Science.gov

Sample records for atmospheric fluidized-bed coal

  1. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  2. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  3. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  4. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  5. Air and steam coal partial gasification in an atmospheric fluidized bed

    SciTech Connect

    Hongcang Zhou; Baosheng Jing; Zhaoping Zhong; Yaji Huang; Rui Xiao

    2005-08-01

    Using the mixture of air and steam as gasification medium, three different rank coal partial gasification studies were carried out in a bench-scale atmospheric fluidized bed with the various operating parameters. The effects of air/coal (Fa/Fc) ratio, steam/coal (Fs/Fc) ratio, bed temperature, and coal rank on the fuel gas compositions and the high heating value (HHV) were reported in this paper. The results show that there is an optimal Fa/Fc ratio and Fs/Fc ratio for coal partial gasification. A rise of bed temperature favors the semigasification reaction of coal, but the concentrations of carbon monoxide and methane and the HHV decrease with the rise of bed temperature, except hydrogen. In addition, the gas HHVs are between 2.2 and 3.4 MJ/Nm{sup 3}. The gas yield and carbon conversion increase with Fa/Fc ratio, Fs/Fc ratio, and bed temperature, while they decrease with the rise of the rank of coal. 7 refs., 9 figs., 2 tabs.

  6. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    SciTech Connect

    Not Available

    1993-02-01

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  7. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    SciTech Connect

    Mastral, A.M.; Callen, M.S.; Garcia, T.

    1999-09-15

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves.

  8. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  9. Fluidized bed coal combustion reactor

    SciTech Connect

    Moynihan, P.I.; Young, D.L.

    1981-09-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor. Official Gazette of the U.S. Patent and Trademark Office

  10. Fluidized bed combustion of coal

    NASA Astrophysics Data System (ADS)

    Tatebayashi, J.; Okada, Y.; Yano, K.; Takada, T.; Handa, K.

    The effect of various parameters on combustion efficiency, desulfurization efficiency and NO emission in fluidized bed combustion of coal were investigated by using two test combustors whose sectional areas were 200 mm and 500 mm square. It has been revealed that by employing two-stage combustion and setting the primary air ratio, secondary air injection height and other parameters to optimum levels, NO emission can be greatly reduced while barely impairing combustion efficiency or desulfurization efficiency. Also, NO emission of less than 50 ppm and desulfurization efficiency of as high as 93% were achieved. These results have ensured good prospects for the development of a coal combustion boiler system which can satisfy the strictest environmental protection regulations, without installing special desulfurization and de-NO(X) facilities.

  11. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  12. Design of the atmospheric fluidized-bed coal combustor for cogeneration gas-turbine system

    SciTech Connect

    Holcomb, R.S.; Berman, P.A.; Gorrell, R.L.

    1981-01-01

    The AFB Coal Combustor for Cogeneration Program, sponsored by the US Department of Energy, has as its objective the development of the technology for a fluidized bed coal combustion system to provide a source of high-temperature air for power generation with gas turbines and for process heating in industrial plants. The program is directed toward systems in the size range of 5 to 50 MW(e) and is being conducted by the Oak Ridge National Laboratory and its subcontractors. The major effort in the program is the design of a generic reference plant cogeneration system and the design and construction of a test system that will incorporate the salient features of the reference plant. The design work was initiated in June 1980.

  13. Fluidized bed coal desulfurization. Final Report

    SciTech Connect

    Ravindram, M.

    1983-08-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  14. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  15. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  16. Plasma-Augmented Fluidized Bed Gasification of Sub-bituminous Coal in CO2-O2 Atmospheres

    NASA Astrophysics Data System (ADS)

    Lelievre, C.; Pickles, C. A.; Hultgren, S.

    2016-01-01

    The gasification of a sub-bituminous coal using CO2-O2 gas mixtures was studied in a plasma-augmented fluidized bed gasifier. Firstly, the coal was chemically characterized and the gasification process was examined using Thermogravimetric and Differential Thermal Analysis (TGA/DTA) in CO2, O2 and at a CO2 to O2 ratio of 3 to 1. Secondly, the equilibrium gas compositions were obtained using the Gibbs free energy minimization method (HSC Chemistry®7). Thirdly, gasification tests were performed in a plasma-augmented fluidized bed and the off-gas temperatures and compositions were determined. Finally, for comparison purposes, control tests were conducted using a conventional fluidized bed coal gasifier and these results were compared to those achieved in the plasma-augmented fluidized bed gasifier. The effects of bed temperature and CO2 to O2 ratio were studied. For both gasifiers, at a given bed temperature, the off-gas compositions were in general agreement with the equilibrium values. Also, for both gasifiers, an experimental CO2 to O2 ratio of about 3 to 1 resulted in the highest syngas grade (%CO + %H2). Both higher off-gas temperatures and syngas grades could be achieved in the plasma-augmented gasifier, in comparison to the conventional gasifier. These differences were attributed to the higher bed temperatures in the plasma-augmented fluidized bed gasifier.

  17. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  18. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  19. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  20. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    Not Available

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  1. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  2. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  3. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  4. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  5. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  6. Simulation of fluidized bed coal combustors

    NASA Technical Reports Server (NTRS)

    Rajan, R.

    1979-01-01

    The many deficiencies of previous work on simulation of fluidized bed combustion (FBC) processes are presented. An attempt is made to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements: (1) devolatilization of coal and the subsequent combustion of volatiles and residual char; (2) sulfur dioxide capture by limestone; (3) NOx release and reduction of NOx by char; (4) attrition and elutriation of char and limestone; (5) bubble hydrodynamics; (6) solids mixing; (7) heat transfer between gas and solid, and solid and heat exchange surfaces; and (8) freeboard reactions.

  7. Pulsed atmospheric fluidized bed combustion. Technical progress report, April 1992--June 1992

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  8. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  9. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  10. COSTEAM expansion and improvements: design of a coal-fired atmospheric fluidized bed submodel, an oil-fired submodel and input/output improvements

    SciTech Connect

    Reierson, James D.; Rosenberg, Joseph I.; Murphy, Mary B.; Lethi, Minh- Triet

    1980-10-01

    COSTEAM is an interactive computer model designed to estimate the cost of industrial steam produced by various steam plant technologies. At the end of Phase I development, the COSTEAM model included only one submodel to calculate the capital and operating costs of a conventional coal-fired boiler plant with environmental control systems. This report describes the results of Phase II development. Two new submodels are added which calculate costs for steam produced by coal-fired atmospheric fluidized bed boilers and by oil-fired boilers. COSTEAM input/output capabilities are also improved.

  11. Pulsed atmospheric fluidized-bed combustor development. Environmental Assessment

    SciTech Connect

    Not Available

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA`s have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International`s (MTCI) Baltimore, MD facility.

  12. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  13. Development and applications of clean coal fluidized bed technology

    SciTech Connect

    Eskin, N.; Hepbasli, A.

    2006-09-15

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  14. MONITORING STRATEGIES FOR FLUIDIZED BED COMBUSTION COAL PLANTS

    EPA Science Inventory

    Air and water monitoring strategies for commercial-size Fluidized Bed Combustion (FBC) coal plants are presented. This is one of five reports developing air and water monitoring strategies for advanced coal combustion (FBC), coal conversion (coal gasification and liquefaction), a...

  15. Atmospheric fluidized bed combustor development program. Final report

    SciTech Connect

    Ashworth, R.A.; Melick, T.A.; Plessinger, D.A.; Sommer, T.M.; Keener, H.M.; Webner, R.L.

    1995-12-01

    The objective of this project was to demonstrate and promote the commercialization of a coal-fired atmospheric fluidized bed combustion (AFBC) system, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications in the 1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr capacity range. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. The project itself was separated into three levels: (1) feasibility, (2--3) subsystem development and integration, and (4) proof-of-concept. In Level (1), the technical and economic feasibility of a 1 million Btu/hr coal-fired AFBC air heater was evaluated. In Level (2--3), the complete EER fluidized bed combustor (1.5 million Btu/hr) system was developed and tested. The goal or reducing SO{sub 2} emissions to 1.2 lb/10{sup 6} Btu, from high sulfur Ohio coal, was achieved by adding limestone with a Ca/S (coal) ratio of {approximately} 3.0. Finally, in Level (4), the proof-of-concept system, a 2.2 million Btu/hr unit was installed and successfully operated at Cedar Lane Farms, a commercial nursery in Ohio.

  16. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  17. Fluidized bed combustor and coal gun-tube assembly therefor

    DOEpatents

    Hosek, William S.; Garruto, Edward J.

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  18. Metallic species derived from fluidized bed coal combustion. [59 references

    SciTech Connect

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  19. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  20. Update of the Black Dog atmospheric fluidized bed combustion project

    SciTech Connect

    Osthus, D.; Larva, J.; Rens, D. )

    1988-01-01

    Northern States Power Co. converted its Black Dog Unit 2, a pulverized coal-fired 100 MW unit that was built in 1954, to an atmospheric fluidized bed (bubbling bed) configuration, in order to commercially demonstrate AFBC technology as a cost-effective way to reduce SO2 emissions. As part of the AFBC conversion, the unit was upgraded to 130 MW capacity. Unit 2 burns Western coal, is equipped with electrostatic precipitators, and cycles on and off line daily. The innovative nature of this project contributed to a protracted encountered. These problems are discussed. Many of the problems have been solved, and the unit is now meeting most of the goals set for the project.

  1. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  2. Method for using fast fluidized bed dry bottom coal gasification

    DOEpatents

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  3. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    SciTech Connect

    Not Available

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  4. Experiments and modelling of coal pyrolysis under fluidized bed conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzhe; Xu, Xiangdong; Zuo, Yu

    1999-09-01

    The pyrolysis behavior of two Chinese coals has been investigated in a laboratory-scale bubbling fluidized bed system in Siegen University, Germany. Experimental equipment and procedure are introduced. The amounts of pyrolysis species of each coal were measured, calculated and compared. A new method was presented to determine the needed parameters in FG-DVC model with the experimental results instead of other much more complicated experiments.

  5. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  6. Pulverized coal vs. circulating fluidized bed; An economic comparison

    SciTech Connect

    John, R.F. )

    1989-01-01

    As the power industry looks to the 1990s for expanded steam generation capacity, boiler owners will continue on their long-standing assignment to evaluate and select the best, lowest cost alternative to meet their energy needs. For coal-fired plants, this evaluation process includes pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB). The cost difference between these products is site specific and depends on several variables, including: boiler size, pressure, and temperature; operating variables, such as the costs for fuel, auxiliary power, SO{sub 2} reagent, and ash disposal; capital cost; and financial variables, such as evaluation period and interest rate. This paper provides a technical and economic comparison between a pulverized coal-fired boiler and circulating fluidized bed boiler.

  7. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOEpatents

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  8. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  9. Atmospheric fluidized bed combustion advanced concept system. Final report

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  10. Physicochemical characterizations of limestone for fluidized-bed coal combustion

    SciTech Connect

    Fuller, E.L. Jr.; Yoos, T.R. III; Walia, D.S.

    1981-05-01

    This study is an investigation of the physicochemical characteristics of three limestone samples, Quincy limestone (-20 + 60), Franklin limestone (-12 + 30), and Franklin limestone (-6 + 16), currently being tested at Oak Ridge National Laboratory for use in a fluidized-bed coal combustion unit. By correlating the chemistry, mineralogy, and surface area of these samples with empirical data obtained at Argonne National Laboratory, the sulfur capture ability and performance of these limestones can be loosely predicted. X-ray fluorescence and neutron activation analysis revealed a very high calcium content and very low concentrations of other elements in the three samples. X-ray diffraction patterns and petrographic examination of the limestone grains detected essentially no dolomite in the Quincy limestone or the fine Franklin limestone samples. The coarse Franklin limestone sample showed dolomite to be present in varying amounts up to maximum of 2.75%. Limited surface chemistry investigations of the samples were undertaken. Limestone and dolostone resources of the Tennessee Valley Authority region are widespread and abundant, and judged sufficient to meet industrial demand for many years. No problems are anticipated in securing limestone or dolostone supplies for a commercial fluidized-bed combustion plant in the Tennessee Valley Authority region. Transportation facilities and costs for limestone or dolostone will influence the siting of such a commercial fluidized-bed combustion plant. The most promising location in the Tennessee Valley Authority region at this time is Paducah, Kentucky.

  11. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  12. Desulfurization of Coal in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Maddury, R.; Kalvinskas, J.

    1985-01-01

    Experimental dry chemical process for removing sulfur from coal-and thereby reducing harmful sulfur emissions from coal-fired electric powerplants-promises more economical and effective than older wet chemical processes. New process faster, requires smaller amounts of chemical reagents, and produces no liquid effluents, which poses disposal problem.

  13. Characterization of fuels for atmospheric fluidized bed combustion

    SciTech Connect

    Daw, C.S. ); Rowley, D.R.; Perna, M.A. . Research Center); Stallings, J.W. ); Divilio, R.J. )

    1990-01-01

    The Electric Power Research Institute (EPRI) has sponsored a fuels characterization program for the past several years with the intention of assisting utilities and boiler manufacturers in evaluating fuel quality impact on atmospheric fluidized bed combustion (AFBC) performance. The goal has been to provide an improved framework for making fuel switching decisions and consolidating operating experience. Results from this program include a set of bench-scale testing procedures, a fuel characterization data base, and a performance simulation model that links fuel characteristics to combustion performance. This paper reviews the major results of the fuels characterization program. The testing procedures, data base, and performance simulation models are briefly described and their application illustrated with examples. Performance predictions for the B W 1-ft{sup 2} bench-scale AFBC and the Tennessee Valley Authority (TVA) 20 MW(e) AFBC Pilot Plant are compared with actual test data. The relationship of coal rank to combustion is discussed. 11 refs., 12 figs., 5 tabs.

  14. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    SciTech Connect

    Not Available

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  15. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

  16. Mathematical modelling of coal fired fluidized bed combustors

    SciTech Connect

    Selcuk, N.; Siddall, R.G.; Sivrioglu, U.

    1980-12-01

    A system model of continuous fluidized bed combustors burning coal of wide size distribution has been derived, and applied to the investigation of the effect of excess air and recycle on bed concentration and temperature profiles and combustion efficiency of a pilot scale coal fired fluidized combustor. To demonstrate the effect of recycling, the behaviour of the fluidized combustor has been predicted for two extreme cases of recycle: complete and no recycle of elutriated char particles, the former was chosen to determine the behaviour of the model in the absence of elutriation, and the latter corresponds to the actual operating conditions of the fluidized combustor. Expected trends for concentration and temperature profiles and combustion efficiency are predicted correctly for both cases. The predictive ability and the flexibility of the model for incorporation of refinements such as a correlation for bubble growth and a detailed combustion mechanism, makes the model a promising one for the evaluation of performance of the fluid bed industrial boilers.

  17. ENVIRONMENTAL ASSESSMENT: SOURCE TEST AND EVALUATION REPORT - B AND W/ALLIANCE ATMOSPHERIC FLUIDIZED-BED COMBUSTOR

    EPA Science Inventory

    The report gives results of a comprehensive emission sampling and analysis of a pilot-scale, atmospheric-pressure, coal-fired, fluidized-bed combustor (AFBC). Screening data on organic and inorganic pollutants and indications of biological activity were obtained. The Babcock and ...

