Science.gov

Sample records for atmospheric fluidized-bed coal

  1. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  2. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  3. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    SciTech Connect

    Not Available

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  4. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  5. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  6. Simulation and modeling of atmospheric fluidized bed combustors for high sulfur coals

    SciTech Connect

    Krishnan, R.P.; Daw, C.S.; Byrd, J.; Wells, J.W.

    1989-01-01

    This paper briefly summarizes the state-of-the-art in Atmospheric Fluidized Bed Combustion (AFBC) modeling and uses the Oak Ridge National Laboratory (ORNL)-Tennessee Valley Authority (TVA) AFBC steady-state model as an example to illustrate how some major modeling concerns have been addressed. Other recent models are briefly described and compared with the ORNL-TVA model. The reader is referred to the references cited for details on the assumptions and computational methods. 100 refs., 8 figs., 1 tab.

  7. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  8. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  9. Modeling of hydrodynamics of large scale atmospheric circulating fluidized bed coal combustors

    SciTech Connect

    Leretaille, P.Y.; Werther, J.; Briand, P.; Montat, D.

    1999-07-01

    A model for evaluation of the hydrodynamics of gas-solid flow in the riser of a circulating fluidized bed coal boiler is proposed. The 3D fields of the gas and solid velocities and of the solid concentration in the riser are estimated from measured data of the vertical pressure profile. The model includes semi-empirical laws developed on the basis of a set of experimental data on six industrial boilers ranging from 12 MWth to 700 MWth. Its relevance for laboratory scale risers was not tested. The estimation of flow of solids near the walls was fulfilled with a special care due to the influence of this flow on heat transfer. For the validation of the model, measurements of solid concentration with guarded capacitance probes were performed in the 250 MWe Stein Industrie-Lurgi type CFB boiler in Gardanne, France. Finally, an attempt to predict the vertical pressure profile on the riser, starting from the operating conditions (and based on an empirical evaluation of the variation of the downward flow of solid from local conditions) is presented and compared to experimental data.

  10. Plasma-Augmented Fluidized Bed Gasification of Sub-bituminous Coal in CO2-O2 Atmospheres

    NASA Astrophysics Data System (ADS)

    Lelievre, C.; Pickles, C. A.; Hultgren, S.

    2016-01-01

    The gasification of a sub-bituminous coal using CO2-O2 gas mixtures was studied in a plasma-augmented fluidized bed gasifier. Firstly, the coal was chemically characterized and the gasification process was examined using Thermogravimetric and Differential Thermal Analysis (TGA/DTA) in CO2, O2 and at a CO2 to O2 ratio of 3 to 1. Secondly, the equilibrium gas compositions were obtained using the Gibbs free energy minimization method (HSC Chemistry®7). Thirdly, gasification tests were performed in a plasma-augmented fluidized bed and the off-gas temperatures and compositions were determined. Finally, for comparison purposes, control tests were conducted using a conventional fluidized bed coal gasifier and these results were compared to those achieved in the plasma-augmented fluidized bed gasifier. The effects of bed temperature and CO2 to O2 ratio were studied. For both gasifiers, at a given bed temperature, the off-gas compositions were in general agreement with the equilibrium values. Also, for both gasifiers, an experimental CO2 to O2 ratio of about 3 to 1 resulted in the highest syngas grade (%CO + %H2). Both higher off-gas temperatures and syngas grades could be achieved in the plasma-augmented gasifier, in comparison to the conventional gasifier. These differences were attributed to the higher bed temperatures in the plasma-augmented fluidized bed gasifier.

  11. Plasma-Augmented Fluidized Bed Gasification of Sub-bituminous Coal in CO2-O2 Atmospheres

    NASA Astrophysics Data System (ADS)

    Lelievre, C.; Pickles, C. A.; Hultgren, S.

    2016-01-01

    The gasification of a sub-bituminous coal using CO2-O2 gas mixtures was studied in a plasma-augmented fluidized bed gasifier. Firstly, the coal was chemically characterized and the gasification process was examined using Thermogravimetric and Differential Thermal Analysis (TGA/DTA) in CO2, O2 and at a CO2 to O2 ratio of 3 to 1. Secondly, the equilibrium gas compositions were obtained using the Gibbs free energy minimization method (HSC Chemistry®7). Thirdly, gasification tests were performed in a plasma-augmented fluidized bed and the off-gas temperatures and compositions were determined. Finally, for comparison purposes, control tests were conducted using a conventional fluidized bed coal gasifier and these results were compared to those achieved in the plasma-augmented fluidized bed gasifier. The effects of bed temperature and CO2 to O2 ratio were studied. For both gasifiers, at a given bed temperature, the off-gas compositions were in general agreement with the equilibrium values. Also, for both gasifiers, an experimental CO2 to O2 ratio of about 3 to 1 resulted in the highest syngas grade (%CO + %H2). Both higher off-gas temperatures and syngas grades could be achieved in the plasma-augmented gasifier, in comparison to the conventional gasifier. These differences were attributed to the higher bed temperatures in the plasma-augmented fluidized bed gasifier.

  12. Fluidized bed catalytic coal gasification process

    SciTech Connect

    Euker, C.A. Jr.; Aquino, D.C.; Dunkleman, J.J.; Gouker, T.R.; Wesselhoft, R.D.

    1984-02-21

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50/sup 0/ C. and 250/sup 0/ C. in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  13. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  14. The atmospheric bubbling fluidized bed combustion of coal in the Netherlands, cleaner it can't be

    SciTech Connect

    van Gasselt, M.L.G. )

    1991-01-01

    The use of coal in atmospheric bubbling fluidized bed combustors for the generation of process steam is still a viable option for industrial applications world wide but interest in this as and electricity generation technology has also grown. The general advantages of AB-FBC are environmental acceptability and great fuel flexibility. As will be shown in this paper, it has a great potential for meeting possible future, even more stringent, regulations. Since 1979, Stork Boilers, TNO and Twente University have been carrying out a joint national research programme aimed at the design of industrial installations operating to stringent emission standards. This has led to the demonstration of a 90 MWth industrial boiler at the AKZO Chemical Works. The work has been under the control of NOVEM, the Netherlands Agency of Energy and the Environment. This body provides the financial resources on behalf of the Dutch Ministry of Economic Affairs by awarding annual contracts.

  15. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  16. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  17. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  18. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  19. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  20. (Pulsed atmospheric fluidized bed combustion (PAFBC))

    SciTech Connect

    Not Available

    1988-10-01

    This first Quarterly Technical Progress Report presents the results of work accomplished during the period April 19 through July 24,1988. The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. the program scope consisted of two tasks; the first was to establish preliminary feasibility by the use of theoretical and state-of-the-art information. This task was completed during the first quarter of the contract period and a topical report entitled, Pulsed Atmospheric Fluidized Bed combustion (PAFBC) - Preliminary Feasibility Study'' was prepared as a decision point to proceed'' deliverable in accordance with the terms of the contract. This first quarterly progress report therefore covers the contract activities subsequent to the approval of the feasibility study and the decision to proceed with the Task 2 effort. As the initial quarterly technical progress report, this document includes a subsection on background which will be omitted in subsequent reports. All effort during this period was devoted to the design and analysis of the PAFBC. Design drawings were prepared and fabrication and procurement initiated. Quotations were evaluated and a fabrication contract awarded. A site adjacent to the MTCI building was chosen for the installation of the PAFBC. Some ancillary components were purchased, renovated, and tested. Some delays in delivery of components have resulted in some schedule delay. It is anticipated that the program pace will accelerate as soon as parts are received and installation and assembly are initiated. 10 figs.,1 tab.

  1. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  2. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  3. Utilization of atmospheric fluidized bed combustion ash

    SciTech Connect

    Svendsen, R.L.

    1995-12-31

    The American Coal Ash Association reports that in 1993 over 88.5 million tons of coal combustion byproducts (ash, boiler slag and scrubber residue) was generated in the United States by utilities in traditional combustion systems. Historically, these combustion byproducts ({open_quotes}ash{close_quotes}) have been treated as a waste product and disposed of by placing in landfills. With increased environmental awareness and recognizing that the ash represents, in many cases, a usable product, increased emphasis has been placed on utilizing the ash. Today, approximately 22% of ash generated by the utilities is commercially utilized. The commercial use of each of the four major coal combustion byproducts varies, for instance about 22% of the fly ash is utilized while only about 6% of the scrubber residue is utilized. Not included in the above ash total is an estimate of about 11.5 million tons of atmospheric fluidized bed combustion (AFBC) ash that is generated each year by non-utility generators. Of this total, approximately 8.3 million tons are generated by plants from waste coal fuels. The majority of this waste coal fired plant ash is used in mine reclamation projects in Pennsylvania and West Virginia. For the balance of 3.2 million tons, roughly 600,000 tons is being utilized as a commercial product. This reduced usage AFBC residue as a commercial product, when compared to traditional coal combustion residue, results from unfamiliarity with the product due to the short time the material has been available in significant quantity. Before examining how AFBC ash can be beneficially utilized, one must understand some of the basic properties of the ash material and how it differs from ash generated from traditional coal combustion boilers.

  4. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  5. Simulation of fluidized bed coal combustors

    NASA Technical Reports Server (NTRS)

    Rajan, R.

    1979-01-01

    The many deficiencies of previous work on simulation of fluidized bed combustion (FBC) processes are presented. An attempt is made to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements: (1) devolatilization of coal and the subsequent combustion of volatiles and residual char; (2) sulfur dioxide capture by limestone; (3) NOx release and reduction of NOx by char; (4) attrition and elutriation of char and limestone; (5) bubble hydrodynamics; (6) solids mixing; (7) heat transfer between gas and solid, and solid and heat exchange surfaces; and (8) freeboard reactions.

  6. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  7. Steam generator with circulating atmospheric fluidized bed combustion

    NASA Astrophysics Data System (ADS)

    Wein, W.; Hoeffgen, H.; Maintok, K. H.; Daradimos, G.

    1982-08-01

    The combustion of coal in power plants by conventional combustion techniques is studied with emphasis on combustion in a circulating atmospheric fluidized bed (CFBC). The CFBC method stays half way between the classical fluidized bed with a well defined bed height and the pneumatic transport where particles and fluidizing gas have the same velocity. The main advantages of CFBC are: flexibility with respect to coal types; easy elimination of 80% of sulfur by mixing the coal with calcium carbonate to a molecular ratio Ca/S of about two; reduced nitrogen oxides production due to the low combustion temperature of 900 C; high steam production efficiency with the combustion degree exceeding 99%; high overall efficiency with no further desulfurizing being needed; easy regulation; high heat transmission rates (350 to 400 W/m2K) reducing exchange surfaces; small boiler building; and the possibility to build in one module a 300 MW unit.

  8. Pulsed atmospheric fluidized bed combustor apparatus and process

    SciTech Connect

    Mansour, Momtaz N.

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  9. Pulsed atmospheric fluidized-bed combustor development. Environmental Assessment

    SciTech Connect

    Not Available

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA`s have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International`s (MTCI) Baltimore, MD facility.

  10. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  11. Georgetown University atmospheric fluidized bed boiler cogeneration system

    SciTech Connect

    Podbielski, V.; Shaff, D.P.

    1991-08-01

    This report presents the results of one year of operation of the cogeneration system capability of the Georgetown University coal- fired, atmospheric fluidized-bed (AFB) boiler. The AFB was designed and installed under a separate contract with the US Department of Energy. The AFB project funded by DOE to demonstrate that high sulfur coal could be burned in an environmentally acceptable manner in a urban environment such as Georgetown. In addition, operational data from the unit would assist the industry in moving directly into design and construction of commercially warranted industrial size AFB boilers. 9 figs., 3 tabs.

  12. MONITORING STRATEGIES FOR FLUIDIZED BED COMBUSTION COAL PLANTS

    EPA Science Inventory

    Air and water monitoring strategies for commercial-size Fluidized Bed Combustion (FBC) coal plants are presented. This is one of five reports developing air and water monitoring strategies for advanced coal combustion (FBC), coal conversion (coal gasification and liquefaction), a...

  13. Polycyclic aromatic compounds in fluidized bed combustion of coal

    SciTech Connect

    Walsh, P.M.; Beer, J.M.; Biermann, K.; Chiu, K.S.

    1983-08-01

    Polycyclic aromatic compounds (PAC) have been determined in the gas and particulate effluents from fluidized bed combustion of coal, lignite, and oil shale by a number of investigators. A bibliography of the reports of these investigations is contained in a paper by Chiu, Walsh, Beer, and Biemann (1983). The concentrations of PAC in the effluents are often quite low, but depend upon the combustor configuration and operating conditions. The goal of the present investigation is to develop a mechanism consistent with measured rates of formation and destruction of PAC in atmospheric pressure fluidized bed combustion (AFBC), so that a rational approach may be taken to adjustment of conditions for minimization of PAC in the effluents. PAC are determined in samples taken from the freeboard (space above the bed), rather than from the exhaust, to observe the evolution of the PAC distribution within the combustor. Mass fractions of the most abundant PAC observed in the freeboard during AFBC of high volatile bituminous coal were reported by Chiu, et al (1983). Some correlation of the rates of disappearance of PAC with particle concentration was noted by Dutta, Chiu, Walsh, Beer, and Biemann (1983). In the present paper theoretical estimates of the rates at which PAC might be consumed by heterogeneous reactions are compared with experimental rates estimated from PAC profiles determined by Chiu et al (1983).

  14. STUDIES OF THE PRESSURIZED FLUIDIZED-BED COAL COMBUSTION PROCESS

    EPA Science Inventory

    The report gives results of studies of the environmental aspects of the pressurized fluidized-bed coal combustion (FBCC) process, using two experimental facilities: a new 218 kg coal/hr miniplant combustor (0.63 MW equivalent), and a 13 kg coal/hr batch combustion unit. Operating...

  15. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L. (Morgantown, WV)

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  16. Fluidized bed combustor and coal gun-tube assembly therefor

    DOEpatents

    Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  17. MATHEMATICAL MODEL FOR A FLUIDIZED-BED COAL GASIFIER

    EPA Science Inventory

    The report gives results of gasifying four fuels--a devolatilized Kentucky bituminous coal, a New Mexico subbituminous coal, a North Carolina peat, and a Texas lignite--with steam and oxygen in a pilot-scale fluidized-bed reactor. Experimental results were used to provide an eval...

  18. Metallic species derived from fluidized bed coal combustion. [59 references

    SciTech Connect

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  19. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  20. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  1. Characterization of coals for circulating fluidized bed combustion by pilot scale tests

    SciTech Connect

    Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de

    1995-12-31

    The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bed combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.

  2. Method for using fast fluidized bed dry bottom coal gasification

    DOEpatents

    Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  3. Method for using fast fluidized bed dry bottom coal gasification

    SciTech Connect

    Snell, G.J.; Kydd, P.H.

    1983-08-23

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500/sup 0/-1850/sup 0/ F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solid are returned through an injection nozzle together with additional steam and oxygen-containing gas an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges fr about 3-15 ft/sec and is maintained at 1600/sup 0/-200/sup 0/ F. temperature. This gasification arrangem provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  4. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    SciTech Connect

    Not Available

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  5. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  6. Modeling a fluidized-bed coal gasification reactor

    SciTech Connect

    Ma, R.P.

    1987-01-01

    A steady-state model has been developed to simulate the North Carolina State University pilot-scale fluidized bed coal gasification reactor. The model involves instantaneous devolatilization of coal in the free-board region and char combustion and gasification in the fluidized bed. A two-phase representation of the fluidized bed incorporates the phenomena of jetting, bubbling, slugging, and mass and heat transfer between phases. The model has the ability to predict both concentration and temperature profiles, the latter being useful in the prediction of possible clinker formation at hot spots within the bed. The model has been successfully used to simulate the gasification of a devoltailized Western Kentucky bituminous coal and a New Mexico subbituminous coal. Effects of the molar steam/carbon feed ratio, molar oxygen/carbon feed ratio, fluidized bed height, and pressure on gasifer performance have been studied parametrically with the two-phase model. The molar steam/carbon feed ratio has moderate negative effects on the reactor performance. The approach to water-gas shift equilibrium is favored by lowering the steam/carbon ratio and/or raising oxygen/carbon ratio. The effects of moderate change sin bed height and pressure on the gasifier performance are small, implying that the reactor can be operated at any bed height and pressure near the targeted operating conditions without significantly affecting the gasifier output. Organic sulfur distributions in a New Mexico subbituminous coal and a Texas lignite have been determined by a nonisothermal technique. A three-stage well-mixed bed model incorporating the hydrodesulfurization kinetics of Yergey et al. was used to correlate the evolution rate of H{sub 2}S from coal or char during gasification.

  7. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  8. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOEpatents

    Scott, Charles D. (Oak Ridge, TN); Strandberg, Gerald W. (Farragut, TN)

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  9. Fluidized-bed bioreactor process for the microbial solubilization of coal

    SciTech Connect

    Scott, C.D.; Strandberg, G.W.

    1989-07-11

    This patent describes a fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  10. Coal-fired CAES system using fluidized bed combustion

    SciTech Connect

    Moskowitz, S.; Schaeffer, R.

    1983-11-01

    Utility requirements for peaking power can be addressed with coal through the unique marriage of the compressed air energy storage and fluidized bed combustion technologies. This paper discusses the results of an evaluation of a pressurized fluidized bed combustion system at air storage pressures from 27 to 68 atm. A conceptual design of the PFBC configuration in a CAES system is presented. Major components of the system are identified as either state-of-the-art or requiring further R and D. The performance of the compressed air energy storage system with an efficiency of 83.4% (based on coal input energy) is presented. The effects of recovery of rejected heat are discussed also.

  11. Planning, construction and operation of the 35 MW sub th-test facility Flingern for firing bituminous coal in an atmospheric fluidized bed furnace

    NASA Astrophysics Data System (ADS)

    Krischke, H. G.; Chalupnik, R. W.; Masuch, H. P.

    1982-11-01

    Clean combustion of high ash and high sulfur coal with the boiler, retrofitted from traveling grate stoker to FBC was demonstrated. Within 4,200 operating hours 14,500 t of bituminous coal ranking from high grade to low grade were fired, generating 105,000 t of steam at 17 bar and 400 C. During the 18 month test operation important knowledge concerning process and systems to burn coal in the fluidized bed were gained. The technical feasibility in industrial scale was demonstrated.

  12. Atmospheric fluidized bed combustion advanced concept system. Final report

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  13. Physicochemical characterizations of limestone for fluidized-bed coal combustion

    SciTech Connect

    Fuller, E.L. Jr.; Yoos, T.R. III; Walia, D.S.

    1981-05-01

    This study is an investigation of the physicochemical characteristics of three limestone samples, Quincy limestone (-20 + 60), Franklin limestone (-12 + 30), and Franklin limestone (-6 + 16), currently being tested at Oak Ridge National Laboratory for use in a fluidized-bed coal combustion unit. By correlating the chemistry, mineralogy, and surface area of these samples with empirical data obtained at Argonne National Laboratory, the sulfur capture ability and performance of these limestones can be loosely predicted. X-ray fluorescence and neutron activation analysis revealed a very high calcium content and very low concentrations of other elements in the three samples. X-ray diffraction patterns and petrographic examination of the limestone grains detected essentially no dolomite in the Quincy limestone or the fine Franklin limestone samples. The coarse Franklin limestone sample showed dolomite to be present in varying amounts up to maximum of 2.75%. Limited surface chemistry investigations of the samples were undertaken. Limestone and dolostone resources of the Tennessee Valley Authority region are widespread and abundant, and judged sufficient to meet industrial demand for many years. No problems are anticipated in securing limestone or dolostone supplies for a commercial fluidized-bed combustion plant in the Tennessee Valley Authority region. Transportation facilities and costs for limestone or dolostone will influence the siting of such a commercial fluidized-bed combustion plant. The most promising location in the Tennessee Valley Authority region at this time is Paducah, Kentucky.

  14. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  15. Desulfurization of Coal in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Maddury, R.; Kalvinskas, J.

    1985-01-01

    Experimental dry chemical process for removing sulfur from coal-and thereby reducing harmful sulfur emissions from coal-fired electric powerplants-promises more economical and effective than older wet chemical processes. New process faster, requires smaller amounts of chemical reagents, and produces no liquid effluents, which poses disposal problem.

  16. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    SciTech Connect

    Not Available

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  17. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

  18. Utilization of atmospheric fluidized bed combustion ash

    SciTech Connect

    Svendsen, R.L.

    1994-12-31

    The American Coal Ash Association reports that in 1992 over 81 million tons of ash and scrubber residue was generated in the United States by utilities from coal combustion in traditional combustion systems. Historically, this ash and scrubber residue has been treated as a waste product and disposed of by placing in landfills. With increased environmental awareness and recognizing that the ash represents, in many cases, a usable product, increased emphasis has been placed on utilizing the ash. Today, approximately 25% of ash and scrubber residue generated is commercially utilized.

  19. Advanced atmospheric fluidized-bed combustion design. Final report

    SciTech Connect

    Rudnicki, M.I.; Jassowski, D.M.; Mah, C.S.; Newton, R.A.

    1985-01-01

    In the process of the design study, the UAFBC system configuration has been evolved and simplified. The system combines a self-cleaning distributor/grate section (which can tolerate large coal particles) with a fluidized bed. Proper control of the distributor/grate and fluidized-bed provides high turndown capability. For maximum carbon utilization, an afterburner is provided. NO/sub x/ control is achieved by proper combustion staging and temperature control. For SO/sub x/ control, an entrained-bed sulfur scrubber, which uses small sorbent particles and long solids stay times yields efficient sulfur capture with a low calcium/sulfur ratio. The Aerojet design approach is to provide enough functional separation in the system to allow the stringent design goals to be satisfied compatibly. Various known state-of-the-art subsystems - self cleaning distributor/grate, fluidized-bed combustor, fines afterburner, entrained-bed dry scrubber - have been integrated to make this possible. The coordinated operation of the system elements is accomplished through the use of modern microprocessor controls. In this way, close control is obtained over the mechanisms of the combustion, sulfur scrubbing and particle cleanup processes without undue complexity. This high degree of process control permits development of a combustor which should exceed present environmental standards for NO/sub x/, SO/sub x/, and particulates, while allowing operation with an 8:1 turndown using a wide variety of fuels. In the design study, a number of configurations were considered and analyzed by computer simulation. Performance projections were made for various power levels and, in the case of the bench-scale system, for three different coal feeds. Greer limestone (75 wt % CaCO/sub 3/) was used as the reference sulfur sorbent. The results showed potentials for rapid commercialization of small (50,000 lb/h steam) UAFBC systems. 56 refs, 79 figs., 35 tabs.

  20. Experience with atmospheric fluidized bed gasification of switchgrass

    SciTech Connect

    Smeenk, J.; Brown, R.C.

    1998-12-31

    Switchgrass was gasified in a bubbling fluidized bed reactor rated at 800 kW (2.75 MMBtu/hr) thermal input and operating at atmospheric pressure. A combustible gas with higher heating value varying between 4.2--5.9 MJ/Nm{sup 3} (114--160 Btu/scf) was produced. Carbon conversion was approximately 85%. Difficulties in feeding high moisture switchgrass inhibited smooth reactor operation. Several feed systems for switchgrass were tried with varying degrees of success. The results of gasification trials using switchgrass as fuel are described.

  1. ENVIRONMENTAL ASSESSMENT: SOURCE TEST AND EVALUATION REPORT - B AND W/ALLIANCE ATMOSPHERIC FLUIDIZED-BED COMBUSTOR

    EPA Science Inventory

    The report gives results of a comprehensive emission sampling and analysis of a pilot-scale, atmospheric-pressure, coal-fired, fluidized-bed combustor (AFBC). Screening data on organic and inorganic pollutants and indications of biological activity were obtained. The Babcock and ...

  2. Coal and biomass co-combustion on fluidized bed: Comparison of circulating and bubbling fluidized bed technologies

    SciTech Connect

    Armesto, L.; Cabanillas, A.; Bahillo, A.; Segovia, J.J.; Escalada, R.; Martinez, J.M.; Carrasco, J.E.

    1997-12-31

    The main objective of the proposed paper is to demonstrate the technical feasibility of fluidized bed as a clean technology for the combustion of low grade coal/biomass blends. The raw materials used as fuels in the tests are different blends of the following materials: refuse coal with a heating value of 3,658 kJ/kg (LHV, db) and 79.65% ash content; low grade coal--lignite with a heating value of 19952 kJ/kg (LHV, db), a sulfur content of 10.32% (db) and 23.70% ash content; and biomass--forestry wastes from wood cleaning whose heating value is 19555 kJ/kg (LHV, db). An absorbent, limestone, has been used for reducing sulfur emissions. Co-combustion tests, at the pilot plant level, have been carried out by using two fluidized bed technologies, circulating and bubbling. The object of this paper is to study, in an energy and emission point of view, the clean and efficient use of these resources. The paper collects, analyses and compares combustion test data.

  3. Release of nitrogen precursors from coal and biomass residues in a bubbling fluidized bed

    SciTech Connect

    P. Abelha; I. Gulyurtlu; I. Cabrita

    2008-01-15

    This work was undertaken with the aim of quantifying the relative amounts of NH{sub 3} and HCN released from different residues during their devolatilization under fluidized bed conditions. The results were compared with data collected for bituminous coals of different origin. The relation between amounts of HCN and NH{sub 3} released and the levels of NOX and N{sub 2}O formed during cocombustion was also addressed. The partitioning of nitrogen between volatiles and char was also quantified. The pyrolysis studies were undertaken in a small fluidized bed reactor of 80 mm of ID and 500 mm high using an inert atmosphere (N{sub 2}). The HCN and NH{sub 3} were quantified by bubbling the pyrolysis gases in absorbing solutions which were subsequently analyzed with selective electrodes. The combustion studies were carried out on a pilot installation. The fluidized bed combustor is square in cross section with each side being 300 mm long. There is secondary air supply to the freeboard at different heights to deal with high volatile fuels as almost all waste materials are. The temperatures in the bed and in the freeboard and that of the flue gases leaving the reactor were continuously monitored. The results obtained suggest that, while coal releases nitrogen mostly as HCN, residues like RDF and sewage sludge give out fuel-N in greater quantities as NH{sub 3}. Residues at fluidized bed combustion (FBC) temperatures release more than 80% of the fuel-N with the volatiles. The NH{sub 3} evolved during pyrolysis acted as a reducing agent on NOX emissions. The presence of calcium significantly reduces the emission of N{sub 2}O probably by interfering with HCN chemistry. With high amounts of residues in the fuel mixture, the relative importance of char on the nitrogen chemistry substantially decreases. By using cocombustion, it is possible to reduce fuel-N conversion to NOX and N{sub 2}O, by tuning the amounts of coal and residue in the mixture. 29 refs., 18 figs., 3 tabs.

  4. MINIPLANT STUDIES OF PRESSURIZED FLUIDIZED-BED COAL COMBUSTION: THIRD ANNUAL REPORT

    EPA Science Inventory

    The report presents further results of studies of the environmental aspects of the pressurized fluidized-bed coal combustion process, using the 218 kg coal/hr 'miniplant' continuous-combustion/sorbent-regeneration system (0.63 MW equivalent), and a 13 kg coal/hr bench-scale syste...

  5. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    SciTech Connect

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M.; Keener, H.M.; Webner, R.L.

    1997-03-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  6. Fluidized bed combustion of low-grade coal and wastes: Research and development

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M.; Dobkin, S.M.; Telegin, E.M.

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  7. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of working in support of development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali m...

  8. SUPPORTIVE STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of studies supporting the development of atmospheric and pressurized fluidized-bed combustion (FBC) of coal. It includes laboratory and bench-scale studies to provide needed information on combustion optimization, regeneration process development, solid w...

  9. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  10. Fuel and ash characterization of Indian coal for their suitability in fluidized bed combustions

    SciTech Connect

    Palit, A.; Mandal, P.K.

    1995-12-31

    The fluidized bed combustion (FBC) technology is now fully recognized and units with high capacity are in operation the world over. In the Indian context, now is the time to exploit the fluidized bed technology for electric power generation, which may nurture the poor grade Indian coal in a better way as compared to that of pulverized fuel fired system. The present paper deals with Indian coals and ash characterization and the effect of various coal properties on combustion in a fluidized bed like moisture, mineral/ash content, volatile matter, maceral structure (petrographic properties), swelling/caking index, ash properties including ash fusion temperature, etc. and their critical discussion based on experimental investigations with Indian coals and also their suitability in FBC. In addition, the experience with a 10 MW FBC unit in India with problems and parameters, some experimental investigations on suitability of Lalmatia coal (Rajmahal coal field) in fluidized bed combustion and pollutant formations vis-a-vis control (NOx, SOx, etc.) have also been discussed.

  11. Characteristics of Pyrolytic Topping in Fluidized Bed for Different Volatile Coals

    NASA Astrophysics Data System (ADS)

    Xiong, R.; Dong, L.; Xu, G. W.

    Coal is generally combusted or gasified directly to destroy completely the chemical structures, such as aromatic rings containing in volatile coals including bituminite and lignite. Coal topping refers to a process that extracts chemicals with aromatic rings from such volatile coals in advance of combustion or gasification and thereby takes advantage of the value of coal as a kind of chemical structure resource. CFB boiler is the coal utilization facility that can be easily retrofitted to implement coal topping. A critical issue for performing coal topping is the choice of the pyrolytic reactor that can be different types. The present study concerns fluidized bed reactor that has rarely been tested for use in coal topping. Two different types of coals, one being Xiaolongtan (XLT) lignite and the other Shanxi (SX) bituminous, were tested to clarify the yield and composition of pyrolysis liquid and gas under conditions simulating actual operations. The results showed that XLT lignite coals had the maximum tar yield in 823-873K and SX bituminite realized its highest tar yield in 873-923K. Overall, lignite produced lower tar yield than bituminous coal. The pyrolysis gas from lignite coals contained more CO and CO2 and less CH4, H2 and C2+C3 (C2H4, C2H6, C3H6, C3H8) components comparing to that from bituminous coal. TG-FTIR analysis of tars demonstrated that for different coals there are different amounts of typical chemical species. Using coal ash of CFB boiler, instead of quartz sand, as the fluidized particles decreased the yields of both tar and gas for all the tested coals. Besides, pyrolysis in a reaction atmosphere simulating the pyrolysis gas (instead of N2) resulted also in higher production of pyrolysis liquid.

  12. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  13. Fluidized bed combustion of solid organic wastes and low-grade coals: Research and modeling

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Stanchits, L.K.

    1995-12-31

    Experimental studies were carried out to investigate devolatilization and combustion of single spherical particles of wood, hydrolytic lignin from ethanol production, leather processing sewage sludge, and low-grade Belarusian brown coals in a fluidized bed of sand. A two-phase model of fluidized bed combustion of biowaste is proposed. The model takes into account combustion of both volatiles and char in the bed as well as in the freeboard. Experimentally obtained characteristics of devolatilization and char combustion are used as parameters of the model proposed.

  14. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF COAL-FIRED FLUIDIZED-BED COMBUSTION SYSTEMS

    EPA Science Inventory

    The report evaluates potential pollutants which could be generated in coal-fired fluidized-bed combustion (FBC) processes. The primary emphasis is on organic compounds, trace elements, inorganic compounds (other than SO2 and Nox), and particulates. Using available bench scale or ...

  15. PROCESS WASTEWATER TREATABILITY STUDY FOR WESTINGHOUSE FLUIDIZED-BED COAL GASIFICATION

    EPA Science Inventory

    The paper discusses a joint program (The U.S. Department of Energy, the Gas Research Institute, and the U.S. Environmental Protection Agency) to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a fluidized-bed coal ...

  16. Materials performance in coal-fired fluidized-bed combustion environments

    SciTech Connect

    Natesan, K.

    1993-07-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed for the generation of electricity and process heat has been in progress for a number of years. This paper addresses some of the key components in these systems, materials requirements/performance, and areas where additional effort is needed to improve the viability of these concepts for electric power generation.

  17. FIRST TRIALS OF CHEMICALLY ACTIVE FLUIDIZED-BED (CAFB) PILOT PLANT ON COAL

    EPA Science Inventory

    The report gives results of a minirun, carried out on a 0.75-MWe continuous, chemically active fluidized-bed (CAFB) pilot plant during July-August 1976, as part of a program to extend the CAFB process to operate on coal. After 8.5 hours of gasification on Texas lignite and Illino...

