palmer, T.N.

    1994-06-01

    The simulation of monsoons, in particular the Indian summer monsoon, has proven to be a critical test of a general circulation model`s ability to simulate tropical climate and variability. The Monsoon Numerical Experimentation Group has begun to address questions regarding the predictability of monsoon extremes, in particular conditions associated with El Nino and La Nina conditions that tend to be associated with drought and flood conditions over the Indian subcontinent, through a series of seasonal integrations using analyzed initial conditions from successive days in 1987 and 1988. In this paper the authors present an analysis of simulations associated with the Atmospheric Model Intercomparison Project (AMIP), a coordinated effort to simulate the 1979--1988 decade using standardized boundary conditions with approximately 30 atmospheric general circulation models. The 13 models analyzed to date are listed. Using monthly mean data from these simulations they have calculated indices of precipitation and wind shear in an effort to access the performance of the models over the course of the AMIP decade.

  17. Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991

    NASA Technical Reports Server (NTRS)

    Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)

    1991-01-01

    The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.

  18. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  19. Atmospheric OCS measurements on Project Gametag

    NASA Astrophysics Data System (ADS)

    Torres, A. L.; Maroulis, P. J.; Goldberg, A. B.; Bandy, A. R.

    1980-12-01

    In the spring of 1978, carbonyl sulfide measurements were made at Drexel University in Philadelphia, Pennsylvania, and on Project Gametag (Global Atmospheric Measurements Experiment of Tropospheric Aerosols and Gases). At Drexel University, measurements were made on 7 days in mid-March, using a dual-channel sampling system. These data had a mean concentration and standard deviation of 544±27 pptv on channel 1 and 522±27 pptv on channel 2. In project Gametag, 346 measurements of the tropospheric concentration of OCS were made over a latitude range 57°S to 70°N. Samples were obtained over the central and southern Pacific Ocean and the western sections of the United States and Canada. Overall OCS levels averaged 512 pptv with a standard deviation of 65 pptv and a standard error of the mean of 4 pptv. Carbonyl sulfide levels were statistically the same in the free troposphere and the boundary layer and over continental and marine areas. The apparent north-south gradient seen in the Gametag data set was attributed to a change in the calibration system as a function of time during the experiment.

  20. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    NASA Technical Reports Server (NTRS)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  1. Atmospheric Chemistry from Space: Present Status and Future Plans

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    One of the unqualified successes of the earth observation program is NASA's continuing monitoring of the ozone layer from space. This activity began in the early 70's with research instruments and continues to this day with the TOMS instrument series and the Upper Atmosphere Research Satellite. In the near future, NASA will be launching the EOS Aura spacecraft (launch mid-2003) which will continue our study of the chemical processes that produce stratospheric ozone depletion. In addition, Aura will begin the first global study of lower atmospheric air pollution including urban ozone, aerosols, nitrogen oxides and carbon monoxide. Atmospheric air pollution measurements from earth orbit involve the development of very high precision spectrometer technologies that have never been flown in space. Farther into the future, lower atmospheric ozone and aerosols may be monitored by space based lidars in low earth orbit, by sensors in geostationary orbit and by continuous limb observations instrument from the Lagrange point L2.

  2. Project-based learning in the secondary chemistry classroom

    NASA Astrophysics Data System (ADS)

    Crane, Elizabeth L.

    This study investigated the use of project-based learning (PBL) in a high school chemistry classroom. PBL encourages the use of projects, which promote continual learning, rather than a summative project at the end of a unit after the learning has already been done. Along with implementing PBL, the study also incorporated many of the strategies included in the broader strategy known as Assessment for Learning (AfL), which stresses developing assessments that are part of the learning process rather than simply a measurement of the amount of learning that has occurred upon completion of a unit. The hypothesis of this research was that PBL would increase student comprehension and motivation as measured through pre and post-test data and a student survey. The new project-based unit required students to research and present the properties and structures of elements and how we use them. The expectation was that this approach would engage students with the material, the computer modeling would allow for more concrete visualization of structures and the project-based format would allow students to become more invested in their own learning. This study provided evidence to support the hypothesis that the implementation of project-based learning, supported by formative assessment and other assessment for learning strategies, will improve student comprehension and motivation in the secondary chemistry classroom.

  3. Chemistry of atmosphere-surface interactions on Venus and Mars

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Treiman, Allan H.

    1992-01-01

    Earth-based, earth-orbital, and spacecraft observational data are used in the present evaluation of Venus atmosphere-surface interactions to quantitatively characterize the reactions between C, H, S, Cl, F, and N gases and plausible surface minerals. Calculation results are used to predict stable minerals and mineral assemblages on the Venus surface, in order to ascertain which (if any) of the atmospheric gases are buffeted by mineral assemblages. Chemical equilibrium calculations using extant thermodynamic data on scapolite minerals predict that carbonate-bearing scapolite and sulfate meionite are unstable on the surface of Venus, while chloride-bearing scapolite is stable.

  4. The Skylab concentrated atmospheric radiation project

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Marlatt, W. E.; Whitehead, V. S. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra.

  5. Size resolved fog water chemistry and its atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida; Ervens, Barbara; Bhattu, Deepika

    2015-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world. It usually contains substantial quantity of liquid water and results in severe visibility reduction leading to disruption of normal life. Fog is generally seen as a natural cleansing agent but it also has the potential to form Secondary Organic Aerosol (SOA) via aqueous processing of ambient aerosols. Size- resolved fog water chemistry for inorganics were reported in previous studies but processing of organics inside the fog water and quantification of aqSOA remained a challenge. To assess the organics processing via fog aqueous processing, size resolved fog water samples were collected in two consecutive winter seasons (2012-13, 2013-14) at Kanpur, a heavily polluted urban area of India. Caltech 3 stage fog collector was used to collect the fog droplets in 3 size fraction; coarse (droplet diameter > 22 µm), medium (22> droplet diameter >16 µm) and fine (16> droplet diameter >4 µm). Collected samples were atomized into various instruments such as Aerosol Mass Spectrometer (AMS), Cloud Condensation Nucleus Counter (CCNc), Total Organic Carbon (TOC) and a thermo denuder (TD) for the physico-chemical characterization of soluble constituents. Fine droplets are found to be more enriched with different aerosol species and interestingly contain more aged and less volatile organics compared to other coarser sizes. Organics inside fine droplets have an average O/C = 0.87 compared to O/C of 0.67 and 0.74 of coarse and medium droplets. Metal chemistry and higher residence time of fine droplets are seemed to be the two most likely reasons for this outcome from as the results of a comprehensive modeling carried out on the observed data indicate. CCN activities of the aerosols from fine droplets are also much higher than that of coarse or medium droplets. Fine droplets also contain light absorbing material as was obvious from their 'yellowish' solution. Source apportionment of fog water organics via

