Science.gov

Sample records for atmospheric deposition resuspension

  1. Atmospheric deposition and resuspension of suspended particulates in urban area

    NASA Astrophysics Data System (ADS)

    Lim, Jeong-Hee

    2006-12-01

    Emissions of trace metals to the atmosphere and sub-sequential deposition and resuspension process represent a potential threat to water bodies, ecosystems, and public health throughout coastal Los Angeles. However, few studies have quantified atmospheric deposition in Southern California. This research aims to increase our understanding of the role of atmospheric deposition as a potentially important source of trace metals and the role of subsequent resuspension on aquatic environments in the Los Angeles coastal region. Seasonal measurements of dry deposition were made at six urban and one non-urban site for one year. Dry deposition was significantly higher at urban sites compared with the non-urban site, and the dry atmospheric deposition is dominated by particles larger than 10 mum. The measured concentration and deposition flux at six sites within urban area is spatially uniform, indicating a major role for resuspension in the fate of particles by dispersing particle---associated metals regionally. In addition, atmospheric deposition and runoff measurements (wet and dry) of particle-associated trace metals within an urban catchment made over a year indicates the dominance of dry deposition in Southern California, and shows that atmospheric deposition can potentially account for as much as 57 to 100% of the total trace metal loads in stormwater from the catchment. Furthermore, freeways and other major roads act as a source of locally high deposition rates of copper, lead and zinc, primarily because of increased emissions of particles larger than 6 mum from the freeway. Because of resuspension, these large particles are consistently observed at urban background sites, but as a smaller percentage of the total mass as distance from the emission source increases. A modified Gaussian plume model shows that dispersion may he the most significant process of controlling the spatial variation of concentration and deposition near freeway. Finally, this study demonstrates

  2. In Vitro Exposures in Diesel Exhaust Atmospheres: Resuspension of PM from Filters Verses Direct Deposition of PM from Air

    PubMed Central

    Lichtveld, Kim M.; Ebersviller, Seth M.; Sexton, Kenneth G.; Vizuete, William; Jaspers, Ilona; Jeffries, Harvey E.

    2012-01-01

    One of the most widely used in vitro particulate matter (PM) exposures methods is the collection of PM on filters, followed by resuspension in a liquid medium, with subsequent addition onto a cell culture. To avoid disruption of equilibria between gases and PM, we have developed a direct in vitro sampling and exposure method (DSEM) capable of PM-only exposures. We hypothesize that the separation of phases and post-treatment of filter-collected PM significantly modifies the toxicity of the PM compared to direct deposition, resulting in a distorted view of the potential PM health effects. Controlled test environments were created in a chamber that combined diesel exhaust with an urban-like mixture. The complex mixture was analyzed using both the DSEM and concurrently-collected filter samples. The DSEM showed that PM from test atmospheres produced significant inflammatory response, while the resuspension exposures at the same exposure concentration did not. Increasing the concentration of resuspended PM sixteen times was required to yield measurable IL-8 expression. Chemical analysis of the resuspended PM indicated a total absence of carbonyl compounds compared to the test atmosphere during the direct-exposures. Therefore, collection and resuspension of PM into liquid modifies its toxicity and likely leads to underestimating toxicity. PMID:22834915

  3. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L.

    1989-12-31

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy`s H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 {times} 10{sup {minus}5} of a year`s atmospheric deposition is transferred to grain. Approximately 6.2 {times} 10{sup {minus}9} of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 {times} 10{sup {minus}10} of the soil inventory is absorbed by roots and translocated to grains.

  4. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C. ); Corey, J.C.; Boni, A.L. )

    1989-01-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 {times} 10{sup {minus}5} of a year's atmospheric deposition is transferred to grain. Approximately 6.2 {times} 10{sup {minus}9} of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 {times} 10{sup {minus}10} of the soil inventory is absorbed by roots and translocated to grains.

  5. Emission, transport, deposition, and re-suspension of radionuclides from Fukushima Dai-ichi Nuclear Power Plant in the atmosphere - Overview of 2-year investigations in Japan

    NASA Astrophysics Data System (ADS)

    Kita, Kazuyuki; Igarashi, Yasuhiro; Yoshida, Naohiro; Nakajima, Teruyuki

    2013-04-01

    Following a huge earthquake and tsunami in Eastern Japan on 11 March, 2011, the accident in Fukushima Dai-ichi Nuclear Power Plant (FDNPP) occurred to emit a large amount of artificial radionuclides to the environment. Soon after the FDNPP accident, many Japanese researchers, as well as researchers in other countries, started monitoring radionuclides in various environmental fields and/or model calculations to understand extent and magnitude of radioactive pollution. In this presentation, we overview these activities for the atmospheric radionuclides in Japan as followings: 1. Investigations to evaluate radionuclide emissions by explosions at FNDPP in March 2011 and to estimate the respiration dose of the radiation at this stage. 2. Investigations to evaluate atmospheric transport and deposition processes of atmospheric radionuclide to determine the extent of radionuclide pollution. -- Based on results of the regular and urgent monitoring results, as well as the mapping of the distribution of radionuclide s accumulated by the deposition to the ground, restoration of their time-dependent emission rates has been tried, and processes determining atmospheric concentration and deposition to the ground have been investigated by using the model calculations. 3. Monitoring of the atmospheric concentrations of radionuclide after the initial, surge phase of FNDPP accident. 4. Investigations to evaluate re-suspension of radionuclide from the ground, including the soil and the vegetation. -- Intensive monitoring of the atmospheric concentrations and deposition amount of radionuclide after the initial, surge phase of the accident enable us to evaluate emission history from FNDPP, atmospheric transport and deposition processes, chemical and physical characteristics of atmospheric radionuclide especially of radio cesium, and re-suspension processes which has become dominant process to supply radio cesium to the atmosphere recently.

  6. Atmospheric Radionuclides from the FDNPP Accident-Four years' observations in Tsukuba, Japan and immediate resuspension

    NASA Astrophysics Data System (ADS)

    Igarashi, Yasuhito; Kajino, Mizuo; Zaizen, Yuji; Adachi, Kouji; Mikami, Masao

    2015-04-01

    The accident of Fukushima Dai-Ichi Nuclear Power Plant (FDNPP) of the Tokyo Electric Power Corporation arisen by the hit of great earthquake and tsunami in March 11, 2011, emitted abundant fresh radioactive material to the atmospheric environment. With 4-years' observation for the Fukushima radioactivity at the Meteorological Research Institute, Japan (MRI) the persisting resuspension has been observed. The resuspension seems still in difficulty to give forecast by computer modeling; the observations are indispensable bodies of the research even in the future. As a primary approach, immediate re-suspension factors were roughly estimated with modeled deposition amounts by the first plume to the Kanto district and the observed minimum activity concentration between two plume events, i.e. Mar 17 09JST to Mar. 20 09JST, by assuming mass closure between re-suspension from the contaminated surface and outflow by horizontal advection and turbulence vertical mixing as follows: Diki ΔCi- Δ2Ci- Δz = U Δx + Kz Δz2 , where i indicates radionuclides namely 137Cs and 131I, Diindicates modeled total (gas+aerosol) cumulative deposition (Bq/m2) by Mar 17 09JST, ki is the re-suspension factor (/s), U and Kz are modeled space- and time- averaged horizontal wind speed (m/s) and vertical turbulent diffusivity (m2/s), respectively, Ci indicates time-averaged observed concentration of radionuclides (9.75×10-4 and 3.14×10-1 Bq/m3 for 137Cs and 131I, respectively), and Δx and Δz are horizontal and vertical length of space where the above mass closure is obtained. In order to obtain the horizontal and vertical gradient terms on the right hand of the equation, concentrations outside the space are assumed zero (no inflow to the space). The re-suspension factors for 137Cs and 131I are 7.0×10-6 and 5.3×10-4 (/s), respectively, for the smallest volume of space (Δx and Δz are 3 km and 100 m, respectively). Those for 137Cs and 131I varied 1.6×10-6-1.5×10-5 (6.1×10-6 on average) and

  7. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (< 10 μm) particles. Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  8. Resuspension of deposited radioactive material from the Fukushima Daiichi NPP site

    NASA Astrophysics Data System (ADS)

    Steinhauser, Georg; Niisoe, Tamon; Harada, Kouji H.; Shozugawa, Katsumi; Schneider, Stephanie; Synal, Hans-Arno; Walther, Clemens; Christl, Marcus; Nanba, Kenji; Ishikawa, Hirohiko; Koizumi, Akio

    2016-04-01

    Releases of radionuclides from the Fukushima nuclear accident are typically associated with the atmospheric discharges in the early phase of the accident in spring 2011. Analysis of weekly air filters, however, has revealed sporadic releases of radionuclides long after the Fukushima Daiichi reactors were stabilized. One major discharge was observed in August 2013 in monitoring stations in the Minamisoma area north of the Fukushima Daiichi nuclear power plant (FDNPP). During this event, an air monitoring station in this previously scarcely contaminated area suddenly reported 137Cs activity levels that were 30-fold above the background. Together with atmospheric dispersion and deposition simulation, radionuclide analysis in soil indicated that debris removal operations conducted on the FDNPP site on August 19, 2013 are likely to be responsible for this late release of radionuclides. One soil sample in the center of the simulated plume exhibited a high 90Sr contamination (78 ± 8 Bq kg‑1) as well as a high 90Sr/137Cs ratio (0.04); both phenomena have usually been observed only in very close vicinity around the FDNPP. We estimate that through the resuspension of highly contaminated particles in the course of these earthmoving operations, gross 137Cs activity of ca. 2.8 × 1011 Bq has been released.

  9. Effect of recurrent sediment resuspension-deposition events on bioavailability of polycyclic aromatic hydrocarbons in aquatic environments

    NASA Astrophysics Data System (ADS)

    Dong, Jianwei; Xia, Xinghui; Wang, Minghu; Xie, Hui; Wen, Jiaojiao; Bao, Yimeng

    2016-09-01

    To investigate the effect of recurrent sediment resuspension-deposition events (RSRDEs) on bioavailability of polycyclic aromatic hydrocarbons (PAHs) in aquatic environments, a modified device was used to simulate three resuspension-deposition events with the sediment collected from the Yellow River. The results showed that the dissolved organic carbon (DOC)-water distribution coefficients of PAHs decreased with time during the first resuspension-deposition period. It indicates that some PAHs associated with organic carbon (OC) in suspended sediment (SPS) desorbed with the release of OC and became DOC-associated PAHs in the overlying water, then the PAHs desorbed from the DOC and became freely dissolved. After first 2-h suspension, only 1.90% of phenanthrene, 2.98% of pyrene, and 0.33% of chrysene in the overlying water came from pore-water; at least 61.6%, 89.6%, and 95.3% came from DOC-associated PAHs in SPS and the rests were released from the insoluble OC in SPS. The maximum desorption ratios in the original sediment were 20%, 12%, and 14% for phenanthrene, pyrene, and chrysene, respectively during the first resuspension-deposition event. The SPS concentration followed the sequence of the third > second > first resuspension event. This was because RSRDEs changed the SPS particle size and enhanced floc formation. There was no significant difference in the total dissolved PAH concentrations among the three resuspension events, while their freely dissolved concentrations followed the sequence of the third > second > first resuspension event. During deposition periods, more than half of the total/freely dissolved PAHs released during suspension still existed in the overlying water after 70-h deposition. This study suggests that the RSRDEs will increase the bioavailability of PAHs in aquatic environments, especially near the sediment-water interface, and the potential effects of PAHs during RSRDEs on fish/human in rivers and lakes should be considered in future

  10. Stochastic modeling of fine particle deposition, resuspension, and hyporheic exchange in rivers

    NASA Astrophysics Data System (ADS)

    Packman, Aaron; Drummond, Jennifer; Aubeneau, Antoine

    2013-04-01

    Fine suspended particles are responsible for substantial flux of organic matter and contaminants in rivers. Further, microorganisms delivered from the terrestrial system or resuspended from benthic and hyporheic biofilms also propagate downstream in rivers, providing connectivity in the river microbial community. Because fine particle concentrations are often similar along the length of rivers, there has been a tendency to think that their dynamics are simple. Historically, fine suspended particles have been considered to show little interaction with streambed sediments. This is a fallacy. Recent observations have demonstrated that fine particles show complex dynamics in rivers, including ongoing deposition and resuspension. This provides substantial opportunity for interaction with benthic and hyporheic sediments and biofilms, which can lead to enhanced processing of fine particulate organic carbon, accumulation of pathogens in riverbeds, and mixing of particle-bound contaminants into bed sediments. Here I will briefly review current understanding of fine particle deposition, resuspension, and hyporheic exchange processes, develop a conceptual model for fine particle dynamics in rivers, and present a stochastic modeling framework that can represent most of these processes. I will close by discussing the limits of current modeling capability and prospects for future development of more general models.

  11. Advanced receptor modelling for the apportionment of road dust resuspension to atmospheric PM

    NASA Astrophysics Data System (ADS)

    Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P. K.

    2009-04-01

    Fugitive emissions from traffic resuspension can often represent an important source of atmospheric particulate matter in urban environments, especially when the scarce precipitations favour the accumulation of road dust. Resuspension of road dust can lead to high exposures to heavy metals, metalloids and mineral matter. Knowing the amount of its contribution to atmospheric PM is a key task for establishing eventual mitigation or preventive measures. Factor analysis techniques are widely used tools for atmospheric aerosol source apportionment, based on the mass conservation principle. Paatero and Tapper (1993) suggested the use of a Weighted Least Squares scheme with the aim of obtaining a minimum variance solution. Additionally they proposed to incorporate the basic physical constraint of non negativity, calling their approach Positive Matrix Factorization (PMF), which can be performed by the program PMF2 released by Paatero (1997). Nevertheless, Positive Matrix Factorization can be either solved with the Multilinear Engine (ME-2), a more flexible program, also developed by Paatero (1999), which can solve any model consisting in sum of products of unknowns. The main difference with PMF2 is that ME-2 does not solve only well-defined tasks, but its actions are defined in a "script file" written in a special-purpose programming language, allowing incorporating additional tasks such as data processing etc. Thus in ME-2 a priori information, e.g. chemical fingerprints can be included as auxiliary terms of the object function to be minimized. This feature of ME-2 make it especially suitable for source apportionment studies where some knowledge (chemical ratios, profiles, mass conservation etc) of involved sources is available. The aim of this study was to quantify the contribution of road dust resuspension in PM10, PM2.5 and PM1 data set from Barcelona (Spain). Given that recently the emission profile of local road dust was characterized (Amato et al., in press

  12. Tracing the Depositional Fluxes of Po-210 and Pb-210 As a Tool for Sediment Resuspension Study in a Shallow Water System in Southeast Michigan

    NASA Astrophysics Data System (ADS)

    Baskaran, M. M.; Mudbidre, R.

    2014-12-01

    From the measurements of 210Po and 210Pb in atmospheric dry and bulk depositional flux and in aerosols in southeast Michigan, we observed the following: i) the 210Po/210Pb activity ratio in bulk precipitation was lower than that in aerosols and this was attributed to the possible presence of volatile 210Po in the atmosphere; and ii) it was proposed that only a small fraction of aerosols actively participate in the scavenging of particle-reactive radionuclides based on lack of correlation between the activity of 210Pb and aerosol mass concentration. We extended this study to investigate the particle-cycling in a shallow, dynamic freshwater system in southeast Michigan. The 210Po/210Pb activity ratios in bulk deposition is mostly <0.1 while in benthic sediments, this ratio is usually ~1.0. This activity ratio in finer resuspended sedimentary particulate matter is altered from the scavenging of Po and Pb derived from the atmospheric deposition, and thus, the 210Po/210Pb activity ratio in suspended particulate matter can be utilized as a tracer for particle cycling. We measured the concentrations 210Po and 210Pb in a suite of surficial benthic sediments and particulate matter collected in sediment traps from five different locations in the Clinton River that discharges in to Lake St. Clair in southeast Michigan to quantify the sediment resuspension rates and to determine the particle residence time. The mean 210Po/210Pb activity ratio of suspended trap and surficial bottom sediments were 0.72 and 0.75, respectively, indicating that the sediment trap particles were mostly derived from resuspended bottom sediments. Particle residence time varied from 0.3 to 4 days for 210Pb and 0.9 to 13.4 days for 210Po. Sediment resuspension rate calculated via a single box model approach yielded a mean resuspension rate of 0.5 g cm-2 yr-1 using 210Pb and 0.2 g cm-2 yr-1 using 210Po. A comparison of the 210Po and 210Pb fluxes in the sediment trap to that in the direct atmospheric

  13. Particle resuspension via human activity

    NASA Astrophysics Data System (ADS)

    Qian, Jing

    This dissertation consists of three correlated parts that are related to particle resuspension from floorings in indoor environment. The term resuspension in this dissertation refers the re-entrainment of deposited particles into atmosphere via mechanic disturbances by human activity indoors, except where it is specified. The first part reviews the literature related to particle resuspension. Fundamental concepts and kinetics of resuspension of particles were extracted from previous studies. Suggestions for future research on indoor particle resuspension have been given based on the literature reviews and the findings of part 2 and part 3. The second part involved 54 resuspension experiments conducted in a room-scale environmental chamber. Three floorings types and two ventilation configurations were tested. Air exchange rate were fixed during the experiments, and the temperature/RH were monitored. The airborne particle concentration was measured by an array of optical particle counters (OPCs) in the chamber. Resuspension rates were estimated in size ranges of 0.8--1, 1.0--2.0, 2.0--5.0, and 5.0--10 mum ranging from 10-5--10 -2 hr-1, with higher resuspension rates associated with larger particles. Resuspension via walking activity varied from experiment to experiment. A "heavy and fast" walking style was associated with a higher resuspension rate than a less active style. Given the same floor loading of the test particles, resuspension rates for the carpeted floor were on the same order of magnitude but significantly higher than those for the hard floor. In the third part, an image analysis method (IAM) was adapted to characterize the particle distribution on fabric floorings. The IAM results showed the variability of particles loading on various carpets. The dust particles on fibers from ten carpets vary in sizes. The normal dust loading varies from house to house from 3.6x106 particles/cm2 to 8.2x106 particles/cm2. The dust particle number distribution for size

  14. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan

    SciTech Connect

    Lee, Cheegwan; Schwab, David J.; Beletsky, Dmitry; Stroud, Jonathan; Lesht, B. M.

    2007-02-17

    A two-dimensional sediment transport model capable of simulating sediment resuspension of mixed (cohesive+noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics of the model are the capability to incorporate several floc size classes, a physically-based settling velocity formula, bed armoring, and sediment availability limitation. Important resuspension parameters were estimated from field and laboratory measurement data. The model reproduced the resuspension plume (observed by the SeaWIFS satellite and field instruments) and recently measured sedimentation rate distribution (using radiotracer techniques) fairly well. Model results were verified with field measurements of suspended sediment concentration and settling flux (by ADCPs and sediment traps). Both wave conditions and sediment bed properties (critical shear stress, fine sediment fraction, and limited sediment availability or source) are the critical factors that determine the concentration distribution and width of the resuspension plume. The modeled sedimentation pattern shows preferential accumulation of sediment on the eastern side of the lake, which agrees with the observed sedimentation pattern despite a predominance of particle sources from the western shoreline. The main physical mechanisms determining the sedimentation pattern are 1) the two counter-rotating circulation gyres producing offshore mass transport along the southeastern coast during northerly wind and 2) the settling velocity of sediment flocs which controls the deposition location.

  15. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan.

    SciTech Connect

    Lee, C.; Schwab, D. J.; Beletsky, D.; Stroud, J.; Lesht, B.; PNNL; NOAA; Univ. of Michigan; Univ. of Pennsylvania

    2007-02-17

    A two-dimensional sediment transport model capable of simulating sediment resuspension of mixed (cohesive plus noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics of the model are the capability to incorporate several floc size classes, a physically based settling velocity formula, bed armoring, and sediment availability limitation. Important resuspension parameters were estimated from field and laboratory measurement data. The model reproduced the resuspension plume (observed by the SeaWIFS satellite and field instruments) and recently measured sedimentation rate distribution (using radiotracer techniques) fairly well. Model results were verified with field measurements of suspended sediment concentration and settling flux (by ADCPs and sediment traps). Both wave conditions and sediment bed properties (critical shear stress, fine sediment fraction, and limited sediment availability or source) are the critical factors that determine the concentration distribution and width of the resuspension plume. The modeled sedimentation pattern shows preferential accumulation of sediment on the eastern side of the lake, which agrees with the observed sedimentation pattern despite a predominance of particle sources from the western shoreline. The main physical mechanisms determining the sedimentation pattern are (1) the two counter-rotating circulation gyres producing offshore mass transport along the southeastern coast during northerly wind and (2) the settling velocity of sediment flocs which controls the deposition location.

  16. Model testing using Chernobyl data: III. Atmospheric resuspension of radionuclides in Ukrainian regions impacted by Chernobyl fallout

    SciTech Connect

    Garger, E.K.; Hoffman, F.O.; Miller, C.W.

    1996-01-01

    The {open_quotes}Resuspension{close_quotes} scenario is designed to test models for atmospheric resuspension of radionuclides from contaminated soils. Resuspension can be a secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. The test scenario describes three exposure situations: (1) locations within the highly contaminated 30-km zone at Chernobyl, where exposures to resuspended material are probably dominated by local processes; (2) an urban area (Kiev) outside the 30-km zone, where local processes include extensive vehicular traffic; and (3) a location 40 to 60 km west of the Chernobyl reactor, where upwind sources of contamination are important. Input data include characteristics of the {sup 137}Cs ground contamination around specific sites, climatological data for the sites, characteristics of the terrain and topography, and locations of the sampling sites. Predictions are requested for average air concentrations of {sup 137}Cs at specified locations due to resuspension of Chernobyl fallout and for specified resuspension factors and rates. Test data (field measurements) are available for all endpoints. 9 refs., 4 figs., 11 tabs.

  17. Beryllium-7 as a tracer of short-term sediment deposition and resuspension in the Fox River Wisconsin

    USGS Publications Warehouse

    Fitzgerald, S.A.; Klump, J.V.; Swarzenski, P.W.; Mackenzie, R.A.; Richards, K.D.

    2001-01-01

    Short-term (???monthly) sediment deposition and resuspension rates of surficial bed sediments in two PCB-laden impoundments on the Fox River, WI, were determined in the summer and fall of 1998 using 7Be, a naturally occurring radioisotope produced in the atmosphere. Decay-corrected activities and inventories of 7Be were measured in bed sediment and in suspended particles. Beryilium-7 activities generally decreased with depth in the top 5-10 cm of sediments and ranged from undetectable to ???0.9 pCi cm-3. Inventories of 7Be, calculated from the sum of activities from all depths, ranged from 0.87 to 3.74 pCi cm-2, and the values covaried between sites likely reflecting a common atmospheric input signal. Activities of 7Be did not correlate directly with rainfall. Partitioning the 7Be flux into "new" and "residual" components indicated that net deposition was occurring most of the time during the summer. Net erosion, however, was observed at the upstream site from the final collection in the fall. This erosion event was estimated to have removed 0.10 g (cm of sediment)-2, corresponding to ???0.5 cm of sediment depth, and ???6-10 kg of polychlorinated biphenyls (PCBs) over the whole deposit. Short-term accumulation rates were up to ???130 times higher than the long-term rates calculated from 137Cs profiles, suggesting an extremely dynamic sediment transport environment, even within an impounded river system.Short-term (approximately monthly) sediment deposition and resuspension rates of surficial bed sediments in two PCB-laden impoundments on the Fox River, WI, were determined in the summer and fall of 1998 using 7Be, a naturally occurring radioisotope produced in the atmosphere. Decay-corrected activities and inventories of 7Be were measured in bed sediment and in suspended particles. Beryllium-7 activities generally decreased with depth in the top 5-10 cm of sediments and ranged from undetectable to approximately 0.9 pCi cm-3. Inventories of 7Be, calculated from the

  18. A "TEST OF CONCEPT" COMPARISON OF AERODYNAMIC AND MECHANICAL RESUSPENSION MECHANISMS FOR PARTICLES DEPOSITED ON FIELD RYE GRASS (SECALE CERCELE). PART I. RELATIVE PARTICLE FLUX RATES

    EPA Science Inventory

    Resuspension of uniform latex micro spheres deposited on a single seed pod of field rye grass stalk and head was investigated experimentally in a wind tunnel. The experiment was designed to distinguish aerodynamic (viscous and turbulent) mechanisms from mechanical resuspension re...

  19. Deposition of Atmospheric Pollutants

    NASA Astrophysics Data System (ADS)

    Malet, L. M.

    Deposition of Atmospheric Pollutants, containing the proceedings of a colloquium held at Oberursel/Taunus, FRG, November 9-11, 1981, is divided into three main parts: dry deposition; wet deposition; and deposition on plants and vegetation.The 20 articles in the volume permit a fair survey of present-day knowledge and will be a useful tool to all working on the topic. Pollution by deposition of either the dry or wet sort is very insidious; its importance only appears in the long range, when its effects are or are almost irreversible. That is why concern was so long in emerging from decision makers.

  20. Modeling atmospheric particle deposition

    NASA Astrophysics Data System (ADS)

    Jackson, Msafiri M.

    Experimentally determined dry deposition velocities for atmospheric particles in the size range of 5-80 μm in diameter have been shown to be greater than predictions made with the current state-of-the-art (Sehmel-Hodgson) model which is based on wind tunnel experiment, particularly at higher wind speed. In this research, a model to predict the atmospheric dry deposition velocities of particles has been developed that is similar to a model developed for particle deposition in vertical pipes. The model uses a sigmoid curve to correlate nondimensional inertial deposition velocity (Vdi+) with dimensionless particle relaxation time (/tau+) and flow Reynolds number (Re). Vdi+ obtained from data collected in the atmosphere with particle size classifier system and a flat greased plate, Re, and /tau+ for particles between 1 and 100 μm diameter were fit with a sigmoid curve using the least square procedure to obtain coefficients for the sigmoid curve. Deposition velocities data for particles between 0.06 and 4 μm diameter developed by Sehmel-Hodgson model were used to introduce a Schmidt number (Sc) term to take care of Brownian diffusion. The atmospheric plate deposition velocity model is a function of Vst (Stokes settling velocity), V* (friction velocity), /tau+, Re, and Sc. Model application to 62 atmospheric data set revealed that: generated flux predictions agreed well with atmospheric measurements, and its performance is better than Sehmel-Hodgson model. By comparing the sigmoid curve coefficients developed for vertical pipe data with the coefficients developed for atmospheric data it is concluded that, the two types of deposition are similar when the effects of Re and /tau+ are properly considered. Sensitivity analysis for the model has revealed three distinct regions based on particle size. Of the three physical parameters (/tau+, Re, Sc) in the model, not more than two controls the deposition in any of the identified regions. The plate deposition model which is

  1. A "TEST OF CONCEPT" COMPARISON OF AERODYNAMIC AND MECHANICAL RESUSPENSION MECHANISMS FOR PARTICLES DEPOSITED ON FIELD RYE GRASS (SECALS CERCELE). PART 2. THRESHOLD MECHANICAL ENERGIES FOR RESUSPENSION PARTICLE FLUXES

    EPA Science Inventory

    Kinetic energy from the oscillatory impacts of the grass stalk against a stationary object was measured with a kinetic energy measuring device. These energy inputs were measured as part of a resuspension experiment of uniform latex microspheres deposited on a single rye grass see...

  2. Re-suspension of lead contaminated urban soil as a dominant source of atmospheric lead in Birmingham, Chicago, Detroit and Pittsburgh, USA

    NASA Astrophysics Data System (ADS)

    Laidlaw, Mark A. S.; Zahran, Sammy; Mielke, Howard W.; Taylor, Mark P.; Filippelli, Gabriel M.

    2012-03-01

    Soils in older areas of cities are highly contaminated by lead, due largely to past use of lead additives in gasoline, the use of lead in exterior paints, and industrial lead sources. Soils are not passive repositories and periodic re-suspension of fine lead contaminated soil dust particulates (or aerosols) may create seasonal variations of lead exposure for urban dwellers. Atmospheric soil and lead aerosol data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) database were obtained for Pittsburgh (Pennsylvania), Detroit (Michigan), Chicago (Illinois), and Birmingham (Alabama), USA. In this study the temporal variations of atmospheric soil and lead aerosols in these four US cities were examined to determine whether re-suspended lead contaminated urban soil was the dominant source of atmospheric lead. Soil and lead-in-air concentrations were examined to ascertain whether lead aerosols follow seasonal patterns with highest concentrations during the summer and/or autumn. In addition, atmospheric soil and lead aerosol concentrations on weekends and Federal Government holidays were compared to weekdays to evaluate the possibility that automotive turbulence results in re-suspension of lead contaminated urban soil. The results show that the natural logs of atmospheric soil and lead aerosols were associated in Pittsburgh from April 2004 to July 2005 (R2 = 0.31, p < 0.01), Detroit from November 2003 to July 2005 (R2 = 0.49, p <0.01), Chicago from November 2003 to August 2005 (R2 = 0.32, p < 0.01), and Birmingham from May 2004 to December 2006 (R2 = 0.47, p < 0.01). Atmospheric soil and lead aerosols followed seasonal patterns with highest concentrations during the summer and/or autumn. Atmospheric soil and lead aerosols are 3.15 and 3.12 times higher, respectively, during weekdays than weekends and Federal Government holidays, suggesting that automotive traffic turbulence plays a significant role in re-suspension of contaminated roadside soils and

  3. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  4. Atmospheric Mercury Deposition Monitoring – National Atmospheric Deposition Program (NADP)

    EPA Science Inventory

    The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America – the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many ...

  5. Transuranic resuspension

    SciTech Connect

    Sehmel, G.A.

    1984-04-01

    Characteristics of aged resuspension sources are more uncertain than those of new resuspension sources, which can be investigated using inert-particle controlled-tracer sources. Even though airborne concentrations are low, one aged uniform-area source which can be used for resuspension studies is the accumulated radionuclide fallout in the soil from stratospheric and tropospheric fallout debris. Airborne radionuclide concentrations from this source were investigated at convenient locations on the Hanford site. The objective is to summarize plutonium and americium resuspension research conducted by the Pacific Northwest Laboratory from 1977 to 1983. Airborne plutonium was determined at five sites in the Hanford area, and both plutonium and americium were determined at two Hanford sites. Airborne plutonium and americium were examined as a function of aerodynamic particle diameter, sampling height, wind speed increments, and wind direction increments. The following results are discussed: airborne radionuclide concentrations, ..mu..Ci/cm/sup 3/ of sampled air; radionuclide activity densities, ..mu..Ci/g of airborne solids; airborne plutonium fluxes, ..mu..Ci/(m/sup 2/ day); /sup 241/Am//sup 239 +240/Pu) activity ratios, (..mu..Ci /sup 241/Am)/(..mu..Ci/sup 239 +240/Pu); and airborne solid concentrations, ..mu..g/m/sup 3/ of sampled air. In addition, a relationship based on field data for aged plutonium sources at Bikini Atoll, the Hanford site, and Rocky Flats was developed to estimate the maximum expected plutonium activity density on airborne solids compared to activity densities for bulk surface-soil samples. As a result, it is possible to more accurately predict resuspension factor ranges as a function of the resuspension source activity densities. 31 references, 18 figures, 5 tables.

  6. Modeling the resuspension of ash deposited during the eruption of Eyjafjallajökull in spring 2010

    NASA Astrophysics Data System (ADS)

    Leadbetter, S. J.; Hort, M. C.; von Löwis, S.; Weber, K.; Witham, C. S.