  18. ENVIRONMENTAL ASSESSMENT OF THE FLUIDIZED-BED COMBUSTION OF COAL: METHODOLOGY AND INITIAL RESULTS

    EPA Science Inventory

    The paper discusses a program being conducted by the U.S. Environmental Protection Agency (EPA), aimed at complete environmental assessment (EA) of the fluidized-bed combustion (FBC) of coal. It reviews the EA methodology being developed by EPA: identification of current technolo...

  19. CERAMIC FILTER TESTS AT THE EPA/EXXON PFBC (PRESSURIZED FLUIDIZED BED COAL COMBUSTION) MINIPLANT

    EPA Science Inventory

    The paper describes the performance of the Acurex ceramic bag filter operating at temperatures up to 880C and pressures up to 930 kPa on particulate-laden flue gas from a pressurized fluidized-bed coal combustion (PFBC) unit on a slipstream of gas taken after the second stage cyc...

  20. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  1. Mild gasification of Usibelli coal in an inclined fluidized-bed reactor

    SciTech Connect

    Merriam, N.W.; Thomas, K.P.; Cha, C.Y.

    1991-02-01

    Results of mild gasification tests of minus 16-mesh Usibelli coal in an inclined fluidized-bed reactor are described in this report. The minus 16-mesh fraction was separated from the coal by screening. The coal was dried to zero moisture content, and about 2 wt % of the volatiles was removed as gas by partial decarboxylation using a 100-lb/hr inclined fluidized-bed dryer. The dried coal was subjected to mild gasification at maximum temperatures of 1050 to 1250{degrees}F (566 to 677{degrees}C) and feed rates of 7.5 lb/hr while using a once-through flow of carbon dioxide as fluidizing gas in a 1-inch-wide, inclined fluidized-bed reactor. Mild gasification of the dried coal resulted in production of 44 to 56 wt % of the dried coal as char, 10 to 13 wt % as liquids, 17 to 28 wt % as gas, and 8 to 21 wt % as fines. The yield of moisture- and ash-free (MAF) liquids varied from 11.4 to 14.2 wt % of the dried coal feed. Chemical analysis was carried out on these products.

  2. [Pulsed atmospheric fluidized bed combustion (PAFBC)]. Technical progress report, May--July 1988

    SciTech Connect

    Not Available

    1988-10-01

    This first Quarterly Technical Progress Report presents the results of work accomplished during the period April 19 through July 24,1988. The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. the program scope consisted of two tasks; the first was to establish preliminary feasibility by the use of theoretical and state-of-the-art information. This task was completed during the first quarter of the contract period and a topical report entitled, ``Pulsed Atmospheric Fluidized Bed combustion (PAFBC) - Preliminary Feasibility Study`` was prepared as a ``decision point to proceed`` deliverable in accordance with the terms of the contract. This first quarterly progress report therefore covers the contract activities subsequent to the approval of the feasibility study and the decision to proceed with the Task 2 effort. As the initial quarterly technical progress report, this document includes a subsection on background which will be omitted in subsequent reports. All effort during this period was devoted to the design and analysis of the PAFBC. Design drawings were prepared and fabrication and procurement initiated. Quotations were evaluated and a fabrication contract awarded. A site adjacent to the MTCI building was chosen for the installation of the PAFBC. Some ancillary components were purchased, renovated, and tested. Some delays in delivery of components have resulted in some schedule delay. It is anticipated that the program pace will accelerate as soon as parts are received and installation and assembly are initiated. 10 figs.,1 tab.

  3. Some special features of combusting the coal-water fuel made of Belarussian brown coals in the fluidized bed

    NASA Astrophysics Data System (ADS)

    Borodulya, V. A.; Buchilko, E. K.; Vinogradov, L. M.

    2014-07-01

    This paper deals with the special features of combusting the coal-water fuel prepared on the basis of Belarussian brown coals and anthracite culm (Ukraine) in a fluidized bed. The sequence and the duration (calculated from the mathematical model being suggested) of the stages of the combustion of the coal-water fuel depending on the type of source solid fuel and fluidized bed temperature were experimentally confirmed. The temperature and time dependences of the content of sulfur, nitrogen, and carbon oxides in flue gases were studied.

  4. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    PubMed

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal. PMID:25402169

  5. Modeling the biological solubilization of coal in a liquid fluidized-bed reactor

    SciTech Connect

    Wang, Y.; Petersen, J.N.; Kaufman, E.N.

    1995-12-31

    A fully predictive mathematical model has been developed to describe the behavior of liquid fluidized beds in which the biological solubilization of coal particles is occurring. This model is based on the particle mass-transport mechanisms of dispersion and convection, and accounts for the changes in the size of the particles as they are solubilized. Two different cases are compared: one in which the bed is replenished with large coal particles and one in which small particles are fed to the bed. The simulation results indicate that replenishment with small coal particles enhances the overall solubilization rate without significantly increasing the mass elutriated.

  6. Temperatures of coal particle during devolatilization in fluidized bed combustion reactor

    SciTech Connect

    Komatina, M.; Manovic, V.; Saljnikov, A.

    2006-11-15

    The purpose of this study was to investigate the thermal behavior of coal during devolatilization in fluidized bed. Temperatures in the center of single coal particle were measured by thermocouple. Two coals were tested (brown coal Bogovina and lignite Kosovo), using dry coal particle, shaped into spherical form of diameters 7 and 10 mm, in temperature range from 300 to 850{sup o}C. Unsteady behavior of coal particle during heating and devolatilization in fluidized bed was described by a model that takes into account heat transfer between bed and particle surface, heat transfer through particle and an endothermic chemical reaction of first-order. Based on the mathematical model analysis and compared with experimental results, values of heat conductivity {lambda}{sub C} and heat capacity (C-p) of coal were determined. The best agreement was obtained for constant thermal properties, for brown coal {lambda}{sub C} = 0.20 W/mK and C{sub p} = 1200 J/kgK and for lignite {lambda}{sub C} = 0.17 W/mK and C-p = 1100 J/kgK.

  7. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C. (Windsor, CT)

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  8. Emissions of N{sub 2}O in fluidized bed combustion of coal

    SciTech Connect

    Lin, M.; Kulasekaran, S.; Ignowski, J.M.; Linjewile, T.M.; Agarwal, P.K.

    1999-07-01

    This study presents a new approach for examination of the mechanisms of formation and destruction of N{sub 2}O in single char spheres burning in an incipiently fluidized bed, which is thought to represent the emulsion phase of a bubbling bed. Char particles from three commercially available coals were investigated. These included a subbituminous coal from the Skull coal mine in Kemmerer, Wyoming; a bituminous coal from the Hanna basin in Wyoming; and a subbituminous coal from the Cyprus Foidel Creek mine in Colorado. A spherical char particle 12 mm in diameter, embedded with a thermocouple in its center, was attached to the tip of a gas-sampling probe. The char-probe assembly was immersed into the center of a hot incipiently fluidized bed. Combustion gases escaping from the surface of the burning char particle were sampled and analyzed for N{sub 2}O, NO, NO{sub 2}, CO, and CO{sub 2} as a function of time by means of a Fourier Transform Infrared (FTIR) Spectrometer. In addition, combustion of batches of char was conducted in the fluidized bed operated in a bubbling mode. Both single particle and batch combustion experiments were conducted using silica sand particles of 200 and 1,000 {micro}m size at bed temperatures ranging from 773 to 1,173 K. Operating variables which influence particle temperature and, hence the rates of formation and destruction of N{sub 2}O and NO, were examined. Char particle temperature, observed to be up to 400 K higher than the bed temperature, was found to be the principal influence on the emissions of both N{sub 2}O and NO{sub x}. In combustion of batches, emissions of N{sub 2}O seemed to depend not only on the bed temperature, but also on the initial char particle size.

  9. Air-dense medium fluidized bed dry beneficiation of coal: Results of 50 MTPH demonstration plant

    SciTech Connect

    Chen Qingru; Yang Yi; Liang Chuncheng; Tao Xiuxiang; Luo Zhenfu

    1993-12-31

    This paper presents the performance results of the 50 MTPH Coal Dry Beneficiation Demonstration Plant constructed in the Heilongjiang Province of northeastern China. The separating media used in this process consists of an air/dense medium (magnetite, or magnetic pearls, a remnant of coal combustion in power plants) fluidized bed controllable at specific gravities ranging from 1.3 to 2.0. That portion of the feedstock with a specific gravity less than the separating gravity floats to the top of the fluidized bed where it is recovered at one end of the vessel. That portion of the feedstock with a specific gravity higher than the separating gravity sinks and is discharged from the other end of the vessel. The process has separating efficiencies similar to a heavy media vessel or cyclone with the additional advantages of (1) can be utilized in an arid region containing insufficient water supply, (2) results in a dry product requiring no additional dewatering and coal slime treatment, and (3) as result of air flow will remove some surface moisture present in the feedstock. As a result of the magnetite used in the fluidized bed and the subsequent downstream recovery of this magnetite, the current demonstration plant utilizes a 6mm bottom size. The topsize of the feed is a function of the size of the system and the site specific ash liberation requirement. The Demonstration Plant commenced operation in September 1992. The mechanical processes of the system including coal feeding, sizing, gravity separation/beneficiation, and medium recovery, functioned as anticipated from the 10 MTPH pilot plant. Preliminary results with separating gravities in the range of 1.3--2.0 showed a probable error as low as 0.05 with magnetite losses of 0.5 kg/MT of feed.

  10. Capture of toxic metals by vaious sorbents during fluidized bed coal combustion

    SciTech Connect

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1995-12-31

    This study investigated the potential of employing suitable sorbents to capture trace metallic substances during fluidized bed coal combustion. The objectives of the study were to demonstrate the capture process, identify effective sorbents, and characterize the capture efficiency. Experiments were carried out in a 25.4 mm (1 ``) quartz fluidized bed coal combustor enclosed in an electric furnace. In an experiment, a coal sample from the DOE Coal Sample Bank or the Illinois Basin Coal Sample Bank was burned in the bed with a sorbent under various combustion conditions and the amount of metal capture by the sorbent was determined. The metals involved in the study were arsenic, cadmium, lead, mercury and selenium, and the sorbents tested included bauxite, zeolite and lime. The combustion conditions examined included bed temperature, particle size, fluidization velocity (percent excess air), and sorbent bed height. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through performing chemical equilibrium analyses based on the minimization of system free energy.

  11. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P. (Windsor, CT); Matthews, Francis T. (Poquonock, CT)

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  12. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    SciTech Connect

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-08-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented.

  13. PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor

    SciTech Connect

    Peltier, R.

    2007-08-15

    The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

  14. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    SciTech Connect

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-01-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  15. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    SciTech Connect

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-03-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  16. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  17. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  18. Tennessee Valley Authority atmospheric fluidized-bed combustor simulation interim annual report, January 1-December 31, 1979

    SciTech Connect

    Wells, J.W.; Krishnan, R.P.

    1980-10-01

    This report contains a detailed description of the work performed during 1979 for the Tennessee Valley Authority in support of the TVA Fluidized-Bed Combustor (FBC) Demonstration Plant Program. The work was carried out under task 4, modeling and simulation of atmospheric fluidized-bed combustor (AFBC) systems. The overall objective of this task is to develop a steady-state mathematical model with the capability of predicting trends in bed performance under various feed and operating conditions. As part of this effort, three predictive subprograms (subcodes) were developed during 1979: (1) bubble-growth subcode, (2) sorbent-coal ash elutriation and attrition subcode, and (3) coal combustion subcode. These codes, which are currently being tested with experimental data, are capable of predicting how some of the important operating variables in the AFBC affect its performance. After testing against field data, these subcodes will be incorporated into an overall AFBC system code, which was developed earlier at ORNL for analysis of the Department of Energy (DOE) Component Test and Integration Unit (CTIU) at Morgantown, West Virginia. In addition to these predictive subcodes, the overall system code previously developed for the CTIU is described. The material balance is closed, based on vendor-supplied data. This balance is then used to predict the heat transfer characteristics of the surfaces (submerged and freeboard) in the AFBC. Existing correlations for heat transfer in AFBC are used in the code along with thermophysical properties of the various streams.

  19. Burn coal cleanly in a fluidized bed - The key is in the controls

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.

    1979-01-01

    The fluidized-bed combustion (FBC) process produces few sulfur emissions, and can burn wood, municipal solid waste as well as every kind of coal available in the U.S. The presurized, coal-burning fluidized-bed reactor at NASA's Lewis Research Center is described, together with a discussion of the operating results. The FBC system at Lewis, having a completely instrumented reactor, is used to test turbine blade alloys for future power plant applications. With the same type of coal and limestone used in the first testing phase covering 136 hours, it was found that all NOx values were below the EPA standard of 0.7 lb/MBtu, whereas the maximum observed level of SO2 was above the EPA standard of 1.3 lb/MBtu, but with the average SO2 level, however, only 0.63 lb/MBtu. Unburned hydrocarbon and CO levels were very low, indicating combustion efficiencies of close to 99% in almost all tests. Testing is now underway using high temperature cyclones and gas turbine to eliminate erosion and corrosion effects which were observed after the initial tests on the turbine and blades.

  20. Interim operations report for atmospheric fluidized-bed combustion conversion at Northern States Power Company

    SciTech Connect

    Thimsen, D. )

    1991-03-01

    Northern States Power Company converted its Black Dog Station Unit No. 2 boiler from a front wall fired pulverized coal boiler to a bubbling atmospheric fluidized bed combustor (AFBC) boiler. The resulting unit was uprated from 85 MWe to 130 MWe burning western subbituminous coal. This report describes the AFBC operating and maintenance experience in the startup period from initial operation in June 1986 through March 1989 when a turbine oil fire caused a forced outage of 8 months. A brief review of the construction history is given in Section 1. Section 2 chronicles the AFBC operation. Section 3 describes how the boiler is restarted under several conditions. The performance history of the systems in the AFBC that are peculiar to the AFBC process or directly impacted by the AFBC process are described in detail in Section 4. The AFBC conversion at the Black Dog station has met nearly all of the original design objectives: (1) The unit can operate at rated output of 130 MWe burning western subbituminous coal, (2) The design life of the unit has been extended 25 years, (3) It has been shown that the EPA New Source Performance Standards for NO{sub x} and SO{sub 2} can be met with no flue gas treatment, (4) Operators have conducted over 200 routine daily unit restarts confirming the ability of the unit to serve in daily cycling mode, and (5) A variety of fuels have been successfully burned in the AFBC. The only objective that remains partially achieved is routine operation at full load. The boiler/turbine/generator have been shown to be fully capable of operation at full load, but the electrostatic precipitators (which were largely unchanged during the retrofit) have been inadequate to allow full load operation while remaining within permitted opacity and particulate emissions. The unit is currently dispatched in daily cycling service and is limited to operation below 106 MWe by its emissions control permit. 12 refs., 34 figs., 6 tabs.

  1. The simulation of influence of different coals on the circulating fluidized bed Boiler's combustion performance

    NASA Astrophysics Data System (ADS)

    Yong, Yumei; Lu, Qinggang

    2003-05-01

    The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.

  2. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    SciTech Connect

    Dennis, R.A.

    1990-08-01

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  3. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-01

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. PMID:26897573

  4. Nitric oxide reduction in the freeboard of a fluidized bed coal combustor

    SciTech Connect

    Walsh, P.M.; Chaung, T.Z.; Dutta, A.; Beer, J.M.; Sarofim, A.F.

    1982-01-01

    Nitric oxide mole fractions of 650 to 1250 ppM were observed in the combustion products near the bed surface during fluidized combustion of bituminous coal. Reduction of NO to N/sub 2/ in the freeboard above the bed decreased NO to the characteristically low levels (80 to 400 mol ppM) observed in the exhaust from fluidized bed combustors. The experimentally measured variations of NO with height in the freeboard are compared with the predictions of a semi-empirical model in which NO reduction is assumed to occur by reaction with entrained coal char. The concentration of char particles is determined from measured bed properties using mechanistic models for the initial particle flux at the bed surface and the motion of particles in the freeboard. The nitric oxide reduction predicted by the model is in good agreement with the reduction observed in five of the six sets of measurements.

  5. Continuous high pressure lump coal feeder design study. [fluidized bed processors

    NASA Technical Reports Server (NTRS)

    Fields, S. F.

    1977-01-01

    A continuous lump coal dry feeder was developed for a pressurized fluidized bed combustor. The approach was to adapt the commercially available Fuller-Kinyon pump to feed coal against a pressure differential of 100 psi or more. The pump was modified and tests performed at various pressure differentials, with differently pitched screws, various screw rotational speeds, and various seal lengths and configurations. Successful operation of the modified Fuller-Kinyon pump was generally limited to pressure differentials of 60 psi or less. Although the results are not conclusive, test data and observations were made that indicated that higher pressure differentials could be attained by further modifications of the test setup. In particular, it is recommended that further testing be performed after replacing the 40-horsepower pump motor presently in the test setup with a motor having a significantly high power rating (thereby allowing pump operation with longer seals and at higher pressure differentials than those tested so far).

  6. Hot corrosion of B-1900 superalloy by simulated fluidized bed coal combustor deposits

    SciTech Connect

    Stewart, S.F.C.; Shatynski, S.R.

    1982-10-01

    Calcium sulfate deposits in fluidized bed coal combustors are thought to contribute to heat transfer tube hot corrosion observed in test beds. Although Na/sub 2/SO/sub 4/ caused catastrophic hot corrosion of B-1900 superalloy at 900/sup 0/C in air, the corrosion due to CaSO/sub 4//Na/sub 2/SO/sub 4/ mixtures resembled that of simple oxidation, both in scale appearance and kinetics. High scale calcium content suggested a solid state reaction with CaSO/sub 4/ that did not compromise the protective scale. Although trace vanadium pentoxide added to a high percentage CaSO/sub 4/ mixture was shown to be innocuous, trace lead oxide caused catastrophic hot corrosion. However, the mechanism is unknown. This suggests that the latter coal impurity warrants attention as a possible severe corrosive threat, although CaSO/sub 4/ itself appears innocuous in an oxidizing environment.

  7. Attrition and elutriation phenomena in industrial atmospheric fluidized bed combustors

    SciTech Connect

    Wells, J.W.; Krishnan, R.P.

    1980-01-01

    Attrition and elutriation in large-scale AFBC systems depend on the design of the feed system, bed hydrodynamics and freeboard cooling. At present, no generalized correlation exists to predict these effects. It is suggested that routine solid samples for size analysis be taken before the solids enter the bed. In this way, correlations can be developed to predict the attrition in the feed system and in the bed separately. Secondly, data on the solids loading in the freeboard should be taken and related to bubble size, bubble velocity, bubble frequency and bed expansion. Such information can be obtained in a cold bed for lack of measuring techniques in hot beds. Accurate rate expressions for attrition and elutriation specific to coal ash, limestone, and char can then be developed to predict the performance of AFBC systems.

  8. Analysis and characterization of atmospheric fluidized-bed-combustion agglomerates. Final report

    SciTech Connect

    Brekke, D.W.; Karner, F.R.

    1982-06-01

    The combustion of high-sodium low-rank coal in an Atmospheric Fluidized Bed Combustor (AFBC) can produce agglomeration of varying severity. Agglomerates and bed materials produced by a 0.2 m/sup 2/ AFBC were studied by polarized light microscopy, scanning electron microscopy, and electron microprobe analysis of thin sections. Bulk samples were studied using x-ray diffraction and x-ray fluorescence techniques. A physio-chemical or geochemical approach was used to characterize the materials and to postulate a mechanism of formation of the agglomerates. Quartz bed materials typically have nodular ash coatings with a matrix of finer sulfate ash richer in calcium and sulfur. Quartz bed agglomerates have additional calcium-rich sulfur-poor glass binding the grains together. Limestone bed materials typically have nodular ash coatings and have concentric alteration zones of calcium-rich areas with additional sulfur, iron, and sodium. Limestone agglomerates have additional sulfation and masses of coarse CaSO/sub 4/ crystals. Agglomerate formation in quartz bed materials follows a 4-stage process: an initial ash coating of about 50 microns thickness; thickened nodular coatings and initial sulfation; initial agglomeration by a cement of sulfated aluminosilicate ash; and bonding by recrystallized sulfated ash which has partly melted and solidified. Agglomerate formation in limestone bed materials follows a 3-stage process: initial bed grain alteration or calcining and sulfation producing concentric zones; thickened nodular ash coatings and continued sulfation; and agglomeration and growth of large CaSO/sub 4/ crystals. The agglomeration process is believed to be dependent upon temperature excursions caused by ash buildup in the bed with accompanying interaction between ash and bed material. Sodium appears to play a critical but presently largely unknown, role in the reactions producing agglomerates.

  9. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    USGS Publications Warehouse

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  10. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    SciTech Connect

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  11. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  12. Attrition of coal ash particles in a fluidized-bed reactor

    SciTech Connect

    Tomeczek, J.; Mocek, P.

    2007-05-15

    Experimental data of ash-particles attrition in a fluidized bed is presented, and also the results of modeling. Five sizes of ash particles (1.02-1.25; 1.25-1.6; 1.6-2.0; 2.0-5.0; 5.0-10.0 mm) produced in an industrial CFB boiler were examined. A new model of mechanical attrition has been proposed which incorporates new parameters: the shape factor of particles and the ratio of the bed height to bed diameter, strongly influencing the rate of bed mass loss. The model describes very well experimental data for coal-ash particles attrition. The attrition-rate coefficient for ash particles was evaluated.

  13. Research and development of coal-fired fluidized-bed boiler

    SciTech Connect

    Dong-wen, B.; Yi-shao, R.

    1982-01-01

    The main reason for developing fluidized-bed boilers in China is to burn high-ash coal of low calorific value, and thus broaden the scope of energy resources. This appears to be especially important in the southern provinces. Practice over a number of years has indicated that FBB are promising, at least for industrial boilers and small electricity generating units in China. The application of FBB to utility power plants, however, depends on future development, economic factors, and the success of intermediate demonstration units. There is no doubt that many areas still need further investigation and that equipment could be improved, but we are convinced that a good start has already been made. Dong-fang Boiler Works now produces commercial FBB with steam capacity of up to 35 t/h. Units of greater capacity are under consideration.

  14. A characterization of pressurized fluidized-bed and pulverized coal fired power plants

    SciTech Connect

    Doss, H.S.; Bezolla, W.A.; Ham, J.R.; Pietruszkiewicz, J.; Thomas, G.O.

    1984-02-01

    This paper presents the major technical and economic characteristics of steam- and air-cooled pressurized fluidized-bed (PFB) power plant concepts along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. The conceptual designs were prepared to satisfy a set of common groundrules that were developed for the study. The power plants are of the grassroots type, located on a generic plant site. The designs incorporate technological advances available for commercialization in the 1990 time frame. The net power outputs of the base case plants, using Illinois number6 coal, range from 502 MWe for the pulverized coal fired plant to 554 MWe for the air-cooled PFB plant. The net power plant heat rates vary from 9,725 Btu/kWh for the pulverized coal fired plant to 8,710 Btu/kWh for the steam-cooled PFB plant. For the economic groundrules set for the study, the pulverized coal fired plant utilizing an advanced flue gas desulfurization concept had the lowest specific capital cost and lowest levelized cost of electricity. However, utility and site specific conditions could materially alter the relative merits of the various concepts in a given utility application.

  15. Characterization of pressurized fluidized bed and pulverized coal fired power plants

    SciTech Connect

    Doss, H.S.; Pietruszkiewicz, J.; Thomas, G.O.; Hamm, J.R.; Bezella, W.A.

    1984-01-01

    This paper presents the major technical and economic characteristics of a steam-cooled and an air-cooled pressurized fluidized bed (PFB) power plant concept along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. The conceptual designs were prepared to satisfy a set of common groundrules that were developed for the study. The power plants are of the grassroots type, located on a generic plant site. The designs incorporate technological advances available for commercialization in the 1990 time frame. The net power outputs of the base case plants, using Illinois No. 6 coal, range from 502 MWe for the pulverized coal fired plant to 554 MWe for the air-cooled PFB plant. The net power plant heat rates vary from 9725 Btu/kWh for the pulverized coal fired plant to 8710 Btu/kWh for the steam-cooled PFB plant. For the economic groundrules set for the study, the pulverized coal fired plant utilizing an advanced flue gas desulfurization concept had the lowest specific capital cost and lowest levelized cost of electricity. However, utility and site specific conditions could materially alter the relative merits of the various concepts in a given utility application.

  16. COMBUSTION OF OIL SHALE IN FLUIDIZED-BED COMBUSTORS: AN OVERVIEW

    EPA Science Inventory

    The report gives an overview of the combustion of oil shale in fluidized-bed combustors. Oil shale can be combusted directly, or as a supplement to coal fuel, and can function as an SO2 sorbent in atmospheric fluidized-bed combustion (AFBC). Spent shale from retorting processes m...

  17. Reduction of iron ore fines by coal fines in a packed bed and fluidized bed apparatus—A comparative study

    NASA Astrophysics Data System (ADS)

    Haque, R.; Ray, H. S.; Mukherjee, A.

    1993-06-01

    Reduction of iron ore fines by coal fines in packed and fluidized beds has been studied. The investigation includes study of the kinetic aspects of reduction, carbon and sulfur content of the direct reduced iron (DRI) produced, and metallography of the products. For both processes, the kinetic data fit the first-order reaction model. Reduction in a fluidized bed is much faster than in a packed bed system. In both cases, DRI contains a substantial amount of free carbon at the initial stages of reduction. At the later stages of reduction, the carbon present in the DRI is mainly in the combined state. For identical temperatures and particle sizes, reaction in fluidized bed is much faster compared to that in a packed bed. At any particular degree of reduction, sulfur content in DRI samples produced by fluidized bed reduction is always more than that of DRI samples produced by packed bed reduction. Scanning electron microscopy (SEM) micrographs reveal that metallic whiskers formed during reduction in packed beds only. These whiskers become more prominent at higher temperatures and longer times.

  18. Availability of trace elements in solid waste from fluidized bed combustion of coal

    SciTech Connect

    Rope, S.K.; Jornitz, R.S.; Suhre, D.T.

    1987-12-01

    This report presents data on the inorganic constituents (major and trace elements) of coal and solid waste from a coal-fired facility on the Idaho National Engineering Laboratory (INEL) which uses the fluidized bed combustion process. Three factors were used to assess the potential environmental impacts of elements in coal waste: (1) the concentrations relative to those measured previously in surrounding soils of the INEL (the enrichment ratio); (2) the availability of elements from waste relative to soils; and (3) toxicity or essentiality to biota. Considering both enrichment and availability, Al, B, Be, Ca, Cr, Na, Mo, Se, Sr, and Ti are most likely to be affected in the local environment due to fly ash deposition and/or resuspension of FBC waste. Only B, Cr, Mo, and Se are likely to be of concern in terms of toxicity. The high concentrations of Cr and B in FBC waste are expected to be toxic to plants. Concentrations of Se and Mo present in FBC waste have been shown to produce levels in plants which can be toxic to herbivorous animals. 14 refs, 1 fig., 4 tabs.

  19. Behavior of fluorine and chlorine in Spanish coal fired power plants with pulverized coal boilers and fluidized bed boiler.

    PubMed

    López-Vilariño, J M; Fernández-Martínez, G; Turnes-Carou, I; Muinategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2003-06-01

    Behavior and contents of fluorine and chlorine in coal feedstock, combustion wastes (slag and fly ash) and emissions were studied in five conventional coal fired power plants and in a fluidized bed coal power plant. The halide levels found in the used coal were quite low. Mass balances and emission factors were calculated. The volatility of these elements makes the gaseous emission the main target between the residues. The influence of combustion parameters is not clearly established. Several analytical techniques (ion selective electrodes, capillary electrophoresis and ion chromatography) are employed to determinate the halide concentration in the different samples taken in the power plants studied (coal, slag, fly ash and flue gases). PMID:12868523

  20. Nitric Oxide Reduction over Sewage Sludge and Coal Chars at Conditions Relevant to Staged Fluidized Bed Combustion

    NASA Astrophysics Data System (ADS)

    Salatino, P.; Solimene, R.; Chirone, R.

    The de-NOx potential of coal and of dried and pelletized sewage sludge, a waste-derived fuel candidate for cofiring with coal, is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the loss of reactivity of chars toward gasification by NOx as char is heat-treated for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char.

  1. Hydrogen-rich gas production by cogasification of coal and biomass in an intermittent fluidized bed.

    PubMed

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13?g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR. PMID:24174911

  2. Alkali metals in circulating fluidized bed combustion of biomass and coal: measurements and chemical equilibrium analysis

    SciTech Connect

    Michal P. Glazer; Nafees A. Khan; Wiebren de Jong; Hartmut Spliethoff; Heiko Schuermann; Penelope Monkhouse

    2005-10-01

    Combustion and co-combustion experiments with four kinds of straw, specially selected for their different alkali, Cl, and Si contents, and Colombian black coal were carried out in a circulating fluidized bed (CFB) reactor at Delft University of Technology. The influence of operating conditions and fuel composition on the release of the alkali compounds to the gas phase was investigated. The amount of the total gas-phase sodium and potassium compounds in the flue gases was measured with excimer laser induced fluorescence (ELIF). The results show that the release of gaseous alkali species depends on fuel composition, in particular the K/Cl and K/Si ratios in the fuel. The fuels with high K and Cl values show higher concentrations of the gaseous alkalis. A synergetic effect of the co-combustion with coal was observed, which led to a strong decrease in gaseous alkali concentrations. Together with experiments, chemical equilibrium modeling was performed to help in interpreting the experimental data. The calculations confirmed that the equilibrium is very strongly influenced by the composition of the fuel blend. Moreover, the simulations provided more information on sequestering of alkali species. 22 refs., 5 figs., 4 tabs.

  3. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    PubMed Central

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR. PMID:24174911

  4. Surface modification of the nanoparticles by an atmospheric room-temperature plasma fluidized bed

    NASA Astrophysics Data System (ADS)

    Chen, Guangliang; Chen, Shihua; Feng, Wenran; Chen, Wenxing; Yang, Si-ze

    2008-04-01

    Using hexamethyldisiloxane (HMDSO) monomer, the magnetic nanoparticles (NPs) of nickel oxide (NiO) were modified by using an atmospheric room-temperature plasma fluidized bed (ARPFB). The plasma gas temperature of the ARPFB was not higher than 325 K, which was favorable for organic polymerization. The plasma optical emission spectrum (OES) of the gas mixture consisting of argon (Ar) and HMDSO was recorded by a UV-visible monochromator. The as-treated NPs were characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results show that the assembling NPs were isolated greatly after modified by the organosilicon polymer. Moreover, this treatment process changed the wettability of the NPs from super-hydrophilicity to super-hydrophobicity, and the contact angle (CA) of water on the modified NPs surface exceeded 150°. Therefore, the ARPFB is a prospective technology for the NPs surface modification according to the different requirements.

  5. Co-combustion of coal and biomass in a pressurized bubbling fluidized bed

    SciTech Connect

    Andries, J.; Verloop, M.; Hein, K.

    1997-12-31

    The use of biomass as an energy source in power plants has advantages compared to fossil fuel firing. Co-firing of biomass and coal offers additional advantages compared to exclusive biomass firing. The objective of the research described in this paper is to assess the effect of co-combustion of biomass (straw or Miscanthus Sinensis) and coal on the behavior of a pressurized fluidized bed combustor with regard to fuel feeding, fluidization, sintering, burnout, temperature distribution and the emission of harmful gaseous and solid components. Temperature and gas concentration profiles have been determined in the freeboard of the Delft 1.6 MW{sub th} PFBC test rig. The addition of up to 20% of biomass (based on heat input) has no adverse effect on the PFBC process. The feeding of the biomass is more critical than the feeding of coal, due to the more fibrous structure and the larger volumes of the biomass fuel. Dependent on the process conditions the biomass addition results locally in an increase or decrease of the temperatures. Biomass addition causes a small increase of the CO and NO and a small decrease of N{sub 2}O emissions. The influence of the biomass addition on the HCl emissions is not clear. The lower sulfur content and a larger sulfur capture efficiency result in lower SO{sub 2} emissions. The addition of biomass has a negligible influence on the combustion efficiency. A 15--30% higher cyclone catch was found for the coal/Miscanthus mixture when compared to the other fuels.

  6. Comparion of Mercury Emissions Between Circulating Fluidized Bed Boiler and Pulverized Coal Boiler

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Duan, Y. F.; Zhao, C. S.