  6. Seasonal variations in atmospheric chemistry in the Adirondacks

    SciTech Connect

    Kelly, T.J.; Tanner, R.L.; McLaren, S.E.; DuBois, M.V.

    1985-03-01

    The results of continuous real-time measurements of aerosol composition, HNO/sub 3/, and SO/sub 2/, performed at the summit of Whiteface Mountain, New York, during 1984 are reported. The purpose was to shed light on the seasonal variation in atmospheric acidity in this ecologically sensitive area. 13 refs., 5 figs. (ACR)

  7. Inorganic chemistry of O2 in a dense primitive atmosphere

    PubMed

    Rosenqvist, J; Chassefière, E

    1995-01-01

    A simple steady-state photochemical model is developed in order to determine typical molecular oxygen concentrations for a comprehensive range of primitive abiotic atmospheres. Carbon dioxide is assumed to be the dominant constituent in these atmospheres since CO2 photodissociation may potentially result in the enhancement of the O2 partial pressure. The respective effects of the H2O content, temperature, eddy diffusion coefficient and UV flux on the results are investigated. It is shown that for any pressure at the surface, the partial pressure of molecular oxygen does not exceed 10 mbar. The peculiar case of a runaway greenhouse which has possibly taken place on Venus is qualitatively envisaged. Although O2 is basically absent in the present Venus atmosphere, a transient presence in a primitive stage cannot be ruled out. Possible mechanisms for O2 removal in such an atmosphere are reviewed. At the present stage, we think that the detection of large O2 amounts would be at least a good clue for the presence of life on an extrasolar planet. PMID:11538435

  8. Electrostatic activation of prebiotic chemistry in substellar atmospheres

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Helling, Ch.; Diver, D. A.; Rimmer, P. B.

    2014-04-01

    Charged dust grains in the atmospheres of exoplanets may play a key role in the formation of prebiotic molecules, necessary to the origin of life. Dust grains submerged in an atmospheric plasma become negatively charged and attract a flux of ions that are accelerated from the plasma. The energy of the ions upon reaching the grain surface may be sufficient to overcome the activation energy of particular chemical reactions that would be unattainable via ion and neutral bombardment from classical, thermal excitation. As a result, prebiotic molecules or their precursors could be synthesized on the surface of dust grains that form clouds in exoplanetary atmospheres. This paper investigates the energization of the plasma ions, and the dependence on the plasma electron temperature, in the atmospheres of substellar objects such as gas giant planets. Calculations show that modest electron temperatures of ~1 eV (~104 K) are enough to accelerate ions to sufficient energies that exceed the activation energies required for the formation of formaldehyde, ammonia, hydrogen cyanide and the amino acid glycine.

  9. Advances in atmospheric chemistry modeling: the LLNL impact tropospheric/stratospheric chemistry model

    SciTech Connect

    Rotman, D A; Atherton, C

    1999-10-07

    We present a unique modeling capability to understand the global distribution of trace gases and aerosols throughout both the troposphere and stratosphere. It includes the ability to simulate tropospheric chemistry that occurs both in the gas phase as well as on the surfaces of solid particles. We have used this capability to analyze observations from particular flight campaigns as well as averaged observed data. Results show the model to accurately simulate the complex chemistry occurring near the tropopause and throughout the troposphere and stratosphere.

  10. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  11. Potential changes in atmospheric chemistry in the decades ahead: Climate and biosphere interactions and feedbacks

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1991-10-01

    Atmospheric chemistry is a challenging area of research where much knowledge is needed if we are to continue to survive as a species. This paper outlines research needs in the decades ahead in this key area of scientific endeavor. Highlighted are areas of research that are likely to lead to climatic and biospheric impacts and have been given little attention in the past. In particular, the possible organic transformation chemistries that may lead to chemical and physical changes in tropospheric cloud chemistries are highlighted and emphasized as an area where research is needed in the future. 22 refs.

  12. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    USGS Publications Warehouse

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  13. Atmospheric chemistry of hydrogen halides: Reactions on ice and in strong acids

    SciTech Connect

    Ravishankara, A.R.

    1995-12-31

    Reactions of hydrogen halides, HCl, HBr, and HI, in sulfuric acid droplets, ice, and liquid water play important roles in the chemistry of Earth`s atmosphere. The hydrogen halides react with other species such as HOCl, ClONO{sub 2}, BrONO{sub 2}, and HOBr to liberate active halogens, the form that can destroy ozone. The impact of these reactions on the chemistry of the ozone in the atmosphere will be described. Also, a brief discussion of the mechanisms of these reactions will be given. Possible experimental and theoretical investigations that can shed light on these reactions will be pointed out.

  14. The role of computational chemistry in the science and measurements of the atmosphere

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.

    1978-01-01

    The role of computational chemistry in determining the stability, photochemistry, spectroscopic parameters, and parameters for estimating reaction rates of atmospheric constituents is discussed. Examples dealing with the photolysis cross sections of HOCl and (1 Delta g) O2 and with the stability of gaseous NH4Cl and asymmetric ClO3 are presented. It is concluded that computational chemistry can play an important role in the study of atmospheric constituents, particularly reactive and short-lived species which are difficult to investigate experimentally.

