Science.gov

Sample records for atmospheric greenhouse effect

  1. Greenhouse effect in the atmosphere

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2016-04-01

    Average optical atmospheric parameters for the infrared spectrum range are evaluated on the basis of the Earth energetic balance and parameters of the standard atmosphere. The average optical thickness of the atmosphere is u ≈ 2.5 and this atmospheric emission is originated at altitudes below 10 km. Variations of atmospheric radiative fluxes towards the Earth and outward are calculated as a function of the concentration of \\text{CO}2 molecules for the regular model of molecular spectrum. As a result of doubling of the \\text{CO}2 concentration the change of the global Earth temperature is (0.4 +/- 0.2) \\text{K} if other atmospheric parameters are conserved compared to the value (3.0 +/- 1.5) \\text{K} under real atmospheric conditions with the variation of the amount of atmospheric water. An observed variation of the global Earth temperature during the last century (0.8 ^\\circ \\text{C}) follows from an increase of the mass of atmospheric water by 7% or by conversion of 1% of atmospheric water in aerosols.

  2. Greenhouse effect due to atmospheric nitrous oxide

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  3. Effect of noble gases on an atmospheric greenhouse /Titan/.

    NASA Technical Reports Server (NTRS)

    Cess, R.; Owen, T.

    1973-01-01

    Several models for the atmosphere of Titan have been investigated, taking into account various combinations of neon and argon. The investigation shows that the addition of large amounts of Ne and/or Ar will substantially reduce the hydrogen abundance required for a given greenhouse effect. The fact that a large amount of neon should be present if the atmosphere is a relic of the solar nebula is an especially attractive feature of the models, because it is hard to justify appropriate abundances of other enhancing agents.

  4. The greenhouse effect in a gray planetary atmosphere.

    NASA Technical Reports Server (NTRS)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  5. Falsification of the Atmospheric CO2 Greenhouse Effects Within the Frame of Physics

    NASA Astrophysics Data System (ADS)

    Gerlich, Gerhard; Tscheuschner, Ralf D.

    The atmospheric greenhouse effect, an idea that many authors trace back to the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896), and which is still supported in global climatology, essentially describes a fictitious mechanism, in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics, such a planetary machine can never exist. Nevertheless, in almost all texts of global climatology and in a widespread secondary literature, it is taken for granted that such a mechanism is real and stands on a firm scientific foundation. In this paper, the popular conjecture is analyzed and the underlying physical principles are clarified. By showing that (a) there are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there are no calculations to determine an average surface temperature of a planet, (c) the frequently mentioned difference of 33° is a meaningless number calculated wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the assumption of a radiative balance is unphysical, (f) thermal conductivity and friction must not be set to zero, the atmospheric greenhouse conjecture is falsified.

  6. The CO2 greenhouse effect and the thermal history of the atmosphere.

    PubMed

    Marx, G; Miskolci, F

    1981-01-01

    The influence of the expected rise of CO2 content in our atmosphere upon terrestrial temperature is uncertain. A significant increase in temperature could be threatening to certain aspects of terrestrial biology. On the other hand, it is a general consensus among paleobiologists that the Earth possessed a CO2 atmosphere in the past billion years, without dramatic temperature variations endangering the continuity of life. In order to clarify this problem, and to contribute to the understanding of the CO2 greenhouse effect on Venus we have computed the absorption spectrum of CO2 for a wide range of atmospheric concentrations. More than 2500 spectral lines of the 15 micron band were taken into account in our line-by-line calculation. We have used an empirical exponential line-shape function at the line edges. Our results agree with the experimental data of F. W. Taylor. The estimated increase in surface temperature does not reach the boiling point of water even for CO2 concentrations thousands of times larger than the present concentrations. Higher energy (>666 cm-1) CO2 bands and/or an increase in atmospheric H2O may, however, amplify the greenhouse effect. PMID:11541718

  7. Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperature

    NASA Astrophysics Data System (ADS)

    Inamdar, Anand K.; Ramanathan, V.

    1998-12-01

    We employ a multitude of global data sets to extend recent analyses of atmospheric greenhouse effect and its dependence on surface temperature (Ts) and vertical water vapor distribution. The new data encompasses a global domain including both the continents and the oceans as well as both the ascending and descending branches of the Walker and Hadley cells and the extratropical storm track regions. We adopt the radiometric definition of the atmospheric greenhouse effect, Ga, which is the difference between the surface longwave emission and the outgoing longwave radiation. We derive the global average greenhouse effect over both oceans and land areas. The east to west variations of the normalized atmospheric greenhouse effect (ga) and precipitable water (w) are just as strong as the north to south variations, thus illustrating the strong role of the dynamics in w and ga. Between 60°N and 60°S the lowest values of ga (0.11-0.15) are found over the Saharan and other deserts; while the largest values (0.35-0.40) are found over the warm oceans with a deep convective atmosphere. The coupling between Ga, and the vertical distribution of atmospheric water vapor and temperature, is examined from monthly mean annual cycle. When averaged from the southern to the northern latitudes, these quantities exhibit a statistically significant annual cycle. The annual cycle of Ts, about 1 K for the tropics (30°N to 30°S) and about 4 K for the globe, is large enough to obtain a statistically significant estimate for the sensitivity parameter dGa/dTs. It is as large as 5.5-6 W m-2 K-1 for tropical mean conditions (30°N to 30°S) and reduces to a global mean value of 3.5 W m-2 K-1 (with a 2σ range of 2.9-4.1 W m-2 K-1). Consistent with earlier studies, the tropics exhibit a strong positive coupling between Ts, Ga, and water vapor distribution with large increases in the midtroposphere humidity. However, poleward of 30°N, water vapor increases are about half as much as that in the

  8. Global warming: Experimental study about the effect of accumulation of greenhouse gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Molto, Carlos; Mas, Miquel

    2010-05-01

    The project presented here was developed by fifteen year old students of the Institut Sabadell (Sabadell Secondary School. Spain). The objective of this project was to raise the students awareness' about the problem of climate change, mainly caused by the accumulation of greenhouse gases in the atmosphere. It is also intended that students use the scientific method as an effective system of troubleshooting and that they use the ICTs (Information and Communication Technologies) to elicit data and process information. To develop this project, four lessons of sixty minutes each were needed. The first lesson sets out the role of the atmosphere as an Earth's temperature regulator, highlighting the importance of keeping the levels of carbon dioxide, methane and water steam in balance. The second lesson is focused on the experimental activity that students will develop in the following lesson. In lesson two, students will present and justify their hypothesis about the experiment. Some theoretical concepts, necessary to carry out the experiment, will also be explained. The third lesson involves the core of the project, that is the experiment in the laboratory. The experiment consists on performing the atmosphere heating on a little scale. Four different atmospheres are created inside four plastic boxes heated by an infrared lamp. Students work in groups (one group for each atmosphere) and have to monitor the evolution of temperature by means of a temperature sensor (Multilog software). The first group has to observe the relationship between temperature and carbon dioxide levels increase, mainly caused by the widespread practice of burning fossil fuels by growing human populations. The task of this group is to measure simultaneously the temperature of an empty box (without CO2) and the temperature of a box with high carbon dioxide concentration. The carbon dioxide concentration is the result of the chemical reaction when sodium carbonate mixes with hydrochloric acid. The

  9. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth

    NASA Technical Reports Server (NTRS)

    Kuhn, W. R.; Atreya, S. K.

    1979-01-01

    Photochemical calculations indicate that in the prebiotic atmosphere of earth ammonia would have been irreversibly converted to N2 in less than 40 years if the ammonia surface mixing ratio were no more than 0.0001. However, if a continuous outgassing of ammonia were maintained, radiative-equilibrium calculations indicate that a surface mixing ratio of ammonia of 0.0001 or greater would provide a sufficient greenhouse effect to keep the surface temperature above freezing. With a 0.0001 mixing ratio of ammonia, 60% to 70% of the present-day solar luminosity would be adequate to maintain surface temperatures above freezing. A lower limit to the time constant for accumulation of an amount of nitrogen equivalent to the present day value is 10 my if the outgassing were such as to provide a continuous surface mixing ratio of ammonia of at least 0.00001.

  10. Greenhouse models of the atmosphere of Titan.

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1973-01-01

    The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.

  11. Overview of global greenhouse effects

    SciTech Connect

    Reck, R.A.

    1993-09-01

    This report reviews the factors that influence the evolution of climate and climate change. Recent studies have confirmed that CO{sub 2}, O{sub 3}, N{sub 2}O, CH{sub 4}, and chlorofluorocarbos are increasing in abundance in the atmosphere and can alter the radiation balance by means of the so-called greenhouse effect. The greenhouse effect is as well-accepted phenomenon, but the prediction of its consequences is much less certain. Attempts to detect a human-caused temperature change are still inconclusive. This report presents a discussion of the scientific basis for the greenhouse effect, its relationship to the abundances of greenhouse gases, and the evidence confirming the increases in the abundances. The basis for climate modeling is presented together with an example of the model outputs from one of the most sophisticated modeling efforts. Uncertainties in the present understanding of climate are outlined.

  12. On the relationship between the greenhouse effect, atmospheric photochemistry, and species distribution

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Boughner, R. E.; Natarajan, M.

    1983-01-01

    The coupling that exists between infrared opacity changes and tropospheric (and to a lesser extent stratospheric) chemistry is explored in considerable detail, and the effects arising from various perturbations are examined. The studies are carried out with a fully coupled one-dimensional radiative-convective-photochemical model (RCP) that extends from the surface to 53.5 km and has the capability of calculating surface temperature changes due to both chemical and radiative perturbations. The model encompasses contemporary atmospheric chemistry and photochemistry involving the O(x), HO(x), NO(x), and Cl(x) species.

  13. Observational determination of the greenhouse effect

    NASA Technical Reports Server (NTRS)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  14. Atmospheric Chemistry and Greenhouse Gases

    SciTech Connect

    Ehhalt, D.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, Edward J.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M.; Berntsen, T.; Bey, I.; Brasseur, G.; Buja, L.; Collins, W. J.; Daniel, J. S.; DeMore, W. B.; Derek, N.; Dickerson, R.; Etheridge, D.; Feichter, J.; Fraser, P.; Friedl, R.; Fuglestvedt, J.; Gauss, M.; Grenfell, L.; Grubler, Arnulf; Harris, N.; Hauglustaine, D.; Horowitz, L.; Jackman, C.; Jacob, D.; Jaegle, L.; Jain, Atul K.; Kanakidou, M.; Karlsdottir, S.; Ko, M.; Kurylo, M.; Lawrence, M.; Logan, J. A.; Manning, M.; Mauzerall, D.; McConnell, J.; Mickley, L. J.; Montzka, S.; Muller, J. F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.; Thompson, A.; van Weele, M.; von Kuhlmann, R.; Wang, Y.; Weisenstein, D. K.; Wigley, T. M.; Wild, O.; Wuebbles, D.J.; Yantosca, R.; Joos, Fortunat; McFarland, M.

    2001-10-01

    Chapter 4 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 2414.1 Introduction 2434.2 Trace Gases: Current Observations, Trends and Budgets 2484.3 Projections of Future Emissions 2664.4 Projections of Atmospheric Composition for the 21st Century 2674.5 Open Questions 2774.6 Overall Impact of Global Atmospheric Chemistry Change 279

  15. (Limiting the greenhouse effect)

    SciTech Connect

    Rayner, S.

    1991-01-07

    Traveler attended the Dahlem Research Conference organized by the Freien Universitat, Berlin. The subject of the conference was Limiting the Greenhouse Effect: Options for Controlling Atmospheric CO{sub 2} Accumulation. Like all Dahlem workshops, this was a meeting of scientific experts, although the disciplines represented were broader than usual, ranging across anthropology, economics, international relations, forestry, engineering, and atmospheric chemistry. Participation by scientists from developing countries was limited. The conference was divided into four multidisciplinary working groups. Traveler acted as moderator for Group 3 which examined the question What knowledge is required to tackle the principal social and institutional barriers to reducing CO{sub 2} emissions'' The working rapporteur was Jesse Ausubel of Rockefeller University. Other working groups examined the economic costs, benefits, and technical feasibility of options to reduce emissions per unit of energy service; the options for reducing energy use per unit of GNP; and the significant of linkage between strategies to reduce CO{sub 2} emissions and other goals. Draft reports of the working groups are appended. Overall, the conference identified a number of important research needs in all four areas. It may prove particularly important in bringing the social and institutional research needs relevant to climate change closer to the forefront of the scientific and policy communities than hitherto.

  16. A Hiatus of the Greenhouse Effect.

    PubMed

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  17. Runaway greenhouse atmospheres: Applications to Earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1991-01-01

    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.

  18. The Greenhouse and Anti-Greenhouse Effects on Titan

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  19. Cosmic-Ray Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2013-07-01

    This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850-1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96-0.97 is found between corrected or uncorrected global surface temperature and total

  20. Titan's greenhouse and antigreenhouse effects

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  1. The greenhouse and antigreenhouse effects on Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  2. Greenhouse effect due to chlorofluorocarbons - Climatic implications

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.

    1975-01-01

    The infrared bands of chlorofluorocarbons and chlorocarbons enhance the atmospheric greenhouse effect. This enhancement may lead to an appreciable increase in the global surface temperature if the atmospheric concentrations of these compounds reach values of the order of 2 parts per billion.

  3. Scientists' internal models of the greenhouse effect

    NASA Astrophysics Data System (ADS)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  4. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  5. Effects of ploughing on land-atmosphere exchange of greenhouse gases in a managed temperate grassland in central Scotland

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Drewer, Julia; Anderson, Margaret; Scholtes, Bob; Rees, Bob; Skiba, Ute

    2015-04-01

    Grasslands are important ecosystems covering > 20% and > 30% of EU and Scotland's land area respectively. Management practices such as grazing, fertilisation and ploughing can have significant short- and long-term effects on greenhouse gas exchange. Here we report on two separate ploughing events two years apart in adjacent grasslands under common management. The Easter Bush grassland, located 10 km south of Edinburgh (55° 52'N, 3° 2'W), comprises two fields separated by a fence and is used for grazing by sheep and cattle. The vegetation is predominantly Lolium perenne (> 90%) growing on poorly drained clay loam. The fields receive several applications of mineral fertiliser a year in spring and summer. Net ecosystem exchange (NEE) of carbon dioxide (CO2) has been monitored continuously by eddy-covariance (EC) since 2002 which has demonstrated that the site is a consistent yet variable sink of atmospheric CO2. The EC system comprises a LI-COR 7000 closed-path analyser and a Gill Instruments Windmaster Pro ultrasonic anemometer mounted atop a 2.5 m mast located along the fence line separating the fields. In addition, fluxes of nitrous oxide (N2O), methane (CH4)and CO2were measured with static chambers installed along transects in each field. Gas samples collected from the chambers were analysed by gas chromatography and fluxes calculated for each 60-minute sampling period. The ploughing events in 2012 and 2014 exhibited multiple similarities in terms of NEE. The light response (i.e. relationship between CO2 flux, and photosynthetically active radiation, PAR) of the NF and SF during the month preceding each ploughing event was of comparable magnitude in both years. Following ploughing, CO2 uptake ceased in the ploughed field for approximately one month and full recovery of the photosynthetic potential was observed after ca. 2 months. During the month following the 2014 ploughing event, the ploughed NF released on average 333 ± 17 mg CO2-C m-2 h-1. In contrast, the

  6. A carbon dioxide/methane greenhouse atmosphere on early Mars

    NASA Technical Reports Server (NTRS)

    Brown, L. L.; Kasting, J. F.

    1993-01-01

    One explanation for the formation of fluvial surface features on early Mars is that the global average surface temperature was maintained at or above the freezing point of water by the greenhouse warming of a dense CO2 atmosphere; however, Kasting has shown that CO2 alone is insufficient because the formation of CO2 clouds reduces the magnitude of the greenhouse effect. It is possible that other gases, such as NH3 and CH4, were present in the early atmosphere of Mars and contributed to the greenhouse effect. Kasting et al. investigated the effect of NH3 in a CO2 atmosphere and calculated that an NH3 mixing ratio of approximately 5 x 10 (exp -4) by volume, combined with a CO2 partial pressure of 4-5 bar, could generate a global average surface temperature of 273 K near 3.8 b.y. ago when the fluvial features are believed to have formed. Atmospheric NH3 is photochemically converted to N2 by ultraviolet radiation at wavelengths shortward of 230 nm; maintenance of sufficient NH3 concentrations would therefore require a source of NH3 to balance the photolytic destruction. We have used a one-dimensional photochemical model to estimate the magnitude of the NH3 source required to maintain a given NH3 concentration in a dense CO2 atmosphere. We calculate that an NH3 mixing ratio of 10(exp -4) requires a flux of NH3 on the order of 10(exp 12) molecules /cm-s. This figure is several orders of magnitude greater than estimates of the NH3 flux on early Mars; thus it appears that NH3 with CO2 is not enough to keep early Mars warm.