    Mercury emissions between a circulating fluidized bed (CFB) utility boiler and two pulverized coal (PC) boilers equipped with electrostatic precipitators (ESP) were in situ measured and compared. The standard Ontario Hydro Method (OHM) was used to sample the flue gas before and after the ESP. Various mercury speciations such as Hg0, Hg2+ and Hgp in flue gas and total mercury in fly ashes were analyzed. The results showed that the mercury removal rate of the CFB boiler is nearly 100%; the mercury emission in stack is only 0.028 g/h. However, the mercury removal rates of the two PC boilers are 27.56% and 33.59% respectively, the mercury emissions in stack are 0.80 and 51.78 g/h respectively. It concluded that components of the ESP fly ashes especially their unburnt carbons have remarkable influence on mercury capture. Pore configurations of fine fly ash particles have non-ignored impacts on mercury emissions.

  7. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Astrophysics Data System (ADS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-10-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  8. The Oâ‚‚-enriched air gasification of coal, plastics and wood in a fluidized bed reactor.

    PubMed

    Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

    2012-04-01

    The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery. PMID:21993077

  9. Release of sulfur and chlorine during cofiring RDF and coal in an internally circulating fluidized bed

    SciTech Connect

    Xiaolin Wei; Yang Wang; Dianfu Liu; Hongzhi Sheng; Wendong Tian; Yunhan Xiao

    2009-03-15

    An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO{sub 2}, HCl, and SO{sub 2} were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration of SO{sub 2} is relatively low because alkaline metal in the fuel ash can absorb SO{sub 2}. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfurization ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur. 35 refs., 18 figs., 2 tabs.

  10. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-01-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  11. Study of instrumentation needs for process control and safety in coal fluidized-bed combustion systems

    SciTech Connect

    Herzenberg, C.L.; Griggs, K.E.; Henry, R.F.; Podolski, W.F.

    1981-02-01

    A study was conducted to evaluate the current state of the art of instrumentation for planned and operating fluidized-bed combustion systems. This study is intended to identify instrumentation needs and serve as a data base for projects to develop this instrumentation. A considerable number of needs for measurements for which presently available instrumentation is not suitable were reported by respondents. The identified deficiencies are presented with the associated physical parameter ranges for FBC processes. New techniques and instrumentation under development, as well as some available alternative instruments, are discussed briefly. Also, newly instituted mechanisms for technical information exchange on instrumentation for fossil energy applications are identified. Development of instruments to meet the identified measurement deficiencies is recommended in order to ensure the feasibility of automatic control of large-scale fluidized-bed combustion systems, and to advance the state of the art of fluidized-bed combustion technology.

  12. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    SciTech Connect

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S.

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  13. Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed

    SciTech Connect

    Hongcang Zhou; Baosheng Jin; Rui Xiao; Zhaoping Zhong; Yaji Huang

    2009-04-15

    To investigate the distribution of polycyclic aromatic hydrocarbons (PAHs) in fly ash, the combustion of coal and residual char was performed in a pressurized spouted fluidized bed. After Soxhlet extraction and Kuderna-Danish (K-D) concentration, the contents of 16 PAHs recommended by the United States Environmental Protection Agency (U.S. EPA) in coal, residual char, and fly ash were analyzed by a high-performance liquid chromatography (HPLC) coupled with fluorescence and diode array detection. The experimental results show that the combustion efficiency is lower and the carbon content in fly ash is higher during coal pressurized combustion, compared to the residual char pressurized combustion at the pressure of 0.3 MPa. Under the same pressure, the PAH amounts in fly ash produced from residual char combustion are lower than that in fly ash produced from coal combustion. The total PAHs in fly ash produced from coal and residual char combustion are dominated by three- and four-ring PAHs. The amounts of PAHs in fly ash produced from residual char combustion increase and then decrease with the increase of pressure in a fluidized bed. 21 refs., 1 fig., 4 tabs.

  14. FLUIDIZED-BED GASIFICATION OF PEAT, LIGNITE, SUBBITUMINOUS, AND PRETREATED BITUMINOUS COAL

    EPA Science Inventory

    The report summarizes and compares results obtained from gasifying four different feedstocks in a pilot-scale fluidized-bed gasifier. Effects of operating variables (e.g., temperature, steam/carbon feed ratio, bed height, and feed rate) on carbon conversion and gas production are...

  15. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    SciTech Connect

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash handling. A more efficient downstream sulfur scrubber capable of operation at a much lower Ca/S ratio would result in significantly higher boiler efficiency for this coal. At the operating temperature of a typical CFBC, bed agglomeration and convective pass fouling are not likely to be significant problems with this fuel. Compared to pulverized coal-firing, CFBC technology is clearly the better choice for this fuel. It provides more efficient sulfur capture, lower NO{sub x} emissions, better solids-handling capability, and can utilize a wetter feedstock, requiring less crushing and sizing. The lower operating temperature of CFBC boilers (820 C) reduces the risk of fouling and agglomeration. Care must be taken to minimize heat loss in the system to accommodate the low heating value of the coal.

  16. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W. (Somers, CT); Accortt, Joseph I. (Simsbury, CT)

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  17. A circulating fluidized-bed furnace for combusting anthracite culm and the thermal-contact pyrolysis of coal

    NASA Astrophysics Data System (ADS)

    Rokhman, B. B.

    2007-09-01

    A method for thermal-contact pyrolysis of coal and a furnace design for combusting solid fuel in a circulating fluidized bed are proposed. The geometric, aerodynamic, and physicochemical parameters of the pyrolysis zone situated in the near-wall region of the freeboard space are calculated. It is shown that, if the initial fuel is fed through a part of the annular zone’s cross-sectional area, the near-wall clusters are destroyed and the concentration of the dispersed phase in the reaction zone increases, both resulting in the thermochemical processing of recirculating coke-ash particles to proceed more rapidly.

  18. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhu, Jianguo; Ouyang, Ziqu; Lu, Qinggang

    2013-06-01

    High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.

  19. Simulation of fluidized bed combustors. I - Combustion efficiency and temperature profile. [for coal-fired gas turbines

    NASA Technical Reports Server (NTRS)

    Horio, M.; Wen, C. Y.

    1976-01-01

    A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.

  20. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect

    DeLallo, M.R.; Zaharchuk, R.; Reuther, R.B.; Bonk, D.L.

    1996-09-01

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  1. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.

    PubMed

    Wagland, S T; Kilgallon, P; Coveney, R; Garg, A; Smith, R; Longhurst, P J; Pollard, S J T; Simms, N

    2011-06-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidized bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal+10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal+10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel. PMID:21288710

  2. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION, 1978 ANNUAL REPORT

    EPA Science Inventory

    The report gives results of laboratory- and process-scale EPA studies supporting the national development of atmospheric and pressurized fluidized-bed combustion (PFBC) of coal. Program objectives are: (1) to develop basic information needed to optimize the use of limestone for S...

  3. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  4. Numerical analysis of the process of combustion and gasification of the polydisperse coke residue of high-ash coal under pressure in a fluidized bed

    SciTech Connect

    A.Y. Maistrenko; V.P. Patskov; A.I. Topal; T.V. Patskova

    2007-09-15

    A numerical analysis of the process of 'wet' gasification of high-ash coal under pressure in a low-temperature fluidized bed has been performed. The applicability of the previously developed computational model, algorithm, and program for the case under consideration has been noted. The presence of 'hot spots' (short-time local heatings) at different points of the bed has been confirmed.

  5. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    SciTech Connect

    Sachs, M. Schmitt, A. Schmidt, J. Peukert, W. Wirth, K-E

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  6. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    NASA Astrophysics Data System (ADS)

    Sachs, M.; Schmitt, A.; Schmidt, J.; Peukert, W.; Wirth, K.-E.

    2014-05-01

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  7. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  8. Research on coal-water fuel combustion in a circulating fluidized bed / Badanie spalania zawiesinowych paliw węglowo-wodnych w cyrkulacyjnej warstwie fluidalnej

    NASA Astrophysics Data System (ADS)

    Kijo-Kleczkowska, Agnieszka

    2012-10-01

    In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.

  9. Comprehensive report to Congress: Clean Coal Technology Program: Arvah B. Hopkins circulating fluidized-bed repowering project: A project proposed by: The City of Tallahassee

    SciTech Connect

    Not Available

    1990-10-01

    The project involves the repowering of a 250-megawatt electrical (MWe) natural gas- or oil-fired boiler with a coal-fired atmospheric circulating fluidized-bed (CFB) boiler to provide steam to an existing turbine generator. The boiler will be the largest of its type. After construction and shakedown, the City of Tallahassee (CoT) plant will be operated for 24 months with at least three different eastern coals. Final coal selection will be based on the Fuels Selection Study, which is part of Phase I-A of the project. Cost, financial, and technical data from the CoT CFB will be provided the utility industry for evaluation of a 250-MWe CFB as a commercially viable clean coal alternative. The objective of the Arvah B. Hopkins CFB Repowering Project is to demonstrate an efficient, economical, and environmentally superior method of generating electric power from coal. The work to be performed under the Cooperative Agreement includes the design, construction, and operation of the demonstration plant. 4 figs.

  10. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  11. Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler

    SciTech Connect

    K.O. Davidsson; L.-E. Aamand; A.-L. Elled; B. Leckner

    2007-12-15

    Cofiring experiments were performed in a 12 MW circulating fluidized bed boiler. The fuel combinations were biofuel (wood+straw), coal+biofuel, coal+sewage sludge+biofuel, and sewage sludge+biofuel. Limestone or chlorine (PVC) was added in separate experiments. Effects of feed composition on bed ash and fly ash were examined. The composition of flue gas was measured, including on-line measurement of alkali chlorides. Deposits were collected on a probe simulating a superheater tube. It was found that the fuel combination, as well as addition of limestone, has little effect on the alkali fraction in bed ash, while chlorine decreases the alkali fraction in bed ash. Sewage sludge practically eliminates alkali chlorides in flue gas and deposits. Addition of enough limestone to coal and sludge for elimination of the SO{sub 2} emission does not change the effect of chlorine. Chlorine addition increases the alkali chloride in flue gas, but no chlorine was found in the deposits with sewage sludge as a cofuel. Cofiring of coal and biofuel lowers the alkali chloride concentration in the flue gas to about a third compared with that of pure biofuel. This is not affected by addition of lime or chlorine. It is concluded that aluminum compounds in coal and sludge are more important than sulfur to reduce the level of KCl in flue gas and deposits. 24 refs., 8 figs., 7 tabs.

  12. Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence

    SciTech Connect

    Hartinger, K.T.; Monkhouse, P.B.; Wolfrum, J.; Baumann, H.; Bonn, B.

    1994-12-31

    Gas-phase sodium concentrations were measured for the first time in situ in the flue gas of a fluidized-bed reactor by the excimer-laser-induced fragmentation fluorescence (ELIF) technique. This method involves using ArF-excimer laser light at 193 nm to simultaneously photodissociate the alkali compounds of interest and excite electronically the alkali atoms formed. The resulting fluorescence from Na (3{sup 2}P) atoms can he readily detected at 589 nm. Measured signals were converted to absolute concentrations using a calibration system that monitors alkali compounds under known conditions of temperature, pressure, and composition and rising the same optical setup as at the reactor. Several different coals were investigated under a specific set of reactor conditions at total pressures close to 1 bar. Sodium concentrations ranging from the sub-ppb region to 20 ppb were obtained, and a detection limit for sodium of 0.1 ppb under the present conditions was estimated. Over the course of the reactor program, contrasting concentration histories were observed for the two lignites and the hard coal investigated. In particular, significantly higher sodium concentrations were found for the hard coal, consistent with both the higher chlorine and sodium contents determined in the corresponding coal analysis.

  13. Treatment of chromic tannery wastes using coal ashes from fluidized bed combustion of coal

    SciTech Connect

    Bulewicz, E.M.; Kozak, A.; Kowalski, Z.

    1997-10-01

    A new method of treatment for chromic tannery wastes containing chrome and large amounts organic substances has been investigated. It has been found that the addition of certain types of coal ash from fluid bed combustion technologies, at a suitable temperature and pH, results in effective removal of Cr(III) compounds present in the wastes. The wastes could then be subjected to further processing in conventional biological treatment units. The method is very simple, cheap, and effective and could be used for chromic tannery wastes of different compositions.

  14. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  15. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    SciTech Connect

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  16. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst

    2015-05-01

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  17. Fuel-Nitrogen Evolution During Fluidized Bed Oxy-Coal Combustion

    NASA Astrophysics Data System (ADS)

    Sanchez, Astrid; Mondragon, Fanor; Eddings, Eric G.

    FTIR, thermo-gravimetric analysis techniques and molecular modelling were employed to study the effect of CO2 on fuel-nitrogen evolution under oxy-combustion conditions. The main objective is to compare NOx emissions at several molar fractions of O2 using Ar or CO2 as balance gas in a fluidized bed reactor. A char with about 16% N content was prepared by pyrolysis of polyacrylonitrile. This sample facilitated NOx evolution experiments due to the abundance of nitrogen complexes, and aided the identification and quantification of several N species by means ofFTIR. Results indicate that the presence of CO2 enhances NO2 formation. A complementary study was carried out by molecular modelling of the experimental reactions using the Gaussian 03 package. Different heterogeneous and homogeneous interactions between CO2 and char N-species were simulated. The results thus obtained show that the presence of CO2 during combustion can facilitate NCO formation which is a very reactive intermediate species that can be readily oxidized in the gaseous phase.

  18. Long-term testing of the zinc titanate for desulfurization of hot coal gas in a fluidized-bed reactor

    SciTech Connect

    Jain, S.C.; Gupta, R.; Gangwal, S.K.

    1993-12-31

    Research Triangle Institute (RTI) under contract to the US Department of Energy (DOE), Morgantown energy Technology Center has recently completed a long-term test consisting of 100 sulfidation-regeneration cycles on a zinc titanate material intended for use as a high-temperature, regenerable sorbent to desulfurize coal-derived gas. The primary motivation for this development is to generate a more economical, environmentally superior, and reliable process to purify the product gas of coal gasifiers for use in gas turbines and fuel cells. This zinc titanate formulation (designated as ZT-4 and containing Zn-to-Ti in a molar ratio of 1.5) exhibited the best overall performance in terms of chemical reactivity, sulfur capacity, regenerability, structural properties and, most importantly, the attrition resistance based on multicycle testing of a number of sorbent formulations in a bench scale fluidized-bed reactor. The conditions in the test were -- desulfurization temperature: 750C (1382F); pressure: 1.52 MPa (220 psia); coal gas: simulated Texaco entrained-bed oxygen-blown gasifier gas containing 12,000 ppmv of H{sub 2}S; superficial gas velocity: 15 cm/s (0.49 ft/s). The ZT-4 sorbent used in this test was prepared using a granulation technique and 500 g of the sorbent in the 100 to 300 microns particle diameter range were used in a 5.1-cm (2-inch) i.d. stainless steel reactor.

  19. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits

    2001-01-18

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, work focused on performing the design of the conceptual fluidized bed system and determining the system economics.

  20. Recovery of silica from the gasification of rice husks/coal in the presence of a pilot flame in a modified fluidized bed

    SciTech Connect

    Luan, T.C.; Chou, T.C. )

    1990-09-01

    Combustion of rice husks with and without coal in the presence of a pilot flame in a modified fluidized bed was investigated in the present study. The process was employed to produce raw silica from rice husks by burning off other organic matters. The chemical and physical properties of both the top and the bottom products from the rice husk combustion were found to be strongly influenced by two major factors: the feed rate and the feed composition. It has also been found that coal fed along with rice husks to the combustion process permits easy control of the properties of both solid products and significantly reduces the agglomerating phenomena that occur often in the process. The temperature distribution of the fluidized bed, which reflects the bed operating characteristics, was measured and observed to depend on the frequency of pulsed solid feed.

  1. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  2. The importance of heterogeneous decomposition reactions for the emission levels of NO and N{sub 2}O during fluidized bed combustion of coal

    SciTech Connect

    Boavida, D.; Lobo, L.S.; Gulyurtlu, I.; Cabrita, I.

    1996-12-31

    In the present work, the effects of temperature and type of char on the heterogeneous reduction of both NO and N{sub 2}O on char surfaces were investigated using the TGA technique. The kinetic parameters for the decomposition of both NO and N{sub 2}O on the char surfaces was obtained and correlated with the previous results from the combustion of coals and of the same chars in a laboratorial fluidized bed combustor.

  3. EXPERIMENTAL/ENGINEERING SUPPORT FOR ENVIRONMENTAL PROTECTION AGENCIES FLUIDIZED-BED COMBUSTION (FBC) PROGRAM: FINAL REPORT. VOLUME I. SULFUR OXIDE CONTROL

    EPA Science Inventory

    The report gives results of an investigation of the desulfurization performance and attrition behavior of limestone and dolomite sorbents for atmospheric and pressurized fluidized-bed combustion (FBC) systems used with coal. It gives results of experimental thermogravimetric anal...

  4. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  5. Computer modeling of fluidized-beds

    SciTech Connect

    Bouillard, J.X.; Lyczkowski, R.W.; Ding, J.

    1992-01-01

    Bubbling fluidized-bed combustors are being built as a means of burning high-sulfur coals in an environmentally acceptable manner. Although this technology has reached a commercial status, understanding of solids motion and its effect on erosion of heat exchanger tubes immersed in fluidized beds remains inadequate. To understand the mechanics of solids motion in fluidized beds with internal heat exchangers, a two-dimensional fluidized bed is simulated using hydrodynamic models. Predicted instantaneous and time-averaged porosities at different locations in the bed are compared with experimentally measured values. Power spectral analyses of both computed and experimental transient porosities are made to validate the presently used hydrodynamic model of fluidization. This study further extends the validation of such models used in earlier studies to compare experimental and predicted bubble sizes.

  6. Computer modeling of fluidized-beds

    SciTech Connect

    Bouillard, J.X.; Lyczkowski, R.W.; Ding, J.

    1992-11-01

    Bubbling fluidized-bed combustors are being built as a means of burning high-sulfur coals in an environmentally acceptable manner. Although this technology has reached a commercial status, understanding of solids motion and its effect on erosion of heat exchanger tubes immersed in fluidized beds remains inadequate. To understand the mechanics of solids motion in fluidized beds with internal heat exchangers, a two-dimensional fluidized bed is simulated using hydrodynamic models. Predicted instantaneous and time-averaged porosities at different locations in the bed are compared with experimentally measured values. Power spectral analyses of both computed and experimental transient porosities are made to validate the presently used hydrodynamic model of fluidization. This study further extends the validation of such models used in earlier studies to compare experimental and predicted bubble sizes.

  7. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers. PMID:19854038

  8. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  9. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    PubMed

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming. PMID:19249155

  10. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J. (West Richland, WA); Klem, Jr., Michael J. (Richland, WA); Cash, Robert J. (Richland, WA)

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  11. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    SciTech Connect

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  12. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively. PMID:21232946

  13. APPLICATION OF ADVANCED TECHNOLOGY FOR NOX CONTROL: ALTERNATE FUELS AND FLUIDIZED-BED COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the effect of alternate fuels and fluidized coal combustion in controlling the emission of nitrogen oxides (NOx). The current trend in energy use in the U.S. is toward greater use of coal and coal derived fuels, and on ensuring that these fuels are produced an...

  14. Corrosion in atmospheric fluidized bed combustors—The reactions of CaSO4 with Cr, Ni, Co, Fe, and several alloys

    NASA Astrophysics Data System (ADS)

    Ficalora, P. J.

    1983-11-01

    When coal is burned in the presence of limestone in an atmospheric fluidized-bed combustor (AFBC), the sulfur emission can be kept below acceptable EPA levels. Calcining of the limestone produces CaO, which then forms solid CaSO4 by a reaction with the SO2 produced during coal combustion. The internal components ( e.g., heat exchanger tubes) of the bed, however, become coated with a compact layer of CaSO4, CaO, and ash during combustion. It has been suggested that the presence of the sulfate on these hot metal surfaces is the cause of observed instances of accelerated oxidation-sulfidation. This paper presents results which support the above suggestion. The reactions between Cr, Ni, Co, Fe, alloy 800, 2.25 Cr-1 Mo, 9 Cr-1 Mo steels, or 304 stainless steel with CaSO4 were studied using differential thermal and thermogravimetric analyses. The reaction products were analyzed using X-ray diffraction, optical microscopy, and in some instances, X-ray energy dispersive analyses. The chromium-calcium sulfate reaction is the only case studied in which a sulfide is not formed. In that case, CaCr2O4 is the reaction product. In all other cases, the reactions are oxidation-sulfidation processes.

  15. Composition and chemistry of particulates from the Tidd Clean Coal Demonstration Plant pressurized fluidized bed combustor, cyclone, and filter vessel

    SciTech Connect

    Smith, D.H.; Grimm, U.; Haddad, G.

    1995-12-31

    In a Pressurized Fluidized Bed Combustion (PFBC)/cyclone/filter system ground coal and sorbent are injected as pastes into the PFBC bed; the hot gases and entrained fine particles of ash and calcined or reacted sorbent are passed through a cyclone (which removes the larger entrained particles); and the very-fine particles that remain are then filtered out, so that the cleaned hot gas can be sent through a non-ruggedized hot-gas turbine. The 70 MWe Tidd PFBC Demonstration Plant in Brilliant, Ohio was completed in late 1990. The initial design utilized seven strings of primary and secondary cyclones to remove 98% of the particulate matter. However, the Plant also included a pressurized filter vessel, placed between the primary and secondary cyclones of one of the seven strings. Coal and dolomitic limestone (i.e, SO{sub 2} sorbent) of various nominal sizes ranging from 12 to 18 mesh were injected into the combustor operating at about 10 atm pressure and 925{degree}C. The cyclone removed elutriated particles larger than about 0.025 mm, and particles larger than ca. 0.0005 mm were filtered at about 750{degree}C by ceramic candle filters. Thus, the chemical reaction times and temperatures, masses of material, particle-size distributions, and chemical compositions were substantially different for particulates removed from the bed drain, the cyclone drain, and the filter unit. Accordingly, we have measured the particle-size distributions and concentrations of calcium, magnesium, sulfur, silicon, and aluminum for material taken from the three units, and also determined the chemical formulas and predominant crystalline forms of the calcium and magnesium sulfate compounds formed. The latter information is particularly novel for the filter-cake material, from which we isolated the ``new`` compound Mg{sub 2}Ca(SO{sub 4}){sub 3}.

  16. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  17. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  18. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, October 1-December 31, 1982

    SciTech Connect

    1983-04-21

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process component engineering and design; and (5) laboratory support studies involving gas solids flow modeling and coal/ash behavior. 9 figures, 19 tables.

  19. The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor

    SciTech Connect

    Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

  20. Characterization of fly ashes from circulating fluidized bed combustion (CFBC) boilers cofiring coal and petroleum coke

    SciTech Connect

    Feihu Li; Jianping Zhai; Xiaoru Fu; Guanghong Sheng

    2006-08-15

    The chemistry, mineralogy, morphology, and particle size distribution were investigated in fly ashes from the burning of Datong (ShanXi, China) bituminous coal and the cofiring of Mideast high-sulfur petroleum coke (PC) with 30:70 (cal %) and 50:50 (cal %) blends of Datong bituminous coal in two commercial CFBC boilers. With the exception of CaO, the amounts of major oxides in the fly ashes from cofiring PC and coal were close to those of the common coal fly ashes. The PC-coal fly ashes were enriched in Ni, V, and Mo, implying these trace elements were mainly derived from PC. Ni and V, along with several other elements, such as Cr, Cu, Se, Pb, U, Th, and possibly As and Cd, increased in content with a decrease in temperature of the electrostatic precipitator (ESP). The results of chemistry, mineralogy, and morphology studies suggested that the desulfurization rate of the CFBC boilers at current conditions was low, and the PC tends to coarsen the fly ash particles and increase the loss on ignition (LOI) values, making these fly ashes unsuitable for use as a cement additive or a mineral admixture in concrete. Further studies on the combustion status of the CFBC boilers are needed if we want to be able to increase the desulfurization rate and produce high-quality fly ashes for broader and full utilization. 22 refs., 4 figs., 4 tabs.

  1. Some developments in the feeding of coal to fluidized bed combustors

    NASA Technical Reports Server (NTRS)

    Caldwell, L. G.

    1977-01-01

    Research is being done in the development of fluid bed combustors for high sulphur coal, using limestone or dolomite in the bed for removal of the sulphur. Operating units to date have proven the inadequacies of available material handling techniques for introduction and control of the coal and adsorbent to the beds. Larger units now being contemplated will pose formidable problems in this area. Some of the techniques which were developed for the existing pilot units and novel ideas under consideration for future, large production units are illustrated and described.

  2. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor.

    PubMed

    Dasan, Beyhan Gunaydin; Mutlu, Mehmet; Boyaci, Ismail Hakki

    2016-01-01

    In this study, an atmospheric pressure fluidized bed plasma (APFBP) system was designed and its decontamination effect on aflatoxigenic fungi (Aspergillus flavus and Aspergillus parasiticus) on the surface of hazelnuts was investigated. Hazelnuts were artificially contaminated with A. flavus and A. parasiticus and then were treated with dry air plasma for up to 5min in the APFBP system at various plasma parameters. Significant reductions of 4.50 log (cfu/g) in A. flavus and 4.19 log (cfu/g) in A. parasiticus were achieved after 5min treatments at 100% V - 25kHz (655W) by using dry air as the plasma forming gas. The decontamination effect of APFBP on A. flavus and A. parasiticus spores inoculated on hazelnuts was increased with the applied reference voltage and the frequency. No change or slight reductions were observed in A. flavus and A. parasiticus load during the storage of plasma treated hazelnuts whereas on the control samples fungi continued to grow under storage conditions (30days at 25°C). Temperature change on hazelnut surfaces in the range between 35 and 90°C was monitored with a thermal camera, and it was demonstrated that the temperature increase taking place during plasma treatment did not have a lethal effect on A. flavus and A. parasiticus spores. The damage caused by APFBP treatment on Aspergillus spp. spores was also observed by scanning electron microscopy. PMID:26398284

  3. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    PubMed

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. This study identified the important impacts of temperature profile and oxides of alkali metal (alkali earth metal) on mercury emissions during cofiring in the fluidized bed combustor. PMID:19174919

  4. Impact of the addition of chicken litter on mercury speciation and emissions from coal combustion in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Songgeng Li; Shuang Deng; Andy Wu; Wei-ping Pan

    2008-07-15

    Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6 figs., 5 tabs.

  5. Preliminary comparison of theory and experiment for a conical, pressurized-fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1979-01-01

    A published model was used for a comparison of theory with an actual combustor burning caking bituminous coal and using limestone to reduce sulfur dioxide emission. Theoretical bed pressure drop was in good agreement with experiment. The burnable carbon elutriated was not in agreement with experiment, at least partly because the exhaust port was apparently below the transport disengaging height. The observed nitrogen oxides emission rate was about half the theoretical value. There was order-or-magnitude agreement of sulfur dioxide emission rates.

  6. Granular filtration in a fluidized bed

    SciTech Connect

    Mei, J.S.; Yue, P.C.; Halow, J.S.

    1995-12-31

    Successful development of advanced coal-fired power conversion systems often require reliable and efficient cleanup devices which can remove particulate and gaseous pollutants from high-temperature high-pressure gas stream. A novel filtration concept for particulate cleanup has been developed at the Morgantown Energy Technology Center (METC) of the U.S. Department of Energy. The filtration system consists of a fine metal screen filter immersed in a fluidized bed of granular material. As the gas stream passes through the fluidized bed, a layer of the bed granular material is entrained and deposited at the screen surface. This material provides a natural granular filter to separate fine particles from the gas stream passing through the bed. Since the filtering media is the granular material supplied by the fluidized bed, the filter is not subjected to blinding like candle filters. Because only the in-flowing gas, not fine particle cohesive forces, maintains the granular layer at the screen surface, once the thickness and permeability of the granular layer is stabilized, it remains unchanged as long as the in-flowing gas flow rate remains constant. The weight of the particles and the turbulent nature of the fluidized bed limits the thickness of the granular layer on the filter leading to a self-cleaning attribute of the filter. Batch mode filtration performance of the filter was first reported at the Ninth Annual Coal-Fueled Heat Engines, Advanced Pressurized Fluidized-Bed Combustion, and Gas Stream Cleanup Systems Contractors Review Meeting.

  7. UTILITY BOILER DESIGN/COST COMPARISON: FLUIDIZED-BED COMBUSTION VS. FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a conceptual design, performance, and cost comparison of utility scale (750-925 MWe) coal-burning power plants employing three alternative technologies: conventional boiler with a stack gas scrubber (CWS), atmospheric-pressure fluidized-bed combustion ...

  8. A descriptive model for sulfur capture in bubbling atmospheric pressure fluidized bed combustors

    SciTech Connect

    Walsh, P.M.

    1995-12-31

    A model of sorbent behavior is proposed for interpretation of measurements of sulfur capture in large-scale bubbling atmospheric pressure fluidized bad combustors (AFBC). The objective is to account for effects of the stone feed size distribution, attrition, recycle ratio, sulfation capacity, and sulfation rate on sulfur capture in practical systems. The parameters used in the simulation are limited to those whose values can be estimated from measurements in full-scale plants. Fines introduced with the limestone feed or formed on calcination, fines generated by attrition of bed particles, sulfur capture in the freeboard, and fines recycle were included in the description of the system. The sorbent was characterized by its sulfation capacity, fines content, attrition coefficient, and a first-order rate coefficient for reaction with SO{sub 2}. The model was compared with measurements by the Tennessee Valley Authority (TVA) and Electric Power Research Institute (EPRI) in the TVA 20 MW AFBC (TVA and EPRI, 1984), Measurements of sulfur capture over the range of recycle ratios from 0 to 4 kg recycle/kg coal, and calcium-to-sulfur ratios from 1.5 to 5 kmol Ca/kmol S, were reproduced with an average error of 5% sulfur capture. The principal source of error is thought to be neglect of fines formation during calcination of the stone. With further refinement the approach may be useful for characterization of sorbents in pilot and industrial-scale systems, and for evaluation of the effects of changes in operating conditions on sorbent performance in existing units.

  9. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  10. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  11. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  12. Exploratory and basic fluidized-bed combustion studies. Quarterly report, January-March 1980

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutants emissions, and other aspects of fluidized-bed combustion. This report presents information on: (1) the development of a limestone utilization predictive methodology, (2) studies of particle breakup and elutriation, (3) basic studies on limestone sulfation enhancement by hydration, (4) studies of the kinetics of the hydration process, and (5) an investigation of various hydration process concepts.

  13. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1989 Annual report, [January 1989--December 1989

    SciTech Connect

    Not Available

    1992-02-01

    The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association`s Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

  14. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  15. Pulsed atmospheric fluidized bed combustion. Quarterly technical progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    In this quarter the design of the plant structures was completed 70%. The design philosophy of the structure economizes on the use of steel by providing supports for the hot cyclone and hot gas duct connecting the cyclone to the boiler while fulfilling the needs for platforms and walkways at the various levels necessary for operational access. Figures 1 through 6 indicate the layout of the plant structure. At the same time the structure for the Coarse Coal Silo V-2 and Limestone Silo V-4 were incorporated and completed. Following completion of the piping pressure drop calculations, pipe sizing and layout drawings, detailed drawings of the piping in different views are being prepared. The pulse combustor is used to burn fine coal particles and provide an ignition source and supplementary heat to the fluid bed. The following is a description of the components: air plenum, fine coal injectors, aerovalves, water jacket, and tailpipe inserts.

  16. Modeling of NOx emissions from fluidized bed combustion of high volatile lignites

    SciTech Connect

    Afacan, O.; Gogebakan, Y.; Selcuk, N.

    2007-01-15

    A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized bed combustors is extended to incorporate NOx formation and reduction reactions and applied to the simulation of Middle East Technical University (METU) 0.3 MW Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) burning lignites with high Volatile Matter/Fixed Carbon (VM/FC) ratios in their own ashes. Favorable comparisons are obtained between the predicted and measured temperatures and concentrations of gaseous species along the combustor. Results show that determination of partitioning of coal nitrogen into char-N and volatile-N, char combustion rate, and amount of volatile nitrogen released along the combustor are found to be the most important parameters that affect NO formation and reduction in bubbling fluidized bed combustors.