  15. Investigations of Global Chemistry-Climate Interactions and Organic Aerosol Using Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Pye, Havala Olson Taylor

    Aerosol, or particulate matter (PM), is an important component of the atmosphere responsible for negative health impacts, environmental degradation, reductions in visibility, and climate change. In this work, the global chemical transport model, GEOS-Chem, is used as a tool to examine chemistry-climate interactions and organic aerosols. GEOS-Chem is used to simulate present-day (year 2000) and future (year 2050) sulfate, nitrate, and ammonium aerosols and investigate the potential effects of changes in climate and emissions on global budgets and U.S. air quality. Changes in a number of meteorological parameters, such as temperature and precipitation, are potentially important for aerosols and could lead to increases or decreases in PM concentrations. Although projected changes in sulfate and nitrate precursor emissions favor lower PM concentrations over the U.S., projected increases in ammonia emissions could result in higher nitrate concentrations. The organic aerosol simulation in GEOS-Chem is updated to include aerosol from primary semivolatile organic compounds (SVOCS), intermediate volatility compounds (IVOCs), NOx dependent terpene aerosol, and aerosol from isoprene + NO3 reaction. SVOCs are identified as the largest global source of organic aerosol even though their atmospheric transformation is highly uncertain and emissions are probably underestimated. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and high aerosol yields from NO3 oxidation, biogenic hydrocarbons reacting with the nitrate radical are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. Globally, 69 to 88 Tg/yr of aerosol is predicted to be produced annually, approximately 22 to 24 Tg/yr of which is from biogenic hydrocarbons.

  16. Martian atmospheric chemistry during the time of low water abundance

    NASA Technical Reports Server (NTRS)

    Nair, Hari; Allen, Mark; Yung, Yuk L.; Clancy, R. Todd

    1992-01-01

    The importance of odd hydrogen (or HO(x)) radicals in the catalytic recombination of carbon monoxide and oxygen in the Martian atmosphere is a well known fact. The inclusion of recent chemical kinetics data, specifically temperature-dependent CO2 absorption cross sections, into our one dimensional photochemical model shows that HO(x) is too efficient in this regard. The absorption cross sections of CO2 are smaller than previously assumed; this leads to a reduction in the photolysis rate of CO2 while the photolysis rate of H2O has increased. As a consequence the predicted mixing ratio of CO in our models is substantially less than the observed value of 6.5(10)(exp -4). Simultaneous measurements of water, ozone, and carbon monoxide were obtained in the Martian atmosphere in early Dec. 1990 (L(sub s) for Mars was 344 deg.).

  17. Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Ren, Xinrong; Duin, Diana; Cazorla, Maria; Chen, Shuang; Mao, Jingqiu; Zhang, Li; Brune, William H.; Flynn, James H.; Grossberg, Nicole; Lefer, Barry L.; Rappenglück, Bernhard; Wong, Kam W.; Tsai, Catalina; Stutz, Jochen; Dibb, Jack E.; Thomas Jobson, B.; Luke, Winston T.; Kelley, Paul

    2013-06-01

    Ozone (O3) and secondary fine particles come from the atmospheric oxidation chemistry that involves the hydroxyl radical (OH) and hydroperoxyl radical (HO2), which are together called HOx. Radical precursors such as nitrous acid (HONO) and formaldehyde (HCHO) significantly affect the HOx budget in urban environments. These chemical processes connect surface anthropogenic and natural emissions to local and regional air pollution. Using the data collected during the Study of Houston Atmospheric Radical Precursors (SHARP) in spring 2009, we examine atmospheric oxidation chemistry and O3 production in this polluted urban environment. A numerical box model with five different chemical mechanisms was used to simulate the oxidation processes and thus OH and HO2 in this study. In general, the model reproduced the measured OH and HO2 with all five chemical mechanisms producing similar levels of OH and HO2, although midday OH was overpredicted and nighttime OH and HO2 were underpredicted. The calculated HOx production was dominated by HONO photolysis in the early morning and by the photolysis of O3 and oxygenated volatile organic compounds (OVOCs) in the midday. On average, the daily HOx production rate was 24.6 ppbv d-1, of which 30% was from O3 photolysis, 22% from HONO photolysis, 15% from the photolysis of OVOCs (other than HCHO), 14% from HCHO photolysis, and 13% from O3 reactions with alkenes. The O3 production was sensitive to volatile organic compounds (VOCs) in the early morning but was sensitive to NOx for most of afternoon. This is similar to the behavior observed in two previous summertime studies in Houston: the Texas Air Quality Study in 2000 (TexAQS 2000) and the TexAQS II Radical and Aerosol Measurement Project in 2006 (TRAMP 2006). Ozone production in SHARP exhibits a longer NOx-sensitive period than TexAQS 2000 and TRAMP 2006, indicating that NOx control may be an efficient approach for the O3 control in springtime for Houston. Results from this study

  18. Precipitation chemistry - Atmospheric loadings to the surface waters of the Indian River lagoon basin by rainfall

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III

    1990-01-01

    Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.

  19. The Exchange of Soil Nitrite and Atmospheric HONO: a Missing Process in the Nitrogen Cycle and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Su, Hang; Oswald, Robert; Behrendt, Thomas; Trebs, Ivonne; Meixner, Franz X.; Andreae, Meinrat O.; Pöschl, Ulrich

    2013-04-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. We also show that the soil-atmosphere exchange of N(III), though not considered in the N cycle, might result in significant amount of reactive nitrogen emission (comparable to soil NO emissions). Fertilized soils with low pH appear to be particularly strong sources of HONO and OH. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. In view of the potentially large impact on atmospheric chemistry and global environmental change, we recommend further studies of HONO release from soil nitrite and related processes in the biogeochemical cycling of N in both agricultural and natural environments. Reference: Su, H., Cheng, Y., et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011. Su, H., et al., The Exchange of Soil Nitrite and Atmospheric HONO: A Missing Process in the Nitrogen Cycle and Atmospheric Chemistry, NATO Science for Peace and Security Series C: Environmental Security, Springer Netherlands, 93-99, 2013.