  18. Release of nitrogen precursors from coal and biomass residues in a bubbling fluidized bed

    SciTech Connect

    P. Abelha; I. Gulyurtlu; I. Cabrita

    2008-01-15

    This work was undertaken with the aim of quantifying the relative amounts of NH{sub 3} and HCN released from different residues during their devolatilization under fluidized bed conditions. The results were compared with data collected for bituminous coals of different origin. The relation between amounts of HCN and NH{sub 3} released and the levels of NOX and N{sub 2}O formed during cocombustion was also addressed. The partitioning of nitrogen between volatiles and char was also quantified. The pyrolysis studies were undertaken in a small fluidized bed reactor of 80 mm of ID and 500 mm high using an inert atmosphere (N{sub 2}). The HCN and NH{sub 3} were quantified by bubbling the pyrolysis gases in absorbing solutions which were subsequently analyzed with selective electrodes. The combustion studies were carried out on a pilot installation. The fluidized bed combustor is square in cross section with each side being 300 mm long. There is secondary air supply to the freeboard at different heights to deal with high volatile fuels as almost all waste materials are. The temperatures in the bed and in the freeboard and that of the flue gases leaving the reactor were continuously monitored. The results obtained suggest that, while coal releases nitrogen mostly as HCN, residues like RDF and sewage sludge give out fuel-N in greater quantities as NH{sub 3}. Residues at fluidized bed combustion (FBC) temperatures release more than 80% of the fuel-N with the volatiles. The NH{sub 3} evolved during pyrolysis acted as a reducing agent on NOX emissions. The presence of calcium significantly reduces the emission of N{sub 2}O probably by interfering with HCN chemistry. With high amounts of residues in the fuel mixture, the relative importance of char on the nitrogen chemistry substantially decreases. By using cocombustion, it is possible to reduce fuel-N conversion to NOX and N{sub 2}O, by tuning the amounts of coal and residue in the mixture. 29 refs., 18 figs., 3 tabs.

  19. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    SciTech Connect

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M.; Keener, H.M.; Webner, R.L.

    1997-03-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  20. Use potential of ash from circulating pressurized fluidized bed combustors using low-sulfur subbituminous coal

    SciTech Connect

    Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Young, L.J.; Ashbaugh, M.B.; Wheeldon, J.

    1995-12-31

    The commercial introduction of pressurized fluidized bed combustion (PFBC) has spurred evaluation of ash management options for this technology. The unique operating characteristics of PFBC compared to atmospheric fluidized bed combustion (AFBC) units indicates that PFBC ash will exhibit unique chemical and physical characteristics, and hence, unique ash use opportunities. Western Research Institute (WRI) has initiated a study of the use properties of PFBC ashes involving both an assessment of the potential markets, as well as a technical feasibility study of specific use options. The market assessment is designed to address six applications including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) bricks and blocks, (5) synthetic aggregate, and (6) agricultural/soil amendment applications. Ashes from the Ahlstrom circulating PFBC pilot facility in Karhula, Finland, combusting western US low-sulfur subbituminous coal with limestone sorbent, were made available for the technical feasibility study. The technical feasibility study examined the use of PFBC ash in construction related applications, including its use as a supplemental cementing material in concrete, fills and embankments, soil stabilization, and synthetic aggregate production. In addition, testing was conducted to determine the technical feasibility of PFBC ash as a soil amendment for agriculture and reclamation applications.

  1. Identification of barriers to the use of atmospheric fluidized bed combustion in Kentucky

    SciTech Connect

    Not Available

    1990-08-01

    Both Kentucky and the USDOE are committed to development and commercialization of Fluidized Bed Combustion. Kentucky has committed $10 million to, and is a full partner in, the utility-scale 160 MW Atmospheric Fluidized Bed Combustion (AFBC) Demonstration Plant at the Tennessee Valley Authority's Shawnee Steam Plant in Paducah, Kentucky. Kentucky purchased and operates an AFBC pilot plant and conducts tests on alternative coal types, limestone types, boiler-tube corrosion/erosion and other research. The Kentucky General Assembly established a tax credit for the use of AFBC installations. It provides a five year exemption from sales tax, corporate tax, and other taxes for facilities installing AFBC in Kentucky. Despite government and industry commitment to AFBC, despite is potential advantages, and despite its commercial use in several parts of the United States, there is only one industrial facility burning coal using AFBC in Kentucky. This facility uses two units, each rated 60,000 pound per hour AFBC units. One of the driving forces behind the decision to use AFBC at this facility was USDOE funding. Two boilers out of the approximately 800 industrial boilers in the state cannot be considered impressive penetration of the technology. This project was designed to investigate why there is little use of AFBC in Kentucky and to recommend measures to facilitate or encourage its use. 11 figs.

  2. Fluidized bed combustion of low-grade coal and wastes: Research and development

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M.; Dobkin, S.M.; Telegin, E.M.

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  3. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of working in support of development studies for atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali m...

  4. SUPPORTIVE STUDIES IN FLUIDIZED-BED COMBUSTION

    EPA Science Inventory

    The report gives results of studies supporting the development of atmospheric and pressurized fluidized-bed combustion (FBC) of coal. It includes laboratory and bench-scale studies to provide needed information on combustion optimization, regeneration process development, solid w...

  5. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  6. Evaluation of alternative steam generator designs for Atmospheric Fluidized-Bed Combustion plants: Final report. [AFBC

    SciTech Connect

    Dunlop, W.

    1987-07-01

    The Atmospheric Fluidized Bed Combustion development program at the 20 MW pilot plant at TVA's Shawnee Station is addressing several design issues related to the scale-up requirements for utility application. These include use of overbed vs. underbed feed systems for coal, limestone, and recycled solids, load following and control design for reliable operation, and economies of scale. After initial screening of several alternate configurations, conceptual designs of AFBC mechanical overbed and underbed feed power plants in 1 x 200 MW and 2 x 500 MW sizes were prepared. These designs were assessed for efficiency, performance, resource requirements, capital cost and levelized busbar costs and compared to conventional pulverized coal units of similar size. The findings are that relative to the AFBC underbed feed plants, the AFBC overbed feed plant is about $70/kW less expensive at the 200 MW size, and $20/kW more expensive at the 2 x 500 MW size. Also, the capital costs of AFBC units range from $20/kW to $130/kW less than conventional PCF units and the potential exists for further reductions in AFBC capital costs as AFBC technology improves. Levelized busbar costs are essentially the same for both types and sizes of the AFBC units and for the conventional PCF units. Only one coal, Illinois number6 - a high sulfur bituminous coal - was initially evaluated. Subsequently, five additional coals - bituminous, subbituminous and lignite - and plant locations were evaluated. Current testing of less expensive coals is expected to confirm the fuel flexibility of the AFBC units which may result in corresponding reductions in levelized busbar costs. Utility industry confidence in AFBC has recently been expressed by the planned design and construction of fluidized bed units in 100 MW to 160 MW sizes for Colorado Ute Electric Association, Northern States Power Co. and TVA. 5 refs., 38 figs., 54 tabs.

  7. Characteristics of Pyrolytic Topping in Fluidized Bed for Different Volatile Coals

    NASA Astrophysics Data System (ADS)

    Xiong, R.; Dong, L.; Xu, G. W.

    Coal is generally combusted or gasified directly to destroy completely the chemical structures, such as aromatic rings containing in volatile coals including bituminite and lignite. Coal topping refers to a process that extracts chemicals with aromatic rings from such volatile coals in advance of combustion or gasification and thereby takes advantage of the value of coal as a kind of chemical structure resource. CFB boiler is the coal utilization facility that can be easily retrofitted to implement coal topping. A critical issue for performing coal topping is the choice of the pyrolytic reactor that can be different types. The present study concerns fluidized bed reactor that has rarely been tested for use in coal topping. Two different types of coals, one being Xiaolongtan (XLT) lignite and the other Shanxi (SX) bituminous, were tested to clarify the yield and composition of pyrolysis liquid and gas under conditions simulating actual operations. The results showed that XLT lignite coals had the maximum tar yield in 823-873K and SX bituminite realized its highest tar yield in 873-923K. Overall, lignite produced lower tar yield than bituminous coal. The pyrolysis gas from lignite coals contained more CO and CO2 and less CH4, H2 and C2+C3 (C2H4, C2H6, C3H6, C3H8) components comparing to that from bituminous coal. TG-FTIR analysis of tars demonstrated that for different coals there are different amounts of typical chemical species. Using coal ash of CFB boiler, instead of quartz sand, as the fluidized particles decreased the yields of both tar and gas for all the tested coals. Besides, pyrolysis in a reaction atmosphere simulating the pyrolysis gas (instead of N2) resulted also in higher production of pyrolysis liquid.

  8. A model of coal particle drying in fluidized bed combustion reactor

    SciTech Connect

    Komatina, M.; Manovic, V.; Saljnikov, A.

    2007-02-15

    Experimental and theoretical investigation on drying of a single coal particle in fluidized bed combustor is presented. Coal particle drying was considered via the moist shrinking core mechanism. The results of the drying test runs of low-rank Serbian coals were used for experimental verification of the model. The temperature of the coal particle center was measured, assuming that drying was completed when the temperature equalled 100{sup o}C. The influence of different parameters (thermal conductivity and specific heat capacity of coal, fluidized bed temperature, moisture content and superheating of steam) on drying time and temperature profile within the coal particle was analyzed by a parametric analysis. The experimentally obtained results confirmed that the moist shrinking core mechanism can be applied for the mathematical description of a coal particle drying, while dependence between drying time and coal particle radius, a square law relationship, implicates heat transfer control of the process and confirms the validity of assumptions used in modeling.

  9. Fluidized bed combustion of solid organic wastes and low-grade coals: Research and modeling

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Stanchits, L.K.

    1995-12-31

    Experimental studies were carried out to investigate devolatilization and combustion of single spherical particles of wood, hydrolytic lignin from ethanol production, leather processing sewage sludge, and low-grade Belarusian brown coals in a fluidized bed of sand. A two-phase model of fluidized bed combustion of biowaste is proposed. The model takes into account combustion of both volatiles and char in the bed as well as in the freeboard. Experimentally obtained characteristics of devolatilization and char combustion are used as parameters of the model proposed.

  10. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  11. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF COAL-FIRED FLUIDIZED-BED COMBUSTION SYSTEMS

    EPA Science Inventory

    The report evaluates potential pollutants which could be generated in coal-fired fluidized-bed combustion (FBC) processes. The primary emphasis is on organic compounds, trace elements, inorganic compounds (other than SO2 and Nox), and particulates. Using available bench scale or ...

  12. ENVIRONMENTAL ASSESSMENT OF THE FLUIDIZED-BED COMBUSTION OF COAL: METHODOLOGY AND INITIAL RESULTS

    EPA Science Inventory

    The paper discusses a program being conducted by the U.S. Environmental Protection Agency (EPA), aimed at complete environmental assessment (EA) of the fluidized-bed combustion (FBC) of coal. It reviews the EA methodology being developed by EPA: identification of current technolo...

  13. Materials performance in coal-fired fluidized-bed combustion environments

    SciTech Connect

    Natesan, K.

    1993-07-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed for the generation of electricity and process heat has been in progress for a number of years. This paper addresses some of the key components in these systems, materials requirements/performance, and areas where additional effort is needed to improve the viability of these concepts for electric power generation.

  14. CERAMIC FILTER TESTS AT THE EPA/EXXON PFBC (PRESSURIZED FLUIDIZED BED COAL COMBUSTION) MINIPLANT

    EPA Science Inventory

    The paper describes the performance of the Acurex ceramic bag filter operating at temperatures up to 880C and pressures up to 930 kPa on particulate-laden flue gas from a pressurized fluidized-bed coal combustion (PFBC) unit on a slipstream of gas taken after the second stage cyc...

  15. FIRST TRIALS OF CHEMICALLY ACTIVE FLUIDIZED-BED (CAFB) PILOT PLANT ON COAL

    EPA Science Inventory

    The report gives results of a minirun, carried out on a 0.75-MWe continuous, chemically active fluidized-bed (CAFB) pilot plant during July-August 1976, as part of a program to extend the CAFB process to operate on coal. After 8.5 hours of gasification on Texas lignite and Illino...

  16. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect

    Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

    1990-02-01

    The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

  17. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  18. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Astrophysics Data System (ADS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-03-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  19. Mild gasification of Usibelli coal in an inclined fluidized-bed reactor

    SciTech Connect

    Merriam, N.W.; Thomas, K.P.; Cha, C.Y.

    1991-02-01

    Results of mild gasification tests of minus 16-mesh Usibelli coal in an inclined fluidized-bed reactor are described in this report. The minus 16-mesh fraction was separated from the coal by screening. The coal was dried to zero moisture content, and about 2 wt % of the volatiles was removed as gas by partial decarboxylation using a 100-lb/hr inclined fluidized-bed dryer. The dried coal was subjected to mild gasification at maximum temperatures of 1050 to 1250{degrees}F (566 to 677{degrees}C) and feed rates of 7.5 lb/hr while using a once-through flow of carbon dioxide as fluidizing gas in a 1-inch-wide, inclined fluidized-bed reactor. Mild gasification of the dried coal resulted in production of 44 to 56 wt % of the dried coal as char, 10 to 13 wt % as liquids, 17 to 28 wt % as gas, and 8 to 21 wt % as fines. The yield of moisture- and ash-free (MAF) liquids varied from 11.4 to 14.2 wt % of the dried coal feed. Chemical analysis was carried out on these products.

  20. Atmospheric fluidized bed combustion (AFBC) plants: an operations and maintenance study

    SciTech Connect

    Jack A. Fuller; Harvie Beavers; Robert Bessette

    2006-06-15

    The authors analyzed data from a fluidized bed boiler survey distributed during the spring of 2003 to develop appropriate AFBC (Atmospheric Fluidized Bed Combustion) performance benchmarks. The survey was sent to members of CIBO (Council of Industrial Boiler Owners), who sponsored the survey, as well as to other firms who had an operating AFBC boiler on-site. There were three primary purposes for the collection and analysis of the data contained in this fluidized bed boiler survey: (1) To develop AFBC benchmarks on technical, cost, revenue, and environmental issues; (2) to inform AFBC owners and operators of contemporary concerns and issues in the industry; (3) to improve decision making in the industry with respect to current and future plant start-ups and ongoing operations.

  1. Pulsed atmospheric fluidized bed combustion. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  2. Understanding the behavior of Australian black coals in pressurized fluidized bed combustion

    SciTech Connect

    Stubington, J.F.; Wang, A.L.T.; Cui, Y.

    1999-07-01

    Ultimately, this study aims to predict the coal combustion efficiency in an industrial pressurized fluidized bed combustor (PFBC) for Australian black coals. This combustion efficiency depends predominantly upon the rate of elutriation of fine carbon particles, which is proportional to bed carbon loading in atmospheric experiments. The bed carbon loading is, in turn, dependent upon the rate of combustion of char particles within the PFBC. A novel batch-fed reactor has been designed, constructed and commissioned to enable separation and study of the mechanisms of coal devolatilization, char combustion and fine carbon particle elutriation in a PFBC and extraction of coal-specific parameters to describe these processes. The attrition and char combustion rates can only be determined experimentally and it is essential to match the environment around each coal particle, so that the results may be translated to the industrial scale. Therefore, the rig was designed for identical conditions of pressure, temperature, particle size and fluidizing velocity within the bed to those used industrially. The exhaust gas is analyzed continuously for oxygen, carbon dioxide, carbon monoxide and hydrocarbons as a function of time after coal injection, allowing separation and identification of the devolatilization and char combustion stages as well as measurement of the combustion rates. The elutriated carbon particles undergo minimal freeboard combustion and are collected in a cyclone and an in-line filter over any period of time during the experiment, for subsequent analysis. The sand bed containing the rig for collection and characterization of the partially burnt char particles. The rig is mostly computer-controlled and the design was subjected to a hazards analysis before construction. Results from the rig will be used in a mathematical model to predict the performance of the coals in industrial-scale PFBC.