  17. Regenerative Portland cement sorbents for fluidized-bed combustion of coal

    SciTech Connect

    Albanese, A S; Sethi, D; Steinberg, M

    1980-01-01

    Portland cements are commercially available construction materials that contain high concentrations of calcium silicates. The silicates are highly reactive towards SO/sub 2/ at temperatures and pressures encountered in atmospheric and pressurized FBC's. Of the Portland cements tested, PC III appears to have the highest sulfation capacity when sulfated by SO/sub 2/ at FBC conditions. A thermodynamic analysis of the sulfation of calcium silicates indicates that they are capable of reducing the concentration of SO/sub 2/ in FBC combustion gases to within the current EPA emission limits. The optimum temperature for sulfation of 16/20 mesh PC III pellets is about 1000/sup 0/C in comparison to about 875/sup 0/ for natural limestones. The higher observed optimum temperature is an advantage because combustion and power cycle efficiencies tend to increase as bed temperature increases. The reactions for regenerating sulfated calcium silicates are similar to those for regenerating calcium sulfate. However, the equilibrium partial pressures of SO/sub 2/ in the reductive decomposition of sulfated silicates are much higher than for sulfate lime. This implies that higher SO/sub 2/ concentrations will be attainable in the regenerator off-gas which will result in more economical conversion of SO/sub 2/ to sulfur or sulfuric acid. The sulfation capacity and regeneration efficiency of PC III pellets do not deteriorate with repeated sulfation/regeneration cycling. This indicates that PC III pellets are suitable for use in regenerative systems. The sulfation capacity of PC III is independent of pressure up to at least 10 atm.

  18. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  19. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  20. Particle withdrawal from fluidized bed systems

    DOEpatents

    Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  1. Manual for applying fluidized bed combustion residue to agricultural lands

    SciTech Connect

    Not Available

    1988-08-01

    Atmospheric fluidized bed combustion (AFBC) is a process that reduces sulfur emissions from coal-fired electric-generating plants. The residue from this process is a mixture of alkaline oxides, calcium sulfate, and coal ash constituent. Since 1976, USDA/ARS has investigated the potential agriculture use of this residue. The investigations comprised an extensive series of laboratory, greenhouse, field plot, and animal feeding experiments. The best and safest use of AFBC residue in agriculture was as a substitute for agricultural lime. This report contains guidelines for applying AFBC residue to agricultural lands. 2 figs., 27 refs., 2 tabs.

  2. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Fourth quarter progress report, July 1-September 30, 1982

    SciTech Connect

    1983-02-17

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Technical progress summaries and reports are presented for the following tasks: (1) process development unit (PDU) test operations and results (gasifier test TP-033-1 and maintenance and modifications); (2) process analysis (environmental characterization results, coal gas combustion results, and fines elutriation and consumption results); (3) cold flow scaleup (modifications and maintenance, operations, and data analysis); (4) process and component engineering and design (hot fines recycle modifications, and hot recycled fines); (5) laboratory support studies (gas-solids flow modeling and coal/ash behavior). 23 figures, 23 tables.

  3. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Curtis Jawdy

    2000-10-09

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  4. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  5. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  6. ENVIRONMENTAL ASPECTS OF FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report reviews the environmental aspects of fluidized-bed combustion (FBC) with respect to environmental media and specific pollutants. Emissions data indicate that FBC technology is a viable alternative to conventional coal combustion. Adverse impacts on health or the enviro...

  7. Corrosion data for uncooled alloys in the bed of an atmospheric fluidized-bed boiler

    SciTech Connect

    Not Available

    1981-08-01

    The major conclusions drawn from the results of this particular corrosion test were that: above the coal feed ports, Alloys 304, 310, and 800 were the most resistant. However, Alloys 800 and 310 were subject to catastrophic attack at points of contact with Alloy 600. All three alloys formed subscale sulfides; in oxidizing zones away from the coal feed ports, only Inconel 671 suffered especially rapid attack. The lower chromium (16 to 19%) alloy specimens - C276, 347, 304, 18SR, and 430 - suffered some internal sulfidation, and both the 304 and 310 rods beneath the specimen probe suffered rapid penetration; on the basis of this test alone, alloys containing more than 40% nickel should not be considered for use within the bed of FBC units. Alloys containing 20 to 40% nickel should be evaluated very carefully, giving consideration to possible occurrence of rapid attack under low oxygen conditions and in crevice areas; austenitic stainless steels appear to be promising candidates for uncooled, in-bed applications. Extended testing (2,000 to 10,000 hour) of these alloys is needed.

  8. State of the art of pressurized fluidized bed combustion systems

    SciTech Connect

    Graves, R.L.

    1980-09-01

    This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

  9. Granular filtration in a fluidized bed

    SciTech Connect

    Mei, J.S.; Yue, P.C.; Halow, J.S.

    1995-12-01

    Successful development of advanced coal-fired power conversion systems often require reliable and efficient cleanup devices which can remove particulate and gaseous pollutants from high-temperature high-pressure gas streams. A novel filtration concept for particulate cleanup has been developed at the Morgantown Energy Technology Center (METC) of the U.S. Department of Energy. The filtration system consists of a fine metal screen filter immersed in a fluidized bed of granular material. As the gas stream passes through the fluidized bed, a layer of the bed granular material is entrained and deposited at the screen surface. This material provides a natural granular filter to separate fine particles from the gas stream passing through the bed. Since the filtering media is the granular material supplied by the fluidized bed, the filter is not subjected to blinding like candle filters. Because only the inflowing gas, not fine particle cohesive forces, maintains the granular layer at the screen surface, once the thickness and permeability of the granular layer is stabilized, it remains unchanged as long as the in-flowing gas flow rate remains constant. The weight of the particles and the turbulent nature of the fluidized bed limits the thickness of the granular layer on the filter leading to a self-cleaning attribute of the filter. This paper presents work since then on a continuous filtration system. The continuous filtration testing system consisted of a filter, a two-dimensional fluidized-bed, a continuous powder feeder, a laser-based in-line particle counting, sizing, and velocimeter (PCSV), and a continuous solids feeding/bed material withdrawal system. The two-dimensional, transparent fluidized-bed allowed clear observation of the general fluidized state of the granular material and the conditions under which fines are captured by the granular layer.

  10. Granular filtration in a fluidized bed

    SciTech Connect

    Mei, J.S.; Yue, P.C.

    1996-12-31

    Successful development of advanced coal-fired power conversion system often requires reliable and efficient cleanup devices that can remove particulate and gaseous pollutants from high-temperature, high- pressure gas streams. A novel filtration concept for particulate cleanup has been developed at the U.S. Department of Energy`s Morgantown Energy Technology Center (METC). The filtration system consists of a fine metal screen filter immersed in a fluidized bed of granular material. As the gas stream passes through the fluidized bed, a layer of the bed granular material is entrained and deposited at the screen surface. This material provides a natural granular filter to separate fine particles from the gas stream passing through the bed. Since the filtering media is the granular material supplied by the fluidized bed, the filter is not subjected to blinding like candle filters. Because only the in-flowing gas, not fine particle cohesive forces, maintains the granular layer at the screen surface, once the thickness and permeability of the granular layer are stabilized, it remains unchanged as long as the in-flowing gas flow rate remains constant. The weight of the particles and the turbulent nature of the fluidized bed limits the thickness of the granular layer on the filter leading to a self-cleaning attribute of the filter. The granular filtration testing system consisted of a filter, a two-dimensional fluidized bed, a continuous powder feeder, a laser-based, in-line particle counting, sizing, and velocimeter (PCSV), and a continuous solid feeding/bed material withdrawal system. The two-dimensional, transparent fluidized bed allowed clear observation of the general fluidized state of the granular material and the conditions under which fines are captured by the granular layer.

  11. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-10-14

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

  12. Scaling of pressurized fluidized beds

    SciTech Connect

    Guralnik, S.; Glicksman, L.R.

    1994-10-01

    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  13. Exploratory and basic fluidized-bed combustion studies. Quarterly report, April-June 1980. [Limestone and dolomite; USA

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports the development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particles and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutant emissions, and other aspects of fluidized-bed coal combustion. This report presents information on: (1) the development of a sorbent utilization prediction methodology, (2) studies of factors which affect limestone breakup and elutriation, (3) basic studies of limestone sulfation under combustion conditions, and (4) studies of the kinetics of the hydration of spent limestone.

  14. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  15. Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO{sub 4} oxygen carrier in a fluidized bed reactor

    SciTech Connect

    Qilei Song; Rui Xiao; Zhongyi Deng; Wenguang Zheng; Laihong Shen; Jun Xiao

    2008-11-15

    The cyclic test of a CaSO{sub 4}-based oxygen carrier (natural anhydrite) in alternating reducing simulated coal gas and oxidizing conditions was performed at 950{degree}C in a fluidized bed reactor at atmospheric pressure. A high concentration of CO{sub 2} was obtained in the reduction. The H{sub 2} and CO conversions and CO{sub 2} yield increased initially and final decreased significantly. The release of SO{sub 2} and H{sub 2}S during the cyclic test was found to be responsible for the decrease of reactivity of a CaSO{sub 4} oxygen carrier. The oxygen carrier conversion after the reduction reaction decreased gradually in the cyclic test. Through the comparison of mass-based reaction rates as a function of mass conversion at typical cycles, it was also evident that the reactivity of a CaSO{sub 4} oxygen carrier increased for the initial cycles but finally decreased after around 15 cycles. X-ray diffraction analysis revealed that the presence and intensity of the reduction sulfur species was in accordance with the results of gas conversion. The content of CaO was higher than expected, suggesting the formation of SO{sub 2} and H{sub 2}S during the cycles. Surface morphology analysis demonstrates that the natural anhydrite particle surface varied from impervious to porous after the cyclic test. It was also observed that the small grains on the surface of the oxygen carrier sintered in the cyclic tests. Energy-dispersive spectrum analysis also demonstrated the decrease of oxygen intensity after reduction, and CaO became the main component after the 20th oxidation. Pore structure analysis suggested that the particles agglomerated or sintered in the cyclic tests. The possible method for sulfur mitigation is proposed. Finally, some basic consideration on the design criteria of a CLC system for solid fuels using a CaSO{sub 4} oxygen carrier is discussed by the references and provides direction for future work. 49 refs., 10 figs., 5 tabs.

  16. Heat transfer in circulating fluidized bed combustor

    SciTech Connect

    Bucak, O.; Dogan, O.M.; Uysal, B.Z.

    1999-07-01

    The importance of fluidized bed combustion in utilizing the energy of especially low quality coals is widely accepted. Among various fluidized bed combustion technologies, circulating fluidized beds are preferred as a result of the efforts to get higher combustion efficiencies. The aim of the present research was to investigate the applicability of this technology to Turkish lignites. To achieve this object a 6.5 m tall pilot circulating fluidized bed combustor with 155 mm diameter and all the auxiliary equipment were designed, constructed and tested using Seyitomer lignite of 0.9--2.38 mm in size. Heat transfer from the bed to the water cooling jackets was examined to recover the combustion energy. The inside heat transfer coefficient was determined to be around 121 W/m{sup 2} K for the suspension density of 20--55 kg/m{sup 3}. The agreement of the experimental findings with theoretical estimations was also checked. Furthermore, the thermal efficiency of the system for the heat recovered was found to be 63%.

  17. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    SciTech Connect

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  18. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

  19. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  20. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  1. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  2. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D. (Oak Ridge, TN)

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  3. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  4. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  5. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  6. Predictive models for circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1989-11-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. The purpose of these models is to help American industry, such as Combustion Engineering, design and scale-up CFB combustors that are capable of burning US Eastern high sulfur coals with low SO{sub x} and NO{sub x} emissions. In this report, presented as a technical paper, solids distributions and velocities were computed for a PYROFLOW circulating fluidized bed system. To illustrate the capability of the computer code an example of coal-pyrite separation is included, which was done earlier for a State of Illinois project. 24 refs., 20 figs., 2 tabs.

  7. Energy and environmental research emphasizing low-rank coal -- Task 3.8, Pressurized fluidized-bed combustion

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.

    1995-03-01

    The goal of the PFBC activity is to generate fundamental process information that will further the development of an economical and environmentally acceptable second-generation PFBC. The immediate objectives focus on generic issues, including the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals in PFBC. A great deal of PFBC performance relates to the chemistry of the bed and the contact between gas and solids that occurs during combustion. These factors can be studied in a suitably designed bench-scale reactor. The present studies are focusing on the emission control strategies applied in the bed, rather than in hot-gas cleaning. Emission components include alkali and heavy metals in addition to SO{sub 2}, NO{sub x}, N{sub 2}O, and CO. The report presents: a description of the pressurized fluidized-bed reactor (PFBR); a description of the alkali sampling probe; shakedown testing of the bench-scale PFBR; results from alkali sampling; results from sulfur sorbent performance tests; and results from refuse-derived fuel and lignite combustion tests.

  8. Emissions During Co-Firing of RDF-5 with Coal in a 22 t/h Steam Bubbling Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Wan, Hou-Peng; Chen, Jia-Yuan; Juch, Ching-I.; Chang, Ying-Hsi; Lee, Hom-Ti

    The co-firing of biomass and fossil fuel in the same power plant is one of the most important issues when promoting the utilization of renewable energy in the world. Recently, the co-firing of coal together with biomass fuel, such as "densified refuse derived fuel" (d-RDF or RDF-5) or RPF (refuse paper & plastic fuel) from waste, has been considered as an environmentally sound and economical approach to both waste remediation and energy production in the world. Because of itscomplex characteristics when compared to fossil fuel, potential problems, such as combustion system stability, the corrosion of heat transfer tubes, the qualities of the ash, and the emissionof pollutants, are major concerns when co-firing the biomass fuel with fossil fuel in a traditional boiler. In this study, co-firing of coal with RDF-5 was conducted in a 22t/h bubbling fluidized bed (BFB) steam boiler to investigate the feasibility of utilizing RDF-5 as a sustainable fuels in a commercial coal-fired steam BFB boiler. The properties of the fly ash, bottom ash, and the emission of pollutants are analyzed and discussed in this study.

  9. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Third quarter progress report FY-1984, April 1-June 30, 1984

    SciTech Connect

    Not Available

    1986-01-31

    The overall objective of the KRW coal gasification program is to demonstrate the viability of the KRW pressurized, fluidized-bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) modifications to the PDU; (3) cold flow scaleup facility; (4) advanced process design and analysis; and (5) laboratory support studies. For laboratory support studies, coal and/or char fines from Wyoming Sub C, Western Kentucky, Republic of South Africa (RSA), and Pittsburgh seam coals processed in the PDU were characterized for reactivity on a thermogravimetric analyzer. The average relative reactivity of the fines (-120 x +140 mesh) was found to be nearly the same as that for larger size distribution (18 x 60 mesh, -1.0 + 0.25 mm). This is consistent with the observations of studies reported in literature on carbon gasification reactions.

  10. Evaluation of PCDD/Fs and metals emission from a circulating fluidized bed incinerator co-combusting sewage sludge with coal.

    PubMed

    Zhang, Gang; Hai, Jing; Cheng, Jiang; Cai, Zhiqi; Ren, Mingzhong; Zhang, Sukun; Zhang, Jieru

    2013-01-01

    The emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals were evaluated during co-combustion of sewage sludge with coal from a circulating fluidized bed incinerator. The stack gas, slag and fly ash samples were sampled and analyzed. The gas-cleaning system consisted of electrostatic precipitators and a semi-dry scrubber. Results showed that the stack gas and fly ash exhibited mean dioxin levels of 9.4 pg I-TEQ/Nm3 and 11.65 pg I-TEQ/g, respectively, and showed great similarities in congener profiles. By contrast, the slag presented a mean dioxin level of 0.15 pg I-TEQ/g and a remarkable difference in congener profiles compared with those of the stack gas and fly ash. Co-combusting sewage sludge with coal was able to reduce PCDD/Fs emissions significantly in comparison with sewage sludge mono-combustion. The leaching levels of Hg, Pb, Cd, Ni, Cr, Cu, and As in the fly ash and slag were much lower than the limits of the environmental protection standard in China. These suggest that the co-combustion of sewage sludge and coal is an advisable treatment method from an environmental perspective. PMID:23586319

  11. Use of a tapered fluidized bed as a continuous bioreactor.

    PubMed

    Scott, C D; Hancher, C W

    1976-10-01

    Reactor systems based on tapered fluidized beds are being developed for aqueous bioprocesses in which adhering microorganisms or immobilized active biological fractions are used. The use of a fluidized bed prevents biomass buildup, accommodates particulates in the feed stream, is compatible with gas sparging, and allows easy removal or addition of the active materials. The tapered reactor tends to stabilize the fluidized bed, thus allowing a much wider range of operating conditions. Preliminary experimental results and an empirical mathematical model of the tapered bed indicate that bed stability is associated with a decreasing velocity and void-fraction profile up the bed and the pressure drop across the bed decreases with increasing flow rates. The tapered fluidized bed bioreactor is being evaluated for use in the enzymatic production of hydrogen, microbiological denitrification, and microbiological degradation of coal conversion aqueous waste streams. The enzyme catalyzed conversion of lactose to glucose and galactose was used in the evaluation of the reactor concept. PMID:963280

  12. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  13. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  14. Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry

    SciTech Connect

    Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

    1981-01-01

    The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

  15. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume IV. FBC-Model-II manual

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the fourth of the seven volume series of our Phase II Final Report. The purpose of this manual is to describe how to access and use M.I.T.'s Fluidized Bed Combustor (FBC) System Program. Presently, the FBC program is stored in a Honeywell Computer System and can be accessed using the Multics interactive system. The intention in writing this manual is to answer the questions that may arise regarding the mechanics of operating the system program, as well as warn the user of possible pitfalls and mistakes that could be made. No attempt is made here to describe the internals of the systems program. The manual describes the procedures an individual would follow to become an active user of the system program. It then explains the various options available for reaching the Multics interactive system on Honeywell 6180 computer on which the program runs. For users outside the Metropolitan Boston area, a public network for data communications is described which is relatively inexpensive. As the system program is approached through Multics using a special command facility TPSA, a separate introduction is provided for Multics TPSA. This facility allows commands appropriate for testing the program and carrying out parametric studies to be executed in a convenient way. Multics TPSA was formulated to meet the needs of the FBC project in particular. Finally, some sample sessions are presented which illustrate the login and logout procedures, the command language, and the data manipulation features of the FBC program. The use of commands helpful in debugging the program is also illustrated.

  16. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume II. Detailed description of the model

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the second of a seven volume series of our Phase II Final Report. This volume deals with detailed descriptions of the structure of each program member (subroutines and functions), the interrelation between the members of a submodel, and the interrelation between the various submodels as such. The systems model for fluidized bed combustors (FBC-II) consists of a systematic combination of the following interrelated areas: fluid mechanics and bubble growth, char combustion and associated kinetics for particle burnout, sulfur capture, NO/sub x/ formation and reduction, freeboard reactions, and heat transfer. Program outline is shown in Figure 1.1. Input variables (supplied by the user are inspected to check that they lie inside the allowed range of values and are input to the various routines as needed. The necessary physical and fluid mechanical properties are calculated and utilized in estimating char combustion and sulfur capture in the bed and the freeboard. NO/sub x/ and CO emissions are estimated by taking into account all relevant chemical reactions. A material and energy balance is made over the bed. Figure 1.1 shows a block diagram of the systems program. In this diagram, the overall structure of the FBC program is illustrated in terms of the various submodels that together constitute the systems program. A more detailed outline of the systems program is shown in Figure 1.2. In this figure, all important subroutine members of the FBC program are shown, and their linkage to each other, as well as to the main program is indicated. A description of the exact sequence in which these various routines are called at time of program execution is provided in Chapter 8 under the executive routine MAIN.

  17. Pressurized fluidized-bed combustion

    SciTech Connect

    Not Available

    1982-10-01

    After a brief background review of fluidized bed combustion, the objectives and status of six pressurized fluidized bed (PFB) projects are described. There are several key technical issues and problem areas concerning the PFB combustor and support components and the gas turbine. The program also studies advanced combustion systems, advanced feed handling, and advanced hot-gas cleanup. 18 references, 8 figures, 4 tables. (LEW)

  18. Engineer, design, construct, test and evaluate a pressurized fluidized bed pilot plant using high sulfur coal for production of electric power. Phase I. Preliminary engineering

    SciTech Connect

    Not Available

    1980-04-01

    The main objective of this program is to evaluate the commercial potential of a power generating concept that includes the pressurized, fluidized bed combustion of coal in conjunction with a combined gas-steam turbine cycle. The capability to burn high-sulfur coal in an environmentally acceptable manner is a requirement. The program involves conceptual commercial design, supporting experimental work, and the design, construction and operation of a PFB pilot plant which can be used to evaluate the commercial concept. The SGT/PFB Technology Unit was designed, procured, erected at the Curtiss-Wright Plant in Wood-Ridge, New Jersey, and placed in operation in 1977. Parametric performance evaluation tests were conducted and completed in July 1978. The secondary gas cleanup system was then modified to include three inertial-type units in series. In mid-1979 the test program was again initiated with the following objectives: Continued evaluation of candidate heat exchanger tube materials to determine the rate data for tube life prediction; evaluation of candidate turbine blade and vane materials and coatings to determine rate data for life prediction; evaluation of the modified hot gas cleanup system; conduct particulate grab sample tests throughout the test to determine grain loading and particle size distribution; and gas turbine operation for 1000 h while burning high sulfur coal in the PFB combustor. Total operating time to date is 3378 hours which includes 2681 hours burning coal and 1205 hours total turbine engine operation. Significant performance and operational milestones have been accomplished and are reported. (LCL)

  19. Particle pressures in fluidized beds

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.; Potapov, A.V.

    1992-01-01

    This is an experimental project to make detailed measurements of the particle pressures generated in fluidized beds. The focus lies in two principle areas: (1) the particle pressure distribution around single bubbles rising in a two-dimensional gas-fluidized bed and (2) the particle pressures measured in liquid-fluidized beds. This first year has largely been to constructing the experiments The design of the particle pressure probe has been improved and tested. A two-dimensional gas-fluidized bed has been constructed in order to measure the particle pressure generated around injected bubbles. The probe is also being adapted to work in a liquid fluidized bed. Finally, a two-dimensional liquid fluidized bed is also under construction. Preliminary measurements show that the majority of the particle pressures are generated in the wake of a bubble. However, the particle pressures generated in the liquid bed appear to be extremely small. Finally, while not directly associated with the particle pressure studies, some NERSC supercomputer time was granted alongside this project. This is being used to make large scale computer simulation of the flow of granular materials in hoppers.

  20. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    SciTech Connect

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  1. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani (Karhula, FI)

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  2. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  3. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect

    1982-10-21

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  4. Pressurized fluidized-bed combustion

    SciTech Connect

    Not Available

    1980-10-01

    The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

  5. Filling abandoned mines with fluidized bed combustion ash grout

    SciTech Connect

    Gray, D.D.; Reddy, T.P.; Black, D.C.; Ziemkiewicz, P.F.

    1998-10-01

    The hydraulic backfilling of abandoned room and pillar coal mines with ash-based grout holds promise as an environmentally beneficial method of ash disposal, capable of preventing acid mine drainage and subsidence. For this scheme to be economically viable, the grout must be sufficiently flowable so that mines can be filled from a small number of boreholes. This paper describes the development and testing of a water-ash-bentonite grout using ash from a coal and gob burning atmospheric pressure fluidized bed combustor. Bentonite was needed to prevent settling which would limit the ability of the grout to spread. Laboratory techniques were devised to measure the rheological parameters of the grout. A static model was developed to predict the maximum distance of spread due to gravity. A field injection of 765 m{sup 3} of grout into an inactive mine panel showed that the grout flows well enough to make hydraulic backfilling feasible.

  6. Effect of temperature on reduction of CaSO{sub 4} oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor

    SciTech Connect

    Song, Q.L.; Xiao, R.; Deng, Z.Y.; Shen, L.H.; Xiao, J.; Zhang, M.Y.

    2008-12-15

    Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. The sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.

  7. Refractory experience in circulating fluidized bed combustors, Task 7

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  8. Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect

    Bonk, D.L.; McDaniel, H.M.; DeLallo, M.R. Jr.; Zaharchuk, R.

    1995-04-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach is the atmospheric fluidized bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts.

  9. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  10. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  11. Study of Nox Emission Characteristics of a 1025t/h Coal-Fired Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Li, Q. Y.; Mi, Z. D.; Zhang, Q. F.

    Measurements of emission are carried out in a 1025t/h CFB boiler. The effect of some factors including coal properties, bed temperature, unit load, excess air on the emission of NOx are investigated. The measurement results show that the N concentration in the coal is dominant parameter to predict the NOx emission from a large-scale CFB boiler. NOx emission from the 1025t/h CFB boiler increases with cyclone temperature and upper pressure drop due to post combustion and external cycle.

  12. Testing of limestone samples from the TVA (Tennessee Valley Authority) region as sulfur dioxide sorbents in atmospheric fluidized bed combustors. Final report

    SciTech Connect

    Hasler, J.R. Jr.; Robl, T.L.; Adibhatla, S.; Cunningham, R.D.; Withers, H.W.

    1984-04-01

    This project summary presents the results from a two-year study of 37 limestone and dolomite samples for application as bed materials in Atmospheric Fluidized Bed Combustion (AFBC). The Tennessee Valley Authority (TVA) supplied the limestone samples for this study. The materials represent a cursory survey of what is currently available from quarries in the region surveyed by the TVA. The following nine techniques were used to characterize the limestone samples: (1) petrographic analysis (2) chemical analysis, (3) thermogravimetric analysis (TGA), (4) attrition test, (5) Brunauer, Emmett, and Teller (BET) surface area, (6) mercury porosimetry, (7) density measurements, (8) transmission electron microscopy (TEM) and (9) scanning electron microscopy (SEM). In addition, both the sensitivity of stone sulfation capacity to temperature changes and the possibility of using hydration to enhance limestone sulfur-capture capability were examined. TVA-804, 806, 819, and 829 are the limestones the authors recommend for AFBCs. Their results indicate that thermogravimetric analysis (TGA) is the simplest means of determining the relative sulfur capture capacity of the limestones. The attrition/sulfation test is a good indicator of sulfur capture, attrition, and carry-over properties of the bed material. TEM analysis of calcined stones is useful in ranking stones in order of sulfur capture capacity; however, like the TGA and attrition test data, TEM analysis cannot provide quantitative results.

  13. Mutagenicity in Salmonella of nitroorganic compounds in extracts of fly ash from a lignite-fired atmospheric fluidized-bed combustor

    SciTech Connect

    Remsen, J.F.; Harris, W.R.

    1984-01-01

    The mutagenicity of a benzene/methanol extract of fly ash from an atmospheric fluidized-bed combustor burning Beulah, ND, lignite was tested in Salmonella. Six strains were used, including three that were mutants in a nitroreductase gene locus. The numbers of revertants from his/sup -/ to his/sup +/ as a function of the amount of fly ash extracted were determined. The results showed that the major mutagens in the crude extract were nitro compounds, from the fact that reversion rates in the nitroreductase-deficient strains were significantly lower than in the parent strains from which they were derived. The responses of the three parental strains, TA1538, TA98, and TA100, were quite similar; thus no conclusions could be made about frameshift versus base-substitution mutagens. Mutagenicity of 15 fractions of the extract was also tested, and one major peak of activity was detected. This activity eluted from a high-performance liquid chromatograph outside the range of retention times associated with mononitro-aromatics. No further identification of specific nitroorganic compounds has been made. 27 references, 2 figures, 4 tables.

  14. Technical advances and new opportunities for fluidized bed combustion

    SciTech Connect

    Alliston, M.G.; Kokko, A.; Martin, B.G.; Olofsson, J.

    1997-12-31

    This paper outlines opportunities for new circulating fluidized bed (CFB) boilers, technical considerations in selecting a fluidized bed boiler, and CFB boiler configuration types and sizes. New opportunities for CFBs include fuel opportunities from coke, mine mouth coals, and waste products, and boiler application opportunities in industrial cogeneration, repowering, and developing nations. Technical considerations discussed for boiler selection are fuel flexibility and environmental aspects. Three boiler configurations are briefly described: (1) water-cooled cyclone with water-cooled loopseal, (2) integral cylindrical cyclone and loopseal, and (3) Cylindrical multi-inlet cyclone. CFB scale-up is also briefly discussed. 3 refs., 3 figs.

  15. Review of ash agglomeration in fluidized bed gasifiers

    SciTech Connect

    Matulevicius, E.S.; Golan, L.P.

    1984-07-01

    The purpose of this study is to review the data and mathematical models which describe the phenomena involved in the agglomeration of ash in fluidized bed coal gasifiers (FBG). Besides highlighting the data and theoretical models, this review lists areas where there is a lack of information regarding the actual mechanisms of agglomeration. Also, potential areas for further work are outlined. The work is directed at developing models of agglomeration which could be included in computer codes describing fluidized bed gasifier phenomena, e.g., FLAG and CHEMFLUB which have been developed for the US Department of Energy. 134 references, 24 figures, 13 tables.

  16. Manual for applying fluidized-bed-combustion residue to agricultural lands. Research report

    SciTech Connect

    Stout, W.L.; Hern, J.L.; Korcak, R.F.; Carlson, C.W.

    1988-08-01

    Atmospheric fluidized-bed combustion (AFBC) is a process that reduces sulfur emissions from coal-fired electric-generating plants. The residue from the process is a mixture of alkaline oxides, calcium sulfate, and coal ash constituent. Since 1976, USDA/ARS has investigated the potential agriculture use of the residue. The investigations comprised an extensive series of laboratory, greenhouse, field plot, and animal-feeding experiments. The best and safest use of AFBC residue in agriculture was as a substitute for agricultural lime. The report contains guidelines for appling AFBC residue to agricultural lands.

  17. Co-combustion of coal and biomass in pulverized fuel and fluidized bed systems -- Activities and research in Europe

    SciTech Connect

    Hein, K.R.G.; Spliethoff, H.

    1999-07-01

    Biomass or sewage sludge utilized as additional fuel in coal combustion systems has consequences on combustion behavior, emissions, corrosion, and residual matter. Therefore, at the beginning of 1993 the European Union within the frame of the APAS program launched a project called ``Combined Combustion of Biomass/Sewage Sludge and Coal''. Within this project, the effects of burning sewage sludge and agricultural residuals such as straw and manure as well as specially grown energy plants in combination with coals of various ranks and origin were studied for the most common large-scale systems in order to establish both the optimum and the technically achievable process modifications necessary for co-combustion. Based on the experience of the APAS program, the objective of a further EU-co-funded project titled ``Operational problems, trace emissions and by-product management for industrial biomass co-combustion'' was to concentrate the research effort on the problem areas like slagging, fouling, corrosion, ash utilization and trace emissions for different co-combustion systems and carefully investigate technical options to avoid these negative effects. The solution of these technical problems is essential for a technically and economically feasible and environmentally advantageous co-combustion and will promote a widespread utilization of existing biomass resources. The project provides a comparison of different biomass co-utilization concepts with regard to fouling, slagging, corrosion, ash utilization and trace emissions. In detail the project incorporated biofuels like wood, wood pulp, bark, straw, wood matter from pressed olive stones and sewage sludge. The major operational problems like slagging, fouling and corrosion were investigated in both PF and CFB units of various scales. Finally the effect of co-combustion on the by-product management - handling, utilization and disposal are evaluated and compared with a pure coal or pure biomass combustion system, respectively. As a further approach to avoid the above problems of co-utilization the pretreatment of biomass to remove the undesired components before combustion has been investigated by washing, pyrolysis or gasification prior to combustion. The potential of utilization the gaseous product from pyrolysis or gasification as reburn fuel for NO reduction was evaluated.

  18. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  19. Utilization of ash from fluidized bed boilers

    SciTech Connect

    Takada, Tomoaki

    1994-12-31

    Combustion ash from a fluidized bed combustion (FBC) boiler contains not only carbon, but also silica alumina, quicklime as a sorbent, and a calcium sulfate by-product. These substances react chemically during fluidized bed combustion, and with the addition of water, they start an ettringite reaction and solidify. We determined the conditions necessary for producing hard solids through the study of the composition, curing methods, and characteristics of the solidified ash. We then used two types of road base material, crushed stone and solidified ash from an FBC boiler, to construct a test road at a site with a great deal of heavy traffic. Construction began in 1985, and since then, periodic tests have been performed to evaluate the performance of the road base materials. The testing of the manufacturing techniques centered on the amount and manner that water was added to the mixture and the curing methods of the mixture. Additional testing focused on the handling of the ash powder, the mixtures, and the solidified ash. Since 1991, under the sponsorship of MITI, the Center for Coal Utilization, in conjunction with Naruto Salt Mfg., Ltd., Nippon Hodo Co., Ltd., and Kawasaki Heavy Industries, Ltd., has used the referenced results to undertake a joint research and development project aimed at the eventual practical application of the technology. In 1993, a pilot facility to solidify ash with the fluidized bed boiler of 75 t/h capacity was completed. At present, all the discharged ash from the pilot facility is being solidified, and experiments on solidification and road base application techniques are underway. Actual road base tests are also in progress, and we are continuing research to meet the national certification requirements for road base materials.