    2012-10-01

    Eyjafjallajökull, a volcano in southern Iceland, erupted explosively in April and May 2010 depositing ash over a region of more than 3000 km2 to the east and southeast of the volcano. This deposited ash has been frequently remobilized by the wind causing concern for the health of Icelanders living in the region. An investigation was carried out to determine whether it would be possible to produce forecasts of days when high airborne ash concentrations were likely to occur. Information about the spatially varying surface characteristics of the region of deposited ash is not available so in the modeling approach adopted here ash is released from the surface at a rate proportional to the cube of the excess friction velocity (local friction velocity minus a threshold) only when the friction velocity exceeds a threshold. Movement of the resuspended ash is then modeled in a Lagrangian dispersion model. Modeled ash concentrations are compared to observed concentrations from two periods; PM10 observations between 23 May and 2 July 2010 and airborne particle counts between 21 September 2010 and 16 February 2011. More than 66% of the resuspension episodes between May and July are captured by the model and the relative magnitudes of the modeled episodes in this period are in good agreement with the observations. 66% of episodes between October and February are also captured by the model although there is an increase in the false alarm rate which appears to be due to the influence of precipitation.

  7. Overview of resuspension model: application to low level waste management

    SciTech Connect

    Healy, J.W.

    1980-01-01

    Resuspension is one of the potential pathways to man for radioactive or chemical contaminants that are in the biosphere. In waste management, spills or other surface contamination can serve as a source for resuspension during the operational phase. After the low-level waste disposal area is closed, radioactive materials can be brought to the surface by animals or insects or, in the long term, the surface can be removed by erosion. Any of these methods expose the material to resuspension in the atmosphere. Intrusion into the waste mass can produce resuspension of potential hazard to the intruder. Removal of items from the waste mass by scavengers or archeologists can result in potential resuspension exposure to others handling or working with the object. The ways in which resuspension can occur are wind resuspension, mechanical resuspension and local resuspension. While methods of predicting exposure are not accurate, they include the use of the resuspension factor, the resuspension rate and mass loading of the air.

  8. ATMOSPHERIC MERCURY TRANSPORT AND DEPOSITION

    EPA Science Inventory

    The current state of our scientific understanding the mercury cycle tells us that most of the mercury getting into fish comes from atmospheric deposition, but methylation of that mercury in aquatic systems is required for the concentrations in fish to reach harmful levels. We st...

  9. A coupled model of the airborne and surface concentration of radionuclides considering the resuspension-deposition process

    NASA Astrophysics Data System (ADS)

    Ichige, Hiroyuki; Hatano, Yuko; Onda, Yuichi

    2014-05-01

    We propose a new model of estimating the long-term behavior of both the airborne and the surface concentrations of radionuclides in the vicinity of 30 km of Fukushima plant. Our model consists of the following simultaneous equations: δC- = viδC-+ ΛupS - ΛdownC - ΛdecC (1) δt δxi δS- = - Λ S + Λ C - Λ S, (2) δt up down env where C is the airborne concentration of a specific nuclide, S the surface concentration, the suffix i is 1 or 2 (2 dimensional), v the effective wind velocity which migrates the radionuclides in the air, Λup the rate constant of resuspension process, Λdown of deposition process, Λdec the decay constant, and Λenv is the rate constant of the surface concentration decrease due to environmental factors such as runoff, washoff, infiltrations, and the vegetation effects. These equations are based on our former study (Hatano and Hatano, 1997; Hatano et al., 1998) which successfully reproduce the long-term decrease of airborne concentration of the Chernobyl data such as Cs-137, Cs-134, Ce-144, and Ru-106 over nearly a decade. The first equation of the present study is essentially the same as our previous studies, besides that we added a new term for deposition. The second equation is newly added in the present study which describes the behavior of the surface concentration. In Fukushima case, we found that the radiation risk is much higher than the airborne concentration. That is why we add the second equation. Since the new model requires parameter values of Λs we need to estimate these values from actual data. In order to do so, we apply the method of inverse problem and thereby estimate the values. We also do the spectral analysis of the dose rate (mainly from Cs-137, -134) and study if it is possible to estimate the resuspended amount from the ground surface.

  10. Methodology and Significance of Studies of Atmospheric Deposition in Highway Runoff

    USGS Publications Warehouse

    Colman, John A.; Rice, Karen C.; Willoughby, Timothy C.

    2001-01-01

    Atmospheric deposition and the processes that are involved in causing and altering atmospheric deposition in relation to highway surfaces and runoff were evaluated nationwide. Wet deposition is more easily monitored than dry deposition, and data on wet deposition are available for major elements and water properties (constituents affecting acid deposition) from the inter-agency National Atmospheric Deposition Program/ National Trends Network (NADP/NTN). Many trace constituents (metals and organic compounds) of interest in highway runoff loads, however, are not included in the NADP/NTN. Dry deposition, which constitutes a large part of total atmospheric deposition for many constituents in highway runoff loads, is difficult to monitor accurately. Dry-deposition rates are not widely available. Many of the highway-runoff investigations that have addressed atmospheric-deposition sources have had flawed investigative designs or problems with methodology. Some results may be incorrect because of reliance on time-aggregated data collected during a period of changing atmospheric emissions. None of the investigations used methods that could accurately quantify the part of highway runoff load that can be attributed to ambient atmospheric deposition. Lack of information about accurate ambient deposition rates and runoff loads was part of the problem. Samples collected to compute the rates and loads were collected without clean-sampling methods or sampler protocols, and without quality-assurance procedures that could validate the data. Massbudget calculations comparing deposition and runoff did not consider loss of deposited material during on-highway processing. Loss of deposited particles from highway travel lanes could be large, as has been determined in labeled particle studies, because of resuspension caused by turbulence from passing traffic. Although a cause of resuspension of large particles, traffic turbulence may increase the rate of deposition for small particles and

  11. Dust resuspension without saltation

    PubMed Central

    Loosmore, Gwen A.; Hunt, James R.

    2010-01-01

    Wind resuspension (or entrainment) provides a source of dust and contaminants for the atmosphere. Conventional wind erosion models parameterize dust resuspension flux with a threshold velocity or with a horizontal abrasion flux; in the absence of abrasion the models assume dust flux is transient only. Our experiments with an uncrusted, fine material at relative humidities exceeding 40% show a long-term steady dust flux in the absence of abrasion, which fits the approximate form: Fd = 3.6(u*)3, where Fd is the dust flux (in μg/m2 s), and u* is the friction velocity (in m/s). These fluxes are generally too small to be significant sources of dust in most models of dust emission. However, they provide a potential route to transport contaminants into the atmosphere. In addition, dust release is substantial during the initial transient phase. Comparison with field data suggests that the particle friction Reynolds number may prove a better parameter than u* for correlating fluxes and understanding the potential for abrasion. PMID:20336175

  12. ATMOSPHERIC DEPOSITION MODELING AND MONITORING OF NUTRIENTS

    EPA Science Inventory

    This talk presents an overview of the capabilities and roles that regional atmospheric deposition models can play with respect to multi-media environmental problems. The focus is on nutrient deposition (nitrogen). Atmospheric deposition of nitrogen is an important contributor to...

  13. Atmospheric deposition to high-elevation forests

    SciTech Connect

    Lovett, G.M.; Weathers, K.C.; Lindberg, S.E. Oak Ridge National Lab., TN )

    1994-06-01

    Three important phenomena characterize atmospheric deposition to high-elevation forests: (1) multiple deposition mechanisms (wet, dry, and cloud deposition), (2) high rates of deposition, and (3) high spatial variability. The high rates of deposition are caused by changes in meteorological conditions with elevation, especially increasing wind speed and cloud immersion frequency. The high spatial variability of deposition is a result of the regulation of cloud and dry deposition rates by microclimatic and canopy structure conditions, which can be extremely heterogeneous in mountain landscapes. Spruce-fir forests are often [open quotes]hot spots[close quotes] of deposition when viewed in a landscape or regional context because of their elevation, exposure, and evergreen canopy. In this talk we will consider atmospheric depositions to high-elevation forests in both the northeastern and southeastern U.S., using field data and geographic information systems to illustrate deposition patterns.

  14. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment.

    PubMed

    Evangeliou, N; Zibtsev, S; Myroniuk, V; Zhurba, M; Hamburger, T; Stohl, A; Balkanski, Y; Paugam, R; Mousseau, T A; Møller, A P; Kireev, S I

    2016-01-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of (137)Cs, 1.5 TBq of (90)Sr, 7.8 GBq of (238)Pu, 6.3 GBq of (239)Pu, 9.4 GBq of (240)Pu and 29.7 GBq of (241)Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y(-1) in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray. PMID:27184191

  15. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-05-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y‑1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  16. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    PubMed Central

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-01-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y−1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray. PMID:27184191

  17. Atmospheric deposition maps for the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.

    2003-01-01

    Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.

  18. ATMOSPHERIC ACID DEPOSITION DAMAGE TO PAINTS

    EPA Science Inventory

    Available data from laboratory and field studies of damage to paints by erosion have been analyzed to develop an atmospheric acid deposition damage function for exterior house paints containing calcium carbonate or silicate extenders. Regression analysis coefficients associated w...

  19. ASSESSMENT OF ATMOSPHERIC DEPOSITION ECOLOGICAL IMPACTS

    EPA Science Inventory

    CAMD works with research scientists and organizations in the academic community to assess and better understand the impacts of atmospheric deposition of power sector pollutant emissions on terrestrial and aquatic (including freshwater and marine) ecosystems. See peer review pr...

  20. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    NASA Astrophysics Data System (ADS)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  1. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

  2. Modeling atmospheric concentrations and deposition of Hg

    SciTech Connect

    Shannon, J.D.

    1994-06-01

    The deleterious effects on ecosystems of mercury pollution are well established and fish advisories are in effect for many lakes in North America. Because methylation and other transformation processes in ecosystems can alter the original speciation of deposited Hg, a decrease in atmospheric loading of Hg in all forms is highly desirable. The contribution to Hg deposition by emissions from current anthropogenic activities relative to the deposition contribution by emissions from natural processes must be estimated to establish what fraction of atmospheric loading to watersheds and ecosystems is at least potentially amenable to control actions. Additional modeling questions concern source-receptor relationships (SRR) for major point sources and for emissions aggregated over geopolitical regions or emission sectors, because of the usefulness of SRR in comparing effectiveness of alternate control strategies. Modeling of atmospheric Hg is less advanced than that of some other widespread air pollution problems such as acid deposition. Nonetheless, several promising studies have been made for northern Europe and North America. For this study of Hg deposition in eastern North America we extend modeling techniques used extensively and successfully during the last 15 years for concentrations and deposition of SO{sub x} and NO{sub x} over regional scales, with parameterization rates adjusted to suitable values for Hg transformation and removal.

  3. Pacific Northwest Laboratory annual report for 1982 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect

    Elderkin, C.E.

    1983-02-01

    This report is organized in terms of generic studies: theoretical studies of atmospheric processes; pollutant characterizations and transformation; boundary layer meteorology; and dispersion, deposition and resuspension of atmospheric pollutants.

  4. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.

    2016-07-01

    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.

  5. MEAD Marine Effects of Atmospheric Deposition

    NASA Astrophysics Data System (ADS)

    Jickells, T.; Spokes, L.

    2003-04-01

    The coastal seas are one of the most valuable resources on the planet but they are threatened by human activity. We rely on the coastal area for mineral resources, waste disposal, fisheries and recreation. In Europe, high population densities and high levels of industrial activity mean that the pressures arising from these activities are particularly acute. One of the main problems concerning coastal seas is the rapid increase in the amounts of nitrogen-based pollutants entering the water. They come from many sources, the most important ones being traffic, industry and agriculture. These pollutants can be used by algae as nutrients. The increasing concentrations of these nutrients have led to excessive growth of algae, some of which are harmful. When algae die and decay, oxygen in the water is used up and the resulting lower levels of oxygen may lead to fish kills. Human activity has probably doubled the amount of chemically and biologically reactive nitrogen present globally. In Europe the increases have been greater than this, leading to real concern over the health of coastal waters. Rivers have, until recently, been thought to be the most important source of reactive nitrogen to the coastal seas but we now know that inputs from the atmosphere are large and can equal, or exceed, those from the rivers. Our initial hypothesis was that atmospheric inputs are important and potentially different in their effect on coastal ecosystems to riverine inputs and hence require different management strategies. However, we had almost no information on the direct effects of atmospheric deposition on marine ecosystems, though clearly such a large external nitrogen input should lead to enhanced phytoplankton growth The aim of this European Union funded MEAD project has been to determine how inputs of nitrogen from the atmosphere affect the chemistry and biology of coastal waters. To try to answer this, we have conducted field experiments in the Kattegat, an area where we know

  6. Atmospheric deposition fluxes to Monetary Bay

    NASA Astrophysics Data System (ADS)

    Gray, E.; Paytan, A.; Ryan, J.

    2008-12-01

    Atmospheric deposition has been widely recognized as a source of pollutants and nutrients to coastal ecosystems. Specifically, deposition includes nitrogen compounds, sulfur compounds, mercury, pesticides, phosphate, trace metals and other toxic compounds that can travel great distances. Sources of these components include both natural (volcanoes, mineral dust, forest fires) and anthropogenic (fossil fuels, chemical byproducts, incineration of waste) sources, which may contribute to harmful health and environmental impacts such as eutrophication, contaminated fish and harmful algal blooms. This study looks at the flux of aerosol deposition (TSP - total suspended particle load) to Monterey Bay, California. Samples are collected on a cascade impactor aerosol sampler (size fractions PM 2.5 and PM 10) every 48 hours continuously. Preliminary results indicate that the TSP for PM 10 ranged from 0.026 to 0.104 mg m-3 of air and for PM 2.5 from 0.014 to 0.046 mg m-3 of air. Using a deposition velocity of 2 cm s-1 for the large fraction (PM10 - PM 2.5) and a deposition velocity of 0.7 cm s-1 for the fine fraction (PM 2.5) deposition rates are 13 and 86 mg m-2 d-1 respectively.

  7. Alkylphenols in atmospheric depositions and urban runoff.

    PubMed

    Bressy, A; Gromaire, M-C; Lorgeoux, C; Chebbo, G

    2011-01-01

    A sampling campaign was conducted in order to determine alkylphenol (AP) concentrations in stormwater as well as potential AP sources in suburban environments. An analytical procedure was developed to quantify APs in bulk atmospheric deposition, building runoff, road runoff and stormwater. Both nonylphenols and octylphenols could be quantified in each sample. Median stormwater concentrations amounted to: 470 ng/l for nonylphenols, and 36 ng/l for octylphenols. These concentrations are 3 times higher than those found in atmospheric deposition, thus proving that local human activity constitutes a significant source of contamination. The contributions of the various sources to stormwater have been assessed from mass balances at the catchment scale. 70% of AP mass in stormwater originates from building and road emissions. Annual AP fluxes have been extrapolated from the total AP mass measured over our sampling periods for atmospheric depositions (44 to 84 µgNP/m(2)/yr) and stormwater (100 to 190 µgNP/m(2)/yr). Moreover, since APs were mainly found in the dissolved fraction, runoff treatment devices based on settling are unlikely to be very efficient. PMID:21330713

  8. Modeling Atmospheric Energy Deposition (by energetic ions)

    NASA Astrophysics Data System (ADS)

    Parkinson, C. D.; Brain, D. A.; Lillis, R. J.; Liemohn, M. W.; Bougher, S. W.

    2011-12-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. Such modeling has been previously done for Earth, Mars and Jupiter using a guiding center precipitation model with extensive collisional physics. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation that can perform calculations for cases where there is only a weak or nonexistent magnetic field that includes detailed physical interaction with the atmosphere (i.e. collisional physics). We show initial efforts to apply a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Venus, Mars, and Titan. A systematic study of the ionization, excitation, and energy

  9. Resuspension of small particles from tree surfaces

    NASA Astrophysics Data System (ADS)

    Ould-Dada, Zitouni; Baghini, Nasser M.

    A detailed study of resuspension of 1.85 μm MMAD silica particles from five horizontal layers within a small scale spruce canopy was carried out in a wind tunnel in which saplings were exposed to a constant free stream wind speed of 5 m s -1. This provided quantitative estimates of the potential for a tree canopy contaminated with an aerosol deposit to provide (i) an airborne inhalation hazard within the forest environment and (ii) a secondary source of airborne contamination after an initial deposition event. Resuspension occurred with a flux of 1.05×10 -7 g m -2 s -1 from spruce saplings initially contaminated at a level of 4.1×10 -2 g m -2. An average resuspension rate ( Λ) of 4.88×10 -7 s -1 was obtained for the canopy as a whole. Values of Λ were significantly different (ANOVA, p<0.001) between canopy layers and Λ was markedly greater at the top of the canopy than lower down although there was a slight increase in Λ at the base of the canopy. The resuspended silica particles deposited onto the soil surface at an average rate of about 5.3×10 -8 μg cm -2 s -1. It is concluded that resuspension under wind velocities similar to that used in the reported experiments is likely to pose a relatively small inhalation hazard to humans and a relatively minor source of secondary contamination of adjacent areas. Furthermore, resuspension rates are likely to diminish rapidly with time. The results are discussed in relation to the growing interest in the tree planting schemes in urban areas to reduce the impacts of air pollution.

  10. Simple Approaches for Measuring Dry Atmospheric Nitrogen Deposition to Watersheds

    EPA Science Inventory

    Assessing the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts of total N deposition (wet, dry, and cloud vapor); however, dry deposition is difficult to measure and is often spatially variable. Affordable passive sampling methods...

  11. Uncertainty of the long-term resuspension factor

    NASA Astrophysics Data System (ADS)

    Garger, Evgenii K.; Hoffman, F. Owen; Thiessen, Kathleen M.

    Resuspension of contaminated soil into the atmosphere is one of the key processes that must be considered in the estimation of inhalation doses to humans. Data for air and soil contamination collected in Ukraine over several years since the Chernobyl accident have permitted analysis of resuspension in terms of the underlying mechanisms. Various empirical models for the resuspension factor as a function of time (e.g. Linsley, Garland, Anspaugh, etc.) are compared to the observed resuspension factors over time (9 yr) at two sites; in general, these models give overestimates for the resuspension factor as a function of time. The observed values of the resuspension factor range from greater than 10 -5 m -1 at early time points to around 10 -10 m -1 at later points. The uncertainty in the resuspension factor is decreased to within 1 order of magnitude if annual averaging of the experimental data is used and if the resuspension factor is determined as a function of time and of the predominant regional conditions of vegetative cover and climate.

  12. Simple estimates of vehicle-induced resuspension rates.

    PubMed

    Escrig, A; Amato, F; Pandolfi, M; Monfort, E; Querol, X; Celades, I; Sanfélix, V; Alastuey, A; Orza, J A G

    2011-10-01

    Road dust emissions are considered to be a major source of airborne particulate matter (PM). This is particularly true for industrial environments, where there are high resuspension rates of deposited dust. The calculation of roads as PM emission sources has mostly focused on the consequences of this emission, viz. the increase in PM concentrations. That approach addresses the atmospheric transport of the emitted dust, and not its primary origin. In contrast, this paper examines the causes of the emission. The study is based on mass conservation of the dust deposited on the road surface. On the basis of this premise, estimates of emission rates were calculated from experimental data obtained in a road in a ceramic industrial area. PMID:21763062

  13. Energy Deposition Processes in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  14. A review of particle resuspension

    NASA Astrophysics Data System (ADS)

    Nicholson, K. W.

    Some of the various types of studies on particle resuspension or re-entrainment are summarized along with shortcomings. General experimental aspects have been considered, rather than focusing on the numerical values of results, and research on erosion and resuspension by mechanisms other than wind has been included. It is evident that experiments have been performed in a wide range of environmental conditions but that additional research is required, in many areas, if a quantitative assessment of resuspension is to be achieved.

  15. Evaluation of atmospheric PCDD/F depositions via automated and traditional water surface samplers in Taiwan.

    PubMed

    Chi, Kai Hsien; Kao, Shuh Ji; Liu, Kung Ting; Lee, Tzu Yi

    2012-03-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are a group of compounds of major environmental concern. Once emitted into the atmosphere, PCDD/Fs undergo photochemical reactions and enter other environmental compartments via wet and dry deposition. In this study, atmospheric PCDD/F depositions were collected via an automated PCDD/F deposition sampler and traditional cylindrical vessels, respectively, in northern, central, and southern Taiwan from 2008 to 2010. The automated PCDD/F precipitation sampler used in this study can prevent both resuspension and photodegradation of the PCDD/Fs collected and also effectively separates the PCDD/F samples into dry and wet contributions. The results indicate that the average atmospheric PCDD/F concentrations collected by the high-volume sampling trains were 13.6 ± 10 (n = 10), 15.6 ± 5.2 (n = 7), and 10.9 ± 6.3 (n = 6) fg I-TEQ/m(3) in northern, central, and southern Taiwan, respectively. In addition, the results also indicate that the PCDD/F deposition flux collected with an automated PCDD/F sampler (1.84 ± 0.90-8.68 ± 5.1 pg I-TEQ/m(2)/day, n = 23) is significantly higher than that sampled with cylindrical vessels (1.11 ± 0.69-5.64 ± 5.2 pg I-TEQ/m(2)/day, n = 23). Based on the Mann-Whitney statistical analysis, the p value (0.037) of PCDD/F deposition flux between those two samplers measurement is lower than 0.05. The difference is attributed to the fact that part of the PCDD/F depositions collected by traditional cylindrical vessels is photodegraded and revolatilized. In addition, the wet deposition flux of PCDD/Fs (3.66 to 470 pg I-TEQ/m(2)/rainy day, n = 23) observed in Taiwan is significantly higher than the dry deposition flux (0.38 to 4.55 pg I-TEQ/m(2)/sunny day, n = 23). The results demonstrate that the wet deposition is the major PCDD/F removal mechanism in the atmosphere. Furthermore, the overall PCDD/Fs deposition velocity and scavenging (rainout) coefficient in Taiwan are calculated as 0

  16. Time dependence of the {sup 137}Cs resuspension factor on the Romanian territory after the Chernobyl accident

    SciTech Connect

    Mihaila, B.; Cuculeanu, V.

    1994-08-01

    On the basis of the radioactivity levels in aerosol and atmospheric deposition samples due to the Chernobyl accident, the resuspension factor of {sup 137}Cs as a four-parameter function has been inferred. The standard procedure to derive the dependence of resuspension on time assumes that the initial deposit is instantaneous. A simple method assuming a constant deposition rate over a fixed period has been proposed. Also, based on existing experimental data, an attempt was made to consider a realistic time dependence of the deposition rate to cope with the particular case of the Chernobyl accident. The differences between the two models are outlined. The Chernobyl direct deposit has been assumed to be the deposit measured between 30 April and 30 June 1986. The calculated values of the resuspension factor are consistent with the IAEA`s recommended model and depend on the rainfall that occurred in June 1986 and the site-specific disturbance conditions during the first 100 d following 1 July 1986 and only on artificial disturbance by humans and vehicles after that. 16 refs., 5 figs., 3 tabs.

  17. An improved model for prediction of resuspension.

    PubMed

    Maxwell, Reed M; Anspaugh, Lynn R

    2011-12-01

    A complete, historical dataset is presented of radionuclide resuspension-factors. These data span six orders of magnitude in time (ranging from 0.1 to 73,000 d), encompass more than 300 individual values, and combine observations from events on three continents. These data were then used to derive improved, empirical models that can be used to predict resuspension of trace materials after their deposit on the ground. Data-fitting techniques were used to derive models of various types and an estimate of uncertainty in model prediction. Two models were found to be suitable: a power law and the modified Anspaugh et al. model, which is a double exponential. Though statistically the power-law model provides the best metrics of fit, the modified Anspaugh model is deemed the more appropriate due to its better fit to data at early times and its ease of implementation in terms of closed analytical integrals. PMID:22048490

  18. Local and Regional Influences on Atmospheric Nutrient Deposition in Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Allen, A. G.; Machado, C. M.; Cardoso, A. A.

    2009-05-01

    The objective of this work was to quantify sources of atmospheric nutrients, which are subsequently deposited to agricultural soils and natural ecosystems of São Paulo State (Brazil). The atmospheric concentrations of soluble ions (NO3-, NH4+, PO43-, SO42-, Cl-, K+, Na+, Mg2+ and Ca2+) in aerosol were evaluated, together with the gases NO2, NH3, HNO3 and SO2. Identification of nutrient sources was achieved using principal component analysis (PCA) followed by multiple linear regression analysis (MLRA). Dry deposition fluxes were estimated using the measured atmospheric concentrations together with dry deposition velocities of gases and aerosols to different surface types. Results showed that the main sources of nutrients to the regions atmosphere were fossil and biofuel combustion (N and S species), agricultural biomass burning (N, S, K and P), re-suspension of soils and dusts (Ca and Mg), and to a lesser extent long-range transport (S). NO2 concentrations were more influenced by local emissions and subsequent chemical transformations occurring on a scale of up to 200-300 km. HNO3 was much less spatially variable, with consistently higher concentrations during warmer, drier periods, indicating an agreement with gas phase/aerosol phase thermodynamic equilibrium theory. Scavenging of gaseous HNO3 was a source of nitrate, for which deposition fluxes were higher during the dry season, when significant relationships were obtained between nitrate concentrations and biomass burning intensity. Additional sources were indicated for particulate nitrate and sulphate, such as road transport and secondary reactions. During winter, the main source of gaseous ammonia was biomass burning, while emissions from soils and wastes predominated during summer. Modeled deposition fluxes were highest to tropical forest and lowest to water and pasture surfaces. In agricultural areas, the deposition fluxes of aerosol components N, P and K (0.37, 0.029 and 0.59 kg ha-1 yr-1, respectively

  19. Atmospheric deposition of PCDD/Fs measured via automated and traditional samplers in Northern Taiwan.

    PubMed

    Chi, Kai Hsien; Liu, Kung Ting; Chang, Shu Hao; Chang, Moo Been

    2009-11-01

    Most polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the atmosphere are bound to particles which are suspended in the atmosphere, and eventually settle on soil, vegetation, water bodies or other receptors in the environment. Monitoring atmospheric deposition fluxes (dry/wet) is important in tracing the environmental fate and behavior of PCDD/Fs. PCDD/F depositions were collected via an automated PCDD/F ambient sampler and traditional cylindrical vessels, respectively, from April 2007 to February 2008. The automated PCDD/F ambient sampler used in this study can prevent both re-suspension and photo degradation of the PCDD/Fs collected and effectively separates the PCDD/F samples into dry and wet contributions. The results indicated that the ambient PCDD/F concentrations collected using the PS-1 sampler ranged from 0.02 pg I-TEQ/m(3) to 0.16 pg I-TEQ/m(3) in Northern Taiwan. The results also indicated that the PCDD/F deposition flux collected using the automated PCDD/F sampler (17.5 pg I-TEQ/m(2) d to 25.8 pg I-TEQ/m(2) d) was significantly higher than that sampled with the cylindrical vessels (2.0 pg I-TEQ/m(2) d to 9.9 pg I-TEQ/m(2) d). The difference was attributed to the fact that part of the PCDD/F depositions collected using the traditional cylindrical vessels had undergone photo degradation and evaporation. In addition, the wet deposition flux of PCDD/Fs (39.4 pg I-TEQ/m(2) rainy day to 228 pg I-TEQ/m(2) rainy day) observed in this study was significantly higher than the dry deposition flux (12.3 pg I-TEQ/m(2) sunny day to 16.7 pg I-TEQ/m(2) sunny day). These results demonstrated that wet deposition is the major PCDD/F removal mechanism in the atmosphere. PMID:19819518

  20. ULTRASONIC MEASUREMENT OF SEDIMENT RESUSPENSION

    EPA Science Inventory

    Recognizing the need for improved measurement and parameterization of sediment resuspension, this paper presents a review of the major methods now in use for alleviating this need. Special attention is devoted to reviewing methods for obtaining sediment concentration profiles by ...

  1. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    PubMed Central

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples. PMID:17671615

  2. THE WATERSHED DEPOSITION TOOL: A MEANS TO LINK ATMOSPHERIC DEPOSITION TO WATERSHEDS

    EPA Science Inventory

    The potential for atmospheric deposition reductions to contribute to water quality management is not being included in many planning exercises. This is because often the water quality scientists do not know where to get and how to use projections of atmospheric deposition reducti...

  3. ATMOSPHERIC TRANSPORT AND DEPOSITION OF AGRICULTURAL PESTICIDES TO SENSITIVE ECOSYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Off-site transport of pesticides from the point of application may occur by runoff to surface waters, leaching into sub-soil layers and groundwater, and via volatilization to the atmosphere. Atmospheric transport and subsequent deposition of pesticides may negatively affect sensitive wildlife speci...

  4. Atmospheric iron deposition: global distribution, variability, and human perturbations.

    PubMed

    Mahowald, Natalie M; Engelstaedter, Sebastian; Luo, Chao; Sealy, Andrea; Artaxo, Paulo; Benitez-Nelson, Claudia; Bonnet, Sophie; Chen, Ying; Chuang, Patrick Y; Cohen, David D; Dulac, Francois; Herut, Barak; Johansen, Anne M; Kubilay, Nilgun; Losno, Remi; Maenhaut, Willy; Paytan, Adina; Prospero, Joseph M; Shank, Lindsey M; Siefert, Ronald L

    2009-01-01

    Atmospheric inputs of iron to the open ocean are hypothesized to modulate ocean biogeochemistry. This review presents an integration of available observations of atmospheric iron and iron deposition, and also covers bioavailable iron distributions. Methods for estimating temporal variability in ocean deposition over the recent past are reviewed. Desert dust iron is estimated to represent 95% of the global atmospheric iron cycle, and combustion sources of iron are responsible for the remaining 5%. Humans may be significantly perturbing desert dust (up to 50%). The sources of bioavailable iron are less well understood than those of iron, partly because we do not know what speciation of the iron is bioavailable. Bioavailable iron can derive from atmospheric processing of relatively insoluble desert dust iron or from direct emissions of soluble iron from combustion sources. These results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in our understanding. PMID:21141037

  5. [Characteristics of atmospheric nitrogen wet deposition in Beijing urban area].

    PubMed

    He, Cheng-Wu; Ren, Yu-Fen; Wang, Xiao-Ke; Mao, Yu-Xiang

    2014-02-01

    With the ion-exchange resin method, the atmospheric nitrogen wet deposition in Beijing urban area within the Fifth Ring Road was investigated from June to October, 2012. The relationship between atmospheric nitrogen wet deposition and rainfall precipitation was investigated, the differences of nitrogen wet deposition in different months, different ring roads (the Fifth Ring Road, the Fourth Ring Road, the Third Ring Road and the Second Ring Road) and different functional areas (institutes and colleges district, ring-road, residential areas, railway station and public garden) were also investigated. The results showed that the average value and standard deviation of ammonia-nitrogen, nitrate-nitrogen and nitrite-nitrogen were significantly different during different months in 2012. The atmospheric nitrite nitrogen deposition first decreased and then increased, the maximum value appeared in September. The positive relationships between ammonia nitrogen (nitrate nitrogen) and mean monthly precipitation and negative relationships between nitrite nitrogen and mean monthly precipitation were both significant (P < 0.05). The three nitrogen depositions of ring-road and railway station were higher than other functional areas, but only the nitrite nitrogen deposition had obvious regional difference. The differences of the three nitrogen depositions among different ring roads were all not significant and it meant that the nitrogen wet deposition was equally distributed in Beijing urban area. PMID:24812938

  6. Atmospheric deposition of nitrogen and sulfur in Louisiana

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guo, H.