  7. Observations of seasonal variations in atmospheric greenhouse trapping and its enhancement at high sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hallberg, Robert; Inamdar, Anand K.

    1993-01-01

    Greenhouse trapping is examined theoretically using a version of the radiative transfer equations that demonstrates how atmospheric greenhouse trapping can vary. Satellite observations of atmospheric greenhouse trapping are examined for four months representing the various seasons. The cause of the super greenhouse effect at the highest SSTs is examined, and four processes are found to contribute. The middle and upper troposphere must be particularly moist and the temperature lapse rate must be increasingly unstable over the warmest regions to explain the observed distribution of atmospheric greenhouse trapping. Since the highest SSTs are generally associated with deep convection, this suggests that deep convection acts to moisten the middle and upper troposphere in regions of the highest SSTs relative to other regions. The tropical atmospheric circulation acts to both increase the temperature lapse rate and greatly increase the atmospheric water vapor concentration with spatially increasing SST.

  8. Heat flow vs. atmospheric greenhouse on early Mars

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Postawko, S. E.

    1991-01-01

    Researchers derived a quantitative relationship between the effectiveness of an atmospheric greenhouse and internal heat flow in producing the morphological differences between earlier and later Martian terrains. The derivation is based on relationships previously derived by other researchers. The reasoning may be stated as follows: the CO2 mean residence time in the Martian atmosphere is almost certainly much shorter than the total time span over which early climate differences are thought to have been sustained. Therefore, recycling of previously degassed CO2 quickly becomes more important than the ongoing supply of juvenile CO2. If so, then the atmospheric CO2 pressure, and thereby the surface temperature, may be approximated mathematically as a function of the total degassed CO2 in the atmosphere plus buried material and the ratio of the atmospheric and regolith mean residence times. The latter ratio can also be expressed as a function of heat flow. Hence, it follows that the surface temperature may be expressed as a function of heat flow and the total amount of available CO2. However, the depth to the water table can simultaneously be expressed as a function of heat flow and the surface temperature (the boundary condition). Therefore, for any given values of total available CO2 and regolith conductivity, there exist coupled independent equations which relate heat flow, surface temperature, and the depth to the water table. This means we can now derive simultaneous values of surface temperature and the depth of the water table for any value of the heat flow. The derived relationship is used to evaluate the relative importance of the atmospheric greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow, and to assess the absolute importance of each of the values of the heat flow which are thought to be reasonable on independent geophysical grounds.

  9. The greenhouse and antigreenhouse effects on Titan.

    PubMed

    McKay, C P; Pollack, J B; Courtin, R

    1991-09-01

    There are many parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the terrestrial greenhouse effect; these parallels provide a comparison for theories of the heat balance of Earth. Titan's atmosphere has a greenhouse effect caused primarily by pressure-induced opacity of N2, CH4, and H2. H2 is a key absorber because it is primarily responsible for the absorption in the wave number 400 to 600 cm-1 "window" region of Titan's infrared spectrum. The concentration of CH4, also an important absorber, is set by the saturation vapor pressure and hence is dependent on temperature. In this respect there is a similarity between the role of H2 and CH4 on Titan and that of CO2 and H2O on Earth. Titan also has an antigreenhouse effect that results from the presence of a high-altitude haze layer that is absorbing at solar wavelengths but transparent in the thermal infrared. The antigreenhouse effect on Titan reduces the surface temperature by 9 K whereas the greenhouse effect increases it by 21 K. The net effect is that the surface temperature (94 K) is 12 K warmer than the effective temperature (82 K). If the haze layer were removed, the antigreenhouse effect would be greatly reduced, the greenhouse effect would become even stronger, and the surface temperature would rise by over 20 K. PMID:11538492

  10. Atmospheric sulfur hexafluoride - Sources, sinks and greenhouse warming

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Sze, Nien D.; Wang, Wei-Chyung; Shia, George; Goldman, Aaron; Murcray, Frank J.; Murcray, David G.; Rinsland, Curtis P.

    1993-01-01

    An estimate is obtained of worldwide production of SF6, from which a global emission rate is derived and extrapolated for the next 20 years. The atmospheric lifetime of SF6 is then estimated based on a known mechanism (e.g., photolysis and atmospheric oxidation) and/or on the mass balance method. Finally, the radiative forcing of SF6 is calculated based on recent laboratory IR absorption data, and the expected warming over the time period 1950-2010 is computed for several emission scenarios. Calculations showed that SF6 is 3 times more effective as a greenhouse gas compared to CFC 11 on a per-molecule basis. However, based on projected emission scenarios, the expected warming from SF6 through 2010 is small (0.004 C), compared to the warming from CO2 and other trace gases (0.8 C).

  11. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India

    SciTech Connect

    Auffhammer, M.; Ramanathan, V.; Vincent, J.R.

    2007-12-26

    Previous studies have found that atmospheric brown clouds partially offset the warming effects of greenhouse gases. This finding suggests a tradeoff between the impacts of reducing emissions of aerosols and greenhouse gases. Results from a statistical model of historical rice harvests in India, coupled with regional climate scenarios from a parallel climate model, indicate that joint reductions in brown clouds and greenhouse gases would in fact have complementary, positive impacts on harvests. The results also imply that adverse climate change due to brown clouds and greenhouse gases contributed to the slowdown in harvest growth that occurred during the past two decades.

  12. Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star.

    PubMed

    Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Von Paris, Philip

    2007-02-01

    Planets orbiting in the habitable zone of M dwarf stars are subject to high levels of galactic cosmic rays (GCRs), which produce nitrogen oxides (NOx) in Earth-like atmospheres. We investigate to what extent these NO(Mx) species may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources). Our model results suggest that such signals are robust, changing in the M star world atmospheric column due to GCR NOx effects by up to 20% compared to an M star run without GCR effects, and can therefore survive at least the effects of GCRs. We have not, however, investigated stellar cosmic rays here. CH4 levels are about 10 times higher on M star worlds than on Earth because of a lowering in hydroxyl (OH) in response to changes in the ultraviolet. The higher levels of CH4 are less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M star world differs considerably compared with that of Earth. PMID:17407408

  13. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  14. (Limiting the greenhouse effect)

    SciTech Connect

    Fulkerson, W.

    1991-01-10

    The Dahlem Conference on controlling CO{sub 2} in the atmosphere focused on research needs broadly defined. The RD D needs discussed tended to be social-institutional rather than technically oriented perhaps because of the propensity of most attendees, but many important ideas emerged, including those related to questions on technology adoption by both developed, emerging, or transition economics. The European attendees appeared to be strongly devoted to reducing emissions, and doing it soon using efficiency improvement and ultimately renewables. The importance of efficiency improvement was universally accepted, but the extent to which it can be relied upon is a major uncertainty for everyone except the most zealous. There was no detailed discussion of what could be done to encourage the more rapid adoption of renewables. Most attendees seemed to have discounted nuclear, but, at any rate, the problems of reviving nuclear worldwide were not discussed in detail.

  15. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Nuccitelli, Dana; Cowtan, Kevin; Jacobs, Peter; Richardson, Mark; Way, Robert G.; Blackburn, Anne-Marie; Stolpe, Martin B.; Cook, John

    2014-04-01

    Lu (2013) (L13) argued that solar effects and anthropogenic halogenated gases can explain most of the observed warming of global mean surface air temperatures since 1850, with virtually no contribution from atmospheric carbon dioxide (CO2) concentrations. Here we show that this conclusion is based on assumptions about the saturation of the CO2-induced greenhouse effect that have been experimentally falsified. L13 also confuses equilibrium and transient response, and relies on data sources that have been superseeded due to known inaccuracies. Furthermore, the statistical approach of sequential linear regression artificially shifts variance onto the first predictor. L13's artificial choice of regression order and neglect of other relevant data is the fundamental cause of the incorrect main conclusion. Consideration of more modern data and a more parsimonious multiple regression model leads to contradiction with L13's statistical results. Finally, the correlation arguments in L13 are falsified by considering either the more appropriate metric of global heat accumulation, or data on longer timescales.

  16. Atmospheric Sulfur Hexafluoride: Sources, Sinks and Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Sze, Nien Dak; Wang, Wei-Chyung; Shia, George; Goldman, Aaron; Murcray, Frank J.; Murcray, David G.; Rinsland, Curtis P.

    1993-01-01

    Model calculations using estimated reaction rates of sulfur hexafluoride (SF6) with OH and 0('D) indicate that the atmospheric lifetime due to these processes may be very long (25,000 years). An upper limit for the UV cross section would suggest a photolysis lifetime much longer than 1000 years. The possibility of other removal mechanisms are discussed. The estimated lifetimes are consistent with other estimated values based on recent laboratory measurements. There appears to be no known natural source of SF6. An estimate of the current production rate of SF6 is about 5 kt/yr. Based on historical emission rates, we calculated a present-day atmospheric concentrations for SF6 of about 2.5 parts per trillion by volume (pptv) and compared the results with available atmospheric measurements. It is difficult to estimate the atmospheric lifetime of SF6 based on mass balance of the emission rate and observed abundance. There are large uncertainties concerning what portion of the SF6 is released to the atmosphere. Even if the emission rate were precisely known, it would be difficult to distinguish among lifetimes longer than 100 years since the current abundance of SF6 is due to emission in the past three decades. More information on the measured trends over the past decade and observed vertical and latitudinal distributions of SF6 in the lower stratosphere will help to narrow the uncertainty in the lifetime. Based on laboratory-measured IR absorption cross section for SF6, we showed that SF6 is about 3 times more effective as a greenhouse gas compared to CFC 11 on a per molecule basis. However, its effect on atmospheric warming will be minimal because of its very small concentration. We estimated the future concentration of SF6 at 2010 to be 8 and 10 pptv based on two projected emission scenarios. The corresponding equilibrium warming of 0.0035 C and 0.0043 C is to be compared with the estimated warming due to CO2 increase of about 0.8 C in the same period.

  17. Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Akmaev, R. A.; Fomichev, V. I.; Zhu, X.

    2006-12-01

    The greenhouse effect, commonly associated with lower-atmospheric warming, manifests as cooling in the middle and upper atmosphere. Carbon dioxide is the main cooler and its continuing rise has been demonstrated to result in dramatic temperature reductions, particularly in the thermosphere. In a hydrostatic atmosphere, the cooling is associated with a density decrease at a given height. The stratospheric ozone depletion documented in satellite observations since 1979 and a steady increase of water vapor are also expected to introduce a net cooling in the middle atmosphere primarily via a reduced solar heating and increased emissions in the infrared, respectively. These effects are simulated with the global spectral mesosphere/lower thermosphere model (SMLTM) extending approximately from the tropopause to over 200 km. Climatological distributions of the radiatively active gases are prescribed in the model, which makes it suitable for studies with imposed realistic trends in CO2, O3, and H2O approximately corresponding to the period 1980 2000. Although confined to the stratosphere, the ozone depletion has a profound cooling effect on mesospheric temperatures, which is comparable to or exceeding that of the CO2 forcing. The water vapor cooling appears to play a secondary but non-negligible role, especially in the overall density reduction in the lower thermosphere. The additional hydrostatic contraction of the colder middle atmosphere is predicted to result in a local maximum of the density decline near 110 km of up to -6.5% per decade over the twenty-year period.

  18. The Greenhouse Effect: Science and Policy.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses many of the scientific questions surrounding the greenhouse effect debate and the issue of plausible responses. Discussion includes topics concerning projecting emissions and greenhouse gas concentrations, estimating global climatic response, economic, social, and political impacts, and policy responses. (RT)

  19. The Greenhouse Effect and Built Environment Education.

    ERIC Educational Resources Information Center

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  20. Habitability of Waterworlds: Runaway Greenhouses, Atmospheric Expansion, and Multiple Climate States of Pure Water Atmospheres

    PubMed Central

    2015-01-01

    Abstract There are four different stable climate states for pure water atmospheres, as might exist on so-called “waterworlds.” I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts⪅245 K), cold and damp (270⪅Ts⪅290 K), hot and moist (350⪅Ts⪅550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290⪅Ts ⪅350 K or 550⪅Ts⪅900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m−2 higher for Mars, 10 W m−2 higher for Earth or Venus, but only a few W m−2 higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m−2 higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance. Key Words

  1. Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres.

    PubMed

    Goldblatt, Colin

    2015-05-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290 ⪅ T s ⪅ 350 K or 550 ⪅ Ts ⪅ 900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m(-2) higher for Mars, 10 W m(-2) higher for Earth or Venus, but only a few W m(-2) higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m(-2) higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance. PMID:25984919

  2. Atmospheric sulfur hexafluoride: Sources, sinks and greenhouse warming

    SciTech Connect

    Ko, M.K.W.; Sze, N.D.; Wang, W.C.

    1993-06-20

    Model calculations using estimated reaction rates of sulfur hexafluoride (SF{sub 6}) with OH and O({sup 1}D) indicate that the atmospheric lifetime due to these processes may be very long (25,000 years). An upper limit for the UV cross section would suggest a photolysis lifetime much longer than 1000 years. The possibility of other removal mechanisms are discussed. The estimated lifetimes are consistent with other estimated values based on recent laboratory measurements. There appears to be no known natural source of SF{sub 6}. An estimate of the current production rate of SF{sub 6} is about 5 kt/yr. Based on historical emission rates, the authors calculated a present-day atmospheric concentrations for SF{sub 6} of about 2.5 parts per trillion by volume (pptv) and compared the results with available atmospheric measurements. Even if the emission rate were precisely known, it would be difficult to distinguish among lifetimes longer than 100 years since the current abundance of SF{sub 6} is due to emission in the past three decades. More information on the measured trends over the past decade and observed vertical and latitudinal distributions of SF{sub 6} in the lower stratosphere will help to narrow the uncertainty in the lifetime. Based on laboratory-measured IR absorption cross section for SF{sub 6}, the authors showed that SF{sub 6} is about 3 times more effective as a greenhouse gas compared to CFC 11 on a per molecule basis. However, its effect on atmospheric warming will be minimal because of its very small concentration. The authors estimated the future concentration of SF{sub 6} at 2010 to be 8 and 10 pptv based on two projected emission scenarios. The corresponding equilibrium warming of 0.0035{degrees}C is to be compared with the estimated warming due to CO{sub 2} increase of about 0.8{degrees}C in the same period. 45 refs., 8 figs., 5 tabs.

  3. U.S. regional greenhouse gas emissions analysis comparing highly resolved vehicle miles traveled and CO2 emissions: mitigation implications and their effect on atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Gurney, K. R.

    2010-12-01

    Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas and projections of fossil fuel energy demand show CO2 concentrations increasing indefinitely into the future. After electricity production, the transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Over 80% of the transport sector is composed of onroad emissions, with the remainder shared by the nonroad, aircraft, railroad, and commercial marine vessel transportation. In order to construct effective mitigation policy for the onroad transportation sector and more accurately predict CO2 emissions for use in transport models and atmospheric measurements, analysis must incorporate the three components that determine the CO2 onroad transport emissions: vehicle fleet composition, average speed of travel, and emissions regulation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. National-level projections of VMT growth is not sufficient to highlight regional differences in CO2 emissions growth due to the heterogeneity of vehicle fleet and each state’s road network which determines the speed of travel of vehicles. We examine how an analysis based on direct CO2 emissions and an analysis based on VMT differ in terms of their emissions and mitigation implications highlighting potential biases introduced by the VMT-based approach. This analysis is performed at the US state level and results are disaggregated by road and vehicle classification. We utilize the results of the Vulcan fossil fuel CO2 emissions inventory which quantified emissions for the year 2002 across all economic sectors in the US at high resolution. We perform this comparison by fuel type,12 road types, and 12 vehicle types

  4. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: Implications for greenhouse climates

    NASA Astrophysics Data System (ADS)

    Ozaki, Kazumi; Tajika, Eiichi

    2013-07-01

    Understanding the key factors influencing the global oceanic redox system is crucial to fully explaining the variations in oceanic chemical dynamics that have occurred throughout the Earth's history. In order to elucidate the mechanisms behind these variations on geological timescales, numerical sensitivity experiments were conducted with respect to the partial pressure of atmospheric molecular oxygen (pO2), the continental shelf area (Acs), and the riverine input rate of reactive phosphorus to the oceans (RP). The sensitivity experiment for atmospheric pO2 indicates that pervasive oceanic anoxia and euxinia appear when pO2<0.145 atm and <0.125 atm, respectively. These critical values of pO2 are higher than a previous estimate of ~50% PAL (present atmospheric level) due to redox-dependent phosphorus cycling. The sensitivity experiment regarding the shelf area demonstrates that changes in the shelf area during the Phanerozoic significantly affected oceanic oxygenation states by changing marine biogeochemical cycling; a large continental shelf acts as an efficient buffer against oceanic eutrophication and prevents the appearance of ocean anoxia/euxinia. We also found that an enhanced RP is an important mechanism for generation of widespread anoxia/euxinia via expansion of both the oxygen minimum zone and coastal deoxygenation, although the critical RP value depends significantly on pO2, Acs, and the redox-dependent burial efficiency of phosphorus at the sediment--water interface. Our systematic examination of the oceanic redox state under Cretaceous greenhouse climatic conditions also supports the above results.