  20. APPLICATION OF FLUIDIZED-BED TECHNOLOGY TO INDUSTRIAL BOILERS

    EPA Science Inventory

    The report gives results of a paper study of the application potential of coalfired fluidized-bed boilers (FBB's) in the industrial use sector. It considers: the ability of coal-fired FBB's to meet the requirements of industrial users, including cost, reliability, maintainability...

  1. DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project

    SciTech Connect

    Kruempel, G.E.; Ambrose, S.J.; Provol, S.J.

    1992-12-01

    The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

  2. Hydration of spent limestone and dolomite to enhance sulfation in fluidized-bed combustion

    SciTech Connect

    Shearer, J.A.; Smith, G.W.; Moulton, D.S.; Turner, C.B.; Myles, K.M.; Johnson, I.

    1980-01-01

    The utilization of CaO in fluidized bed combustion can be markedly increased to reduce the cost and environmental impact of quarrying and disposing of large quantities of solid waste. A new method of treatment of spent bed material to reactivate its SO/sub 2/ capturing ability has been found. Partially sulfated spent overflow material from a fluidized-bed combustor is treated with water and then reintroduced to the combustor as renewed feed that further reacts with SO/sub 2/. This material has sufficient physical integrity, due to the outer layer of CaSO/sub 4/, and high reactivity to make it suitable as a sorbent feedstock. The work reported here details observations on a number of limestones and dolomites reacted in laboratory furnaces under simulated combustion conditions as well as verification of the effectiveness of the method in a 15-cm-ID process development unit scale atmospheric fluidized-bed coal combustor. Initial kinetic studies have also been made on the hydration reaction of partially sulfated limestone. A proposed mechanism of interaction is discussed to explain the enhanced reactivity. Changes in total porosity and pore size distribution in the partially sulfated material due to Ca(OH)/sub 2/ formation and its dehydration serve to open up the particle interior and its residual CaO to further reaction with SO/sub 2/. Almost complete utilization of the available CaO can be achieved by successive applications of this promising new technique.

  3. Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D

    SciTech Connect

    Mei, Renwei; Hahn, David; Klausner, James; Petrasch, Jorg; Mehdizadeh, Ayyoub; Allen, Kyle; Rahmatian, Nima; Stehle, Richard; Bobek, Mike; Al-Raqom, Fotouh; Greek, Ben; Li, Like; Chen, Chen; Singh, Abhishek; Takagi, Midori; Barde, Amey; Nili, Saman

    2013-09-30

    The coal to hydrogen project utilizes the iron/iron oxide looping process to produce high purity hydrogen. The input energy for the process is provided by syngas coming from gasification process of coal. The reaction pathways for this process have been studied and favorable conditions for energy efficient operation have been identified. The Magnetically Stabilized Porous Structure (MSPS) is invented. It is fabricated from iron and silica particles and its repeatable high performance has been demonstrated through many experiments under various conditions in thermogravimetric analyzer, a lab-scale reactor, and a large scale reactor. The chemical reaction kinetics for both oxidation and reduction steps has been investigated thoroughly inside MSPS as well as on the surface of very smooth iron rod. Hydrogen, CO, and syngas have been tested individually as the reducing agent in reduction step and their performance is compared. Syngas is found to be the most pragmatic reducing agent for the two-step water splitting process. The transport properties of MSPS including porosity, permeability, and effective thermal conductivity are determined based on high resolution 3D CT x-ray images obtained at Argonne National Laboratory and pore-level simulations using a lattice Boltzmann Equation (LBE)-based mesoscopic model developed during this investigation. The results of those measurements and simulations provide necessary inputs to the development of a reliable volume-averaging-based continuum model that is used to simulate the dynamics of the redox process in MSPS. Extensive efforts have been devoted to simulate the redox process in MSPS by developing a continuum model consist of various modules for conductive and radiative heat transfer, fluid flow, species transport, and reaction kinetics. Both the Lagrangian and Eulerian approaches for species transport of chemically reacting flow in porous media have been investigated and verified numerically. Both approaches lead to correct prediction of hydrogen production rates over a large range of experimental conditions in the laboratory scale reactor and the bench-scale reactor. In the economic analysis, a comparison of the hydrogen production plants using iron/iron oxide looping cycle and the conventional process has been presented. Plant configurations are developed for the iron/iron oxide looping cycle. The study suggests a higher electric power generation but a lower hydrogen production efficiency comparing with the conventional process. Additionally, it was shown that the price of H{sub 2} obtained from our reactor can be as low as $1.7/kg, which is 22% lower than the current price of the H{sub 2} obtained from reforming plants.

  4. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume III. Model predictions and results

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the third of a seven volume series of our Phase II Final Report. This volume deals with parametric studies carried out using the FBC model. A comparison with available pilot plant data is included where such data are available. This volume in essence documents model performance; describing predictions on bubble growth, combustion characteristics, sulfur capture, heat transfer and related parameters. The model has approximately forty input variables which are at the disposal of the user. The user has the option to change a few or all of these input variables. In the parametric studies reported here, a large number of input variables whose variation is less critical to the predicted results, were maintained constant at the default values. On the other hand, those parameters whose selection is very important in design and operation of the FBC's were varied in suitable operating regions. The chief among such parameters are: bed temperature, coal feed size distribution (2 parameters), average bed-sorbent size, calcium to sulfur molar ratio, superficial velocity, excess air fraction, and bed weight (or bed height). The computations for obtaining the parametric relationships are based upon selection of a geometrical design for the combustor. Bed cross-section is 6' x 6', bed height is 4', and the freeboard height is 16'. The heat transfer tubes have 2'' OD, a pitch of 10'', and are located on an equilateral triangle pattern. The air distributor is a perforated plate with 0.1'' diameter holes on a rectangular grid with 0.75'' center-to-center spacing.

  5. Fluidized bed desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kallvinskas, J. J. (Inventor)

    1985-01-01

    High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.

  6. Heat transfer in high temperature fluidized beds with immersed tubes for coal combustion service. Final report, October 1, 1977-March 31, 1981

    SciTech Connect

    Welty, J. R.

    1984-01-01

    The project involved two parts: analytical and experimental. The progression of work includes the following major divisions: analytical studies involving studies of heat transfer, hydrodynamics of gas flow within the bed, and some considerations of bubble and adjacent tube influences on the heat transfer; experimental apparatus including the instrumented tubes for heat transfer measurements, digital data acquisition, and the high temperature fluidized bed test facility; experimental results; and experimental validation of the analytical model.

  7. TRACE AND MINOR ELEMENT REACTIONS IN FLUIDIZED-BED COMBUSTION PROCESSES

    EPA Science Inventory

    The report gives results of thermodynamic equilibrium calculations for anticipated operating ranges for various fluidized-bed combustion (FBC) designs used to predict the potential volatility and interaction of 31 trace and minor elements contained in coal and sorbent feedstocks....

  8. Engineer, design, construct, test and evaluate a pressurized fluidized bed pilot plant using high sulfur coal for production of electric power. Phase III: pilot plant construction. Annual report, July 1982-July 1983

    SciTech Connect

    Not Available

    1983-01-01

    The original Pressurized Fluidized Bed (PFB) Pilot plant contract, which included the Phase III construction of the plant, was superseded by a Cooperative Agreement on July 21, 1982. Construction activities were resumed after that date. The installation of the system for coal and dolomite receiving and storage, coal preparation, coal and dolomite injection, and ash removal, cooling and storage continued during the first annual reporting period under the Cooperative Agreement. The Control Building siding was installed and control and electrical equipment installation into this building proceeded. The in-bed heat exchanger tubes were assembled into the windbox and the assembly was installed into the PFB combustor. The hot gas cleanup devices were fabricated and installed. The process piping was fabricated and installation proceeded during this period. Installation of electrical wiring and instrumentation was initiated. The construction phase is over 90% complete. 36 figs., 3 tabs.

  9. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  10. Fluidized bed regenerators for Brayton cycles

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1975-01-01

    A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters were made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.

  11. Engineer, design, construct, test, and evaluate a pressurized fluidized-bed pilot plant using high-sulfur coal for production of electric power: Phase III. Pilot plant construction. Quarterly report, March 1-May 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Progress in Phase III of the Engineering Program to design, construct, test and evaluate a pressurized fluidized bed pilot plant is reported. Phase III includes pilot plant fabrication, construction and initial check out. Fabrication of the upper and lower PFB combustor vessels is being followed by a short interval schedule and delivery is projected for July 15, 1981. Fabrication of component parts of the combustor recycle loop is on schedule. The recycle cyclone, freeboard tee, recycle cyclone tee, trickle valve and upper spool piece have all been received for the installation of refractory lining. The bellows assembly is scheduled for completion on July 15, 1981. Material handling equipment purchase orders were placed for the coal handling equipment, electric elevator, coal preparation, and ash handling equipment. Fire protection specifications were issued. The overall project is 43% complete. (LCL)

  12. Sludge incineration in a spinning fluidized bed incinerator

    SciTech Connect

    Swithenbank, J.; Basire, S.; Wong, W.Y.; Lu, Y.; Nasserzadeh, V.

    1999-07-01

    At the present time, the sewage treatment plants in the UK produce about 25 million tonnes of sewage sludge each year at a concentration of 4% solids. New regulations forbid sea dumping and in the near future new incinerators will be required to dispose of about five million tonnes per year. Bubbling fluidized bed incinerators are widely used to burn sewage sludge at a typical consumption rate of about 0.02 kg(dry)/s/m{sup 2}, and it follows that over 300 conventional fluidized bed incinerators of 3 meters bed diameter could be required to cope with the increased demand. At Sheffield University Waste Incineration Centre (SUWIC) research work is being carried out to develop a novel spinning fluidized bed incinerator. The key factor to note is that when air flows up through a bed of near mono-sized particles, it fluidizes when the pressure drop across the bed is equal to the weight of the bed. Normally, the weight of the bed is determined by gravity. However, if the bed is contained by a cylindrical air distributor plate that is rotating rapidly about its axis, then the effective weight of the bed can be increased dramatically. The airflow passing through the bed can be increased proportionally to the g level produced by the rotation and it follows that the process has been intensified. In exploratory tests with a spinning fluidized bed the authors have achieved combustion intensities with coal combustion as high as 100 MW/m{sup 3}. A problem with burning coal is that it was difficult to remove the heat and rotating water seals had to be used to transfer cooling water into the bed. In the case of sewage and other sludges, this problem does not exist since the flue gases can remove the small amount of heat released. The rotating fluidized bed sludge incinerator is a novel device, which is very compact. It is able to solve the turndown problem encountered with conventional fluidized beds by simply changing the rotation speed. Bearing in mind that a centrifugal sludge de-watering unit is already used on sludge incineration plants, it is likely that the rotating fluidized bed can be combined with the de-watering unit, resulting in further process integration and intensification. Furthermore, the ash sintering system can be added to render the ash non-toxic and unleachable thus reducing the costs of its disposal.

  13. Pressurized fluidized-bed combustion program

    SciTech Connect

    Not Available

    1989-09-01

    The goal of the Pressurized Fluidized Bed Combustion (PFBC) Program is to develop a scientific and engineering data base by the 1990's so that the private sector can demonstrate and commercialize PFB systems as a replacement for oil and gas-fired combustion systems within the utility market and as a more economical and environmentally acceptable coal-fired system for the utility market. PFBC involves burning coal in a bed of limestone (calcium carbonate) or dolomite (calcium magnesium carbonate) inside a furnace operated at elevated pressure and with bed temperatures normally in the range of 1400{degree}F--1700{degree}F. The bed material (sorbent) is fluidized (suspended) by the injection of air at the bottom of the bed. Sulfur dioxide (SO{sub 2}), released during combustion of the coal, reacts with the sorbent (limestone or dolomite) and forms a solid sulfate that can be discharged from the system as a dry solid waste along with the coal ash. Advantages offered over other competing technologies for utility applications include high-efficiency, lower capital and operating costs (therefore lower-cost electricity), superior environmental performance, ability to burn a wide variety of fuels (including high-sulfur coals) and modularity (with no great cost penalty for loss of economies of scale). In addition, PFBC has potential as a retrofit technology capable of pollution control and capacity boosting for existing coal-fired power plants, as well as a repowering technology for existing oil and gas-fired steam plants. 3 tabs.

  14. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R. (Los Alamos, NM); Carroll, David W. (Los Alamos, NM); Trkula, Mitchell (Los Alamos, NM); Anderson, Wallace E. (Los Alamos, NM); Valone, Steven M. (Santa Fe, NM)

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  15. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  16. Modeling of fluidized bed silicon deposition process

    NASA Technical Reports Server (NTRS)

    Kim, K.; Hsu, G.; Lutwack, R.; PRATURI A. K.

    1977-01-01

    The model is intended for use as a means of improving fluidized bed reactor design and for the formulation of the research program in support of the contracts of Silicon Material Task for the development of the fluidized bed silicon deposition process. A computer program derived from the simple modeling is also described. Results of some sample calculations using the computer program are shown.

  17. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  18. Rivesville multicell fluidized-bed boiler. Quarterly technical progress report, October-December 1979

    SciTech Connect

    Not Available

    1980-01-01

    The objective of this program is to design, construct and test a multicell fluidized-bed boiler as a pollution-free method of burning high-sulfur or highly corrosive coals without excessive maintenance problems. The fluidized-bed boiler will provide approximately 300,000 pounds of steam per hour. Steam pressure and temperature conditions were selected to meet requirements of the site at which the boiler was installed.

  19. Method of feeding particulate material to a fluidized bed

    DOEpatents

    Borio, Richard W.; Goodstine, Stephen L.

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  20. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Phase 2, Final report, May 1, 1983-July 31, 1984

    SciTech Connect

    1987-09-15

    KRW Energy Systems Inc. is engaged in the development of a pressurized, fluidized-bed, gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-Btu fuel gas from a variety of fossilized, carbonaceous feedstocks for electrical power generation, substitute natural gas, chemical feedstocks, and industrial fuels. This report covers Phase II of the contract period (May 1, 1983 to July 31, 1984) and is a continuation of the work performed in 1983 and reported in the Phase I final report, FE-19122-30. Included is work performed in fiscal 1983 to 1984 on PDU testing, process analysis, cold flow scaleup facility, process and component engineering and design, and laboratory support studies.

  1. Solid fuel feed system for a fluidized bed

    DOEpatents

    Jones, Brian C. (Windsor, CT)

    1982-01-01

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  2. Fluidized bed heat treating system

    SciTech Connect

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  3. Rotary fluidized bed combustion system

    SciTech Connect

    David, C.V.

    1987-07-28

    A method is described for burning fuel in the form of solid particles in a rotary fluidized bed combustion system comprising the steps of: introducing solid fuel in particulate form; introducing air for burning the fuel; enclosing by and containing within walls the mixture of air and fuel thus introduced in a combustion region where fuel and air chemically interact (burning process) in a fluidized bed generated by the manner in which the air and the fuel are introduced in the combustion region; generating an artificial gravity field substantially stronger than the earth gravitational field, the artificial gravity field being created by rotating the air/fuel mixture around an axis substantially orthogonal to the general direction followed by the combusted gases on their way out of the combustion region; preventing the fuel particles from contacting the walls surrounding the fuel burning process by means of balancing the centrifugal forces acting on the particles and caused by the artificially created gravity field against the opposing aerodynamic forces also acting on the particles and which are caused by the means for introducing some of the air for burning the fuel; segregating the fuel burning along the path followed by the particles as they burn and proceed toward the combustion system exhaust, and away from the walls around the combustion region; elongating the pathway generally followed by the particles during the burning process, thereby increasing their residence time in the combustion region until their burning is generally completed before the particles leave the combustion system; and exhausting the combusted gases.

  4. Erosion resistant coatings for fluidized bed boilers

    SciTech Connect

    Solomon, N.G.

    1997-08-01

    Erosion is a generic problem in fluidized bed boilers. This paper identifies the erosion-prone areas in circulating and bubbling bed fluidized bed boilers, and the currently used methods for erosion protection. Recent experience with thermal spray coatings in these areas is discussed as are the complications presented by burning fuels that introduce corrosion to the already erosive environment. The paper concludes with some comments on future considerations for the protection of fluidized bed pressure parts from general wastage due to erosion and corrosion.

  5. Hot corrosion/erosion testing of materials for applications for advanced power conversion systems using coal-derived fuels. Fireside II. Evaluation of turbine materials for use in a coal-fired fluidized bed combustion environment. Task II. Final report

    SciTech Connect

    Not Available

    1980-09-01

    This report summarizes the results of the General Electric Fireside Corrosion Task II Program. This program was designed to evaluate the erosion/corrosion behavior of gas turbine nozzle guide vane and rotor blade materials in both simulated and actual pressurized fluidized bed combustor (PFBC) environments. Simulation testing included exposing disc-shaped specimens in atmospheric pressure small burner rig test stands operated at 1600/sup 0/F (871/sup 0/C) for periods up to 1300 hours. PFBC evaluation testing consisted of exposing airfoil shaped specimens to the efflux from a PFBC in a turbine test section installed in the Exxon PFBC Miniplant facility at Linden, N.J. Candidate gas turbine materials included three cast vane and blade base alloys, FSX-414, IN-738, and U-700, and one protective coating system, platinum-chromium-aluminide (RT-22). Small burner rig testing consistently showed the nickel-base alloys U-700 and IN-738 most susceptible to corrosion/sulfidation, followed by the cobalt-base alloy FSX-414; the RT-22 coating on IN-738 was most resistant to hot corrosion attack. Parts life estimates have been made for the nickel and cobalt-base alloys based on corrosion rates determined from the PFBC testing.

  6. Decontamination of combustion gases in fluidized bed incinerators

    DOEpatents

    Leon, Albert M. (Mamaroneck, NY)

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  7. Pressurized Fluidized-Bed Combustion Program

    SciTech Connect

    Not Available

    1991-04-01

    The Department of Energy's (DOE) Pressurized Fluidized Bed Combustion (PFBC) Program is developing PFBC systems that are designed to address the specific objective of superclean, high-efficiency power systems in accordance with the National Energy Strategy of providing for secure energy supplies. This program plan sets forth the R D activities for FY 1991 through FY 1995 that are necessary to provide the data base from which private industry can commercialize PFB technology. Relevant strategic objectives of the Office of Coal Technology (OCT) include the following: Identify and foster development of new processes and/or equipment capable of using coal directly or as modified fuel forms to increase the efficiency in the use of fuel, to extend is applicability, and/or to allow for its substitution of oil or gas; Make available low-cost, short-construction time, modular equipment to provide incremental generating capacity needed to meet anticipated shortfalls and provide systems analyses and develop viable low-cost technical options needed to meet the growing demand for electricity; and Support appropriate R D and associated environmental research to economically manage the environmental impacts of processing and using fossil fuels, including the work needed to establish data bases that help mitigate problems rather than merely expand the range of questions and concerns. The technology, its status, market applications, program strategy, and program management are discussed. 2 figs., 4 tabs.

  8. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  9. Basic structural parameters of fluidized bed dryers

    SciTech Connect

    Filippov, V.A.

    1980-01-01

    The limits of existence of various turbulent and forced fluidization regimes are conditionally indicated. The principal structural parameters of fluidized bed dryers are determined as a function of the characteristics of the material to be dried.

  10. Model for attrition in fluidized beds

    SciTech Connect

    Chen, T.P.; Sishtla, C.I.; Punwani, D.V.; Arastoopour, H.

    1980-02-01

    A model has been developed to predict the particle size distribution and amount of fines generated during the attrition of particles in fluidized beds. The model agrees well with the experimental data and shows the potential for scale-up.

  11. TECHNOLOGY OVERVIEW: CIRCULATING FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report summarizes the current technical status of circulating fluidized-bed combustion (CFBC). Companies that are involved in investigating this technology and/or developing commercial systems are discussed, along with system descriptions and available cost information. CFBC ...

  12. FLUIDIZED-BED COMBUSTION TECHNOLOGY OVERVIEW

    EPA Science Inventory

    The report reviews fluidized-bed combustion (FBC) technology development through 1979, specifying the work of governmental agencies and individual investigators, highlighting key technical issues, and documenting the current degree of FBC commercialization.

  13. Gasification in Fluidized Beds — Present Status & Design

    NASA Astrophysics Data System (ADS)

    Basu, Prabir; Acharya, Bishnu; Dutra, Animesh

    Biomass has made great in-roads in its use in energy and chemical industries. Gasification is one of the major means for its conversion. For thermo-chemical conversion of biomass three major gas-solid contacting processes, fixed bed, entrained bed and fluidized bed are used. Various versions of fixed bed gasifier (up-draft, down-draft, and side-draft) proved successful but primarily in small capacity units while entrained bed reactors found favour in very large capacity units. Fluidized bed gasifier fills the important intermediate size range. A review of the current commercial use of fluidized bed gasifier shows that it is yet to take the centre stage in the gasification market. This paper examines the issues preventing wider scale use of fluidized bed gasifier and what is the current state of research in those issues.

  14. Process for using fluidized bed reactor

    SciTech Connect

    Stephens, F.M. Jr.; Hager, J.P.; Stephens, F.A.

    1992-06-02

    This patent describes a process for the conversion of reactor feed to iron carbide. It comprises preheating the reactor feed; and converting the preheated reactor feed to iron carbide in a fluidized bed reactor.

  15. Fluidized bed heating process and apparatus

    NASA Technical Reports Server (NTRS)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  16. Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas

    SciTech Connect

    Narvaez, I.; Orio, A.; Corella, J.; Aznar, M.P.

    1996-07-01

    Biomass gasification with air in a bubbling fluidized bed is studied in a small pilot plant. Variables analyzed are equivalence ratio (from 0.20 to 0.45), temperatures of the gasifier bed (750--850 C) and of its freeboard (500--600 C), H/C ratio in the feed, use of secondary air (10% of the overall) in the freeboard, and addition (2--5 wt %) of a calcined dolomite mixed with the biomass used as the feedstock. Using advanced tar and gas sampling and analysis methods, the gas composition and tar content in the gas are determined and their variation with the operation parameters is given. A statistical analysis of the effects of the gasification variables is also here presented.

  17. Mass spectrometric analysis of effluent gases from the several particles of a fluidized bed combustor

    SciTech Connect

    Vural, H.

    1994-12-31

    The activity of the fluidized bed particles against the volatile matter of a bituminous coal has been analyzed by several approaches. In one of the approaches, the measurement of coal tar yields from the devolatilization of bituminous coal particles in a laboratory scale fluidized bed reactor had shown the calcium containing stones were very active destroying polycyclic aromatic compounds. In the other technique, the direct measurement of CO{sub 2} concentrations of the exhaust gas of the same laboratory fluidized bed reactor had shown that the bed with calcium containing stones (used lime bed particles from the larger scale fluidized bed combustor, fresh Reed lime particles, and calcium sulfate particles) had released larger CO{sub 2} quantity under reducing conditions. In the third approach, thermogravimetric analysis (TGA) of those fluidizing particles had been performed. TGA results had indicated that calcium containing stones had exhibited the largest weight losses. On the other hand, TGA weight loss profiles of those calcium containing stones under certain conditions were very complex. In order to clarify this complexity, a mass spectrometer was serially connected to TGA instrument to identify gases which cause the weight loss in TGA mass spectrometric analysis of the effluent gases of the particles which were originally exposed to volatile matter of a bituminous coal in fluidized bed had elucidated that CaSO{sub 4} may decompose at reducing conditions due to presence of combustion intermediates Such as CO and H{sub 2}, and presence of oxygen may complete the sulfation reaction.

  18. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  19. Fluidized-bed boilers keep Chinese industry running on marginal fuels

    SciTech Connect

    Schwieger, B.

    1983-03-01

    Two thousand atmospheric fluidized bed (AFB) boilers are in use in the People's Republic of China. The major Chinese objective is the use of local fuels--oil shale, char from coal-gasification processes and lignite--all of which is of poor quality and can be burned most economically in AFB's. AFB use in the US would emphasize SO/sub 2/ removal in the combustion chamber to comply with air-pollution standards. While Chinese AFB's are simple, locally produced, US AFB's concentrate on sophisticated control systems to minimize reagent consumption in SO/sub 2/ capture. Various standard units and homemade AFB boilers in China are surveyed. Pictures of coal dumping, feeding, ash quenching, and control room are given. The Chinese procedure for startup is described in detail.

  20. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VII. FBC Data-Base-Management System (FBC-DBMS) users manual

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The primary goal of the Fluidized Bed Combustor Data Base (FBCDB) is to establish a data repository for the express use of designers and research personnel involved in FBC development. FBCDB is implemented on MIT's 370/168 computer, using the Model 204 Data Base Management System (DBMS) developed by Computer Corporation of America. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the data base from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results. More than 20 program segments are currently available in M204 User Language to simplify the user interface for the FBC design or research personnel. However, there are still many complex and advanced retrieving as well as applications programs to be written for this purpose. Although there are currently 71 entries, and about 2000 groups reposited in the system, this size of data is only an intermediate portion of our selection. The usefulness of the system at the present time is, therefore, limited. This version of FBCDB will be released on a limited scale to obtain review and comments. The document is intended as a reference guide to the use of FBCDB. It has been structured to introduce the user to the basics of FBCDB, summarize what the available segments in FBCDB can do, and give detailed information on the operation of FBCDB. This document represents a preliminary draft of a Users Manual. The draft will be updated when the data base system becomes fully implemented. Any suggestions as to how this manual may be improved will be appreciated.

  1. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VI. FBC-Data Base-Management-System (FBC-DBMS) development

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The primary goal of the Fluidized Bed Combustor Data Base, (FBCDB), situated in MIT's Energy laboratory, is to establish a data repository for the express use of designers and research personnel involved in FBC development. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. It is anticipated that the FBCDB would play an active and a direct role in the development of FBC technology as well as in the FBC commercial application. After some in-house experience and after a careful and extensive review of commercially available database systems, it was determined that the Model 204 DBMS by Computer Corporation of America was the most suitable to our needs. The setup of a prototype in-house database also allowed us to investigate and understand fully the particular problems involved in coordinating FBC development with a DBMS. Various difficult aspects were encountered and solutions had been sought. For instance, we found that it was necessary to rename the variables to avoid repetition as well as to increase usefulness of our database and, hence, we had designed a classification system for which variables were classified under category to achieve standardization of variable names. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the database from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results.

  2. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  3. Wear prediction in a fluidized bed

    SciTech Connect

    Boyle, E.J.; Rogers, W.A.

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  4. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  5. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  6. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler

    SciTech Connect

    Changfu You; Xuchang Xu

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

  7. Rivesville multicell fluidized-bed boiler. Annual technical progress report, July 1979-June 1980

    SciTech Connect

    Not Available

    1980-01-01

    Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed bouler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. This report presents information on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed educators and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.

  8. Rivesville multicell fluidized bed boiler. Annual technical progress report. July 1978-June 1979

    SciTech Connect

    Not Available

    1980-08-01

    Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed boiler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. Information is presented on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed eductors and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.

  9. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.

    PubMed

    Varol, Murat; Atimtay, Aysel T

    2015-12-01

    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition. PMID:26407346

  10. Perspectives for Fluidized Bed Nuclear Reactor Technology using Rotating Fluidized Beds in a Static Geometry

    NASA Astrophysics Data System (ADS)

    Broqueville, Axel De; Wilde, Juray De

    The new concept of a rotating fluidized bed in a static geometry opens perspectives for fluidized bed nuclear reactor technology and is experimentally and numerically investigated. With conventional fluidized bed technology, the maximum attainable power is rather limited and maximum at a certain fluidization gas flow rate. Using a rotating fluidized bed in a static geometry, the fluidization gas drives both the centrifugal force and the counteracting radial gas-solid drag force in a similar way. This allows operating the reactor at any chosen sufficiently high solids loading over a much wider fluidization gas flow rate range and in particular at much higher fluidization gas flow rates than with conventional fluidized bed reactor technology, offering increased flexibility with respect to cooling via the fluidization gas. Furthermore, the centrifugal force can be a multiple of earth gravity, allowing radial gas-solid slip velocities much higher than in conventional fluidized beds. The latter result in gas-solid heat transfer coefficients one or multiple orders of magnitude higher than in conventional fluidized beds. The combination of dense operation and high fluidization gas flow rates allows process intensification and a more compact reactor design.

  11. Modeling of agglomeration in a fluidized bed

    SciTech Connect

    Rehmat, A.; Huang, C.; Carty, R.; Hariri, H.; Arastoopour, H. )

    1988-01-01

    A fluidized bed containing a central jet was operated with low-temperature melting materials to obtain the rate of agglomeration as well as to measure the temperature distribution within the fluidized bed. The rate of agglomeration was obtained as a function of operating parameters such as temperature and velocity. The agglomeration rate defined, as the rate of change in the number of particles of a particular size, was determined from the particle population balance using the experimental data. The agglomeration model developed to predict the agglomeration rate constant based on the temperature distribution in the fluidized bed and the rate of entrainment of particles into the jet yielded values for the rate constants similar to the experimental values.

  12. Modeling of agglomeration in a fluidized bed

    SciTech Connect

    Rehmat, A.; Huang, C.; Carty, R.; Hariri, H.; Arastoopour, H.

    1988-01-01

    A fluidized bed containing a central jet was operated with low-temperature melting materials to obtain the rate of agglomeration as well as to measure the temperature distribution within the fluidized bed. The rate of agglomeration was obtained as a function of operating parameters such as temperature and velocity. The agglomeration rate defined, as the rate of change in the number of particles of a particular size, was determined from the particle population balance using the experimental data. The agglomeration model developed to predict the agglomeration rate constant based on the temperature distribution in the fluidized bed and the rate of entrainment of particles into the jet yielded values for the rate constants similar to the experimental values. 9 refs., 4 figs.

  13. Modeling of agglomeration in a fluidized bed

    SciTech Connect

    Rehmat, A.; Carty, R. ); Huang, C. ); Hariri, H.; Arastoopour, H. )

    1988-06-01

    A fluidized bed containing a central jet was operated with low-temperature melting materials to obtain the rate of agglomeration as well as to measure the temperature distribution within the fluidized bed. The rate of agglomeration was obtained as a function of operating parameters such as temperature and velocity. The agglomeration rate defined, as the rate of change in the number of particles of a particular size, was determined from the particle population balance using the experimental data. The agglomeration model developed to predict the agglomeration rate constant based on the temperature distribution in the fluidized bed and the rate of entrainment of particles into the jet yielded values for the rate constants similar to the experimental values.

  14. Pressurized circulating fluidized-bed combustion for power generation

    SciTech Connect

    Weimer, R.F.

    1995-08-01

    Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

  15. Fluidized bed incineration: Improved waste disposal method

    SciTech Connect

    Sadhukhan, P.; Bradford, M. )

    1993-03-01

    Simple design, compactness, no moving parts, low operating cost and lower capital cost are just a few reasons why fluidized bed incinerators outperform rotary kilns. However, there is a downside. Fluidized beds cannot handle all feed types. Only 70% to 90% of HPI waste types can be incinerated by these devices. They cannot handle large-sized solid wastes, materials with highly nonuniform or varying properties, or containers and other difficult-to-grind materials. The paper describes the basic bed types; lower NOx formation; in-situ capture of SO[sub 2] and HCl; commercial applications; wastes incinerated by circulating beds; and costs.

  16. Reduction of particulate carryover from a pressurized fluidized bed

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1979-01-01

    A bench scale fluidized bed combustor was constructed with a conical shape so that the enlarged upper part of the combustor would also serve as a granular bed filter. The combustor was fed coal and limestone. Ninety-nine tests of about four hours each were conducted over a range of conditions. Coal-to-air ratio varied from 0.033 to 0.098 (all lean). Limestone-to-coal ratio varied from 0.06 to 0.36. Bed depth varied from 3.66 to 8.07 feet. Temperature varied from 1447 to 1905 F. Pressure varied from 40 to 82 psia. Heat transfer area had the range zero to 2.72 ft squared. Two cone angles were used. The average particulate carry over of 2.5 grains/SCF was appreciably less than cylindrical fluidized bed combustors. The carry over was correlated by multiple regression analysis to yield the dependence on bed depth and hence the collection efficiency, which was 20%. A comparison with a model indicated that the exhaust port may be below the transport disengaging height for most of the tests, indicating that further reduction in carry over and increase in collection efficiency could be affected by increasing the freeboard and height of the exhaust port above the bed.