    2015-12-01

    Wet deposition and dry deposition reduce their concentrations of sulfur and nitrogen contained air pollutants in atmosphere, but lead to increase of sulfur and nitrogen fluxes to the surface. Atmospheric deposition of sulfur and nitrogen can lead to acidification of surface water bodies (lakes, rivers, and coasts) and subsequent damage to aquatic ecosystems as well as damage to forests and vegetation. Louisiana has abundant water resources with approximately 11% of the total surface area composed of water bodies. It is important to protect water resources from excessive atmospheric deposition of sulfur and nitrogen. However, the information obtained from the observation systems for understanding the deposition of sulfur and nitrogen and the adverse effects in Louisiana is limited. This study uses a source-oriented CMAQ model to simulate emission, formation, transport, and deposition of sulfur and nitrogen species in Louisiana. WRF is used to generate the meteorological inputs and SMOKE is used to generate the emissions based on national emission inventory (NEI). The forms and quantities of sulfur and nitrogen deposition from wet and dry processes in Louisiana will be discovered. The spatial and temporal variations of sulfur and nitrogen fluxes will be quantified and contributions of major source sectors or source regions will be quantified.

  7. Atmospheric dry and wet deposition of mercury in Toronto

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Siddiqi, Zia; Song, Xinjie; Mandiwana, Khakhathi L.; Yousaf, Muhammad; Lu, Julia

    2012-04-01

    Atmospheric mercury (Hg) speciation and deposition are critical in understanding the cycling of mercury in the environment. To estimate the dry and wet deposition of mercury in an urban environment, concentrations of gaseous elemental mercury (GEM), gaseous oxidized inorganic mercury (GOIM), mercury associated with particles having size less than 2.5 μm (Hg(p) < 2.5) (December 2003-November 2004) and total particulate mercury (THg(p)) (June 2004-December 2004) in the atmosphere, as well as the concentrations of methyl mercury (MeHg) and total mercury (THg) in atmospheric precipitation samples (June 2005-January 2006 and September 2007-March 2008), were measured in downtown Toronto, Canada.The dry deposition rates of GOIM, Hg(p) < 2.5 μm and THg(p) estimated between December 2003 and December 2004 were 0.17-2.33 μg m-2 month-1, 0.04-0.32 μg m-2 month-1 and 0.17-1.11 μg m-2 month-1, respectively, while the wet deposition rates of methyl mercury and total mercury between June 2005-January 2006 and September 2007-March 2008 were 0.01-0.08 μg m-2 month-1 and 0.32-8.48 μg m-2 month-1, respectively. The total dry deposition (7.66-26.06 μg m-2 a-1, calculated as the sum of GOIM and THg(p) deposition) and the total wet deposition (= the wet deposition of total mercury = 18.60 μg m-2 a-1) contributed proportionally to the total atmospheric Hg deposition in Toronto.

  8. Atmospheric corrosion and chloride deposition on metal surfaces

    SciTech Connect

    Matthes, Steven A.; Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.

    2004-01-01

    Atmospheric corrosion and chloride deposition on metal surfaces was studied at an unpolluted coastal (marine) site, an unpolluted rural inland site, and a polluted urban site. Chloride deposition by both wet (precipitation) and dry deposition processes over a multi-year period was measured using ion chromatography analysis of incident precipitation and precipitation runoff from the surface of metal samples. Chloride deposition was measured on zinc, copper, lead, mild steel, and non-reactive blank panels, as well as two panels coated with thermal-sprayed zinc alloys. Chloride deposition measured by runoff chemistry was compared with chloride deposition measurements made by the ASTM wet candle technique. Corrosion mass loss as a function of distance from the ocean is presented for copper and mild steel in bold exposures on the west coast.

  9. An automatic collector to monitor insoluble atmospheric deposition: an application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-03-01

    Deposition is one of the key processes controlling the mass budget of the atmospheric mineral dust concentration. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims at presenting an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programed sampling time step (1 day and 2 weeks sampling time steps, respectively). This collector is used to sample atmospheric deposition on Frioul Island which is located in the Gulf of Lions in the Western Mediterranean Basin over which Saharan dust can be transported and deposited. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Two years of continuous deposition measurements performed on a weekly time step sampling on Frioul Island are presented and discussed with in-situ measurements, air mass trajectories and satellite observations of dust.

  10. Puff-Plume Atmospheric Deposition Model.

    Energy Science and Technology Software Center (ESTSC)

    1992-06-24

    Version: 00 PFPL is an interactive transport and diffusion program developed for real-time calculation of the location and concentration of toxic or radioactive materials during an accidental release. Deposition calculations are included. The potential exists at the Savannah River Plant for releases of either toxic gases or radionuclides. The automated system developed to provide real-time information on the trajectory and concentration of an accidental release consists of meteorological towers, a minicomputer, and a network ofmore » terminals called the Weather Information and Display (WIND) System. PFPL which simulates either instantaneous (puff) or continuous (plume) releases is the primary code used at Savannah River for emergency response. Data files are provided for demonstration. The software for archiving the required on-line meteorological data is not included. Subroutines used for graphic display of results and operational control of the DEC VT100 and Tektronix terminals in the terminal network are included. Anyone wishing t use these routines must make appropriate modifications to the file TERMINALS.DAT. The DAT files provided were copied during the afternoon of December 28, 1983. Test runs attempting to use these files should specify release times on or before that date. Any user wishing to obtain numerical output only form the model based on conditions in his locality must supply appropriate wind data for the program.« less

  11. An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-07-01

    Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m-2 for February to December 2011 and 3.16 g m-2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.

  12. Total atmospheric mercury deposition in forested areas in South Korea

    NASA Astrophysics Data System (ADS)

    Han, Jin-Su; Seo, Yong-Seok; Kim, Moon-Kyung; Holsen, Thomas M.; Yi, Seung-Muk

    2016-06-01

    In this study, mercury (Hg) was sampled weekly in dry and wet deposition and throughfall and monthly in litterfall, and as it was volatilized from soil from August 2008 to February 2010 to identify the factors influencing the amount of atmospheric Hg deposited to forested areas in a temperate deciduous forest in South Korea. For this location there was no significant correlation between the estimated monthly dry deposition flux (litterfall + throughfall - wet deposition) (6.7 µg m-2 yr-1) and directly measured dry deposition (9.9 µg m-2 yr-1) likely due primarily to Hg losses from the litterfall collector. Dry deposition fluxes in cold seasons (fall and winter) were lower than in warmer seasons (spring and summer). The volume-weighted mean (VWM) Hg concentrations in both precipitation and throughfall were highest in winter, likely due to increased scavenging by snow events. Since South Korea experiences abundant rainfall in summer, VWM Hg concentrations in summer were lower than in other seasons. Litterfall fluxes were highest in the late fall to early winter, when leaves were dropped from the trees (September to November). The cumulative annual Hg emission flux from soil was 6.8 µg m-2 yr-1. Based on these data, the yearly deposition fluxes of Hg calculated using two input approaches (wet deposition + dry deposition or throughfall + litterfall) were 6.8 and 3.6 µg m-2 yr-1, respectively. This is the first reported study which measured the amount of atmospheric Hg deposited to forested areas in South Korea, and thus our results provide useful information to compare against data related to Hg fate and transport in this part of the world.

  13. A summary of the Lake Tahoe Atmospheric Deposition Study (LTADS)

    NASA Astrophysics Data System (ADS)

    Dolislager, Leon J.; VanCuren, Richard; Pederson, James R.; Lashgari, Ash; McCauley, Eileen

    2012-01-01

    The Lake Tahoe Atmospheric Deposition Study (LTADS) was conducted by the California Air Resources Board (CARB) primarily to generate refined estimates of the atmospheric deposition of nitrogen (N), phosphorous (P), and particulate matter (PM) directly to Lake Tahoe, which straddles the boundary between the states of California and Nevada in the United States of America. LTADS estimated that approximately 185, 3, and 755 metric tons respectively of N, P, and PM being directly deposited to the lake from the atmosphere. Various measurements of emissions, meteorology, and air quality were made within and west (typically upwind) of the Lake Tahoe Air Basin to better understand the pollutant sources contributing to the atmospheric deposition. The data indicate that ammonia (NH 3) contributes the bulk of the N loading. Aerosols with diameters greater than 2.5 μm contribute the bulk of the P and PM mass loadings. The emission sources of P and PM appear to be primarily local and associated with motor vehicles. However, construction, fires, and natural sources also contribute to the pollutant loadings. LTADS was part of a much larger research program to guide efforts to restore the remarkable water clarity of Lake Tahoe.

  14. ANALYSIS OF ATMOSPHERE DEPOSITION SAMPLES FROM EASTON, PA

    EPA Science Inventory

    The report gives results of an analysis of samples of tenacious atmospheric deposits on exposed surfaces (e.g., automobiles and houses) in an industrial area near Easton, PA. The analysis was made at the request of the State of Pennsylvania. The Pennsylvania Department of Environ...

  15. REGIONAL MODELING OF THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ATRAZINE

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  16. Net atmospheric mercury deposition to Svalbard: Estimates from lacustrine sediments

    NASA Astrophysics Data System (ADS)

    Drevnick, Paul E.; Yang, Handong; Lamborg, Carl H.; Rose, Neil L.

    2012-11-01

    In this study we used lake sediments, which faithfully record Hg inputs, to derive estimates of net atmospheric Hg deposition to Svalbard, Norwegian Arctic. With the exception of one site affected by local pollution, the study lakes show twofold to fivefold increases in sedimentary Hg accumulation since 1850, likely due to long-range atmospheric transport and deposition of anthropogenic Hg. Sedimentary Hg accumulation in these lakes is a linear function of the ratio of catchment area to lake area, and we used this relationship to model net atmospheric Hg flux: preindustrial and modern estimates are 2.5 ± 3.3 μg m-2 y-1 and 7.0 ± 3.0 μg m-2 y-1, respectively. The modern estimate, by comparison with data for Hg wet deposition, indicates that atmospheric mercury depletion events (AMDEs) or other dry deposition processes contribute approximately half (range 0-70%) of the net flux. Hg from AMDEs may be moving in significant quantities into aquatic ecosystems, where it is a concern because of contamination of aquatic food webs.

  17. TOTAL SULFUR DEPOSITION (WET+DRY) FROM THE ATMOSPHERE

    EPA Science Inventory

    Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such as Sulfuric Acid and Amonium Sulfate. These compounds and their secondarily formed constituents deposit to the sur...

  18. Atmospheric deposition of nitrogen: Potential benefits to agricultural production

    SciTech Connect

    Coveney, E.A.; Medeiros, W.H.; Moskowitz, P.D.

    1986-11-01

    Effects of indirect fertilization on agricultural lands by atmospheric deposition are examined for the four most valuable crops in the US: corn, soybean, wheat, and pasture grasses. A literature search was conducted to find suitable dose-response functions for the effects of fertilization on yield of each crop. Predicted yield changes were computed from the deposition of nitrogen to the soil in addition to nitrogen applied in accordance with current agronomic practices using these dose-response functions. Low to high nitrogen inputs from atmospheric deposition (1 to 7 kg/ha) are expected to increase the average yield of corn by 0.2 to 1.1%, soybean by 0.1 to 0.7%, wheat by 0.1 to 0.4%, and pasture grasses by 1.6 to 14%. Pasture land is predicted to receive the greatest impact because it is usually unfertilized.

  19. Atmospheric deposition of phthalate esters in a subtropical city

    NASA Astrophysics Data System (ADS)

    Zeng, Feng; Lin, Yujun; Cui, Kunyan; Wen, Jiaxin; Ma, Yongqin; Chen, Hongli; Zhu, Fang; Ma, Zhiling; Zeng, Zunxiang

    2010-02-01

    In Chinese cities, air pollution has become a serious and aggravating environmental problem undermining the sustainability of urban ecosystems and the quality of urban life. Bulk atmospheric deposition samples were collected two-weekly, from February 2007 to January 2008, at three representative areas, one suburban and two urbanized, in the subtropical city, Guangzhou, China, to assess the deposition fluxes and seasonal variations of phthalate esters (PAEs). Sixteen PAE congeners in bulk deposition samples were measured and the depositional fluxes of ∑ 16PAEs ranged from 3.41 to 190 μg m -2 day -1, and were highly affected by local anthropogenic activities. The significant relationship between PAEs and particulate depositional fluxes (correlation coefficient R2 = 0.72, P < 0.001) showed PAEs are associated primarily with particles. Temporal flux variations of PAEs were influenced by seasonal changes in meteorological parameters, and the deposition fluxes of PAEs were obviously higher in wet season than in dry season. Diisobutyl phthalate (D iBP), Di- n-butyl phthalate (D nBP), and Di(2-ethylhexyl) phthalate (DEHP) dominated the PAE pattern in bulk depositions, which is consistent with a high consumption of the plasticizer market in China. PAE profiles in bulk deposition showed similarities exhibited in both time and space, and a weak increase of high molecular weight PAE (HMW PAE) contribution in the wet season compared to those in the dry season. Average atmospheric deposition fluxes of PAEs in the present study were significantly higher than those from other studies, reflecting strong anthropogenic inputs as a consequence of rapid industrial and urban development in the region.

  20. Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary

    USGS Publications Warehouse

    Schoellhamer, D.H.

    1996-01-01

    The mechanisms that resuspend bottom sediments in Hillsborough Bay, a shallow, microtidal, subtropical estuary in West-central Florida, were determined by analysing hydrodynamic and suspended-solids concentration data collected during several instrument deployments made in 1990 and 1991. Large vessels in a dredged ship channel can generate forced solitary long waves that cause large water velocities and sediment resuspension at the study sites. An experiment was conducted with a trawler that resuspended bottom sediments, and some of the resuspended sediments remained in suspension for at least 8 h. A secondary impact of vessel-generated long waves and trawling is that sediments that are resuspended and newly deposited are more susceptible to resuspension by tidal currents than undisturbed bottom sediments. Natural sediment resuspension by wind waves and tidal current is less frequent or of smaller magnitude than anthropogenic sediment resuspension. The annual mass of sediment resuspended by vessel-generated long waves is estimated to be one order of magnitude greater than the annual mass of sediment resuspended by wind waves generated by winter storms.

  1. Role of acid rain in atmospheric deposition. Final report

    SciTech Connect

    Winchester, J.W.

    1990-12-31

    A study was conducted to assess the potential importance of atmospheric nitrate deposition for a north Florida estuary. A comparison, based on statistical analysis of fluxes of ten dissolved constituents of rain water and river water, has been carried out for the watershed of the Apalachicola River, utilizing weekly rain water chemical data from the National Acid Deposition Program (NADP) for five sites within the watershed area, monitored from 1978-84 until late 1989, and less frequent river water chemical data from the U.S. Geological Survey for one site at Chattahoochee, Florida, monitored from 1965 until late 1989. Similar statistical analysis was performed on monitoring data for the Sopchoppy and Ochlockonee Rivers of north Florida. Atmospheric deposition to the watershed appears to be sufficient to account for essentially all the dissolved nitrate and ammonium and total organic nitrogen flow in the three rivers. However, after deposition most of the nitrate may be transformed to other chemical forms during the flow of the rivers toward their estuaries. In an additional statistical analysis of rain water monitoring data from the eight state southeastern USA region, it was found that both meteorological conditions and transport from pollution sources appear to control deposition fluxes of nitrate and sulfate acid air pollutants.

  2. Atmospheric deposition of phosphorus to land and freshwater.

    PubMed

    Tipping, E; Benham, S; Boyle, J F; Crow, P; Davies, J; Fischer, U; Guyatt, H; Helliwell, R; Jackson-Blake, L; Lawlor, A J; Monteith, D T; Rowe, E C; Toberman, H

    2014-07-01

    We compiled published and newly-obtained data on the directly-measured atmospheric deposition of total phosphorus (TP), filtered total phosphorus (FTP), and inorganic phosphorus (PO4-P) to open land, lakes, and marine coasts. The resulting global data base includes data for c. 250 sites, covering the period 1954 to 2012. Most (82%) of the measurement locations are in Europe and North America, with 44 in Africa, Asia, Oceania, and South-Central America. The deposition rates are log-normally distributed, and for the whole data set the geometric mean deposition rates are 0.027, 0.019 and 0.14 g m(-2) a(-1) for TP, FTP and PO4-P respectively. At smaller scales there is little systematic spatial variation, except for high deposition rates at some sites in Germany, likely due to local agricultural sources. In cases for which PO4-P was determined as well as one of the other forms of P, strong parallels between logarithmic values were found. Based on the directly-measured deposition rates to land, and published estimates of P deposition to the oceans, we estimate a total annual transfer of P to and from the atmosphere of 3.7 Tg. However, much of the phosphorus in larger particles (principally primary biological aerosol particles) is probably redeposited near to its origin, so that long-range transport, important for tropical forests, large areas of peatland and the oceans, mainly involves fine dust from deserts and soils, as described by the simulations of Mahowald et al. (Global Biogeochemical Cycles 22, GB4026, 2008). We suggest that local release to the atmosphere and subsequent deposition bring about a pseudo-diffusive redistribution of P in the landscape, with P-poor ecosystems, for example ombrotrophic peatlands and oligotrophic lakes, gaining at the expense of P-rich ones. Simple calculations suggest that atmospheric transport could bring about significant local redistribution of P among terrestrial ecosystems. Although most atmospherically transported P is natural

  3. Thin film deposition by means of atmospheric pressure microplasma jet

    NASA Astrophysics Data System (ADS)

    Benedikt, J.; Raballand, V.; Yanguas-Gil, A.; Focke, K.; von Keudell, A.

    2007-12-01

    An RF microplasma jet working at atmospheric pressure has been developed for thin film deposition application. It consists of a capillary coaxially inserted in the ceramic tube. The capillary is excited by an RF frequency of 13.56 MHz at rms voltages of around 200-250 V. The plasma is generated in a plasma forming gas (helium or argon) in the annular space between the capillary and the ceramic tube. By adjusting the flows, the flow pattern prevents the deposition inside the source and mixing of the reactive species with the ambient air in the discharge and deposition region, so that no traces of air are found even when the microplasma is operated in an air atmosphere. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment. The discharge operates probably in a γ-mode as indicated by high electron densities of around 8 × 1020 m-3 measured using optical emission spectroscopy. The gas temperature stays below 400 K and is close to room temperature in the deposition region in the case of argon plasma. Deposition of hydrogenated amorphous carbon films and silicon oxide films has been tested using Ar/C2H2 and Ar/hexamethyldisiloxane/O2 mixtures, respectively. In the latter case, good control of the film properties by adjusting the source parameters has been achieved with the possibility of depositing carbon free SiOx films even without the addition of oxygen. Preliminary results regarding permeation barrier properties of deposited films are also given.

  4. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Kimmel, V.; Israelsson, S.

    The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.

  5. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  6. Protocol for estimating historic atmospheric mercury deposition. Final report

    SciTech Connect

    1996-08-01

    The varied chemical phases and forms of mercury promote its transport and cycling in the environment between water, soil, and air. Many sources--both natural and anthropogenic--contribute to the atmospheric mercury cycle, while several factors modify its deposition and subsequent transformation, distribution, and bioaccumulation. This report introduces a protocol for quantifying spatial and temporal mercury deposition and improving site-to-site comparability of mercury accumulation measurements in natural archives. The report describes the selection of appropriate coring sites to measure mercury accumulation, field methods for lake sediment coring, analysis of sediments, and interpretation of the results from stratigraphic mercury analyses. The new EPRI protocol is expected not only to spur research methods but also to facilitate the global picture of historic mercury deposition needed by policymakers in public organizations, industry, and government.

  7. Deposition of carbon nanostructures on metal substrates at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Dimitrov, Zh; Nikovski, M.; Kiss'ovski, Zh

    2016-03-01

    The microwave-plasma-enhanced CVD of carbon nanostructures at atmospheric pressure allows shorter deposition times and reduces the complexity of the experimental set-up. In our study, the substrate temperature was varied in a wide range (300 – 700 C) using microwave plasma heating, as well as an additional heater. The distance between the substrate and the plasma flame was also varied in order to establish the conditions for an efficient deposition process, the latter being carried out at specific argon/hydrogen/methane gas mixtures. Optical measurements of the plasma flame spectrum were conducted to obtain the gas temperature and the plasma density and to analyze the existence of reactive species. The carbon nanostructures deposited on the metal samples were investigated by SEM. The relation between the morphology and the gas-discharge conditions is discussed.

  8. Impact of increased anthropogenic atmospheric nitrogen deposition on ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Gruber, Nicolas

    2015-04-01

    In the last century, the strong increase in anthropogenic emissions and agricultural activities brought about a tripling in atmospheric nitrogen deposition (AND) rates to oceans. There is growing evidence for a strong fingerprint of increased AND on aquatic systems. Increases in excess N over P (N*) have been attributed to the growing anthropogenically sourced N-deposition in the North western Pacific (Kim et al. 2011) and the North Pacific (Kim et al. 2014). In this study, we use the ocean component of the global earth system model CESM and forced it with transient atmospheric nitrogen deposition from 1850 to 2000 (Lamarque et al. 2013) to study the impact of increased N-deposition on ocean biogeochemistry. We simulate detectable signals in N* in the northern hemisphere as well as a complex pattern of increases and decreases in ocean productivity, with the former causing an expansion of oxygen minimum zones and an increase in water column denitrification. The increase in AND also reduces the ecological niches for N2-fixers, causing a substantial decrease in global ocean N-fixation. Despite this increase in N-loss by denitrification and decrease in N-gain by N-fixation, the increase in AND has put the global marine N-budget severely out of balance ( 10 TgN.yr-1). Finally, we extend our simulation to 2100 using the RCP 8.5 emission scenario to find that these changes will probably grow in the future.

  9. Atmospheric sulfur deposition and streamwater quality in Finland

    NASA Astrophysics Data System (ADS)

    Lahermo, P. W.; Tarvainen, T.; Tuovinen, J.-P.

    1994-10-01

    The correlation between sulfate concentrations in Finnish headwater streams and atmospheric sulfate deposition has been studied by using data from the streamwater chemistry in August September 1990 and computed S deposition from the anthropogenic emissions. The sulfate concentrations and acidity in water are interpolated and smoothed into a deposition model grid. These data are compared with geological and pedogeochemical (glacial till) background information. The areas where the streamwater SO4 concentrations are mainly controlled by either anthropogenic S deposition or sulfur in till is estimated by applying the fuzzy Gustafsson-Kessel algorithm, which provides a soft clustering suitable for overlapping control factors. Residual areas can be well explained by the SO4-rich Littorina clay deposits. The higher overall background SO4 concentrations in streams in south Finland compared with central and northern Finland are an indisputable consequence of the heavier S deposition load in the south. However, anthropogenic sulfur deposition has a clear correlation with the sulfates in streamwaters only in northeastern Lapland impacted by the large industrial emissions in the Kola Peninsula. The secondary sulfide and sulfate minerals of marine Littorina sediments are dominating sources in the broad coastal belts, as are the primary sulfide minerals locally in the Pori-Vammala area, at the eastern end of the main sulfide ore belt between Lake Ladoga and the Gulf of Bothnia, in the Outokumpu area, and in the Peräpohja and central Lapland schist belts. Consequently, in addition to the anthropogenic deposition, there are natural sources of sulfur which cause acidity of streamwaters.

  10. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  11. Modeling Atmospheric Energy Deposition (by energetic ions): New Results

    NASA Astrophysics Data System (ADS)

    Parkinson, C.; Brain, D. A.; Lillis, R. J.; Liemohn, M. W.; Bougher, S. W.

    2012-12-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. Such modeling has been previously done for Earth, Mars and Jupiter using a guiding center precipitation model with extensive collisional physics. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation that can perform calculations for cases where there is only a weak or nonexistent magnetic field that includes detailed physical interaction with the atmosphere (i.e. collisional physics). We show initial efforts to apply a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Venus, Mars, and Titan. A systematic study of the ionization, excitation, and energy

  12. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  13. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

    PubMed

    Behera, Sailesh N; Sharma, Mukesh; Aneja, Viney P; Balasubramanian, Rajasekhar

    2013-11-01

    Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3. PMID:23982822

  14. Atmospheric interactions during global deposition of Chicxulub impact ejecta

    NASA Astrophysics Data System (ADS)

    Goldin, Tamara Joan

    Atmospheric interactions affected both the mechanics of impact ejecta deposition and the environmental effects from the catastrophic Chicxulub impact at the Cretaceous-Paleogene (K-Pg) boundary. Hypervelocity reentry and subsequent sedimentation of Chicxulub impact spherules through the Earth's atmosphere was modeled using the KFIX-LPL two-phase flow code, which includes thermal radiation and operates at the necessary range of flow regimes and velocities. Spherules were injected into a model mesh approximating a two-dimensional slice of atmosphere at rates based on ballistic models of impact plume expansion. The spherules decelerate due to drag, compressing the upper atmosphere and reaching terminal velocity at ˜70 km in altitude. A band of spherules accumulates at this altitude, below which is compressed cool air and above which is hot (>3000 K) relatively-empty atmosphere. Eventually the spherule-laden air becomes unstable and density currents form, transporting the spherules through the lower atmosphere collectively as plumes rather than individually at terminal velocity. This has implications for the depositional style and sedimentation rate of the global K-Pg boundary layer. Vertical density current formation in both incompressible (water) and compressible (air) fluids is evaluated numerically via KFIX-LPL simulations and analytically using new instability criteria. Models of density current formation due to particulate loading of water are compared to tephra fall experiments in order to validate the model instabilities. The impact spherules themselves obtain peak temperatures of 1300-1600 K and efficiently radiate that heat as thermal radiation. However, the downward thermal radiation emitted from decelerating spherules is increasingly blocked by previously-entered spherules settling lower in the atmosphere. This self-shielding effect strengthens with time as the settling spherule cloud thickens and becomes increasingly opaque, limiting both the magnitude

  15. The effects of uncertainty on the analysis of atmospheric deposition

    SciTech Connect

    Bloyd, C.N. ); Small, M.J.; Henrion, M.; Rubin, E.S. )

    1988-01-01

    Research efforts on the problem of acid ran are directed at improving current scientific understanding in critical areas, including sources of precursor emissions, the transport and transformation of pollutants in the atmosphere, the deposition of acidic species, and the chemical and biological effects of acid deposition on aquatic systems, materials, forests, crops and human health. The general goal of these research efforts is to characterize the current situation and to develop analytical models which can be used to predict the response of various systems to changes in critical parameters. This paper describes a framework which enables one to characterize uncertainty at each major stage of the modeling process. Following a general presentation of the modeling framework, a description is given of the methods chosen to characterize uncertainty for each major step. Analysis is then performed to illustrate the effects of uncertainty on future lake acidification in the Adirondacks Park area of upstate New York.

  16. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    USGS Publications Warehouse

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  17. Reconstruction of atmospheric concentrations and deposition of uranium and decay products released from the former uranium mill at Uravan, Colorado.

    PubMed

    Rood, Arthur S; Voillequé, Paul G; Rope, Susan K; Grogan, Helen A; Till, John E

    2008-08-01

    Radionuclide concentrations in air from uranium milling emissions were estimated for the town of Uravan, Colorado, USA and the surrounding area for a 49-yr period of mill operations beginning in 1936 and ending in 1984. Milling processes with the potential to emit radionuclides to the air included crushing and grinding of ores; conveyance of ore; ore roasting, drying, and packaging of the product (U(3)O(8)); and fugitive dust releases from ore piles, tailings' piles, and roads. The town of Uravan is located in a narrow canyon formed by the San Miguel River in western Colorado. Atmospheric transport modeling required a complex terrain model. Because historical meteorological data necessary for a complex terrain model were lacking, meteorological instruments were installed, and relevant data were collected for 1 yr. Monthly average dispersion and deposition factors were calculated using the complex terrain model, CALPUFF. Radionuclide concentrations in air and deposition on ground were calculated by multiplying the estimated source-specific release rate by the dispersion or deposition factor. Time-dependent resuspension was also included in the model. Predicted concentrations in air and soil were compared to measurements from continuous air samplers from 1979 to 1986 and to soil profile sampling performed in 2006. The geometric mean predicted-to-observed ratio for annual average air concentrations was 1.25 with a geometric standard deviation of 1.8. Predicted-to-observed ratios for uranium concentrations in undisturbed soil ranged from 0.67 to 1.22. Average air concentrations from 1936 to 1984 in housing blocks ranged from about 2.5 to 6 mBq m(-3) for (238)U and 1.5 to 3.5 mBq m(-3) for (230)Th, (226)Ra, and (210)Pb. PMID:18448213

  18. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  19. Stable isotopes in alpine precipitation as tracers of atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Lafreniere, M. J.; Kyser, T. K.; Norman, A. L.; Mayer, B.; Wieser, M.

    2010-12-01

    Alpine ecosystems, which are generally nutrient poor and exist under extreme climatic conditions, are particularly sensitive to environmental and climatic stressors. Studies in the USA Rocky Mountains and European Alps have shown that alpine terrestrial and aquatic ecosystems are particularly sensitive to enhanced deposition of reactive nitrogen and can show ecologically destructive responses at relatively low levels of nitrogen deposition. However, there is no base line for atmospheric deposition of natural and anthropogenic contaminants in the Canadian alpine. Preliminary results of isotopic and chemical analyses of precipitation from an elevational transect on a glaciated alpine site in the Canadian Rockies are presented. Precipitation accumulating from early autumn through to spring (2008/2009 and 2009/2010) was sampled by means of seasonal snow cover on alpine glaciers. Summer precipitation was sampled through July and August 2010 using bulk collectors installed at the sites of winter sampling. The isotope ratios of dissolved sulphate (δ34S, δ18O), nitrogen (δ15N, δ18O), as well as precipitation (δ2H, δ18O) are utilized in addition to major ion concentrations and trace metal concentrations. Results from 2008/2009 snowpack samples indicate a strong seasonal trend in sulphate (SO42-) and nitrogen (NO3-) deposition which is consistent across the altitudinal transect. Snow horizons representing early autumn and spring precipitation show higher SO42- and NO3- concentrations in contrast to lower concentrations in winter horizons. The aforementioned suite of isotopic and chemical analyses are used to investigate the variability in dominant geographic source regions for atmospheric SO42- and NO3- (local, regional, or long range transported contaminants), as well as to identify contributions from the major biogeochemical source types (e.g. hydrocarbon combustion, lithogenic dust, agricultural emissions).

  20. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    SciTech Connect

    Ladwig, Angela

    2008-01-23

    material that may be treated. The deposition of DLC at atmospheric pressure has been demonstrated by several researchers. Izake, et al [53] and Novikov and Dymont [54] have demonstrated an electrochemical process that is carried out with organic compounds such as methanol and acetylene dissolved in ammonia. This process requires that the substrates be immersed in the liquid [53-54]. The atmospheric pressure deposition of DLC was also demonstrated by Kulik, et al. utilizing a plasma torch. However, this process requires operating temperatures in excess of 800 oC [55]. In this report, we investigate the deposition of diamond-like carbon films using a low temperature, atmospheric pressure plasma-enhanced chemical vapor deposition (PECVD) process. The films were characterized by solid-state carbon-13 nuclear magnetic resonance (13C NMR) and found to have a ratio of sp2 to sp3 carbon of 43 to 57%. The films were also tested for adhesion, coefficient of friction, and dielectric strength.

  1. Energy deposition of corpuscular radiation in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Kudela, K.

    1989-01-01

    Main components of corpuscular radiation contributing to energy deposition (ED in eV/cu cm/s) in the atmosphere (10 to 100 km) are cosmic ray nuclei (CR - galactic and solar) and high energy electrons (HEE), mainly of magnetospheric origin. Galactic CR depending on solar cycle phase and latitude are dominant source of ED by corpuscular radiation below 50 to 60 km. Below 20 km secondaries must be assumed. More accurate treatment need assuming of individual HE solar flare particles, cut off rigidities in geomagnetic field and their changes during magnetospheric disturbances. Electrons E sub e greater than 30 keV of magnetospheric origin penetrating to atmosphere contribute to production rate below 100 km especially on night side. High temporal variability, local time dependence and complicated energy spectra lead to complicated structure of electron ED rate. Electrons of MeV energy found at geostationary orbit, pronouncing relation to solar and geomagnetic activity, cause maximum ED at 40 to 60 km. Monitoring the global distribution of ED by corpuscular radiation in middle atmosphere need continuing low altitude satellite measurements of both HEE and x ray BS from atmosphere as well as measurements of energy spectra and charge composition of HE solar flare particles.