  20. Optical methods in atmospheric chemistry; Proceedings of the Meeting, Berlin, Germany, June 22-24, 1992

    NASA Astrophysics Data System (ADS)

    Schiff, Harold I.; Platt, Ulrich

    Various papers on atmospheric chemistry are presented. Individual topics addressed include: molecular modulation spectroscopy studies involving peroxy radical reactions, spectroscopic studies of model polar stratospheric cloud films, rates of hydroxyl radical reactions with some HFCs, heterogeneous processes of nitrogen dioxide on liquid surfaces, temperature-dependence absorption cross sections for HNO3 and H2O5, tunable-diode-laser-based monitoring of atmospheric gases, compact tunable diode laser spectrometer for environmental monitoring, improved open-path multireflection cell for the measurement of NO2 and NO3, problems in global atmospheric chemistry, scattered sky observations of stratospheric OClO at McMurdo Station, star-pointing UV-visible spectrometer for remote sensing of the stratosphere. Also discussed are: sensitivity limits of laser intracavity spectroscopy, novel ranging UV-visible spectrometer for remote sensing of the troposphere, balloon-borne measurements of the actinic flux in the UV spectral region, balloon-borne submillimeter-wave stratospheric measurements, FIR Fabry-Perot spectrometer for OH measurements, ESA's contribution to atmospheric chemistry, the ATLAS-1 mission atmospheric trace molecular spectroscopy experiment, thermal sounding of the atmosphere under non-LTE conditions, GOME instrument simulation, global ozone monitoring experiment on board ERS 2.

  1. Atmospheric chemistry of CF3CF2OCH3

    NASA Astrophysics Data System (ADS)

    Østerstrøm, Freja F.; Nielsen, Ole John; Wallington, Timothy J.

    2016-06-01

    Smog chamber Fourier transform infrared techniques were used to investigate the kinetics of the reaction of CF3CF2OCH3 with Cl atoms and OH radicals: k(Cl + CF3CF2OCH3) = (1.09 ± 0.16) × 10-13 and k(OH + CF3CF2OCH3) = (1.28 ± 0.19) × 10-14 cm3 molecule-1 s-1 in 700 Torr total pressure of N2/O2 at 296 ± 2 K. The Cl-initiated oxidation of CF3CF2OCH3 gives CF3CF2OCHO in a yield indistinguishable from 100%. An estimate of k(Cl + CF3CF2OCHO) = (1.18 ± 0.34) × 10-14 cm3 molecule-1 s-1 is provided. Based on the OH reaction rate, the atmospheric lifetime of CF3CF2OCH3 is estimated to be 5.0 years. The 100-year time horizon global warming potential of CF3CF2OCH3 is estimated to be 585. The atmospheric impact of CF3CF2OCH3 is discussed.

  2. On the numerical treatment of problems in atmospheric chemistry

    SciTech Connect

    Aro, C.J.

    1995-09-01

    Atmospheric chemical-radiative-transport (CRT) models are vital in performing research on atmospheric chemical change. Even with the enormous computing capability delivered by massively parallel systems, extended three dimensional CRT simulations are still not computationally feasible. The major obstacle in a CRT model is the nonlinear ODE system describing the chemical kinetics in the model. These ODE systems are usually very stiff and account for anywhere from 75% to 90% of the CPU time required to run a CRT model. In this study, a simple explicit class of time stepping method is developed and demonstrated to be useful in treating chemical ODE systems without the use of a Jacobian matrix. These methods, called preconditioned time differencing methods, are tested on small mathematically idealized problems, box model problems, and full 2-D and 3-D CRT models. The methods are found to be both fast and memory efficient. Studies are performed on both vector and parallel systems. The preconditioned time differencing methods are established as a viable alternative to the more common backward differentiation formulas in terms of CPU speed across architectural platforms.

  3. A photochemical reactor for studies of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Nilsson, E. J. K.; Eskebjerg, C.; Johnson, M. S.

    A photochemical reactor for studies of atmospheric kinetics and spectroscopy has been built at the Copenhagen Center for Atmospheric Research. The reactor consists of a vacuum FTIR spectrometer coupled to a 100 L quartz cylinder by multipass optics mounted on electropolished stainless steel end flanges, surrounded by UV-A, UV-C and broadband sun lamps in a temperature-controlled housing. The combination of a quartz vessel and UV-C lamps allows higher concentrations of O( 1D) and OH than can be generated by similar chambers. The reactor is able to produce radical concentrations of ca. 8 × 10 11 cm -3 for OH, 3 × 10 6 cm -3 for O( 1D), 3.3 × 10 10 cm -3 for O( 3P) and 1.6 × 10 12 cm -3 for Cl. The reactor can be operated at pressures from 10 -3 to 10 3 mbar and temperatures from 240 to 330 K. As a test of the system we have studied the reaction CHCl 3 + Cl using the relative rate technique and find k CHCl3+Cl/k CH4+Cl = 1.03 ± 0.11, in good agreement with the accepted value.

  4. Laboratory studies of heterogeneous chemistry relevant to the polar atmosphere

    SciTech Connect

    Sodeau, J.R.

    1996-10-01

    The heterogeneous interactions of the stratospheric reservoir species HCl, ClONO{sub 2} and N{sub 2}O{sub 5} with water-rich, polar stratospheric particle mimics represent key, initial steps in the chemistry associated with Antarctic ozone depletion. Using both FTIR spectroscopic and mass spectrometric techniques, we have demonstrated the crucial role of solvated ionic species in the process and shown that the mechanisms can procede by an S{sub N}2-type nucleophilic attack of the oxygen atom from the surface water molecule upon the most accessible electrophilic site of the adsorbing reactant. In contrast to the ozone {open_quotes}hole{close_quotes}, the detailed chemical mechanisms of other polar phenomena, such as {open_quotes}sudden{close_quotes} tropospheric ozone loss over the Arctic and the OH radical {open_quotes}morning burst{close_quotes} measured in the lower Antarctic stratosphere, are little understood. However, cold, condensed matter from a variety of origins is known to exist in both regions. Therefore we shall also report our recent photochemical results pertinent to low-temperature heterogeneous aspects of both issues.