  17. Sampling and instrumentation for fluidized-bed combustion. Annual report, October 1978-September 1979

    SciTech Connect

    Johnson, I.; Podolski, W.F.; Myles, K.M.

    1980-09-01

    In the first section of this report, background information is presented on instrumentation for fluidized-bed combustion, i.e., for process control, scientific investigation, and safety in planned and operating fluidized-bed combustion systems. The objective of this study is to update and extend the fluidized-bed portion of a preceding report, A Study of the State-of-the-Art of Instrumentation for Process Control and Safety in Large-Scale Coal Gasification, Liquefaction, and Fluidized-Bed Combustion Systems, ANL-76-4. The second section of this report describes two prototype mass flow rate instruments installed on the solids feed lines of an existing ANL fluidized-bed combustor. The Fossil Instrumentation Group at ANL designed, fabricated, and installed these instruments in cooperation with Chemical Engineering Division personnel - one on the coal feedline and one on the coal/limestone feedline. Each instrument consisted of a capacitive sensor spoolpiece and an associated preamplifier and signal conditioning. One channel of each instrument provides three outputs. One delivers a density signal while two others deliver two signals for measuring velocity by cross-correlation. Operation was verified by using laboratory signal analyzers to process the signals. The third section of this report summarizes the results of a Spectron Development Laboratory subcontract from ANL to investigate analytical techniques suitable for monitoring the concentration of gaseous alkali compounds in the hot gas stream from a fluidized-bed combustor. It was concluded from the study that the concept of using the Na/sub 2/SO/sub 4/ dew point to detect the onset of hot corrosion conditions is the most attractive of the techniques evaluated.

  18. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-01-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved. Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  19. Fluidized-Bed Silane-Decomposition Reactor

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Fluidized-bed pyrolysis reactor produces high-purity polycrystalline silicon from silane or halosilane via efficient heterogeneous deposition of silicon on silicon seed particles. Formation of silicon dust via homogeneous decomposition of silane minimized, and deposition of silicon on wall of reactor effectively eliminated. Silicon used to construct solar cells and other semiconductor products.

  20. Particle pressures in fluidized beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  1. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  2. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  3. FBC: Gaining acceptance. [Fluidized Bed Combustion

    SciTech Connect

    Gawlicki, S.M.

    1991-04-01

    This article addresses the growing acceptance of fluidized bed combustion as a technology appropriate for use in dual-purpose power plants. The article reviews projects for cogeneration in California, a demonstration plant sponsored by the US Department of Energy in Ohio (this plant also incorporates combined cycle operation), and an electric power/greenhouse project in Pennsylvania.

  4. Fluidized bed electrowinning of copper. Final report

    SciTech Connect

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  5. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FLUIDIZED BED COMBUSTION

    EPA Science Inventory

    The report documents the results of an assessment of fluidized bed combustors (FBCs) to minimize air emissions from municipal waste combustors (MWCs). Objectives of the assessment were to identify the population of existing and planned refuse fired FBC facilities in the U.S., exa...

  6. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart (Knoxville, TN); Hawk, James A. (Oak Ridge, TN)

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  7. SOLIDS TRANSPORT BETWEEN ADJACENT CAFB FLUIDIZED BEDS

    EPA Science Inventory

    The report gives results of an experimental investigation of a pulsed, dense-phase pneumatic transport system for controlled circulation between adjacent fluidized beds. A model was developed to predict performance. The program provides technical support for EPA's program to demo...

  8. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  9. Clean coal reference plants: Atmospheric CFB. Topical report, Task 1

    SciTech Connect

    Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

    1992-06-01

    The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

  10. Modeling carbonizing process in fluidized bed

    NASA Astrophysics Data System (ADS)

    Szota, M.; Jasinski, J.

    2010-06-01

    This paper presents possibility of using neural networks model for designing carbonizing process in fluidized bed. This process is very complicated and difficult as multi-parameters changes are non linear and car drive cross structure is non homogeneous. This fact and lack of mathematical algorithms describing this process makes modeling properties of drives elements by traditional numerical methods difficult or even impossible. In this case it is possible to try using artificial neural network. Using neural networks for modeling carbonizing in fluidized bed is caused by several nets' features: non linear character, ability to generalize the results of calculations for data out of training set, no need for mathematical algorithms describing influence changes input parameters on modeling materials properties. The neural network structure is designed and special prepared by choosing input and output parameters of process. The method of learning and testing neural network, the way of limiting nets structure and minimizing learning and testing error are discussed. Such prepared neural network model, after putting expected values of car cross driving properties in output layer, can give answers to a lot of questions about running carbonizing process in fluidized bed. The practical implications of the neural network models are possibility of using they to build control system capable of on-line controlling running process and supporting engineering decision in real time. The originality of this research is different conception to obtain foreseen materials properties after carbonizing in fluidized bed. The specially prepared neural networks model could be a help for engineering decisions and may be used in designing carbonizing process in fluidized bed as well as in controlling changes of this process.

  11. DESIGN AND CONSTRUCTION OF A FLUIDIZED-BED COMBUSTION SAMPLING AND ANALYTICAL TEST RIG

    EPA Science Inventory

    The report describes the design, construction, and installation of a fluidized-bed coal combustion sampling and analytical test rig in the High Bay Area (Wing G) of EPA's Industrial Environmental Research Laboratory (IERL), Research Triangle Park, North Carolina. The rig, to be u...

  12. ENVIRONMENTAL ASSESMENT OF SOLID RESIDUES FROM FLUIDIZED-BED FUEL PROCESSING

    EPA Science Inventory

    The report gives results of a 2-year study of the environmental assessment of solid residues generated by fluidized-bed combustion (FBC) of coal and gasification of oil. Included are a literature search, chemical and physical residue characterization, laboratory leaching studies,...

  13. ENVIRONMENTAL ASSESSMENT OF SOLID RESIDUES FROM FLUIDIZED-BED FUEL PROCESSING

    EPA Science Inventory

    The report gives results of the first 15 months of an environmental assessment of solid residues generated by fluidized-bed combustion (FBC) of coal and gasification of oil. Included are a literature search, chemical and physical residue characterization, laboratory leaching stud...

  14. Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors

    SciTech Connect

    Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

    1980-09-01

    The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

  15. Characterizing and modeling combustion of mild-gasification chars in pressurized fluidized beds

    SciTech Connect

    Daw, C.S.

    1995-10-01

    Oak Ridge National Laboratory (ORNL) is supported by the Morgantown Energy Technology Center (METC) of the Department of Energy (DOE) under FWP-FEAA310 to characterize the fuel properties of liquid and char coproducts from the mild gasification of coal, Because most of the energy content of coals subjected to mild gasification is retained in the byproduct char, efficient and cost-effective utilization of the char is essential in insuring that candidate gasification processes are commercially viable. One potential use for char of particular interest to DOE is pressurized fluidized bed combustion (PFBC). PFBC is of particular interest because it has the potential for 10 to 30 percent greater overall energy efficiency than atmospheric fluidized bed combustion (AFBC), While bench-scale tools and analytical procedures for characterizing fuels for AFBC have been recently demonstrated, no such tools have been reliably demonstrated for PFBC. This report summarizes the results of joint research collaboration between ORNL and B&W that has been directed at modifying the previously developed AFBC fuel characterization procedures to be applicable for mild-gasification chars and PFBC conditions. The specific objectives were to: (1) characterize the combustion reactivity of a selected set of candidate mild- gasification chars at PFB conditions; (2) compare the measured char characteristics with those of more conventional PFBC fuels; (3) modify an AFBC computer code previously developed by B&W and ORNL for the Electric Power Research Institute (EPRI) to predict PFBC performance; and (4) apply the modified code and measured char combustion characteristics to make performance predictions for the candidate chars relative to more conventional fuels.

  16. Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect

    Bonk, D.L.; McDaniel, H.M.; DeLallo, M.R. Jr.; Zaharchuk, R.

    1995-07-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  17. Spectral methods applied to fluidized-bed combustors

    SciTech Connect

    Brown, R.C.; Raines, T.S.; Thiede, T.D.

    1995-11-01

    The goal of this research is to characterize coals and sorbents during the normal operation of an industrial-scale circulating fluidized bed (CFB) boiler. The method determines coal or sorbent properties based on the analysis of transient CO{sub 2} or SO{sub 2} emissions from the boiler. Fourier Transform Infrared (FTIR) spectroscopy is used to qualitatively and quantitatively analyze the gaseous products of combustion. Spectral analysis applied to the transient response of CO{sub 2} and SO{sub 2} resulting from introduction of a batch of coal or limestone into the boiler yields characteristic time constants from which combustion or sorbent models are developed. The method is non-intrusive and is performed under realistic combustion conditions. Results are presented from laboratory studies and power plant monitoring.

  18. Effect of CaO on retention of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W and Pb in bottom ashes from fluidized-bed coal combustion power station.

    PubMed

    Bartoňová, Lucie; Klika, Zdeněk

    2014-07-01

    This work was conducted to evaluate whether Ca-bearing additives used during coal combustion can also help with the retention of some other elements. This work was focused on the evaluation of bottom ashes collected during four full-scale combustion tests at an operating thermal fluidized-bed power station. Bottom ashes were preferred to fly ashes for the study to avoid interference from condensation processes usually occurring in the post-combustion zone. This work focused on the behaviors of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W, and Pb. Strong positive correlations with CaO content in bottom ashes were observed (for all four combustion tests) for S, As, Cl and Br (R=0.917-0.999). Strong inverse proportionality was calculated between the contents of Pb, Zn, Ni, Cr and Mn and CaO, so these elements showed association to materials other than Ca-bearing compounds (e.g., to aluminosilicates, organic matter, etc.). Somewhat unclear behaviors were observed for W, Cu, and V. Their correlation coefficients were evaluated as statistically "not significant", i.e., these elements were not thought to be significantly associated with CaO. It was also discovered that major enrichment of CaO in the finest bottom ash fractions could be advantageously used for simple separation of elements strongly associated with these fractions, mainly S and As, but also Cl or Br. Removal of 5% of the finest ash particles brings about a decrease in As concentration down to 77%-80% of its original bulk ash content, which can be conveniently used e.g., when high As content complicates further ash utilization. PMID:25079991

  19. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  20. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    SciTech Connect

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  1. Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Soria-Hoyo, C.; Valverde, J. M.; van Ommen, J. R.; Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A.; Sayagués, M. J.

    2015-02-01

    CaO has been deposited on a nanosilica powder matrix by a procedure based on atomic layer deposition (ALD) in a fluidized bed reactor at atmospheric pressure following a potentially scalable process. In previous works ALD in gas fluidized bed has been mostly performed under reduced pressure, which hampers scaling-up the production technology. The material synthesized in the present work is tested as CO2 solid sorbent at calcium looping conditions. Multicyclic thermogravimetric analysis (TGA) shows that the nanosilica support stabilizes the capture capacity of CaO. EDX-STEM analysis illustrates the presence of Ca well distributed on the surface of the SiO2 nanoparticles.

  2. Pressurized fluidized bed combined cycle for electric power generation

    SciTech Connect

    Lessard, D.; Najewicz, D.J.; Roberts, R.

    1982-06-01

    The Pressurized Fluidized Bed Combined Cycle (PFB/CC) is an efficient, cost-effective and environmentally attractive utility power plant concept which will permit the near-term substitution of domestic coal for imported oil. The combustor/steam generator is based on an advanced coal combustion process which results in greater than 99% carbon utilization, adsorption of 95% or more of the coal's sulfur in the bed, and low NO/SUB x/ emissions, while producing a dry, inert ash by-product. General Electric has been actively working on fluidized bed combustion technology development since 1974. Following extensive testing in the U.S. and England, sufficient definition and experimental resolu tion of critical PFB/CC issues have been accomplished to justify demonstration of a coal-fired PFB/combined cycle in an utility setting. A sound design data base exists for the PFB combustor/boiler, and a pilot-scale facility is now in operation at Grimethorpe, U.K., under the auspices of the International Energy Agency. The problems of gas turbine durability and hot gas dust removal in the PFB exhaust stream are now well understood. Current gas turbine materials and currently available hot gas particulate removal equipment together are suitable for gas turbine inlet temperature up to about 1450 F. Improvements in hot gas cleanup and gas turbine materials, currently under development, are expected to permit the gas turbine inlet temperature to be increased to the 1500-1700 /sup 0/F range. When combined with a modern steam cycle, the PFB/CC power plant is projected to provide performance and cost advantages over pulverized coal plants with scrubbers. The relative simplicity of the PFB cycle is well suited to repowering (boiler replacement) of existing large steam turbine/generators, with a minimum of modification.

  3. Heat transfer in pressurized circulating fluidized beds

    SciTech Connect

    Wirth, K.E.

    1997-12-31

    The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was obtained for the heat transfer coefficient.

  4. Technology evaluation for a waste-fuel-based circulating fluidized-bed project

    SciTech Connect

    Kavidass, S.

    1994-12-31

    A comparative technology evaluation is made of competing technologies - pulverized coal (PC), stoker-fired and circulating fluidized-bed boilers - for firing high-ash waste coal. Operating experience from Ukraine and India indicates that PC-fired boilers burning high-ash waste coal can be repowered with circulating fluidized-bed (CFB) technology. This has been necessary due to poor boiler availability, equipment deterioration, ash content variation in the fuel, and increasingly stringent emissions regulations. Due to these considerations, CFB technology was selected for Ebensburg Power Company`s high-ash waste coal project. The 55 MW B&W CFB boiler at Ebensburg Power, Pennsylvania, USA has successfully fired high-ash waste coal since May 1991. Operating experience of the Ebensburg CFB boiler, including availability, maintenance, and emissions is discussed.

  5. Engineer, design, construct, test and evaluate a pressurized fluidized bed pilot plant using high sulfur coal for production of electric power. Phase III. Pilot plant construction. Final report

    SciTech Connect

    Not Available

    1984-11-01

    This final report describes the coal-fired plant design capable of producing electric power in an environmentally clean manner. The report presents the predicted performance using high sulfur bituminous coal and summarizes the construction activities and changes through completion on November 30, 1983. The construction activities involved: (1) the site excavation and pouring foundations for the PFB process equipment structural tower, control building, dolomite silo, boost compressor, and various equipment footings; (2) the fabrication and erection of the support steel work for the process equipment tower, control building, rail car thaw shed, and particulate scrubber and exhaust stack; (3) the fabrication and erection of the process equipment including the PFB combustor vessel, windbox, in-bed heat exchanger and process piping, the ash recycle system, the gas clean-up system, the ash removal, cooling and storage system, the coal handling, preparation and injection systems, the dolomite receiving, handling, storage and injection systems, the boost air compressor, dryer and receiver systems, the purge instrument and service air systems, the control, instrument and electrical systems, the tower elevator, the cardox, Halon and water fire protection system, etc. In addition, modifications and refurbishment were completed on the existing equipment at the site which was incorporated into the Pilot Plant system. Finally, plans were prepared describing the operating procedures, maintenance requirements, spare parts list, training program and manpower requirements for the proposed Phase IV test evaluation program. 37 figures, 11 tables.

  6. Fines in fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G.; Hogle, R.; Rohatgi, N.; Morrison, A.

    1984-01-01

    Silicon deposition on silicon seed particles by silane pyrolysis in a fluidized-bed reactor is investigated as a low-cost, high-throughput method to produce high-purity polysilicon for solar-cell applications. Studies of fines, particles 0.1-10 microns diam, initiated from homogeneous decomposition in the reactor were conducted using 2 and 6-in-diam fluidized beds. The studies show functional dependences of fines elutriation on silane feed concentration, temperature, gas velocity, and bubble size. The observation that the fines elutriation is generally below 10 percent of the silicon-in-silane feed is attributed to scavenging by large particles in an environment of less free space for homogeneous nucleation. Preliminary results suggest that, with proper conditions and distributor design, high-silane-concentration (over 50 percent SiH4 in H2) feed may be used.

  7. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1982-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  8. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  9. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  10. Control of a Circulating Fluidized Bed

    SciTech Connect

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard; Sams, W. Neal; Koduro, Praveen; Patankar, Amol; Davari, Assad; Lawson, Larry; Boyle, Edward J.

    2001-11-06

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  11. Pressurized fluidized bed - A technology for combined cycle power generation

    NASA Astrophysics Data System (ADS)

    Moskowitz, S.; Geffken, J.

    1981-01-01

    The production of electric power using high sulfur coal in an environmentally clean and efficient manner is a major element in this country's goal for energy independence. One coal combustion technique which has had demonstrable progress toward accomplishing this goal is the pressurized fluidized bed process. A pilot plant program sponsored by the Department of Energy to design a power generation system of 13 MWe size has been instrumental in developing the PFB technology. The paper describes the technology test programs that have been conducted to establish the design criteria and to select the design configurations and materials for the pilot plant. Over 10,000 hours of tests have demonstrated adequate fluid bed combustion characteristics, gaseous emissions levels at one-third the level permitted by EPA for NO(x) and SO2, and durability for the in-bed heat exchanger and the turbine blade materials.

  12. Manufacturing of iron carbides in fluidized-bed reactors

    SciTech Connect

    Deevi, S.C.; Deevi, S.; Hajaligo, M.R.

    1996-06-01

    Iron carbides with magnetic properties suitable for magnetic media were synthesized in a fluidized bed using reactive atmospheres. Fluidized-bed reactors of laboratory, bench, and pilot scale were employed for the synthesis of iron carbide, Fe{sub 5}C{sub 2}, by reducing and carburizing {alpha}-Fe{sub 2}O{sub 3} in the temperature range of 300 to 550{degrees}C. A temperature of 400{degrees}C and a reaction time of 2 to 3 h were found to be optimal for the synthesis of iron carbide. A reducing/carburizing atmosphere such as carbon monoxide, resulted in the nucleation and growth of Fe{sub 5}C{sub 2} directly from Fe{sub 3}O{sub 4} with no intermediate phases such as FeO or Fe. Longer carburization times resulted in the deposition of carbon on the surfaces of Fe{sub 5}C{sub 2} particles due to Boudouard reaction. The powders were characterized using X-ray diffraction, thermo-gravimetric analysis, and vibrating sample magnetometry.

  13. Fluidized-bed combustion of oil shale

    SciTech Connect

    McCarty, H.E.

    1983-04-01

    Two sets of fluidized-bed combustion experiments have been conducted in which raw shale fines and a simulated low Btu off-gas were burned to produce steam for power generation. The results show that the shale fines and low Btu off-gas can be utilized for energy production, and further, the sulfur removal is effective and efficient. This process eliminates the need for H/sub 2/S removal and is not sensitive to small quantities of entrained liquids.

  14. Dynamics of a shallow fluidized bed

    SciTech Connect

    Tsimring, Lev S.; Ramaswamy, Ramakrishna; Sherman, Philip

    1999-12-01

    The results of the experimental study of the dynamics of a shallow fluidized bed are reported. The behavior of granular material is controlled by the interplay of two factors--levitation due to the upward airflow, and sliding back due to gravity. Near the threshold of instability, the system shows critical behavior with remarkably long transient dynamics. The experimental observations are compared with a simple cellular automata model. (c) 1999 The American Physical Society.

  15. Fluidized-bed biological nitrogen removal

    SciTech Connect

    Hosaka, Yukihisa; Minami, Takeshi; Nasuno, Sai )

    1991-08-01

    This article describes a compact process for nitrogen removal developed in Japan. It does not require the large amounts of land of current denitrification processes. The process uses a three-phase fluidized bed of granular anthracite to which the nitrifying bacteria adhere and are fluidized by the activated sludge in the reactor. The process was developed in response to the need for nitrogen and phosphorus removal from waste water to prevent the eutrophication of Tokyo Bay, Japan.

  16. Measurement of bubble size in fluidized beds

    SciTech Connect

    Viswanathan, K.; Subba Rao, D.

    1984-07-01

    A simple method is developed to estimate bubble size variation with height in fluidized beds from axial pressure measurements. Experiments are performed and results are presented to indicate the procedure of using the method developed. Bubble sizes thus obtained compare reasonably well with available bubble growth correlations. The present method is expected to be useful for bubble size measurements at high temperatures and pressures and under complex reacting conditions.

  17. Fundamentals of agglomeration in a fluidized bed

    SciTech Connect

    Huang, C.S.

    1985-01-01

    A visually observable fluidized bed, which can be operated under conditions in which agglomeration of the bed materials occurs, was designed and constructed. Polyethylene particles and silica sand coated with a thin layer of Elvax were chosen as bed materials. The coated particles used were in three different size ranges +180-250, +250-425, +425-600 ..mu..m and had three different coating thicknesses, 1, 3, and 5 ..mu..m. Two types of fluidized gas distributors were used: a porous plate with an independently fed jet at the center. The fluidized bed could be operated in either continuous-feed mode or in batch mode. In the case of polyethylene particles as bed material in the batch system, the amount of agglomerates increased linearly with residence time and increased exponentially with either auxiliary air or jet air temperature. The amount of agglomerates increased with jet nozzle size at the constant jet air flow rate. For a given jet nozzle size the agglomeration rate increased initially with jet air velocity, reached a maximum value and then decreased. In the case of coated particle as bed material, in the batch fluidized bed, the amount of agglomerates increased with residence time and then leveled off. It increased sharply with jet air temperature, coating thickness, concentration of coated particles and decreasing particle sizes. The agglomeration rate constants calculated from the model agree reasonably well with those obtained from experimental data. The model provides the better understanding of the complicated phenomena of agglomeration and could be an initial guide in choosing the operating conditions of an agglomerating fluidized bed.

  18. Use of glow discharge in fluidized beds

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)

    1981-01-01

    Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.

  19. Reactor for fluidized bed silane decomposition

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1989-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  20. Fluidized bed for production of polycrystalline silicon

    SciTech Connect

    Flagella, R.N.

    1992-08-18

    This patent describes a method for removing silicon powder particles from a reactor that produces polycrystalline silicon by the pyrolysis of a silane containing gas in a fluidized bed reaction zone of silicon seed particles. It comprises introducing the silane containing gas stream into the reaction zone of fluidized silicon seed particles; heterogeneously decomposing the silane containing gas under conditions; collecting the silicon product particles from the collection zone; and removing silicon powder particles from the reactor.

  1. Zone heating for fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1987-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  2. Cluster Dynamics in a Circulating Fluidized Bed

    SciTech Connect

    Guenther, C.P.; Breault, R.W.

    2006-11-01

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  3. Status of the fluidized bed unit

    SciTech Connect

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  4. Fluidized Bed Asbestos Sampler Design and Testing

    SciTech Connect

    Karen E. Wright; Barry H. O'Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this concentration. Opportunities for improvement with the fluidized bed include improving reproducibility among replicates, increasing mass recovery, improving the lid gasket seal.

  5. Granular filtration in a fluidized bed

    SciTech Connect

    Mei, J.S.; Yue, P.C.

    1999-07-01

    A novel filtration concept for particulate cleanup has been developed at the US Department of Energy's Federal Energy Technology Center (FETC). The filtration system consists of a fine, metal-screen filter that is immersed in a fluidized bed of granular material. As a gas stream passes through the fluidized bed, a layer of granular bed material is entrained and deposited on the screen surface. This material provides a natural granular filter that separates fine particles from the gas stream passing through the bed. Because only the in-flowing gas maintains the granular layer at the screen surface, once the thickness and permeability of the granular layer are stabilized, the layer remains unchanged as long as the in-flowing gas flow rate remains constant. The weight of the particles and the turbulent nature of the fluidized bed limit the thickness of the granular layer on the filter, leading to self-cleaning of the filter. The original granular filtration testing system consisted of a set of filter elements; a two-dimensional fluidized-bed; a continuous powder feeder, a laser-based in-line particle counting, sizing, and velocimeter (PCSV) and/or a classical scattering aerosol spectrometer (CSAS); and a continuous solid feeding/bed material withdrawal system. The two-dimensional, transparent fluidized-bed allowed clear observation of the general fluidized state of the granular material and the conditions under which fines are captured by the granular layer. Two different filter element configurations were tested. The original filter showed high filtration performance when low density acrylic powder was used as bed material, but low filtration performance with heavy bed material (sand). The low filtration performance with this material was attributed to the failure to maintain a sufficiently thick granular layer at the screen filter surface. However, experimental data show that filtration performance for heavy bed material can be drastically improved by modifying the filter element. Collection efficiencies of over 99.95% were consistently obtained in a series of experiments under similar operating conditions.

  6. Hydrodynamic aspects of a circulating fluidized bed with internals

    SciTech Connect

    Balasubramanian, N.; Srinivasakannan, C.

    1998-06-01

    An attempt is made to examine the influence of internals (baffles) in the riser of the circulating fluidized bed. Experiments are conducted in a circulating fluidized bed, having perforated plates with different free areas. It is noticed from the present work that a circulating fluidized bed having 45% free area gives uniform solids concentration and pressure drop along the length of the riser. In addition to the uniformity, the circulating fluidized bed with internals gives higher pressure drop (solids concentration) compared to a conventional circulating fluidized bed. For internals having 67.6% free area the pressure drop is higher at the lower portion of the riser compared to the upper portion, similar to a conventional circulating fluidized bed. For 30% free area plates the solids concentration varies axially within the stage and remains uniform from stage to stage.

  7. ALTERNATIVES TO CALCIUM-BASED SO2 SORBENTS FOR FLUIDIZED-BED COMBUSTION: CONCEPTUAL EVALUATION

    EPA Science Inventory

    The report gives results of a conceptual engineering evaluation to screen supported metal oxides as alternatives to natural calcium-based sorbents (limestones and dolomites) for SO2 control in atmospheric and pressurized fluidized-bed combustion (FBC) processes. Alternative sorbe...

  8. REGENERATION OF CALCIUM-BASED SO2 SORBENTS FOR FLUIDIZED-BED COMBUSTION: ENGINEERING EVALUATION

    EPA Science Inventory

    The report gives results of an engineering evaluation of regeneration of calcium-based SO2 sorbents (limestone and dolomite) for application in both atmospheric and pressurized fluidized-bed combustion (FBC) processes. Economics of FBC power plants, operated with regeneration, ar...

  9. Bed material agglomeration during fluidized bed combustion. Final report

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1996-01-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

  10. Engineer, design, construct, test, and evaluate a pressurized fluidized-bed pilot plant using high-sulfur coal for production of electric power. Phase III: construction. Annual report, March 1, 1980-February 28, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Progress in the construction of the 13 MW pressurized fluidized bed (PFB) pilot plant at Wood-Ridge, NJ is reported. Excavation at the site began in November 1980. Steel fabrication is continuing with steel erection scheduled for May 1981. Procurement of mechanical equipment, especially materials handling equipment is underway. Contracts have been let for the gas turbine components and for the manufacture of the PFB process components. (LCL)

  11. Engineering support services for the DOE/GRI coal-gasification research program. Evaluation of the data base for single-stage gasification of peat. [IGT 6 inch, single stage, fluidized bed (not PEATGAS)

    SciTech Connect

    Bostwick, L.E.; Hubbard, D.A.; Shah, K.V.; Do, L.T.

    1982-03-01

    Kellogg has reviewed the data base generated by IGT in the 6 inch PDU for the single stage fluidized bed gasification of peat. Kellogg's central finding is that the existing data base should be expanded by further testing in the PDU, after necessary modifications, to investigate further the effects of operating parameters within the ranges of interest. The existing data base consists of 20 PDU runs. Kellogg has concentrated on the Minnesota peat data base, since an insufficient number of runs exist for Maine and North Carolina peats to establish any valid trends. Consequently, the evaluation presented concerns only the Minnesota peat data base with respect to ranges of operating parameters studied, the criteria for good fluidized-bed operation and the effects of the key operating parameters on the performance. In Kellogg's opinion the existing data base demonstrates that: gasification of peat at 90+% carbon conversion is possible in a single stage fluidized bed reactor; the most significant operating parameters have been identified; the single stage fluidized bed peat gasifier has merit because of simplicity of operation, near-zero production of liquids and potential of operation without steam and at low pressure. However, Kellogg notes the following shortcomings:relatively small number of experimental runs and lack of data at certain levels of operating parameters studied; sintering occurred in 35% of the runs; in all the 20 test runs, fines losses exceeded in 5% of the feed and for the Minnesota peat data base, fines losses averaged 12.8%; use of large amounts of fluidizing gas (in this case N/sub 2/), which does not reflect commercial operation; and lack of data with higher peat feed moisture content. Thus, in Kellogg's opinion, considerable advantage is to be gained by expanding the existing data base and lists its specific recommendations.

  12. Specification considerations for a circulating fluidized bed boiler

    SciTech Connect

    Liu, E.H.; Surabian, M. )

    1988-01-01

    The circulating fluidized bed (CFB) boiler is gradually gaining acceptance in both the industrial and utility sectors for electric power generation. Boiler steaming capacity in CFBs has increased to over a million pounds per hour in the most recent units. Many CFB units commisioned during the last few years worldwide have had difficult and extended start-up periods, but this experience has provided a good base of feedback for future units. There has been widespread use of the same criteria for a conventional pulverized coal or stoker boiler to specify the CFB boiler. This paper examines the unique design aspects of a CFB boiler and provides suggestions in the areas where specific requirements should be included in the specification of the boiler and its related systems. Areas examined include fuel handling area, burner systems, the combustor, cyclone and solids recirculation equipment, convention pass, the design and installation of refractories, fans and blowers, bed ash removal system, and particulate control equipment.

  13. Development of second-generation pressurized fluidized bed combustion process

    SciTech Connect

    Wolowodiuk, W.; Robertson, A.; Bonk, D.

    1994-10-01

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

  14. Technical evaluation: pressurized fluidized-bed combustion technology

    SciTech Connect

    Miller, S A; Vogel, G J; Gehl, S M; Hanway, Jr, J E; Henry, R F; Parker, K M; Smyk, E B; Swift, W M; Podolski, W F

    1982-04-01

    The technology of pressurized fluidized-bed combustion, particularly in its application to a coal-burning combined-cycle plant, is evaluated by examining the technical status of advanced-concept plant components - boiler system (combustor, air-handling and air-injection equipment, and heat exchangers); solids handling, injection, and ejection system; hot-gas cleanup equipment; instrumentation/control system; and the gas turbine - along with materials of plant construction. Environmental performance as well as energy efficiency are examined, and economic considerations are reviewed briefly. The evaluation concludes with a broad survey of the principal related research and development programs in the United States and other countries, a foreview of the most likely technological developments, and a summary of unresolved technical issues and problems.

  15. Development of a FI CIRC{trademark} fluidized bed boiler to burn waste tires

    SciTech Connect

    Dervin, C.; Waldron, D.J.; Haas, J.C.

    1997-12-31

    Disposal of tires is becoming a problem due to higher landfill charges and environmental concerns. Typically tires have a higher calorific value than coal, contain less nitrogen, ash, and sulfur than most coals and are a potential source of energy for power and process steam generation. In 1995 a Fines Circulating (FI CIRC{trademark}) fluidized bed boiler was selected to burn tires for a project in the city of Fulton, Illinois. Fuels ranging from Petroleum Coke to Brown coal had already been successfully fired in commercial plants and preliminary pilot plant testing showed no problems in firing tires. During the development of the project, financiers raised concerns about the optimum fuel size, combustion characteristics, removal of wires from the fluidized bed, and the control of emissions from the plant. A testing program was devised which included hot and cold pilot plant testing to evaluate the characteristics of firing shredded tires. The results and the impact on the boiler design are presented.

  16. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  17. Electric utility second-generation pressurized fluidized bed combustion plants

    SciTech Connect

    Robertson, A. ); Bonk, D. )

    1992-01-01

    In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second-generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal is devolatilized/carbonized before it is injected into the PFB combustor bed, and the low-Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

  18. Electric utility second-generation pressurized fluidized bed combustion plants

    SciTech Connect

    Robertson, A.; Bonk, D.