  3. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    PubMed

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal. PMID:25402169

  4. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect

    Ho, T.C.; Ghebremeskel, A.; Wang, K.S.; Hopper, J.R.

    1997-07-01

    This study investigated the potential of employing suitable sorbents to capture toxic trace metallic substances during fluidized bed coal combustion. Metal capture experiments were carried out in a 25.4 mm (1 inch) quartz fluidized bed combustor enclosed in an electric furnace. The metals involved were cadmium, lead, chromium, arsenic and selenium, and the sorbents tested included bauxite, zeolite and lime. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through chemical equilibrium calculations based on the minimization of system free energy. The observed experimental results indicated that metal capture by sorbents can be as high as 88% depending on the metal species and sorbent involved. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions.

  5. Effect of dense phase of fluidized bed pyrolyzer on the devolatilization behavior of coal

    SciTech Connect

    Li Haibin; Chen Yong; Wang Yang

    1998-12-31

    Pyrolysis of coal in fluidized beds were investigated by many researchers. The results of both experiments and model simulations were published. However, there are deviations between the results of different researchers; one of the most important reasons is that the designated features of there experimental devices are different. For example, different freeboard temperature or height will lead to different product compositions. In this paper, the effect of dense phase of fluidized bed on product distribution is discussed when the effect of freeboard is minimized. Shenmu coal ({minus}45 + 80 mesh) was pyrolyzed in a special designed fluidized bed reactor with I.D. of 48mm and a cone-shaped distributor. The temperature of dense phase and freeboard can be controlled respectively. The relationship between gas phase product yield and dense phase temperature was obtained. The results show that the yields of H{sub 2}, CO, CH{sub 4} and C{sub 2}H{sub 4} increase dramatically with increasing dense phase temperature. However, liquid yield reaches the maximum in the dense phase temperature range of 600--650 C. By comparing with the results of former researchers, it can be seen that the volatile can undergo serious secondary reactions when the freeboard temperature is high, even when the residence time is very short. The results of this paper are believed to represent the more accurate trend of the effect of bed temperature on gas phase product yield because the vapor phase secondary reactions were minimized in this experiment.

  6. Pulsed atmospheric fluidized bed combustion. Technical progress report, July 1991--September 1991

    SciTech Connect

    Not Available

    1991-10-01

    The major accomplishments during this reporting period include completion of Task 1 and progression into Phase II, Task 2 design activities. A brief laboratory-scale test was conducted during this reporting period to confirm heat transfer coefficients for various sections of the Pulsed Atmospheric Fluidized bed Combustion (PAFBC) system. The heat transfer coefficient was determined to be approximately 50 Btu/hr ft{sup 2} {degrees}F inside the eductor and tailpipe of the pulse combustor as thin the fluidized bed. well as for the surfaces immersed within the fluidized bed. Communications with potential host sites for the Phase III field demonstration activities continued during this reporting period. These discussions along with discussions with environmental regulatory personnel in the State of Maryland indicate that the throughput of the field demonstration facility should be increased to greater than 36 million Btu/hr. An 8 in. {times} 8 in. fluidized bed unit would be too small to satisfy this requirement; its projected firing rate is only 33 million Btu/hr. Major effort during this reporting period was devoted to assessing the reasonableness of increasing the size of the field test facility from a technical and cost standpoint.

  7. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  8. Air-dense medium fluidized bed dry beneficiation of coal: Results of 50 MTPH demonstration plant

    SciTech Connect

    Chen Qingru; Yang Yi; Liang Chuncheng; Tao Xiuxiang; Luo Zhenfu

    1993-12-31

    This paper presents the performance results of the 50 MTPH Coal Dry Beneficiation Demonstration Plant constructed in the Heilongjiang Province of northeastern China. The separating media used in this process consists of an air/dense medium (magnetite, or magnetic pearls, a remnant of coal combustion in power plants) fluidized bed controllable at specific gravities ranging from 1.3 to 2.0. That portion of the feedstock with a specific gravity less than the separating gravity floats to the top of the fluidized bed where it is recovered at one end of the vessel. That portion of the feedstock with a specific gravity higher than the separating gravity sinks and is discharged from the other end of the vessel. The process has separating efficiencies similar to a heavy media vessel or cyclone with the additional advantages of (1) can be utilized in an arid region containing insufficient water supply, (2) results in a dry product requiring no additional dewatering and coal slime treatment, and (3) as result of air flow will remove some surface moisture present in the feedstock. As a result of the magnetite used in the fluidized bed and the subsequent downstream recovery of this magnetite, the current demonstration plant utilizes a 6mm bottom size. The topsize of the feed is a function of the size of the system and the site specific ash liberation requirement. The Demonstration Plant commenced operation in September 1992. The mechanical processes of the system including coal feeding, sizing, gravity separation/beneficiation, and medium recovery, functioned as anticipated from the 10 MTPH pilot plant. Preliminary results with separating gravities in the range of 1.3--2.0 showed a probable error as low as 0.05 with magnetite losses of 0.5 kg/MT of feed.

  9. Capture of toxic metals by vaious sorbents during fluidized bed coal combustion

    SciTech Connect

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1995-12-31

    This study investigated the potential of employing suitable sorbents to capture trace metallic substances during fluidized bed coal combustion. The objectives of the study were to demonstrate the capture process, identify effective sorbents, and characterize the capture efficiency. Experiments were carried out in a 25.4 mm (1 ``) quartz fluidized bed coal combustor enclosed in an electric furnace. In an experiment, a coal sample from the DOE Coal Sample Bank or the Illinois Basin Coal Sample Bank was burned in the bed with a sorbent under various combustion conditions and the amount of metal capture by the sorbent was determined. The metals involved in the study were arsenic, cadmium, lead, mercury and selenium, and the sorbents tested included bauxite, zeolite and lime. The combustion conditions examined included bed temperature, particle size, fluidization velocity (percent excess air), and sorbent bed height. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through performing chemical equilibrium analyses based on the minimization of system free energy.

  10. Technology assessment for an atmospheric fluidized-bed combustion demonstration plant

    SciTech Connect

    Siman-Tov, M; Jones, Jr, J E

    1980-01-01

    This study assesses the atmospheric fluidized-bed combustion (AFBC) technology with respect to design, construction, and operation of a demonstration power plant in the range of 150 to 250 MW(e) capacity and identifies the most critical research and development needs for the plant project. The general conclusion of these studies is that AFBC is feasible for large power plants and that it has a generally good potential for providing an economically and environmentally acceptable alternative to conventional coal-fired power plants. Several areas of technical uncertainty must, however, be resolved in order to ensure success of an AFBC demonstration plant project. Much of the existing data base for AFBC comes from small-scale test units, and much of it is still inconclusive. A number of operational and design problems exist that do not yet have conclusive answers. A focused research and development program aimed at the early resolution of these problems should be carried out to ensure successful construction and operation of the proposed AFBC demonstration plant and early commercialization of the technology. A large flexible feeding test facility designed to investigate the feeding problems and possibilities should be constructed. A materials-test facility is also needed for testing, evaluating and selecting materials, as well as demonstrating their long-term compatibility. An intermediate-size pilot plant with sufficient flexibility to test alternate solutions to the above-mentioned problems will considerably strengthen the demonstration program.

  11. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  12. PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor

    SciTech Connect

    Peltier, R.

    2007-08-15

    The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

  13. Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.

    PubMed

    Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti

    2002-01-01

    Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process. PMID:12099502

  14. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  15. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  16. Tennessee Valley Authority atmospheric fluidized-bed combustor simulation interim annual report, January 1-December 31, 1979

    SciTech Connect

    Wells, J.W.; Krishnan, R.P.

    1980-10-01

    This report contains a detailed description of the work performed during 1979 for the Tennessee Valley Authority in support of the TVA Fluidized-Bed Combustor (FBC) Demonstration Plant Program. The work was carried out under task 4, modeling and simulation of atmospheric fluidized-bed combustor (AFBC) systems. The overall objective of this task is to develop a steady-state mathematical model with the capability of predicting trends in bed performance under various feed and operating conditions. As part of this effort, three predictive subprograms (subcodes) were developed during 1979: (1) bubble-growth subcode, (2) sorbent-coal ash elutriation and attrition subcode, and (3) coal combustion subcode. These codes, which are currently being tested with experimental data, are capable of predicting how some of the important operating variables in the AFBC affect its performance. After testing against field data, these subcodes will be incorporated into an overall AFBC system code, which was developed earlier at ORNL for analysis of the Department of Energy (DOE) Component Test and Integration Unit (CTIU) at Morgantown, West Virginia. In addition to these predictive subcodes, the overall system code previously developed for the CTIU is described. The material balance is closed, based on vendor-supplied data. This balance is then used to predict the heat transfer characteristics of the surfaces (submerged and freeboard) in the AFBC. Existing correlations for heat transfer in AFBC are used in the code along with thermophysical properties of the various streams.

  17. Burn coal cleanly in a fluidized bed - The key is in the controls

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.

    1979-01-01

    The fluidized-bed combustion (FBC) process produces few sulfur emissions, and can burn wood, municipal solid waste as well as every kind of coal available in the U.S. The presurized, coal-burning fluidized-bed reactor at NASA's Lewis Research Center is described, together with a discussion of the operating results. The FBC system at Lewis, having a completely instrumented reactor, is used to test turbine blade alloys for future power plant applications. With the same type of coal and limestone used in the first testing phase covering 136 hours, it was found that all NOx values were below the EPA standard of 0.7 lb/MBtu, whereas the maximum observed level of SO2 was above the EPA standard of 1.3 lb/MBtu, but with the average SO2 level, however, only 0.63 lb/MBtu. Unburned hydrocarbon and CO levels were very low, indicating combustion efficiencies of close to 99% in almost all tests. Testing is now underway using high temperature cyclones and gas turbine to eliminate erosion and corrosion effects which were observed after the initial tests on the turbine and blades.

  18. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  19. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    SciTech Connect

    Dennis, R.A.

    1990-08-01

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  20. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-01

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. PMID:26897573

  1. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1996-06-01

    Experiments were conducted in a 1-in. quartz fluidized bed combustor enclosed in an electric furnace. Coal samples were burned in the bed with a sorbent under specific combustion conditions and the amount of metal capture by the sorbent determined. Three different cao samples from the Illinois Basin Coal Sample Bank were tested. Metals involved were Cd, Pb, and Cr; the sorbents included bauxite, zeolite, and lime. Potential metal-sorbent reactions were identified. Results indicated that metal capture by sorbent can be as high as 96%, depending on the metal species and sorbent. All 3 sorbents were capable of capturing Pb, zeolite and lime were able to capture Cr, and bauxite was the only sorbent capable of capturing Cd. Thermodynamic equilibrium calculations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}, CdAl{sub 2}O{sub 4}, and CdSiO{sub 3} solids under the combustion conditions.

  2. Coal slurry solids/coal fluidized bed combustion by-product mixtures as plant growth media

    USGS Publications Warehouse

    Darmody, R.G.; Green, W.P.; Dreher, G.B.

    1998-01-01

    Fine-textured, pyritic waste produced by coal cleaning is stored in slurry settling ponds that eventually require reclamation. Conventionally, reclamation involves covering the dewatered coal slurry solids (CSS) with 1.3 m of soil to allow plant growth and prevent acid generation by pyrite oxidation. This study was conducted to determine the feasiblity of a less costly reclamation approach that would eliminate the soil cover and allow direct seeding of plants into amended CSS materials. Potential acidity of the CSS would be neutralized by additions of fluidized-bed combustion by-product (FBCB), an alkaline by-product of coal combustion. The experiment involved two sources of CSS and FBCB materials from Illinois. Birdsfoot trefoil (Lotus corniculatus L.), tall fescue (Festuca arundinacea Schreb.), and sweet clover (Melilotus officinalis (L.) Lam.) were seeded in the greenhouse into pots containing mixtures of the materials. CSS-1 had a high CaCO3:FeS2 ratio and needed no FBCB added to compensate for its potential acidity. CSS-2 was mixed with the FBCB materials to neutralize potential acidity (labeled Mix A and B). Initial pH was 5.6, 8.8, and 9.2 for the CSS-1, Mix A, and Mix B materials, respectively. At the end of the 70-day experiment, pH was 5.9 for all mixtures. Tall fescue and sweet clover grew well in all the treatments, but birdsfoot trefoil had poor emergence and survival. Elevated tissue levels of B, Cd, and Se were found in some plants. Salinity, low moisture holding capacity, and potentially phytotoxic B may limit the efficacy of this reclamation method.

  3. Analysis of atmospheric fluidized bed combustion agglomerates. Final report

    SciTech Connect

    Perkins, D. III; Brekke, D.W.; Karner, F.R.

    1984-04-01

    Chemical and textural studies of AFBC agglomerates have revealed detailed information regarding the mechanisms of agglomeration. The formation of agglomerates in a silica sand bed can be described by a four step process: initial ash coatings of quartz grains; thickening of ash coatings and the formation of nodules; cementation of nodules to each other by a sulfated aluminosilicate matrix; and partial or complete melting of eutectic compositions to produce a sticky glass phase between grains and along fractures. Once agglomeration has begun, large scale solidification and restricted flow within the bed will lead to hot spots, wholesale melting and further agglomeration which ultimately forces a shutdown. Standard operating temperatures during normal AFBC runs come quite close to, or may actually exceed, the minimum temperatures for eutectic melting of the silicate phases in the coal and standard bed materials. The partially melted material may be expected to lead to the formation of dense, sticky areas within the bed, and the formation of hot spots which further exacerbate the problem. Ultimately, large scale bed agglomeration will result. Attempts to eliminate agglomeration by removal of sodium via an ion exchange process have yielded encouraging results. A second approach, used to raise melting temperatures within the bed, has been to use bed materials that may react with low-temperature minerals to produce high-temperature refractory phases such as mullite or other alkali and alkali-earth alumino-silicates.

  4. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    SciTech Connect

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  5. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  6. Attrition of coal ash particles in a fluidized-bed reactor

    SciTech Connect

    Tomeczek, J.; Mocek, P.

    2007-05-15

    Experimental data of ash-particles attrition in a fluidized bed is presented, and also the results of modeling. Five sizes of ash particles (1.02-1.25; 1.25-1.6; 1.6-2.0; 2.0-5.0; 5.0-10.0 mm) produced in an industrial CFB boiler were examined. A new model of mechanical attrition has been proposed which incorporates new parameters: the shape factor of particles and the ratio of the bed height to bed diameter, strongly influencing the rate of bed mass loss. The model describes very well experimental data for coal-ash particles attrition. The attrition-rate coefficient for ash particles was evaluated.

  7. High temperature gas cleaning using honeycomb barrier filter on a coal-fired circulating fluidized bed combustor

    SciTech Connect

    Bishop, B.; Raskin, N.

    1996-12-31

    An efficient particulate hot gas cleaning equipment is a must for the successful commercialization of high efficiency pressurized coal-fired energy conversion systems. Many types of ceramic barrier filter systems are under development during the past decade. Significant progress has been made on the mechanical packaging of ceramic materials at high temperature (up to 900 C) environment. However, there is still considerable difficulty in operating the candle type filters at temperatures close to 900 C. CeraFilter Systems, Inc., and CeraMem Corporation are developing a new type of monolith honeycomb filters for high temperature and high pressure applications. The honeycomb filters have been tested downstream of a coal-fired atmospheric circulating fluidized bed combustor. Coal was fired with limestone as the SO{sub 2} control sorbent. Two test runs were conducted, each at 870 C and at a filtration velocity of 2.2--2.3 cm/s. The testing included both high speed and conventional data acquisition to monitor effects of the cleaning pulses and long term pressure drop characteristics. Dust loadings were measured before and after the filter by the Energy and Environmental Research Center (EERC) of Grand Forks, North Dakota. The dust capture efficiency of the Filter was very high and could easily meet the strict particulate emission level requirements and the allowable dust loading into a gas turbine stream.