  5. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Rhee, Tae Siek; Rigby, Matt; Hofstetter, Doris; Hill, Matthias; Schoenenberger, Fabian; Reimann, Stefan

    2015-03-01

    Modern halogenated inhalation anesthetics undergo little metabolization during clinical application and evaporate almost completely to the atmosphere. Based on their first measurements in a range of environments, from urban areas to the pristine Antarctic environment, we detect a rapid accumulation and ubiquitous presence of isoflurane, desflurane, and sevoflurane in the global atmosphere. Over the past decade, their abundances in the atmosphere have increased to global mean mole fractions in 2014 of 0.097ppt, 0.30ppt, and 0.13ppt (parts per trillion, 10-12, in dry air), respectively. Emissions of these long-lived greenhouse gases inferred from the observations suggest a global combined release to the atmosphere of 3.1 ± 0.6 million t CO2 equivalent in 2014 of which ≈80% stems from desflurane. We also report on halothane, a previously widely used anesthetic. Its global mean mole fraction has declined to 9.2ppq (parts per quadrillion, 10-15) by 2014. However, the inferred present usage is still 280 ±120t yr-1.

  6. Greenhouse effect may not be all bad

    SciTech Connect

    Senft, D.

    1990-10-01

    Evidence is presented that indicates US temperatures decreased by a fraction of a degree during the past 70 years contrary to the estimates of some researchers concerned with the greenhouse effect. There is general agreement that the carbon dioxide concentrations in the atmosphere will double by the late or mid 21st century. Experiments on cotton growth under increased temperature and carbon dioxide concentrations indicate sizeable gains in yield. This increased yield is exhibited by citrus trees and is projected for other crops. There is a concomitant need for more water and fertilizer. Increased populations of parasitic mites and insects also occur. Climatic changes are seen as being more gradual than previously thought. The possible increases in food production under these changes in climate are one positive element in the emerging scenario.

  7. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    NASA Astrophysics Data System (ADS)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R.; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R.; Wofsy, Steven C.

    2016-03-01

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  8. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    DOE PAGESBeta

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; et al

    2016-03-09

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate1. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change2, 3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively4, 5, 6, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain.more » Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Lastly, our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.« less

  9. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    PubMed

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change. PMID:26961656

  10. Remote sensing of atmospheric greenhouse gases: bridging spatial scales

    NASA Astrophysics Data System (ADS)

    Humpage, N.; Boesch, H.; Parker, R.; Hewson, W.; Sembhi, H.; Somkuti, P.; Webb, A.; Palmer, P. I.; Feng, L.

    2015-12-01

    Observed atmospheric variations of greenhouse gases (GHG) are determined by surface-atmosphere exchange, and atmospheric chemistry and transport. These processes occur over a wide spectrum of spatial and temporal scales. Confronting atmospheric transport models and ultimately improving the fidelity of surface flux estimates demands an integrated observing system that captures these scales. We will discuss using data the role of GHG remote sensing instruments and argue that our ability to deploy them from the ground and to fly them on satellite, aircraft, and unmanned airborne vehicles (UAV) mean that they represent the ideal technology to bridge the observed scales of variability. We will discuss a five-year record of global-scale column observations of CO2 and CH4 from the Japanese GOSAT satellite instrument that is available from University of Leicester as part of the ESA Climate Change Initiative. We will showcase new CO2 and CH4 column data that was collected by our shortwave infrared spectrometer GHOST oboard the NASA Global Hak during a regional survey over the eastern Pacific during early spring 2015, which included coincident overpasses from GOSAT and the NASA OCO-2. These data are being used to test atmospheric transport models over remote regions and to help validate satellite observations over the oceans. We will also discuss GHOST data collected on the UK Dornier 226 research aircraft to measure local-scale measurements over Leicester city centre, a major power plant, and downwind of a controlled Cumbrian heathland fire. Finally, we will report preliminary results from a new ground-based Fourier transform spectrometer station at Harwell (80 km west of London). We anticipate that this site will eventually join the TCCON network, which has been used to validation of satellite observations.

  11. Atmospheric aerosols versus greenhouse gases in the twenty-first century.

    PubMed

    Andreae, Meinrat O

    2007-07-15

    Looked at in a simplistic way, aerosols have counteracted the warming effects of greenhouse gases (GHG) over the past century. This has not only provided some 'climate protection', but also prevented the true magnitude of the problem from becoming evident. In particular, it may have resulted in an underestimation of the sensitivity of the climate system to the effect of GHG. Over the present century, the role of aerosols in opposing global warming will wane, as there are powerful policy reasons to reduce their emissions and their atmospheric lifetimes are short in contrast to those of the GHG. On the other hand, aerosols will continue to play a role in regional climate change, especially with regard to the water cycle. The end of significant climate protection by atmospheric aerosols, combined with the potentially very high sensitivity of the climate system, makes sharp and prompt reductions in greenhouse gas emissions, especially CO2, very urgent. PMID:17513271

  12. A mental picture of the greenhouse effect - A pedagogic explanation

    NASA Astrophysics Data System (ADS)

    Benestad, Rasmus E.

    2016-01-01

    The popular picture of the greenhouse effect emphasises the radiation transfer but fails to explain the observed climate change. An old conceptual model for the greenhouse effect is revisited and presented as a useful resource in climate change communication. It is validated against state-of-the-art data, and nontraditional diagnostics show a physically consistent picture. The earth's climate is constrained by well-known and elementary physical principles, such as energy balance, flow, and conservation. Greenhouse gases affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place. Such an increase is seen in the reanalyses, and the outgoing long-wave radiation has become more diffuse over time, consistent with an increased influence of greenhouse gases on the vertical energy flow from the surface to the top of the atmosphere. The reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical energy flow. The increased overturning can explain a slowdown in the global warming, and the association between these aspects can be interpreted as an entanglement between the greenhouse effect and the hydrological cycle, where reduced energy transfer associated with increased opacity is compensated by tropospheric overturning activity.

  13. The state of greenhouse gases in the atmosphere using global observations through 2014

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed

    2016-04-01

    Oceanic and Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2014 radiative forcing by long-lived greenhouse gases increased by 36%, with CO2 accounting for about 80% of this increase. The radiative forcing by all long-lived greenhouse gases in 2013 corresponded to a CO2-equivalent mole fraction of 481 ppm (http://www.esrl.noaa.gov/gmd/aggi). The Bulletin cover story explains the role of the water vapor in the greenhouse effect. In spite of water vapor being a strong greenhouse gas, it is the non-condensable greenhouse gases affected by human activities that serve as climate forcing agents; water vapor and clouds act as fast feedbacks. The strong water vapor feedback means that for a doubling of CO2 abundance from preindustrial conditions (from about 280 to 560 ppm), water vapor and clouds lead to a global increase in surface thermal energy that is about three times that of long-lived (non-condensable) greenhouse gases.

  14. The Greenhouse Effect in a Vial.

    ERIC Educational Resources Information Center

    Golden, Richard; Sneider, Cary

    1989-01-01

    Presents an example of a greenhouse-effect experiment from the Climate Protection Institute. Analyzes the amount of carbon dioxide in ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide by titrating with ammonia and bromthymol blue. (MVL)

  15. Can increased atmospheric CO2 levels trigger a runaway greenhouse?

    PubMed

    Ramirez, Ramses M; Kopparapu, Ravi Kumar; Lindner, Valerie; Kasting, James F

    2014-08-01

    Recent one-dimensional (globally averaged) climate model calculations by Goldblatt et al. (2013) suggest that increased atmospheric CO(2) could conceivably trigger a runaway greenhouse on present Earth if CO(2) concentrations were approximately 100 times higher than they are today. The new prediction runs contrary to previous calculations by Kasting and Ackerman (1986), which indicated that CO(2) increases could not trigger a runaway, even at Venus-like CO(2) concentrations. Goldblatt et al. argued that this different behavior is a consequence of updated absorption coefficients for H(2)O that make a runaway more likely. Here, we use a 1-D climate model with similar, up-to-date absorption coefficients, but employ a different methodology, to show that the older result is probably still valid, although our model nearly runs away at ∼12 preindustrial atmospheric levels of CO(2) when we use the most alarmist assumptions possible. However, we argue that Earth's real climate is probably stable given more realistic assumptions, although 3-D climate models will be required to verify this result. Potential CO(2) increases from fossil fuel burning are somewhat smaller than this, 10-fold or less, but such increases could still cause sufficient warming to make much of the planet uninhabitable by humans. PMID:25061956

  16. The detection of climate change due to the enhanced greenhouse effect

    NASA Technical Reports Server (NTRS)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  17. Atmospheric expansion in runaway greenhouse atmospheres: the inner edge of the habitable zone depends on planet mass

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Zahnle, K. J.

    2014-12-01

    As a wet planet becomes hot, evaporation of the ocean provides a thick steam atmosphere. As the atmosphere thickens, the level at which optical depth is unity (whence radiative emission and absorption dominantly occur) rises into the atmosphere, first for thermal wavelengths and later for solar wavelengths. Consequently, two radiation limits emerge. First, an asymptotic limit on the thermal radiation, as the level at which thermal emission occurs tends towards a fixed temperature, decoupled from surface temperature. Next, a limit the albedo of the planet, as all incoming sunlight is either reflected or absorbed in the atmosphere and almost none reaches the surface. A runaway greenhouse occurs when the product of co-albedo and area-averaged incoming sunlight exceeds the thermal radiation limit. Earth today is perilously close to this [1].Returning to the first sentence, we generate a thick atmosphere: the height of optical depth of unity becomes a non-trivial fraction of the planetary radius. Hence the area of the absorbing and emitting surfaces increase. Thermal emission wins slightly, as this occurs higher, increasing thermal emission in all cases. The underlying tendency is for a larger thermal limit for heavier planets due to pressure effects, making these appear more resistant to a runaway. However, atmospheric expansion affects light planets more, making these seem much more resilient. The least resilient planet would be between Mars-size and Venus-size (Figure 1). It would be foolish to regard small planets as habitable. As the atmospheres become large, so does the problem of atmospheric escape. Theoretical considerations show hydrodynamic escape to happen disastrously for a Europa-size planet. The observation is that Mars is too feeble to hold on to any hefty atmosphere, even far from the Sun as it is, is probably relevant too. The take home points for habitable zone nerds are: (1) planet size matters (2) for small planets, atmospheric escape from a "moist

  18. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  19. The Greenhouse Effect - Determination From Accurate Surface Longwave Radiation Measurements

    NASA Astrophysics Data System (ADS)

    Philipona, R.

    Longwave radiation measurements have been drastically improved in recent years. Uncertainty levels down to s2 Wm-2 are realistic and achieved during long-term ´ longwave irradiance measurements. Longwave downward irradiance measurements together with temperature and humidity measurements at the station are used to sepa- rate clear-sky from cloudy-sky situations. Longwave net radiation separated between clear-sky and all-sky situations allows to determine the longwave cloud radiative forc- ing at the station. For clear-sky situations radiative transfer models demonstrate a lin- ear relation between longwave downward radiation and the greenhouse radiative flux. Clear-sky longwave radiation, temperature and humidity for different atmospheres and different altitudes were modeled with the MODTRAN radiative transfer code and compared to longwave radiation, temperature and humidity measured at 4 radiation stations of the Alpine Surface Radiation Budget (ASRB) network at similar altitude and with corresponding atmospheres. At the 11 ASRB stations the clear-sky green- house effect was determined by using clear-sky longwave downward measurements and MODTRAN model calculations. The all-sky greenhouse effect was determined by adding the longwave cloud radiative forcing to the clear-sky greenhouse radiative flux. The altitude dependence of annual and seasonal mean values of the greenhouse effect will be shown for the altitude range of 400 to 3600 meter a.s.l. in the Alps.

  20. Greenhouse effect and the global climate. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning terrestrial climatic changes known as the greenhouse effect. The greenhouse effect is an accumulation of carbon dioxide and other gases that retain solar-induced heat, thereby increasing the average global temperature. Modeling studies, measurements of atmospheric gases, pollutants and temperatures, studies of climatic records for occurrence of similar changes (paleoclimatology), prediction of environmental changes due to the greenhouse effect, government energy policy as a result of possible climate change, and the contributions of manmade and natural pollutants to the greenhouse effect are among the topics discussed. (Contains a minimum of 52 citations and includes a subject term index and title list.)

  1. Studying the Greenhouse Effect: A Simple Demonstration.

    ERIC Educational Resources Information Center

    Papageorgiou, G.; Ouzounis, K.

    2000-01-01

    Studies the parameters involved in a presentation of the greenhouse effect and describes a simple demonstration of this effect. Required equipment includes a 100-120 watt lamp, a 250mL beaker, and a thermometer capable of recording 0-750 degrees Celsius together with a small amount of chloroform. (Author/SAH)

  2. GREENHOUSE GASES (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Greenhouse gas (GHG) emissions are projected for various scenarios and the most appropriate approaches and technologies for mitigation are identified by NRMRL's Air Pollution Prevention and Control Division's Atmospheric Protection Branch (APB). These methods contribute to reduct...

  3. The Runaway Greenhouse Effect on Earth and other Planets

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  4. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    PubMed

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2. PMID:26805926

  5. Effect of infrared transparency on the heat transfer through windows: a clarification of the greenhouse effect.

    PubMed

    Silverstein, S D

    1976-07-16

    The various radiative, convective, and conductive components of the net heat transfer are calculated and illustrated for various infrared transparencies of covers such as would be used in architectural, greenhouse, or solar collector windows. It is shown that in the limiting cases of infrared opacity and infrared transparency the relative contributions of the three modes of heat transfer are altered, but all contribute significantly. The radiation shielding arguments pertain to the analogous green-house effect in the atmosphere. PMID:17796153

  6. Revisiting the Scattering Greenhouse Effect of CO2 Ice Clouds

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.

    2016-02-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  7. Greenhouse effect in quiescent prominences

    NASA Astrophysics Data System (ADS)

    Ryutova, M.; Berger, T. E.; Title, A. M.

    2010-12-01

    Quiescent prominences, by definition, are huge ``clouds'' of cool, dense plasma overlying rarefied hot corona and supported by a complex magnetic field anchored in the photosphere along the magnetic polarity inversion line. One of the most prominent features in their dynamics is formation, growth and collapse of bubble/cavities filled by coronal plasma and emerging, often repeatedly, under a prominence body. As such, prominence/corona interface itself is subject of fundamental plasma instabilities, which include development of a regular series of plumes and spikes typical to the Rayleigh-Taylor instability, the Kelvin-Helmholtz instability, often followed by a sudden collimated mass upflow, which, in nonlinear stage having an explosive character may be responsible for CMEs. These were only recently studied in detail with high cadence, high resolution data obtained from the Hinode satellite. Even more surprises are brought by the SDO/AIA instrument showing the Sun's atmosphere in 12 visible and EUV wavelengths. AIA multi-wavelength images in a temperature range from 105 ~K to 2 × 106 ~K combined with the Hinode/SOT data show that plasma inside the prominence cavity, being as expected, at coronal temperatures, in fact exceeds the temperature of the ambient corona. We suggest that an energetically open highly dynamic processes releasing energy at the prominence/cavity interface accompanied by the ``radiative exchange'', may cause additional increase of temperature and/or density inside cavity. Given pervasive character of prominences, future studies will allow us to perform quantitative and statistical analysis, and reveal relations between the size of cavity, its temperature, and magnetic properties.

  8. Assessing Greenhouse Gas emissions in the Greater Toronto Area using atmospheric observations (Invited)

    NASA Astrophysics Data System (ADS)

    Vogel, F. R.; Chan, E.; Huang, L.; Levin, I.; Worthy, D.

    2013-12-01

    Urban areas are said to be responsible for approximately 75% of anthropogenic Greenhouse Gases (GHGs) emissions while comprising only two percent of the land area [1]. This limited spatial expansion should facilitate a monitoring of anthropogenic GHGs from atmospheric observations. As major sources of emissions, cities also have a huge potential to drive emissions reductions. To effectively manage emissions, cities must however, first measure and report these publicly [2]. Modelling studies and measurements of CO2 from fossil fuel burning (FFCO2) in densely populated areas does, however, pose several challenges: Besides continuous in-situ observations, i.e. finding an adequate atmospheric transport model, a sufficiently fine-grained FFCO2 emission model and the proper background reference observations to distinguish the large-scale from the local/urban contributions to the observed FFCO2 concentration offsets ( ΔFFCO2) are required. Pilot studies which include the data from two 'sister sites*' in the vicinity of Toronto, Canada helped to derive flux estimates for Non-CO2 GHGs [3] and improve our understanding of urban FFCO2 emissions. Our 13CO2 observations reveal that the contribution of natural gas burning (mostly due to domestic heating) account for 80%×7% of FFCO2 emissions in the Greater Toronto Area (GTA) during winter. Our 14CO2 observations in the GTA, furthermore, show that the local offset of CO2 (ΔCO2) between our two sister sites can be largely attributed to urban FFCO2 emissions. The seasonal cycle of the observed ΔFFCO2 in Toronto, combined with high-resolution atmospheric modeling, helps to independently assess the contribution from different emission sectors (transportation, primary energy and industry, domestic heating) as predicted by a dedicated city-scale emission inventory, which deviates from a UNFCCC-based inventory. [1] D. Dodman. 2009. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories

  9. Physics of greenhouse effect and convection in warm oceans

    NASA Technical Reports Server (NTRS)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  10. Production of Greenhouse Gases in The Atmosphere of Early Mars

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars was much warmer and wetter 3.5 to 4 billion years ago than it is today, suggesting that its climate was able to support life in the distant past. Carbon dioxide and methane are greenhouse gases which may have kept Mars warm during this time. We explore the possibility that these gases were produced via grain-catalyzed reactions in the warm, dusty aftermath of large comet and/or asteroid impacts which delivered Mars, volatile inventory.