  2. Modeling and Mapping of Atmospheric Mercury Deposition in Adirondack Park, New York

    PubMed Central

    Yu, Xue; Driscoll, Charles T.; Huang, Jiaoyan; Holsen, Thomas M.; Blackwell, Bradley D.

    2013-01-01

    The Adirondacks of New York State, USA is a region that is sensitive to atmospheric mercury (Hg) deposition. In this study, we estimated atmospheric Hg deposition to the Adirondacks using a new scheme that combined numerical modeling and limited experimental data. The majority of the land cover in the Adirondacks is forested with 47% of the total area deciduous, 20% coniferous and 10% mixed. We used litterfall plus throughfall deposition as the total atmospheric Hg deposition to coniferous and deciduous forests during the leaf-on period, and wet Hg deposition plus modeled atmospheric dry Hg deposition as the total Hg deposition to the deciduous forest during the leaf-off period and for the non-forested areas year-around. To estimate atmospheric dry Hg deposition we used the Big Leaf model. The average atmospheric Hg deposition to the Adirondacks was estimated as 17.4 g m yr with a range of −3.7–46.0 g m yr. Atmospheric Hg dry deposition (370 kg yr) was found to be more important than wet deposition (210 kg yr) to the entire Adirondacks (2.4 million ha). The spatial pattern showed a large variation in atmospheric Hg deposition with scattered areas in the eastern Adirondacks having total Hg deposition greater than 30 μg m−2 yr−1, while the southwestern and the northern areas received Hg deposition ranging from 25–30 μg m−2 yr−1. PMID:23536871

  3. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  4. Energetic particle energy deposition in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Westlake, J. H.; Smith, H. T.; Mitchell, D. G.; Paranicas, C. P.; Rymer, A. M.; Bell, J. M.; Waite, J. H., Jr.; Mandt, K. E.

    2012-04-01

    Titan’s upper atmosphere has been observed to be variable on a pass-by-pass basis. During the nominal mission where the Cassini Ion and Neutral Mass Spectrometer (INMS) only sampled the northern hemisphere this variability was initially believed to be tied to solar drivers manifest in latitudinal variations in the thermal structure of the upper atmosphere. However, when Cassini delved into the southern hemisphere the latitudinal dependence was not present in the data. Recently, Westlake et al. (2011) showed that the pass-by-pass variability is correlated with the deviations in the plasma environment as identified by Rymer et al. (2009) and Simon et al. (2010). Furthermore, the studies of Westlake et al. (2011) and Bell et al. (2011) showed that Titan’s upper atmosphere responds to changes in the ambient magnetospheric plasma on timescales of roughly one Titan day (16 Earth days). We report on recent studies of energy deposition in Titan’s upper atmosphere. Previous studies by Smith et al. (2009), Cravens et al. (2008), Tseng et al. (2008), and Shah et al. (2009) reported on energetic proton and oxygen ion precipitation. Back of the envelope calculations by Sittler et al. (2009) showed that magnetospheric energy inputs are expected to be of the order of or greater than the solar processes. We report on further analysis of the plasma environment around Titan during the flybys that the INMS has good data. We utilize data from the Magnetospheric Imaging Instrument to determine how the magnetospheric particle population varies from pass to pass and how this influences the net magnetospheric energy input prior to the flyby. We also report on enhanced energetic neutral atom emissions during select highly energetic passes. References: Bell, J., et al.: “Simulating the time-dependent response of Titan's upper atmosphere to periods of magnetospheric forcing”. Geophys. Res. Lett., Vol. 38, L06202, 2011. Rymer, A. M., et al.: “Discrete classification and electron

  5. Multi-elements atmospheric deposition study in Albania.

    PubMed

    Qarri, Flora; Lazo, Pranvera; Stafilov, Trajce; Frontasyeva, Marina; Harmens, Harry; Bekteshi, Lirim; Baceva, Katerina; Goryainova, Zoya

    2014-02-01

    For the first time, the moss biomonitoring technique and inductively coupled plasma-atomic emission spectrometric (ICP-AES) analytical technique were applied to study multi-element atmospheric deposition in Albania. Moss samples (Hypnum cupressiforme) were collected during the summer of 2011 and September-October 2010 from 62 sites, evenly distributed over the country. Sampling was performed in accordance with the LRTAP Convention-ICP Vegetation protocol and sampling strategy of the European Programme on Biomonitoring of Heavy Metal Atmospheric Deposition. ICP-AES analysis made it possible to determine concentrations of 19 elements including key toxic metals such as Pb, Cd, As, and Cu. Cluster and factor analysis with varimax rotation was applied to distinguish elements mainly of anthropogenic origin from those predominantly originating from natural sources. Geographical distribution maps of the elements over the sampled territory were constructed using GIS technology. The median values of the elements in moss samples of Albania were high for Al, Cr, Ni, Fe, and V and low for Cd, Cu, and Zn compared to other European countries, but generally were of a similar level as some of the neighboring countries such as Bulgaria, Croatia, Kosovo, Macedonia, and Romania. This study was conducted in the framework of ICP Vegetation in order to provide a reliable assessment of air quality throughout Albania and to produce information needed for better identification of contamination sources and improving the potential for assessing environmental and health risks in Albania, associated with toxic metals. PMID:24081920

  6. Atmospheric lead deposition to Okefenokee Swamp, Georgia, USA

    USGS Publications Warehouse

    Jackson, B.P.; Winger, P.V.; Lasier, P.J.

    2004-01-01

    'Capsule:' Coal combustion emissions appear to be a major source of Pb in the Okefenokee wetland. Contamination of the environment from atmospheric deposition during the twentieth century is pervasive even in areas ostensibly considered pristine or remote from point sources. In this study, Pb concentrations in a Pb-210-dated peat core collected from the Okefenokee Swamp, GA were used to assess historical contaminant input via atmospheric deposition. Lead isotope ratios were determined by dynamic reaction cell ICP-MS (DRC-ICP-MS). Increases in Pb concentration occurred in the late nineteenth century and a marked rise in Pb concentrations pre-dated the widespread use of leaded gasoline within the US. The Pb-206/Pb-207 ratios of 1.19 during this period were consistent with coal combustion emissions. A later increase in Pb concentration, concurrent with a trend toward more radiogenic Pb-206/Pb-207 ratios in gasoline is consistent with an increased input of Pb from leaded gasoline emissions. However, it appears that coal combustion emissions remain a major source of Pb to the Okefenokee.

  7. Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik J.; Rausch, Nicole; Mason, Thomas F. D.; Coles, Barry J.; Wilkinson, Jamie J.; Ukonmaanaho, Liisa; Arnold, Tim; Nieminen, Tiina M.

    2007-07-01

    Zinc isotope ratios were measured in the top sections of dated ombrotrophic peat cores in Finland to investigate their potential as proxies for atmospheric sources and to constrain post depositional processes affecting the geochemical record. The peat deposits were located in Hietajärvi, a background site well away from any point pollution source and representing 'background' conditions, in Outokumpu, next to a mining site, and in Harjavalta, next to a smelter. Measured total concentrations, calculated excess concentrations and mass balance considerations suggest that zinc is subjected to important biogeochemical cycling within the peat. Significant isotopic variability was found in all three peat bogs, with heavier zinc in the deeper and lighter zinc in the upper sections. Isotope ratios and concentrations correlated in the two peats located next to dominant point sources, i.e. the smelting and mining site, suggesting that zinc isotopes trace pollution sources. Concentration and isotope peaks were offset from the period of mining and smelting activity, supporting migration of zinc down the profile. The δ 66Zn JMC (where δ 66Zn = [( 66Zn/ 64Zn) sample/( 66Zn/ 64Zn) JMC-standard - 1] × 10 3) of the top section sample at the remote Hietajärvi site was 0.9‰ and we suggest this represents the regional background isotope signature of atmospheric zinc. The deeper sections of the peat cores show isotopically heavier zinc than any potential atmospheric source, indicating that post depositional processes affected the isotopic records. The large variations encountered (up to 1.05‰ for δ 66Zn) and Rayleigh modelling imply that multiple fractionation of zinc during diagenetic alterations occurs and nutrient recycling alone cannot explain the fractionation pattern. We propose that zinc isotopes are amenable to identify different atmospheric zinc sources, including zinc derived from anthropogenic activities such as mining and smelting, but multiple biogeochemical

  8. Small impacts of atmospheric N deposition on ocean carbon cycle.

    NASA Astrophysics Data System (ADS)

    Buitenhuis, Erik; Suntharalingam, Parvadha; Kanakidou, Maria; Lamarque, Jean-Francois

    2014-05-01

    Simulations with the global ocean biogeochemical model PlankTOM10 (a Dynamic Green Ocean Model with 10 PFTs) forced with RCP8.5 scenario atmospheric N-deposition, show that by the 2090s the impact of a 22.07 Tg N/y (+175%) increase relative to the preindustrial control results in only a 1.5 Tg N/y increase in export @100m. The preindustrial control uses preindustrial N-deposition, while both simulations are forced with RCP8.5 climate. This small impact is due to compensating processes: a decrease in N2-fixation of 13.65 Tg N/y (-11%) and an increase in denitrification of 3.12 Tg N/y (+2%). The impact on N2O production is also quite small at 0.08 Tg N/y (+3.4%). The ocean N inventory increases by 4.52 Tg N/y, which is almost entirely inorganic N. The contribution of an increase in DOM inventory is negligeable (0.05 Tg N/y). There appears to be substantial subduction of inorganic carbon into the deep sea that is not used by phytoplankton, and therefore is presumably deposited at times and places that primary production is not nitrogen limited.

  9. Atmospheric deposition of organochlorine contaminants to Galveston Bay, Texas

    NASA Astrophysics Data System (ADS)

    Park, June-Soo; Wade, Terry L.; Sweet, Stephen

    Atmospheric monitoring of PCBs and chlorinated pesticides (e.g., HCHs, chlordanes, and DDTs) in Galveston Bay was conducted at Seabrook, Texas. Air and wet deposition samples were collected from 2 February 1995 and continued through 6 August 1996. Vapor total PCB ( tPCB) concentrations in air ranged from 0.21 to 4.78 ng m -3 with a dominance of tri-chlorinated PCBs. Dissolved tPCBs in rain ranged from 0.08 to 3.34 ng l -1, with tetra-chlorinated PCBs predominating. The predominant isomers found in air and rain were α- and γ-HCH, α- and γ-chlordanes, 4,4'-DDT, and dieldrin. The concentrations of PCBs and pesticides in the air and rain revealed no clear seasonal trend. Elevated levels of PCBs in the air occurred when temperatures were high and wind came from urban and industrialized areas (S, SW, NW, and W of the site). Concentrations of HCHs were elevated in April, May, and October, perhaps due to local and/or regional applications of γ-HCH (lindane). Other pesticides showed no notable temporal variation. When winds originated from the Gulf of Mexico (southeasterly), lower concentrations of organochlorines were detected in the air. The direct deposition rate (wet+dry) of PCBs to Galveston Bay (6.40 μg m -2 yr -1) was significantly higher than that of pesticides by a factor of 5-10. The net flux from gas exchange estimated for PCBs was from Galveston Bay water to the atmosphere (78 μg m -2 yr -1). Gas exchange of PCBs from bay water to the atmosphere was the dominant flux.

  10. Simulating soil atmosphere above a leaky CCS deposit

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    The escape of CO2 at the surface above a leaky geological deposit of carbon dioxide can be a fumarole-like point source or a subsurface plume distributing the gas over a larger area. In the latter case the lost CO2 from the deposit is added to the soil respiration as a quasi one-dimensional non-equimolar gas flux. Whether such an additional flux leads to inhibitory high levels of soil CO2 combined with a rather complete advective displacement of O2 or simply changes the diffusion characteristics in a more or less normal soil atmosphere depends for a given gas diffusivity and permeability on the ratio between the equimolar (respiratory) and the non-equimolar (leak based) flux of CO2. We tested the effecs by parametrization of a conceptual soil model consisting of capillaries filled either with soil air or water joining the soil air and the above-ground atmosphere. Soil atmosphere was simulated by combining a numerical solution of the Dusty-Gas model and a simple gas diffusion model in the water filled capillaries in an iterative process until Argon as noble gas is stagnant. The results show that in soils with high gas permeability even non-equimolar CO2 fluxes more than twice the soil respiration can be transferred to the surface without spectacular changes in soil-air pressure or O2 displacement. However, even low extra CO2 fluxes change significantly the gradient ratio of O2 and CO2 and stress soil aeration which is for many forest ecosystems a limiting factor of root growth.

  11. Estimated variability of National Atmospheric Deposition Program/Mercury Deposition Network measurements using collocated samplers

    USGS Publications Warehouse

    Wetherbee, G.A.; Gay, D.A.; Brunette, R.C.; Sweet, C.W.

    2007-01-01

    The National Atmospheric Deposition Program/Mercury Deposition Network (MDN) provides long-term, quality-assured records of mercury in wet deposition in the USA and Canada. Interpretation of spatial and temporal trends in the MDN data requires quantification of the variability of the MDN measurements. Variability is quantified for MDN data from collocated samplers at MDN sites in two states, one in Illinois and one in Washington. Median absolute differences in the collocated sampler data for total mercury concentration are approximately 11% of the median mercury concentration for all valid 1999-2004 MDN data. Median absolute differences are between 3.0% and 14% of the median MDN value for collector catch (sample volume) and between 6.0% and 15% of the median MDN value for mercury wet deposition. The overall measurement errors are sufficiently low to resolve between NADP/MDN measurements by ??2 ng??l-1 and ??2 ????m-2?? year-1, which are the contour intervals used to display the data on NADP isopleths maps for concentration and deposition, respectively. ?? Springer Science+Business Media B.V. 2007.

  12. MEASURING CONTAMINANT RESUSPENSION RESULTING FROM SEDIMENT CAPPING

    EPA Science Inventory

    This Sediment Issue summarizes two studies undertaken at marine sites by the National Risk Management Research Laboratory of U.S. EPA to evaluate the resuspension of surface materials contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) b...

  13. Biodiversity Risks from Atmospheric Nitrogen Deposition in California

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2004-12-01

    Atmospheric nitrogen deposition alters structure and function of terrestrial ecosystems, because nitrogen availability is often limits overall productivity. These alterations can drive losses of biodiversity, as nitrophilous species increase in abundance and outcompete species adapted to more oligotrophic conditions. California is recognized as a "biodiversity hotspot," with a high fraction of endemic taxa with narrow ranges. A state-wide risk screening includes: 1) a 36 x 36 km map of total N-deposition for 2002, developed from the Community Multiscale Air Quality Model (CMAQ); 2) identification of sensitive habitat types from literature and local expertise; 3) overlay of a statewide vegetation map (FRAP); 4) overlay of species occurrence data from the California Natural Diversity Data Base (CNDDB); and 5)species life-history and habitat requirements. The CMAQ model indicates that 55,000 km2 (total area 405,205 km2) are exposed to >5 kg-N ha -1 year -1, and 10,000 km2 are exposed to >10 kg-N ha -1 year -1. Deposition hotspots include coastal urban areas (Los Angeles-San Diego, and the San Francisco Bay Area), the agricultural Central Valley, and parts of the Sierra Nevada foothills. The major known impact of N-deposition in California is increased growth and dominance of invasive annual grasses in low biomass ecosystems, such as coastal sage scrub, serpentine grassland, desert scrub, and vernal pools. For example, 800 km2 out of a total 6300 km2 of coastal sage scrub are exposed to more than 10 kg-N ha -1 year -1, primarily in Southern California. Of 225 federal and state "Threatened" and "Endangered" plant taxa, 101 are exposed on average to >5 kg-N ha -1 year -1. Of an additional 1022 plant taxa listed as "rare," 288 are exposed to >5 kg-N ha -1 year -1. Many of these highly exposed taxa are associated with sensitive habitat types and are vulnerable to annual grass invasions. This broad-scale screening outlines potential impacts on California's biodiversity, and

  14. Atmospheric transport and wet deposition of ammonium in North Carolina

    NASA Astrophysics Data System (ADS)

    Walker, John T.; Aneja, Viney P.; Dickey, David A.

    Wet deposition and transport analysis has been performed for ammonium (NH 4+) in North Carolina, USA. Multiple regression analysis is employed to model the temporal trend and seasonality in monthly volume-weighted mean NH 4+ concentrations in precipitation from 1983 to 1996 at six National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. A significant ( p<0.01) increasing trend beginning in 1990, which corresponds to an annual concentration increase of approximately 9.5%, is detected at the rural Sampson County site (NC35), which is located within a densely populated network of swine and poultry operations. This trend is positively correlated with increasing ammonia (NH 3) emissions related to the vigorous growth of North Carolina's swine population since 1990, particularly in the state's Coastal Plain region. A source-receptor regression model, which utilizes weekly NH 4+ concentrations in precipitation in conjunction with boundary layer air mass back trajectories, is developed to statistically test for the influence of a particular NH 3 source region on NH 4+ concentrations at surrounding NADP/NTN sites for the years 1995-1996. NH 3 emissions from this source region, primarily evolving from swine and poultry operations, are found to increase NH 4+ concentration in precipitation at sites up to ≈80 km away. At the Scotland County (NC36) and Wake County (NC41) sites, mean NH 4+ concentrations show increases of at least 44% for weeks during which 25% or more back trajectories are influenced by this source region.

  15. Walking-induced particle resuspension in indoor environments

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Peccia, Jordan; Ferro, Andrea R.

    2014-06-01

    Resuspension of particles indoors increases the risk of consequent exposure through inhalation and non-dietary ingestion. Studies have been conducted to characterize indoor particle resuspension but results do not always agree, and there are still many open questions in this field. This paper reviews the recent research of indoor resuspension and summarizes findings to answer six critical questions: 1) How does the resuspension sources compared to other indoor sources; 2) How is resuspension determined and how does the resuspension measure change as a function of particle size; 3) What are the primary resuspension mechanisms; 4) What are the factors affecting resuspension; 5) What are the knowledge gaps and future research directions in this area; and 6) How can what we know about resuspension guide better exposure mitigation strategies? From synthesized results, we conclude that resuspension is an important source for indoor particulate matter, compared with other indoor sources. Among all existing quantification terms of resuspension, resuspension fraction has the least variation in its estimates by explicitly defining surface loading and walking frequency, and thus is recommended to be adopted in future research over other terms. Resuspension increases with particle size in the range of 0.7-10 μm, although differences exist in resuspension estimates by orders of magnitude. The primary mechanism of particle resuspension involves rolling detachment, and the adhesive forces can be greatly reduced by microscopic surface roughness. Particle resuspension is by nature complicated, affected by various factors and their interactions. There are still many open questions to be answered to achieve an understanding of resuspension fundamentals. Given the complex and multidisciplinary nature of resuspension, understanding indoor particle resuspension behavior requires cross-disciplinary participation from experts in aerosol science, textile science, surface chemistry

  16. Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Hagens, Mathilde; Hunter, Keith A.; Liss, Peter S.; Middelburg, Jack J.

    2014-02-01

    Seawater acidification can be induced both by absorption of atmospheric carbon dioxide (CO2) and by atmospheric deposition of sulfur and nitrogen oxides and ammonia. Their relative significance, interplay, and dependency on water column biogeochemistry are not well understood. Using a simple biogeochemical model we show that the initial conditions of coastal systems are not only relevant for CO2-induced acidification but also for additional acidification due to atmospheric acid deposition. Coastal areas undersaturated with respect to CO2 are most vulnerable to CO2-induced acidification but are relatively least affected by additional atmospheric deposition-induced acidification. In contrast, the pH of CO2-supersaturated systems is most sensitive to atmospheric deposition. The projected increment in atmospheric CO2 by 2100 will increase the sensitivity of coastal systems to atmospheric deposition-induced acidification by up to a factor 4, but the additional annual change in proton concentration is at most 28%.

  17. Atmospheric deposition of methanol over the Atlantic Ocean

    PubMed Central

    Yang, Mingxi; Nightingale, Philip D.; Beale, Rachael; Liss, Peter S.; Blomquist, Byron; Fairall, Christopher

    2013-01-01

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air–sea methanol transfer along a ∼10,000-km north–south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air–sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface—an important term for improving air–sea gas exchange models. PMID:24277830

  18. Water Deposition into Titan atmosphere from Saturn's E-ring

    NASA Astrophysics Data System (ADS)

    Juhasz, A.; Horanyi, M.; Kempf, S.; Srama, R.

    2013-12-01

    Cassini's discovery of the geologically active regions on the south polar region of Enceladus allowed the identification of these active plumes as the primary source of Saturn's E-ring. Micron and submicron sized ice particles are supplied from the plumes to sustain the entire E-ring. In situ measurements by the Cassini Cosmic Dust Analyzer (CDA) also led to the recognition that the E-ring extends way beyond its originally recognized limits of 4 - 8 Saturn radii (Rs), reaching beyond 20 Rs, engulfing Titan, Saturn's largest moon. Ice grains entrained in the plumes experience radiation pressure and plasma drag perturbations and their orbits slowly evolve outward. Simultaneously, the ice particles are exposed to energetic ion bombardment, leading to their mass loss due to sputtering. Initially micron sized particles from Enceladus take about 500 years to reach the orbit of Titan, arriving there as approximately 0.1-0.3 micron sized particles. Due to their large eccentricities, these small grains enter Titan's atmosphere with speeds v > 1 km/s,sufficiently fast to ablate, delivering on the order of 5 g/s of water. This presentation will discuss the resulting profiles of water vapor deposition rates as function of altitude in Titan's atmosphere.

  19. Distinguishing resuspension and advection signals in a hypertidal estuary

    NASA Astrophysics Data System (ADS)

    Todd, David; Souza, Alex; Jago, Colin

    2015-04-01

    Terrestrial material is supplied to an estuary system by the river, while marine material is supplied by the sea. Whether the estuary acts as a trap or a bypass zone for SPM (suspended particulate matter) depends upon the properties and dynamics of both the estuary, including the tidal and residual behaviour of the currents, and the SPM, including particle sizes and settling velocities and concentration gradients, which together control the dynamics, such as the trapping efficiency, of the estuary. Whether an SPM signal is regarded as being one of resuspension or advection depends upon the area of interest, and therefore distinguishing between resuspension and advection can be complex. Material that is resuspended within the area of study is regarded as resuspension, while that which is resuspended outside, but passes through, the area of interest, is regarded as advection. The results of a measurement campaign undertaken in a hypertidal UK estuary during the pre-spring bloom February-March and post-spring bloom May-June are presented utilising a combination of acoustic and optical instruments, moorings, and CTD stations. A characteristic asymmetric "twin peak" signal is present during both time periods, implying the presence of both resuspension and advection. This is confirmed through the use of harmonic analysis. A seasonal variation in the relative importance of the resuspension and advection components is seen between the two observation periods, with the small (<122µm) and large (>122µm) particles displaying different behaviours and providing a strong indication of the presence of flocculation. Approximate point flux calculations showed a reduction in the horizontal gradient of concentration, and subsequently the flood dominance of sediment transport, between May-June and February-March. This has been attributed to changes in biological activity and atmospheric forcing between the two observational periods. Ebb-dominant concentrations brought about by the

  20. The effect of four landscape features on atmospheric deposition to Hunter Mountain, New York

    SciTech Connect

    Weathers, K.C.

    1993-01-01

    Atmospheric deposition to montane ecosystems is higher than to adjacent lowlands. Because of the heterogeneous nature of mountainous landscapes, rates of deposition are likely to vary considerably with major landscape features. Estimates of total atmospheric deposition for mountains in the northeastern United States are wide-ranging and based on models that do not take into account landscape heterogeneity. Little had been known about the spatial variability of atmospheric deposition to these high elevation ecosystems. On Hunter Mountain in the Catskill Mountains, New York, four landscape features-(1) edges/gaps, (2) elevation, (3) aspect and (4) vegetation type-were identified as likely to control atmospheric deposition in mountainous terrain. Relative rates of atmospheric deposition, or enhancement factors, were measured across these landscape features by using lead in the forest floor as an indicator of total deposition, and, in the case of forest edges, also by making direct measurements of cloudwater deposition. These enhancement factors were used to model deposition to the Hunter Mountain landscape. Average deposition to the area above 1000 m was estimated to be 13% greater than to a nearby low elevation site. [open quotes]Hotspots[close quotes] were identified at high elevation, conifer forest edges where atmospheric deposition of pollutants and nutrients is up to 300% greater than a low-elevation forest. More detailed measurements of cloudwater deposition to an edge of a high elevation spruce forest revealed enhancement from 0- to 15-fold over the interior, with an average 3-fold increase. Sulfate flux in throughfall during cloud events was found to mirror cloudwater deposition and may be a useful tool to quantify patterns of atmospheric deposition in mountains. The data suggest current estimates of atmospheric deposition to mountainous terrain that do not include landscape heterogeneity may seriously underestimate loading of pollutants and nutrients.

  1. Sources, transport and deposition of iron in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Bopp, L.; Chappell, A.; Ciais, P.; Hauglustaine, D.; Peñuelas, J.; Tao, S.

    2015-03-01

    Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and their deposition over oceans are not accounted for in current biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960-2007 were estimated to be 5.1 Tg yr-1 (90% confidence of 2.2 to 11.5). Of these emissions, 2, 33 and 65% were emitted in particles <1 μm (PM1), 1-10 μm (PM1-10), and >10 μm (PM>10), respectively, compared to total Fe emissions from mineral sources of 41.0 Tg yr-1. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 and PM1-10 since 2000 due to a rapid increase from motor vehicles. These emissions have been introduced in a global 3-D transport model run at a spatial resolution of of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations were compared to measurements at 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the surface was within a factor of two at most sampling stations, and the deviation was within a factor of 1.5 at sampling stations dominated by combustion sources. We analyzed the relative contribution of combustion sources to total Fe concentrations over different regions of the

  2. Sources, transport and deposition of iron in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Bopp, L.; Chappell, A.; Ciais, P.; Hauglustaine, D.; Peñuelas, J.; Tao, S.

    2015-06-01

    Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and the subsequent deposition to the oceans have been accounted for in only few ocean biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960-2007 were estimated to be 5.3 Tg yr-1 (90% confidence of 2.3 to 12.1). Of these emissions, 1, 27 and 72% were emitted in particles < 1 μm (PM1), 1-10 μm (PM1-10), and > 10 μm (PM> 10), respectively, compared to a total Fe emission from mineral dust of 41.0 Tg yr-1 in a log-normal distribution with a mass median diameter of 2.5 μm and a geometric standard deviation of 2. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 since 2000 due to an increase in Fe emission from motor vehicles (from 0.008 to 0.0103 Tg yr-1 in 2000 and 2007, respectively). These emissions have been introduced in a global 3-D transport model run at a spatial resolution of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations as monthly means were compared with the monthly (57 sites) or daily (768 sites) measured concentrations at a total of 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the

  3. Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study.

    PubMed

    Landis, Matthew S; Keeler, Gerald J

    2002-11-01

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Studytogether with high-resolution over-water meteorological date provided by the National Oceanic and Atmospheric Administration (July, 1994-October, 1995). Atmospheric deposition was determined to be the primary pathway for mercury inputto Lake Michigan, contributing approximately 84% of the estimated 1403 kg total annual input (atmospheric deposition + tributary input). Wet (10.6 microg m(-2)) and dry deposition (9.7 microg m(-2)) contributed almost equally to the annual atmospheric Hg deposition of 20.3 microg m(-2) (1173 kg). Re-emission of dissolved gaseous Hg from the lake was also significant (7.8 microg m(-2)), reducing the net atmospheric deposition to 12.5 microg m(-2) (720 kg). A strong urban influence was observed in the over-water mercury deposition estimates in the southern portion of the lake. The Chicago/Gary urban area was estimated to contribute approximately 20% (127 kg) of the annual atmospheric mercury deposition to Lake Michigan. The magnitude of local anthropogenic mercury sources in the Chicago/Gary urban area suggests that emission reductions could significantly reduce atmospheric mercury deposition into Lake Michigan. PMID:12433159

  4. Observational constraints of Polar Ice Deposits on Mars Atmospheric GCMs

    NASA Astrophysics Data System (ADS)

    Teodoro, L. F. A.; Elphic, R. C.; Hollingsworth, J. L.; Haberle, R. M.; Kahre, M. A.; Eke, V. R.; Roush, T. L.; Marzo, G. A.; Brown, A. J.; Feldman, W. C.; Maurice, S.

    2012-04-01

    Much of our current knowledge about Mars' climate and atmospheric global circulation stems from measurements taken by landers and orbiters. Thus for many years the details of the atmospheric circulation were studied using numerical global circulation models (GCMs) that have been successful in reproducing most of the available observations [1]. More than ever, GCMs will play a central role in analyzing the existing data and in planning and execution of upcoming missions. The Mars Odyssey Neutron Spectrometer (MONS) has enabled a comprehensive study of the overall distribution of hydrogen in the surface of Mars [2]. Deposits ranging between 20% and 100% Water-Equivalent Hydrogen (WEH) by mass are found pole-ward of 55 deg. latitude, while less H-rich deposits are found at lower latitudes. These results assume that the H distribution is uniform in the top meter of the martian soil. The Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) has identified numerous locations on Mars where hydrous minerals occur [3]. The information collected by MRO-CRISM samples the top few mm's to cm's of the surface. This independent information can impose additional constrains on the 3-D H distribution inferred from the MONS data. For instance, the absence of a correlation between WEH wt% drawn from the MONS and CRISM data at a location where the neutron data indicate high WEH implies the presence of a 3-D structure that is characterized by a top layer with a low abundance of water, either ice or hydrated minerals, and some buried layers where the concentration of H is higher than that expected in a uniformly mixed layer. However, the spatial resolution of MONS and MRO-CRISM are ~550 km and ~20-200m, respectively. Hence, one must assure the MRO-CRISM and MONS data are on the same scales. The MRO-CRISM data can be re-binned to lower resolution, but additionally the MONS instrumental smearing must be properly understood and removed. Usually, in the

  5. Influence of atmospheric deposition on Okefenokee National Wildlife Refuge

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1995-01-01

    Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class I Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge interior was sectioned, aged, and analyzed for mercury. Rainfall was acidic (pH 4.7-4.9), with average total and methyl mercury concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 3.8-4.1), dilute (specific conductance 35-60 pS), and highly organic (dissolved organic carbon 35-50 mg/L). Total mercury was 1-3.5 ng/L in surface and pore water, and methyl mercury was 0.02-0.20 ng/L. Total mercury in sediments and floc was 100-200 ng/g dry weight, and methyl mercury was 4-16 ng/g. Lead was 0-1.7 pg/L in rainfall, not detectable in surface water, 3.4-5.4 pg/L in pore water, and 3.9-4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.

  6. Atmospheric deposition of 7Be by rain events, incentral Argentina

    NASA Astrophysics Data System (ADS)

    Ayub, J. Juri; Di Gregorio, D. E.; Huck, H.; Velasco, H.; Rizzotto, M.

    2008-08-01

    Beryllium-7 is a natural radionuclide that enters into the ecosystems through wet and dry depositions and has numerous environmental applications in terrestrial and aquatic ecosystems. Atmospheric wet deposition of 7Be was measured in central Argentina. Rain traps were installed (1 m above ground) and individual rain events have been collected. Rain samples were filtered and analyzed by gamma spectrometry. The gamma counting was undertaken using a 40%-efficient p-type coaxial intrinsic high-purity natural germanium crystal built by Princeton Gamma-Tech. The cryostat was made from electroformed high-purity copper using ultralow-background technology. The detector was surrounded by 50 cm of lead bricks to provide shielding against radioactive background. The detector gamma efficiency was determined using a water solution with known amounts of chemical compounds containing long-lived naturally occurring radioisotopes, 176Lu, 138La and 40K. Due to the geometry of the sample and its position close to the detector, the efficiency points from the 176Lu decay, had to be corrected for summing effects. The measured samples were 400 ml in size and were counted curing one day. The 7Be detection limit for the present measurements was as low as 0.2 Bq l-1. Thirty two rain events were sampled and analyzed (November 2006-May 2007). The measured values show that the events corresponding to low rainfall (<20 mm) are characterized by significantly higher activity concentrations (Bq l-1). The activity concentration of each individual event varied from 0.8 to 3.5 Bq l-1, while precipitations varied between 4 and 70 mm. The integrated activity by event of 7Be was fitted with a model that takes into account the precipitation amount and the elapsed time between two rain events. The integrated activities calculated with this model show a good agreement with experimental values.