  5. ATMOSPHERIC CHEMISTRY OF POTENTIAL EMISSIONS FROM FUEL CONVERSION FACILITIES. A SMOG CHAMBER STUDY

    EPA Science Inventory

    The atmospheric chemistry of chemical species that may be emitted from fuel conversion facilities were studied in smog chambers. Of 17 compounds assessed for ozone-forming potential, 6 compounds were selected along with a control species, propylene, for testing in the presence of...

  6. "Holes" in Student Understanding: Addressing Prevalent Misconceptions regarding Atmospheric Environmental Chemistry

    ERIC Educational Resources Information Center

    Kerr, Sara C.; Walz, Kenneth A.

    2007-01-01

    There is a misconception among undergraduate students that global warming is caused by holes in the ozone layer. In this study, we evaluated the presence of this and other misconceptions surrounding atmospheric chemistry that are responsible for the entanglement of the greenhouse effect and the ozone hole in students' conceptual frameworks. We…

  7. SPATIAL AND TEMPORAL TRENDS IN THE CHEMISTRY OF ATMOSPHERIC DEPOSITION IN NEW ENGLAND

    EPA Science Inventory

    The authors have evaluated atmospheric deposition related geochemical changes in New England and Quebec by means of (1) transect studies of soil chemistry parallel to pH and metal deposition gradients: and (2) chemical analysis of lake sediments with the following results: (a) Mn...

  8. Theory of planetary atmospheres: an introduction to their physics and chemistry /2nd revised and enlarged edition/

    NASA Astrophysics Data System (ADS)

    Chamberlain, Joseph W.; Hunten, Donald M.

    Theoretical models of planetary atmospheres are characterized in an introductory text intended for graduate physics students and practicing scientists. Chapters are devoted to the vertical structure of an atmosphere; atmospheric hydrodynamics; the chemistry and dynamics of the earth stratosphere; planetary astronomy; ionospheres; airglows, auroras, and aeronomy; and the stability of planetary atmospheres. Extensive graphs, diagrams, and tables of numerical data are provided.

  9. Theory of planetary atmospheres: an introduction to their physics and chemistry /2nd revised and enlarged edition/

    SciTech Connect

    Chamberlain, J.W.; Hunten, D.M.

    1987-01-01

    Theoretical models of planetary atmospheres are characterized in an introductory text intended for graduate physics students and practicing scientists. Chapters are devoted to the vertical structure of an atmosphere; atmospheric hydrodynamics; the chemistry and dynamics of the earth stratosphere; planetary astronomy; ionospheres; airglows, auroras, and aeronomy; and the stability of planetary atmospheres. Extensive graphs, diagrams, and tables of numerical data are provided.

  10. The chemistry of atmospheric bromine. [catalyst for ozone destruction

    NASA Technical Reports Server (NTRS)

    Wofsy, S. C.; Mcelroy, M. B.; Yung, Y. L.

    1975-01-01

    Bromine may act as a catalyst for recombination of ozone and could be more efficient than either nitric oxide or chlorine. The lower atmosphere contains small concentrations of gaseous bromine produced in part by marine activity and volatilization of particulate material released during the combustion of leaded gasoline, with an additional contribution due to the use of methyl bromide as an agricultural fumigant. Observations by Lazrus et al., (1975) indicate small concentrations of bromine, about 10 to the -11th power (v/v), in the contemporary stratosphere and appear to imply a reduction of approximately 0.3% in the global budget of O3. Estimates are given for future reductions in O3 which might occur if the use of CH3Br as an agricultural fumigant were to continue to grow at present rates.

  11. Atmospheric chemistry: Laboratory studies of kinetics of important reactions

    NASA Astrophysics Data System (ADS)

    Smith, S. J.

    Experiments to measure the rate constants for some reactions of the atmospherically important nitrate radical (NO3) are described using the discharge-flow technique. The nitrate radical was monitored by optical absorption at lambda = 662 nm. The reactions of NO3 with some stable organic and inorganic substrates are reported. The temperature dependences of some of the rate constants were also determined (298 less than T less than 523 K). In most cases, computer simulation was used to extract the rate constant for the primary process because the time-dependent behavior of (NO3) was affected by secondary reactions of NO3 with products of the primary interaction. The Arrhenius parameter for the reactions of NO3 with CH3CH3, CH2CH2, CH3OH, CHCl3, and HCl were determined. The activation energies for the reactions studied between NO3 and some alkynes are presented along with the corresponding pre-exponential factors. Some reactions were studied at room temperature (298 plus or minus 2 K) only and the rate constants found (in units of cubic cm/molecule sec) are: buta-1,3-diene (1.8 x 10 (exp -13), isobutene (2.8 x 10 (exp -13), HBr (1.3 x 10 (exp -15) and hex-2-yne (3.0 x 10 (exp -14). Non-Arrhenius behavior was found in the reactions of NO3 with n-butane, isobutane and propene. The empirical variation of these rate constants with temperature is presented. The curvature of the Arrhenius plots is discussed in terms of (1) a temperature-dependent pre-exponential factor, and (2) the possibility that two competing channels, possessing differing activation energies, exist for each reaction. The atmospheric implications of these reactions are discussed with reference to the nighttime production of nitric acid and the importance of the these reactions as loss processes for NO3.

  12. 1D Chemical Modeling of coupled snow-atmosphere chemistry at Dome C Antarctica

    NASA Astrophysics Data System (ADS)

    Gil, Jaime E.; Thomas, Jennie; von Glasgow, Roland; Bekki, Slimane; Kukui, Alexandre; Frey, Markus; Jourdain, Bruno; Kerbrat, Michel; Genthon, Christophe; Preuknert, Susanne; Legrand, Michel