  8. Effect of the size distribution of coal on fluidized-bed combustion

    SciTech Connect

    Hirama, T.; Hosoda, H.; Nishizaki, H.; Chiba, T.; Kobayashi, H.

    1984-07-01

    To study the effect of the particle-size distribution on its combustion characteristics, coal was burned in a 0.25 m-square fluidized-bed combustor with a 3-m freeboard. A higher fines content increased the loss of unburned coal by elutriation, but reduced the loss from overflow from the bed surface. The overall combustion efficiency varied only slightly with the size distribution; the efficiency of combustion within the bed was reduced, but more combustion took place in the freeboard, both for 9.5-25 mm particles, owing to segregation in the bed, and for <2 mm particles, owing to elutriation. NO/SUB/x emission for two-stage combustion with these two size ranges was considerably higher than for particles within the broader range <25 mm. Since segregation of coarse particles and elutriation of unburned finer particles increase NO/SUB/x emission and reduced the bed combustion efficiency, it is desirable to use coal with a broad particle-size distribution.

  9. Availability of trace elements in solid waste from fluidized bed combustion of coal

    SciTech Connect

    Rope, S.K.; Jornitz, R.S.; Suhre, D.T.

    1987-12-01

    This report presents data on the inorganic constituents (major and trace elements) of coal and solid waste from a coal-fired facility on the Idaho National Engineering Laboratory (INEL) which uses the fluidized bed combustion process. Three factors were used to assess the potential environmental impacts of elements in coal waste: (1) the concentrations relative to those measured previously in surrounding soils of the INEL (the enrichment ratio); (2) the availability of elements from waste relative to soils; and (3) toxicity or essentiality to biota. Considering both enrichment and availability, Al, B, Be, Ca, Cr, Na, Mo, Se, Sr, and Ti are most likely to be affected in the local environment due to fly ash deposition and/or resuspension of FBC waste. Only B, Cr, Mo, and Se are likely to be of concern in terms of toxicity. The high concentrations of Cr and B in FBC waste are expected to be toxic to plants. Concentrations of Se and Mo present in FBC waste have been shown to produce levels in plants which can be toxic to herbivorous animals. 14 refs, 1 fig., 4 tabs.

  10. Behavior of fluorine and chlorine in Spanish coal fired power plants with pulverized coal boilers and fluidized bed boiler.

    PubMed

    López-Vilariño, J M; Fernández-Martínez, G; Turnes-Carou, I; Muinategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D

    2003-06-01

    Behavior and contents of fluorine and chlorine in coal feedstock, combustion wastes (slag and fly ash) and emissions were studied in five conventional coal fired power plants and in a fluidized bed coal power plant. The halide levels found in the used coal were quite low. Mass balances and emission factors were calculated. The volatility of these elements makes the gaseous emission the main target between the residues. The influence of combustion parameters is not clearly established. Several analytical techniques (ion selective electrodes, capillary electrophoresis and ion chromatography) are employed to determinate the halide concentration in the different samples taken in the power plants studied (coal, slag, fly ash and flue gases). PMID:12868523

  11. Fabric filter testing at the TVA Atmospheric Fluidized-bed Combustion (AFBC) Pilot Plant

    SciTech Connect

    Cushing, K.M.; Bush, P.V.; Snyder, T.R.

    1988-05-01

    Experience with fluidized bed combustion (FBC) units on a research and industrial scale has indicated that FBC power plants could be a viable alternative to pulverized-coal power plants with wet limestone scrubbers or spray dryers. To provide design confidence and the flexibility to evaluate process improvements, the Tennessee Valley Authority constructed a 20-MW(e) AFBC (bubbling bed) Pilot Plant. Subseqently, EPRI and Southern Research Institute entered into a program to monitor the performance of the fabric filter at the pilot plant. The objective of the program was to determine if unique characteristics of AFBC operation or emissions would require special design criteria or operating procedures in the application of fabric filtration to utility-size AFBC boilers. With reverse-gas cleaning the fabric filter experienced high tubesheet pressure drop while operating at low filtering air-to-cloth values and with low residual dustcake areal densities compared to fabric filters downstream from pulverized-coal boilers. This implied that the AFBC fly ash had properties distinct from those of pulverized-coal fly ash. Implementaion of reverse-gas cleaning with sonic assistance resulted in lower operating pressure drops at higher filtering air-to-cloth values, although slightly higher than comparable data from baghouses filtering pulverized-coal fly ash. Fly ash analyses showed that the AFBC ash particles are generally smaller, more irregualr in shape, and the dustcakes are lighter and more porous than those formed from pulverized-coal fly ashes. 8 refs., 18 figs., 7 tabs.

  12. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    PubMed Central

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR. PMID:24174911

  13. Process wastewater treatability study for Westinghouse fluidized-bed coal gasification

    SciTech Connect

    Winton, S.L.; Buvinger, B.J.; Evans, J.M.; French, W.E.; Page, G.C.; Rhodes, W.J.

    1983-11-01

    In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health, and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.

  14. Alkali metals in circulating fluidized bed combustion of biomass and coal: measurements and chemical equilibrium analysis

    SciTech Connect

    Michal P. Glazer; Nafees A. Khan; Wiebren de Jong; Hartmut Spliethoff; Heiko Schuermann; Penelope Monkhouse

    2005-10-01

    Combustion and co-combustion experiments with four kinds of straw, specially selected for their different alkali, Cl, and Si contents, and Colombian black coal were carried out in a circulating fluidized bed (CFB) reactor at Delft University of Technology. The influence of operating conditions and fuel composition on the release of the alkali compounds to the gas phase was investigated. The amount of the total gas-phase sodium and potassium compounds in the flue gases was measured with excimer laser induced fluorescence (ELIF). The results show that the release of gaseous alkali species depends on fuel composition, in particular the K/Cl and K/Si ratios in the fuel. The fuels with high K and Cl values show higher concentrations of the gaseous alkalis. A synergetic effect of the co-combustion with coal was observed, which led to a strong decrease in gaseous alkali concentrations. Together with experiments, chemical equilibrium modeling was performed to help in interpreting the experimental data. The calculations confirmed that the equilibrium is very strongly influenced by the composition of the fuel blend. Moreover, the simulations provided more information on sequestering of alkali species. 22 refs., 5 figs., 4 tabs.

  15. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-01-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  16. Hydrodynamics of a fluidized bed co-combustor for tobacco waste and coal.

    PubMed

    Zhang, Kai; Yu, Bangting; Chang, Jian; Wu, Guiying; Wang, Tengda; Wen, Dongsheng

    2012-09-01

    The fluidization characteristics of binary mixtures containing tobacco stem (TS) and cation exchange resin (a substitute for coal) were studied in a rectangular bed with the cross-section area of 0.3 × 0.025 m(2). The presence of herbaceous biomass particles and their unique properties such as low density and high aspect ratio resulted in different fluidization behaviors. Three fluidization velocities, i.e. initial, minimum and full fluidization velocities, were observed as the TS mass fraction increased from 7% to 20%, and four hydrodynamic stages were experienced, including the static, segregation, transition and mixing stages, with increasing operational gas velocities. The results suggest that the operational gas velocity should be in the range of 2.0-5.0 times of the minimum fluidization velocity of the binary mixtures, and less than 7% TS mass fraction should be used in an existing bubbling fluidized bed. Higher TS fraction inclusion requires the introduction of central jet gas to improve the mixing effect. PMID:22750501

  17. The O₂-enriched air gasification of coal, plastics and wood in a fluidized bed reactor.

    PubMed

    Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

    2012-04-01

    The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery. PMID:21993077

  18. Release of sulfur and chlorine during cofiring RDF and coal in an internally circulating fluidized bed

    SciTech Connect

    Xiaolin Wei; Yang Wang; Dianfu Liu; Hongzhi Sheng; Wendong Tian; Yunhan Xiao

    2009-03-15

    An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO{sub 2}, HCl, and SO{sub 2} were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration of SO{sub 2} is relatively low because alkaline metal in the fuel ash can absorb SO{sub 2}. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfurization ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur. 35 refs., 18 figs., 2 tabs.

  19. Study of instrumentation needs for process control and safety in coal fluidized-bed combustion systems

    SciTech Connect

    Herzenberg, C.L.; Griggs, K.E.; Henry, R.F.; Podolski, W.F.

    1981-02-01

    A study was conducted to evaluate the current state of the art of instrumentation for planned and operating fluidized-bed combustion systems. This study is intended to identify instrumentation needs and serve as a data base for projects to develop this instrumentation. A considerable number of needs for measurements for which presently available instrumentation is not suitable were reported by respondents. The identified deficiencies are presented with the associated physical parameter ranges for FBC processes. New techniques and instrumentation under development, as well as some available alternative instruments, are discussed briefly. Also, newly instituted mechanisms for technical information exchange on instrumentation for fossil energy applications are identified. Development of instruments to meet the identified measurement deficiencies is recommended in order to ensure the feasibility of automatic control of large-scale fluidized-bed combustion systems, and to advance the state of the art of fluidized-bed combustion technology.

  20. The study of partitioning of heavy metals during fluidized bed combustion of sewage sludge and coal

    SciTech Connect

    Gulyurtlu, I.; Lopes, M.H.; Abelha, P.; Cabrita, I.; Oliveira, J.F.S.

    2006-06-15

    The behavior of Cd, Cr, Cu, Co, Mn, Ni, Pb, Zn, and Hg during the combustion tests of a dry granular sewage sludge on a fluidized bed combustor pilot (FBC) of about 0.3 MW was evaluated. The emissions of these heavy metals from mono-combustion were compared with those of co-combustion of the sludge with a bituminous coal. The effect of the addition of limestone was also studied in order to retain sulphur compounds and to verify its influence on the retention of heavy metals (HM). Heavy metals were collected and analyzed from different locations of the installation, which included the stack, the two cyclones, and the material removed from the bed. The results showed that the volatility of metals was rather low, resulting in emissions below the legal limits of the new directive on incineration, with the exception of Hg during the mono-combustion tests. The partitioning of metals, except for Hg, appeared to follow that of ashes, amounting to levels above 90% in the bed streams in the mono-combustion case. For co-combustion, there was a lower fixation of HM in the bed ashes, mostly originating essentially from the sewage sludge, ranging between 40% and 80%. It is believed that in this latter case, a slightly higher temperature could have enhanced the volatilization, especially of Cd and Pb. However these metals were then retained in fly ashes captured in the cyclones. In the case of Hg, the volatilisation was complete. The bed ashes were free of Hg and part of Hg was retained in the cyclones and the rest was emitted either with fine ash particles or in gaseous forms. In mono-combustion the Hg emissions from the stack (particles and gas) accounted, for about 50%. This appeared to have significantly decreased in the case of co-combustion, as only about 75% has been emitted, due to the retention effect of cyclone ashes.

  1. Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed

    SciTech Connect

    Hongcang Zhou; Baosheng Jin; Rui Xiao; Zhaoping Zhong; Yaji Huang

    2009-04-15

    To investigate the distribution of polycyclic aromatic hydrocarbons (PAHs) in fly ash, the combustion of coal and residual char was performed in a pressurized spouted fluidized bed. After Soxhlet extraction and Kuderna-Danish (K-D) concentration, the contents of 16 PAHs recommended by the United States Environmental Protection Agency (U.S. EPA) in coal, residual char, and fly ash were analyzed by a high-performance liquid chromatography (HPLC) coupled with fluorescence and diode array detection. The experimental results show that the combustion efficiency is lower and the carbon content in fly ash is higher during coal pressurized combustion, compared to the residual char pressurized combustion at the pressure of 0.3 MPa. Under the same pressure, the PAH amounts in fly ash produced from residual char combustion are lower than that in fly ash produced from coal combustion. The total PAHs in fly ash produced from coal and residual char combustion are dominated by three- and four-ring PAHs. The amounts of PAHs in fly ash produced from residual char combustion increase and then decrease with the increase of pressure in a fluidized bed. 21 refs., 1 fig., 4 tabs.

  2. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    SciTech Connect

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  3. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  4. Advanced atmospheric fluidized-bed combustion design: internally circulating AFBC. Final report

    SciTech Connect

    Keairns, D.L.; Altiner, H.K.; Hamm, J.R.; Ahmed, M.M.; Weeks, K.D.; Bachovchin, D.M.; Kececioglu, I.; Ulerich, N.H.; Yang, W.C.

    1983-01-01

    This report defines and characterizes an advanced, industrial, fluidized-bed combustion concept - the internally circulating AFBC - having superior performance and cost characteristics. The internally circulating AFBC incorporates four major innovative features (single fuel feed; jet-attrition-controlled sulfur removal; multiple air staging; and high-velocity, single vessel integral design using draft tube circulation) to achieve: high boiler thermal efficiency (approaching 90% through integral design, high combustion efficiency, and low sorbent consumption); fuel flexibility (single coal feed point, coal size up to nominal 2 in, flexible air distribution, capability of feeding and combusting gaseous and liquid fuels); high reliability (simplified fuel feed and solids handling); turndown flexibility (degree and ease of turndown achieved by integral segmented bed, staged air distribution); low sorbent requirements for high SO/sub 2/ control (Ca/S <2 for greater than 90% removal using jet-attrition-controlled sulfur removal); low NO/sub x/ emissions (0.1 lb/10/sup 6/ Btu through multiple stages of air injection and capability of maintaining high carbon content); compact design (single, shop-fabricated, rail-shippable units with capacity up to 150 x 10/sup 6/ Btu/hr for high-velocity operation); and low cost (simplified, integral function design with high efficiency). Westinghouse concludes that the internally circulating AFBC concept has great potential for industrial market acceptance because of its effective performance and high reliability at low steam generation costs. The concept merits further development to evolve its innovative features further and to determine its commercial design configuration and operating conditions.

  5. Steam activation of a bituminous coal in a multistage fluidized bed pilot plant: Operation and simulation model

    SciTech Connect

    Martin-Gullon, I.; Asensio, M.; Marcilla, A.; Font, R.

    1996-11-01

    A hydrodynamic and kinetic model was developed and applied to simulate the experimental data from a three-stage fluidized bed pilot plant with downcomers. This was used to study the activated carbon production from a Spanish bituminous coal by steam gasification. The steam gasification kinetics, considering the influence of inhibitors, were also determined in a thermobalance. With the kinetic equation and the experimental solids residence time distribution of the pilot plant, the model simulates the overall process that takes place in the reactor. The proposed model is able to reproduce the experimental results satisfactorily.

  6. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhu, Jianguo; Ouyang, Ziqu; Lu, Qinggang

    2013-06-01

    High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.

  7. Simulation of fluidized bed combustors. I - Combustion efficiency and temperature profile. [for coal-fired gas turbines

    NASA Technical Reports Server (NTRS)

    Horio, M.; Wen, C. Y.

    1976-01-01

    A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.

  8. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect

    DeLallo, M.R.; Zaharchuk, R.; Reuther, R.B.; Bonk, D.L.

    1996-09-01

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  9. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.

    PubMed

    Wagland, S T; Kilgallon, P; Coveney, R; Garg, A; Smith, R; Longhurst, P J; Pollard, S J T; Simms, N

    2011-06-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidized bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal+10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal+10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel. PMID:21288710

  10. Autothermal gasification of low-grade fuels in fluidized bed

    NASA Astrophysics Data System (ADS)

    Belyaev, A. A.

    2009-01-01

    Autothermal gasification of high-ash floatation wastes of Grade Zh Kuzbass coal and low-ash fuel in a suspended-spouted (fluidized) bed at atmospheric pressure is investigated, and a comparison is presented of experimental results that indicate that the ash content of fuels has only slight influence on the generator gas heating value.