  7. Influence of atmospheric deposition on Okefenokee National Wildlife Refuge

    SciTech Connect

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1995-12-31

    Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class 1 Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 4.7--4.9), with average total and methyl mercury highly organic (dissolved organic carbon 35--50 mg/L). Total mercury was 1--3.5 ng/L in surface and pore water, and methyl mercury was 0.02--0.20 ng/L. Total mercury in sediments and floc was 100--200 ng/g dry weight, and methyl mercury was 4--16ng/g. Lead was 0--1.7 {micro}g/L in rainfall, not detectable in surface water, 3.4--5.4 {micro}g/L in pore water, and 3.9--4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.

  8. The investigation of atmospheric deposition distribution of organochlorine pesticides (OCPs) in Turkey

    NASA Astrophysics Data System (ADS)

    Cindoruk, S. Sıddık; Tasdemir, Yücel

    2014-04-01

    Atmospheric deposition is a significant pollution source leading to contamination of remote and clean sites, surface waters and soils. Since persistent organic pollutants (POPs) stay in atmosphere without any degradation, they can be transported and deposited to clean surfaces. Organochlorine pesticides are an important group of POPs which have toxic and harmful effects to living organisms and environment. Therefore, atmospheric deposition levels and characteristics are of importance to determine the pollution quantity of water and soil surfaces in terms of POPs. This study reports the distribution quantities of atmospheric deposition including bulk, dry, wet and air-water exchange of particle and gas phase OCPs as a result of 1-year sampling campaign. Atmospheric deposition distribution showed that the main mechanism for OCPs deposition is wet processes with percentage of 69 of total deposition. OCP compounds' deposition varied according to atmospheric concentration and deposition mechanism. HCH compounds were dominant pesticide species for all deposition mechanisms. HCH deposition constituted the 65% of Σ10OCPs.

  9. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxing; Wang, Qiufeng; He, Nianpeng; Smith, Melinda D.; Elser, James J.; Du, Jiaqiang; Yuan, Guofu; Yu, Guirui; Yu, Qiang

    2016-06-01

    Atmospheric wet nitrogen (N) and phosphorus (P) depositions are important sources of bioavailable N and P, and the input of N and P and their ratios significantly influences nutrient availability and balance in terrestrial as well as aquatic ecosystems. Here we monitored atmospheric P depositions by measuring monthly dissolved P concentration in rainfall at 41 field stations in China. Average deposition fluxes of N and P were 13.69 ± 8.69 kg N ha-1 a-1 (our previous study) and 0.21 ± 0.17 kg P ha-1 a-1, respectively. Central and southern China had higher N and P deposition rates than northwest China, northeast China, Inner Mongolia, or Qinghai-Tibet. Atmospheric N and P depositions showed strong seasonal patterns and were dependent upon seasonal precipitation. Fertilizer and energy consumption were significantly correlated with N deposition but less correlated with P deposition. The N:P ratios of atmospheric wet deposition (with the average of 77 ± 40, by mass) were negatively correlated with current soil N:P ratios in different ecological regions, suggesting that the imbalanced atmospheric N and P deposition will alter nutrient availability and strengthen P limitation, which may further influence the structure and function of terrestrial ecosystems. The findings provide the assessments of both wet N and P deposition and their N:P ratio across China and indicate potential for strong impacts of atmospheric deposition on broad range of terrestrial ecosystems.

  10. Patterns of atmospheric deposition to a mountain landscape in southeastern New York

    SciTech Connect

    Weathers, K.C.; Lovett, G.M.; Likens, G.E. )

    1994-06-01

    We postulate that in the Catskill Mts., of southeastern NY, patterns of atmospheric deposition across the landscape are regulated primarily by four landscape features: (1) edges and gaps; (2) elevation; (3) slope aspect; and (4) vegetation type. We measured relative rates of deposition associated with these features using Pb in the forest floor as an indicator of total deposition. Deposition enhancement factors generated by these measurements were used in a geographic information system to model deposition to the landscape of Hunter Mt. Average deposition in the area above 1000m elevation was estimated to be 13% greater than to nearby low-elevation sites. Combinations of the landscape features can create [open quotes]hotspots[close quotes] of deposition, for instance, high-elevation coniferous forest edges, where deposition can be 300% greater than to a low-elevation forest. These results illustrate the importance of considering landscape-level variation when modeling atmospheric deposition or extrapolating deposition measurements.

  11. Modeling and mapping of atmospheric mercury deposition in adirondack park, new york.

    PubMed

    Yu, Xue; Driscoll, Charles T; Huang, Jiaoyan; Holsen, Thomas M; Blackwell, Bradley D

    2013-01-01

    The Adirondacks of New York State, USA is a region that is sensitive to atmospheric mercury (Hg) deposition. In this study, we estimated atmospheric Hg deposition to the Adirondacks using a new scheme that combined numerical modeling and limited experimental data. The majority of the land cover in the Adirondacks is forested with 47% of the total area deciduous, 20% coniferous and 10% mixed. We used litterfall plus throughfall deposition as the total atmospheric Hg deposition to coniferous and deciduous forests during the leaf-on period, and wet Hg deposition plus modeled atmospheric dry Hg deposition as the total Hg deposition to the deciduous forest during the leaf-off period and for the non-forested areas year-around. To estimate atmospheric dry Hg deposition we used the Big Leaf model. The average atmospheric Hg deposition to the Adirondacks was estimated as 17.4 [Formula: see text]g m[Formula: see text] yr[Formula: see text] with a range of -3.7-46.0 [Formula: see text]g m[Formula: see text] yr[Formula: see text]. Atmospheric Hg dry deposition (370 kg yr[Formula: see text]) was found to be more important than wet deposition (210 kg yr[Formula: see text]) to the entire Adirondacks (2.4 million ha). The spatial pattern showed a large variation in atmospheric Hg deposition with scattered areas in the eastern Adirondacks having total Hg deposition greater than 30 μg m(-2) yr(-1), while the southwestern and the northern areas received Hg deposition ranging from 25-30 μg m(-2) yr(-1). PMID:23536871

  12. ROLE OF BIOTURBATION IN SEDIMENT RESUSPENSION AND ITS INTERACTION WITH PHYSICAL SHEARING

    EPA Science Inventory

    Marine benthic fauna play an important role in governing sediment-water relationships, including resuspension of particle-borne contaminants. onstant burrowing and subsurface deposit-feeding tend to eject sediment into overlying water, break up the cohesive structure of sediment-...

  13. Impact of Natural (Storm) and Anthropogenic (Trawl) Resuspension the Sediment Transport on the Gulf of Lion's Shelf (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferre, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.

    2006-12-01

    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. On shelves with strong fishing activity, resuspension by bottom trawling processes can modify the scale of natural disturbance by waves and currents. Recent field data shows that the impact of bottom trawls on the resuspension of the fine sediments per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of river-borne particles and shelf sediments on the Gulf of Lion's Shelf. Realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers were developed. Simulations were conducted for a 16-month period to characterize the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediment. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents is controlled by the shear stress, whereas resuspension by the bottom trawler fleet is controlled by its density and distribution. Natural resuspension by waves and currents mostly occurs during short winter episodes, and is concentrated on the inner-shelf. Trawling-induced resuspension, in contrast, occurs regularly throughout the year and is concentrated on the outer shelf. The total annual net resuspension by trawls (8×106 T y-1 is four orders of magnitude lower than the resuspension induced by waves and currents (4×1010 T y-1. However, because trawled regions are located on the outer shelf, closer to the continental slope, export of fine sediment resuspended by trawls (0.6×106 T y-1 is only one order of magnitude lower than export associated with natural resuspension (8×106 T y-1. A simulation combining both

  14. Atmospheric deposition of chlorinated organophosphate flame retardants (OFR) onto soils

    NASA Astrophysics Data System (ADS)

    Mihajlović, Ivana; Fries, Elke

    2012-09-01

    This study highlights the influence of dry and wet deposition on concentrations of chlorinated organophosphate flame retardants (OFR) in soil. Soil samples were collected in 2010/11 during a period of snow falling to snow melting, a period of rainfall and a dry period. Snow and rainwater samples were also collected from the soil sampling site. Tris(2-chloroethyl)phosphate (TCEP), tris(2-chloroisopropyl)phosphate (TCPP) and tris(1,3-dichloro-2-propyl)phosphate (TDCP) were analysed in soil samples using a combination of Twisselmann extraction and solid-phase microextraction (SPME), followed by gas chromatography-mass spectrometry (GC-MS). SPME/GC-MS was applied to analyse TCEP, TCPP and TDCP in aqueous samples. Concentrations of TCEP were between 236 and 353 ng L-1 in snow and 78 and 234 ng L-1 in rain. TCPP concentrations were between 226 and 284 ng L-1 in snow and 371 and 385 ng L-1 in rain. In soil samples, concentrations ranged from 5.07 to 23.48 ng g-1 dry weight (dwt) for TCEP and 5.66 to 19.82 ng g-1 dwt for TCPP. Concentrations of TDCP in rainwater and snow samples were rather low (46 and 100 ng L-1, respectively); concentrations of TDCP were below the limit of detection in soil samples. Snow melting caused enhanced soil concentrations of TCEP and TCPP, but greater effect of snow melting was observed for TCEP than for TCPP soil concentrations. No significant correlation between precipitation amounts and soil concentrations was observed. The influence of wet deposition on soil contents of TCEP and TCPP may be covered by volatilisation or by the mobility of both compounds in soil and their transport to deeper soil zones with seepage water. Snow was found to be a more efficient scavenger and transporter of chlorinated OFR into soil than rainwater. During dry weather, the soil concentrations of both compounds seemed to be driven mainly by air concentrations, which are determined by source emission strengths and photochemical degradation in the atmosphere. Values

  15. Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; Baker, Alex R.; Tegen, Ina; Mahowald, Natalie M.; Dentener, Frank J.; Duce, Robert A.; Galloway, James N.; Hunter, Keith; Kanakidou, Maria; Kubilay, Nilgun; Prospero, Joseph M.; Sarin, Manmohan; Surapipith, Vanisa; Uematsu, Mitsuo; Zhu, Tong

    2011-06-01

    Nutrients are supplied to the mixed layer of the open ocean by either atmospheric deposition or mixing from deeper waters, and these nutrients drive nitrogen and carbon fixation. To evaluate the importance of atmospheric deposition, we estimate marine nitrogen and carbon fixation from present-day simulations of atmospheric deposition of nitrogen, phosphorus, and iron. These are compared with observed rates of marine nitrogen and carbon fixation. We find that Fe deposition is more important than P deposition in supporting N fixation. Estimated rates of atmospherically supported carbon fixation are considerably lower than rates of marine carbon fixation derived from remote sensing, indicating the subsidiary role atmospheric deposition plays in total C uptake by the oceans. Nonetheless, in high-nutrient, low-chlorophyll areas, the contribution of atmospheric deposition of Fe to the surface ocean could account for about 50% of C fixation. In marine areas typically thought to be N limited, potential C fixation supported by atmospheric deposition of N is only ˜1%-2% of observed rates. Although these systems are N-limited, the amount of N supplied from below appears to be much larger than that deposited from above. Atmospheric deposition of Fe has the potential to augment atmospherically supported rates of C fixation in N-limited areas. In these areas, atmospheric Fe relieves the Fe limitation of diazotrophic organisms, thus contributing to the rate of N fixation. The most important uncertainties in understanding the relative importance of different atmospheric nutrients are poorly understood speciation and solubility of Fe as well as the N:Fe ratio of diazotrophic organisms.

  16. The Measurement of Atmospheric Concentrations and Deposition of Semi-Volatile Organic Compounds.

    ERIC Educational Resources Information Center

    Lee, David S.; Nicholson, Ken W.

    1994-01-01

    Provides a physical description of semivolatile organic compounds (SVOCs), both in terms of their characteristic nature in the atmosphere and the processes which control their deposition. Contains a summary of the requirements for a full assessment of atmospheric SVOCs and their deposition. (LZ)

  17. The role of "pump action" in coastal and estuarine sediment resuspension

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Zhang, S.

    2014-12-01

    Most of the sediment into sea carried by rivers deposited near the estuary,forming the subaqueous delta. However,previous researches has shown that sediment into sea carried by many rivers all over the world always forms a large scale of distribution along the estuarine coastal areas that thousands of kilometers away from the estuary. Resuspension of estuarine and coastal sediment plays an important role in the sediment long distance transport into sea. At present, it is widely recognized that sediment resuspension is caused by the wave and current scouring action on the surface of the seabed. This paper explored the process and mechanism of seabed sediment resuspension through flume simulation experiments; developed a conclusion that sediment resuspension is not only from the seabed surface, there is still a considerable part of sediments coming from the internal seabed through seepage "pump action";The proportion of the latter part in sediment resuspension is related to wave height, this experiment concluded that 5、10、15cm wave heights respectively accounted for 30.5%,43.8%,47.9%;The "pump action" is induced by the accumulation of excess pore water pressure inside the soil bed under the action of wave loading.

  18. 210Po and 210Pb as Tracers of Particle Cycling and Resuspension in a Dynamic Freshwater System: Case Study from the Clinton River, Southeast Michigan

    NASA Astrophysics Data System (ADS)

    Mudbidre, R.; Baskaran, M. M.; Schweitzer, L.

    2013-12-01

    Polonium-210 and 210Pb are constantly delivered to the surface waters through atmospheric deposition with a 210Po/210Pb activity ratio (AR) of < 0.10. Freshly produced suspended particles in surface waters are ';tagged' with this ratio which tends to grow towards the secular equilibrium value of 1.0. This disequilibrium between 210Po and 210Pb in freshwater system with a relatively short hydrological residence time can be utilized to quantify sediment resuspension rates and to investigate the extent of recycling of sedimentary particulate matter. From the measurements of 210Po and 210Pb in particulate matter collected in sediment traps and surficial bottom sediments at 5 different sites in the Clinton River in southeast Michigan over a period of 6 months (April - September, 2005) and subsequent modeling of these data, we report the following: i) The direct atmospheric deposition of 210Po and 210Pb collected in the sediment trap materials accounted for 1% and 0.1%, respectively, of the total deposited in the sediment trap; ii) The ranges and mean values of the 210Po and 210Pb in the sediment trap material and bottom sediments are comparable, with near identical 210Po/210Pb ratios, indicating that most of the trapped 210Po and 210Pb were delivered by the resuspension of bottom sediments; iii) The particle residence times varied from 0.3 to 4 days for 210Pb and 0.9 to 13.4 days for 210Po; and iv) The sediment resuspension rates calculated via single box model approach yielded resuspension rates ranging from 0.2 to 14.2 g cm-2 yr-1 using 210Pb and 0.1 to 1.0 g cm-2 yr-1 using 210Po. We propose that the distribution of 210Bi (and 210Bi/210Pb) would provide better insight on particle cycling in short-time scales and a brief discussion will be presented on the utility of 210Bi/210Pb ratio as a powerful tool for short-term particle cycling and as tracers of POC, PON export studies in deeper freshwater lakes.

  19. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Roelle, Paul A.; Murray, George C.; Southerland, James; Erisman, Jan Willem; Fowler, David; Asman, Willem A. H.; Patni, Naveen

    The Atmospheric Nitrogen Compounds II: Emissions, Transport, Transformation, Deposition and Assessment workshop was held in Chapel Hill, NC from 7 to 9 June 1999. This international conference, which served as a follow-up to the workshop held in March 1997, was sponsored by: North Carolina Department of Environment and Natural Resources; North Carolina Department of Health and Human Services, North Carolina Office of the State Health Director; Mid-Atlantic Regional Air Management Association; North Carolina Water Resources Research Institute; Air and Waste Management Association, RTP Chapter; the US Environmental Protection Agency and the North Carolina State University (College of Physical and Mathematical Sciences, and North Carolina Agricultural Research Service). The workshop was structured as an open forum at which scientists, policy makers, industry representatives and others could freely share current knowledge and ideas, and included international perspectives. The workshop commenced with international perspectives from the United States, Canada, United Kingdom, the Netherlands, and Denmark. This article summarizes the findings of the workshop and articulates future research needs and ways to address nitrogen/ammonia from intensively managed animal agriculture. The need for developing sustainable solutions for managing the animal waste problem is vital for shaping the future of North Carolina. As part of that process, all aspects of environmental issues (air, water, soil) must be addressed as part of a comprehensive and long-term strategy. There is an urgent need for North Carolina policy makers to create a new, independent organization that will build consensus and mobilize resources to find technologically and economically feasible solutions to this aspect of the animal waste problem.

  20. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    PubMed

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection. PMID:25706750

  1. Dust Resuspension due to Idealized Foot Motion

    NASA Astrophysics Data System (ADS)

    Sheth, Ritesh

    2005-11-01

    The air quality is affected by amount and types of particulate contaminants that are suspended in the air. The resuspension phenomena occur through two mechanisms: mechanical, where kinetic energy is transferred through direct contact from an impacting body or a vibrating surface, and aerodynamic, where dust particles are resuspended by the flow disturbance generated by the body. In this presentation we focus on aerodynamic resuspension of particles caused by walking. The foot movement is idealized and is either towards or away from a floor without touching it. As a first approach, a 15 cm diameter disk having the equivalent area to that of a human foot is used. The ``foot'' movement is driven vertically by a linear servo motor that controls the velocity, acceleration, stroke and deceleration (a typical vertical velocity is 0.5-1.0 m/s). A thin layer of dust is spread on a table relative to which the disk is allowed to move up and down. Flow visualizations show that both the upward and downward movements of the disk play an important role in the dust resuspension. A clear effect of radial jet and vortex dynamics on the particle resuspension is observed during the downward motion. In the wake of the rising disk, the particles were entrained upwards as a starting ring vortex formed. Quantitative PIV measurements will be performed to help further analyze the flow structure of this flow configuration.

  2. PORTABLE DEVICE FOR MEASURING SEDIMENT RESUSPENSION

    EPA Science Inventory

    A portable device for measuring sediment resuspension has been developed. he device consists of a cylindrical chamber inside of which a horizontal grid oscillates vertically. he sediments whose properties are to be determined are placed at the bottom of the chamber with water ove...

  3. Integrated Assessment of Ecosystem Effects of Atmospheric Deposition

    EPA Science Inventory

    Ecosystems obtain a portion of their nutrients from the atmosphere. Following the Industrial Revolution, however, human activities have accelerated biogeochemical cycles, greatly enhancing the transport of substances among the atmosphere, water, soil, and living things. The atmos...

  4. Impacts of atmospheric deposition on ocean biogeochemistry - moving beyond iron (Invited)

    NASA Astrophysics Data System (ADS)

    Paytan, A.

    2013-12-01

    Atmospheric deposition of trace elements, nutrients, organic compounds, living cells and particles to the ocean can significantly modify seawater chemistry and influence oceanic productivity and biogeochemistry. However, mounting evidence suggests that the response of living organisms to atmospheric deposition depends on the chemical and physical composition of the aerosols and varies across different species and ecosystems. Responses are also different depending on oceanographic setting and season. Results from models and incubation experiments with natural plankton assemblages at a wide range of marine locations will be presented to illustrate the variable impacts of atmospheric deposition. Utilization of nutrients and susceptibility to metal toxicity was different among different taxa and at different sites, suggesting that aerosol deposition could potentially alter patterns of marine primary production and phytoplankton community structure. Changes in atmospheric deposition and aerosol composition that are impacted from natural and anthropogenic change could therefore have effects on ocean chemistry and productivity with potential feedbacks to the carbon cycle.

  5. Can sulfate fluxes in forest canopy throughfall be used to estimate atmospheric sulfur deposition

    SciTech Connect

    Lindberg, S.E.; Garten, C.T. Jr. ); Cape, J.N. ); Ivens, W. )

    1991-01-01

    The flux of sulfate is forest throughfall and stemflow (the sum of which is designated here as TF) may be an indicator of the atmospheric deposition of S, particularly if foliar leaching of internal plant S is small relative to washoff of deposition. Extensive data from 13 forests indicate that annual sulfate fluxes in TF and in atmospheric deposition are very similar, and recent studies with {sup 35}S tracers indicate that leaching is only a few percent of total TF. However, some short-term deposition/TF comparisons show large differences, and there remain questions about interpretation of tracer results. Considering the data, we conclude that TF may be used under some conditions to estimate deposition within acceptable uncertainty limits, but that some assumptions need further testing. If TF does reflect deposition, these data suggest that commonly used methods and models seriously underestimate total S deposition at some sites. 39 refs. ,4 figs., 1 tab.

  6. Trace metal determination in total atmospheric deposition in rural and urban areas.

    PubMed

    Azimi, Sam; Ludwig, Alexandre; Thévenot, Daniel R; Colin, Jean-Louis

    2003-06-01

    The wet, dry and total atmospheric depositions of some metals (Al, Cd, Cr, Cu, Fe, Na, Pb and Zn) were sampled at two sites and atmospheric fallout fluxes were determined for these locations. This work, led by two different research groups, allowed to reach two main goals: to define a simple analytical procedure to secure accurate shipboard sampling and analysis of atmospheric deposition, and to assess anthropogenic impacts of heavy metals to the environment. The first step about the validation step showed that the prevalent deposition type was dry deposition which represents 40, 60 and 80% for Cd, Cu and Pb, respectively. This prevalence of dry deposition in total atmospheric fallout supported the necessity of funnel wall rinsing which contains 30, 50 and 40% of collected Cd, Cu and Pb, respectively. Moreover, the reproducibility of atmospheric deposition collection was determined. The second step was performed by comparing two sampling sites. A rural sampling site, situated in Morvan's regional park (250 km south-east of Paris), was chosen for its isolation from any local and regional contamination sources. Fluxes obtained in this area were compared with those obtained at an urban site (Créteil, suburb of Paris) allowing comparison between urban and rural areas and demonstrating the impact of anthropogenic activities on atmospheric deposition of Cr, Cu and Pb. PMID:12738217

  7. Atmospheric dry deposition of trace elements at a site on Asian-continent side of Japan

    NASA Astrophysics Data System (ADS)

    Sakata, Masahiro; Asakura, Kazuo

    2011-02-01

    The sources of dry-deposited trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb, Sb and V) and the factors controlling their dry deposition fluxes were investigated on the basis of two-year observations (April 2004-March 2006) at a site on the Asian-continent side of Japan, which has been strongly affected by air pollutants from the Asian continent. Dry deposition sampling was conducted using a water surface sampler connected to a wet-only precipitation sampler. The dry deposition of As, Cd, Pb and Sb showed a small contribution to atmospheric deposition (0.25-0.44 as ratios of annual dry/wet deposition fluxes). Moreover, the dry deposition fluxes of those elements increased negligibly during the period when their atmospheric particulate matter (PM) concentrations increased owing to transport from the Asian continent. Thus, the dry deposition of As, Cd, Pb and Sb from the Asian continent was not significant, because their overall dry deposition velocities are relatively low (mostly <1 cm s -1). Conversely, the annual dry deposition fluxes of Cr, Cu and Ni exceeded their annual wet deposition fluxes (2.5-12.4 as ratios of annual dry/wet deposition fluxes). Those overall dry deposition velocities were much higher (3.2-9.7 cm s -1), and the crustal enrichment factors (EFs) frequently exceeded ten. These results suggest that the dry deposition of Cr, Cu and Ni is dominated by considerably coarse particles from local anthropogenic sources. For Mn and V, the dry and wet depositions contributed almost equally to the annual deposition fluxes. Their monthly dry deposition fluxes correlated significantly with that of Al ( P < 0.001), and the EFs were close to unity, suggesting a large contribution of background soil to their dry deposition. The dry deposition fluxes of all the trace elements were dependent not on their atmospheric PM concentrations but on their overall dry deposition velocities. The particle size distributions of the elements in the atmosphere are likely the most

  8. Effect of the resuspension technique on distribution of the heavy metals in sediment and suspended particulate matter.

    PubMed

    Pourabadehei, Mehdi; Mulligan, Catherine N

    2016-06-01

    Harbour areas play important roles in the economy worldwide. Human activities, however, in those areas, generate contamination, which mostly accumulates in sediments. On the other hand, harbour areas have been facing deposition of significant amounts of sediment each year. As a consequence, shallowness and accumulation of contaminants in sediment become challenging issues in harbours. Among the various management options for remediation of contaminated sediments in harbours, resuspension technique was introduced as a new approach to address those issues. The concept of the resuspension method is that finer sediments have a greater tendency to adsorb the contamination. Therefore, removing the finer sediments instead of dredging the whole contaminated area is the main goal of the resuspension technique. The objective of this paper was to evaluate the effect of the resuspension method on reducing the concentration of contamination and distribution of heavy metals in sediment and suspended particulate matter. The resuspension method was successful in reducing the concentration of seven selected heavy metals (Cr, Ni, Cu, Zn, As, Cd and Pb) by removing just 4% of the contaminated sediment. The contamination intensity in the sediment, presented by geoaccumulation index, was reduced for Cd and Pb as the main contaminants by 26 and 28 percent and the rest of the selected heavy metals returned to the natural level. The results of the sequential extraction tests and enrichment factor implied that the resuspension technique is capable of decreasing the risk of remobilization of heavy metals in the aquatic ecosystem. PMID:27010167

  9. Temporal Variation in Atmospheric Phosphorus Transport and Deposition to the Yucatan Peninsula: Local and Remote Sources

    NASA Astrophysics Data System (ADS)

    Das, R.

    2011-12-01

    Atmospheric phosphorus (P) inputs are rarely considered in models of terrestrial P cycling, but may be critical in balancing losses of P from ecosystems over the long-term, especially in the tropics. Several authors have suggested that forests in the Amazon basin, Hawaiian and Caribbean islands may be sustained by atmospheric P inputs from long-distance dust transport and other sources, but relatively few studies combine field measurements in a region with remote sensing or modeling approaches to quantify atmospheric P inputs. We use measurements of P in atmospheric bulk deposition collected periodically between 2006 and 2011 in a tropical dry forest in the southern Yucatan peninsula and compare these with remote sensing and atmospheric transport modeling estimates. There is a seasonal pattern in P deposition, with the greatest deposition occurring between April and August, when local biomass burning is greatest. Saharan dust transport to the region occurs between June and August, and is an important contributor to atmospheric P deposition. There is also interannual variation in atmospheric P deposition that is driven by variations in biomass burning and dust transport. We evaluate the importance of long-distance dust transport to the Yucatan as a source of P relative to other atmospheric inputs and losses, and its importance to ecosystem productivity.

  10. Atmospheric wet and dry deposition of trace elements at ten sites in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y. P.; Wang, Y. S.

    2014-08-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil and water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatio-temporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at ten sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites. In contrast, the wet deposition exhibited less spatial variation. The seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for K, Ni, As, Pb, Zn, Cd, Se, Ag and Tl, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution and solubility of the particles. We found that atmospheric inputs of Cu, Pb, Zn, Cd, As and Se were of the same magnitude as their increases in

  11. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y. P.; Wang, Y. S.

    2015-01-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and

  12. ESTIMATING GASEOUS EXCHANGES BETWEEN THE ATMOSPHERE AND PLANTS USING A COUPLED BIOCHEMICAL DRY DEPOSITION MODEL

    EPA Science Inventory

    To study gaseous exchanges between the soil, biosphere and atmosphere, a biochemical model was coupled with the latest version of Meyers Multi-Layer Deposition Model. The biochemical model describes photosynthesis and respiration and their coupling with stomatal resistance for...

  13. ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems.

    PubMed

    Palani, Sundarambal; Tkalich, Pavel; Balasubramanian, Rajasekhar; Palanichamy, Jegathambal

    2011-06-01

    The occurrences of increased atmospheric nitrogen deposition (ADN) in Southeast Asia during smoke haze episodes have undesired consequences on receiving aquatic ecosystems. A successful prediction of episodic ADN will allow a quantitative understanding of its possible impacts. In this study, an artificial neural network (ANN) model is used to estimate atmospheric deposition of total nitrogen (TN) and organic nitrogen (ON) concentrations to coastal aquatic ecosystems. The selected model input variables were nitrogen species from atmospheric deposition, Total Suspended Particulates, Pollutant Standards Index and meteorological parameters. ANN models predictions were also compared with multiple linear regression model having the same inputs and output. ANN model performance was found relatively more accurate in its predictions and adequate even for high-concentration events with acceptable minimum error. The developed ANN model can be used as a forecasting tool to complement the current TN and ON analysis within the atmospheric deposition-monitoring program in the region. PMID:21481425

  14. MEAD: an interdisciplinary study of the marine effects of atmospheric deposition in the Kattegat.

    PubMed

    Spokes, L; Jickells, T; Weston, K; Gustafsson, B G; Johnsson, M; Liljebladh, B; Conley, D; Ambelas-Skjødth, C; Brandt, J; Carstensen, J; Christiansen, T; Frohn, L; Geernaert, G; Hertel, O; Jensen, B; Lundsgaard, C; Markager, S; Martinsen, W; Møller, B; Pedersen, B; Sauerberg, K; Sørensen, L L; Hasager, C C; Sempreviva, A M; Pryor, S C; Lund, S W; Larsen, S; Tjernström, M; Svensson, G; Zagar, M

    2006-04-01

    This paper summarises the results of the EU funded MEAD project, an interdisciplinary study of the effects of atmospheric nitrogen deposition on the Kattegat Sea between Denmark and Sweden. The study considers emissions of reactive nitrogen gases, their transport, transformations, deposition and effects on algal growth together with management options to reduce these effects. We conclude that atmospheric deposition is an important source of fixed nitrogen to the region particularly in summer, when nitrogen is the limiting nutrient for phytoplankton growth, and contributes to the overall eutrophication pressures in this region. However, we also conclude that it is unlikely that atmospheric deposition can, on its own, induce algal blooms in this region. A reduction of atmospheric nitrogen loads to this region will require strategies to reduce emissions of ammonia from local agriculture and Europe wide reductions in nitrous oxide emissions. PMID:16271430

  15. ATMOSPHERIC MERCURY SIMULATION USING THE CMAQ MODEL: FORMULATION DESCRIPTION AND ANALYSIS OF WET DEPOSITION RESULTS

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...

  16. Atmospheric nitrogen in the Mississippi River Basin - Amissions, deposition and transport

    USGS Publications Warehouse

    Lawrence, G.B.; Goolsby, D.A.; Battaglin, W.A.; Stensland, G.J.