    2013-04-01

    High levels of nitrogen oxides NOx (NOx=NO+NO2) generated by the photolysis of nitrate present in surface snow profoundly impact atmospheric composition and oxidizing capacity in the Antarctic boundary layer. In particular, NOx emissions from sunlit snow increase OH values by effectively recycling HO2 to OH. In order to better characterize this chemistry the OPALE campaign was conducted in December 2011/January 2012 at Dome C, Antarctica (altitude of 3,233 meters, 75 ° S, 123 ° E). The campaign included boundary layer profiling, measurements of the physical properties of snow, as well as a comprehensive suite of atmospheric chemistry measurements (including NOx, HONO, OH and RO2, H2O2, CH2O, O3). We present results using the 1-D coupled snow-boundary layer model MISTRA-SNOW in combination with observations made during the measurement campaign to understand this chemistry. The model includes both chemistry at the surface of snow grains (aqueous chemistry), in firn air (gas phase chemistry), and gas/aerosol chemistry in the boundary layer. Model predictions of NOx mixing ratios using a model sensitivity analysis approach are presented. The model was initialized using measured snow properties, including temperature, density, and snow grain size. In addition, the model dynamics are driven using the measured surface temperature at Dome C. To calculate the rate of snowpack ventilation, measured wind speeds during the campaign were used. The model was run varying the amount of nitrate and bromide available for reaction at the surface of snow grains and results are compared to measurements made in the atmospheric boundary from 2-4 January 2012. We test the hypothesis that very low concentrations of bromine may alter the ratio of NO/NO2. We also investigate the influence of NOx emissions from snow, and bromine (if present), on OH concentrations in the boundary layer on the Antarctic plateau.

  13. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  14. Plant surface reactions: an ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2015-07-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: how much ozone effectively enters the plant through open stomata and how much is lost by chemical reactions at the plant surface? In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis of cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too. Fluid dynamic calculations were used to model ozone distribution in the diffusion limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way, that ozone flux through the open stomata is strongly reduced. Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  15. Spiers Memorial Lecture. Introductory lecture: chemistry in the urban atmosphere.

    PubMed

    Baltensperger, Urs

    2016-07-18

    The urban atmosphere is characterised by a multitude of complex processes. Gaseous and particulate components are continuously emitted into the atmosphere from many different sources. These components are then dispersed in the urban atmosphere via turbulent mixing. Numerous chemical reactions modify the gas phase chemistry on multiple time scales, producing secondary pollutants. Through partitioning, the chemical and physical properties of the aerosol particles are also constantly changing as a consequence of dispersion and gas phase chemistry. This review presents an overview of the involved processes, focusing on the contributions presented at this conference and putting them into a broader context. Advanced methods for aerosol source apportionment are presented as well, followed by some aspects of health effects related to air pollution. PMID:27247983

  16. Variations in school playground and classroom atmospheric particulate chemistry

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Rivas, Ioar; Bouso, Laura; Viana, Mar; Jones, Tim; Àlvarez-Pedrerol, Mar; Alastuey, Andrés; Sunyer, Jordi; Querol, Xavier

    2014-07-01

    The chemical analysis of 553 school playground and classroom PM2.5 filters collected during the BREATHE sampling campaign in Barcelona, Spain, reveals a remarkable degree of spatial and temporal variability in ambient PM composition. Classroom air quality shows average PM2.5 concentrations of 37 μg m-3 (28% higher than outdoors), with much of this mass comprising carbon (including abundant cotton fibres), blackboard chalk particles and silicates. Where sandy playgrounds are present these exert a major influence on inhalable PM2.5 concentrations both indoors and outdoors. Throughout the city there is widespread contamination by metalliferous traffic particles, especially at schools located close to major urban highways where outdoor EC levels can be an order of magnitude higher than in peripheral, green belt schools. Penetration into the classroom of outdoor EC, ammonium sulphate and anthropogenic metals such as Cu, Sn, Sb, Zn and V is pervasive, especially during warmer months. In contrast, levels of nitrate and ammonium are much higher outdoors than in the classroom, especially during winter. During their work and play, schoolchildren across the city respire in a diversity of chemically differing atmospheric microenvironments.

  17. Mars Atmospheric Chemistry in Electrified Dust Devils and Storms

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.; Wong, A.-S.; Renno, N. O.; Sentmann, D. D.; Marshall, J. G.; Cummer, S. A.; Rafkin, S.; Catling, D.

    2005-01-01

    Laboratory studies, simulations and desert field tests all indicate that aeolian mixing dust can generate electricity via contact electrification or "triboelectricity". In convective structures like dust devils or storms, grain stratification (or charge separation) occurs giving rise to an overall electric dipole moment to the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous simulation studies [1] indicate that this storm electric field on Mars can approach atmospheric breakdown field strength of 20 kV/m. In terrestrial dust devils, coherent dipolar electric fields exceeding 20 kV/m have been measured directly via electric field instrumentation. Given the expected electrostatic fields in Martian dust devils and storms, electrons in the low pressure CO2 gas can be energized via the electric field to values exceeding the electron dissociative attachment energy of both CO2 and H2O, resulting in the formation of new chemical products CO and O- and OH and H- within the storm. Using a collisional plasma physics model we present a calculation of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with ambient electric field, with substantial production of dissociative products when fields approach breakdown levels of 20-30 kV/m.

  18. Projects in the Physcial Chemistry Laboratory: Letting the Students Choose

    NASA Astrophysics Data System (ADS)

    Buckley, Paul D.; Jolley, Kenneth W.; Watson, Ian D.

    1997-05-01

    In a twelve week Physical Chemistry laboratory course half the time is spent on a standard set of rotation experiments and half on a project of the students own choosing. The students are told that they must only use equipment available within the department and chemicals that are either in the department or which can be ordered on a strictly limited budget. These restriction provide valuable experience in planning research work using limited resources. Initially the projects are based on an article in the literature or on an experiment in a Laboratory Manual and only after successfully repeating the published procedure is the project extended into new areas. Each student gives a short talk outlining the planned experiments before the experimental work begins and/or one presenting the results at the end. A positive attitude to problem solving is encouraged. Successful problem solving is identified through regular review by the class of progress in each project. Students report finding the project a rewarding and challenging experience. The laboratory course is now a more satisfying experience for both staff and students.

  19. Atmospheric Chemistry: Laboratory Studies of Kinetics of Important Reactions.

    NASA Astrophysics Data System (ADS)

    Smith, S. J.