  11. SUPPORT STUDIES IN FLUIDIZED-BED COMBUSTION, 1978 ANNUAL REPORT

    EPA Science Inventory

    The report gives results of laboratory- and process-scale EPA studies supporting the national development of atmospheric and pressurized fluidized-bed combustion (PFBC) of coal. Program objectives are: (1) to develop basic information needed to optimize the use of limestone for S...

  12. Fluidized bed quenching technology

    SciTech Connect

    Reynoldson, R.

    1996-12-31

    The use of fluidized beds for quenching ferrous materials is outlined and compared with the more traditional techniques commonly used in the heat treatment industry. The use of fluidized bed quenching to control distortion of metal parts is also discussed. A case study is provided to illustrate a practical application of fluidized bed quenching.

  13. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  14. Combustion model for staged circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Fang, Jianhua; Lu, Qinggang; Wang, Bo; Pan, Zhonggang; Wang, Dasan

    1997-03-01

    A mathematical model for atmospheric staged circulating fluidized bed combustion, which takes fluid dynamics, combustion, heat transfer, pollutants formation and retention, into account was developed in the Institute of Engineering Thermophysics (IET) recently. The model of gas solid flow at the bottom of the combustor was treated by the two-phase theory of fluidized bed and in the upper region as a core-annulus flow structure. The chemical species CO, CO2, H2, H2O, CH4, O2 and N2 were considered in the reaction process. The mathematical model consisted of sub-models of fluid namics, coal heterogeneous and gas homogeneous chemical reactions, heat transfer, particle fragmentation and attrition, mass and energy balance etc. The developed code was applied to simulate an operating staged circulating fluidized bed combustion boiler of early design and the results were in good agreement with the operating data. The main submodels and simulation results are given in this paper.

  15. Numerical analysis of the process of combustion and gasification of the polydisperse coke residue of high-ash coal under pressure in a fluidized bed

    SciTech Connect

    A.Y. Maistrenko; V.P. Patskov; A.I. Topal; T.V. Patskova

    2007-09-15

    A numerical analysis of the process of 'wet' gasification of high-ash coal under pressure in a low-temperature fluidized bed has been performed. The applicability of the previously developed computational model, algorithm, and program for the case under consideration has been noted. The presence of 'hot spots' (short-time local heatings) at different points of the bed has been confirmed.

  16. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    SciTech Connect

    Sachs, M. Schmitt, A. Schmidt, J. Peukert, W. Wirth, K-E

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  17. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    NASA Astrophysics Data System (ADS)

    Sachs, M.; Schmitt, A.; Schmidt, J.; Peukert, W.; Wirth, K.-E.

    2014-05-01

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  18. Does carbon monoxide burn inside a fluidized bed; A new model for the combustion of coal char particles in fluidized beds

    SciTech Connect

    Hayhurst, A.N. )

    1991-05-01

    Beds of silica sand were fluidized by mixtures of C{sub 3}H{sub 8}, CH{sub 4}, or CO with air. Staring from cold the way such a bed behaved before it reached a steady state was observed visually. In addition, high-speed cine films were taken, as well as measurements of the loudness of the noise emitted. These beds behave in a way indicating that such hot gas mixtures at up to 1000{degrees}C do not burn in the interstices between the sand particles. Instead, combustion occurs either above the bed or in the ascending bubbles. Measurements of the diameter (d{sub ig}) of a bubble made immediately prior to ignition confirmed that the ignition temperature (T{sub ig}) of the bubble varies with d{sub ig} {proportional to} exp (E{sub ig}/RT{sub ig}), so that larger bubbles ignite at lower temperatures. It proved possible to generate combustion of these gas mixtures in the particulate phase by adding Pt-coated catalyst pellets. This leads to a new model for the burning of char particles in a fluidized bed. In the model, char is first oxidized to CO with the reaction C{sub s} + 1/20{sup b} {yields} CO occurring mainly inside the pores of each particle. The resulting CO burns either above the bed or in bubbles rising up the bed, but not in the particulate phase. Considerable uncertainties exist as to the correct values of Nusselt and Sherwood numbers, as well as of, e.g., the intrinsic rate constant for the initial production of CO. However, the model is capable of predicting the temperatures observed for char particles burning in fluidized beds. This paper addresses some of the problems of O{sub 2} diffusing inside the pores of a char particle and then reacting to give CO.

  19. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  20. A novel three phase fluidized bed process for simultaneous selective flocculation and microbial desulfurization of high sulfur coal

    SciTech Connect

    Fan, Liang-Shih; Bavarian, F.; Attia, Y.A.; Elzeky, M. )

    1990-10-16

    The purpose of this work was to investigate the feasibility of recovery and reclamation of ultrafine coal particles generated during the processing of coal. 10--35% of the total annual tonnage of coal in atypical coal preparation plant is estimated to be lost in forms of ultrafine particles during the mining, shipping, handling, and preparation of the coal. The technical feasibility of the proposed system which consisted of an integrated circuit of selective flocculation followed by microbial desulfurization, has been tested. The results indicate that using selective flocculation/froth flotation circuit, coal recoveryis 85% with 75% pyritic sulfur and 60% ash rejections. The remaining pyritic sulfur in the coal slurry was treated using microbial desulfurization in a draft-tube fluidized bed bioreactor. Using this reactor scheme considerable enhancement of the bioleaching rate was obtained. The results indicate that 90% rejection of pyritic sulfur can be achieved in less than 24 hrs. Note that the previously reported data for the bioleaching rate are from 4 to 12 days for the same amount of pyritic rejection. The results obtained in this work closely reflects the anticipated outcomes which were projected in the original proposal. Consequently, the results of this work implies a significant improvement in bioleaching process and the possibility for the commercialization of the microbial desulfurization process. Our results also indicate further improvement of this process by optimization of reactor sequence and operating conditions.

  1. A novel three phase fluidized bed process for simultaneous selective flocculation and microbial desulfurization of high sulfur coal. Final report

    SciTech Connect

    Fan, Liang-Shih; Bavarian, F.; Attia, Y.A.; Elzeky, M.

    1990-10-16

    The purpose of this work was to investigate the feasibility of recovery and reclamation of ultrafine coal particles generated during the processing of coal. 10--35% of the total annual tonnage of coal in atypical coal preparation plant is estimated to be lost in forms of ultrafine particles during the mining, shipping, handling, and preparation of the coal. The technical feasibility of the proposed system which consisted of an integrated circuit of selective flocculation followed by microbial desulfurization, has been tested. The results indicate that using selective flocculation/froth flotation circuit, coal recoveryis 85% with 75% pyritic sulfur and 60% ash rejections. The remaining pyritic sulfur in the coal slurry was treated using microbial desulfurization in a draft-tube fluidized bed bioreactor. Using this reactor scheme considerable enhancement of the bioleaching rate was obtained. The results indicate that 90% rejection of pyritic sulfur can be achieved in less than 24 hrs. Note that the previously reported data for the bioleaching rate are from 4 to 12 days for the same amount of pyritic rejection. The results obtained in this work closely reflects the anticipated outcomes which were projected in the original proposal. Consequently, the results of this work implies a significant improvement in bioleaching process and the possibility for the commercialization of the microbial desulfurization process. Our results also indicate further improvement of this process by optimization of reactor sequence and operating conditions.

  2. Comprehensive report to Congress: Clean Coal Technology Program: Arvah B. Hopkins circulating fluidized-bed repowering project: A project proposed by: The City of Tallahassee

    SciTech Connect

    Not Available

    1990-10-01

    The project involves the repowering of a 250-megawatt electrical (MWe) natural gas- or oil-fired boiler with a coal-fired atmospheric circulating fluidized-bed (CFB) boiler to provide steam to an existing turbine generator. The boiler will be the largest of its type. After construction and shakedown, the City of Tallahassee (CoT) plant will be operated for 24 months with at least three different eastern coals. Final coal selection will be based on the Fuels Selection Study, which is part of Phase I-A of the project. Cost, financial, and technical data from the CoT CFB will be provided the utility industry for evaluation of a 250-MWe CFB as a commercially viable clean coal alternative. The objective of the Arvah B. Hopkins CFB Repowering Project is to demonstrate an efficient, economical, and environmentally superior method of generating electric power from coal. The work to be performed under the Cooperative Agreement includes the design, construction, and operation of the demonstration plant. 4 figs.

  3. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  4. Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler

    SciTech Connect

    K.O. Davidsson; L.-E. Aamand; A.-L. Elled; B. Leckner

    2007-12-15

    Cofiring experiments were performed in a 12 MW circulating fluidized bed boiler. The fuel combinations were biofuel (wood+straw), coal+biofuel, coal+sewage sludge+biofuel, and sewage sludge+biofuel. Limestone or chlorine (PVC) was added in separate experiments. Effects of feed composition on bed ash and fly ash were examined. The composition of flue gas was measured, including on-line measurement of alkali chlorides. Deposits were collected on a probe simulating a superheater tube. It was found that the fuel combination, as well as addition of limestone, has little effect on the alkali fraction in bed ash, while chlorine decreases the alkali fraction in bed ash. Sewage sludge practically eliminates alkali chlorides in flue gas and deposits. Addition of enough limestone to coal and sludge for elimination of the SO{sub 2} emission does not change the effect of chlorine. Chlorine addition increases the alkali chloride in flue gas, but no chlorine was found in the deposits with sewage sludge as a cofuel. Cofiring of coal and biofuel lowers the alkali chloride concentration in the flue gas to about a third compared with that of pure biofuel. This is not affected by addition of lime or chlorine. It is concluded that aluminum compounds in coal and sludge are more important than sulfur to reduce the level of KCl in flue gas and deposits. 24 refs., 8 figs., 7 tabs.

  5. Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence

    SciTech Connect

    Hartinger, K.T.; Monkhouse, P.B.; Wolfrum, J.; Baumann, H.; Bonn, B.

    1994-12-31

    Gas-phase sodium concentrations were measured for the first time in situ in the flue gas of a fluidized-bed reactor by the excimer-laser-induced fragmentation fluorescence (ELIF) technique. This method involves using ArF-excimer laser light at 193 nm to simultaneously photodissociate the alkali compounds of interest and excite electronically the alkali atoms formed. The resulting fluorescence from Na (3{sup 2}P) atoms can he readily detected at 589 nm. Measured signals were converted to absolute concentrations using a calibration system that monitors alkali compounds under known conditions of temperature, pressure, and composition and rising the same optical setup as at the reactor. Several different coals were investigated under a specific set of reactor conditions at total pressures close to 1 bar. Sodium concentrations ranging from the sub-ppb region to 20 ppb were obtained, and a detection limit for sodium of 0.1 ppb under the present conditions was estimated. Over the course of the reactor program, contrasting concentration histories were observed for the two lignites and the hard coal investigated. In particular, significantly higher sodium concentrations were found for the hard coal, consistent with both the higher chlorine and sodium contents determined in the corresponding coal analysis.

  6. Cold test with a benchtop set-up for fluidized bed reactor using quartz sand to simulate gasification of coal cokes by concentrated solar radiation

    NASA Astrophysics Data System (ADS)

    Gokon, Nobuyuki; Tanabe, Tomoaki; Shimizu, Tadaaki; Kodama, Tatsuya

    2016-05-01

    The impacts of internal circulation of a mixture of coal-coke particles and quartz sand on the fluidization state in a fluidized bed reactor are investigated by a cold test with a benchtop set-up in order to design 10-30 kWth scale prototype windowed fluidized-bed reactor. Firstly, a basic relationship between pressure loss of inlet gas and gas velocity was experimentally examined using quartz sand with different particle sizes by a small-scale quartz tube with a distributor at ambient pressure and temperature. Based on the results, an appropriate particle range of quartz sand and layer height/layer diameter ratio (L/D ratio) was determined for a design of the fluidized bed reactor. Secondly, a windowed reactor mock-up was designed and fabricated for solar coke gasification using quartz sand as a bed material. The pressure loss between the inlet and outlet gases was examined, and descending cokes and sand particles on the sidewall of the reactor was observed in the reactor mock-up. The moving velocity and distance of descending particles/sands from the top to bottom of fluidized bed were measured by the visual observation of the colored tracer particles on outside wall of the reactor.

  7. Treatment of chromic tannery wastes using coal ashes from fluidized bed combustion of coal

    SciTech Connect

    Bulewicz, E.M.; Kozak, A.; Kowalski, Z.

    1997-10-01

    A new method of treatment for chromic tannery wastes containing chrome and large amounts organic substances has been investigated. It has been found that the addition of certain types of coal ash from fluid bed combustion technologies, at a suitable temperature and pH, results in effective removal of Cr(III) compounds present in the wastes. The wastes could then be subjected to further processing in conventional biological treatment units. The method is very simple, cheap, and effective and could be used for chromic tannery wastes of different compositions.

  8. Bed hydrodynamics and heat transfer to tubes in the freeboard region of a pressurized fluidized-bed coal combustor

    SciTech Connect

    Sellakumar, K.M.

    1988-01-01

    Various modes of Pressurized Fluidized Bed Combustor part-load operation are analyzed. Bed change is considered to be the most effective of these methods. The need to understand the variation in heat absorption by exposed in-bed tubes immediately above the reducing or increasing bed height has resulted in the pursuit for a clearer understanding of the particle concentration profile and heat transfer mechanisms to the referred tubes. Bubble characteristics in a PFBC with internals are studied in depth. A model for gas flow through dense and bubble phases is developed. Model results are compared with the limited experimental results available in literature. For both atmospheric and pressurized fluidized bed combustors, the deviation from the two phase theory is highlighted; and this simple model approach has evolved a procedure to quantify gas flows in different streams which was thus far available only qualitatively. The dense phase velocity is found to be much more than the minimum fluidization velocity. A theoretical model for particle efflux from the bed top surface has been evolved. An empirical model has also been developed for elutriant flux above the Transport Disengagement Height, the concentration of fines in the efflux material, superficial velocity in the freeboard, and mean particle terminal velocity have appeared to be the major factors influencing the carry over. The model developed using the data form a smaller rectangular rest rig was tested satisfactorily with the limited data from a larger as well as a similar size circular unit. If the particulate loading profile above the bed surface is known, then the heat transfer to the heat exchanger surfaces may be obtained from the available correlations.

  9. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst

    2015-05-01

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  10. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    SciTech Connect

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  11. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  12. Fuel-Nitrogen Evolution During Fluidized Bed Oxy-Coal Combustion

    NASA Astrophysics Data System (ADS)

    Sanchez, Astrid; Mondragon, Fanor; Eddings, Eric G.

    FTIR, thermo-gravimetric analysis techniques and molecular modelling were employed to study the effect of CO2 on fuel-nitrogen evolution under oxy-combustion conditions. The main objective is to compare NOx emissions at several molar fractions of O2 using Ar or CO2 as balance gas in a fluidized bed reactor. A char with about 16% N content was prepared by pyrolysis of polyacrylonitrile. This sample facilitated NOx evolution experiments due to the abundance of nitrogen complexes, and aided the identification and quantification of several N species by means ofFTIR. Results indicate that the presence of CO2 enhances NO2 formation. A complementary study was carried out by molecular modelling of the experimental reactions using the Gaussian 03 package. Different heterogeneous and homogeneous interactions between CO2 and char N-species were simulated. The results thus obtained show that the presence of CO2 during combustion can facilitate NCO formation which is a very reactive intermediate species that can be readily oxidized in the gaseous phase.

  13. Long-term testing of the zinc titanate for desulfurization of hot coal gas in a fluidized-bed reactor

    SciTech Connect

    Jain, S.C.; Gupta, R.; Gangwal, S.K.