    2000-01-01

    Atmospheric deposition of nitrogen has been cited as a major factor in the nitrogen saturation of forests in the north-eastern United States and as a contributor to the eutrophication of coastal waters, including the Gulf of Mexico near the mouth of the Mississippi River. Sources of nitrogen emissions and the resulting spatial patterns of nitrogen deposition within the Mississippi River Basin, however, have not been fully documented. An assessment of atmospheric nitrogen in the Mississippi River Basin was therefore conducted in 1998-1999 to: (1) evaluate the forms in which nitrogen is deposited from the atmosphere; (2) quantify the spatial distribution of atmospheric nitrogen deposition throughout the basin; and (3) relate locations of emission sources to spatial deposition patterns to evaluate atmospheric transport. Deposition data collected through the NADP/NTN (National Atmospheric Deposition Program/National Trends Network) and CASTNet (Clean Air Status and Trends Network) were used for this analysis. NO(x) Tier 1 emission data by county was obtained for 1992 from the US Environmental Protection Agency (Emissions Trends Viewer CD, 1985-1995, version 1.0, September 1996) and NH3 emissions data was derived from the 1992 Census of Agriculture (US Department of Commerce. Census of Agriculture, US Summary and County Level Data, US Department of Commerce, Bureau of the Census. Geographic Area series, 1995:1b) or the National Agricultural Statistics Service (US Department of Agriculture. National Agricultural Statistics Service Historical Data. Accessed 7/98 at URL, 1998. http://www.usda.gov/nass/pubs/hisdata.htm). The highest rates of wet deposition of NO3- were in the north-eastern part of the basin, downwind of electric utility plants and urban areas, whereas the highest rates of wet deposition of NH4+ were in Iowa, near the center of intensive agricultural activities in the Midwest. The lowest rates of atmospheric nitrogen deposition were on the western (windward

  17. Atmospheric mercury deposition on Fanjing Mountain Nature Reserve, Guizhou, China.

    PubMed

    Xiao, Z; Sommar, J; Lindqvist, O; Tan, H; He, J

    1998-04-01

    Fanjing Mountain Nature Reserve (FMNR) is surrounded with several Hg emission sources within distances of 100-200 km. At the two sites studied, Tongren and Danzai, Hg emission and deposition fluxes, Hg concentration in the air, soil and other samples are all several hundred times higher than at other relatively clean areas. Hg accumulation in soil and moss at FMNR varies with the sampling heights. Total Hg deposition to this area has been estimated to be 115 micrograms m-2 y-1 using moss bag technique. Dry deposition was determined to be about 5.2 micrograms m-2 month-1 during March to June, corresponding to more than 50% of the total deposition. PMID:9566295

  18. Chinese coastal seas are facing heavy atmospheric nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Luo, X. S.; Tang, A. H.; Shi, K.; Wu, L. H.; Li, W. Q.; Shi, W. Q.; Shi, X. K.; Erisman, J. W.; Zhang, F. S.; Liu, X. J.

    2014-09-01

    As the amount of reactive nitrogen (N) generated and emitted increases the amount of N deposition and its contribution to eutrophication or harmful algal blooms in the coastal zones are becoming issues of environmental concern. To quantify N deposition in coastal seas of China we selected six typical coastal sites from North to South in 2011. Concentrations of NH3, HNO3, NO2, particulate NH4+ (pNH4+) and pNO3- ranged from 1.97- 4.88, 0.46 -1.22, 3.03 -7.09, 2.24 - 4.90 and 1.13-2.63 μg N m-3 at Dalian (DL), Changdao (CD), Linshandao (LS), Fenghua (FH), Fuzhou (FZ), and Zhanjiang (ZJ) sites, respectively. Volume-weighted NO3--N and NH4+-N concentrations in precipitation varied from 0.46 to 1.67 and 0.47 to 1.31 mg N L-1 at the six sites. Dry, wet and total deposition rates of N were 7.8-23.1, 14.2-25.2 and 22.0 - 44.6 kg N ha-1 yr-1 across the six coastal sites. Average N dry deposition accounted for 45.4% of the total deposition and NH3 and pNH4+ contributed to 76.6% of the dry deposition. If we extrapolate our total N deposition of 33.9 kg N ha-1 yr-1 to the whole Chinese coastal sea area (0.40 million km2), total N deposition amounts to 1.36 Tg N yr-1, a large external N input to surrounding marine ecosystems.

  19. Modeling atmospheric deposition using a stochastic transport model

    SciTech Connect

    Buckley, R.L.

    1999-12-17

    An advanced stochastic transport model has been modified to include the removal mechanisms of dry and wet deposition. Time-dependent wind and turbulence fields are generated with a prognostic mesoscale numerical model and are used to advect and disperse individually released particles that are each assigned a mass. These particles are subjected to mass reduction in two ways depending on their physical location. Particles near the surface experience a decrease in mass using the concept of a dry deposition velocity, while the mass of particles located within areas of precipitation are depleted using a scavenging coefficient. Two levels of complexity are incorporated into the particle model. The simple case assumes constant values of dry deposition velocity and scavenging coefficient, while the more complex case varies the values according to meteorology, surface conditions, release material, and precipitation intensity. Instantaneous and cumulative dry and wet deposition are determined from the mass loss due to these physical mechanisms. A useful means of validating the model results is with data available from a recent accidental release of Cesium-137 from a steel-processing furnace in Algeciras, Spain in May, 1998. This paper describes the deposition modeling technique, as well as a comparison of simulated concentration and deposition with measurements taken for the Algeciras release.

  20. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

    NASA Astrophysics Data System (ADS)

    Xu, W.; Luo, X. S.; Pan, Y. P.; Zhang, L.; Tang, A. H.; Shen, J. L.; Zhang, Y.; Li, K. H.; Wu, Q. H.; Yang, D. W.; Zhang, Y. Y.; Xue, J.; Li, W. Q.; Li, Q. Q.; Tang, L.; Lu, S. H.; Liang, T.; Tong, Y. A.; Liu, P.; Zhang, Q.; Xiong, Z. Q.; Shi, X. J.; Wu, L. H.; Shi, W. Q.; Tian, K.; Zhong, X. H.; Shi, K.; Tang, Q. Y.; Zhang, L. J.; Huang, J. L.; He, C. E.; Kuang, F. H.; Zhu, B.; Liu, H.; Jin, X.; Xin, Y. J.; Shi, X. K.; Du, E. Z.; Dore, A. J.; Tang, S.; Collett, J. L., Jr.; Goulding, K.; Sun, Y. X.; Ren, J.; Zhang, F. S.; Liu, X. J.

    2015-11-01

    A Nationwide Nitrogen Deposition Monitoring Network (NNDMN) containing 43 monitoring sites was established in China to measure gaseous NH3, NO2, and HNO3 and particulate NH4+ and NO3- in air and/or precipitation from 2010 to 2014. Wet/bulk deposition fluxes of Nr species were collected by precipitation gauge method and measured by continuous-flow analyzer; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet/bulk Nr deposition. On a national basis, the annual average concentrations (1.3-47.0 μg N m-3) and dry plus wet/bulk deposition fluxes (2.9-83.3 kg N ha-1 yr-1) of inorganic Nr species are ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean ± standard deviation) and 19.3 ± 9.2 kg N ha-1 yr-1 across China, with reduced N deposition dominating both dry and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally important to wet/bulk N deposition at the national scale. Therefore, both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.

  1. Atmospheric deposition of sup 7 Be and sup 10 Be

    SciTech Connect

    Brown, L. ); Stensland, G.J. ); Klein, J.; Middleton, R. )

    1989-01-01

    Measurements of {sup 10}Be in precipitation taken in Hawaii, Illinois and New Jersey over a period of five years are reported. The problem of contamination by the isotope being resuspended on wind blown soil that is also collected is addressed. Rain collected at Mauna Loa, Hawaii has such low values of dust contamination that it has been taken as clean, and the data from Illinois and New Jersey are evaluated on that assumption. The conclusion is that the deposition in a given amount of rain for the non-resuspended component is the same for all three stations, and the authors propose that the annual rate for mid-latitude locations have moderate rainfall is proportional to the local rainfall. {sup 7}Be, which is probably negligibly contributed to the measurements by soil contamination was measured for individual rains in Illinois and found to have a deposition of 1.4 {times} 10{sup 4} atom/cm{sup 3}. The authors have found that concentration variations between precipitation events greater than a factor of 20 exist for both isotopes and that relatively rare, high concentration events dominate deposition, thereby requiring long periods of observation to avoid significant error. Based on their own and other data they conclude that the best value for {sup 10}Be deposition is 1.5 {times} 10{sup 4} atom/cm{sup 3}, uncertain by 20%, and for {sup 7}Be is 1.2 {times} 10{sup 4} atom/cm{sup 3}, uncertain by 25%. A global average deposition rate cannot be inferred directly for either isotope from these kinds of data; however, the theoretical global deposition rate for {sup 10}Be is shown to be consistent with the deposition reported here, if the concentration in equatorial rain is about 3300 atom/g.

  2. SPATIAL AND TEMPORAL TRENDS IN THE CHEMISTRY OF ATMOSPHERIC DEPOSITION IN NEW ENGLAND

    EPA Science Inventory

    The authors have evaluated atmospheric deposition related geochemical changes in New England and Quebec by means of (1) transect studies of soil chemistry parallel to pH and metal deposition gradients: and (2) chemical analysis of lake sediments with the following results: (a) Mn...

  3. Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India.

    PubMed

    Sharma, Rajesh Kumar; Agrawal, Madhoolika; Marshall, Fiona M

    2008-07-01

    Rapid growth in urbanization and industrialization in developing countries may significantly contribute in heavy metal contamination of vegetables through atmospheric depositions. In the present study, an assessment was made to investigate the spatial and seasonal variations in deposition rates of heavy metals and its contribution to contamination of palak (Beta vulgaris). Samples of bulk atmospheric deposits and Beta vulgaris for analysis of Cu, Zn, Cd and Pb were collected from different sampling locations differing in traffic density and land use patterns. The results showed that the sampling locations situated in industrial or commercial areas with heavy traffic load showed significantly elevated levels of Cu, Zn and Cd deposition rate as compared to those situated in residential areas with low traffic load. The deposition rates of Cu, Zn and Cd were significantly higher in summer and winter as compared to rainy season, however, Pb deposition rate was significantly higher in rainy and summer seasons as compared to winter season. Atmospheric depositions have significantly elevated the levels of heavy metals in B. vulgaris collected during evening as compared to those collected in morning hours. The study further showed that local population has maximum exposure to Cd contamination through consumption of B. vulgaris. The present study clearly points out the urban and industrial activities of a city have potential to elevate the levels of heavy metals in the atmospheric deposits, which may consequently contaminate the food chain and thus posing health risk to the local population. PMID:17879134

  4. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  5. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

    NASA Astrophysics Data System (ADS)

    Xu, W.; Luo, X. S.; Pan, Y. P.; Zhang, L.; Tang, A. H.; Shen, J. L.; Zhang, Y.; Li, K. H.; Wu, Q. H.; Yang, D. W.; Zhang, Y. Y.; Xue, J.; Li, W. Q.; Li, Q. Q.; Tang, L.; Lu, S. H.; Liang, T.; Tong, Y. A.; Liu, P.; Zhang, Q.; Xiong, Z. Q.; Shi, X. J.; Wu, L. H.; Shi, W. Q.; Tian, K.; Zhong, X. H.; Shi, K.; Tang, Q. Y.; Zhang, L. J.; Huang, J. L.; He, C. E.; Kuang, F. H.; Zhu, B.; Liu, H.; Jin, X.; Xin, Y. J.; Shi, X. K.; Du, E. Z.; Dore, A. J.; Tang, S.; Collett, J. L., Jr.; Goulding, K.; Zhang, F. S.; Liu, X. J.

    2015-07-01

    Global reactive nitrogen (Nr) deposition to terrestrial ecosystems has increased dramatically since the industrial revolution. This is especially true in recent decades in China due to continuous economic growth. However, there are no comprehensive reports of both measured dry and wet Nr deposition across China. We therefore conducted a multiple-year study during the period mainly from 2010 to 2014 to monitor atmospheric concentrations of five major Nr species of gaseous NH3, NO2 and HNO3, and inorganic nitrogen (NH4+ and NO3-) in both particles and precipitation, based on a Nationwide Nitrogen Deposition Monitoring Network (NNDMN, covering 43 sites) in China. Wet deposition fluxes of Nr species were measured directly; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet Nr deposition. The annual average concentrations (1.3-47.0 μg N m-3) and dry plus wet deposition fluxes (2.9-75.2 kg N ha-1 yr-1) of inorganic Nr species ranked by region as North China > Southeast China > Southwest China > Northeast China > Northwest China > the Tibetan Plateau or by land use as urban > rural > background sites, reflecting the impact of anthropogenic Nr emission. Average dry and wet N deposition fluxes were 18.5 and 19.3 kg N ha-1 yr-1, respectively, across China, with reduced N deposition dominating both dry and wet deposition. Our results suggest atmospheric dry N deposition is equally important to wet N deposition at the national scale and both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.

  6. NATURAL MERCURY ISOTOPES AS TRACERS OF SOURCES, CYCLING, AND DEPOSITION OF ATMOSPHERIC MERCURY

    EPA Science Inventory

    This research centers on the use of mercury isotope systematics as a new way of investigating natural and anthropogenic emissions of mercury into the atmosphere and of the atmospheric processes that affect transportation and deposition. Given the fact that isotope systematics of ...

  7. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry

    SciTech Connect

    Bohne, J.E. Jr.; Cohen, B.S.

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension.

  8. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry.

    PubMed

    Bohne, J E; Cohen, B S

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension. PMID:3976498

  9. POLLUTANT SAMPLER FOR MEASUREMENTS OF ATMOSPHERIC ACIDIC DRY DEPOSITION

    EPA Science Inventory

    An acidic pollutant sampler for dry deposition monitoring has been designed and evaluated in laboratory and field studies. The system, which is modular and simple to operate, samples gaseous HNO3, NH3, SO2 and NO2 and particulate SO4(-2), NO3(1-) and NH4(1+) and is made of Teflon...

  10. Acid deposition: Atmospheric processes in Eastern North America

    SciTech Connect

    Not Available

    1983-01-01

    This report examines scientific evidence on the relationship between emissions of acid-forming pollutants and damage to sensitive ecosystems from acid rain and other forms of acid deposition. The report's conclusions represent the most authoritative statement yet that reductions in emissions of these pollutants will result in proportional reductions in acid rain.

  11. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferré, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.

    2008-08-01

    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998-April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×10 6 t y -1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×10 9 t y -1). However the net resuspension (erosion/deposition budget) for trawling (0.4×10 6 t y -1) was only one order of magnitude lower than that for waves and currents (9.2×10 6 t y -1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts

  12. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  13. Wet and Dry Atmospheric Mercury Deposition Accumulates in Watersheds of the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Grant, C.; Grimm, J.; Drohan, P. J.; Bennett, J.; Lawler, D.

    2013-12-01

    Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited to landscapes in precipitation and in dry fallout. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the state. Here, we explored mercury in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at over 10 locations in Pennsylvania, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. Further, we simulated mercury deposition at unmonitored locations in Pennsylvania and the northeastern United States over space and time with a high-resolution modeling technique that reflects storm tracks and air flow patterns. To consider mercury accumulation in watersheds, we collected data on soil mercury concentrations in a set of soil samples, and collected baseline data on mercury in streams draining 35 forested watersheds across Pennsylvania, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of Pennsylvania and the northeastern United States.

  14. ATMOSPHERIC DEPOSITION TO MOUNTAIN FOREST SYSTEMS: WORKSHOP PROCEEDINGS APRIL 1984

    EPA Science Inventory

    The Atmospheric Sciences Research Center of the State University of New York-Albany organized and hosted a workshop which specifically addressed the need, design and implementation of research, development and monitoring with advanced techniques for these purposes: (a) to identif...

  15. NATIONAL ATMOSPHERIC DEPOSITION PROGRAM (NADP), 4 NC SITES

    EPA Science Inventory

    National Atmospheric Depostion Program (NADP) data for 4 sites in North Carolina - those within or in close proximity to the Albemarle-Pamlico Estuary watershed. No Virginia sites are within this watershed. See included text files for file contents. Separate directories for each ...

  16. Contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides.

    PubMed

    Helton, J C; Muller, A B; Bayer, A

    1985-06-01

    Reactor safety analyses usually do not consider the population risk which might result from the contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides. This paper is intended to provide perspective on the reasonableness of this omission. Data are presented which are suggestive of the rates at which atmospherically deposited radionuclides might erode into surface-water bodies. These rates are used in the calculation of potential health effects resulting from surface-water contamination due to such erosion. These health effects are compared with predicted health effects due to atmospheric and terrestrial pathways after reactor accidents. The presented results support the belief that the contamination of surface-water bodies after reactor accidents by the erosion of atmospherically deposited radionuclides is not a major contributor to the risk associated with such accidents. PMID:3997527

  17. Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA.

    PubMed

    Costanza, Jennifer K; Marcinko, Sarah E; Goewert, Ann E; Mitchell, Charles E

    2008-07-15

    To examine the consequences of increased spatial aggregation of livestock production facilities, we estimated the annual production of nitrogen in livestock waste in North Carolina, USA, and analyzed the potential distribution of atmospheric nitrogen deposition from confined animal feeding operations ("CAFO") lagoons. North Carolina is a national center for industrial livestock production. Livestock is increasingly being raised in CAFOs, where waste is frequently held, essentially untreated, in open-air lagoons. Reduced nitrogen in lagoons is volatilized as ammonia (NH(3)), transported atmospherically, and deposited to other ecosystems. The Albemarle-Pamlico Sound, NC, is representative of nitrogen-sensitive coastal waters, and is a major component of the second largest estuarine complex in the U.S. We used GIS to model the area of water in the Sound within deposition range of CAFOs. We also evaluated the number of lagoons within deposition range of each 1 km(2) grid cell of the state. We considered multiple scenarios of atmospheric transport by varying distance and directionality. Modeled nitrogen deposition rates were particularly elevated for the Coastal Plain. This pattern matches empirical data, suggesting that observed regional patterns of reduced nitrogen deposition can be largely explained by two factors: limited atmospheric transport distance, and spatial aggregation of CAFOs. Under our medium-distance scenario, a small portion (roughly 22%) of livestock production facilities contributes disproportionately to atmospheric deposition of nitrogen to the Albemarle-Pamlico Sound. Furthermore, we estimated that between 14-37% of the state receives 50% of the state's atmospheric nitrogen deposition from CAFO lagoons. The estimated total emission from livestock is 134,000 t NH(3) yr(-1), 73% of which originates from the Coastal Plain. Stronger waste management and emission standards for CAFOs, particularly those on the Coastal Plain nearest to sensitive water

  18. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  19. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes

    NASA Astrophysics Data System (ADS)

    Baron, J.; Driscoll, C. T.; Stoddard, J. L.; Richer, E. E.

    2011-12-01

    Ecological effects of elevated atmospheric N deposition for high elevation lakes of the western and northeastern US include nutrient enrichment and acidification. These effects are most evident in high elevation lakes, which are sensitive to atmospheric deposition and have been minimally impacted by land disturbance. Nitrogen-limited lakes will exhibit increases in productivity and shifts in the composition of phytoplankton in response to increases in atmospheric N deposition. Wet N deposition reported by NADP/NTN does not accurately depict total N deposition including dry species, and national NADP maps can misrepresent total deposition amounts in regions of complex terrain, so we calculated N deposition three different ways in order to explore critical loads. The nutrient enrichment critical load for Western lakes ranged 1.0-3.0 kg N per ha per yr, reflecting near-lack of watershed vegetation in complex, snow-melt dominated terrain. The nutrient enrichment critical load for Northeastern lakes ranged 3.5-6.0 kg N per ha per yr. The N acidification critical loads associated with episodic N pulses in waters with low values of acid neutralizing capacity were 4.0 kg N per ha per yr (western) and 8.0 kg N per ha per yr (northeastern). Empirical critical loads for N-caused acidification were difficult to determine due to lack of observations in the West, and because of the additive effects of decades of atmospheric sulfur deposition in the Northeast. For both nutrient enrichment and acidification, the N critical load was a function of how atmospheric N deposition was determined.

  20. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wook; Lee, Kitack; Duce, Robert; Liss, Peter

    2014-05-01

    The impacts of anthropogenic nitrogen (N) deposition on the marine N cycle are only now being revealed, but the magnitudes of those impacts are largely unknown in time and space. The South China Sea (SCS) is particularly subject to high anthropogenic N deposition, because the adjacent countries are highly populated and have rapidly growing economies. Analysis of data sets for atmospheric N deposition, satellite chlorophyll-a (Chl-a), and air mass back trajectories reveals that the transport of N originating from the populated east coasts of China and Indonesia, and its deposition to the ocean, has been responsible for the enhancements of Chl-a in the SCS. We found that atmospheric N deposition contributed approximately 20% of the annual biological new production in the SCS. The airborne contribution of N to new production in the SCS is expected to grow considerably in the coming decades.

  1. Atmospheric inorganic nitrogen deposition to a typical red soil forestland in southeastern China.

    PubMed

    Fan, Jian-Ling; Hu, Zheng-Yi; Wang, Ti-Jian; Zhou, Jing; Wu, Cong-Yang-Hui; Xia, Xu

    2009-12-01

    A 2-year monitoring study was conducted to estimate nitrogen deposition to a typical red soil forestland in southeastern China. The dry deposition velocities (V(d)) were estimated using big leaf resistance analogy model. Atmospheric nitrogen dry deposition was estimated by combing V(d) and nitrogen compounds concentrations, and the wet deposition was calculated via rainfall and nitrogen concentrations in rainwater. The total inorganic nitrogen deposition was 83.7 kg ha(-1) a(-1) in 2004 and 81.3 kg ha(-1) a(-1) in 2005, respectively. The dry deposition contributed 78.6% to total nitrogen deposition, in which ammonia was the predominant contributor that accounted for 86.1%. Reduced nitrogen compounds were the predominant contributors, accounting for 78.3% of total nitrogen deposition. The results suggested that atmospheric inorganic nitrogen could be attributed to intensive agricultural practices such as excessive nitrogen fertilization and livestock production. Therefore, impacts of atmospheric nitrogen originated from agriculture practices on nearby forest ecosystems should be evaluated. PMID:18998222

  2. Modelling the resuspension of volcanic ash from the Valley of Ten Thousand Smokes

    NASA Astrophysics Data System (ADS)

    Schwaiger, H. F.; Wallace, K.

    2015-12-01

    The 1912 eruption of Novarupta-Katmai was the world's most voluminous eruption since the 1815 eruption of Tombora. The eruption produced 17 km3 of ashfall and 11 km3 of pyroclastic flow deposits that filled nearby valleys, creating what is today known as the Valley of Ten Thousand Smokes. These voluminous pyroclastic deposits continue to pose hazards when strong winds in the valley resuspend ash in times of low snow cover. These resuspension events may be confined to the valley and only recorded when there are local observations (web camera images, field crew). Occasionally, however, these events can loft ash up to altitudes of several kilometers and extend up to 250 km downwind, where it becomes an aviation hazard. A compilation of satellite observations and pilot reports indicate that such significant events occurred on at least 19 occasions since 2003. The longest duration events occurred in the autumn months of September and October. Predicting the resuspension of ash requires estimates of when the ash is exposed (low snow cover), the magnitude of surface wind gusts, and the threshold friction velocity (u*). Models of u* require a characterization of the source ash (density, grain-size distribution) as well as soil moisture. We have sampled source deposits and have installed instruments in the Katmai region to record the relevant meteorological parameters in order to better predict these resuspension events. Using real-time measurements coupled with high-resolution (6 km, 1 hour) meteorological forecast products and a reanalysis of conditions that produced historic events, we constrain the parameters applicable the resuspension of Novarupta ash thus improving our ability to forecast this potential ash hazard. The volcanic ash dispersion and deposition model, Ash3d, will be used to forecast the transport of the resuspended ash.

  3. Nighttime auroral energy deposition in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Jackman, C. H.; Barcus, J. R.; Soraas, F.

    1984-01-01

    Ionospheric rocket sounding data for eight nighttime auroral events are used to characterize relativistic electron showers and their effects on atmospheric ozone. The rockets were launched from the Poker Flat Research Range in Alaska and from Andoya, Norway over the period 1976-82. Energetic fluxes were always detected but were of insufficient magnitude to produce significant changes in stratospheric ozone. However, middle atmospheric energy sources were found to be dominated by relativistic electrons and X-ray bremmstrahlung, the latter from 40-55 km and the former from 55-60 km altitudes. The ionizing radiation is concluded to be a significant factor in mesospheric ion conductivity, mobility, electric field structure and analytical models for the ion-neutral chemistry.

  4. The precision of wet atmospheric deposition data from national atmospheric deposition program/national trends network sites determined with collocated samplers

    USGS Publications Warehouse

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.

    1994-01-01

    A collocated, wet-deposition sampler program has been operated since October 1988 by the U.S. Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments at four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database. Sampling precision was determined from the absolute value of differences in the analytical results for the paired samples in terms of median relative and absolute difference. The median relative difference for Mg2+, Na+, K+ and NH4+ concentration and deposition was quite variable between sites and exceeded 10% at most sites. Relative error for analytes whose concentrations typically approached laboratory method detection limits were greater than for analytes that did not typically approach detection limits. The median relative difference for SO42- and NO3- concentration, specific conductance, and sample volume at all sites was less than 7%. Precision for H+ concentration and deposition ranged from less than 10% at sites with typically high levels of H+ concentration to greater than 30% at sites with low H+ concentration. Median difference for analyte concentration and deposition was typically 1.5-2-times greater for samples collected during the winter than during other seasons at two northern sites. Likewise, the median relative difference in sample volume for winter samples was more than double the annual median

  5. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO42− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3−–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3−–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3−–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  6. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  7. Human - driven atmospheric deposition of N & P controls on the East Mediterranean marine ecosystem

    NASA Astrophysics Data System (ADS)

    Christodoulaki, Sylvia; Petihakis, George; Mihalopoulos, Nikolaos; Tsiaras, Konstantinos; Triantafyllou, George; Kanakidou, Maria

    2016-04-01

    The historical and future impacts of atmospheric deposition of inorganic nitrogen (N) and phosphorus (P) on the marine ecosystem in the East Mediterranean Sea are investigated by using a 1-D coupled physical- biogeochemical model, set-up for the Cretan Sea as a representative area of the basin. For the present-day simulation (2010), the model is forced by observations of atmospheric deposition fluxes at Crete, while for the hindcast (1860) and forecast (2030) simulations, the changes in atmospheric deposition calculated by global chemistry- transport models are applied to the present-day observed fluxes. The impact of the atmospheric deposition on the fluxes of carbon in the food chain is calculated together with the contribution of human activities to these impacts. The results show that total phytoplanktonic biomass increased by 16% over the past 1.5 century. Small fractional changes in carbon fluxes and planktonic biomasses are predicted for the near future. Simulations show that atmospheric deposition of N and P may be the main mechanism responsible for the anomalous N to P ratio observed in the Mediterranean Sea.

  8. Global Simulation of Atmospheric Mercury Concentrations and Deposition Fluxes. Appendix Q

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Seigneur, Christian; Pai, Prasad; Ko, Malcolm; Sze, Nien Dak

    1999-01-01

    Results from a numerical model of the global emissions, transport, chemistry, and deposition of mercury (Hg) in the atmosphere are presented. Hg (in the form of Hg(O) and Hg(II)) is emitted into the atmosphere from natural and anthropogenic sources (estimated to be 4000 and 2100 Mg/ yr, respectively). It is distributed between gaseous, aqueous and particulate phases. Removal of Hg from the atmosphere occurs via dry deposition and wet deposition, which are calculated by the model to be 3300 and 2800 Mg/ yr, respectively. Deposition on land surfaces accounts for 47% of total global deposition. The simulated Hg ambient surface concentrations and deposition fluxes to the Earth's surface are consistent with available observations. Observed spatial and seasonal trends are reproduced by the model, although larger spatial variations are observed in Hg(O) surface concentrations than are predicted by the model. The calculated atmospheric residence time of Hg is -1.7 years. Chemical transformations between Hg(O) and HG(II) have a strong influence on Hg deposition patterns because HG(II) is removed faster than Hg(O). Oxidation of Hg(O) to HG(II) occurs primarily in the gas phase, whereas HG(II) reduction to Hg(O) occurs solely in the aqueous phase. Our model results indicated that in the absence of the aqueous reactions the atmospheric residence time of Hg is reduced to 1.2 from 1.7 years and the Hg surface concentration is -25% lower because of the absence of the HG(II) reduction pathway. This result suggests that aqueous chemistry is an essential component of the atmospheric cycling of Hg.

  9. Spatial and seasonal atmospheric PAH deposition patterns and sources in Rhode Island

    NASA Astrophysics Data System (ADS)

    Schifman, Laura A.; Boving, Thomas B.

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAH) enter the environment through various combustion processes and can travel long distances via atmospheric transport. Here, atmospheric PAH deposition was measured in six locations throughout Rhode Island using passive atmospheric bulk-deposition samplers for three years. The measurements were evaluated using two source-specific PAH isomer signatures, a multivariate receptor model, and an innovative contamination index that is weighted based on PAH contamination, number of detected compounds, and toxicity. Urban areas had significantly higher deposition rates (up to 2261 μg m-2 yr-1 ∑PAH) compared to peri-urban, coastal, and rural areas (as low as 73.6 μg m-2 yr-1 ∑PAH). In fall and winter, PAH deposition was up to 10 times higher compared to summer/spring. On an annual basis a total of 3.64 t yr-1 ∑PAH (2256.9 μg yr-1 m-2 ∑PAH) are estimated to be deposited atmospherically onto Rhode Island. Both, the analysis using isomer ratios and the statistical analysis using positive matrix factorization agreed on source identification. Overall gasoline, petrodiesel, and oil combustion sources were identified in all samples year-round while wood combustion associated PAH deposition was only detected during the cold season.

  10. Comparative assessment of regionalisation methods of monitored atmospheric deposition loads

    NASA Astrophysics Data System (ADS)

    Reinstorf, Frido; Binder, Maja; Schirmer, Mario; Grimm-Strele, Jost; Walther, Wolfgang

    The objective of this investigation is to assess the suitability of well-known regionalisation methods of data from existing deposition monitoring networks for use in water resources management. For this purpose a comparison of the applicability and accuracy of various regionalisation methods was made. A crucial point is the data demand of the various methods. In this investigation the deterministic and geostatistical methods inverse distance weighting (IDW), ordinary kriging (OK) and external drift kriging (EDK) as well as the chemical transport models METRAS-MUSCAT, EMEP, EDACS and EUTREND have been characterised and evaluated. The methods IDW and OK have been applied to the investigation areas—the German Federal States of Lower Saxony and Saxony. An evaluation of these methods was carried out with a cross-validation procedure. The result was in most cases a higher accuracy for the OK method. The EDK method has been investigated in order to find suitable drift variables from the parameters precipitation amount, altitude and wind direction. With help of a correlation analysis a suitable drift variable could not be found. After the application of OK, verification was carried out by a comparison of the estimated data set with an independently determined data set. The result was a relatively smaller deviation of the estimated data set. The investigation considers data from routine monitoring networks as well as networks for special applications and has been carried out on the basis of monitoring networks of the two states. The investigated database was wet and bulk deposition of the substances NH 4+, SO 42-, NO 3-, Na +, Pb 2+, and Cd 2+ in Lower Saxony and SO 42- in Saxony. From this, a consistent database of bulk deposition data was built. From all applied methods OK proved to cope best with the data deficiencies that were found.

  11. Sources of nitrogen in three watersheds of northern Florida, USA: Mainly atmospheric deposition

    SciTech Connect

    Fu, Ji-Meng; Winchester, J.W. )

    1994-03-01

    Atmospheric deposition is estimated to be the principal source of N in water that flows to the Apalachicola river from the Chattahoochee and Flint Rivers (ACF) as well as in two nearby small rivers, Ochlockonee (Och) and Sopchoppy (Sop), that drain watersheds with different land use characteristics. By mass balance and descriptive statistics of hundreds of rainfall and river water samples from monitoring programs since the 1960s, the average nitrate and ammonium deposition flux from the atmosphere is sufficient to account for N that flows toward Apalachicola Bay, an estuary in which N may be a limiting nutrient. Urban and agricultural sources of N in the three watersheds ACF, Och, and Sop appear to be relatively smaller. The work was based on long-term data bases from the National Atmospheric Deposition Program (NADP) rain chemistry monitoring network and the U.S. Geological Survey (USGS) water monitoring program. Average atmospheric N depositions to the three river watersheds are nearly the same as river fluxes of N in all forms monitored. Nitrogen is not likely to be a limiting nutrient in the three watersheds, since river water N:P exceeds the Redfield ratio. An estimate of largest possible input of urban sewage is several times lower than the atmospheric flux of N to the ACF watershed. And N from N-fertilizer, comparable to the atmospheric deposition flux of N, is likely to be smaller if mostly retained in crops or farmland before it reaches the estuary. Annual nitrogen export from the Apalachicola River to the estuary, 1.22 x 10[sup 9] moles N yr[sup [minus]1], consists of organic nitrogen 60%, nitrate 34%, and NH[sup +][sub 4]6%. Atmospheric nitrate and sulfate depositions are highly correlated, both being principally from fossil fuel combustion. Hydrologic conditions, which exhibit variations on seasonal and longer time scales, play an important role in the transport of nutrients and other species in the rivers.