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes the experiments to measure the rate constants for some reactions of the atmospherically important nitrate radical (NO_3) using the discharge-flow technique. The nitrate radical was monitored by optical absorption at lambda = 662 nm. The reactions of NO_3 with some stable organic and inorganic substrates are reported. The temperature dependences of some of the rate constants have also been determined (298 < T < 523 K). In most cases, computer simulation was used to extract the rate constant for the primary process because the time-dependent behaviour of (NO_3) was affected by secondary reactions of NO_3 with products of the primary interaction. The Arrhenius parameter in parentheses (E _{rm a}/kJ mol^ {-1}, A/cm^3 molecule ^{-1}s^ {-1} respectively) for the following reactions have been determined: ethane (37, 6.7 times 10^{-12}), ethylene (25.8, 6.3 times 10^ {-12}), CH_3OH (21.3, 1.2 times 10^ {-12}), CHCiota_3 (23.4, 8.6 times 10 ^{-13}) and HCl (27.7, 4 times 10^{-12}). The activation energies for the reactions studied between NO_3 and some alkynes are represented well by the value 25 +/- 3 kJ mol^{-1} and the corresponding pre-exponential factors (expressed as ln(10 ^{13}A/cm^3 molecule^{-1}s ^{-1}) are as follows: C_2H_2 (1.6 +/- 1.4), C_3H _4 (5.0 +/- 1.4), 1-C_4H_6 (5.8 +/- 1.0), 1-C_5 H_8 (5.7 +/- 0.6) and 1-C_6H _{10} (4.5 +/- 0.4). Some reactions were studied at room temperature _3(298 +/- 2 K) only and the rate constants found (in units of cm ^3 molecule^{ -1}s^{-1}) are: buta-1,3-diene (1.8 times 10 ^{-13}), isobutene (2.8 times 10^{-13 }), HBr (1.3 times 10 ^{-15}) and hex-2-yne (3.0 times 10^{-14 }). Non-Arrhenius behaviour was found in the reactions of NO_3 with n-butane, isobutane and propene. The empirical variation of these rate constants with temperature is well represented by the three parameter expressions:. k(T) = 1.2 times 10 ^{-46}T^{11

  20. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Day, D. A.; Ortega, A. M.; Palm, B. B.; Hu, W. W.; Stark, H.; Li, R.; Tsigaridis, K.; Brune, W. H.; Jimenez, J. L.

    2015-09-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and

  1. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  2. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  3. The ENVISAT Atmospheric Chemistry mission (GOMOS, MIPAS and SCIAMACHY) -Processing status and data availability

    NASA Astrophysics Data System (ADS)

    Dehn, Angelika; Brizzi, G.; Barrot, G.; Bovensmann, H.; Canela, M.; Fehr, T.; Laur, H.; Lichtenberg, G.; Niro, F.; Perron, G.; Raspollini, P.; Saavedra de Miguel, L.; Scarpino, G.; Vogel, P.

    The atmospheric chemistry instruments on board the ENVISAT platform (GOMOS, MIPAS and SCIAMACHY) provide a unique dataset of geophysical parameters (e.g.: trace gases, clouds, and aerosol) that allows a comprehensive characterization of the atmosphere's chemical and climatological processes [1]. These instruments started to provide significant science data shortly after the launch of the ENVISAT satellite (March 2002). At the time of writing this paper, these instruments and the whole payload modules are fully working and are well beyond the expected lifetime of 5 years. In addition the orbit control strategy of the platform will be modified starting from 2010, in order to extend the mission lifetime up to 2013 [2]. This means that if no instrument problems will appear, the ENVISAT atmospheric sensors will provide at the end of their life, three separated, but complementary datasets of the most important atmospheric state parameters, spanning a time interval of about 11 years. This represents an extraordinary source of information for the scientific user community, both for the completeness and quality of the data and for the extent of the dataset. The aim of this paper is to present the actual status of the ESA operational atmospheric chemistry dataset provided by the three ENVISAT atmospheric chemistry instruments and the future evolution. The processing and reprocessing status will be described in details for each instrument. The outcomes of the geophysical validation and the planned validation activities will be discussed. Finally the data availability and the source of information will be specified. [1] H. Nett, J. Frerick, T. Paulsen, and G. Levrini, "The atmospheric instruments and their applications: GOMOS, MIPAS and SCIAMACHY", ESA Bulletin (ISSN 0376-4265), No. 106, p. 77 -87 (2001) [2] J. Frerick, B. Duesmann, and M. Canela, "2010 and beyond -The ENVISAT mission extension", Proc. `Envisat Symposium 2007', Montreux, Switzerland, 23-27 April 2007 (ESA SP

  4. The ENVISAT Atmospheric Chemistry mission (GOMOS, MIPAS and SCIAMACHY) - Processing status and data availability

    NASA Astrophysics Data System (ADS)

    Niro, F.

    2009-04-01

    The atmospheric chemistry instruments on board the ENVISAT platform (GOMOS, MIPAS and SCIAMACHY) provide a unique dataset of geophysical parameters (e.g.: trace gases, clouds, and aerosol) that allows a comprehensive characterization of the atmosphere's chemical and climatological processes [1]. These instruments started to provide significant science data shortly after the launch of the ENVISAT satellite (March 2002). At the time of writing this paper, these instruments and the whole payload modules are fully working and are well beyond the expected lifetime of 5 years. In addition the orbit control strategy of the platform will be modified starting from 2010, in order to extend the mission lifetime up to 2013 [2]. This means that if no instrument problems will appear, the ENVISAT atmospheric sensors will provide at the end of their life, three separated, but complementary datasets of the most important atmospheric state parameters, spanning a time interval of about 11 years. This represents an extraordinary source of information for the scientific user community, both for the completeness and quality of the data and for the extent of the dataset. The aim of this paper is to present the actual status of the ESA operational atmospheric chemistry dataset provided by the three ENVISAT atmospheric chemistry instruments and the future evolution. The processing and reprocessing status will be described in details for each instrument. The outcomes of the geophysical validation and the planned validation activities will be discussed. Finally the data availability and the source of information will be specified. [1] H. Nett, J. Frerick, T. Paulsen, and G. Levrini, "The atmospheric instruments and their applications: GOMOS, MIPAS and SCIAMACHY", ESA Bulletin (ISSN 0376-4265), No. 106, p. 77 - 87 (2001) [2] J. Frerick, B. Duesmann, and M. Canela, "2010 and beyond - The ENVISAT mission extension", Proc. ‘Envisat Symposium 2007', Montreux, Switzerland, 23-27 April 2007 (ESA