    1993-12-31

    Research Triangle Institute (RTI) under contract to the US Department of Energy (DOE), Morgantown energy Technology Center has recently completed a long-term test consisting of 100 sulfidation-regeneration cycles on a zinc titanate material intended for use as a high-temperature, regenerable sorbent to desulfurize coal-derived gas. The primary motivation for this development is to generate a more economical, environmentally superior, and reliable process to purify the product gas of coal gasifiers for use in gas turbines and fuel cells. This zinc titanate formulation (designated as ZT-4 and containing Zn-to-Ti in a molar ratio of 1.5) exhibited the best overall performance in terms of chemical reactivity, sulfur capacity, regenerability, structural properties and, most importantly, the attrition resistance based on multicycle testing of a number of sorbent formulations in a bench scale fluidized-bed reactor. The conditions in the test were -- desulfurization temperature: 750C (1382F); pressure: 1.52 MPa (220 psia); coal gas: simulated Texaco entrained-bed oxygen-blown gasifier gas containing 12,000 ppmv of H{sub 2}S; superficial gas velocity: 15 cm/s (0.49 ft/s). The ZT-4 sorbent used in this test was prepared using a granulation technique and 500 g of the sorbent in the 100 to 300 microns particle diameter range were used in a 5.1-cm (2-inch) i.d. stainless steel reactor.

  14. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  15. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits

    2001-01-18

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, work focused on performing the design of the conceptual fluidized bed system and determining the system economics.

  16. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed.

    PubMed

    Toraman, Oner Yusuf; Topal, Hüseyin; Bayat, Oktay; Atimtay, Aysel T

    2004-01-01

    In this study, a circulating fluidized bed (CFB) of 125 mm diameter and 1800mm height was used to find the combustion characteristics of sewage sludge (SS) produced in Turkey. Sludge + olive cake, and sludge + lignite coal mixtures were burned separately. Various sludge-to-lignite coal and sludge-to-olive cake ratios (5/95, 10/90, 15/85, 20/80) were tried. On-line concentrations of major components (O2, SO2, CO2, CO, NOx, CmHn) were measured in the flue gas, as well as temperature and pressure distributions along the bed. Combustion efficiencies of sludge + olive cake and sludge + lignite coal mixtures were calculated, and the optimum conditions for operating parameters were discussed. The results have shown that the combustion mainly takes place in the upper regions of the main column where the temperature reaches 900 degrees C. SS + Coal burn in the CFB with an efficiency of 95.14% to 96.18%, which is considered to be quite good. When burning sludge mixed with olive cake, appreciable amounts of CO and unburned hydrocarbons are formed and the combustion efficiency drops to 92.93%. CO and CmHn emissions are lower when lignite coal is mixed with various amounts of SS than the emissions when the coal is burned alone. As the %SS is increased in the fuel mixture, the SO2 emission decreases. NOx emissions are slightly higher. When burning sludge mixed with olive cake, SO2 and NOx emissions are slightly higher. CO and CmHn emissions decrease sharply when SS is mixed with 5%wt. olive cake. With increasing sludge ratio these emissions increase due to the unburned hydrocarbons. As a result of this study, it is believed that SS can be burned effectively in a CFBC together with other fuels, especially with olive cake (OC). OC will be a good additive fuel for the combustion of lower quality fuels. PMID:15137713

  17. The importance of heterogeneous decomposition reactions for the emission levels of NO and N{sub 2}O during fluidized bed combustion of coal

    SciTech Connect

    Boavida, D.; Lobo, L.S.; Gulyurtlu, I.; Cabrita, I.

    1996-12-31

    In the present work, the effects of temperature and type of char on the heterogeneous reduction of both NO and N{sub 2}O on char surfaces were investigated using the TGA technique. The kinetic parameters for the decomposition of both NO and N{sub 2}O on the char surfaces was obtained and correlated with the previous results from the combustion of coals and of the same chars in a laboratorial fluidized bed combustor.

  18. A dynamic simulation model for power plants with atmospheric and pressurized circulating fluidized bed combustion -- Interactions of plant components and design studies

    SciTech Connect

    Glasmacher-Remberg, C.; Fett, F.N.

    1999-07-01

    Power plants with atmospheric or pressurized circulating fluidized bed combustion are complex technical systems. The operation characteristics of these power plants depend on the behavior of the single components and their interactions. The theoretical understanding of power plant processes of this kind as well as the design, the reliability and the practical operation can be enhanced by the application of mathematical models for the complete process. A dynamic simulation model for power plants with atmospheric circulating fluidized bed combustion (ACFBC) and pressurized circulating fluidized bed combustion (PCFBC) consisting of comprehensive submodels for the subsystems gas turbine, circulating fluidized bed combustor and water/steam cycle is presented. Apart from the investigation of the complete power plant, the simulation program enables the analysis of the three mentioned subsystems separately. Each subsystem is described by a set of unsteady-state differential and algebraic equations solved by an implicit Euler-method using a modified Newton-Raphson method. With the aid of the dynamic simulation program for a selected power plant, the effect of changes in plant operation will be examined for full and part load as well as the transient response of the system due to the carried out operation. Emphasis is laid on the characterization of the interactions between the subsystems. The dynamic simulation program can be used for design studies and it is investigated how changes of the plant design influence the operation characteristics of the example plant.

  19. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  20. EXPERIMENTAL/ENGINEERING SUPPORT FOR ENVIRONMENTAL PROTECTION AGENCIES FLUIDIZED-BED COMBUSTION (FBC) PROGRAM: FINAL REPORT. VOLUME I. SULFUR OXIDE CONTROL

    EPA Science Inventory

    The report gives results of an investigation of the desulfurization performance and attrition behavior of limestone and dolomite sorbents for atmospheric and pressurized fluidized-bed combustion (FBC) systems used with coal. It gives results of experimental thermogravimetric anal...

  1. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  2. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers. PMID:19854038

  3. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  4. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    PubMed

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming. PMID:19249155

  5. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  6. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively. PMID:21232946

  7. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    SciTech Connect

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  8. APPLICATION OF ADVANCED TECHNOLOGY FOR NOX CONTROL: ALTERNATE FUELS AND FLUIDIZED-BED COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the effect of alternate fuels and fluidized coal combustion in controlling the emission of nitrogen oxides (NOx). The current trend in energy use in the U.S. is toward greater use of coal and coal derived fuels, and on ensuring that these fuels are produced an...

  9. Analysis for radiative heat transfer in a circulating fluidized bed

    SciTech Connect

    Steward, F.R.; Couturier, M.F.; Poolpol, S.

    1995-12-31

    The radiative heat transfer from the particles within a circulating fluidized bed has been determined for a number of different assumptions. Based on temperature profiles measured in an operating circulating fluidized bed burning coal, a procedure for predicting the radiative transfer from the solid particles to a cold wall is recommended. The radiative transfer from the solid particles to a cold wall makes up approximately 50% of the total heat transfer to the wall in a circulating fluidized bed combustor.

  10. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  11. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  12. The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor

    SciTech Connect

    Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

  13. A low emission technology -- low cost coal water mixture fired fluidized bed combustion

    SciTech Connect

    Jianhua Yan; Xuguang Jiang; Yong Chi

    1995-12-31

    In this paper, low cost coal water mixture (CWM) FBC technology is described. Low cost CWM may be coal washery sludge or the mixture of water and coal crashed easily. This technology is featured by agglomerate combustion of low cost MM. Experimental results in 0.5MW FBC test rig are reported. lie effects of bed temperate excess air, staged combustion on combustion and emission performance has been studied. The comparison combustion tests by using dry coal and CWM we made ha 0.5MW FBC test rig. Also coal washery sludge of different origins are also tested in the test rig. Based on the test rig comments a demonstration AFBC boiler with capacity of 35 T/H steam for utility application (6 MW) is designed. The design features will be presented in this paper Both the operation experience of test rig and demonstration unit show the developed low cost CWM FBC technology is of high combustion efficiency and low emission. This technology is being commercialized and applied in China in top priority by Chinese government.

  14. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor.

    PubMed

    Dasan, Beyhan Gunaydin; Mutlu, Mehmet; Boyaci, Ismail Hakki

    2016-01-01

    In this study, an atmospheric pressure fluidized bed plasma (APFBP) system was designed and its decontamination effect on aflatoxigenic fungi (Aspergillus flavus and Aspergillus parasiticus) on the surface of hazelnuts was investigated. Hazelnuts were artificially contaminated with A. flavus and A. parasiticus and then were treated with dry air plasma for up to 5min in the APFBP system at various plasma parameters. Significant reductions of 4.50 log (cfu/g) in A. flavus and 4.19 log (cfu/g) in A. parasiticus were achieved after 5min treatments at 100% V - 25kHz (655W) by using dry air as the plasma forming gas. The decontamination effect of APFBP on A. flavus and A. parasiticus spores inoculated on hazelnuts was increased with the applied reference voltage and the frequency. No change or slight reductions were observed in A. flavus and A. parasiticus load during the storage of plasma treated hazelnuts whereas on the control samples fungi continued to grow under storage conditions (30days at 25°C). Temperature change on hazelnut surfaces in the range between 35 and 90°C was monitored with a thermal camera, and it was demonstrated that the temperature increase taking place during plasma treatment did not have a lethal effect on A. flavus and A. parasiticus spores. The damage caused by APFBP treatment on Aspergillus spp. spores was also observed by scanning electron microscopy. PMID:26398284

  15. Evaluating R and D options under uncertainty. Volume 2. Atmospheric fluidized-bed combustion commercialization strategies. Final report

    SciTech Connect

    Borison, A.B.; Judd, B.R.; Morris, P.A.; Walters, E.C.

    1981-08-01

    This study developed and demonstrated a quantitative framework for analyzing commercialization decisions for emerging electrical power generation technologies. The framework addresses the general question of when to freeze a design for commercialization. The framework was developed to help evaluate the benefits of continuing the development of two different designs for atmospheric fluidized-bed combustion (AFBC) boilers. EPRI staff participated actively in specifying the scope of the analysis and in providing technical information on the two designs. The framework was demonstrated using this information, supplemented with probabilistic judgments by EPRI staff about possible outcomes from the pilot and demonstration stages of development. Based on the technical data and judgments supplied by EPRI staff, the analysis shows a net benefit for proceeding with the development of two designs. Extensive sensitivity analysis shows this result holds over a broad range of input data. The insight behind this result is the value of using a second design as a hedge against an unfavorable outcome with the first design. The degree to which other power generation technologies could serve as a hedge for a single AFBC design was not considered explicitly in the analysis.

  16. Impact of the addition of chicken litter on mercury speciation and emissions from coal combustion in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Songgeng Li; Shuang Deng; Andy Wu; Wei-ping Pan

    2008-07-15

    Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6 figs., 5 tabs.

  17. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    PubMed

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be

  18. Preliminary comparison of theory and experiment for a conical, pressurized-fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1979-01-01

    A published model was used for a comparison of theory with an actual combustor burning caking bituminous coal and using limestone to reduce sulfur dioxide emission. Theoretical bed pressure drop was in good agreement with experiment. The burnable carbon elutriated was not in agreement with experiment, at least partly because the exhaust port was apparently below the transport disengaging height. The observed nitrogen oxides emission rate was about half the theoretical value. There was order-or-magnitude agreement of sulfur dioxide emission rates.

  19. UTILITY BOILER DESIGN/COST COMPARISON: FLUIDIZED-BED COMBUSTION VS. FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a conceptual design, performance, and cost comparison of utility scale (750-925 MWe) coal-burning power plants employing three alternative technologies: conventional boiler with a stack gas scrubber (CWS), atmospheric-pressure fluidized-bed combustion ...

  20. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1989 Annual report, [January 1989--December 1989

    SciTech Connect

    Not Available

    1992-02-01

    The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association`s Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

  1. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  2. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  3. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  4. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  5. Pulsed atmospheric fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-05-01

    As reported in previous quarterly reports, the fabrication of the fluid bed vessel, hot cyclone, coal handling system components, and coal/limestone feed systems is underway. Procurement of long lead time items was initiated in October 1992, and.deliveries are being made on schedule. In this quarterly period the following design tasks were accomplished. Mass and energy balance review and optimization; system operation calibrations; piping pressure drop design calculations; and pipe sizing and layout drawings.

  6. Exploratory and basic fluidized-bed combustion studies. Quarterly report, January-March 1980

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutants emissions, and other aspects of fluidized-bed combustion. This report presents information on: (1) the development of a limestone utilization predictive methodology, (2) studies of particle breakup and elutriation, (3) basic studies on limestone sulfation enhancement by hydration, (4) studies of the kinetics of the hydration process, and (5) an investigation of various hydration process concepts.

  7. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  8. Modeling of NOx emissions from fluidized bed combustion of high volatile lignites

    SciTech Connect

    Afacan, O.; Gogebakan, Y.; Selcuk, N.

    2007-01-15

    A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized bed combustors is extended to incorporate NOx formation and reduction reactions and applied to the simulation of Middle East Technical University (METU) 0.3 MW Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) burning lignites with high Volatile Matter/Fixed Carbon (VM/FC) ratios in their own ashes. Favorable comparisons are obtained between the predicted and measured temperatures and concentrations of gaseous species along the combustor. Results show that determination of partitioning of coal nitrogen into char-N and volatile-N, char combustion rate, and amount of volatile nitrogen released along the combustor are found to be the most important parameters that affect NO formation and reduction in bubbling fluidized bed combustors.

  9. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  10. Burning waste with FBC. [Fluidized Bed Combustion

    SciTech Connect

    Salaff, S.

    1991-11-01

    This article examines fluidized bed combustion as a method of choice for disposing for waste economically and within the bounds of rigid environmental standards. The topics discussed in the article include technology scaleup, wood and fossil wastes, municipal and hospital wastes, fuel flexibility, and a sidebar on the fluidized bed combustion technology. The waste fuels of major interest are various low grade liquid and solid residues from the coal, oil, forest products and automotive industries, as well as post-harvest biomass and municipal refuse.

  11. Particle withdrawal from fluidized bed systems

    DOEpatents

    Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  12. Pulsed atmospheric fluidized bed combustion. Technical progress report, April--June 1995

    SciTech Connect

    1995-07-31

    Design activities for this report period included: (1) Mechanical. Stress analysis calculations were performed on the steam/water pressure piping. Pipe support design and drawings were completed by Duke Fluor Daniel. The fluid bed distributor bubble cap design was revisited and changes made for ease of maintenance. (2) Electrical and Instrumentation. Control and instrumentation scheme proposed earlier, was based on independent single loop controllers. After careful review, it is decided to go for state of art distributed control system (DCS) which uses programmable logic controllers (PLC). In addition, coal/limestone pickup hopper fabrication was completed during this period and shipped to the site. The coal/limestone floating caps have been made at MTCI and ready for shipping. All major equipment installation was completed. The pulse combustor steam/water jacket and air plenum were installed. Construction of control room building was just completed.

  13. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Curtis Jawdy

    2000-10-09

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  14. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  15. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  16. Pulsed atmospheric fluidized bed combustion. Quarterly report, July 1--September 30, 1995

    SciTech Connect

    1995-12-31

    The report summarizes progress in design, fabrication, and construction activities. Progress on the fluid bed combustor, piping, fuel feeding system, ash system, and the control and instrumentation design is described. The report lists the construction activities completed during this quarter which included bed tubes installation, fan inlet flow measuring duct, bag filter, silencers for roots blowers, electric power cabling connections, light distributor panel and transformer installation inside the control panel, steam/water recirculation piping, fine coal receiving vent filter, and partial painting of ash silo and boiler.