  12. Sources of nitrogen in three watersheds of northern Florida, USA: Mainly atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Fu, Ji-Meng; Winchester, John W.

    1994-03-01

    Atmospheric deposition is estimated to be the principal source of N in water that flows to the Apalachicola River from the Chattahoochee and Flint Rivers (ACF) as well as in two nearby small rivers, Ochlockonee (Och) and Sopchoppy (Sop), that drain watersheds with different land use characteristics. By mass balance and descriptive statistics of hundreds of rainfall and river water samples from monitoring programs since the 1960s, the average nitrate and ammonium deposition flux from the atmosphere is sufficient to account for N that flows toward Apalachicola Bay, an estuary in which N may be a limiting nutrient. Urban and agricultural sources of N in the three watersheds ACF, Och and Sop appear to be relatively smaller. The work was based on long-term data bases from the National Atmospheric Deposition Program (NADP) rain chemistry monitoring network and the U.S. Geological Survey (USGS) water monitoring program. Average atmospheric N depositions to the three river watersheds are nearly the same as river fluxes of N in all forms monitored. Nitrogen is not likely to be a limiting nutrient in the three watersheds, since river water N:P exceeds the Redfield ratio. An estimate of largest possible input of urban sewage is several times lower than the atmospheric flux of N to the ACF watershed. And N from N-fertilizer, comparable to the atmospheric deposition flux of N, is likely to be smaller if mostly retained in crops or farmland before it reaches the estuary. Annual nitrogen export from the Apalachicola River to the estuary, 1.22 × 10 9 moles N yr -1, consists of organic nitrogen 60%, nitrate 34% and NH 4+ 6%. Atmospheric nitrate and sulfate depositions are highly correlated, both being principally from fossil fuel combustion. Hydrologie conditions, which exhibit variations on seasonal and longer time scales, play an important role in the transport of nutrients and other species in the rivers.

  13. Distribution of atmospheric marine salt depositions over Continental Western Europe.

    PubMed

    Delalieux, F; van Grieken, R; Potgieter, J H

    2006-06-01

    This contribution describes the distribution of marine salt aerosols in Belgium, France and Spain, as obtained from applying a kriging model to a set of data. The data was collected over a period of nine years and included wet as well as dry deposition results. It was found that the concentration of the salt particles decreased the fastest in Spain and the slowest in Belgium with increasing inland distance from the sea. These findings have implications for the degradation of monuments and historical buildings as a result of salt attack and ingress that often accompany degradation due to air pollution. PMID:16772114

  14. Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Rollenbeck, R.; Trachte, K.; Bendix, J.

    2014-05-01

    Atmospheric sulfur deposition above certain limits can represent a threat to tropical forests, causing nutrient imbalances and mobilizing toxic elements that impact biodiversity and forest productivity. Atmospheric sources of sulfur deposited by precipitation have being roughly identified in only a few lowland tropical forests. Even scarcer are these type of studies in tropical mountain forests, many of them megadiversity hotspots and especially vulnerable to acidic deposition. Here, the topographic complexity and related streamflow condition the origin, type, and intensity of deposition. Furthermore, in regions with a variety of natural and anthropogenic sulfur sources, like active volcanoes and biomass-burning, no source-emission data has been used for determining the contribution of each of them to the deposition. The main goal of the current study is to evaluate sulfate (SO4-) deposition by rain and occult precipitation at two topographic locations in a tropical mountain forest of southern Ecuador, and to trace back the deposition to possible emission sources applying back trajectory modeling. To link upwind natural (volcanic) and anthropogenic (urban/industrial and biomass-burning) sulfur emissions and observed sulfate deposition, we employed state of the art inventory and satellite data, including volcanic passive degassing as well. We conclude that biomass-burning sources generally dominate sulfate deposition at the evaluated sites. Minor sulfate transport occurs during the shifting of the predominant winds to the north and west. Occult precipitation sulfate deposition and likely rain sulfate deposition are mainly linked to biomass-burning emissions from the Amazon lowlands. Volcanic and anthropogenic emissions from the north and west contribute to occult precipitation sulfate deposition at the mountain crest Cerro del Consuelo meteorological station and to rain-deposited sulfate at the upriver mountain-pass El Tiro meteorological station.

  15. Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Rollenbeck, R.; Trachte, K.; Bendix, J.

    2014-10-01

    Atmospheric sulfur deposition above certain limits can represent a threat to tropical forests, causing nutrient imbalances and mobilizing toxic elements that impact biodiversity and forest productivity. Atmospheric sources of sulfur deposited by precipitation have been roughly identified in only a few lowland tropical forests. Even scarcer are studies of this type in tropical mountain forests, many of them mega-diversity hotspots and especially vulnerable to acidic deposition. In these places, the topographic complexity and related streamflow conditions affect the origin, type, and intensity of deposition. Furthermore, in regions with a variety of natural and anthropogenic sulfur sources, like active volcanoes and biomass burning, no source emission data has been used for determining the contribution of each source to the deposition. The main goal of the current study is to evaluate sulfate (SO4- deposition by rain and occult precipitation at two topographic locations in a tropical mountain forest of southern Ecuador, and to trace back the deposition to possible emission sources applying back-trajectory modeling. To link upwind natural (volcanic) and anthropogenic (urban/industrial and biomass-burning) sulfur emissions and observed sulfate deposition, we employed state-of-the-art inventory and satellite data, including volcanic passive degassing as well. We conclude that biomass-burning sources generally dominate sulfate deposition at the evaluated sites. Minor sulfate transport occurs during the shifting of the predominant winds to the north and west. Occult precipitation sulfate deposition and likely rain sulfate deposition are mainly linked to biomass-burning emissions from the Amazon lowlands. Volcanic and anthropogenic emissions from the north and west contribute to occult precipitation sulfate deposition at the mountain crest Cerro del Consuelo meteorological station and to rain-deposited sulfate at the upriver mountain pass El Tiro meteorological station.

  16. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  17. Assessing New Dry Deposition Parameterization Schemes for Incorporation into Global Atmospheric Transport Models

    NASA Astrophysics Data System (ADS)

    Khan, T.; Perlinger, J. A.; Wu, S.; Fairall, C. W.

    2014-12-01

    Dry deposition is a key process in atmosphere-surface exchange and is an important transmission route for atmospheric gases and aerosols to enter terrestrial and aquatic ecosystems. Vertical transport of atmospheric aerosols to Earth's surface is governed by several processes including turbulent transfer, interception, inertial impaction, settling, diffusion, turbophoresis, thermophoresis, and electrostatic effects. In global transport models (GTMs), particle dry deposition velocity (vd) from the lowest model layer to the surface is often parameterized using an electrical resistance analogy. This resistance analogy is widely used in a modified form to compute vd for steady-state dry deposition flux. Recently, a mass conservative formulation of dry deposition applicable to smooth and rough surfaces was proposed. Here, we evaluate dry deposition velocities computed using five different schemes with measurement results from a variety of surfaces including bare soil, grass, and coniferous, broad-leaf, and deciduous forest canopies. Based on this assessment, we provide suggestions for optimal treatment of dry deposition processes in GTMs and evaluate implementation of new dry deposition schemes.

  18. Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition.

    PubMed

    Enrico, Maxime; Roux, Gaël Le; Marusczak, Nicolas; Heimbürger, Lars-Eric; Claustres, Adrien; Fu, Xuewu; Sun, Ruoyu; Sonke, Jeroen E

    2016-03-01

    Gaseous elemental mercury (GEM) is the dominant form of mercury in the atmosphere. Its conversion into oxidized gaseous and particulate forms is thought to drive atmospheric mercury wet deposition to terrestrial and aquatic ecosystems, where it can be subsequently transformed into toxic methylmercury. The contribution of mercury dry deposition is however largely unconstrained. Here we examine mercury mass balance and mercury stable isotope composition in a peat bog ecosystem. We find that isotope signatures of living sphagnum moss (Δ(199)Hg = -0.11 ± 0.09‰, Δ(200)Hg = 0.03 ± 0.02‰, 1σ) and recently accumulated peat (Δ(199)Hg = -0.22 ± 0.06‰, Δ(200)Hg = 0.00 ± 0.04‰, 1σ) are characteristic of GEM (Δ(199)Hg = -0.17 ± 0.07‰, Δ(200)Hg = -0.05 ± 0.02‰, 1σ), and differs from wet deposition (Δ(199)Hg = 0.73 ± 0.15‰, Δ(200)Hg = 0.21 ± 0.04‰, 1σ). Sphagnum covered during three years by transparent and opaque surfaces, which eliminate wet deposition, continue to accumulate Hg. Sphagnum Hg isotope signatures indicate accumulation to take place by GEM dry deposition, and indicate little photochemical re-emission. We estimate that atmospheric mercury deposition to the peat bog surface is dominated by GEM dry deposition (79%) rather than wet deposition (21%). Consequently, peat deposits are potential records of past atmospheric GEM concentrations and isotopic composition. PMID:26849121

  19. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using delta17O.

    PubMed

    Michalski, Greg; Meixner, Thomas; Fenn, Mark; Hernandez, Larry; Sirulnik, Abby; Allen, Edith; Thiemens, Mark

    2004-04-01

    The isotopic composition of nitrate collected from aerosols, fog, and precipitation was measured and found to have a large 17O anomaly with delta17O values ranging from 20 percent per thousand to 30% percent per thousand (delta17O = delta17O - 0.52(delta18O)). This 17O anomaly was used to trace atmospheric deposition of nitrate to a semiarid ecosystem in southern California. We demonstrate that the delta17O signal is a conserved tracer of atmospheric nitrate deposition and is a more robust indicator of N deposition relative to standard delta18O techniques. The data indicate that a substantial portion of nitrate found in the local soil, stream, and groundwater is of atmospheric origin and does not undergo biologic processing before being exported from the system. PMID:15112822

  20. Environmental consequences of uranium atmospheric releases from fuel cycle facility: II. The atmospheric deposition of uranium and thorium on plants.

    PubMed

    Pourcelot, L; Masson, O; Renaud, P; Cagnat, X; Boulet, B; Cariou, N; De Vismes-Ott, A

    2015-03-01

    Uranium and thorium isotopes were measured in cypress leaves, wheat grains and lettuce taken in the surroundings of the uranium conversion facility of Malvési (South of France). The comparison of activity levels and activity ratios (namely (238)U/(232)Th and (230)Th/(232)Th) in plants with those in aerosols taken at this site and plants taken far from it shows that aerosols emitted by the nuclear site (uranium releases in the atmosphere by stacks and (230)Th-rich particles emitted from artificial ponds collecting radioactive waste mud) accounts for the high activities recorded in the plant samples close to the site. The atmospheric deposition process onto the plants appears to be the dominant process in plant contamination. Dry deposition velocities of airborne uranium and thorium were measured as 4.6 × 10(-3) and 5.0 × 10(-3) m s(-1), respectively. PMID:25500060

  1. Estimation of mercury loadings to Lake Ontario: Results from the Lake Ontario atmospheric deposition study (LOADS)

    NASA Astrophysics Data System (ADS)

    Lai, Soon-Onn; Holsen, Thomas M.; Han, Young-Ji; Hopke, Philip P.; Yi, Seung-Muk; Blanchard, Pierrette; Pagano, James J.; Milligan, Michael

    Atmospheric mercury (Hg) loadings to Lake Ontario were estimated using data measured at two land-based sites: Sterling, NY and Point Petre, Ont., as part of the Lake Ontario air deposition study (LOADS) between April 2002 and March 2003. These loadings were compared with those estimated using intensive data measured onboard the R/V Lake Guardian in April 2002, September 2002, and July 2003 (each approximately one week). Measured concentrations and modeled mass transfer coefficients of elemental mercury (Hg 0), reactive gaseous mercury (RGM) and particulate mercury (Hg (p)) in air and total Hg in precipitation were incorporated into a total deposition model including wet deposition, air-water gas exchange and particle dry deposition. Urban/rural Hg concentration ratios were assumed based on literature values. Assuming that 10% of the lake was influenced by urban areas, the annual net Hg atmospheric loadings of wet deposition, net air-water gas exchange of Hg 0 (deposition=300 kg yr -1 and emission=410 kg yr -1) and RGM, and Hg (p) dry deposition to Lake Ontario were estimated to be 170, -110, 68, and 20 kg, respectively, resulting in a net loading of 150 kg yr -1. Net Hg loadings were largest in the fall (46 kg) and smallest in the summer (20 kg). Hg 0, wet, RGM and Hg (p) deposition contributed 55%, 30%, 12%, and 3.6% of the total Hg deposition, respectively. The net loading was found to be most sensitive to the assumed urban/rural concentration ratios, wind speed, DGM concentration and Hg 0 transfer velocity. An increase in the influence of urban areas from 0% to 30% resulted in a 90% increase in the total loading demonstrating the complexity and non-linearity of the atmospheric deposition of mercury to Lake Ontario and the importance of quantifying the urban footprint.

  2. Characteristics of atmospheric depositions of ionic and carbonaceous components at remote sites in Japan

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inomata, Y.; Kajino, M.; Tang, N.; Hayakawa, K.; Hakamata, M.; Morisaki, H.

    2015-12-01

    Atmospheric deposition process is important to evaluate lifetimes and budget of atmospheric components. Deposition amounts of sulfur and nitrogen compounds have been evaluated not only in East Asian region but also worldwide. On the other hand, atmospheric deposition of carbonaceous components including organic carbon (OC), elementary carbon (EC) and Polycyclic Aromatic Hydrocarbons (PAHs) were monitored only at a few sites in Europe, North America and Africa, which will obscure removal process and atmospheric concentration distribution of those components. In this study, ionic and carbonaceous components in precipitation and aerosol are monitored at remote sites in Japan, and the characteristics of atmospheric deposition amounts were evaluated.Field observations have been implemented at the Noto station since November 2013 and the Sado station since May 2011. Wet deposition samples were collected by rain samplers, and dry deposition samples were collected by high volume or low volume aerosol samplers. Concentrations of Cl-, NO3-, SO42-, NH4+, Na+, K+, Mg2+, Ca2+ were measured by ion chromatography, EC and OC by the IMPROVE protocol, and PAHs by HPLC with a fluorescence detector. Wet deposition amounts were calculated as the products of aqueous concentration and precipitation amounts, and dry deposition amounts were as the products of aerosol concentrations and deposition velocity estimated by the Inferential Method.Total (wet and dry) annual deposition amounts of carbonaceous components of NO3-, SO42-, EC, water insoluble OC, Fluoranthene at Noto (Nov. 2013 to Oct. 2014) were 4353.81 mg/m2, 7020.50 mg/m2, 149.84 mg/m2, 1191.09 mg/m2, 28.6 μg/m2, respectively. These amounts are comparable total annual deposition amounts of OC and EC at Sado (May 2011 to Feb. 2012), which were 166.04 mg/m2 and 834.0 mg/m2. Higher deposition amounts of ionic and carbonaceous components were observed, which would be attributable to long range transportation of the East Asian

  3. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and

  4. Atmospheric Mercury Deposition Inferred from Glacial Records in the Tibetan Plateau: Modern Process and History

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang; Zhang, Yulan

    2015-04-01

    Mercury (Hg) has been recognized as a global contaminant due to its intrinsic toxicity, biomagnifications in ecosystems, and long-range transport via the atmosphere. Atmospheric Hg deposition was evaluated using snowpits and an ice core retrieved from glaciers over the Tibetan Plateau (TP). Results revealed a wide range of total Hg (THg) concentrations (<1 to 43.6 ng L-1) in glacier snow and a clear seasonal variations with higher values in winter than those in summer. Estimated atmospheric Hg depositional fluxes ranged from 0.74 to 7.89 μg m-2 yr-1. Consecutive snowpit sampling at Zhadang glacier in the southern TP during summer season revealed that Hg in glaciers is mainly preserved in the form of particulate-bound Hg, Hg tends to accumulate in dust-enriched stratums during its percolation down to lower snow stratums. The presence of dust layers, usually formed yearly in winter/spring seasons, likely act as effective "adsorbers" enhancing the preservation and seasonality of the atmospheric Hg deposition records in glaciers over the TP. A high-resolution Hg record reconstructed by the Mt.Geladiandong ice core provided insight into historical atmospheric Hg deposition during the past 500 years. Notable elevated THg concentrations and fluxes were observed since 1940s, which coincides the increase of global Hg production, especially the Asian Hg production history. Ice core reconstructed Hg depositional flux for post-1940s era is over 6 times of that for pre-20th centuries, which clearly indicated anthropogenic influences on the regional, and perhaps even the global atmospheric Hg background and deposition rate.

  5. Assessment of the Altitudinal Atmospheric Metal(loid) Deposition in a Mountainous City by Mosses.

    PubMed

    Li, Haixia; Zhang, Guoping; Liu, Hong; Li, Ling; Fu, Zhiping; Ouyang, Xiaoxue; Chen, Jingjing; Hu, Jian

    2015-08-01

    Samples of moss (Haplocladium microphyllum) were collected at different elevations on a mountain and four representative sites in Guiyang City, and the concentrations of metal(loid)s were determined by ICP-MS. The altitudinal deposition of soil-originated metals differed from that of anthropogenic metal(loid)s. The concentrations of soil-related elements decreased with elevation, indicating that these elements tend to deposit at lower elevations and their impact on the higher elevations is less. The concentrations of anthropogenic elements varied only slightly with elevation, indicating that the atmospheric deposition of these elements did not vary largely with elevation. The results of this study showed that the mosses at different locations may serve to indicate a vertical gradient of atmospheric metal(loid) deposition. PMID:26055166

  6. The biogeochemistry of an ombrotrophic bog: Evaluation of use as an archive of atmospheric mercury deposition

    SciTech Connect

    Benoit, J.M.; Fitzgerald, W.F.; Damman, A.W.H.

    1998-08-01

    The utility of ombrotrophic bogs as archives of atmospheric mercury deposition was assessed with an investigation in Arlberg Bog, Minnesota, US. Since the use of ombrotrophic bogs as archives depends on the immobility of deposited trace metals, the authors examined the postdepositional transport processes revealed by the solid-phase distributions of mercury and ancillary metals in this bog. They modeled metal speciation in bog pore-waters as a function of pe in order to understand metal behavior in ombrotrophic peat. Specifically, they considered the effect of water movement and resultant shifts in redox potential gradients on metal retention. The results indicate that Hg and Pb are immobile in ombrotrophic peat, so their distribution can be used to determine temporal changes in deposition. To substantiate the deposition estimates determined in this study, they emphasized the importance of confirming the validity of the dating scheme, assessing the degree of horizontal homogeneity in the accumulation record, and providing evidence for retention of Hg based on geochemical modeling. As recorded in Arlberg Bog, historic atmospheric Hg deposition increased gradually after the mid-1800s, peaked between 1950 and 1960, and may have declined thereafter. Preindustrial deposition was about 4 {micro}g/m{sup 2} year and recent deposition about 19 {micro}g/m{sup 2} year. The results of this study indicate that deposition at Arlberg Bog has been influenced by a regional and/or local-scale source.

  7. Deposition of Functional Coatings from an Acetylene-Containing Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Plevako, F. V.; Gorbatov, S. V.; Davidovich, P. A.; Prikhod‧ko, E. M.; Shushkov, S. V.; Krul‧, L. P.; Butovskaya, G. V.; Shakhno, O. V.; Gusakova, S. V.; Korolik, O. V.; Mazanik, A. V.

    2016-03-01

    Properties of thin coatings formed on polymer and glass substrates by plasma-enhanced chemical vapor deposition from a mixture of nitrogen with acetylene at atmospheric pressure were investigated. It was established that chemically stable transparent films with a mass ratio of fixed carbon and nitrogen C:N ~ 2:1 are formed on the surface of these substrates. When the deposition time was increased, arrays of dendrite-like structures were formed on the substrates.

  8. Acid deposition: atmospheric processes in eastern North America, a review of current scientific understanding

    SciTech Connect

    Not Available

    1983-01-01

    There is no observational evidence of a strong nonlinearity in the relationship between annual average total emissions and total deposition of sulfur in eastern North America. The finding is supported by theoretical calculations using the best available laboratory measurements of photochemical rate parameters. Currently available models of long-range atmospheric transport and transformation are not sufficiently developed to assess relationships between emissions from specific sources and deposition at specific receptor sites with high reliability.

  9. Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition

    USGS Publications Warehouse

    Elser, J.J.; Kyle, M.; Steuer, L.; Nydick, K.R.; Baron, J.S.

    2009-01-01

    Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented, We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N??ha-1??yr-1) or low (<2 kg N??ha-1??yr-1) levels of atmospheric N deposition. Highdeposition lakes had higher NO3-N and total N concentrations and higher total N : total P ratios. Concentrations of chlorophyll and seston carbon (C) were 2-2.5 times higher in highdeposition relative to low-deposition lakes, while high-deposition lakes also had higher seston C:N and C:P (but not N:P) ratios. Short-term enrichment bioassays indicated a qualitative shift in the nature of phytoplankton nutrient limitation due to N deposition, as highdeposition lakes had an increased frequency of primary P limitation and a decreased frequency and magnitude of response to N and to combined N and P enrichment. Thus elevated atmospheric N deposition appears to have shifted nutrient supply from a relatively balanced but predominantly N-deficient regime to a more consistently P-limited regime in Colorado alpine lakes. This adds to accumulating evidence that sustained N deposition may have important effects on lake phytoplankton communities and plankton-based food webs by shifting the quantitative and qualitative nature of nutrient limitation. ?? 2009 by the Ecological Society of America.

  10. Uncertainty analysis of atmospheric deposition simulation of radiocesium and radioiodine from Fukushima Daiichi Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Morino, Yu; Ohara, Toshimasa; Yumimoto, Keiya

    2014-05-01

    Chemical transport models (CTM) played key roles in understanding the atmospheric behaviors and deposition patterns of radioactive materials emitted from the Fukushima Daiichi nuclear power plant (FDNPP) after the nuclear accident that accompanied the great Tohoku earthquake and tsunami on 11 March 2011. In this study, we assessed uncertainties of atmospheric simulation by comparing observed and simulated deposition of radiocesium (137Cs) and radioiodine (131I). Airborne monitoring survey data were used to assess the model performance of 137Cs deposition patterns. We found that simulation using emissions estimated with a regional-scale (~500 km) CTM better reproduced the observed 137Cs deposition pattern in eastern Japan than simulation using emissions estimated with local-scale (~50 km) or global-scale CTM. In addition, we estimated the emission amount of 137Cs from FDNPP by combining a CTM, a priori source term, and observed deposition data. This is the first use of airborne survey data of 137Cs deposition (more than 16,000 data points) as the observational constraints in inverse modeling. The model simulation driven by a posteriori source term achieved better agreements with 137Cs depositions measured by aircraft survey and at in-situ stations over eastern Japan. Wet deposition module was also evaluated. Simulation using a process-based wet deposition module reproduced the observations well, whereas simulation using scavenging coefficients showed large uncertainties associated with empirical parameters. The best-available simulation reproduced the observed 137Cs deposition rates in high-deposition areas (≥10 kBq m-2) within one order of magnitude. Recently, 131I deposition map was released and helped to evaluate model performance of 131I deposition patterns. Observed 131I/137Cs deposition ratio is higher in areas southwest of FDNPP than northwest of FDNPP, and this behavior was roughly reproduced by a CTM if we assume that released 131I is more in gas phase

  11. Atmospheric Deposition and Critical Loads for Nitrogen and Metals in Arctic Alaska: Review and Current Status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  12. Atmospheric Deposition of Indium in the Northeastern United States: Flux and Historical Trends.

    PubMed

    White, Sarah Jane O; Keach, Carrie; Hemond, Harold F

    2015-11-01

    The metal indium is an example of an increasingly important material used in electronics and new energy technologies, whose environmental behavior and toxicity are poorly understood despite increasing evidence of detrimental health impacts and human-induced releases to the environment. In the present work, the history of indium deposition from the atmosphere is reconstructed from its depositional record in an ombrotrophic bog in Massachusetts. A novel freeze-coring technique is used to overcome coring difficulties posed by woody roots and peat compressibility, enabling retrieval of relatively undisturbed peat cores dating back more than a century. Results indicate that long-range atmospheric transport is a significant pathway for the transport of indium, with peak concentrations of 69 ppb and peak fluxes of 1.9 ng/cm2/yr. Atmospheric deposition to the bog began increasing in the late 1800s/early 1900s, and peaked in the early 1970s. A comparison of deposition data with industrial production and emissions estimates suggests that both coal combustion and the smelting of lead, zinc, copper, and tin sulfides are sources of indium to the atmosphere in this region. Deposition appears to have decreased considerably since the 1970s, potentially a visible effect of particulate emissions controls instated in North America during that decade. PMID:26426729

  13. RESUSPENSION OF PLUTONIUM FROM CONTAMINATED LAND SURFACES: METEOROLOGICAL FACTORS

    EPA Science Inventory

    A literature review is presented in a discussion of the relevance of meteorological factors on the resuspension of plutonium from contaminated land surfaces. The physical processes of resuspension based on soil erosion work are described. Some of the models developed to simulate ...

  14. Direct atmospheric deposition of water-soluble nitrogen to the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Talbot, R. W.

    2000-12-01

    Measurements were made at New Castle, New Hampshire, on the shore of the Gulf of Maine from 1994 to 1997 to assess direct atmospheric deposition of water-soluble nitrogen to the surface waters of the gulf. Daily dry deposition was highly variable and ranged from ˜ 1 to 144 μmol N m-2 d-1 (median 16 μmol N m-2 d-1). Wet deposition dominated dry deposition, contributing 80-90% of the total flux annually. Wet deposition was also highly variable and ranged from 3 to 4264 μmol N m-2 d-1 (median 214 μmol N m-2 d-1). Fog water nitrogen deposition could contribute as much as large precipitation nitrogen deposition events, in excess of 500 μmol N m-2d-1. Dissolved organic nitrogen (DON) in precipitation constituted only a small fraction (3%) of the total precipitation nitrogen flux most of the year, except in spring where it comprised 14%, on average, of the total. The total atmospheric direct nitrogen (ADN) deposition numbers reported here do not include the contributions of fog and DON as they were not sampled regularly over the course of this study. The total ADN flux ranged from 1 to 4262 μmol N m-2 d-1 (median 23 μmol N m-2 d-1), depositing 52 mmol N m-2 yr-1 to the surface waters of the Gulf of Maine, 3% of the total N input to those waters annually. However, this deposition was highly episodic with events over 500 μmol N m-2 d-1 occurring in 8% of the days sampled but contributing 56% of the total measured flux and events in excess of 1000 μmol N m-2 d-1 occurring in 2% of the samples and contributing 22% of the total measured flux. It is these large events that may influence biological productivity of the Gulf of Maine. The annual wet deposition of inorganic N measured at New Castle exceeded that reported by two National Atmospheric Deposition Program (NADP) sites by 42% on average of that reported from Cape Cod, Massachusetts, and by 69% ofthat at Mt. Dessert Island, Maine. Estimates of the episodic atmospheric nitrogen flux to the surface waters of the

  15. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    NASA Astrophysics Data System (ADS)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  16. Contributions of atmospheric nitrogen deposition to U.S. estuaries: Summary and conclusions: Chapter 8

    USGS Publications Warehouse

    Stacey, Paul E.; Greening, Holly; Kremer, James N.; Peterson, David; Tomasko, David A.

    2001-01-01

    A NOAA project was initiated in 1998, with support from the U.S. EPA, to develop state-of-the-art estimates of atmospheric N deposition to estuarine watersheds and water surfaces and its delivery to the estuaries. Work groups were formed to address N deposition rates, indirect (from the watershed) yields from atmospheric and other anthropogenic sources, and direct deposition on the estuarine waterbodies, and to evaluate the levels of uncertainty within the estimates. Watershed N yields were estimated using both a land-use based process approach and a national (SPARROW) model, compared to each other, and compared to estimates of N yield from the literature. The total N yields predicted by the national model were similar to values found in the literature and the land-use derived estimates were consistently higher. Atmospheric N yield estimates were within a similar range for the two approaches, but tended to be higher in the land-use based estimates and were not wellcorrelated. Median atmospheric N yields were around 15% of the total N yield for both groups, but ranged as high as 60% when both direct and indirect deposition were considered. Although not the dominant source of anthropogenic N, atmospheric N is, and will undoubtedly continue to be, an important factor in culturally eutrophied estuarine systems, warranting additional research and management attention.

  17. Iron in East Antarctic snow: Implications for atmospheric iron deposition and algal production in Antarctic waters

    NASA Astrophysics Data System (ADS)

    Edwards, Ross; Sedwick, Peter

    To evaluate the deposition and solubility of aerosol iron in the Antarctic seasonal sea ice zone (SSIZ), iron was measured in snow samples collected from three areas in the SSIZ (Prydz Bay, Dumont d'Urville Sea and Ross Sea) and one continental area (Princess Elizabeth Land) of East Antarctica. Concentrations of total-dissolvable iron (that soluble at pH ˜2) ranged from 20-2950 pg g-1, with the lowest concentrations measured in snow from the Dumont d'Urville Sea. Using estimates of snow accumulation rates, we calculate atmospheric iron deposition fluxes of 0.017-0.11 mg m-2 yr-1 (0.30-2.0 µmol m-2 yr-1), which are generally lower than previously published estimates. Measurements of iron in filtered meltwaters of snow samples from Prydz Bay and Princess Elizabeth Land suggest that ˜10-90% of the total atmospheric iron is readily soluble. Assuming our results to be broadly representative of atmospheric deposition over seasonally ice-covered, high-nutrient Antarctic waters, we use our mean estimates of atmospheric iron deposition (1.1 µmol m-2 yr-1) and solubility (32%) to calculate that atmospheric iron potentially supports annual phytoplankton production of 1.1 × 1012 mole C in the Antarctic SSIZ, which is less than 5% of the estimated total annual primary production in this ocean region.

  18. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    NASA Astrophysics Data System (ADS)

    Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.

    2014-07-01

    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.

  19. Mosses Indicating Atmospheric Nitrogen Deposition and Sources in the Yangtze River Drainage Basin, China

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2010-07-01

    Characterizing the level and sources of atmospheric N deposition in a large-scale area is not easy when using physical monitoring. In this study, we attempted to use epilithic mosses (Haplocladium microphyllum (Hedw.)) as a bioindicator. A gradient of atmospheric N deposition from 13.8 kg N ha-1 yr-1 to 47.7 kg N ha-1 yr-1 was estimated on the basis of moss tissue N concentrations and the linear equation between them. The estimated results are reliable because the highest atmospheric N deposition occurred in the middle parts of the Yangtze River, where the highest TN concentrations were also observed. Moss δ15N values in cities and forests were found in distinctly different ranges of approximately -10‰ to -6‰ and approximately -2‰ to 2‰, respectively, indicating that the main N sources in most of these cities were excretory wastes and those in forests were soil emissions. A negative correlation between moss δ15N values and the ratios of NH4-N/NO3-N in deposition (y = -1.53 x + 1.78) has been established when the ratio increased from 1.6 to 6.5. On the basis of the source information, the negative moss δ15N values in this study strongly indicate that NHy-N is the dominant N form in N deposition in the whole drainage basin. These findings are supported by the existing data of chemical composition of local N deposition.