  11. The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres.

    PubMed

    Goldblatt, Colin; Watson, Andrew J

    2012-09-13

    The ultimate climate emergency is a 'runaway greenhouse': a hot and water-vapour-rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only after the surface reaches approximately 1400 K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life. Venus experienced a runaway greenhouse in the past, and we expect that the Earth will in around 2 billion years as solar luminosity increases. But could we bring on such a catastrophe prematurely, by our current climate-altering activities? Here, we review what is known about the runaway greenhouse to answer this question, describing the various limits on outgoing radiation and how climate will evolve between these. The good news is that almost all lines of evidence lead us to believe that is unlikely to be possible, even in principle, to trigger full a runaway greenhouse by addition of non-condensible greenhouse gases such as carbon dioxide to the atmosphere. However, our understanding of the dynamics, thermodynamics, radiative transfer and cloud physics of hot and steamy atmospheres is weak. We cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one. High climate sensitivity might provide a warning. If we, or more likely our remote descendants, are threatened with a runaway greenhouse, then geoengineering to reflect sunlight might be life's only hope. Injecting reflective aerosols into the stratosphere would be too short-lived, and even sunshades in space might require excessive maintenance. In the distant future, modifying Earth's orbit might provide a sustainable solution. The runaway greenhouse also remains relevant in planetary sciences and astrobiology: as extrasolar planets smaller and nearer to their stars are detected, some will be in

  12. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    ERIC Educational Resources Information Center

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  13. Understanding the Greenhouse Effect Using Clear vs Cloudy Sky Diurnal Temperature Observations

    NASA Astrophysics Data System (ADS)

    Tayor, S. V.

    2006-12-01

    Standard meteorological observations from local airports can provide a tangible example of how the greenhouse effect is a part of everyday life. In the exercise outlined here, students plot diurnal temperature observations to compare the relative magnitude of the greenhouse effect under clear and cloudy-sky conditions, gaining insight into the strength of the greenhouse effect. Contemplation of the relation of surface temperature and humidity with cloud cover leads to a further understading of important atmospheric processes involving the Clausius-Clapeyron equation and terrestrial and solar radiation effects.

  14. Greenhouse Gas Emissions of Indianapolis using a High-Density Surface Tower Network and an Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Lauvaux, T.; Miles, N. L.; Davis, K. J.; Richardson, S.; Deng, A.; Sarmiento, D. P.; Wu, K.; Sweeney, C.; Karion, A.; Hardesty, R. M.; Brewer, A.; Turnbull, J. C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Cambaliza, M. O. L.; Shepson, P. B.; Whetstone, J. R.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) was designed to develop and evaluate methods of detection and attribution of greenhouse gas fluxes from urban environments. Determination of greenhouse gas fluxes and uncertainty bounds is essential for the evaluation of the effectiveness of mitigation strategies. Indianapolis is intended to serve as a test bed for these methods; the results will inform efforts at measuring emissions from urban centers worldwide, including megacities. The generally accepted method for determining urban greenhouse gas emissions is inventories, which are compiled from records of land use and human activity. Atmospheric methods, in which towers are instrumented with sensors to measure greenhouse gas mole fractions and these data are used in an inversion model, have the potential to provide independent determination of emissions. The current INFLUX observation network includes twelve in-situ tower-based, continuous measurements of CO2. A subset of five towers additionally measure CH4, and a different subset measure CO. The subset measuring CO also include weekly flask samples of a wide variety of trace gases including 14CO2. Here we discuss the observed urban spatial and temporal patterns in greenhouse gas mole fraction in Indianapolis, with the critical result being the detectability of city emissions with this high-density network. We also present the first atmospheric inversion results for both CO2 and CH4, compare these results to inventories, and discuss the effects of critical assumptions in the inversion framework. The construction of unbiased atmospheric modeling systems and well-defined prior errors remains an important step in atmospheric emissions monitoring over urban areas. In order to minimize transport model errors, we developed a WRF-Chem FDDA modeling system ingesting surface and profile measurements of horizontal mean wind, temperature, and moisture. We demonstrate the impact of the meteorological data assimilation system on

  15. Greenhouse warming by CH4 in the atmosphere of early Earth.

    PubMed

    Pavlov, A A; Kasting, J F; Brown, L L; Rages, K A; Freedman, R

    2000-05-25

    Earth appears to have been warm during its early history despite the faintness of the young Sun. Greenhouse warming by gaseous CO2 and H2O by itself is in conflict with constraints on atmospheric CO2 levels derived from paleosols for early Earth. Here we explore whether greenhouse warming by methane could have been important. We find that a CH4 mixing ratio of 10(-4) (100 ppmv) or more in Earth's early atmosphere would provide agreement with the paleosol data from 2.8 Ga. Such a CH4 concentration could have been readily maintained by methanogenic bacteria, which are thought to have been an important component of the biota at that time. Elimination of the methane component of the greenhouse by oxidation of the atmosphere at about 2.3-2.4 Ga could have triggered the Earth's first widespread glaciation. PMID:11543544

  16. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Grooß, Jens-Uwe

    2014-04-01

    Lu's "cosmic-ray-driven electron-induced reaction (CRE) theory" is based on the assumption that the CRE reaction of halogenated molecules (e.g., chlorofluorocarbons (CFCs), HCl, ClONO2) adsorbed or trapped in polar stratospheric clouds in the winter polar stratosphere is the key step in forming photoactive halogen species that are the cause of the springtime ozone hole. This theory has been extended to a warming theory of halogenated molecules for climate change. In this comment, we discuss the chemical and physical foundations of these theories and the conclusions derived from the theories. First, it is unclear whether the loss rates of halogenated molecules induced by dissociative electron attachment (DEA) observed in the laboratory can also be interpreted as atmospheric loss rates, but even if this were the case, the impact of DEA-induced reactions on polar chlorine activation and ozone loss in the stratosphere is limited. Second, we falsify several conclusions that are reported on the basis of the CRE theory: There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error. There are also conclusions about the future development of sea ice and global sea level which are fundamentally flawed because Archimedes' principle is neglected. Many elements of the CRE theory are based solely on correlations between certain datasets which are no substitute for providing physical and chemical mechanisms causing a particular behavior noticeable in observations. In summary, the CRE theory cannot be considered as an independent, alternative mechanism for polar stratospheric ozone loss and the conclusions on recent and future surface temperature and global sea level change do not have a physical basis.

  17. HFCs contribution to the greenhouse effect. Present and projected estimations

    SciTech Connect

    Libre, J.M.; Elf-Atochem, S.A.

    1997-12-31

    This paper reviews data that can be used to calculate hydrofluorocarbon (HFC) contribution to the greenhouse effect and compare it to other trace gas contributions. Projections are made for 2010 and 2100 on the basis of available emission scenarios. Industrial judgement on the likelihood of those scenarios is also developed. Calculations can be made in two different ways: from Global Warming Potential weighted emissions of species or by direct calculation of radiative forcing based on measured and projected atmospheric concentrations of compounds. Results show that HFCs corresponding to commercial uses have a negligible contribution to the greenhouse effect in comparison with other trace gases. The projected contributions are also very small even if very high emission scenarios are maintained for decades. In 2010 this contribution remains below 1%. Longer term emissions projections are difficult. However, based on the IPCC scenario IS92a, in spite of huge emissions projected for the year 2100, the HFC contribution remains below 3%. Actually many factors indicate that the real UFC contribution to the greenhouse effect will be even smaller than presented here. Low emissive systems and small charges will likely improve sharply in the future and have drastically improved in the recent past. HFC technology implementation is likely to grow in the future, reach a maximum before the middle of the next century; the market will stabilise driven by recycling, closing of systems and competitive technologies. This hypothesis is supported by previous analysis of the demand for HTCs type applications which can be represented by {open_quotes}S{close_quotes} type curves and by recent analysis indicating that the level of substitution of old products by HFCs is growing slowly. On the basis of those data and best industrial judgement, the contribution of HFCs to the greenhouse effect is highly likely to remain below 1% during the next century. 11 refs., 2 figs., 5 tabs.

  18. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Morgan, E. J.; Lavrič, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-06-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a reference cylinder.

  19. Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Morgan, E. J.; Lavrič, J. V.; Seifert, T.; Chicoine, T.; Day, A.; Gomez, J.; Logan, R.; Sack, J.; Shuuya, T.; Uushona, E. G.; Vincent, K.; Schultz, U.; Brunke, E.-G.; Labuschagne, C.; Thompson, R. L.; Schmidt, S.; Manning, A. C.; Heimann, M.

    2015-02-01

    A new coastal background site has been established for observations of greenhouse gases (GHGs) in the central Namib Desert at Gobabeb, Namibia. The location of the site was chosen to provide observations for a data-poor region in the global sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide, methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer (DFCA). Carbon dioxide and methane are measured with an early-model cavity ring-down spectrometer (CRDS); nitrous oxide and carbon monoxide are measured with an off-axis integrated cavity output spectrometer (OA-ICOS). Instrument-specific water corrections are employed for both the CRDS and OA-ICOS instruments in lieu of drying. The performance and measurement uncertainties are discussed in detail. As the station is located in a remote desert environment, there are some particular challenges, namely fine dust, high diurnal temperature variability, and minimal infrastructure. The gas handling system and calibration scheme were tailored to best fit the conditions of the site. The CRDS and DFCA provide data of acceptable quality when base requirements for operation are met, specifically adequate temperature control in the laboratory and regular supply of electricity. In the case of the OA-ICOS instrument, performance is significantly improved through the implementation of a drift correction through frequent measurements of a working tank.

  20. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    NASA Astrophysics Data System (ADS)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  1. Quantifying anthropogenic greenhouse gas emissions using atmospheric 14CO2

    NASA Astrophysics Data System (ADS)

    Miller, J. B.; Lehman, S.; Montzka, S.; Sweeney, C.; Tans, P.; Turnbull, J.

    2008-12-01

    Δ14C, the ratio of radiocarbon to total carbon, is a theoretically ideal tracer for recently added fossil fuel CO2, because fossil fuel is 14C-free. In contrast, all other carbon reservoirs that exchange CO2 with the atmosphere, like the terrestrial biosphere and the oceans, are relatively rich in 14C. Since 2004, NOAA/ESRL and the University of Colorado Institute for Arctic and Alpine Research (INSTAAR) Radiocarbon Laboratory have worked together to make high precision (< 2 ‰) Δ14C measurements. Our two sites in the eastern USA, Portsmouth, NH (NHA) and Cape May, NJ (CMA) exhibit large CO2 signals from anthropogenic and biogenic fluxes. Using Δ14C, however, we are able to quantitatively partition the boundary layer CO2 signal into biogenic and fossil fuel components (Cbio and Cff). Cff exhibits correlations with many anthropogenic species, including many HFCs and HCFCs, which are measured from the same air samples. Furthermore, our preliminary data show many emission ratios changing seasonally. Atmospheric correlations of a given gas to Cff can simply be multiplied by the well-known emissions of fossil fuel-CO2 to give direct emission estimates of the correlated gas. In this presentation we will show calculated emissions of a variety of HFCs and HCFCs for the northeastern U.S.A. in which "footprints" from the FLEXPART Lagrangian particle dispersion model are used to link atmospheric correlations to specific areas.

  2. Testing Plant Responses to Rarified Atmospheres for Inflatable Greenhouses

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2000-01-01

    Reduced atmospheric pressures will likely be used to minimize mass and engineering requirements for plant growth habitats used in extraterrestrial applications. A chamber with high vacuum capability was used to design and begin construction of a system for testing plant responses to reduced pressure atmospheres. Several preliminary tests were conducted to evaluate chamber suitability for plant tests and to determine performance of thermal and vacuum systems at ambient and reduced pressure atmospheres down to 0.1 atm. The first tests consisted of measurements of internal gas volume and leakage rate. The method for volume determination was quite sensitive and will be needed for plant gas exchange measurements and calculations. This information will also be used in conjunction with the leak rate. Measured leak rates on the order of 0.46 mm Hg/min at 76 mm Hg pressure are low enough to conduct sensitive carbon dioxide exchange rate measurements at reduced pressure given an adequate plant sample (0.5 to 1.0 sq m area). A test rack with lighting provided by three high-pressure sodium vapor lamps was built to accommodate both short-term and long-term plant responses. Initial short-term experiments with lettuce showed that a pressure of 77 mm Hg resulted in a 6.1-fold increase in the rate of water loss compared to water loss at ambient pressure. Plants were severely wilted after 30 minutes exposure to 77 mm Hg. Water loss was found to be inversely correlated with atmospheric pressure over the range of pressures from 0.2 to 1.0 atm; the rate of water loss at 0.2 atm was 4.3 times higher than water loss at ambient pressure. Older leaves showed moderate wilting during exposure to 156 mm Hg, but those exposed to 345 mm, Hg remained turgid. Results suggest a reduced atmospheric pressure limit of 0.2 to 0.3 atm for lettuce grown in a solid medium. Follow-up experiments with carbon dioxide control and control at high relative humidity (> 90 %) will be needed to further confirm

  3. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  4. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region

    PubMed Central

    McKain, Kathryn; Wofsy, Steven C.; Nehrkorn, Thomas; Eluszkiewicz, Janusz; Ehleringer, James R.; Stephens, Britton B.

    2012-01-01

    International agreements to limit greenhouse gas emissions require verification to ensure that they are effective and fair. Verification based on direct observation of atmospheric greenhouse gas concentrations will be necessary to demonstrate that estimated emission reductions have been actualized in the atmosphere. Here we assess the capability of ground-based observations and a high-resolution (1.3 km) mesoscale atmospheric transport model to determine a change in greenhouse gas emissions over time from a metropolitan region. We test the method with observations from a network of CO2 surface monitors in Salt Lake City. Many features of the CO2 data were simulated with excellent fidelity, although data-model mismatches occurred on hourly timescales due to inadequate simulation of shallow circulations and the precise timing of boundary-layer stratification and destratification. Using two optimization procedures, monthly regional fluxes were constrained to sufficient precision to detect an increase or decrease in emissions of approximately 15% at the 95% confidence level. We argue that integrated column measurements of the urban dome of CO2 from the ground and/or space are less sensitive than surface point measurements to the redistribution of emitted CO2 by small-scale processes and thus may allow for more precise trend detection of emissions from urban regions. PMID:22611187

  5. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  6. European emissions of halogenated greenhouse gases inferred from atmospheric measurements.

    PubMed

    Keller, Christoph A; Hill, Matthias; Vollmer, Martin K; Henne, Stephan; Brunner, Dominik; Reimann, Stefan; O'Doherty, Simon; Arduini, Jgor; Maione, Michela; Ferenczi, Zita; Haszpra, Laszlo; Manning, Alistair J; Peter, Thomas

    2012-01-01

    European emissions of nine representative halocarbons (CFC-11, CFC-12, Halon 1211, HCFC-141b, HCFC-142b, HCFC-22, HFC-125, HFC-134a, HFC-152a) are derived for the year 2009 by combining long-term observations in Switzerland, Italy, and Ireland with campaign measurements from Hungary. For the first time, halocarbon emissions over Eastern Europe are assessed by top-down methods, and these results are compared to Western European emissions. The employed inversion method builds on least-squares optimization linking atmospheric observations with calculations from the Lagrangian particle dispersion model FLEXPART. The aggregated halocarbon emissions over the study area are estimated at 125 (106-150) Tg of CO(2) equiv/y, of which the hydrofluorocarbons (HFCs) make up the most important fraction with 41% (31-52%). We find that chlorofluorocarbon (CFC) emissions from banks are still significant and account for 35% (27-43%) of total halocarbon emissions in Europe. The regional differences in per capita emissions are only small for the HFCs, while emissions of CFCs and hydrochlorofluorocarbons (HCFCs) tend to be higher in Western Europe compared to Eastern Europe. In total, the inferred per capita emissions are similar to estimates for China, but 3.5 (2.3-4.5) times lower than for the United States. Our study demonstrates the large benefits of adding a strategically well placed measurement site to the existing European observation network of halocarbons, as it extends the coverage of the inversion domain toward Eastern Europe and helps to better constrain the emissions over Central Europe. PMID:22192076

  7. Ideas of Elementary Students about Reducing the "Greenhouse Effect."

    ERIC Educational Resources Information Center

    Francis, Claire; And Others

    1993-01-01

    Presents the results of a questionnaire given to 563 elementary students to study their ideas of actions that would reduce the greenhouse effect. Most of the children (87%) appreciated that planting trees would help reduce global warming. During interviews it was discovered that children were confused between the greenhouse effect and ozone layer…

  8. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange

    USGS Publications Warehouse

    Hayes, Daniel J.; Kicklighter, David W.; McGuire, Anthony; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry M.; Wullschleger, Stan D.