    1992-09-01

    In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second-generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal is devolatilized/carbonized before it is injected into the PFB combustor bed, and the low-Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

  19. The Nucla Circulating Fluidized-Bed Demonstration Project: A U.S. DOE post-project assessment

    SciTech Connect

    1995-06-01

    This report is a post-project assessment of the Nucla Circulating Fluidized-Bed (CFB) Demonstration Project, the second project to be completed in the DOE Clean Coal Technology Program. Nucla was the first successful utility repowering project in the US, increasing the capacity of the original power station from 36 MW(e) to 110 MW(e) and extending its life by 30 years. In the CFB boiler, combustion and desulfurization both take place in the fluidized bed. Calcium in the sorbent captures sulfur dioxide and the relatively low combustion temperatures limit NOx formation. Hot cyclones separate the larger particles from the gas and recirculates them to the lower zones of the combustion chambers. This continuous circulation of coal char and sorbent particles is the novel feature of CFB technology. This demonstration project significantly advanced the environmental, operational, and economic potential of atmospheric CFB technology, precipitating a large number of orders for atmospheric CFB equipment. By 1994, more than 200 atmospheric CFB boilers have been constructed worldwide. Although at least six CFB units have been operated, the Nucla project`s CFB database continues to be an important and unique resource for the design of yet larger atmospheric CFB systems. The post-project assessment report is an independent DOE appraisal of the success a completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology as well as an analysis of the commercial market.

  20. Spatiotemporal dynamics of a shallow fluidized bed.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Clark, D. K.

    2000-12-05

    An experimental and theoretical study of the dynamics of an air-fluidized thin granular layer is presented. Near the threshold of instability, the system exhibits critical behavior with remarkably long transient dynamics. Above the threshold of fluidization the system undergoes a Hopf bifurcation as the layer starts to oscillate at a certain frequency due to a feedback between the layer dilation and the airflow rate. Based on our experimental data, we formulate a the simple dynamical model which describes the transition in a shallow fluidized bed.

  1. Combined fluidized bed retort and combustor

    DOEpatents

    Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  2. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  3. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  4. Gas fluidized-bed stirred media mill

    DOEpatents

    Sadler, III, Leon Y. (Tuscaloosa, AL)

    1997-01-01

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  5. Pyrolysis reactor and fluidized bed combustion chamber

    DOEpatents

    Green, Norman W. (Upland, CA)

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  6. Analysis and modeling of in-bed tube erosion in a gaseous fluidized bed

    SciTech Connect

    Lee, S. W.

    1989-01-01

    Erosion by impingement of bed materials (ash, coal, and sorbents) on in-bed components has caused serious problems to many fluidized bed combustion (FBC) systems in the past few decades. The author conducted an experimental study, supplemented with theoretical analysis, in which erosion-prone tubes were placed inside a fluidized bed of uniformly sized glass beads to accelerate the mass removal process of the in-bed tubes. Effects of tube-to-distributor clearance, superficial velocity, tube orientation and location, tube circumferential angle, tube bundle height and configuration, and particle size on tube erosion were investigated, identified and discussed. It was found that tube erosion occurred only at a threshold fluidizing velocity (26 cm/s), close to the minimum fluidizing velocity (19 cm/s), and increased almost linearly with increasing superficial velocity. The average specific erosion rate of a tube bundle was about one order of magnitude lower than that of a single tube under the same test conditions. The erosion of a staggered bundle was found larger by 45% than that of an in-line bundle having identical tube pitches. Mathematical modeling of gas-particle flow in the fluidized bed with an in-bed tube was pursued to explore the particle motion and its effect on tube erosion. An erosion model was developed to describe and analyze the phenomenon of in-bed tube erosion. A series of improved electrostatic impact probes, based on the triboelectric effect of moving particles, were developed and used as a primary standard for measuring the particle-surface collision frequency in the fluidized bed. Design guidelines were proposed for fluidized bed systems for planning counter measures against in-bed tube erosion.

  7. Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds

    SciTech Connect

    Joel R. Schroeder; Robert C. Brown

    1998-04-23

    The purpose of this project is to investigate the origin of pressure fluctuations in fluidized bed systems. The study will asses the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers.

  8. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  9. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  10. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  11. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  12. 21 CFR 890.5160 - Air-fluidized bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed....

  13. Microwave-heated fluidized bed reactor having stages

    SciTech Connect

    Nakamori, Y.; Kubota, T.; Matsumura, T.

    1984-10-09

    An improvement is claimed for introducing into the fluidized-bed heating reactor a water-containing substance to be treated such as an uranyl nitrate solution and subjecting the substance to heat treatment. The reactor of the invention is provided with a microwave-generating means for applying microwaves to the fluidized bed and thereby heating the same.

  14. Predictive models of circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  15. Electrically enhanced fluidized bed heat exchanger

    SciTech Connect

    Lessor, D.L.; Robertus, R.J.; Roberts, G.L.

    1994-05-01

    The experiments have shown that a high level of electrical charging can be achieved in a fluidized bed of two resistive particle types; that bed stabilization rather than increased sensible heat transport dominates low frequency electric field effects on heat transfer with most bed loadings; and, hence, that applying an oscillatory potential difference between tubes or rods in a fluidized bed of two mutual contact-charging particle species gives reduced rather than improved heat transfer. Applying an oscillatory potential difference between rods in a bed of quartz particles fluidized alone did give improved heat transfer, however. With no electric field applied, most fluidized mixes were found to give higher heat transfer rates than the average of the values when each of the two species was fluidized alone. The high level of charging observed in some mixed beds may prove of interest for some air cleanup applications; the results show that simultaneous fluidization of pairs of bipolar charging materials of similar particle size is possible without excessive agglomeration. This would be important for air cleanup.

  16. Fermentation in a fluidized-bed reactor

    SciTech Connect

    Scott, C.D.

    1983-06-01

    A laboratory-scale fluidized-bed bioreactor system for the production of ethanol from a glucose solution using flocculating Zymomonas mobilis was studied. Although the results are preliminary, 2.5- to 3.8-cm-diameter systems were operated for more than 300 h using fluidized floc particles that are 1-2 mm in diameter. The ethanol production rate in the lower portion of the fluidized bed operating at 30/sup 0/C routinely exceeded 200 g/L x h and under some conditions was as high as 400 g/ L x h with a reactor residence time of a few minutes. This far surpasses the results obtained with a batch, stirred-tank reactor using yeast. Ethanol productivity based on the total reactor volume approached 100 g/L x h, and glucose conversion exceeded 95%. With continued research, even higher production rates will be possible as conditions are optimized and scale-up to larger systems will allow the establishment of technical feasibility.

  17. Industrial-hygiene characterization of fluidized-bed-combustion processes. Final report

    SciTech Connect

    McHugh, J.; Trinosky, V.; Golembiewski, M.

    1985-12-01

    The objective of the study was to characterize current or potential occupational health problems of the fluidized-bed-combustion process. The assessment described was based on in-depth industrial-hygiene surveys at three fluidized-bed-boiler (FBB) facilities selected to represent the industry. The results from the surveys demonstrate limited potential for occupational exposure to airborne contaminants. None of the air contaminants monitored exceeded OSHA Permissible Exposure Limits. Only sulfur dioxide, coal-tar-pitch volatiles, and nuisance dust approached the recommended ACGIH Threshold Limit Values. Mutagenic activity was found in high volume and bulk samples at two of the sites and appeared to correlate roughly with the air concentration of coal-tar-pitch volatiles detected.

  18. Grout stability and strength requirements for field scale injection of fluidized bed combustion ash grout

    SciTech Connect

    Ziemkiewicz, P.F.; Black, C.; Gray, D.D.; Siriwardane, H.J.; Hamric, R.

    1998-12-31

    This paper presents the results of a study involving a field scale injection of a grout made of Fluidized Bed Combustion Ash to control acid mine drainage and subsidence at an abandoned room and pillar coal mine. The grout mix was developed from results obtained from several laboratory scale experiments conducted to investigate flow characteristics and strength of the grout. Based on the rheological properties of the candidate grout mixes it was determined that admixtures were needed to stabilize the grout for optimum flow characteristics. Strength requirements for the grout were determined from site specific geologic information and expected stress levels. One thousand cubic yards of the candidate grout were pumped into an inactive panel of an active room and pillar coal mine to investigate the field performance of the grout. The field study showed that a grout made of Fluidized Bed Combustion ash can be successfully pumped to backfill the mine void.

  19. Research of integral parameters for furnaces of a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Gil, Andrey V.; Gil, Alexandra Y.

    2015-01-01

    Modern society poses several energy problems. Improving the efficiency and reliability of power equipment and reduce the impact on the environment. The paper presents the promising technology of superheated steam using different coals. The model of the furnace with a circulating fluidized bed and numerical simulation results of gas dynamic processes using application FIRE 3D. The analysis of aerodynamics and the distribution of the dispersed phase adjustment of the furnace.

  20. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous reactions occur in gas phase. Each section was divided into a number of small cells, over which mass and energy balances were applied. Due to the high heating rate in circulating fluidized bed, the pyrolysis was considered instantaneous. A number of homogeneous and heterogeneous reactions were considered in the model. Mass transfer resistance was considered negligible since the reactions were under kinetic control due to good gas-solid mixing. The model is capable of predicting the bed temperature distribution along the gasifier, the concentration and distribution of each species in the vertical direction of the bed, the composition and lower heating value (LHV) of produced gas, the gasification efficiency, the overall carbon conversion and the produced gas production rate. A sensitivity analysis was performed to test its response to several gasifier operating conditions. The model sensitivity analysis showed that equivalence ratio (ER), bed temperature, fluidization velocity, biomass feed rate and moisture content had various effects on the gasifier performance. However, the model was more sensitive to variations in ER and bed temperature. The model was validated using the experimental results obtained from the demonstration plant. The reactor was operated on rice husk at various ERs, fluidization velocities and biomass feed rates. The model gave reasonable predictions. The model was also validated by comparing the simulation results with two other different size CFBBGs using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries. A thermodynamic model was developed under ASPEN PLUS environment. Using the approach of Gibbs free energy minimization, the model was essentially independent of kinetic parameters. A sensitivity analysis was performed on the model to test its response to operating variables, including ER and biomass moisture content. The results showed that the ER has the most effect on the product gas composition and LHV. The simulation results were compared with the experimental data obtained from the demonstration plant. Keywords: Biomass gasification; Mathematical model; Circulating fluidized bed; Hydrodynamics; Kinetics; Sensitivity analysis; Validation; Equivalence ratio; Temperature; Feed rate; Moisture; Syngas composition; Lower heating value; Gasification efficiency; Carbon conversion

  1. Velocity Fluctuations in Gas-Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Cody, G. D.

    1998-03-01

    Increasing gas flow through a bed of particles produces, above a sharp threshold, a fluidized state which exhibits many of the properties of a liquid. Fluidized beds play a major role in refining, chemicals, and power generation, but the physics of the fluidized state is still uncertain, due to the complexity of the particle/gas interactions, the broad distribution of particle size, and the measurement challenge. One consequence can be the failure of sophisticated computer models to predict performance. Another is the failure to resolve fundamental questions, for example the source of the initial stability/instability of the uniform fluidized state, first addressed by Jackson in 1963(R. Jackson, in Fluidization, edited by J. F. Davidson et al. (Academic Press, New York, 1985), p. 47-72; G. K. Batchelor, J. Fluid Mech. 193, 75-110 (1988); M. Nicolas. J. Chomaz, and E. Guazelli, Phys. Fluids 6, 3936-3944 (1994).). To meet the measurement challenge, we have obtained the first comprehensive data on the mean squared fluctuation velocity, or granular temperature, T*, of monodispersed glass spheres of diameter, D, in a fluidized bed, by a novel acoustic shot noise probe of random particle impact on the wall(G. D. Cody, D. J. Goldfarb, G. V. Storch, Jr., A. N. Norris, Powder Technology 87, 211-232 (1996); G. D. Cody and D. J. Goldfarb, in Dynamics in Small Confining Systems-III, eds. M. Drake et al, (MRS, Pittsburgh, Pa, 1997), 464, p. 325-338.). Applying a dense gas kinetic model(D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).) to this data predicts values of particulate pressure, and viscosity, which are in excellent agreement with recent experiments, and encouraged us to revisit the stability question. We find that the unanticipated seven-fold bifurcation observed in T* for D less than 150 microns is sufficient, using Jackson's model, to account for the accepted empirical boundary of stable initial uniform fluidization for the spheres, namely the onset of "Geldart A fluidization" at 120 microns. Finally, we find agreement, for D above 150 microns, between the magnitude and gas flow dependence of T*, and a first principles statistical model based on random inertial forces due to Buyevich. The Buyevich model also reproduces the apparent bifurcation in T*(D) below 150 microns, at the expense of additional parameters, when appropriate random viscous forces are added(Yu. A. Buyevich, Chem. Eng. Sci. 52, 123-140 (1997); Yu. A. Buyevich and G. D. Cody, to appear in Proceedings World Congress on Particle Technology-3, Brighton, UK, (July 7-9, 1998).). We highlight needs and opportunities for further experiments on gas-fluidized beds.

  2. Impact of the Circulating Fluidized Bed Riser on the Performance of a Loopseal Nonmechanical Valve

    SciTech Connect

    Monazam, E.R.; Shadle, L.J.; Mei, J.S.

    2007-03-14

    Most advanced coal-fuel power systems require the transfer and control of solids between two or more vessels. In many instances, the key to a successful process operation is how well the solids transfer and control system has been designed. This is particularly true in a transport gasifier and circulating fluidized bed (CFB) combustors, which are dependent upon the rapid and reliable circulation of solids to maintain a constant solids concentration in the CFB. Proper design and operation of solids returning systems are essential to the performance and operation of CFB combustion systems. An experimental investigation was conducted at the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (DOE) to study the flow and control of a light material (cork), which has a particle density of 189 kg/m3 and a mean diameter of 812 ím, through a nonmechanical valve, or loopseal, in a 0.3 m diameter CFB cold model. Fluidizing this material in ambient air approximates the same gas:solids density ratio as coal and coal char in a pressurized gasifier. The loopseal is composed of the lower section of the standpipe, an upward-flowing fluidized-bed section, and a downwardly angled overflow tube which is connected to the desired return point at the bottom of the riser. In the nonmechanical valve, both the standpipe and the fluidized-bed up-flow section of the loopseal were aerated and fluidized with air, respectively. The objective of this study was to investigate the effects of standpipe aeration, loopseal aeration, solids inventory, and superficial gas velocity through the riser on the flow rate of circulating solids. A correlation that predicts the solids flow rate as a function of these variables was developed. Comparison of the correlation with the experimental data is discussed. Pressure drop across the fluidized-bed up-flow section of the loopseal was found to increase slightly with the solid flow rates.

  3. EFFECT OF EMISSION CONTROL REQUIREMENTS ON FLUIDIZED-BED BOILERS FOR INDUSTRIAL APPLICATIONS: PRELIMINARY TECHNICAL/ECONOMIC ASSESSMENT

    EPA Science Inventory

    The report gives results of an assessment of coal-fired industrial fluidized-bed boilers (FBBs) to estimate the impact, on boiler cost and performance, of alternative control levels for SOx, NOx, and particulate emissions. Base industrial FBB conceptual designs are presented, and...

  4. ENVIRONMENTAL ASSESSMENT: SOURCE TEST AND EVALUATION REPORT--EXXON MINIPLANT PRESSURIZED FLUIDIZED-BED COMBUSTOR WITH SORBENT REGENERATION

    EPA Science Inventory

    The report gives results of a comprehensive emission sampling and analysis of the EPA-sponsored, Exxon Miniplant, pressurized, coal-fired, fluidized-bed combustor (PFBC) and sorbent regeneration system. Air pollutant emissions of seven trace elements exceeded emissions goals in t...

  5. Advanced control strategies for fluidized bed dryers

    SciTech Connect

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  6. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A. (Harwinton, CT)

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  7. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1984-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  8. Fluidized bed boiler having a segmented grate

    DOEpatents

    Waryasz, Richard E. (Longmeadow, MA)

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  9. Wood gasification in a fluidized bed

    NASA Astrophysics Data System (ADS)

    Beck, S. R.; Wang, M. J.

    1980-04-01

    Gasification of oak sawdust in the Synthesis Gas From Manure (SGFM) pilot plant at Texas Tech University has been evaluated. The SGFM reactor operates as a countercurrent fluidized bed in which a biomass feedstock is fed to the top of the reactor and is fluidized by an air-steam mixture fed to the bottom of the reactor. Using oak sawdust from Missouri as the feedstock, the gas yields were 1.1 to 1.4 L/g daf feed when the average reactor temperature was 600 to 800 C. The gas contained about 4% C2H4 and 11% CH4. The gross heating value of the gas exceeded 11.2 MJ/cu m in all cases. The gasification of wood is compared to previous results obtained for cattle manure. The differences are due to the relative amounts of cellulose, hemicellulose, and lignin in the feedstock.

  10. Fuzzy control of a fluidized bed dryer

    SciTech Connect

    Taprantzis, A.V.; Siettos, C.I.; Bafas, G.V.

    1997-05-01

    Fluidized bed dryers are utilized in almost every area of drying applications and therefore improved control strategies are always of great interest. The nonlinear character of the process, exhibited in the mathematical model and the open loop analysis, implies that a fuzzy logic controller is appropriate because, in contrast with conventional control schemes, fuzzy control inherently compensates for process nonlinearities and exhibits more robust behavior. In this study, a fuzzy logic controller is proposed; its design is based on a heuristic approach and its performance is compared against a conventional PI controller for a variety of responses. It is shown that the fuzzy controller exhibits a remarkable dynamic behavior, equivalent if not better than the PI controller, for a wide range of disturbances. In addition, the proposed fuzzy controller seems to be less sensitive to the nonlinearities of the process, achieves energy savings and enables MIMO control.

  11. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    SciTech Connect

    Mazac, V.; Novacek, A.; Volny, J.

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  12. Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed

    SciTech Connect

    Tao, X.; Chen, Q.; Yang, Y.; Chen, Z.

    1996-12-31

    Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity of gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.

  13. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-01-01

    The purpose of this report is to summarize the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' in this quarter (September-December of 2003). The main tasks in this quarter consisted of the following four parts. First, all documents for managing this project have been prepared and sent to the Office of Project Management at the US Department of Energy's (DOE's) National Energy Technology Laboratory (NETL). Second, plans for the renovation of space for a new combustion laboratory for the CFBC system has progressed smoothly. Third, considerable progress in the design of the CFBC system has been made. Finally, a lab-scale simulated fluidized-bed combustion facility has been set up in order to make some fundamental investigations of the co-firing of coal with waste materials in the next quarter. Proposed work for the next quarter has been outlined in this report.

  14. Status of Westinghouse coal-fueled combustion turbine programs

    SciTech Connect

    Scalzo, A.J.; Amos, D.J.; Bannister, R.L.; Garland, R.V. )

    1992-01-01

    Developing clean, efficient, cost effective coal utilization technologies for future power generation is an essential part of our National Energy Strategy. Westinghouse is actively developing power plants utilizing advanced gasification, atmospheric fluidized beds (AFB), pressurized fluidized beds (PFB), and direct firing technology through programs sponsored by the U.S. Dept. of Energy (DOE). The DOE Office of Fossil Energy is sponsoring the Direct Coal-Fired Turbine program. This paper presents the status of current and potential Westinghouse Power Generation Business Unit advanced coal-fueled power generation programs as well as commercial plans.

  15. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    SciTech Connect

    Choudhuri, Ahsan

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed height for both spherical and non-spherical particles. Further, it decrease with decreasing particle size and decreases with decreasing bed diameter. Shadow sizing, a non-intrusive imaging and diagnostic technology, was also used to visualize flow fields inside fluidized beds for both spherical and non- spherical particles and to detect the particle sizes.

  16. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    SciTech Connect

    Walker, J.F. Jr.; Hancher, C.W.; Patton, B.D.; Kowalchuk, M.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO/sub 3//sup -/ and as large as 2000 m/sup 3//d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO/sub 3//sup -/)/m/sup 3/ by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m/sup 3/. A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m/sup 3/ and achieving denitrification rates as high as 80 gN(NO/sub 3//sup -/)/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation.

  17. Model of Fluidized Bed Containing Reacting Solids and Gases

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.

  18. Alexandria fluidized-bed process development unit: cold-mode testing

    SciTech Connect

    1981-02-01

    The objectives of the current test program include: validation of predictions from the Massachusetts Institute of Technology (MIT) Coal Atmospheric Fluidized Bed Combustor System Model; experimental studies supporting AFBC process developments; and the collection of transient data for process control design. This topical report summarizes results from cold mode testing, i.e., experiments performed without combustion for MIT Model verification. During these tests, sulfated limestone (generated from normal AFBC operations) was fluidized with air at temperatures ranging from 80 to 500/sup 0/F in the 3' x 3' (nominal) size PDU at Alexandria, VA. The MIT Model predictions tested include: slumped bed height, minimum fluidization velocity, and expanded bed height. In all cases, there were large discrepancies between the Model predictions and corresponding experimental results. Other results obtained included solids size distribution and particle size profiles in the bed. Size distribution was adequately modeled by the Rosin-Rammler equation. No transient process data was collected due to hardware problems with the Data Acquisition System. Tests were also performed to determine the effect of maldistribution of air, caused by leaks in the air distributor, on experimental results. The data indicated that effects of these leaks seemed to be undetectable.

  19. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2001-07-10

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. The PGM consists of a pressurized circulating fluidized bed (PCFB) reactor together with a recycle cyclone and a particulate removing barrier filter. Coal, air, steam, and possibly sand are fed to the bottom of the PCFB reactor and establish a relatively dense bed of coal/char in the bottom section. As these constituents react, a hot syngas is produced which conveys the solids residue vertically up through the reactor and into the recycle cyclone. Solids elutriated from the dense bed and contained in the syngas are collected in the cyclone and drain via a dipleg back to the dense bed at the bottom of the PCFB reactor. This recycle loop of hot solids acts as a thermal flywheel and promotes efficient solid-gas chemical reaction.

  20. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  1. Engineer, design, construct, test and evaluate a pressurized fluidized bed pilot plant using high sulfur coal for production of electric power. Phase III. Pilot plant construction. Quarterly report for the period September 1-November 30, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Progress in the design, construction, testing and evaluation of a pressurized fluidized bed pilot plant is reported. The initial layout of the main control panel arrangement was completed. Refinements to the front panel equipment arrangement and designation of cable penetration locations are in progress. Parts and materials have been specified and are being procured. Engineering design of the process piping has been completed and fabrication is awaiting FY 82 funding. The replacement ASTM A105 material flanges for the air exchange housing have been successfully welded to the stainless steel 409 housings. Fabrication of the air exchange housing is continuing on schedule. Heat exchange tube fabrication at Curtiss-Wright continues on schedule. A significant quantity of the material handling equipment has been received at site with the remainder scheduled for delivery in December/January. Initial review of the hot gas cleanup collector design drawings has been completed.

  2. Engineer, design, construct, test, and evaluate a pressurized fluidized-bed pilot plant using high-sulfur coal for production of electric power. Phase III. Pilot plant construction. Quarterly report, March 1-May 31, 1982

    SciTech Connect

    Not Available

    1982-01-01

    Phase III of the Engineering Program to design, construct, test and evaluate a pressurized fluidized bed pilot plant was initiated in April 1979. Pilot plant procurement, fabrication, and construction is included within Phase III. Program accomplishments during the period of March 1 through May 31, 1982 and current status are summarized. Major items of activity during the reporting period were: installation of the windbox instrumentation was completed and the windbox was delivered on March 2, 1982; electrical and controls design work including updating of the process and instrument diagrams, loop diagrams, instrument index, and technical specifications is in process; heat exchanger tube fabrication continues on schedule with a total of 150 tubes completed; fabrication of the air exchange housing progresses; and additional material handling equipment has been received at the construction site. Over 97% of the equipment has been received.

  3. Engineer, design, construction, test and evaluate a pressurized fluidized bed pilot plant using high sulfur coal for production of electric power. Phase III. Pilot plant construction. Quarterly report, June 1-August 31, 1981

    SciTech Connect

    Not Available

    1981-01-01

    Phase III of the Engineering Program to design, construct, test and evaluate a pressurized fluidized bed pilot plant was initiated on May 19, 1980. Pilot plant fabrication, construction and limited check-out is included within Phase III. Program accomplishments during the period of June 1 through August 31, 1981 and current status are summarized and include: reviews of specifications and vendor drawings of components; fabrication of windbox hardware; erection of PFB Building structural steel was completed except for steel scheduled to be erected after installation of the recycle loop and material; the PBF combustor upper vessel was set in the PFB Building steel structure on schedule; component installation in the PFB building; the refractory lining of the PFB combustor upper vessel was completed. Bids for installing special equipment are being reviewed. (LCL)

  4. Particle pressures in fluidized beds. First year annual report

    SciTech Connect

    Campbell, C.S.; Rahman, K.; Hu, X.; Jin, C.; Potapov, A.V.

    1992-09-01

    This is an experimental project to make detailed measurements of the particle pressures generated in fluidized beds. The focus lies in two principle areas: (1) the particle pressure distribution around single bubbles rising in a two-dimensional gas-fluidized bed and (2) the particle pressures measured in liquid-fluidized beds. This first year has largely been to constructing the experiments The design of the particle pressure probe has been improved and tested. A two-dimensional gas-fluidized bed has been constructed in order to measure the particle pressure generated around injected bubbles. The probe is also being adapted to work in a liquid fluidized bed. Finally, a two-dimensional liquid fluidized bed is also under construction. Preliminary measurements show that the majority of the particle pressures are generated in the wake of a bubble. However, the particle pressures generated in the liquid bed appear to be extremely small. Finally, while not directly associated with the particle pressure studies, some NERSC supercomputer time was granted alongside this project. This is being used to make large scale computer simulation of the flow of granular materials in hoppers.

  5. Abatement of N{sub 2}O emissions from circulating fluidized bed combustion through afterburning

    SciTech Connect

    Gustavsson, L.; Leckner, B.

    1995-04-01

    A method for the abatement of N{sub 2}O emission from fluidized bed combustion has been investigated. The method consists of burning a secondary fuel after the normal circulating fluidized bed combustor. Liquefied petroleum gas (LPG), fuel oil, pulverized coal, and wood, as well as sawdust, were used as the secondary fuel. Experiments showed that the N{sub 2}O emission can be reduced by 90% or more by this technique. The resulting N{sub 2}O emission was principally a function of the gas temperature achieved in the afterburner and independent of afterburning fuel, but the amount of air in the combustion gases from the primary combustion also influences the results. No negative effects on sulfur capture or on NO or CO emissions were recorded. In the experiments, the primary cyclone of the fluidized bed boiler was used for afterburning. If afterburning is implemented in a plant optimized for this purpose, an amount of secondary fuel corresponding to 10% of the total energy input should remove practically all N{sub 2}O. During the present experiments the secondary fuel consumption was greater than 10% of the total energy input due to various losses.

  6. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  7. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  8. Multistage fluidized bed reactor performance characterization for adsorption of carbon dioxide

    SciTech Connect

    Roy, S.; Mohanty, C.R.; Meikap, B.C.

    2009-12-15

    Carbon dioxide and its different compounds are generated as primary greenhouse gases from the flue gases of coal-fired thermal power plants, boilers, and other stationary combustion processes. This greenhouse gas causes global warming after being emitted to the environment. To deal with this problem, a new dry scrubbing process was tested in this study. A three-stage countercurrent fluidized bed adsorber was developed, designed, and fabricated. It was used as a removal apparatus and operated in a continuous regime for the two-phase system. The height of each stage was 0.30 m, and the inner diameter was 0.10 m. The paper presents the removal of CO{sub 2} from gas mixtures by chemical sorption on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of a multistage fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of the gas when using a dry method. The effects of the operating parameters such as sorbent, superficial gas velocity, and the Weir height on CO{sub 2} removal efficiency in the multistage fluidized bed were investigated. The results indicate that the removal efficiency of the carbon dioxide was around 71% at a high solid flow rate corresponding to lower gas velocity at room temperature. In comparison with wet scrubbers, this dry process appears to have lower cost, less complicated configuration, and simpler disposal of used sorbent. The results in this study assume importance from the perspective of use of a multistage fluidized bed adsorber for control of gaseous pollutants at high temperature.

  9. Exploratory and basic fluidized-bed combustion studies. Quarterly report, October-December 1979

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-11-01

    These laboratory- and process-development-scale studies support the Fossil Energy development program for atmospheric and pressurized fluidized-bed combustion. The objective of the current program is to investigate methods for improving the utilization of limestone for SO/sub 2/ emission control in FBCs and to develop a method for predicting the performance in AFBC's and PFBC's of limestones from different sources. This report presents results from (1) an investigation of the use of water treatment of spent partially sulfated limestone to enhance its SO/sub 2/ capture capacity, (2) studies of the kinetics of the hydration of spent limestone, and (3) studies of the attrition and elutriation of limestones in fluidized beds. Results of studies of the particle-removal efficiency of the TAN-JET cyclone are also reported.

  10. Fluidized bed CrN coating formation on prenitrocarburized plain carbon steel

    NASA Astrophysics Data System (ADS)

    King, Peter C.; Brownrigg, Allan; Long, John M.; Reynoldson, Ray W.

    2004-08-01

    CrN coatings were formed on plain carbon steel by prenitrocarburizing, followed by thermoreactive deposition and diffusion (TRD) in a fluidized bed furnace at 570 °C. During TRD, Cr was transferred from Cr powder in the fluidized bed to the nitrocarburized substrates by gas-phase reactions initiated by reaction of HCl gas with the Cr. The microstructural processes occurring in the white layer, caused by N diffusion toward the surface during this stage were studied. This study compares TRD atmospheres employing inert gas and HCl or inert gas, H2, and HCl. Surface characterization was performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), and glow-discharge optical-emission spectroscopy (GDOES).

  11. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  12. Monitoring fluidized bed drying of pharmaceutical granules.

    PubMed

    Briens, Lauren; Bojarra, Megan

    2010-12-01

    Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses. PMID:21061102

  13. Silicon production in a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1986-01-01

    Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.

  14. The pyrolysis of oil sands in a fluidized bed at reduced pressure

    SciTech Connect

    Fletcher, J.V.

    1992-01-01

    A fluidized bed pyrolysis reactor system was designed, constructed, and tested at reactor pressures less than atmospheric using mined and crushed oil sands from the Whiterocks deposit of Utah. A 6.0 inch ID fluidized bed reactor was fed oil sand of 7% bitumen saturation on a continuous basis while maintaining a bed height of approximately 12 inches. Spent sand was withdrawn using a modified nonmechanical L valve. The characteristics of bed pressure drop, [Delta]P[sub B], versus superficial gas velocity, U, were determined during fluidization and defluidization of spent sand using laboratory air. A proposed method for interpreting the minimum fluidization gas velocity, U[sub mf], from [Delta]P[sub B] versus U curves for multisized particles at reduced pressure was tested. U[sub mf] values were consistent with predictive correlations in the literature. The relationship, U[sub mf] T[sup 0.27] = a constant, was tested and found to be valid from 295 K to 559 K for spent sand fluidized by air. The reactor used propane for heating and the hot propane combustion product gases for fluidization during pyrolysis. Liquid products were condensed and filtered using commercial basket strainers modified with water cooling coils. Material balances of 90% or more were obtained for pyrolysis experiments at 450[degrees]C, 475[degrees]C, and 500[degrees]C. The optimum pyrolysis temperature for liquid yields was found to be 475[degrees]C at average retention times of thirty minutes or more. For pyrolysis temperatures of 475[degrees]C or lower, recovered oil sand pyrolysis products were 88 wt% liquid, 9 wt% coke, and 3 wt% gas. Liquid yields from the fluidized bed pyrolysis of Whiterocks oil sands at reduced pressure were greater than reported yields from a rotary kiln or an atmospheric pressure fluidized bed. Coke on the spent sand was about 0.6 wt% of the spent sand and represented about 8 wt% of the bitumen pyrolyzed.

  15. Prospects for using the technology of circulating fluidized bed for technically refitting Russian thermal power stations

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.

    2009-01-01

    The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.

  16. Combustion of gasification residues in a pressurized fluidized-bed

    SciTech Connect

    Kudjoi, A.S.; Hippinen, I.T.; Lu, Y.; Jahkola, A.K.

    1995-12-31

    Second generation PFBC processes have been presented as possibilities for future power production. However, few results have been presented about fluidized-bed combustion of gasification residues so far. Helsinki University of Technology has studied PFB combustion of gasification residues. This paper deals with the control of the combustion of the gasification residues in a PFB combustor, the combustion properties of the residues and the emissions of nitrogen oxides (NO{sub x} and N{sub 2}O). In the first tests, bed material from a gasifier was used as fuel, while cyclone fines was used as fuel in the second tests. The tests were carried out at the Otaniemi PFBC test rig, which has a maximum thermal input of 130kW{sub th} and maximum pressure of 1.0 MPa. The combustion efficiency for cyclone fines was high, i.e. from 99.5 to 100%. The NO{sub x} emissions during cyclone fines combustion were higher than during bituminous coal combustion tests done earlier at the same test rig. The NO{sub x} emissions increased with increasing air-fuel ratio with both residues and higher NO{sub x} emissions were measured at 6 bar than at 10 bar during the combustion of cyclone fines. The N{sub 2}O emissions were up to 50 ppm and increased with decreasing temperature. The fuel-N conversions to N{sub 2}O were from 0.3 to 3.5 %.