  17. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-10-14

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

  18. Scaling of pressurized fluidized beds

    SciTech Connect

    Guralnik, S.; Glicksman, L.R.

    1994-10-01

    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  19. Exploratory and basic fluidized-bed combustion studies. Quarterly report, April-June 1980. [Limestone and dolomite; USA

    SciTech Connect

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports the development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particles and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutant emissions, and other aspects of fluidized-bed coal combustion. This report presents information on: (1) the development of a sorbent utilization prediction methodology, (2) studies of factors which affect limestone breakup and elutriation, (3) basic studies of limestone sulfation under combustion conditions, and (4) studies of the kinetics of the hydration of spent limestone.

  20. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  1. Heat transfer in circulating fluidized bed combustor

    SciTech Connect

    Bucak, O.; Dogan, O.M.; Uysal, B.Z.

    1999-07-01

    The importance of fluidized bed combustion in utilizing the energy of especially low quality coals is widely accepted. Among various fluidized bed combustion technologies, circulating fluidized beds are preferred as a result of the efforts to get higher combustion efficiencies. The aim of the present research was to investigate the applicability of this technology to Turkish lignites. To achieve this object a 6.5 m tall pilot circulating fluidized bed combustor with 155 mm diameter and all the auxiliary equipment were designed, constructed and tested using Seyitomer lignite of 0.9--2.38 mm in size. Heat transfer from the bed to the water cooling jackets was examined to recover the combustion energy. The inside heat transfer coefficient was determined to be around 121 W/m{sup 2} K for the suspension density of 20--55 kg/m{sup 3}. The agreement of the experimental findings with theoretical estimations was also checked. Furthermore, the thermal efficiency of the system for the heat recovered was found to be 63%.

  2. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    SciTech Connect

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  3. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume 1. Model evolution and development

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    The Energy Laboratory of the Massachusetts Institute of Technology (M.I.T.), under Department of Energy (DOE) sponsorship, has been engaged in the development of a comprehensive mechanistic model of Fluidized Bed Combustors (FBC). The primary aims of this modeling effort are the generation and to the extent possible, validation of an analytical framework for the design and scale-up of fluidized bed combustors. In parallel with this modeling effort, M.I.T. also embarked upon the development of an FBC-Data Base Management System (FBC-DBMS) aimed at facilitating the coordination, interpretation and utilization of the experimental data that are or will become available from diverse sources, as well as in the identification of areas of large uncertainty or having a paucity of experimental results. The synergistic operation of the FBC-Model and FBC-Data Base promises to offer a powerful tool for the design and optimization of FBC's and represents the ultimate goal of the M.I.T. effort. The modeling effort was initially focused upon evaluation and application of state-of-the-art models. The initial system model was divided into five basic components: fluid dynamics, combustion, sulfur capture, heat transfer and emissions. Due to the technical complexity of modeling FBC operation and the initial primitive nature of models for these components, it was deemed necessary to be able to incorporate evolutionary improvements in understanding and correlating FBC phenomena: the M.I.T. system model is, therefore, modular in nature, i.e., each sub-model can be replaced by an updated or equivalent sub-model without necessitating reprogramming of the entire system model.

  4. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  5. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  6. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  7. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  8. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  9. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  10. Engineering support services for the DOE/GRI coal-gasification research program. Technical and economic assessment of the Westinghouse fluidized-bed coal gasification process

    SciTech Connect

    Bostwick, L.E.; Hubbard, D.A.; Laramore, R.W.; Ethridge, T.R.

    1981-04-01

    Kellogg was requested by DOE/GRI to perform a technical and economic assessment of the Westinghouse fluidized bed coal gasification process as applied to production of SNG equivalent to 250 billion BTU/day from Pittsburgh No. 8 coal. Based on operating experiences in the PDU, where most of the key variables have been demonstrated during 5+ years of testing, Westinghouse provided process data for the gasifier area. Kellogg selected the overall processing sequence and established design bases for the balance of the plant. This work was subsequent to a previous (1979) screening evaluation of Westinghouse by Kellogg: comparison of the two designs reveals the following: The 1980 gasifier design basis, while more detailed, is almost identical to that of 1979. The gas treatment and sulfur recovery schemes were significantly changed: Combined shift/methanation was substituted for stand-alone reaction units; independent Selexol units for removal of H/sub 2/S and CO/sub 2/ replaced a non-selective Benfield unit; and a Claus-SCOT combination replaced Stretford units and significantly improved the flue gas desulfurization. Key results of the current efforts are compared with those of the screening evaluation. The reductions in efficiencies in the new calculations are attributed to a more realistic evaluation of plant energy requirements and to lack of optimization of individual plant section designs. The economic data indicate that a noteworthy reduction in gas cost was accomplished by a reduction in the capital cost of the plant, such that Kellogg concludes, as previously for the screening evaluation, that the Westinghouse process appears to be superior to existing processes (i.e., Lurgi) and at least competitive with other processes evaluated under the DOE/GRI joint program.

  11. Fluidized-bed-fired industrial boilers

    SciTech Connect

    Leon, A.M.; McCoy, D.E.

    1981-01-01

    E. Keeler Company and Dorr-Oliver, Inc. have joined to design, market and manufacture atmospheric fluidized-bed-fired boilers. The first contract, called Shamokin, was a 23,400 lb/hr unit fired with anthracite culm having a heating value of 4000 Btu/lb and 67% ash. The Department of Energy sponsored this plant as a demonstration project. Boiler erection is nearly complete and start-up is scheduled for mid-1981. In conjunction with the Shamokin project, a line of fluidized-bed-fired boilers to 250,000 lb/hr has been developed for conventional solid fuels. The development of fluidized-bed-fired, industrial boilers is in its very early stages. At this point, it is not possible for any manufacturer to claim extensive operating experience with any particular design under the varied applications normal to industrial watertube boilers. Many different designs and approaches will develop over the next few years and until there has been some operating experience, it is not possible to evaluate just what share of the future industrial boiler market will utilize fluidized-bed firing.

  12. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  13. Predictive models for circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1989-11-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. The purpose of these models is to help American industry, such as Combustion Engineering, design and scale-up CFB combustors that are capable of burning US Eastern high sulfur coals with low SO{sub x} and NO{sub x} emissions. In this report, presented as a technical paper, solids distributions and velocities were computed for a PYROFLOW circulating fluidized bed system. To illustrate the capability of the computer code an example of coal-pyrite separation is included, which was done earlier for a State of Illinois project. 24 refs., 20 figs., 2 tabs.

  14. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time. PMID:12935758

  15. Energy and environmental research emphasizing low-rank coal -- Task 3.8, Pressurized fluidized-bed combustion

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.

    1995-03-01

    The goal of the PFBC activity is to generate fundamental process information that will further the development of an economical and environmentally acceptable second-generation PFBC. The immediate objectives focus on generic issues, including the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals in PFBC. A great deal of PFBC performance relates to the chemistry of the bed and the contact between gas and solids that occurs during combustion. These factors can be studied in a suitably designed bench-scale reactor. The present studies are focusing on the emission control strategies applied in the bed, rather than in hot-gas cleaning. Emission components include alkali and heavy metals in addition to SO{sub 2}, NO{sub x}, N{sub 2}O, and CO. The report presents: a description of the pressurized fluidized-bed reactor (PFBR); a description of the alkali sampling probe; shakedown testing of the bench-scale PFBR; results from alkali sampling; results from sulfur sorbent performance tests; and results from refuse-derived fuel and lignite combustion tests.

  16. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash.

    PubMed

    Liu, Wenshi; Hou, Haobo; Zhang, Chuhao; Zhang, Dajie

    2009-05-01

    The objective of this study was to assess the feasibility of solidification of municipal solid waste incinerator (MSWI) fly ash with circulation fluidized bed combustion (CFBC) fly ash, which is unsuitable as a cement replacement due to its high amounts of carbon, lime and anhydrite. The solidification process was conducted on samples prepared from MSWI fly ash, binders (cement clinkers and CFBC fly ash were mixed at two replacement ratios) and water (water/solid weight ratio = 0.4), among which the MSWI fly ash replaced each binder at the ratio of 0, 20, 40, 60 and 80% by dry weight. The samples were subjected to compressive strength tests and Toxicity Characteristic Leaching Procedure and the results showed that all solidified MSWI fly ash can meet the landfill standard imposed by US EPA after 28 days of curing. Micro-analysis (X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrophotometry) revealed that the main hydrate products were C-S-H gel and ettringite, which have a positive effect on heavy metals retention. Therefore, this method provides a possibility to achieve a cheap and effective solution for MSWI fly ash management and use for CFBC fly ash. PMID:19423575

  17. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Third quarter progress report FY-1984, April 1-June 30, 1984

    SciTech Connect

    Not Available

    1986-01-31

    The overall objective of the KRW coal gasification program is to demonstrate the viability of the KRW pressurized, fluidized-bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) modifications to the PDU; (3) cold flow scaleup facility; (4) advanced process design and analysis; and (5) laboratory support studies. For laboratory support studies, coal and/or char fines from Wyoming Sub C, Western Kentucky, Republic of South Africa (RSA), and Pittsburgh seam coals processed in the PDU were characterized for reactivity on a thermogravimetric analyzer. The average relative reactivity of the fines (-120 x +140 mesh) was found to be nearly the same as that for larger size distribution (18 x 60 mesh, -1.0 + 0.25 mm). This is consistent with the observations of studies reported in literature on carbon gasification reactions.

  18. Emissions During Co-Firing of RDF-5 with Coal in a 22 t/h Steam Bubbling Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Wan, Hou-Peng; Chen, Jia-Yuan; Juch, Ching-I.; Chang, Ying-Hsi; Lee, Hom-Ti

    The co-firing of biomass and fossil fuel in the same power plant is one of the most important issues when promoting the utilization of renewable energy in the world. Recently, the co-firing of coal together with biomass fuel, such as "densified refuse derived fuel" (d-RDF or RDF-5) or RPF (refuse paper & plastic fuel) from waste, has been considered as an environmentally sound and economical approach to both waste remediation and energy production in the world. Because of itscomplex characteristics when compared to fossil fuel, potential problems, such as combustion system stability, the corrosion of heat transfer tubes, the qualities of the ash, and the emissionof pollutants, are major concerns when co-firing the biomass fuel with fossil fuel in a traditional boiler. In this study, co-firing of coal with RDF-5 was conducted in a 22t/h bubbling fluidized bed (BFB) steam boiler to investigate the feasibility of utilizing RDF-5 as a sustainable fuels in a commercial coal-fired steam BFB boiler. The properties of the fly ash, bottom ash, and the emission of pollutants are analyzed and discussed in this study.

  19. Evaluation of PCDD/Fs and metals emission from a circulating fluidized bed incinerator co-combusting sewage sludge with coal.

    PubMed

    Zhang, Gang; Hai, Jing; Cheng, Jiang; Cai, Zhiqi; Ren, Mingzhong; Zhang, Sukun; Zhang, Jieru

    2013-01-01

    The emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals were evaluated during co-combustion of sewage sludge with coal from a circulating fluidized bed incinerator. The stack gas, slag and fly ash samples were sampled and analyzed. The gas-cleaning system consisted of electrostatic precipitators and a semi-dry scrubber. Results showed that the stack gas and fly ash exhibited mean dioxin levels of 9.4 pg I-TEQ/Nm3 and 11.65 pg I-TEQ/g, respectively, and showed great similarities in congener profiles. By contrast, the slag presented a mean dioxin level of 0.15 pg I-TEQ/g and a remarkable difference in congener profiles compared with those of the stack gas and fly ash. Co-combusting sewage sludge with coal was able to reduce PCDD/Fs emissions significantly in comparison with sewage sludge mono-combustion. The leaching levels of Hg, Pb, Cd, Ni, Cr, Cu, and As in the fly ash and slag were much lower than the limits of the environmental protection standard in China. These suggest that the co-combustion of sewage sludge and coal is an advisable treatment method from an environmental perspective. PMID:23586319

  20. Northern States Power Company (NSP) Black Dog generating plant - Unit 2 emission reduction, capacity increase and life extension through atmospheric fluidized bed combustion (AFBC) retrofit

    SciTech Connect

    Jenness, B.L.; Rosendahl, S.M.; Gamble, R.L.

    1985-08-01

    The authors report on progress to date of the atmospheric fluidized-bed combustion (AFBC) boiler retrofit at the Black Dog Unit 2 plant of the Northern States Power Company. Construction began in September 1984 after the completion of technical and economic feasibility studies, and initial operation is scheduled for the second quarter of 1986. The project features the largest AFBC boiler to date, a 40 MW capacity regain/upgrade, and 25-year extension of unit life, low leakage regenerative air preheater design, electrostatic precipitator performance improvement, alternate fuel co-firing capacity, and reduced emission on a per MW basis. The authors describe the management and engineering developments associated with the project. 12 figures, 4 tables.

  1. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  2. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  3. Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry

    SciTech Connect

    Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

    1981-01-01

    The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

  4. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume IV. FBC-Model-II manual

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the fourth of the seven volume series of our Phase II Final Report. The purpose of this manual is to describe how to access and use M.I.T.'s Fluidized Bed Combustor (FBC) System Program. Presently, the FBC program is stored in a Honeywell Computer System and can be accessed using the Multics interactive system. The intention in writing this manual is to answer the questions that may arise regarding the mechanics of operating the system program, as well as warn the user of possible pitfalls and mistakes that could be made. No attempt is made here to describe the internals of the systems program. The manual describes the procedures an individual would follow to become an active user of the system program. It then explains the various options available for reaching the Multics interactive system on Honeywell 6180 computer on which the program runs. For users outside the Metropolitan Boston area, a public network for data communications is described which is relatively inexpensive. As the system program is approached through Multics using a special command facility TPSA, a separate introduction is provided for Multics TPSA. This facility allows commands appropriate for testing the program and carrying out parametric studies to be executed in a convenient way. Multics TPSA was formulated to meet the needs of the FBC project in particular. Finally, some sample sessions are presented which illustrate the login and logout procedures, the command language, and the data manipulation features of the FBC program. The use of commands helpful in debugging the program is also illustrated.

  5. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume II. Detailed description of the model

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the second of a seven volume series of our Phase II Final Report. This volume deals with detailed descriptions of the structure of each program member (subroutines and functions), the interrelation between the members of a submodel, and the interrelation between the various submodels as such. The systems model for fluidized bed combustors (FBC-II) consists of a systematic combination of the following interrelated areas: fluid mechanics and bubble growth, char combustion and associated kinetics for particle burnout, sulfur capture, NO/sub x/ formation and reduction, freeboard reactions, and heat transfer. Program outline is shown in Figure 1.1. Input variables (supplied by the user are inspected to check that they lie inside the allowed range of values and are input to the various routines as needed. The necessary physical and fluid mechanical properties are calculated and utilized in estimating char combustion and sulfur capture in the bed and the freeboard. NO/sub x/ and CO emissions are estimated by taking into account all relevant chemical reactions. A material and energy balance is made over the bed. Figure 1.1 shows a block diagram of the systems program. In this diagram, the overall structure of the FBC program is illustrated in terms of the various submodels that together constitute the systems program. A more detailed outline of the systems program is shown in Figure 1.2. In this figure, all important subroutine members of the FBC program are shown, and their linkage to each other, as well as to the main program is indicated. A description of the exact sequence in which these various routines are called at time of program execution is provided in Chapter 8 under the executive routine MAIN.

  6. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass.

    PubMed

    Xie, Jian-jun; Yang, Xue-min; Zhang, Lei; Ding, Tong-li; Song, Wen-li; Lin, Wei-gang

    2007-01-01

    This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N20 were proposed. PMID:17913163

  7. Advanced modeling of nitrogen oxide emissions in circulating fluidized bed combustors: Parametric study of coal combustion and nitrogen compound chemistries

    SciTech Connect

    Kilpinen, P.; Kallio, S.; Hupa, M.