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed 'active layer' above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this 'permafrost carbon feedback' in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO2 (4.0 Pg C) and CH4 (0.03 Pg C), but is partially compensated by CO2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period.

  9. Role of microorganisms for cycling of atmospheric constituents, emphasizing the greenhouse gas methane (Invited)

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2013-12-01

    Microorganisms have contributed significantly to the formation of the atmosphere and the habitability of Earth. Microbial methanogenesis probably helped overcoming the faint sun problem on young Earth. Later on, cyanobacterial photosynthesis produced oxygen and thus restricted the life zone of methanogenic microbial communities, which nowadays contribute only about 1% to total carbon cycle. Nevertheless, methanogenesis still dominates the budget of atmospheric methane and contributes significantly to the greenhouse effect. There are numerous habitats, which exchange methane with the atmosphere, and even more in which methane is intensively cycled albeit little emitted. Methane can be a byproduct of chemical reactions in plant leaves, or of aerobic methyl phosphonate consumption in ocean water. Most commonly, however, methane is a stoichiometric catabolic product in the degradation of organic matter by anaerobic microorganisms. The degradation is achieved by a complex microbial community consisting of various species of hydrolytic and fermentative Bacteria that produce hydrogen, carbon dioxide and acetate as major end products, and of methanogenic Archaea that eventually convert these compounds to methane and carbon dioxide. The composition of such methanogenic microbial communities, the rates and paths of methane formation, and the isotopic composition of the produced methane all exhibit quite some variability across the different habitats in which methane is produced from organic matter decomposition, such as flooded soils, lake sediments, peatlands, animal gut systems. The structure of the microbial communities often strongly affects their function. It is a challenging task to understand the environmental and biochemical basis of the interactions of abiotic factors and microorganisms shaping the structure and function of the microbial communities in the different methanogenic habitats.

  10. Greenhouse effect and ice ages: historical perspective

    NASA Astrophysics Data System (ADS)

    Bard, Edouard

    2004-06-01

    This article provides a brief historical perspective on the first scientific research on the greenhouse effect and glaciations. While these two aspects of our climate can be investigated separately, naturalists, physicists and chemists during the 19th century were interested jointly in both issues, as well as the possible relationship between them. The contributions of famous pioneers are mentioned, ranging from scholars with encyclopaedic knowledge such as Horace-Bénédict de Saussure, to modern scientists like Svante Arrhenius, who was first to predict global warming as a consequence of using fossil fuels. Despite fragmentary observations, these pioneers had prophetic insights. Indeed, the main fundamental concepts used nowadays have been developed during the 19th century. However, we must wait until the second half of the 20th century to see a true revolution of investigative techniques in the Earth Sciences, enabling full access to previously unknown components of the climate system, such as deep oceans and the interior of the polar ice caps. To cite this article: E. Bard, C. R. Geoscience 336 (2004).

  11. Stratospheric Temperatures and Water Loss from Moist Greenhouse Atmospheres of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Kasting, James F.; Chen, Howard; Kopparapu, Ravi K.

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  12. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE PAGESBeta

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; et al

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  13. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    ERIC Educational Resources Information Center

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  14. Time-Dependent Calculations of an Impulsive Impact-Triggered Runaway Greenhouse Atmosphere on Mars

    NASA Astrophysics Data System (ADS)

    Segura, T. L.; Toon, O. B.; McKay, C. P.

    2003-05-01

    The existence of a few dozen craters of size 200 km and greater proves that large (30-250 km diameter) impacts were abundant in the early history of Mars. Injected water from three sources (the impactor itself, water innate to the crater, and from melting of the polar caps) provide periods of rain following such impacts. Very hot (> 1600 K), global debris blankets are another consequence of these large impacts, and these layers create a thermal pulse that propagates into the subsurface, melting additional water. Both the melted and precipitated water and debris blanket combine to produce a temporarily altered climate on the planet. This research provides the first time-dependent modeled calcuations of this altered climate, and focuses in particular on a possible "runaway" greenhouse state that might be initiated as a result of the additional heat and a sufficiently rapid supply of the melted and precipitated water to the atmosphere. Our model is a 1-D radiative-convective model coupled to a 1-D model of the regolith to calculate the evolution of the surface and subsurface temperatures. The effects of latent heating, cloud condensation, precipitation, and evaporation are included in the model.

  15. The greenhouse effect and acid rain

    SciTech Connect

    Traeger, R.K.

    1990-01-01

    The concentrations of carbon dioxide, methane, sulfur dioxide, nitrous oxides and chlorofluorocarbons is increasing in the earth's atmosphere. Increased concentrations of these trace gases could lead to global warming, increased acid rain and increased UV radiation on the earth's surface; however, the actual impacts are still uncertain and are also the subject of great debate. Application of clean'' energy sources such as geothermal are obviously desirable for decreasing these effects and improving our overall general environment. This paper briefly summarizes the global environment concerns, providing a backdrop for the following papers which describe the geothermal role in future environmental considerations. 5 refs., 2 figs., 1 tab.

  16. Overview of atmospheric effects

    NASA Technical Reports Server (NTRS)

    Rote, D. M.

    1980-01-01

    Effluents from the transportation system are the major cause of Satellite Power System related atmospheric effects. These effects are discussed and include inadvertent weather modification, air quality degradation, compositional changes in the stratosphere and mesosphere, formation of noctilucent clouds, plasma density changes, airglow enhancements, and changes in composition and dynamics of the plasmasphere and magnetosphere.

  17. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus.

    PubMed

    Kasting, J F

    1988-01-01

    A one-dimensional climate model is used to study the response of an Earth-like atmosphere to large increases in solar flux. For fully saturated, cloud-free conditions, the critical solar flux at which a runaway greenhouse occurs, that is, the oceans evaporate entirely, is found to be 1.4 times the present flux at Earth's orbit (S0). This value is close to the flux expected at Venus' orbit early in solar system history. Is is nearly independent of the amount of CO2 present in the atmosphere, but is sensitive to the H2O absorption coefficient in the 8- to 12-micrometers window region. Clouds should tend to depress the surface temperature on a warm, moist planet; thus, Venus may originally have had oceans if its initial water endowment was close to that of Earth. It lost them early in its history, however, because of rapid photodissociation of water vapor followed by escape of hydrogen to space. The critical solar flux above which water is rapidly lost could be as low as 1.1S0. The surface temperature of a runaway greenhouse atmosphere containing a full ocean's worth of water would have been in excess of 1500 degrees K--above the solidus for silicate rocks. The presence of such a steam atmosphere during accretion may have significantly influenced the early thermal evolution of both Earth and Venus. PMID:11538226

  18. Policy Analysis of the Greenhouse Effect (PAGE)

    EPA Science Inventory

    PAGE09 is a spreadsheet probabilistic model written in Microsoft Office Excel. The model calculates regional and global impacts of climate change, and social costs of different greenhouse gases. It also calculates the costs of abatement and adaptation. It is an Integrated Assessm...

  19. Geological assessment of the greenhouse effect

    SciTech Connect

    Crowley, T.J. )

    1993-12-01

    Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

  20. Greenhouse effects due to man-made perturbations of trace gases

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  1. Elementary Pre-Service Teacher Perceptions of the Greenhouse Effect.

    ERIC Educational Resources Information Center

    Groves, Fred H.; Pugh, Ava F.

    1999-01-01

    Expands on earlier work to examine pre-service teachers' views on environmental issues, especially global warming and the related term "greenhouse effect." Suggests that pre-service elementary teachers hold many misconceptions about environmental issues. (DDR)

  2. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and <1 ppbv for CH4. In addition to producing a standalone ground measurement product, this instrument could be used to calibrate/validate four Earth observing missions: ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons), OCO-2 (Orbiting Carbon Observatory), OCO-3, and GOSAT (Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column

  3. How increasing CO2 leads to an increased negative greenhouse effect in Antarctica

    NASA Astrophysics Data System (ADS)

    Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas

    2015-12-01

    CO2 is the strongest anthropogenic forcing agent for climate change since preindustrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, the emission to space is higher than the surface emission; and the greenhouse effect of CO2 is around zero or even negative, which has not been discussed so far. We investigated this in detail and show that for central Antarctica an increase in CO2 concentration leads to an increased long-wave energy loss to space, which cools the Earth-atmosphere system. These findings for central Antarctica are in contrast to the general warming effect of increasing CO2.

  4. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2

    NASA Astrophysics Data System (ADS)

    van Groenigen, Kees Jan; Osenberg, Craig W.; Hungate, Bruce A.

    2011-07-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N2O) and methane (CH4) (refs 2, 3). However, studies on fluxes of N2O and CH4 from soil under increased atmospheric CO2 have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO2 (ranging from 463 to 780 parts per million by volume) stimulates both N2O emissions from upland soils and CH4 emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO2 concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated.

  5. Runaway and moist greenhouse atmospheres and the evolution of earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1988-01-01

    For the case of fully moisture-saturated and cloud-free conditions, the present one-dimensional climate model for the response of an earthlike atmosphere to large solar flux increases notes the critical solar flux at which runaway greenhouse (total evaporation of oceans) occurs to be 1.4 times the present flux at the earth's orbit, almost independently of the CO2 content of the atmophere. The value is, however, sensitive to the H2O absorption coefficient in the 8-12 micron window. Venus oceans may have been lost early on due to rapid water vapor photodissociation, followed by hydrogen escape into space.

  6. Atmospheric Feedbacks By Greenhouse Gases From Baltic Bogs During Late Holocene Reconstructed Using Wetness Anomalies

    NASA Astrophysics Data System (ADS)

    Alm, J.; Sillasoo, Ü.; Endjärv, E.; Lode, E.; Blundell, A.; Charman, D.; Väliranta, M.; Laine, J. K.; Tuittila, E.; Seppä, H.; Korhola, A.; Karofeld, E.

    2006-12-01

    Climate changes are documented in multiple proxies in sediments such as peat. At the same time, information on ecosystem feedbacks in terms of greenhouse gas balances can be derived from the proxies. As part of the EU-project ACCROTELM, we headed to building peat-based multi-proxy datasets from Finnish and Estonian sites over the past 4500 years. The cores were 14C-dated using AMS, and the high resolution age-depth curves were assumed by wiggle matching. We sampled the peat cores with a resolution of 1 cm at least every at 4th cm and analyzed plant macrofossils, testate amoebae, and carbon accumulation rates. At least a decadal resolution was obtained for the 1 cm sample slices throughout the cores. We also sampled current testate amoebae communities at different microsites of vegetation varying in moisture conditions, in order to compile a transfer function for water tables. These reconstructions were attributed with spatial proportions of mire microsites, derived in GIS from aerial images. We reviewed the methane emission and carbon accumulation history of the bog landscape as GWP using the time series of GHG balances over the 4,5 millennia. Special attention was paid for the periods of rapid climatic excursions with wet or dry shifts. The climatic feedbacks, i.e. CO2 deposition from bulk density and C content, and CH4 modeled as function of wetness, were combined in CO2 equivalents. Although the bogs were carbon sinks, the apparent impact was net atmospheric warming, through the dynamics of CH4 release. Burning of peat in the fires located in the sediment cores must have increased the net warming effect. The temporal correlations between the bogs south and north from the Gulf of Finland are inspected.

  7. The impacts of permafrost thaw on land-atmosphere greenhouse gas exchange

    SciTech Connect

    Hayes, Daniel J; Kicklighter, David W.; McGuire, A. David; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry; Wullschleger, Stan

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon stored in previously frozen soil organic matter (SOM) would be a strong positive feedback to climate1. As the northern permafrost region experiences double the rate of warming as the rest of the Earth2, the vast amount of carbon in permafrost soils3 is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases (GHG). Here, we employ a process-based model simulation experiment to assess the net effect of this so-called permafrost carbon feedback (PCF) in recent decades. Results show a wide-spread increase in the depth to permafrost between 1990 and 2006, with simulated active layer thickness (ALT) capturing the mean and spatial variability of the observational data. Analysis of the simulation experiment provides an estimate of a 2.8 mm/yr increase in permafrost depth, which translates to 281 TgC/yr thawed from previously frozen SOM. Overall, we estimate a net GHG forcing of 534 MtCO2eq/yr directly tied to ALT dynamics, while accounting for CO2 (562 MtCO2eq/yr) and CH4 (52 MtCO2eq/yr) release as well as CO2 uptake by vegetation (-80 MtCO2eq/yr). This net forcing represents a significant factor in the estimated 640 MtCO2eq/yr pan-arctic GHG source4, and an additional 6.9% contribution on top of the combined 7792 MtCO2eq/yr fossil fuel emissions from the eight Arctic nations over this time period5.

  8. Assessment of a multi-species in situ FTIR for precise atmospheric greenhouse gas observations

    NASA Astrophysics Data System (ADS)

    Hammer, S.; Griffith, D. W. T.; Konrad, G.; Vardag, S.; Caldow, C.; Levin, I.

    2013-05-01

    We thoroughly evaluate the performance of a multi-species, in situ Fourier transform infrared (FTIR) analyser with respect to high-accuracy needs for greenhouse gas monitoring networks. The in situ FTIR analyser is shown to measure CO2, CO, CH4 and N2O mole fractions continuously, all with better reproducibility than the inter-laboratory compatibility (ILC) goals, requested by the World Meteorological Organization (WMO) for the Global Atmosphere Watch (GAW) programme. Simultaneously determined δ13CO2 reaches reproducibility as good as 0.03‰. Second-order dependencies between the measured components and the thermodynamic properties of the sample, (temperature, pressure and flow rate) and the cross sensitivities among the sample constituents are investigated and quantified. We describe an improved sample delivery and control system that minimises the pressure and flow rate variations, making post-processing corrections for those quantities non-essential. Temperature disequilibrium effects resulting from the evacuation of the sample cell are quantified and improved by the usage of a faster temperature sensor. The instrument has proven to be linear for all measured components in the ambient concentration range. The temporal stability of the instrument is characterised on different time scales. Instrument drifts on a weekly time scale are only observed for CH4 (0.04 nmol mol-1 day-1) and δ13CO2 (0.02‰ day-1). Based on 10 months of continuously collected quality control measures, the long-term reproducibility of the instrument is estimated to ±0.016 μmol mol-1 CO2, ±0.03‰ δ13CO2, ±0.14 nmol mol-1 CH4, ±0.1 nmol mol-1 CO and ±0.04 nmol mol-1 N2O. We propose a calibration and quality control scheme with weekly calibrations of the instrument that is sufficient to reach WMO-GAW inter-laboratory compatibility goals.

  9. Effect of Greenhouse Gases Dissolved in Seawater.

    PubMed

    Matsunaga, Shigeki

    2016-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  10. Effect of Greenhouse Gases Dissolved in Seawater

    PubMed Central

    Matsunaga, Shigeki

    2015-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region. PMID:26729101

  11. An atmospheric photochemical source of the persistent greenhouse gas CF4

    NASA Astrophysics Data System (ADS)

    Jubb, Aaron M.; McGillen, Max R.; Portmann, Robert W.; Daniel, John S.; Burkholder, James B.

    2015-11-01

    A previously uncharacterized atmospheric source of the persistent greenhouse gas tetrafluoromethane, CF4, has been identified in the UV photolysis of trifluoroacetyl fluoride, CF3C(O)F, which is a degradation product of several halocarbons currently present in the atmosphere. CF4 quantum yields in the photolysis of CF3C(O)F were measured at 193, 214, 228, and 248 nm, wavelengths relevant to stratospheric photolysis, to be (75.3 ± 1) × 10-4, (23.7 ± 0.4) × 10-4, (6.6 ± 0.2) × 10-4, and ≤0.4 × 10-4, respectively. A 2-D atmospheric model was used to estimate the contribution of the photochemical source to the global CF4 budget. The atmospheric photochemical production of CF4 from CF3CH2F (HFC-134a), CF3CHFCl (HCFC-124), and CF3CCl2F (CFC-114a) per molecule emitted was calculated to be (1-2.5) × 10-5, 1.0 × 10-4, and 2.8 × 10-3, respectively. Although CF4 photochemical production was found to be relatively minor at the present time, the identified mechanism demonstrates that long-lived products with potential climate impacts can be formed from the atmospheric breakdown of shorter-lived source gases.