  5. Influence of ab initio chemistry models on simulations of the Ionian atmosphere

    NASA Astrophysics Data System (ADS)

    Parsons, Neal; Levin, Deborah A.; Walker, Andrew C.; Moore, Chris H.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence

    2014-09-01

    There is significant scientific interest in simulating the unique atmospheric conditions on the Jovian moon Io that range from cold surface temperatures to hyperthermal interactions which possibly supply the Jovian plasma torus. The Direct Simulation Monte Carlo (DSMC) method is well suited to model the rarefied, predominantly SO2, Ionian atmosphere. High speed collisions between SO2 and the hypervelocity O atoms and ions that compose the plasma torus are a significant mechanism in determining the composition of the atmosphere; therefore, high-fidelity modeling of their interactions is crucial to the accuracy of such simulations. Typically, the Total Collision Energy (TCE) model is used to determine molecular dissociation probabilities and the Variable Hard Sphere (VHS) model is used to determine collision cross sections. However, the parameters for each of these baseline models are based on low-temperature experimental data and thus have unknown reliability for the hyperthermal conditions in the Ionian atmosphere. Recently, Molecular Dynamics/Quasi-Classical Trajectory (MD/QCT) studies have been conducted to generate accurate collision and chemistry models for the SO2-O collision pair in order to replace the baseline models. However, the influence of MD/QCT models on Ionian simulations compared to the previously used models is not well understood. In this work, 1D simulations are conducted using both the MD/QCT-based and baseline models in order to determine the effect of MD/QCT models on Ionian simulations. It is found that atmospheric structure predictions are highly sensitive to the chemistry and collision models. Specifically, the MD/QCT model predicts approximately half the SO2 atmospheric dissociation due to O and O+ bombardment compared to TCE models, and also predicts a temperature rise due to plasma heating further from the Ionian surface than the existing baseline methodologies. These findings indicate that the accurate MD/QCT chemistry and collision

  6. Variational fine-grained data assimilation schemes for atmospheric chemistry transport and transformation models

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena

    2015-04-01

    The paper concerns data assimilation problem for an atmospheric chemistry transport and transformation models. Data assimilation is carried out within variation approach on a single time step of the approximated model. A control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the minimum of the target functional combining control function norm to a misfit between measured and model-simulated analog of data. This provides a flow-dependent and physically-plausible structure of the resulting analysis and reduces the need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. Extension of the atmospheric transport model with a chemical transformations module influences data assimilation algorithms performance. This influence is investigated with numerical experiments for different meteorological conditions altering convection-diffusion processes characteristics, namely strong, medium and low wind conditions. To study the impact of transformation and data assimilation, we compare results for a convection-diffusion model (without data assimilation), convection-diffusion with assimilation, convection-diffusion-reaction (without data assimilation) and convection-diffusion-reaction-assimilation models. Both high dimensionalities of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the algorithms. Computational issues with complicated models can be solved by using a splitting technique. As the result a model is presented as a set of relatively independent simple models equipped with a kind of coupling procedure. With regard to data assimilation two approaches can be identified. In a fine-grained approach data assimilation is carried out on the separate splitting stages [1,2] independently on shared measurement data. The same situation arises when constructing a hybrid model

  7. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    PubMed

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  8. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

    PubMed

    Behera, Sailesh N; Sharma, Mukesh; Aneja, Viney P; Balasubramanian, Rajasekhar

    2013-11-01

    Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3. PMID:23982822

  9. Science Project Ideas about Kitchen Chemistry. Revised Edition.

    ERIC Educational Resources Information Center

    Gardner, Robert

    This book presents science experiments that can be conducted in the kitchen. Contents include: (1) "Safety First"; (2) "Chemistry in and Near the Kitchen Sink"; (3) "Chemistry in the Refrigerator"; (4) "Chemistry on the Stove"; (5) "Chemistry on the Kitchen Counter"; and (6) "Further Reading and Internet Addresses." (YDS)

  10. Where is the equator? A definition based on the atmosphere and its implications for atmospheric chemistry and climate

    NASA Astrophysics Data System (ADS)

    Holmes, C. D.; Prather, M. J.

    2014-12-01

    The concentration of hydroxyl (OH)—the main sink for the greenhouse gases methane and hydrofluorocarbons—in Earth's northern and southern hemispheres is an important longstanding puzzle in atmospheric chemistry. Observations of methylchloroform imply that there is about 10% more OH-loss in the southern hemisphere. In contrast, global 3-D atmospheric models (CTMs and GCMs) simulate 28 ± 10 % greater OH concentrations and methane loss in the northern hemisphere, according to a recent survey. This apparent shortcoming of many models derives in large part from an inconsistent definition of the hemispheres. For model results, OH concentrations and methane/methylchloroform loss are commonly averaged over the geographic hemispheres, with the geographic equator as the dividing line. For the observations, however, the hemispheres are separated by the atmosphere's circulatory mixing barrier, which rarely coincides with the geographic equator. Instead the barrier to interhemispheric mixing corresponds to the rising branch of the Hadley circulation and follows the seasonal migration of the sun. We use artificial tracers in a CTM to define the atmospheric (as opposed to geographic) hemispheres. We show that the tracer definition corresponds with the Intertropical Convergence Zone (ITCZ) where it is well defined and robust against several different tracer definitions. The atmospheric equator lies at 3°N on average (10°N in boreal summer) and extends as far as 30°N during the South Asian summer monsoon (Figure 1). When methane/methylchloroform loss rates are calculated for the dynamic and time-varying hemispheres, the CTM has just 5% greater loss in the northern hemisphere (Figure 1). Thus, using a definition of atmospheric hemispheres that is consistent with atmospheric circulations reveals that OH distributions in CTMs, while still slightly overestimating northern hemisphere OH, are much closer to observational constraints than has been implied by past work. We also