    1999-07-01

    This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region. The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is

  8. Application of noncatalytic gas-solid reactions for a single pellet of changing size to the modeling of fluidized-bed combustion of coal char containing sulfur

    SciTech Connect

    Rehmat, A.; Saxena, S.C.; Land, R.H.

    1980-09-01

    A mechanistic model is developed for coal char combustion, with sulfur retention by limestone or dolomite sorbent, in a gas fluidized bed employing noncatalytic single pellet gas-solid reactions. The shrinking core model is employed to describe the kinetics of chemical reactions taking place on a single pellet; changes in pellet size as the reaction proceeds are considered. The solids are assumed to be in back-mix condition whereas the gas flow is regarded to be in plug flow. Most char combustion occurs near the gas distributor plate (at the bottom of the bed), where the bubbles are small and consequently the mass transfer rate is high. For such a case, the analysis is considerably simplified by ignoring the bubble phase since it plays an insignificant role in the overall rate of carbon conversion. Bubble-free operation is also encounterd in the turbulent regime, where the gas flow is quite high and classical bubbles do not exist. Formulation of the model includes setting up heat and mass balance equations pertaining to a single particle (1) exposed to a varying reactant concentration along the height of the bed and (2) whose size changes during reaction. These equations are then solved numerically to account for particles of all sizes in the bed in obtaining the overall carbon conversion efficiency and resultant sulfur retention. In particular, the influence on sorbent requirement of several fluid-bed variables such as oxygen concentration profile, particle size, reaction rate for sulfation reaction, and suflur adsorption efficiency are examined.

  9. Voidage and pressure profile characteristics of sand-iron ore-coal-FCC single-particle systems in the riser of a pilot plant circulating fluidized bed

    SciTech Connect

    Das, M.; Meikap, B.C.; Saha, R.K.

    2008-06-15

    Hydrodynamic behaviors of single system of particles were investigated in a circulating fluidized bed (CFB) unit. Particles belonging to Geldart groups A and B like sand of various sizes (90, 300, 417, 522, 599, and 622 mu m), FCC catalyst (120 mu m), iron ore (166 and 140 {mu} m), and coal (335 and 168 {mu} m) were used to study the hydrodynamic characteristics. Superficial air velocity used in the present study ranged between 2.01 and 4.681 m/s and corresponding mass fluxes were 12.5-50 kg/(m{sup 2} s). A CFB needs the creation of some special hydrodynamic conditions, namely a certain combination of superficial gas velocity, solids circulation rate, particle diameter, density of particle, etc. which can give rise to a state wherein the solid particles are subjected to an upward velocity greater than the terminal or free fall velocity of the majority of the individual particles. The hydrodynamics of the bed was investigated in depth and theoretical analysis is presented to support the findings. Based on gas-solid momentum balance in the riser, a distinction between apparent and real voidage has been made. The effects of acceleration and friction on the real voidage have been estimated. Results indicated a 0.995 voidage for higher superficial gas velocity of 4.681. m/s.

  10. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  11. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  12. Circulating fluidized bed gasification of low rank coal: Influence of O2/C molar ratio on gasification performance and sulphur transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Haixia; Zhang, Yukui; Zhu, Zhiping; Lu, Qinggang

    2016-08-01

    To promote the utilization efficiency of coal resources, and to assist with the control of sulphur during gasification and/or downstream processes, it is essential to gain basic knowledge of sulphur transformation associated with gasification performance. In this research we investigated the influence of O2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal, and the sulphur transformation mechanism was also discussed. Experiments were performed in a circulating fluidized bed gasifier with O2/C molar ratio ranging from 0.39 to 0.78 mol/mol. The results showed that increasing the O2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65% to 91.92%, and increase sulphur release ratio from 29.66% to 63.11%. The increase of O2/C molar ratio favors the formation of H2S, and also favors the retained sulphur transforming to more stable forms. Due to the reducing conditions of coal gasification, H2S is the main form of the released sulphur, which could be formed by decomposition of pyrite and by secondary reactions. Bottom char shows lower sulphur content than fly ash, and mainly exist as sulphates. X-ray photoelectron spectroscopy (XPS) measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char, and the change is more obvious for bottom char. During CFB gasification process, bigger char particles circulate in the system and have longer residence time for further reaction, which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.

  13. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect

    1982-10-21

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  14. Pressurized fluidized-bed combustion

    SciTech Connect

    Not Available

    1980-10-01

    The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

  15. Characterization of ashes from co-combustion of refuse-derived fuel with coal, wood and bark in a fluidized bed

    SciTech Connect

    Zevenhoven, R.; Skrifvars, B.J.; Hupa, M.

    1998-12-31

    The technical and environmental feasibility of co-combustion of a recovered fuel (RF) prepared from combustible waste fractions (separated at the source), together with coal, peat, wood or wood-waste in thermal power/electricity generation has been studied in several R and D projects within Finland. The current work focuses on eventual changes in ash characteristics during co-combustion of RF with coal, wood or bark, which could lead to bed agglomeration, slagging, fouling and even corrosion in the boiler. Ashes were produced in a 15 kW bubbling fluidized bed (BFB) combustion reactor, the fly ash captured by the cyclone was further analyzed by XRF. The sintering tendency behavior of these ashes was investigated using a test procedure developed at Aabo Akademi University. Earlier, a screening program involved ashes from RF (from a waste separation scheme in Finland) co-combustion with peat, wood and bark, in which ash pellets were thermally treated in air. This showed significant sintering below 600 C as well as above 800 C for RF/wood and RF/bark, but not for RF/peat. This seemed to correlate with alkali chloride and sulfate concentrations in the ashes. The current work addresses a Danish refuse-derived fuel (RDF), co-combusted with bark, coal, bark+coal, wood, and wood+coal (eight tests). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 C, significant changes in sintering are seen with pellets treated at 1,000 C. Ash from 100% RDF combustion does not sinter, 25% RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Furthermore, it appears that the presence of a 25% coal fraction (on energy basis) seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows that, in general, an increased level of

  16. Refractory experience in circulating fluidized bed combustors, Task 7

    SciTech Connect

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  17. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  18. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  19. Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect

    Bonk, D.L.; McDaniel, H.M.; DeLallo, M.R. Jr.; Zaharchuk, R.

    1995-04-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach is the atmospheric fluidized bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts.

  20. Distributor for multistage fluidized beds

    SciTech Connect

    Wormser, A.

    1992-06-16

    This patent describes a multibed fluidized bed system. It comprises a fluidized bed vessel having a casing surrounding a first distributor and a second distributor downstream from the first distributor; a first bed material placed on the first distributor and a second bed material placed on the second distributor; each of the bed materials having an angle of repose; and wherein the angle formed by the substantially straight elongated tubular passages and the upper surface is less than the angle of repose of the second bed material.

  1. Review of ash agglomeration in fluidized bed gasifiers

    SciTech Connect

    Matulevicius, E.S.; Golan, L.P.

    1984-07-01

    The purpose of this study is to review the data and mathematical models which describe the phenomena involved in the agglomeration of ash in fluidized bed coal gasifiers (FBG). Besides highlighting the data and theoretical models, this review lists areas where there is a lack of information regarding the actual mechanisms of agglomeration. Also, potential areas for further work are outlined. The work is directed at developing models of agglomeration which could be included in computer codes describing fluidized bed gasifier phenomena, e.g., FLAG and CHEMFLUB which have been developed for the US Department of Energy. 134 references, 24 figures, 13 tables.

  2. Technical advances and new opportunities for fluidized bed combustion

    SciTech Connect

    Alliston, M.G.; Kokko, A.; Martin, B.G.; Olofsson, J.

    1997-12-31

    This paper outlines opportunities for new circulating fluidized bed (CFB) boilers, technical considerations in selecting a fluidized bed boiler, and CFB boiler configuration types and sizes. New opportunities for CFBs include fuel opportunities from coke, mine mouth coals, and waste products, and boiler application opportunities in industrial cogeneration, repowering, and developing nations. Technical considerations discussed for boiler selection are fuel flexibility and environmental aspects. Three boiler configurations are briefly described: (1) water-cooled cyclone with water-cooled loopseal, (2) integral cylindrical cyclone and loopseal, and (3) Cylindrical multi-inlet cyclone. CFB scale-up is also briefly discussed. 3 refs., 3 figs.

  3. Fluidized-Bed Reactor System

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1985-01-01

    Gas pyrolysis in hot fluidized beds minimized by use of selectively filtered radiation and parabolic cavity. Reactor is parabolic cavity of two or more axes in which light emanating from one axis bounces off walls of cavity and passes through object axis to heat sample.

  4. Manual for applying fluidized-bed-combustion residue to agricultural lands. Research report

    SciTech Connect

    Stout, W.L.; Hern, J.L.; Korcak, R.F.; Carlson, C.W.

    1988-08-01

    Atmospheric fluidized-bed combustion (AFBC) is a process that reduces sulfur emissions from coal-fired electric-generating plants. The residue from the process is a mixture of alkaline oxides, calcium sulfate, and coal ash constituent. Since 1976, USDA/ARS has investigated the potential agriculture use of the residue. The investigations comprised an extensive series of laboratory, greenhouse, field plot, and animal-feeding experiments. The best and safest use of AFBC residue in agriculture was as a substitute for agricultural lime. The report contains guidelines for appling AFBC residue to agricultural lands.

  5. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  6. Review of fluidized bed combustion technology in the United States

    SciTech Connect

    Krishnan, R.P.; Daw, C.S.; Jones, J.E. Jr.

    1984-01-01

    The United States (US) initiated work in fluidized bed combustion (FBC) in the mid-1960s, with primary emphasis on industrial applications. With passage of the Clean Air Act in 1970, the environmental benefits of the technology soon attracted interest. This provided the impetus for expanded effort focused on the reduced NO/sub x/ emissions resulting from lower combustion temperature and SO/sub 2/ capture by means of chemical reaction with limestone or dolomite in the fluidized bed. The oil embargo in 1973 further stimulated interest in FBC technology. Several manufacturers presently offer atmospheric fluidized bed combustion (AFBC) and circulating fluidized bed combustion (CFBC) units for industrial application in the United States. However, FBC for electric power generation remains in the development and demonstration phase. The Tennessee Valley Authority (TVA) and Electric Power Research Institute (EPRI) are operating a 20-MW AFBC utility pilot plant and are proceeding with plans for a 160-MW(e) demonstration plant with other participants. Research has been under way on pressurized fluidized bed combustion (PFBC) at Grimethorpe in South Yorkshire, England, and within the United States at the Curtiss-Wright Pilot Plant, and at other smaller test facilities. An emerging turbocharged PFBC concept will likely stimulate more near-term interest in PFBC technology for both industrial and utility applications. The major US programs and test facilities are described; remaining technical uncertainties are discussed, and the future outlook for the technology is assessed.

  7. Hydration of spent limestone and dolomite to enhance sulfation in fluidized-bed combustion

    SciTech Connect

    Shearer, J.A.; Smith, G.W.; Moulton, D.S.; Turner, C.B.; Myles, K.M.; Johnson, I.

    1980-01-01

    The utilization of CaO in fluidized bed combustion can be markedly increased to reduce the cost and environmental impact of quarrying and disposing of large quantities of solid waste. A new method of treatment of spent bed material to reactivate its SO/sub 2/ capturing ability has been found. Partially sulfated spent overflow material from a fluidized-bed combustor is treated with water and then reintroduced to the combustor as renewed feed that further reacts with SO/sub 2/. This material has sufficient physical integrity, due to the outer layer of CaSO/sub 4/, and high reactivity to make it suitable as a sorbent feedstock. The work reported here details observations on a number of limestones and dolomites reacted in laboratory furnaces under simulated combustion conditions as well as verification of the effectiveness of the method in a 15-cm-ID process development unit scale atmospheric fluidized-bed coal combustor. Initial kinetic studies have also been made on the hydration reaction of partially sulfated limestone. A proposed mechanism of interaction is discussed to explain the enhanced reactivity. Changes in total porosity and pore size distribution in the partially sulfated material due to Ca(OH)/sub 2/ formation and its dehydration serve to open up the particle interior and its residual CaO to further reaction with SO/sub 2/. Almost complete utilization of the available CaO can be achieved by successive applications of this promising new technique.

  8. Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D

    SciTech Connect

    Mei, Renwei; Hahn, David; Klausner, James; Petrasch, Jorg; Mehdizadeh, Ayyoub; Allen, Kyle; Rahmatian, Nima; Stehle, Richard; Bobek, Mike; Al-Raqom, Fotouh; Greek, Ben; Li, Like; Chen, Chen; Singh, Abhishek; Takagi, Midori; Barde, Amey; Nili, Saman

    2013-09-30

    The coal to hydrogen project utilizes the iron/iron oxide looping process to produce high purity hydrogen. The input energy for the process is provided by syngas coming from gasification process of coal. The reaction pathways for this process have been studied and favorable conditions for energy efficient operation have been identified. The Magnetically Stabilized Porous Structure (MSPS) is invented. It is fabricated from iron and silica particles and its repeatable high performance has been demonstrated through many experiments under various conditions in thermogravimetric analyzer, a lab-scale reactor, and a large scale reactor. The chemical reaction kinetics for both oxidation and reduction steps has been investigated thoroughly inside MSPS as well as on the surface of very smooth iron rod. Hydrogen, CO, and syngas have been tested individually as the reducing agent in reduction step and their performance is compared. Syngas is found to be the most pragmatic reducing agent for the two-step water splitting process. The transport properties of MSPS including porosity, permeability, and effective thermal conductivity are determined based on high resolution 3D CT x-ray images obtained at Argonne National Laboratory and pore-level simulations using a lattice Boltzmann Equation (LBE)-based mesoscopic model developed during this investigation. The results of those measurements and simulations provide necessary inputs to the development of a reliable volume-averaging-based continuum model that is used to simulate the dynamics of the redox process in MSPS. Extensive efforts have been devoted to simulate the redox process in MSPS by developing a continuum model consist of various modules for conductive and radiative heat transfer, fluid flow, species transport, and reaction kinetics. Both the Lagrangian and Eulerian approaches for species transport of chemically reacting flow in porous media have been investigated and verified numerically. Both approaches lead to correct

  9. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume III. Model predictions and results

    SciTech Connect

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the third of a seven volume series of our Phase II Final Report. This volume deals with parametric studies carried out using the FBC model. A comparison with available pilot plant data is included where such data are available. This volume in essence documents model performance; describing predictions on bubble growth, combustion characteristics, sulfur capture, heat transfer and related parameters. The model has approximately forty input variables which are at the disposal of the user. The user has the option to change a few or all of these input variables. In the parametric studies reported here, a large number of input variables whose variation is less critical to the predicted results, were maintained constant at the default values. On the other hand, those parameters whose selection is very important in design and operation of the FBC's were varied in suitable operating regions. The chief among such parameters are: bed temperature, coal feed size distribution (2 parameters), average bed-sorbent size, calcium to sulfur molar ratio, superficial velocity, excess air fraction, and bed weight (or bed height). The computations for obtaining the parametric relationships are based upon selection of a geometrical design for the combustor. Bed cross-section is 6' x 6', bed height is 4', and the freeboard height is 16'. The heat transfer tubes have 2'' OD, a pitch of 10'', and are located on an equilateral triangle pattern. The air distributor is a perforated plate with 0.1'' diameter holes on a rectangular grid with 0.75'' center-to-center spacing.

  10. Fluidized bed desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kallvinskas, J. J. (Inventor)

    1985-01-01

    High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.