  12. Time-dependent Calculations of an Impact-triggered Runaway Greenhouse Atmosphere on Mars

    NASA Technical Reports Server (NTRS)

    Segura, T. L.; Toon, O. B.; Colaprete, A.

    2003-01-01

    Large asteroid and comet impacts result in the production of thick (greater than tens of meters) global debris layers of 1500+ K and the release through precipitation of impact-injected steam and melting ground ice) of large amounts (greater than tens of meters global equivalent thickness) of water on the surface of Mars. Modeling shows that the surface of Mars is still above the freezing point of water after the rainout of the impact-injected steam and melting of subsurface ice. The energy remaining in the hot debris layer will allow evaporation of this water back into the atmosphere where it may rain out at a later time. Given a sufficiently rapid supply of this water to the atmosphere it will initiate a temporary "runaway" greenhouse state.

  13. Atmospheric Removal of Very Long-lived Greenhouse Gases in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Totterdill, A.; Kovacs, T.; Gomez Martin, J.; FENG, W.; Chipperfield, M.; Plane, J. M.

    2013-12-01

    Chlorofluorocarbons are known to have serious ozone depleting and global warming potentials. Perfluorinated compounds such as SF6, NF3, SF5CF3 and CF3CF2Cl which have very long lifetimes (ranging from a few centuries to over 3000 years) are too stable to affect stratospheric ozone but do have among the highest per molecule radiative forcing of any greenhouse pollutant, making them extremely potent greenhouse gases. Due to the stability of these gases in the lower atmosphere, mesospheric loss processes could significantly reduce their estimated atmospheric lifetimes and hence, overall climate impact. Potential sinks include reactions with metals and energetic particles such as electrons or short wavelength photons already present in the upper atmosphere. The metals, in this instance iron, sodium or potassium, are produced by meteoric ablation, while background and energetic electrons have the continuous source of photoionization and auroral precipitation, respectively. In this study we investigate the removal potentials of four very long lived gases (SF6, NF3, SF5CF3 and CF3CF2Cl). First, by four metals (Fe, Mg, Na and K), where rate coefficients are measured using the Fast Flow Tube and Pulsed Laser Flash Photolysis / Laser Induced Fluorescence techniques. Second, removal by electron attachment was investigated using a quadrupole mass spectrometer. measurements. Third, Lyman-alpha (121.56 nm) photolysis was measured in a VUV absorption cell. The resulting removal rate coefficients are currently being input into the Whole Atmosphere Community Climate Model (WACCM) to obtain lifetime measurements for these species.

  14. Solar effect: sunspaces and greenhouses, behavior and health

    SciTech Connect

    Moskal, S.; Brandt, B.

    1981-01-01

    Sunspaces and solar greenhouses can be low-cost additions to existing buildings which by their very nature add to the living space of the dwelling unit into which they are incorporated, thereby influencing the residents' lifestyle. The implications of these solar spaces for their users and the larger community are our focus. Solar greenhouses and sunspaces influence the physical and mental health of the resident, particularly persons who can use the space during the day and those on fixed incomes. Increased sunlight and warmth, and in greenhouses, humidity and food production, directly influence health, while changes in interaction patterns, social status, independence and self-esteem are indirect results. These factors have a beneficial effect on the individual, the family, and the community. With increasing availability and use of solar sunspaces and greenhouses, these wide-ranging benefits could result in changes in demand for human services and have definite implications for public policy.

  15. Variations in the tropical greenhouse effect during El Nino

    SciTech Connect

    Soden, B.J.

    1997-05-01

    Observations of the clear-sky outgoing longwave radiation and sea surface temperature are combined to examine the evolution of the tropical greenhouse effect from colder La Nina conditions in early 1985 to warmer El Nino conditions in late 1987. Although comparison of individual months can suggest a decrease in greenhouse trapping from cold to warm conditions, when the entire 4-yr record is considered a distinct increase in tropical-mean greenhouse trapping of {approximately}2 W m{sup -2} is observed in conjunction with a {approximately}0.4 K increase in tropical-mean sea surface temperature. This observed increase compares favorably with GCM simulations of the change in the clear-sky greenhouse effect during El Nifio-Southern Oscillation (ENSO). Superimposed on top of the SST-driven change in greenhouse trapping are dynamically induced changes in tropical moisture apparently associated with a redistribution of SST during ENSO. The GCM simulations also successfully reproduce this feature, providing reassurance in the ability of GCMs to predict both dynamically and thermodynamically driven changes in greenhouse trapping. 25 refs., 3 figs., 1 tab.

  16. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    NASA Technical Reports Server (NTRS)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  17. Greenhouse effect of trace gases, 1970-1980

    NASA Technical Reports Server (NTRS)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  18. Increased greenhouse-gas intensity of rice production under future atmospheric conditions

    NASA Astrophysics Data System (ADS)

    van Groenigen, Kees Jan; van Kessel, Chris; Hungate, Bruce A.

    2013-03-01

    Increased atmospheric CO2 and rising temperatures are expected to affect rice yields and greenhouse-gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest human-induced sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. The need for meeting a growing global food demand argues for assessing GHG emissions from croplands on the basis of yield rather than land area, such that efforts to reduce GHG emissions take into consideration the consequences for food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Here we show, using meta-analysis, that increased atmospheric CO2 (ranging from 550 to 743ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Increased atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely owing to a decrease in yield. This analysis suggests that rising CO2 and warming will approximately double the GHG intensity of rice production by the end of the twenty-first century, stressing the need for management practices that optimize rice production while reducing its GHG intensity as the climate continues to change.

  19. The state of greenhouse gases in the atmosphere using global observations through 2013

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at

  20. Detecting Methane From Leaking Pipelines and as Greenhouse Gas in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steven; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha

    2012-01-01

    Laser remote sensing measurements of trace gases from orbit can provide unprecedented information about important planetary science and answer critical questions about planetary atmospheres. Methane (CH4) is the second most important anthropogenically produced greenhouse gas. Though its atmospheric abundance is much less than that of CO2 (1.78 ppm vs. 380 ppm), it has much larger greenhouse heating potential. CH4 also contributes to pollution in the lower atmosphere through chemical reactions, leading to ozone production. Atmospheric CH4 concentrations have been increasing as a result of increased fossil fuel production, rice farming, livestock, and landfills. Natural sources of CH4 include wetlands, wild fires, and termites, and perhaps other unknown sources. Important sinks for CH4 include non-saturated soils and oxidation by hydroxyl radicals in the atmosphere. Remotely measuring CH4 and other biogenic molecules (such as ethane and formaldehyde) on Mars also has important implications on the existence of life on Mars. Measuring CH4 at very low (ppb) concentrations from orbit will dramatically improve the sensitivity and spatial resolution in the search for CH4 vents and sub-surface life on other planets. A capability has been developed using lasers and spectroscopic detection techniques for the remote measurements of trace gases in open paths. Detection of CH4, CO2, H2O, and CO in absorption cells and in open paths, both in the mid- IR and near-IR region, has been demonstrated using an Optical Parametric Amplifier laser transmitter developed at GSFC. With this transmitter, it would be possible to develop a remote sensing methane instrument. CH4 detection also has very important commercial applications. Pipeline leak detection from an aircraft or a helicopter can significantly reduce cost, response time, and pinpoint the location. The main advantage is the ability to rapidly detect CH4 leaks remotely. This is extremely important for the petrochemical industry

  1. Knowledge about the 'Greenhouse Effect': Have College Students Improved?

    ERIC Educational Resources Information Center

    Jeffries, Helen; Stanisstreet, Martin; Boyes, Edward

    2001-01-01

    The ideas of Year I undergraduate biology students about the consequences, causes, and cures of the 'greenhouse effect' was determined using a closed-form questionnaire, and results were compared with a parallel study undertaken nearly 10 years ago. Many of the students in the present survey were unaware of the potential effect of global warming…

  2. Demonstration of the greenhouse effect for elementary school students

    NASA Astrophysics Data System (ADS)

    Radovanovic, Jelena

    2014-05-01

    The school where I work is part of the "Step by step towards the sustainable development school" project. Project activities are partly directed towards the popularization of science. As a physics teacher, I have had the opportunity to engage in designing interactive workshops, aiming to introduce younger students to simple experiments which illustrate different natural phenomena, and also in organization, preparation and implementation of school and city science festival (in 2012 and 2013). Numerous displays, workshops and experiments served to introduce a large number of visitors to different topics in the area of science and technology. One of the subjects of forthcoming science festival, planned for May of 2014, is the climate change. To that effect, eight grade students will hold a demonstration and explanation of the greenhouse effect. Although the terms greenhouse effect and global warming are widely used in media, most of the elementary school students in Serbia have poor understanding of the underlying scientific concepts. The experiment with analysis and discussion will first be implemented in one eight-grade class (14 years of age). After that, a group of students from this class will present their newly-acquired knowledge to their peers and younger students at the science fair. Activity objectives: • Explain how atmosphere affects the surface temperature of Earth • Conduct an experiment to demonstrate the greenhouse effect • Analyze the consequences of climate changes Experiment description: Take two empty, transparent containers and add a layer of garden soil. Use cardboard or similar material to make housings for the thermometers. Hang them in the containers, so that they don't touch the soil. Cover one container with a glass panel, and leave the other one open. Place identical incandescent light bulbs at the same distance above each container. Turn the light bulbs on. The students should mark the thermometer readings every 2 minutes, for 20

  3. Biological methanogenesis and the CO2 greenhouse effect

    NASA Technical Reports Server (NTRS)

    Guthrie, P. D.

    1986-01-01

    It is well established that plants tend to increase net photosynthesis under increased carbon dioxide. It is also well established that a large fraction of atmospheric methane is produced by microbial metabolism of organic sediments in paddies and freshwater wetlands, where a major source of organic debris is local plant growth. As CO2 increases, it may lead to increased methane production and a resulting enhancement of the expected greenhouse warming. A rough estimate of the present rate of this biologically mediated feedback on the climate system indicates that it might account for as much as 30 percent of the observed methane increase and speed up the greenhouse forcing by as much as 15 percent.

  4. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  5. Atmospheric greenhouse gases and climate at onset of the last glacial termination

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Brook, E.

    2011-12-01

    Deciphering exact phase relationship between greenhouse gases and climate is important for understanding how greenhouse effect and climate are linked. Especially, onset of the last glacial termination is of great interest because that time interval is important for cracking glacial-interglacial climate cycles. However, previous ice core studies were not able to well handle the issue due to lack of sufficient resolution, precision and/or chronology of greenhouse gas records. Here we present high resolution of CO2 and CH4 records from Siple Dome core, Antarctica. We take advantages from the high accumulation rate in the coring site and high-precision analytical techniques. We also take advantage from the high-resolution of the CH4 records that help better synchronize the CO2 ages with GICC05 Greenland ice core timescale, being consistent with absolute ages obtained from stalagmite records. Implications of our new data for carbon cycles and climate during onset of the last termination will be discussed in the presentation.

  6. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100

    PubMed Central

    Breecker, D. O.; Sharp, Z. D.; McFadden, L. D.

    2010-01-01

    Quantifying atmospheric CO2 concentrations ([CO2]atm) during Earth’s ancient greenhouse episodes is essential for accurately predicting the response of future climate to elevated CO2 levels. Empirical estimates of [CO2]atm during Paleozoic and Mesozoic greenhouse climates are based primarily on the carbon isotope composition of calcium carbonate in fossil soils. We report that greenhouse [CO2]atm have been significantly overestimated because previously assumed soil CO2 concentrations during carbonate formation are too high. More accurate [CO2]atm, resulting from better constraints on soil CO2, indicate that large (1,000s of ppmV) fluctuations in [CO2]atm did not characterize ancient climates and that past greenhouse climates were accompanied by concentrations similar to those projected for A.D. 2100. PMID:20080721

  7. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100.

    PubMed

    Breecker, D O; Sharp, Z D; McFadden, L D

    2010-01-12

    Quantifying atmospheric CO(2) concentrations ([CO(2)](atm)) during Earth's ancient greenhouse episodes is essential for accurately predicting the response of future climate to elevated CO(2) levels. Empirical estimates of [CO(2)](atm) during Paleozoic and Mesozoic greenhouse climates are based primarily on the carbon isotope composition of calcium carbonate in fossil soils. We report that greenhouse [CO(2)](atm) have been significantly overestimated because previously assumed soil CO(2) concentrations during carbonate formation are too high. More accurate [CO(2)](atm), resulting from better constraints on soil CO(2), indicate that large (1,000s of ppmV) fluctuations in [CO(2)](atm) did not characterize ancient climates and that past greenhouse climates were accompanied by concentrations similar to those projected for A.D. 2100. PMID:20080721

  8. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    NASA Astrophysics Data System (ADS)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  9. The Physics behind a Simple Demonstration of the Greenhouse Effect

    ERIC Educational Resources Information Center

    Buxton, Gavin A.

    2014-01-01

    A simple, and popular, demonstration of the greenhouse effect involves a higher temperature being observed in a container with an elevated concentration of CO[subscript 2] inside than in a container with just air enclosed, when subject to direct light. The CO[subscript 2] absorbs outgoing thermal radiation and causes the air inside the container…

  10. Seventh Grade Students' Mental Models of the Greenhouse Effect

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Choi, Soyoung; Niyogi, Dev; Charusombat, Umarporn

    2011-01-01

    This constructivist study investigates 225 student drawings and explanations from three different schools in the midwest in the US, to identify seventh grade students' mental models of the greenhouse effect. Five distinct mental models were derived from an inductive analysis of the content of the students' drawings and explanations: Model 1, a…

  11. Exploring the Greenhouse Effect through Physics-Oriented Activities

    ERIC Educational Resources Information Center

    Browne, Kerry P.; Laws, Priscilla W.

    2003-01-01

    We are developing a new activity-based unit on global warming and the environment as part of the "Explorations in Physics Curriculum." We describe the current status of this unit, which focuses on helping students understand the greenhouse effect and its relationship to global warming. We outline several problems encountered in testing the unit…

  12. Reply to "Comment on 'Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change' by Dana Nuccitelli et al."

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2014-04-01

    In the Comment by Nuccitelli et al., they make many false and invalid criticisms of the CFC-warming theory in my recent paper, and claim that their anthropogenic forcings including CO2 would provide a better explanation of the observed global mean surface temperature (GMST) data over the past 50 years. First, their arguments for no significant discrepancy between modeled and observed GMST changes and for no pause in recent global warming contradict the widely accepted fact and conclusion that were reported in the recent literature extensively. Second, their criticism that the key data used in my recent paper would be "outdated" and "flawed" is untrue as these data are still used in the recent or current literature including the newest (2013) IPCC Report and there is no considerable difference between the UK Met Office HadRCUT3 and HadRCUT4 GMST datasets. The use of even more recently computer-reconstructed total solar irradiance data (whatever have large uncertainties) for the period prior to 1976 would not change any of the conclusions in my paper, where quantitative analyses were emphasized on the influences of humans and the Sun on global surface temperature after 1970 when direct measurements became available. For the latter, the solar effect has been well shown to play only a negligible role in global surface temperature change since 1970, which is identical to the conclusion made in the 2013 IPCC Report. Third, their argument that the solar effect would not play a major role in the GMST rise of 0.2°C during 1850-1970 even contradicts the data and conclusion presented in a recent paper published in their Skeptical Science by Nuccitelli himself. Fourth, their comments also indicate their lack of understandings of the basic radiation physics of the Earth system as well as of the efficacies of different greenhouse gases in affecting global surface temperature. Their listed "methodological errors" are either trivial or non-existing. Fifth, their assertion that

  13. On the scattering greenhouse effect of CO2 ice clouds.

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R. T.; Erlick, C.

    1998-05-01

    The authors offer some remarks on the greenhouse effect due to high clouds that reflect thermal infrared radiation, but do not absorb or emit it. Such clouds are an idealization of the CO2 ice clouds that are thought to have existed early in the history of Mars. Clouds of this type enter also in the ability of Earth to recover from a globally glaciated "cold start" and in the determination of habitable zones of planetary systems. A simplified model of cloud optical effects is used to estimate the effect of high CO2 ice clouds on the planetary radiation budget in the solar and infrared spectrum. It is argued that the scattering greenhouse effect certainly cancels out a large part of the cooling effect due to the cloud's visible albedo and in some circumstances may even lead to a net warming as compared to the no-cloud case. Speculative implications for the climate of early Mars are discussed.

  14. ObsPack: a framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements

    NASA Astrophysics Data System (ADS)

    Masarie, K. A.; Peters, W.; Jacobson, A. R.; Tans, P. P.