  17. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  18. EFFECT OF SO2 EMISSION REQUIREMENTS ON FLUIDIZED-BED COMBUSTION SYSTEMS: PRELIMINARY TECHNICAL/ECONOMIC ASSESSMENT

    EPA Science Inventory

    The report gives results of a preliminary technical/economic evaluation to project the impact of SO2 control requirements (up to 90% control) on the capital and energy costs of atmospheric-pressure and pressurized fluidized-bed combustion (AFBC and PFBC) power plants. Ability of ...

  19. SIMULTANEOUS CAPTURE OF METAL, SULFUR AND CHLORINE BY SORBENTS DURING FLUIDIZED BED INCINERATION. (R826694C697)

    EPA Science Inventory

    Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental...

  20. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  1. Method and means for controlling the operation of fluidized bed combustion apparatus

    SciTech Connect

    Caplin, P.B.; Harman, M.

    1981-10-20

    The specification describes a method and means for controlling operation of a fluidized bed combustion apparatus. In the proposals embodied in the invention the supply of combustion air fed to the fluidized bed is augmented by inert gas (Preferably waste gas taken from a low temperature outlet of the apparatus) and the proportion of inert gas used to augment the combustion supporting air is variable in dependence upon the temperature of the fluidized bed in the apparatus and/or the thermal demand placed upon the apparatus. In described embodiments of means enabling the invention to be effected arrangements are described including an induced draft fan, coupled to the outlet for waste gas of the apparatus, for feeding waste gas to a mixer and the use of a two input mixer fan coupled to both atmosphere and a waste gas supply line connected to a waste gas outlet. The volume of waste gas supplied is controllable in dependence upon the temperature of the bed in the apparatus and/or the thermal demand placed on the apparatus. The rate at which fuel is fed to the apparatus may also be controlled in dependence upon the thermal demand placed on the apparatus.

  2. Concentration and Velocity Gradients in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    McClymer, James P.

    2003-01-01

    In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is sufficiently large that Brownian motion of the particles can be ignored and the Reynolds number sufficiently small that particle inertia is negligible. A packed particle bed is used to randomize and disperse the flowing fluid introduced by a peristaltic pump. The bed itself is a rectangular glass cell 8 cm wide (x), 0.8 cm deep and a height of 30.5 cm (z). The depth of field of the camera is approximately 0.5 cm so depth information is averaged. Over flow fluid is returned to the reservoir making a closed loop system. In these experiments the particles form a sediment approximately 5.7 cm high with the pump off and expand to 22 cm with the pump on. For the smaller particles the pump velocity is .5 millimeters per second and 1.1 millimeters per second for the large particles. At this concentration the bed has a very well defined top where particle concentration rapidly drops to zero.

  3. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect

    Jantzen, C

    2006-12-22

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  4. Fluidized Bed Steam Reformer (FBSR) monolith formation

    SciTech Connect

    Jantzen, C.M.

    2007-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or 'mineralized' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydro-ceramics. All but one of the nine monoliths tested met the <2 g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydro-ceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form. (authors)

  5. Filtration of fly ash using a fluidized-bed filter.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Liu, Kuang-Yu

    2005-02-01

    This study focuses on the control of particulates with a fluidized-bed filter in exhaust gas stream. The fluidized-bed filter classified in the granular bed filtration technology was employed to demonstrate the performance for removal of fly ash at indicated operating velocities, fixed bed heights, and bed temperatures; then the collecting mechanisms of particulates by fluidized-bed filter were studied. The size distribution of fly ash passing through the fluidized-bed filter was also analyzed. The results indicate that at higher operating velocities and fixed bed heights, the removal of fly ash is more efficient and inertial impaction is the main mechanism when the fluidized-bed is operated at room temperature (25 degrees C). While operating at higher temperatures (200 degrees C), efficiency of 93.2% to 99.4% can be achieved for submicron particles. It is supposed to be the diffusion mechanism that is responsible for collecting such small particles, and high temperature is a favorable condition because of diffusion. PMID:15796108

  6. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. PMID:26896004

  7. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

  8. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  9. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect

    Unknown

    2002-03-29

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800 F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions.

  10. Design of advanced fossil-fuel systems (DAFFS). A study of three developing technologies for coal-fired, base-load electric power generation. Air-cooled pressurized fluidized-bed power plant

    SciTech Connect

    Not Available

    1983-06-01

    The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and to provide performance and cost estimates for the air-cooled pressurized fluidized bed (PFB) power plant. Following the introductory comments, the results of the study of the air-cooled PFB power plant are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operating and maintenance (O and M) costs and cost of electricity are presented in Section 5. Bechtel comments regarding the plant configuration and performance are provided in Section 6. The design and cost estimate reports which were prepared by Westinghouse for items within their scope of responsibility are included as Appendices A and B, respectively. Appendix C is the power plant equipment list for systems within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 7 references, 19 figures, 13 tables.

  11. Design of advanced fossil-fuel systems (DAFFS). A study of three developing technologies for coal-fired, base-load electric power generation. Steam-cooled pressurized fluidized-bed power plant

    SciTech Connect

    Not Available

    1983-06-01

    The objectives of this report are to present the facility description, plant layouts, and additional information which define the conceptal engineering design, and to provide performance and cost estimates for the steam-cooled pressurized fluidized-bed (PFB) power plant. Following the introductory comments, the results of the study of the steam-cooled PFB power plant are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance informtion and assessments of availability, natural resource requirements and environmetal impact. Estimates of capital costs, operating and maintenance costs and cost of electricity are presented in Section 5. Bechtel comments regarding the plant configuration and performance are provided in Section 6. The design and cost estimate reports which were prepared by Westinghouse for items within their scope of responsibility are included as Appenices A and B, respectively. Appendix C is the power plant equipment list for systems within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 6 references, 20 figures, 13 tables

  12. Second-generation pressurized fluidized bed combustion plant commercialization plan: Task 4 report

    SciTech Connect

    Hirschenhofer, J.H.; Robertson, A.S.

    1989-02-01

    This report presents a plan for moving coal-fired second-generation pressurized fluidized bed (PFB) combustion plants from their present conceptual stage to and through the sale of the first commercial electric utility plant by 2000; market penetration analyses are also included. A second-generation PFB plant can operate with an efficiency of 45 percent (based on the higher heating value of the coal used as fuel) and achieve a cost of electricity at least 20 percent lower than that of a conventional pulverized-coal-fired plant with wet-limestone flue gas desulfurization. Compared with conventional and other newly emerging power plant technologies, projections indicate that the proposed plant should capture a market share of 12.7 percent in 2010 and of 60 percent in 2020. A second-generation PFB combustion plant integrates a coal pyrolyzer/carbonizer with a circulating pressurized fluidized bed combustor (CPFBC). Char produced in the carbonizer is burned in the CPFBC, and the low-Btu fuel gas produced in the carbonizer is burned in a topping combustor to heat the CPFBC exhaust gas to 2100{degree}F and higher before it enters a gas turbine. The carbonizer and CPFBC operate with lime-based sorbents for in-situ sulfur capture at {le}1600{degree}F. Components being developed for first-generation PFB combustion plants protect the gas turbine from corrosion, erosion, and deposition. 23 refs., 35 figs., 24 tabs.

  13. Fluidized bed combustion tested for Turkish oil shales

    SciTech Connect

    Not Available

    1986-09-01

    About 7.5 billion tons of lignite and 5 billion tons of oil shale deposits are potential energy sources and therefore potential air pollution sources for Turkey. The low calorific value, and high ash and sulfur contents of these fuels render fluidized bed combustion a promising method of utilization. A fluidized bed combustion system with a nominal capacity of 418,000 to 627,000 kilojoules per hour for producing hot water has been designed and constructed at Istanbul Technical University. This paper lists the important characteristics of the main Turkish lignite and oil shale reserves, and the specifications of the pilot-scale fluidized-bed combustor designed to burn these fuels.

  14. Methods of forming a fluidized bed of circulating particles

    DOEpatents

    Marshall, Douglas W. (Blackfoot, ID)

    2011-05-24

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  15. Concept for a super-clean super-efficient pressurized fluidized-bed combustion system

    SciTech Connect

    Mollott, D.J.; Reed, M.

    1994-12-31

    A paper study for a highly efficient, environmentally benign, coal-fired electric power generation system, is presented. This system falls in the category of pressurized fluidized-bed combustion (PFBC) systems which has been dubbed super-clean super-efficient PFBC`s. The system presented starts with the second-generation PFBC concept and adds on advanced gas turbine, a solid oxide fuel cell, a supercritical steam cycle, a second low-temperature rankine cycle which pulls energy from the steam condenser, and inlet air cooling. The thermodynamic efficiency of the system is calculated to be 61.8 percent based on higher heating value (HHV).

  16. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect

    Rokkam, Ram

    2012-11-02

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  17. Internal dust recirculation system for a fluidized bed heat exchanger

    DOEpatents

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  18. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOEpatents

    Talmud, Fred M. (Berkeley Heights, NJ); Garcia-Mallol, Juan-Antonio (Morristown, NJ)

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  19. Fluidization onset and expansion of gas-solid fluidized beds

    SciTech Connect

    Jones, O.C.; Shin, T.S.

    1984-08-01

    A simple, mass conservation-based, kinematic model is presented for accurately predicting both the onset of fluidization and the degree of (limit of) bed expansion in bubbling gas-solid fluidized beds. The model is consistant with inception correlations exisiting in the literature. Since the method has a sound physical basis, it might be expected to provide scaling between laboratory-scale fluidized beds and large-scale systems. This scaling ability, however, remains to be demonstrated as does the application to pressurized systems and where the terminal Reynolds numbers exceed 1000, (Archimedes numbers over about 3.2 x 10/sup 5/).

  20. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  1. Regeneration of lime from sulfates for fluidized-bed combustion

    DOEpatents

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  2. Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences

    SciTech Connect

    Mutanen, K.I.

    1995-11-01

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

  3. Meat and bone meal as secondary fuel in fluidized bed combustion

    SciTech Connect

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Kakaras; E. Pavlidou

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containing bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.

  4. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    SciTech Connect

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  5. Research on carbon content in fly ash from circulating fluidized bed boilers

    SciTech Connect

    Xianbin Xiao; Hairui Yang; Hai Zhang; Junfu Lu; Guangxi Yue

    2005-08-01

    The carbon content in the fly ash from most Chinese circulating fluidized bed (CFB) boilers is much higher than expected, which directly influences the combustion efficiency. In the present paper, carbon burnout was investigated in both field tests and laboratory experiments. The effect of coal property, operation condition, gas-solid mixing, char deactivation, residence time, and cyclone performance are analyzed seriatim based on a large amount of experimental results. A coal index is proposed to describe the coal rank, having a strong effect on the char burnout. Bad gas-solid mixing in the furnace is another important reason of the higher carbon content in the fly ash. Some chars in the fly ash are deactivated during combustion of large coal particles and have very low carbon reactivity. Several suggestions are made about design, operation, and modification to reduce the carbon content in the fly ash. 14 refs., 14 figs., 1 tab.

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  7. Heat exchanger support apparatus in a fluidized bed

    DOEpatents

    Lawton, Carl W. (West Hartford, CT)

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  8. TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS

    EPA Science Inventory

    A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...

  9. LEVEL 2 CHEMICAL ANALYSIS OF FLUIDIZED-BED COMBUSTOR SAMPLES

    EPA Science Inventory

    The report gives results of a Level 1 data evaluation and prioritization and the Level 2 environmental assessment (EA) chemical data acquired on a set of fluidized-bed combustor (FBC) particulate samples. The Level 2 analysis followed the approach described in 'Approach to Level ...

  10. Description of emission control using fluidized-bed, heat-exchange technology

    SciTech Connect

    Vogel, G.J.; Grogan, P.J.

    1980-06-01

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  11. Phase shift method to estimate solids circulation rate in circulating fluidized beds

    SciTech Connect

    Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.

    2013-01-01

    While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in the return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.

  12. Mathematical model for the continuous combustion of char particles in a fluidized bed

    SciTech Connect

    Saxena, S.C.; Rehmat, A.

    1980-12-01

    Recently, we have developed the direct oxidation model for the combustion of a batch of char in a fluidized bed. This analysis is extended for the continuous combustion of char, and a system of general equations has been derived to relate the feed rate of char to the amount of char particles present in the fluidized bed and in the overflow stream. The size distribution of char particles and their number in the bed are also predicted. The analysis indicates that the amount of carbon present in the bed is independent of the feed particle size at fixed values of the char feed rate and fluidizing-gas velocity although the number of char bed particles depends upon the feed particle size. Further, the carbon content of the bed and the number of char particles in the bed are found to depend heavily on the char feed rate and the fluidizing-gas velocity. A discrete cut method is described whereby the particle size distribution and the number of particles present in the bed are calculated. The method provides a simplified trial-and-error procedure for those cases in which the rate of change in particle size is a complex nonintegrable function of the particle size. The discrete cut method is found to yield results which are in good agreement with the exact solutions of the integrals defining the number of particles and their size distribution. The model provides a simple base for the scale-up and design work related to fluidized-bed coal combustors.

  13. Second-generation pressurized fluidized bed combustion plant conceptual design and optimization of a second-generation PFB combustion plant, Phase 1, Task 1

    SciTech Connect

    Robertson, A.; Garland, R.; Newby, R.; Rehmat, A.; Rubow, L.

    1989-09-01

    This report is the third volume of a conceptual design for a second-generation pressurized fluidized bed combustion plant. Volume 3 consists of appendices (B thru G) containing information on cycle optimization, integrated carbonizer/CPFBC performance predictions and methodologies, gas turbine evaluations, plant equipment lists, supporting cost detail, and a reference pulverized-coal-fired plant. (JDL)

  14. Disposal of fluidized-bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly technical progress report, December 1994--February 1995

    SciTech Connect

    1995-03-01

    Research continued on the disposal of fluidized-bed combustion products in underground mines in order to control acid mine drainage and ground subsidence. This quarter, the installation of a coal ash grout into an underground mine void was accomplished. A mixture of 10% portland cement was added to the ash. Problems arose with the clumping of the grout.

  15. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization.

    PubMed

    Xiao, Xianbin; Meng, Xianliang; Le, Duc Dung; Takarada, Takayuki

    2011-01-01

    Steam gasification of waste biomass has been studied in a two-stage fluidized bed reactor, which has the primary pyrolysis fluidized bed using silica sand as bed material and the secondary reforming fixed bed with catalyst. The main objectives are parametric investigation and performance improvement especially at low temperature of around 600 °C using the wood chip and the pig manure compost as feedstock. Main operating variables studied are pyrolysis temperature, catalytic temperature, steam/biomass-C ratio, space velocity and different catalyst. Reaction temperatures and steam/C ratio have important role on the gasification process. About 60 vol.% H2 (dry and N2 free) and about 2.0 Nm3/kg biomass (dry and ash free basis) can be obtained under good conditions. Compared to Ni/Al2O3, Ni/BCC (Ni-loaded brown coal char) has a better ability and a hopeful prospect for the stability with coking resistance. PMID:20889337

  16. Development of methods to predict agglomeration and deposition in fluidized-bed combustion systems (FBCS). Topical report

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.; Allan, S.E.

    1996-02-01

    The successful design and operation of advanced combustion systems require the ability to control and mitigate ash-related problems. The major ash-related problems are slag flow control, slag attack on the refractory, ash deposition on heat-transfer surfaces, corrosion and erosion of equipment materials, and emissions control. These problems are the result of physical and chemical interactions of the fuels, bed materials, and system components. The interactions that take place and ultimately control ash behavior in fluidized-bed combustion (FBC) systems are controlled by the abundance and association of the inorganic components in coal and by the system conditions. Because of the complexity of the materials and processes involved, the design and operations engineer often lacks the information needed to predict ash behavior and reduce ash-related problems. The deposition of ashes from the fluidized bed combustion of lignite and petroleum coke is described in this paper.

  17. Test results from the Department of Energy`s Pressurized Fluidized Bed Combustion Hot Gas Cleanup Program

    SciTech Connect

    Dennis, R.A.

    1995-12-01

    Presented here is a summary of operations and conclusions from the last two test campaigns of the Department of Energy`s Pressurized Fluidized Bed Combustion Hot Gas Cleanup Program which was implemented by the American Electric Power Service Corporation. In these tests, the Westinghouse Advanced Particle Filter (APF) operated on a one-seventh flow from the Tidd 70-MWe Pressurized Fluidized Bed Combustor. During these tests, the filter operated as predicted with extremely high particulate removal. During the combined test periods, more than 2,800 hours of operation were accumulated -- two operational periods lasted more than 650 hours. The completion of this program brings the total coal fired operating time of the APF to 5,854 hours.

  18. Design and construction of a pressurized fluidized bed pilot electric plant

    SciTech Connect

    Moskowitz, S.

    1982-08-01

    The U.S. Utility Industry and large industrial energy users are searching for optimal methods both to convert existing oil and gas fired power plants to coal and to facilitate expansion of base and intermediate load capability required by the end of this decade. The Pressurized Fluidized Bed (PFB) concept is a unique method for direct combustion of coal which has had demonstrable progress toward accomplishing the goal of clean burning of high sulfur coal for efficient and low cost electric power generation. This paper discusses the completed design of a 13 MWe Pilot Plant and some of the research and development work that established the technology or confirmed the selected design criteria.

  19. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOEpatents

    Kasper, Stanley

    1991-01-01

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  20. Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995

    SciTech Connect

    Paul, B.C.; Esling, S.; Pisani, F.; Wells, T.

    1995-12-31

    Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

  1. Sulfur and sorbent performance in pressurized fluidized-bed combustion of gasification residue

    SciTech Connect

    Hippinen, I.T.; Kudjoi, A.S.; Jahkola, A.K.

    1995-12-31

    In second generation pressurized fluidized-bed processes the fuel is partially gasified in a fluidized-bed and the solid residue, containing unburned carbon, is led to atmospheric or pressurized fluidized-bed combustion. Calcium-based sulfur absorbent, i.e. limestone or dolomite, can be fed to the gasifier, where it reacts with hydrogen sulfide (H{sub 2}S) forming mainly calcium sulfide (CaS). The calcium sulfide is unstable and must be oxidized to calcium sulfate (CaSO{sub 4}). The gasification residue, including the used absorbent, is fed to the FB combustor, where the sulfide is oxidized. In addition, some of the fuel sulfur will stay in the fuel during the gasification and this sulfur should also be bound to the solids. This paper presents the results of experimental work dealing with the sulfur and calcium compounds in the PFB combustion of gasification residue. The studies have been carried out at helsinki University of Technology with a 130 kW{sub th} PFBC test rig. Cyclone fines and bed char from a pilot scale PFB gasifier have been burned at 0.6 and 1.0 MPa pressures. The oxygen concentration in the flue gas was 0.1 to 10.3% and the bed temperature was 680 to 920 C. The fluidizing velocity was 0.3 to 0.6 m/s. The results show that the sulfur stays in the solids. The measured sulfur dioxide emissions were around 30 ppm. The solid analyses show that most of the sulfide oxidized to other compounds and that sulfide contents of the removed solids were mainly low.

  2. System analysis of fluidized-bed combustor, Naval Base, Great Lakes

    SciTech Connect

    Butt, N.; Hefelfinger, R.; Sarma, K.

    1981-02-01

    A semi-commercial size fluidized bed combustor for burning coal in the presence of limestone has been designed and built at the Great Lakes Naval Training Center. UOP/SDC has been requested to perform a systems analysis of the feed system, the fluidized-bed combustor, and the flue gas path components to determine their operability, safety, and reliability and also to make a failure mode and effects analysis. Information for this study was gathered from review of selected drawings and from discussions with the designer (Combustion Engineering) and the design reviewer (Davy McKee). Systems analysis of the FBC-System revealed no abnormalities. The basic design features were reviewed, and the findings were satisfactory. The system has been well instrumented and should provide adequate safeguards. The problems of feed splitting in the desired ratio could not be evaluated, as the necessary data and the detailed design were proprietary in nature, and UOP/SDC did not have access to that information. Fluid bed slumping for partial operations was modeled. Two interesting features on side drifting were found: the drift depends upon the fluidization velocity and the solids diffusivity; and the drift profile is approximately exponential.

  3. Bibliography: technology transfer reports for the IEA Grimethorpe Pressurized Fluidized-Bed Project

    SciTech Connect

    Not Available

    1985-11-01

    The International Energy Agency Grimethorpe Pressurized Fluidized-Bed (PFB) Project provided extensive information on the performance of a large-scale (25MWe) PFB when combusting numerous coals. Although the facility did not include a gas turbine, information regarding deposition and corrosion was also obtained as a result of turbine blade cascade testing. Utilizing an extensive staff of engineers, the test results were extensively analyzed and the results documented. The resulting reports have been reviewed by the sponsoring countries and published. An overview of the project and background information are provided in the report Overall Project Review, September 1985, NTIS DE85013705. In the United States, these reports were published through the US Department of Energy's Office of Scientific and Technical Information. This bibliography contains a listing of those reports issued by the Grimethorpe Pressurized Fluidized-Bed Project and published by the US Department of Energy. It also contains abstracts of each report as a guide to the information contained therein. It is provided as a reference to enable interested parties to access further details on this project. Copies of the reports and this document are available from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161.

  4. Proof-of-concept testing of fluidized-bed copper oxide process

    SciTech Connect

    Gala, H.B.

    1992-01-01

    The objective of Phase IV of the contract is to design a conceptual flue gas treating unit based on the fluidized-bed copper oxide (FBCO) process for a new coal-fired 500 MW(e) power plant. A technical and economic evaluation of the FBCO process that is based on the conceptual design will also be completed. The scope of the work during this reporting period was limited to Task 4.0, Proposal review and negotiations, and Task 4.1, Definition of design basis. In the revised Statement of Work (SO/At) for Phase IV, a cold-circulation dense-phase testing of the sorbent material is proposed. Presently, UOP does not manufacture the sorbents, SOX-3 and SOX-4, that were used in the life-cycle testing of the fluidized-bed copper oxide unit at PETC. So as an alternative to the sorbent, UOP proposed that the alumina support be used In the cold-circulation tests. Under Task 4.1, the feasibility of using the support material was evaluated in a series of attrition tests conducted on the SOX-3 sorbent and the alumina support. The testing took place during this reporting period. The objective of these tests was to examine the relative strength of the two materials.

  5. Experiment and grey relational analysis of CWS spheres combustion in a fluidized bed

    SciTech Connect

    Hui Wang; Xiumin Jiang; Jianguo Liu; Weigang Lin

    2007-08-15

    In order to study the combustion of coal water slurry (CWS) in fluidized bed boilers, artificial CWS droplet spheres were used for simulation of the spheres formed from CWS droplets which fall from the furnace top to the bed. The artificial spheres were introduced to a bench-scale fluidized bed furnace. Quartz sand was used as the bed material. The influence of the operation conditions (e.g., bed temperature, superficial gas velocity, and bed height) on the combustion characteristics was investigated. The bed temperatures were varied at 650, 750, 850, and 950{sup o}C. The gas velocities were in a range of fluidization numbers W (defined as U/U{sub mf}) of 3, 3.5, 4, and 4.5. The bed heights were varied 30, 50, 70, and 90 mm. The CWS spheres were taken out at five residence times (15, 30, 45, 60, and 75 s). The mass ratio of the residue fixed carbon to parent fixed carbon was calculated for studying the influential factors. Under the reference conditions, it is shown that the burnout time is less than 150 s. The grey relational analysis was used to study the degree of relative importance of the influential factors. The results showed that the influence of the bed height is the least, the fluidization number has the greatest influence in the early and later stages, and the bed temperature contributes most in the intermediate stages. 16 refs., 16 figs., 6 tabs.

  6. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    NASA Astrophysics Data System (ADS)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass yielded the lowest tar concentration (1.6 g/Nm 3). High-temperature and low-pressure conditions achieved the highest carbon conversion and cold gas efficiencies of 91 and 94%, respectively. In addition, a relatively new method for monitoring hydrodynamic conditions in fluidized bed reactors using high-frequency bed pressure fluctuation measurement was demonstrated. This method proved capable of being used as a fluidized bed diagnostic method under reactive conditions.

  7. A Hydrodynamic Characteristic of a Dual Fluidized Bed Gasification

    NASA Astrophysics Data System (ADS)

    Sung, Yeon Kyung; Song, Jae Hun; Bang, Byung Ryeul; Yu, Tae U.; Lee, Uen Do

    A cold model dual fluidized bed (DFB) reactor, consisting of two parallel interconnected bubbling and fast fluidized beds, was designed for developing an auto-thermal biomass gasifier. The combustor of this system burns the rest char of the gasification process and provides heat to the gasifier by circulating solids inventory. To find an optimal mixing and circulation of heavy solid inventory and light biomass and char materials, we investigate two types of DFB reactors which have different configuration of distributor and way-out location of the solid inventory and char materials in the gasifier. To determine appropriate operating conditions, we measured minimum fluidization velocity, solid circulation rate, axial solid holdup and gas bypassing between the lower loop seal and the gasifier.

  8. Torrefaction of sawdust in a fluidized bed reactor.

    PubMed

    Li, Hui; Liu, Xinhua; Legros, Robert; Bi, Xiaotao T; Lim, C J; Sokhansanj, Shahab

    2012-01-01

    In the present work, stable fluidization of sawdust was achieved in a bench fluidized bed with an inclined orifice distributor without inert bed materials. A solids circulation pattern was established in the bed without the presence of slugging and channeling. The effects of treatment severity and weight loss on the solid product properties were identified. The decomposition of hemicelluloses was found to be responsible for the significant changes of chemical, physical and mechanical properties of the torrefied sawdust, including energy content, particle size distribution and moisture absorption capacity. The hydrophobicity of the torrefied sawdust was improved over the raw sawdust with a reduction of around 40 wt.% in saturated water uptake rate, and enhanced with increasing the treatment severity due to the decomposition of hemicelluloses which are rich in hydroxyl groups. The results in this study provided the basis for torrefaction in fluidized bed reactors. PMID:22055091

  9. Element associations in ash from waste combustion in fluidized bed

    SciTech Connect

    Karlfeldt Fedje, K.; Rauch, S.; Cho, P.; Steenari, B.-M.

    2010-07-15

    The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.

  10. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOEpatents

    DeFeo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

    1983-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  11. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOEpatents

    DeFeo, Angelo (Totowa, NJ); Hosek, William S. (Mt. Tabor, NJ)

    1981-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  12. Application of a fluidized bed combustor to the DARS process

    SciTech Connect

    Scott-Young, R.E.

    1995-12-31

    Australian Paper has built the world`s first and only operational Direct Alkali Recovery System (DARS) to recover caustic soda for a soda AQ chemical pulp mill. At the heart of the DARS process, concentrated spent pulping liquor is burnt in a fluidized bed. The bed material is made up of coarse, dense iron oxide pellets which require a high fluidizing velocity. Bubbling is violent and gives robust fluidization of the iron and sodium compounds. The plant suffered a protracted startup because of equipment failures, air flow instability problems, and process and equipment design errors. A large amount of post construction development work was required. This paper discusses the experiences and knowledge gained in adapting a fluidized bed to the DARS process.

  13. A three phase model of a batch fluidized bed

    NASA Astrophysics Data System (ADS)

    Aly, S. E.; Fathalah, K. A.

    A three phase mathematical model of simultaneous heat and mass transfer of a batch operation for a fluidized bed is presented. The three phases are a solid free bubble, emulsion and solid phases. The model employs an elaborate five equations porosity model. Various correlations for the minimum fluidization parameters are surveyed and compared with the adequate one is being adopted in the model. The governing equations together with the boundary and initial conditions are presented for a cyclic operation of the bed. These are numerically solved for a test case where the bed is charged with silica gel particles to dehumidify a process air stream. Thus the bed works in an air dehumidification mode/bed regeneration mode cyclic operation with matching conditions.Results for the bed operation are presented as the temperature and humidity ratio variations for the test case. The results indicate the ability of the developed model to provide the required data for the concerned batch operated fluidized bed.

  14. Developing technologies for coal utilization

    NASA Astrophysics Data System (ADS)

    Penner, S. S.

    The utilization of coal slurries in place of oil in utility and industrial boilers; the development of improved atmospheric and pressurized fluidized bed combustors; the designs of integrated combined cycle systems; and coal gasification and liquefaction to augment supplies of natural gas and liquid fuels, respectively are discussed. The worldwide coal resource base is so large that the necessity to manufacture liquid fuels from coals must be realized. An initiative proposed by the International Energy Agency defines several specific direct coal liquefaction designs and sites where direct coal liquefaction may be implemented.

  15. Desulfurization Characteristics of Fly Ash Recirculation and Combustion in the Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Li, S. F.; Fang, M. X.; Yu, B.; Wang, Q. H.; Luo, Z. Y.

    The experiments of the fly ash recycle combustion using Guizhou anthracite were carried out in a bench scale circulating fluidized bed (CFB) combustor. Effects of some key operating parameters such as recycle ash to coal mass ratio (Ca to S molar ratio), temperature, reactivation modeof fly ash, circulation rateand fluidization velocity on the desulfurization efficiency were intensively investigated. It is shown that thelimestone utilization efficiency could be improved about 30% with the following operating conditions: the mass ratio of fly ash (reactivated by water and dried at 90°C) to coal was 0.45, the furnace temperature was 880°C, the water to ash mass ratio was 4.5% (the water-to-calcium molar ratio was 0.55) and circulation rate was 18.

  16. The Hopkins repowering project a utility scale circulating fluidized bed boiler

    SciTech Connect

    Brinkworth, G.S. ); Hobday, J.M. ); Mazur, K.S. ); Goldich, S.J. ); Sturdevant, B.L. and Associates, Denver, CO )

    1991-01-01

    The existing boiler at the City of Tallahassee's 250 MW Hopkins Station Unit 2 fires natural gas and No. 6 fuel oil. In November 1990, the City and the U.S. Department of Energy (DOE) signed an agreement to repower the existing Unit 2 with a single circulating fluidized bed (CFB) boiler, as part of DOE's Clean Coal Technology Program. The CFB boiler, which will be fired with Eastern Bituminous coal, will be approximately twice the capacity of currently operating CFB boilers. This paper outlines objectives of the project and its participants. It will highlight significant technological and environmental issues and addresses the following subjects. Historical perspective of the project; The project organization; Project scope, schedule and cost; and Permitting and environmental issues.

  17. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  18. Bed agglomeration characteristics of rice straw combustion in a vortexing fluidized-bed combustor.

    PubMed

    Duan, Feng; Chyang, Chien-Song; Zhang, Li-hui; Yin, Siang-Fong

    2015-05-01

    To investigate bed agglomeration characteristics, the combustion of pelletized rice straw was conducted in a bench-scale vortexing fluidized bed. Effects of bed temperature, superficial velocity, secondary gas velocities, and mass blended ratio of coal on the defluidization time were investigated. The alkali concentrations in different sections of the bed zone were also studied. The bed materials and agglomerates were analyzed using SEM/EDX to obtain the surface morphology and the compositions. The results revealed that the defluidization time is increased with superficial gas velocity and is decreased with bed temperature. Eutectic composition with low melting point materials promote defluidization at high temperatures. Effect of the secondary gas velocity on the defluidization time indicates different trends at different bed temperatures. The highest value of alkali concentration appears at upper bubbling zone. Coal ash can avoid the existence of a certain eutectic composition, and increases its melting point. PMID:25742751

  19. Fluidized bed silicon deposition. [Si production via silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G.; Morrison, A.; Rohatgi, N.; Lutwack, R.; Macconnell, T.

    1984-01-01

    The growth of silicon on seed particles from the pyrolysis of silane in a fluidized bed reactor (FBR) was studied. The grown particles were shown to be crystalline and to have a structure which has been interpreted to indicate growth by chemical vapor deposition as well as by the collection (scavenging) of silicon clusters on seed particle surfaces. Scanning electron microscopy was used to study the product morphology.

  20. Numerical Simulation of Physical and Chemical Processes in Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Baturin, D. A.; Gil, A. V.

    2015-10-01

    The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out for the bottom of the combustion chamber with the varying heights of volume filling. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian representation on a 2D model.