  20. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    de P. Pereira, Pedro A.; Lopes, Wilson A.; Carvalho, Luiz S.; da Rocha, Gisele O.; de Carvalho Bahia, Nei; Loyola, Josiane; Quiterio, Simone L.; Escaleira, Viviane; Arbilla, Graciela; de Andrade, Jailson B.

    Respiratory system is the major route of entry for airborne particulates, being the effect on the human organism dependent on chemical composition of the particles, exposure time and individual susceptibility. Airborne particulate trace metals are considered to represent a health hazard since they may be absorbed into human lung tissues during breathing. Fossil fuel and wood combustion, as well as waste incineration and industrial processes, are the main anthropic sources of metals to the atmosphere. In urban areas, vehicular emissions—and dust resuspension associated to road traffic—become the most important manmade source. This work investigated the atmospheric concentrations of TSP, PM 10 and elements such as iron, manganese, copper and zinc, from three different sites around Salvador Region (Bahia, Brazil), namely: (i) Lapa Bus Station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, including metal ores and concentrates and near industrial centers and; (iii) Bananeira Village located on Maré Island, a non-vehicle-influenced site, with activities such as handcraft work and fishery, although placed near the port. Results have pointed out that TSP concentrations ranged between 16.9 (Bananeira) and 354.0 μg m -3 (Aratu#1), while for PM 10 they ranged between 30.9 and 393.0 μg m -3, both in the Lapa Bus Station. Iron was the major element in both Lapa Station and Aratu (#1 and #2), with average concentrations in the PM 10 samples of 148.9, 79.6 and 205.0 ng m -3, respectively. Zinc, on the other hand, was predominant in samples from Bananeira, with an average concentration of 145.0 ng m -3 in TSP samples, since no PM 10 sample was taken from this site. The main sources of iron in the Lapa Station and Aratu harbor were, respectively, soil resuspension by buses and discharge of solid granaries, as fertilizers and metal ores. On the other hand, zinc and copper in the bus station were mainly from

  1. Wet deposition of atmospheric inorganic nitrogen at five remote stations on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y. W.; Xu-Ri; Wang, Y. S.; Pan, Y. P.; Piao, S. L.

    2015-06-01

    Alpine ecosystems on the Tibetan Plateau are sensitive to elevated nitrogen (N) deposition, and N wet deposition in this region has shown an increasing trend since the mid-20th century. However, the amount of N wet deposition on the Tibetan remains unclear, due in most part to the lack of direct observations. Using the Tibetan Observation and Research Platform network, we investigated wet deposition of the major ions (NO3-, Cl-, SO42-, NH4+, Na+, K+, Ca2+ and Mg2+) at five remote stations. At Southeast Tibet Station, Nam Co Station, Qomolangma Station, Ngari Station, and Muztagh Ata Station, the NH4+-N wet deposition was 0.63, 0.91, 1.61, 0.36 and 1.25 kg N ha-1 yr-1, respectively; the NO3--N wet deposition was 0.28, 0.35, 0.04, 0.08 and 0.3 kg N ha-1 yr-1, respectively; and the inorganic N deposition was 0.91, 1.26, 1.64, 0.44 and 1.55 kg N ha-1 yr-1, respectively. Combining our field observations with previous studies, the average wet deposition of atmospheric NH4+-N, NO3--N, and inorganic N on the Tibetan Plateau was estimated to be 1.17, 0.58 and 1.75 kg N ha-1 yr-1, respectively. The estimated NH4+-N : NO3--N ratio in precipitation on the Tibetan Plateau was 2 : 1. Compared to the present study, the inorganic N wet deposition for the entire Tibetan Plateau in previous studies, either through atmospheric chemistry transport model simulations or interpolations based on limited observations, has been highly overestimated. To clarify the total N deposition on the Tibetan Plateau, it is necessary to conduct long-term and large-scale monitoring of both wet and dry deposition of N in the future.

  2. Studies of Plutonium Aerosol Resuspension at the Time of the Maralinga Cleanup

    SciTech Connect

    Shinn, J

    2003-08-01

    At the former nuclear test site at Maralinga, South Australia, soil cleanup began in October 1996 with the objective to remove the potential for residual plutonium (Pu) exposures to the public. In this case the cleanup was to restore access to the closed test site. The proposed long-term land use was primarily to be a hunting area for Pitjantjatjara (Aboriginal) people, but also presumably to be available to the public who might have an interest in the history of the site. The long-term management objective for the site was to allow casual use, but to prohibit habitation. The goal of this study is to provide an evaluation of the Maralinga soil cleanup in terms of potential long-term public inhalation exposures to particulate Pu, and in terms of a contribution to planning and conducting any such soil Pu-cleanup. Such cleanups might be carried out for example, on the Nevada Test Site in the United States. For Pu that has been deposited on the soil by atmospheric sources of finely divided particles, the dominant exposure pathway to humans is by inhalation. Other exposure pathways are less important because the Pu particles become oxidized into a nearly insoluble form, do not easily enter into the food chain, nor are they significantly transferred through the intestine to the bloodstream should Pu become ingested. The purpose of this report is to provide results of the Pu resuspension measurements made before, during, and after the Pu cleanup at Maralinga, to compare these against similar measurements made elsewhere, and to interpret the results as they relate to potential long-term public exposures. (Exposures to Pu in dust plumes produced by mechanical disturbance during cleanup are considered short-term, unlikely to be significant for purposes of this report, and are not included). A considerable amount of research had been conducted at Maralinga by the Australian Radiation Laboratory, now the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA

  3. LONG-RANGE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ANTHROPOGENIC CONTAMINANTS AND THEIR POTENTIAL EFFECTS ON TERRESTRIAL ECOSYSTEMS

    EPA Science Inventory

    Through the processes of atmospheric transport and deposition, many anthropogenic contaminants such as industrial organics, pesticides, and trace metals have become widely distributed around the globe. ue to the phenomenon of long-range atmospheric transport, even the most remote...

  4. Modeling the resuspension of radionuclides in Ukranian regions impacted by Chernobyl fallout

    SciTech Connect

    Nair, S.K.; Thiessen, K.M.; Hoffman, F.O.

    1997-01-01

    Following the 1986 Chernobyl event, large amounts of radioactive materials were deposited in nearby areas. Concentrations of various radionuclides were measured in air and surface soil. To study the resuspension of radioactive particulate, three different exposure situations were developed on the basis of the collected data under the auspices of the international BIOMOVS II (BIOspheric MOdel Validation Study) project. Modelers were asked to predict seasonal air concentrations and resuspension factors at several locations at different distances from Chernobyl for six successive years following the accident. Measurements of radionuclide deposition on topsoil were provided for each site along with information on soil, vegetation, land use, surface roughness, meteorology, and climate. In this paper, the three exposure situations are described, along with the initial data set provided to the modelers; two modeling approaches used to make the endpoint predictions are also presented. After the model predictions were submitted, the measured air concentrations and resuspension factors were released to the modelers. Generally, the predictions were well within an order of magnitude of the measured values. Time-dependent trends in predictions and measurements were in good agreement with one of the models, which (a) explicitly accounted for loss processes in soil and (b) used calibration to improve its predictive capabilities. Reasons for variations between predictions and measurements, suggestions for the improvement of models, and conclusions from the model validation study are presented. 12 refs., 15 figs., 4 tabs.

  5. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    USGS Publications Warehouse

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Atmospheric deposition of nitrogen over Czech forests: refinement of estimation of dry deposition for unmeasured nitrogen species

    NASA Astrophysics Data System (ADS)

    Hunova, Iva; Stoklasova, Petra; Kurfurst, Pavel; Vlcek, Ondrej; Schovankova, Jana

    2014-05-01

    The accurate quantification of atmospheric deposition is very important for assessment of ambient air pollution impacts on ecosystems. Our contribution presents an advanced approach to improved quantification of atmospheric deposition of nitrogen over Czech forests, merging available measured data and model results. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe (Moldan and Schnoor, 1992). The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2004, Hůnová et al. 2014). Nevertheless, it appears that the atmospheric deposition of nitrogen, particularly the dry deposition, is likely to be underestimated due to unavailability of data of certain nitrogen species as HNO3(g) and NH3. It is known that HNO3(g) may contribute significantly to the dry deposition of nitrogen even in regions with relatively low concentrations (Flechard et al., 2011). We attempted to substitute unmeasured nitrogen species using an Eulerian photochemical dispersion model CAMx, the Comprehensive Air Quality Model with extensions (ESSS, 2011), coupled with a high resolution regional numeric weather prediction model Aladin (Vlček, Corbet, 2011). Preliminary results for 2008 indicate that dry deposition of nitrogen, so far based on detailed monitoring of ambient NOx levels, is underestimated substantially. The dry deposition of N/NOx in 2008 reported by Ostatnická (2009) was about 0.5 g.m-2.year-1 over 99.5 % of the nation-wide area, while the contribution of unmeasured nitrogen species estimated by CAMx model were much higher. To be specific, the dry deposition of N/HNO3(g) accounted for 1.0 g.m-2.year-1, and N/NH3 for 1.6 g.m-2.year-1. In contrast, the deposition of N/HONO (g) with 0.001 g.m-2.year-1, N/PAN with 0.007 g.m-2.year-1, particulate N/NO3- with 0.002 g.m-2.year-1, and particulate N/NH4

  7. Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y. W.; Xu-Ri; Wang, Y. S.; Pan, Y. P.; Piao, S. L.

    2015-10-01

    Since the mid-20th century, nitrogen (N) deposition has shown an increasing trend in the Tibetan Plateau (TP), where alpine ecosystems are sensitive to elevated N deposition. However, the quantitative characterization of N deposition in the TP remains unclear, due in most part to the lack of in situ measurement. Using the Tibetan Observation and Research Platform network, we conducted short-term in situ measurements of major ions (NO3-, Cl-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+) wet deposition at five remote sites in the TP during 2011-2013. At Southeast Tibet Station, Nam Co Station, Qomolangma Station, Ngari Station, and Muztagh Ata Station, the NH4+-N wet deposition was 0.63, 0.68, 0.92, 0.36, and 1.25 kg N ha-1 yr-1, respectively; the NO3--N wet deposition was 0.28, 0.24, 0.03, 0.08, and 0.30 kg N ha-1 yr-1, respectively; and the inorganic N wet deposition was 0.91, 0.92, 0.94, 0.44, and 1.55 kg N ha-1 yr-1, respectively. The inorganic N wet deposition mainly occurred in the form of NH4+-N during summer at all sites. Results of enrichment factor analysis and principal component analysis demonstrated that both NH4+-N and NO3--N wet deposition in the TP were mainly influenced by anthropogenic activities. Backward trajectory analysis showed that the inorganic N deposition at Muztagh Ata Station was mainly transported from central Asia and the Middle East through westerlies. At Southeast Tibet Station, Nam Co Station, Qomolangma Station, and Ngari Station, the inorganic N deposition was mainly contributed by anthropogenic sources in south Asia, and was mainly transported by the Indian monsoon. Combining site-scale in situ measurements of inorganic N wet deposition in this and previous studies, the average wet deposition of atmospheric NH4+-N, NO3--N, and inorganic N in the TP was estimated to be 1.06, 0.51, and 1.58 kg N ha-1 yr-1, respectively. The average NH4+-N : NO3--N ratio in precipitation in the TP was approximately 2 : 1. Results from the present study

  8. Atmospheric deposition of nutrients to north Florida rivers: A multivariate statistical analysis. Final report. Master's thesis

    SciTech Connect

    Fu, J.

    1991-01-01

    Atmospheric nutrient input to the Apalachicola Bay estuary was studied because it has been demonstrated that atmospheric deposition can be a major source of nutrients to eastern U.S. estuaries. Besides the Apalachicola River, the Sopchoppy and the Ochlockonee were also selected for a comparative analysis. Receptor model, absolute principal of component analysis (APCA), and mass balance methods were applied in the study. The results of the study show that nitrogen is probably not a limiting nutrient in the three rivers because their N:P mole ratios are nearly 3 times higher than the Redfield ratio for photosynthesis. The total atmospheric nitrogen depositions in the three river watershed are at least as great as their river fluxes. In the Apalachicola River, the atmospheric source of nitrogen is found to be several times higher than the largest possible input of urban sewage. Atmospheric deposition, therefore, might be the dominant nitrogen source entering the estuary. The results of APCA show that Apalachicola River water is mainly a mixture of components that correspond in their compositions to aged rain, ground water, and fresh rain. Atmospheric nitrate deposition is the result of the air pollution, i.e., acid rain. The studies also show that the annual average deposition of nitrate has a narrow range, mainly from 5.8 to 11.5 kg/ha/yr in most of the NADP sites in the 8 southeastern states. Since all the software and data sets employed in the study are accessible nationwide, the methods could be applied in other watersheds.

  9. The geographic distribution of radionuclide deposition across the continental US from atmospheric nuclear testing.

    PubMed

    Simon, Steven L; Bouville, André; Beck, Harold L

    2004-01-01

    For the first time, calculations for the more than 3000 counties of the US have been completed that estimate the average deposition density (Bq m(-2)) of more than 40 radionuclides in fallout from atmospheric nuclear weapons tests conducted in the US (1951-1962) and 19 radionuclides from tests conducted elsewhere in the world (1952-1963). The geographic pattern of deposition across the US, as well as the amount of fallout deposited, varied significantly depending on whether the tests were conducted within or outside of the US. Fallout deposited from the Nevada Test Site (NTS) varied geographically as a result of dispersion and dilution in the atmosphere, the wind patterns following each test, and the occurrence of localized rainfall events. In general, states immediately east of the NTS received the highest deposition from tests conducted there. In contrast, the variation in deposition across the country from global fallout was less than for NTS fallout primarily reflecting variations in annual precipitation across larger regions. Hence, in the eastern and mid-western US, where rainfall is above the national average, higher levels of global fallout were deposited than in the more arid southwestern states. This paper presents a summary of the methods used and findings of our studies on fallout from NTS and global fallout, with emphasis on two of the most important radionuclides, (131)I and (137)Cs. PMID:15063539

  10. Assessment of toxicity in waters due to heavy metals derived from atmospheric deposition using Vibrio fischeri.

    PubMed

    Cukurluoglu, Sibel; Muezzinoglu, Aysen

    2013-01-01

    Water toxicity originating from the atmospheric deposition of six heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) was investigated on Vibrio fischeri activity in Izmir, Turkey. A LUMIStox® test was applied to dry and wet deposition samples and metal solutions. The inhibition levels and effective toxicity concentrations of these samples and solutions were determined. Interactive toxicity effects among the metals were investigated. When the impacts of the synthetic single heavy metal solutions were compared with each other, a toxicity ranking of Cr>Cd>Pb>Cu>Zn>Ni was obtained in order of decreasing severity. The total effective concentrations of these six metals were in the ranges of 0.074-0.221 mg/L and 0.071-0.225 mg/L for receiving aqueous solutions of dry and wet atmospheric depositions, respectively. The toxicity data showed that the wet deposition samples were 15% more toxic than the dry deposition samples. The interactive toxicity effects of the heavy metals in both dry and wet deposition samples were classified as antagonistic. High levels of heavy metals deposited in dissolved form may constitute an important input in the biochemical cycle and may have significant impacts. PMID:23030388

  11. Atmospheric heavy metal deposition plumes adjacent to a primary lead-zinc smelter.

    PubMed

    van Alphen, M

    1999-09-15

    A method for the determination of atmospheric heavy metal deposition rates has been developed using 0.5-m2 deposition trays at 0.1 m from the ground. Trays were spaced at 150-m intervals along a 1500-m line 500 m east of a Pb-Zn smelter. Ten sampling events of 1-3-h duration were conducted under westerly wind conditions so as to determine the sources of heavy metals deposited near the smelter. Deposited materials were sampled from the trays using wipes. There was good agreement between deposition trays placed side-by-side and exposed in pairs. Under certain conditions, however, the method is not appropriate owing to the potential for local contamination. Geometric mean deposition rates for Pb, Zn, Fe, Cu, As and Cd averaged over a nominal plume width of 600 m amounted to 18.8, 22.2, 12.2, 0.614, 0.403 and 0.052 mg m-2 day-1, respectively. Gaussian deposition profiles were seen for Pb, Zn, Fe, Cu, As and Cd downwind from the blast furnace, sinter plant, and refinery area. Zinc deposition could also be attributed to a northern Zn production area. This northern site was not generally associated with elevated Pb deposition. On the basis of this work, the deposition of heavy metals in residential areas adjoining the smelter is likely to occur downwind from the smelter site, with deposition rates increasing with wind speed. The strategic measurement of heavy metal dry-deposition rates over short periods of time using large collection surfaces provides source-specific information not obtainable by conventional long-term 'passive' deposition sampling. Lower detection limits than those achieved here are likely to be achieved in non-smelter settings. Previous suggestions implicating a sink of city surface dusts as the probable source of Pb recontamination of residential settings in the absence of ongoing smelter emissions are not supported by this work. PMID:10535148

  12. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States.

    PubMed

    Simkin, Samuel M; Allen, Edith B; Bowman, William D; Clark, Christopher M; Belnap, Jayne; Brooks, Matthew L; Cade, Brian S; Collins, Scott L; Geiser, Linda H; Gilliam, Frank S; Jovan, Sarah E; Pardo, Linda H; Schulz, Bethany K; Stevens, Carly J; Suding, Katharine N; Throop, Heather L; Waller, Donald M

    2016-04-12

    Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha(-1)⋅y(-1), we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha(-1)⋅y(-1) in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States. PMID:27035943

  13. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States

    USGS Publications Warehouse

    Simkin, Samuel M.; Allen, Edith B.; Bowman, William D.; Clark, Christopher M.; Belnap, Jayne; Brooks, Matthew L.; Cade, Brian S.; Collins, Scott L.; Geiser, Linda H.; Gilliam, Frank S.; Jovan, Sarah E.; Pardo, Linda H.; Schulz, Bethany K.; Stevens, Carly J.; Suding, Katharine N.; Throop, Heather L.; Waller, Donald M.

    2016-01-01

    Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha−1⋅y−1, we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha−1⋅y−1 in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States.

  14. Analysis of mass transport in an atmospheric pressure remote plasma-enhanced chemical vapor deposition process

    SciTech Connect

    Cardoso, R. P.; Belmonte, T.; Henrion, G.; Gries, T.; Tixhon, E.

    2010-01-15

    In remote microwave plasma enhanced chemical vapor deposition processes operated at atmospheric pressure, high deposition rates are associated with the localization of precursors on the treated surface. We show that mass transport can be advantageously ensured by convection for the heavier precursor, the lighter being driven by turbulent diffusion toward the surface. Transport by laminar diffusion is negligible. The use of high flow rates is mandatory to have a good mixing of species. The use of an injection nozzle with micrometer-sized hole enables us to define accurately the reaction area between the reactive species. The localization of the flow leads to high deposition rates by confining the reactive species over a small area, the deposition yield being therefore very high. Increasing the temperature modifies nonlinearly the deposition rates and the coating properties.

  15. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    NASA Astrophysics Data System (ADS)

    Giordano, Michael R.; Chong, Joey; Weise, David R.; Asa-Awuku, Akua A.

    2016-03-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NO x deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NO x deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NO x emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas.

  16. Historical atmospheric mercury emissions and depositions in North America compared to mercury accumulations in sedimentary records

    NASA Astrophysics Data System (ADS)

    Pirrone, Nicola; Allegrini, Ivo; Keeler, Gerald J.; Nriagu, Jerome O.; Rossmann, Ronald; Robbins, John A.

    Gold and silver production in North America (included United States, Canada and Mexico) released a large amount of mercury to the atmosphere until well into this century when mercury (Hg) amalgamation was replaced by cyanide concentration. Since then, emissions from industries have been the dominant anthropogenic sources of atmospheric Hg in North America as a whole. Past Hg emissions from gold and silver extractions in North America during the 1800s do not show a clear evidence of atmospheric deposition occurred at the coring sites considered in this study. Estimated atmospheric emissions of Hg in North America peaked in 1879 (at about 1708 t yr -1) and 1920 (at about 940 t yr -1), primarily due to Hg emissions from gold and silver mining. After the Great Economic Depression (1929) Hg emissions peaked again in the 1947 (274 t yr -1), in 1970 (325 t yr -1) and in 1989 (330 t yr -1) as result of increased Hg emissions from industrial sources, though improvements in the emissions control technology in United States and Canada have been substantial. Estimates of total atmospheric deposition fluxes of Hg to water and terrestrial receptors were in the range of 14.3-19.8 μg m -2 yr -1 in North America as a whole, and averaged 135 μg m -2 yr -1 (global background + local emissions) in the Great Lakes. These values were in good agreement with recent estimates reported in literature. The comparison of atmospheric Hg deposition fluxes with Hg accumulation rates in sediment cores suggests that atmospheric deposition was the major source of Hg entering the lakes system at coring sites, however, important contributions to Lake Ontario sediment cores sites from 1940 to 1970 were likely originated from local point sources (i.e. direct discharges).

  17. Very narrow SiGe/Si quantum wells deposited by low-temperature atmospheric pressure chemical vapor deposition

    SciTech Connect

    Gruetzmacher, D.A.; Sedgwick, T.O.; Northrop, G.A.

    1993-05-01

    The optical, structural, and electrical properties of very narrow SiGe quantum wells grown by {open_quotes}ultra-clean{close_quotes} atmospheric pressure chemical vapor deposition (APCVD) are investigated. X-ray reflectivity data reveal abrupt interfaces with a root-mean-square roughness of not more than 0.2 nm. For the first time narrow (4.3 meV) excitonic photoluminescence (PL) spectra were obtained from APCVD grown samples containing SiGe wells with 12.5% to 32.5% Ge. For the narrowest wells PL doublets are observed which are attributed to atomic steps at the SiGe/Si interfaces. The Pl and x-ray diffractometry data show that process deposition control for well and barrier width is within the monolayer range. Resonant tunneling diodes fabricated with 2.5-mm-wide Si{sub 0.75}Ge{sub 0.25} wells show world record peak to valley ratios of 4.2. Magneto-transport measurements performed at high magnetic fields of two-dimensional hole gases exhibit pronounced Hall plateaus and well-defined Shubnikov de Hass oscillations, indicating high material quality. The results give evidence that atmospheric pressure chemical vapor deposition, which relies on gas switching sequences of the reactive gases in a hydrogen ambience, is able to produce interface abruptness comparable if not better than reported by any other technique. 22 refs., 7 figs.

  18. DISCOVERING THE CAUSES, CONSEQUENCES, AND IMPLICATIONS OF ACID RAIN AND ATMOSPHERIC DEPOSITION

    EPA Science Inventory

    Much has been learned in recent years about air pollution, acid precipitation and atmospheric deposition and their effects on public welfare. There are still unanswered questions about certain aspects of these problems and possible strategies for their solution. Public concern ab...

  19. MODEL ASSESSMENT OF THE ANNUAL ATMOSPHERIC DEPOSITION OF TRACE METALS TO LAKE SUPERIOR

    EPA Science Inventory

    Mass balance studies indicate atmospheric deposition of toxic pollutants to the Great Lakes accounts for a significant portion of the total loading. dentifying the types and locations of both natural and anthropogenic sources of these loadings is imperative before effective and e...

  20. ATMOSPHERIC TRANSPORT AND DEPOSITION OF POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS

    EPA Science Inventory

    Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) are toxic compounds which are dispersed through the environment by atmospheric transport and deposition. It has been previously shown that there is a varying mixture of these compounds produced by c...

  1. ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...

  2. ATMOSPHERIC DEPOSITION OF PESTICIDES TO AN AGRICULTURAL WATERSHED OF THE CHESAPEAKE BAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Choptank River watershed, located on the Delmarva Peninsula of the Chesapeake Bay, is dominated by agricultural land use which makes it vulnerable to runoff and atmospheric deposition of pesticides. Agricultural and wildlife areas are in close proximity, and off-site losses of pesticides may co...

  3. INTERMEDIATE-RANGE GRID MODEL FOR ATMOSPHERIC SULFUR DIOXIDE AND SULFATE CONCENTRATIONS AND DEPOSITIONS

    EPA Science Inventory

    A three-dimensional time-dependent grid type model for two chemically reacting species which undergo atmospheric transport, diffusion and wet and dry deposition over a region of several hundred km is presented. Accuracy and sensitivity of the model are discussed. The model is app...

  4. ATMOSPHERIC DEPOSITION OF TOXIC METALS TO LAKE MICHIGAN: PRELIMINARY ANNUAL MODEL CALCULATIONS

    EPA Science Inventory

    Concern is growing for the environmental water quality of the Great Lakes. tmospheric deposition of toxic substances is recognized as a major pathway of contaminants to the water medium. o estimate the annual atmospheric loadings of five toxic metals -- arsenic (As), cadmium (Cd)...

  5. Beaufort Sea storm and resuspension modeling

    NASA Astrophysics Data System (ADS)

    Lintern, D. Gwyn; Macdonald, Robie W.; Solomon, Steven M.; Jakes, Hunter

    2013-11-01

    Along the shallow Beaufort Sea coast of the Arctic Ocean, storm events during the summer are responsible for significant sediment resuspension and transport. Given the paucity of data in this difficult field area, a model has been developed to be used as a tool towards investigation of these processes. Two contrasting set of conditions are modeled; one simulation for a relatively quiescent period and a second simulation for a period that included a moderate and typical northwesterly storm. Results for these two periods are compared with shallow-water current and wave data collected by instrumented moorings. For the calm period, the model did not predict specific events very well, whereas for the period with a strong storm, the model performed very well in predicting wave height and wave period, and less well in predicting currents. However, under both calm and stormy conditions, mean current speeds and mean current directions were predicted with sufficient accuracy to proceed to calculations of sediment transport. Sensitivity analysis showed that currents contribute very little to the wave dominated resuspension, but mean currents could be used for computing sediment transport quantities and directions. Measurements of storm surge were represented well by the model output, aligning perfecting with the building and waning storm, but with a slight overprediction at the peak of the storm. The reasonable reproduction of wave heights and periods, and of storm surge indicate that the model is responding well to the input parameters. The modeling suggests that the most significant sediment erosion occurs at the northern tips of the Mackenzie Delta and the Tuktoyaktuk Peninsula, and around the area of Herschal Island. The model also indicates that waves are not fully developed during a storm for the present day ice limited fetch, and that extending the fetch a further 100 km to simulate ice retreat led to wave heights at the coast being increased by 20 cm.

  6. Comparison of Mercury Mass Loading in Streams to Wet and Dry Atmospheric Deposition in Watersheds of the Western US: Evidence for Non-Atmospheric Mercury Sources

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Majewski, M. S.; Alpers, C. N.; Eckley, C.

    2015-12-01

    Many streams in the western United States (US) are listed as impaired by mercury (Hg), and it is important to understand the magnitudes of the various sources in order to implement management strategies. Atmospheric deposition of Hg and can be a major source of aquatic contamination, along with mine wastes, and other sources. Prior studies in the eastern US have shown that streams deliver less than 50% of the atmospherically deposited Hg on an annual basis. In this study, we compared annual stream Hg loads for 20 watersheds in the western US to measured wet and modeled dry deposition. Land use varies from undisturbed to mixed (agricultural, urban, forested, mining). Data from the Mercury Deposition Network was used to estimate Hg input from precipitation. Dry deposition was not directly measured, but can be modeled using the Community Multi-scale Air Quality model. At an undeveloped watershed in the Rocky Mountains, the ratio of stream Hg load to atmospheric deposition was 0.2 during a year of average precipitation. In contrast, at the Carson River in Nevada, with known Hg contamination from historical silver mining with Hg amalgamation, stream export exceeded atmospheric deposition by a factor of 60, and at a small Sierran watershed with gold mining, the ratio was 70. Larger watersheds with mixed land uses, tend to have lower ratios of stream export relative to atmospheric deposition suggesting storage of Hg. The Sacramento River was the largest watershed for which Hg riverine loads were available with an average ratio of stream Hg export to atmospheric deposition of 0.10. Although Hg was used in upstream historical mining operations, the downstream river Hg load is partially mitigated by reservoirs, which trap sediment. This study represents the first compilation of riverine Hg loads in comparison to atmospheric deposition on a regional scale; the approach may be useful in assessing the relative importance of atmospheric and non-atmospheric Hg sources.

  7. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    PubMed

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  8. Atmospheric trace elements at Enewetak Atoll: 2. Transport to the ocean by wet and dry deposition

    NASA Astrophysics Data System (ADS)

    Arimoto, R.; Duce, R. A.; Ray, B. J.; Unni, C. K.

    1985-02-01

    The concentrations of trace elements in precipitation and dry deposition are presented for samples collected at Enewetak Atoll (11°N, 162° E) during SEAREX experiments in 1979. The concentrations of Al, Sc, Mn, Fe, Co, and Th in rain are dominated by crustal material, and for these elements, wet deposition evidently exceeds dry deposition. For most of these elements the present rates of atmospheric deposition at Enewetak are similar to their mean rate of accumulation in sediments over the past 5-10,000 years, suggesting that the air-to-sea exchange of particles is closely tied to the sedimentary cycle of the mid-Pacific. Noncrustal sources govern the concentrations of Pb, Zn, Cu, Se, and Cd in wet and dry deposition samples. Analyses of dry deposition collected from a flat plastic plate indicate that the amount of material recycled from the sea surface varies markedly between samples, and even though these estimates do not necessarily reflect the dry deposition to the ocean surface, the results suggest that recycled sea spray often amounts to more than 50% of the total dry deposition of the enriched elements. Recycled sea spray also makes up a significant fraction of the total wet deposition of the enriched elements. The net deposition rates of elements such as Cu and Zn are greater than or equal to their inputs from vertical mixing, but the net deposition of Pb clearly exceeds the input from upwelling. The current net deposition rates of the enriched elements are also similar to their rates of removal to sediments. These results indicate that air-sea exchange processes may significantly affect the chemistry of trace metals in the open ocean.

  9. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    NASA Astrophysics Data System (ADS)

    Baker, Alex; Altieri, Katye; Okin, Greg; Dentener, Frank; Uematsu, Mitsuo; Kanakidou, Maria; Sarin, Manmohan; Duce, Robert; Galloway, Jim; Keene, Bill; Singh, Arvind; Zamora, Lauren; Lamarque, Jean-Francois; Hsu, Shih-Chieh

    2014-05-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the industrial revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) recently completed a multi-model analysis of global N deposition, including comparisons to wet deposition observations from three regional networks in North America, Europe and Southeast Asia (Lamarque et al., Atmos. Chem. Phys., 13, 7977-8018, 2013). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is very difficult. In this work we attempt instead to use ~2600 observations of aerosol nitrate and ammonium concentrations, acquired chiefly from sampling aboard ships in the period 1995 - 2012, to assess the ACCMIP N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected four ocean regions (the eastern North Atlantic, the South Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Two of these regions are adjacent to the land networks used in the ACCMIP

  10. Particle size effect for metal pollution analysis of atmospherically deposited dust

    NASA Astrophysics Data System (ADS)

    Al-Rajhi, M. A.; Al-Shayeb, S. M.; Seaward, M. R. D.; Edwards, H. G. M.

    The metallic compositions of 231 atmospherically deposited dust samples obtained from widely-differing environments in Riyadh city, Saudi Arabia, have been investigated in relation to the particle size distributions. Sample data are presented which show that particle size classification is very important when analysing dust samples for atmospheric metal pollution studies. By cross-correlation and comparison, it was found that the best way to express the results of the metal concentration trend was as an average of particle ratios. Correlations between the six metals studied, namely Pb, Cr, Ni, Cu, Zn and Li, were found for every particle size (eight categories) and reveal that the metal concentrations increased as the particle size decreased. On the basis of this work, it is strongly recommended that future international standards for metal pollutants in atmospherically deposited dusts should be based on particle size fractions.