    2014-12-01

    Observation Package (ObsPack) is a framework designed to bring together atmospheric greenhouse gas observations from a variety of sampling platforms, prepare them with specific applications in mind, and package and distribute them in a self-consistent and well-documented product. Data products created using the ObsPack framework (called "ObsPack products") are intended to support carbon cycle modeling studies and represent a next generation of value-added greenhouse gas observation products modeled after the cooperative GLOBALVIEW products introduced in 1996. Depending on intended use, ObsPack products may include data in their original form reformatted using the ObsPack framework or may contain derived data consisting of averages, subsets, or smoothed representations of original data. All products include extensive ancillary information (metadata) intended to help ensure the data are used appropriately, their calibration and quality assurance history are clearly described, and that individuals responsible for the measurements (data providers or principal investigators (PIs)) are properly acknowledged for their work. ObsPack products are made freely available using a distribution strategy designed to improve communication between data providers and product users. The strategy includes a data usage policy that requires users to directly communicate with data providers and an automated e-mail notification system triggered when a product is accessed. ObsPack products will be assigned a unique digital object identifier (DOI) to ensure each product can be unambiguously identified in scientific literature. Here we describe the ObsPack framework and its potential role in supporting the evolving needs of both data providers and product users.

  15. ObsPack: a framework for the preparation, delivery, and attribution of atmospheric greenhouse gas data

    NASA Astrophysics Data System (ADS)

    Masarie, K. A.; Peters, W.; Jacobson, A. R.; Tans, P. P.

    2014-09-01

    Observation Package (ObsPack) is a framework designed to bring together atmospheric greenhouse gas observations from a variety of sampling platforms, prepare them with specific applications in mind, and package and distribute them in a self-consistent and well-documented product. Data products created using the ObsPack framework (called "ObsPack products") are intended to support carbon cycle modeling studies and represent the next generation of value-added greenhouse gas observation products modeled after the cooperative GLOBALVIEW products introduced in 1996. Depending on intended use, ObsPack products may include data in their original form reformatted using the ObsPack framework or may contain derived data consisting of averages, subsets or smoothed representations of original data. All products include extensive ancillary information (metadata) intended to help ensure the data are used appropriately, their calibration and quality assurance history are clearly described, and that individuals responsible for the measurements (data providers or principal investigators (PIs)) are properly acknowledged for their work. ObsPack products are made freely available using a distribution strategy designed to improve communication between data providers and product users. The strategy includes a data usage policy that requires users to directly communicate with data providers and an automated e-mail notification system triggered when a product is accessed. ObsPack products will be assigned a unique Digital Object Identifier (DOI) to ensure each product can be unambiguously identified in scientific literature. Here we describe the ObsPack framework and its potential role in supporting the evolving needs of both data providers and product users.

  16. Regional climatic effects of atmospheric SO2 on Mars

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Fanale, F. P.

    1992-01-01

    The conditions under which the valley networks on Mars may have formed remains controversial. The magnitude of an atmospheric greenhouse effect by an early massive CO2 atmosphere has recently been questioned by Kasting. Recent calculations indicate that if solar luminosity were less than about 86 percent of its current value, formation of CO2 clouds in the Martian atmosphere would depress the atmospheric lapse rate and reduce the magnitude of surface warming. In light of recent revisions of magma generation on Mars during each Martian epoch, and the suggestions by Wanke et al. that the role of liquid SO2 should be more carefully explored, we have recalculated the potential greenhouse warming by atmospheric SO2 on Mars, with an emphasis on more localized effects. In the vicinity of an active eruption, the concentration of atmospheric SO2 will be higher than if it is assumed that the erupted SO2 is instantaneously globally distributed. The local steady-state concentration of SO2 is a function of the rate at which it is released, its atmospheric lifetime, and the rate at which local winds act to disperse the SO2. We have made estimates of eruption rates, length of eruption, and dispersion rates of volcanically released SO2, for a variety of atmospheric conditions and atmospheric lifetimes of SO2 to explore the maximum regional climatic effect of SO2.

  17. Soil-atmosphere greenhouse-gas exchange in a bioretention system

    NASA Astrophysics Data System (ADS)

    Daly, E.; Chan, H.; Beringer, J.; Livesley, S. J.

    2011-12-01

    Bioretention systems are a popular green-technology for the management of urban stormwater runoff in many countries. They typically consist of a trench filled with a highly permeable soil medium that supports vegetation; runoff is diverted to bioretention systems and, by percolating through the filter medium, is subjected to a number of treatment processes. Nitrogen (N) is one of the key pollutants targeted by bioretention systems, which are able to reduce N concentrations considerably from inflow to outflow. To increase N removal, a saturated zone at the bottom of the filter medium is often artificially generated, to both enhance the denitrification process and increase the water available to the vegetation between inflow events. Although studies on the N-removal performance of bioretention systems are widely available in the literature, less is known about the exchange of greenhouse gases (GHG), especially nitrous oxide (N2O), between the bioretention systems and the atmosphere. Here, we present an experimental pilot study to measure N2O and CO2 soil emissions in a bioretention system installed on the Clayton Campus of Monash University in Melbourne, Australia. The bioretention system is divided into three cells, each 15 m2; the system as a whole receives water run-off from 4500 m2 of impervious car park. We monitored two cells with mostly sandy-loam vegetated with native sedges (mainly Carex Appressa and Lomandra Longifolia), one with and one without a saturated zone. Three manual flux chambers were installed in both cells. Gas flux samples were taken twice a week at about 11 am between the 2nd of March and the 18th of May 2011 (late summer and fall). Since October 2010, air-phase soil CO2 concentration profiles were measured continuously using solid-state infrared CO2 transmitters (GMT-221 model, Vaisala, Finland), along with soil moisture and soil temperature. Preliminary analysis of the chamber data (March only) showed that N2O fluxes were in general below 50

  18. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    NASA Astrophysics Data System (ADS)

    McNicol, Gavin; Silver, Whendee L.

    2014-04-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is required are soil conditions where the rate of oxygen (O2) consumption exceeds the rate of atmospheric replenishment. We investigated the effects of soil anaerobiosis, generated with and without flooding, on greenhouse gas emissions and redox-sensitive biogeochemistry. We collected a Histosol from a regularly flooded peatland pasture and an Ultisol from a humid tropical forest where soil experiences frequent low redox events. We used a factorial design of flooding and anaerobic dinitrogen (N2) headspace treatments applied to replicate soil microcosms. An N2 headspace suppressed carbon dioxide (CO2) emissions by 50% in both soils. Flooding, however, led to greater anaerobic CO2 emissions from the Ultisol. Methane emissions under N2 were also significantly greater with flooding in the Ultisol. Flooding led to very low N2O emissions after an initial pulse in the Histosol, while higher emission rates were maintained in control and N2 treatments. We conclude that soil greenhouse gas emissions are sensitive to the redox effects of O2 depletion as a driver of anaerobiosis and that flooding can have additional effects independent of O2 depletion. We emphasize that changes to the soil diffusive environment under flooding impacts transport of all gases, not only O2, and changes in dissolved solute availability under flooding may lead to increased mineralization of C.

  19. Climatic effects due to halogenated compounds in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Pinto, J. P.; Yung, Y. L.

    1980-01-01

    Using a one-dimensional radiative-convective model, a sensitivity study is performed of the effect of ozone depletion in the stratosphere on the surface temperature. There could be a cooling of the surface temperature by approximately 0.2 K due to chlorofluoromethane-induced ozone depletion at steady state (assuming 1973 release rates). This cooling reduces significantly the greenhouse effect due to the presence of chlorofluoromethanes. Carbon tetrafluoride has a strong nu sub 3 band at 7.8 microns, and the atmospheric greenhouse effect is shown to be 0.07 and 0.12 K/ppbv with and without taking into account overlap with CH4 and N2O bands. At concentrations higher than 1 ppbv, absorption by the nu sub 3 band starts to saturate and the greenhouse effect becomes less efficient.

  20. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect).

    ERIC Educational Resources Information Center

    Boyes, Edward; Stanisstreet, Martin

    1997-01-01

    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  1. Potential effects of anthropogenic greenhouse gases on avian habitas and populations in the northern Great Plains

    SciTech Connect

    Larson, D.L. )

    1994-04-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect CO[sub 2] has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains. Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled CO[sub 2] scenarios will require substantial basic research to clarify. 113 refs., 1 fig.

  2. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, D.L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  3. Greenhouse gas emissions derived from regional measurement networks and atmospheric inversions: Results from the MCI and INFLUX experiments

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Andrews, A. E.; Cambaliza, M.; Denning, A.; Gurney, K. R.; Lauvaux, T.; Miles, N. L.; Ogle, S. M.; Possolo, A.; Richardson, S.; Schuh, A. E.; Shepson, P. B.; Sweeney, C.; Turnbull, J. C.; West, T. O.; Whetstone, J. R.

    2010-12-01

    Atmospheric evaluation of emissions inventories is increasingly envisioned as a critical element of greenhouse gas emissions regulation. Atmospheric inversions utilizing dense regional networks of greenhouse gas measurements, however, are scarce. Discussions of the measurements and methods required to infer fluxes at spatial and temporal resolutions sufficient to meet the needs of policy makers, therefore, remain largely hypothetical. We present results from one past field experiment, the North American Carbon Program (NACP) Midcontinent Intensive (MCI) regional study, and preliminary results from a new experiment, the Indianapolis Flux project (INFLUX), both of which include high density regional greenhouse gas measurement networks. Both studies also include detailed regional inventory assessments of greenhouse gas sources and sinks. The MCI results show large amplitude, spatially coherent synoptic and seasonal patterns in boundary layer CO2 mixing ratios correlated with cropping patterns. Regional atmospheric inversions utilizing these data show corrections that tend towards the inventory estimates regardless of the prior flux estimates utilized in the inversion, and the region appears to have been slightly oversampled by the instrument density deployed. The uncertainty bounds associated with the inverted fluxes, however, remain fairly large despite the high density of atmospheric data, and the true uncertainty is difficult to assess. The INFLUX experiment will utilize a similar number of sensors deployed over a spatial domain two to three orders of magnitude smaller in area than the MCI domain, and will attempt to utilize similar techniques to infer anthropogenic emissions at high spatial resolution. We will present the experimental design for this project including the unique challenges of multi-species inversions and the need to deconvolve biological and fossil fuel fluxes. We anticipate that this experiment will serve as a benchmark regarding the accuracy and

  4. Estimation of the atmosphere-ocean fluxes of greenhouse gases and aerosols at the finer resolution of the coastal ocean.

    NASA Astrophysics Data System (ADS)

    Vieira, Vasco; Sahlée, Erik; Jurus, Pavel; Clementi, Emanuela; Pettersson, Heidi; Mateus, Marcos

    2016-04-01

    The balances and fluxes of greenhouse gases and aerosols between atmosphere and ocean are fundamental for Earth's heat budget. Hence, the scientific community needs to know and simulate them with accuracy in order to monitor climate change from Earth-Observation satellites and to produce reliable estimates of climate change using Earth-System Models (ESM). So far, ESM have represented earth's surface with coarser resolutions so that each cell of the marine domain is dominated by the open ocean. In such case it is enough to use simple algorithms considering the wind speed 10m above sea-surface (u10) as sole driver of the gas transfer velocity. The formulation by Wanninkhof (1992) is broadly accepted as the best. However, the ESM community is becoming increasingly aware of the need to model with finer resolutions. Then, it is no longer enough to only consider u10 when modelling gas transfer velocities across the coastal oceans' surfaces. More comprehensive formulations are required that adjust better to local conditions by also accounting for the effects of sea-surface agitation, wave breaking, atmospheric stability of the Surface Boundary Layer, current drag with the bottom, surfactants and rain. Accurate algorithms are also fundamental to monitor atmosphere and ocean greenhouse gas concentrations using satellite data and reverse modelling. Past satellite missions ERS, Envisat, Jason-2, Aqua, Terra and Metop, have already been remotely sensing the ocean's surface at much finer resolutions than ESM using instruments like MERIS, MODIS, AMR, AATSR, MIPAS, Poseidon-3, SCIAMACHY, SeaWiFS, and IASI. The planned new satellite missions Sentinel-3, OCO-2 and GOSAT will further increase the resolutions. We developed a framework to congregate competing formulations for the estimation of the solubility and transfer velocity of virtually any gas on the biosphere taking into consideration the atmosphere and ocean fundamental variables and their derived geophysical processes

  5. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  6. Elementary Pre-Service Teacher Perceptions of the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Groves, Fred H.; Pugh, Ava F.

    1999-03-01

    Environmental issues are an important topic both in national news, and in science education. Previous studies revealed that students hold many misconceptions relating to such issues as global warming, ozone depletion, and acid rain. This article expands on earlier work by Boyes et al. to examine pre-service teachers' views about these issues, especially global warming and the related term, the greenhouse effect, and the effect of their views on elementary student performance. Results support the findings of Boyes et al. that elementary education majors hold many misconceptions about these environmental issues, and these can effect their teaching of these topics in elementary classes.

  7. Atmospheric effects on radiation measurements

    NASA Technical Reports Server (NTRS)

    Jurica, G. M.

    1973-01-01

    Two essentially distinct regions of the electromagnetic spectrum are discussed: (1) the scattering region in which the radiation energy is provided by the incident solar flux; and (2) the infrared region in which emission by the earth's surface and atmospheric gases supply radiative energy. In each of these spectral regions the atmosphere performs its dual function with respect to a remote sensing measurement of surface properties. The atmosphere acts both as a filter and as a noise generator removing and obscuring sought after information. Nevertheless, with proper application of concepts such as have been considered, it will be possible to remove these unwanted atmospheric effects and to improve identification techniques being developed.

  8. El Nino-southern oscillation: A coupled response to the greenhouse effect?

    SciTech Connect

    Sun, De-Zheng

    1997-11-01

    The purpose of this article to elucidate the link between the El Nino-Southern Oscillation (ENSO) and radiative forcing (of which the greenhouse effect is a major part). A unified theory for the tropical Pacific climate is developed by considering the response of the coupled ocean-atmosphere to a changing radiative forcing. The hypothesis is that both the zonal surface sea temperature (SST) gradients and ENSO are a coupled response to the strong radiative heating or the tropical warmth. Owing to ocean-atmosphere interaction, the stronger the radiative heating, the larger the zonal SST gradients. When the SST gradients exceed a critical value, however, the ocean-atmosphere interaction in the cold-tongue region is too strong for the coupled system to hold steady. Consequently, the coupled system enters an oscillatory state. These coupled dynamics are examined in a simple mathematical model whose behavior is consistent with the hypothesis. With a linear temperature profile throughout the depth of subsurface ocean, the model predicts that both the magnitude and period of the oscillation increase with increases in radiative forcing or the greenhouse effect. The increase in the magnitude of the oscillation largely comes from an enhancement of the magnitude of the cold anomalies, while the increase in the period mostly comes from a prolonged duration of the warm events. With a profile in which the lapse rate decreases with depth, the sensitivity is more moderate. The simplicity of the model prevents a quantitative simulation of the sensitivity of ENSO to increases in the greenhouse effect, but qualitatively the model results support the empirical interpretation of the prolonged duration of the 1990-1995 ENSO event. 5 refs., 7 figs.

  9. Analyzing R and D options for the greenhouse effect

    SciTech Connect

    Judd, B.R.; Olmsted, E.; Pollenz, L.J.

    1985-01-01

    This paper provides an overview of the methodology. The remainder of the paper is organized into four main sections. The first of these sections provides an overview of the analytic framework and R and D and policy issues relevant to the greenhouse effect. The next section describes the model that the authors have developed to evaluate alternative emissions, climate changes, and effects scenarios. The next section of the paper outlines how the model can be used to facilitate R and D planning decisions. The paper concludes with a summary of the authors approach and directions for future work.

  10. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    SciTech Connect

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; Smith, Jim; McCarty, Jessica L.; Gurney, Kevin R.; Tans, P. P.; Denning, Scott

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of the conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.

  11. Atmospheric effects on target acquisition

    NASA Astrophysics Data System (ADS)

    Kopeika, Norman S.; Zilberman, Arkadi; Yitzhaky, Yitzhak; Golbraikh, Ephim

    2012-06-01

    Imaging systems have advanced significantly in the last decades in terms of low noise and better resolution. While imaging hardware resolution can be limited by collection aperture size or by the camera modulation transfer function (MTF), it is the atmosphere that usually limits image quality for long range imaging. The main atmospheric distortions are caused by optical turbulence, absorption, and scattering by particulates in the atmosphere. The effects of the turbulent medium over long/short exposures are image blur and wavefront tilts that cause spatio-temporal image shifts. This blur limits the frequency of line pairs that can be resolved in the target's image and thus affects the ability to acquire targets. The observer appears to be able to ignore large-scale distortions while small-scale distortions blur the image and degrade resolution. Resolution degradations due to turbulence are included in current performance models by the use of an atmospheric MTF. Turbulence distortion effects are characterized by both short and long exposure MTFs. In addition to turbulence, scattering and absorption produced by molecules and aerosols in the atmosphere cause both attenuation and additional image blur according to the atmospheric aerosol MTF. The absorption can have significant effect on target acquisition in infrared (IR) imaging. In the present work, a brief overview and discussion of atmospheric effects on target acquisition in the IR is given.

  12. Estimating greenhouse gas emissions at the soil-atmosphere interface in forested watersheds of the US Northeast.

    PubMed

    Gomez, Joshua; Vidon, Philippe; Gross, Jordan; Beier, Colin; Caputo, Jesse; Mitchell, Myron

    2016-05-01

    Although anthropogenic emissions of greenhouse gases (GHG: CO2, CH4, N2O) are unequivocally tied to climate change, natural systems such as forests have the potential to affect GHG concentration in the atmosphere. Our study reports GHG emissions as CO2, CH4, N2O, and CO2eq fluxes across a range of landscape hydrogeomorphic classes (wetlands, riparian areas, lower hillslopes, upper hillslopes) in a forested watershed of the Northeastern USA and assesses the usability of the topographic wetness index (TWI) as a tool to identify distinct landscape geomorphic classes to aid in the development of GHG budgets at the soil atmosphere interface at the watershed scale. Wetlands were hot spots of GHG production (in CO2eq) in the landscape owing to large CH4 emission. However, on an areal basis, the lower hillslope class had the greatest influence on the net watershed CO2eq efflux, mainly because it encompassed the largest proportion of the study watershed (54 %) and had high CO2 fluxes relative to other land classes. On an annual basis, summer, fall, winter, and spring accounted for 40, 27, 9, and 24 % of total CO2eq emissions, respectively. When compared to other approaches (e.g., random or systematic sampling design), the TWI landscape classification method was successful in identifying dominant landscape hydrogeomorphic classes and offered the possibility of systematically accounting for small areas of the watershed (e.g., wetlands) that have a disproportionate effect on total GHG emissions. Overall, results indicate that soil CO2eq efflux in the Archer Creek Watershed may exceed C uptake by live trees under current conditions. PMID:27085717

  13. A space parasol as a countermeasure against the greenhouse effect

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1991-01-01

    It is suggested that the deployment of a 'space parasol' at the L1 Langrangian point of the earth-sun system would serve to intercept some desired fraction of the solar radiant energy, thereby lessening the impact of the greenhouse effect. The parasol satellites are described and possible orbit configurations are discussed. Orbital possibilities include Low Earth Orbit, Geosynchronous orbit, and L1 which appears to be the best option. Structural strength, control, and use of extraterrestrial material in the construction of the parasol are discussed.

  14. Knowledge about the 'Greenhouse Effect': have college students improved?

    NASA Astrophysics Data System (ADS)

    Jeffries, Helen; Stanisstreet, Martin; Boyes, Edward

    2001-02-01

    The prevalence of the ideas of Year I undergraduate biology students about the consequences, causes and cures of the 'greenhouse effect' was determined using a closed-form questionnaire, and the results compared with a parallel study undertaken nearly 10 years ago. Many of the students in the present study were unaware of the potential effect of global warming on the distribution of crop pests, or that ground level ozone acts as a 'greenhouse gas'. Prevalent misconceptions were that global warming is caused by increased penetration of solar radiation, that it is connected with holes in the ozone layer, that it would result in increased skin cancer, and that use of unleaded petrol would reduce it. There appeared to be a general conflation of thinking about global warming and ozone layer depletion. Despite an increased certainty about the existence and effects of global warming among experts, the results are broadly similar to, and certainly no better than, those obtained with an equivalent group of students in a previous study, suggesting that despite media publicity and inclusion of the issue of global warming in the formal curriculum, insecure knowledge and misconceptions persist.

  15. [Errors Analysis and Correction in Atmospheric Methane Retrieval Based on Greenhouse Gases Observing Satellite Data].

    PubMed

    Bu, Ting-ting; Wang, Xian-hua; Ye, Han-han; Jiang, Xin-hua

    2016-01-01

    High precision retrieval of atmospheric CH4 is influenced by a variety of factors. The uncertainties of ground properties and atmospheric conditions are important factors, such as surface reflectance, temperature profile, humidity profile and pressure profile. Surface reflectance is affected by many factors so that it is difficult to get the precise value. The uncertainty of surface reflectance will cause large error to retrieval result. The uncertainties of temperature profile, humidity profile and pressure profile are also important sources of retrieval error and they will cause unavoidable systematic error. This error is hard to eliminate only using CH4 band. In this paper, ratio spectrometry method and CO2 band correction method are proposed to reduce the error caused by these factors. Ratio spectrometry method can decrease the effect of surface reflectance in CH4 retrieval by converting absolute radiance spectrometry into ratio spectrometry. CO2 band correction method converts column amounts of CH4 into column averaged mixing ratio by using CO2 1.61 μm band and it can correct the systematic error caused by temperature profile, humidity profile and pressure profile. The combination of these two correction methods will decrease the effect caused by surface reflectance, temperature profile, humidity profile and pressure profile at the same time and reduce the retrieval error. GOSAT data were used to retrieve atmospheric CH4 to test and validate the two correction methods. The results showed that CH4 column averaged mixing ratio retrieved after correction was close to GOSAT Level2 product and the retrieval precision was up to -0.24%. The studies suggest that the error of CH4 retrieval caused by the uncertainties of ground properties and atmospheric conditions can be significantly reduced and the retrieval precision can be highly improved by using ratio spectrometry method and CO2 hand correction method. PMID:27228765

  16. The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation

    NASA Astrophysics Data System (ADS)

    Sijp, Willem P.; England, Matthew H.

    2016-02-01

    We examine whether the reduced meridional temperature gradients of past greenhouse climates might have reduced oceanic overturning, leading to a more quiescent subsurface ocean. A substantial reduction of the pole-to-Equator temperature difference is achieved in a coupled climate model via an altered radiative balance in the atmosphere. Contrary to expectations, we find that the meridional overturning circulation and deep ocean kinetic energy remain relatively unaffected. Reducing the wind strength also has remarkably little effect on the overturning. Instead, overturning strength depends on deep ocean density gradients, which remain relatively unaffected by the surface changes, despite an overall decrease in ocean density. Ocean poleward heat transport is significantly reduced only in the Northern Hemisphere, as now the circulation operates across a reduced temperature gradient, suggesting a sensitivity of Northern Hemisphere heat transport in greenhouse climates to the overturning circulation. These results indicate that climate models of the greenhouse climate during the Cretaceous and early Paleogene may yield a reasonable overturning circulation, despite failing to fully reproduce the extremely reduced temperature gradients of those time periods.

  17. The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation

    NASA Astrophysics Data System (ADS)

    Sijp, W. P.; England, M. H.

    2015-10-01

    We examine whether the reduced meridional temperature gradients of past greenhouse climates might have reduced oceanic overturning, leading to a more quiescent subsurface ocean. A substantial reduction of the pole to equator temperature difference is achieved in a coupled climate model via an altered radiative balance in the atmosphere. Contrary to expectations, we find that the meridional overturning circulation and deep ocean kinetic energy remain relatively unaffected. Reducing the wind strength also has remarkably little effect on the overturning. Instead, overturning strength depends on deep ocean density gradients, which remain relatively unaffected by the surface changes, despite an overall decrease in ocean density. Ocean poleward heat transport is significantly reduced only in the Northern Hemisphere, as now the circulation operates across a reduced temperature gradient, suggesting the overturning circulation dominates heat transport in greenhouse climates. These results indicate that climate models of the greenhouse climate during the Cretaceous and early Paleogene may yield a reasonable overturning circulation, despite failing to fully reproduce the extremely reduced temperature gradients of those time periods.

  18. Comparison of the observed and calculated clear sky greenhouse effect - Implications for climate studies

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1992-01-01

    The clear sky greenhouse effect is defined in terms of the outgoing longwave clear sky flux at the top of the atmosphere. Recently, interest in the magnitude of the clear sky greenhouse effect has increased due to the archiving of the clear sky flux quantity through the Earth Radiation Budget Experiment (ERBE). The present study investigates to what degree of accuracy this flux can be analyzed by using independent atmospheric and surface data in conjunction with a detailed longwave radiation model. The conclusion from this comparison is that for most regions over oceans the analyzed fluxes agree to within the accuracy of the ERBE-retrieved fluxes (+/- 5 W/sq m). However, in regions where deep convective activity occurs, the ERBE fluxes are significantly higher (10-15 W/sq m) than the calculated fluxes. This bias can arise from either cloud contamination problems or variability in water vapor amount. It is argued that the use of analyzed fluxes may provide a more consistent clear sky flux data set for general circulation modeling validation. Climate implications from the analyzed fluxes are explored. Finally, results for obtaining longwave surface fluxes over the oceans are presented.

  19. THE MECHANICAL GREENHOUSE: BURIAL OF HEAT BY TURBULENCE IN HOT JUPITER ATMOSPHERES

    SciTech Connect

    Youdin, Andrew N.; Mitchell, Jonathan L.

    2010-10-01

    The intense irradiation received by hot Jupiters suppresses convection in the outer layers of their atmospheres and lowers their cooling rates. 'Inflated' hot Jupiters, i.e., those with anomalously large transit radii, require additional sources of heat or suppressed cooling. We consider the effect of forced turbulent mixing in the radiative layer, which could be driven by atmospheric circulation or by another mechanism. Due to stable stratification in the atmosphere, forced turbulence drives a downward flux of heat. Weak turbulent mixing slows the cooling rate by this process, as if the planet were irradiated more intensely. Stronger turbulent mixing buries heat into the convective interior, provided the turbulence extends to the radiative-convective boundary. This inflates the planet until a balance is reached between the heat buried into and radiated from the interior. We also include the direct injection of heat due to the dissipation of turbulence or other effects. Such heating is already known to slow planetary cooling. We find that dissipation also enhances heat burial from mixing by lowering the threshold for turbulent mixing to drive heat into the interior. Strong turbulent mixing of heavy molecular species such as TiO may be necessary to explain stratospheric thermal inversions. We show that the amount of mixing required to loft TiO may overinflate the planet by our mechanism. This possible refutation of the TiO hypothesis deserves further study. Our inflation mechanism requires a deep stratified layer that only exists when the absorbed stellar flux greatly exceeds the intrinsic emitted flux. Thus, it would be less effective for more luminous brown dwarfs and for longer period gas giants, including Jupiter and Saturn.

  20. Organic Amendment Effects on Greenhouse Gas Emissions from Long-Term Stockpiled Soils

    NASA Astrophysics Data System (ADS)

    Zvomuya, F.; Laskosky, J.

    2014-12-01

    In oil sands projects in Alberta, Canada, salvaged soils are often placed in large stockpiles where they are stored for the duration of the project, typically 20-30 years. Alberta regulations require that topsoil and subsoil are salvaged in two distinct operations - a process known as two-lifting. Reclamation using long-term stockpiled soils often gives poor results, characterized by lower soil organic carbon and nitrogen concentrations compared with equivalent natural, undisturbed soils. It is thought that the change from an aerobic to an anaerobic environment during soil stockpiling and back again to aerobic during placement are largely responsible for the low carbon and nitrogen due to microbial activity transforming C and N in the soil into CO2, CH4 and N2O and releasing them to the atmosphere. Evidence from recent studies indicates that biochar improves soil physical, chemical and biological properties, and hence could mitigate C and N losses due to greenhouse gas emissions from the soil indirectly. We postulate that documented improvements in soil physical, chemical, and biological properties in soils treated with amendments such as biochar may help mitigate C and N losses due to greenhouse gas emissions from the soil indirectly. This laboratory incubation experiment tested the effects of differential rates (0, 10, 20, and 40 g biochar carbon equivalents kg-1 dry soil) of biochar, peat, and humalite on greenhouse gas emissions from a 25-year old two-lift stockpiled soil. The soils were fertilized according to standard practice, placed in 120-mL plastic containers, and incubated at 25°C for 45 days. Gas samples were taken at 1- to 7-day intervals and analyzed for CO2, CH4, and N2O. Data on treatment differences in emissions will be presented. Results from this experiment will provide an insight into the potential for organic amendments to mitigate greenhouse gas emission during reclamation using degraded soils.

  1. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  2. Climate-chemical interactions and greenhouse effects of trace gases

    NASA Technical Reports Server (NTRS)

    Shi, Guang-Yu; Fan, Xiao-Biao

    1994-01-01

    A completely coupled one-dimensional radiative-convective (RC) and photochemical-diffusion (PC) model has been developed recently and used to study the climate-chemical interactions. The importance of radiative-chemical interactions within the troposphere and stratosphere has been examined in some detail. We find that increases of radiatively and/or chemically active trace gases such as CO2, CH4 and N2O have both the direct effects and the indirect effects on climate change by changing the atmospheric O3 profile through their interaction with chemical processes in the atmosphere. It is also found that the climatic effect of ozone depends strongly on its vertical distribution throughout the troposphere and stratosphere, as well on its column amount in the atmosphere.

  3. Atmospheric observations for quantifying emissions of point-source synthetic greenhouse gases (CF4, NF3 and HFC-23)

    NASA Astrophysics Data System (ADS)

    Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.

    2016-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  4. Solar energy: the physics of the greenhouse effect.

    PubMed

    Young, M

    1975-07-01

    For practical reasons, it is likely that low-temperature solar collectors have a more immediate future than high-temperature or photovoltaic generation of electricity. This paper discusses the physics of bare and covered flat-plate collectors. The greenhouse effect is the result of reducing convection to the point that radiation trapping becomes important. Nevertheless, at collector temperatures within 20-30 degrees C of ambient, convection from the collector surface is so important that a special absorber with low ir emissivity may be no more efficient than a good, black absorber. At higher temperatures, selective absorbers are desirable. In the low temperature range, collection efficiency can be kept well over 80%, but falls rapidly with increasing collector temperature. This suggests that solar power may see early application in conjunction with heat pumps for heating and air conditioning. PMID:20154861

  5. Relative influence of lapse rate and water vapor on the greenhouse effect

    SciTech Connect

    Sinha, A.

    1995-03-01

    Observational data are employed in a radiative transfer model to simulate the mean variation in normalized greenhouse effect (NGE) between January and July. This is performed at a variety of locations, and the mean local rate of change in NGE with surface temperature is determined. The result is 1.5 times larger than the variation of NGE with surface temperature obtained by spatially correlating the aggregated data. This disagreement is ascribed to systematic differences between the two approaches and is interpreted as indicating the significant role that large-scale circulations as well as surface temperatures have on determining local thermal and humidity structures. The separate effects of water vapor and lapse rate variations are estimated, by simulating the January-July changes in NGE with each process in turn held constant: beyond the tropics the lapse rate feedback is found to dominate over the water vapor feedback, particularly over land; in the inter-tropics, lapse rate variations account for about a third of the change in greenhouse trapping, contributing substantially to the `super-greenhouse effect.` Utilizing a radiative-convective model, the possible effects on climate change of both lapse rate changes and water vapor feedback are compared: a global mean model cliamte is perturbed by a doubling of atmospheric carbon dioxide and equilibrium surface temperatures obtained for a variety of lapse rates. If, under conditions of climate change, the global mean lapse rate varies with surface temperature in the same manner as in the present-day mean seasonal cycle (increasing the lapse rate magnitude by 6%), then the lapse rate feedback amplifies the modeled water vapor feedback by 40%; conversely, a 12% reduction in the magnitude of the lapse rate completely nullifies the water vapor feedback.

  6. "Home Made" Model to Study the Greenhouse Effect and Global Warming

    ERIC Educational Resources Information Center

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of…

  7. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    ERIC Educational Resources Information Center

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  8. Effects of cirrus composition on atmospheric radiation budgets

    NASA Technical Reports Server (NTRS)

    Kinne, Stefan; Liou, Kuo-Nan

    1988-01-01

    A radiative transfer model that can be used to determine the change in solar and infrared fluxes caused by variations in the composition of cirrus clouds was used to investigate the importance of particle size and shape on the radiation budget of the Earth-atmosphere system. Even though the cloud optical thickness dominates the radiative properties of ice clouds, the particle size and nonsphericity of ice crystals are also important in calculations of the transfer of near-IR solar wavelengths. Results show that, for a given optical thickness, ice clouds composed of larger particles would produce larger greenhouse effects than those composed of smaller particles. Moreover, spherical particles with equivalent surface areas, frequently used for ice crystal clouds, would lead to an overestimation of the greenhouse effect.

  9. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    NASA Astrophysics Data System (ADS)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  10. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    PubMed

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. PMID:26520250

  11. Metrology for laser spectroscopic concentration and isotope ratio measurements of atmospheric greenhouse gases

    NASA Astrophysics Data System (ADS)

    Nwaboh, Javis; Manninen, Albert; Mohn, Joachim; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2015-04-01

    Continuous, accurate and precise measurements of greenhouse gases (GHG) and their isotopic composition are required to understand the global cycle as well as source and sink processes of these environmentally harmful substances. Part of the EMRP project HIGHGAS (Metrology for high-impact greenhouse gases) [1] focuses on spectroscopic methods for GHG isotopic composition measurements and optical transfer standards. Harmonization of terminologies and concepts used in the GHG measurement communities and the metrology community are in focus, especially for isotope ratio measurements by laser spectroscopy, where gas metrology is still at an early stage. The focus of the HIGHGAS project here is on 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O and 13C/12C and 2H/1H ratios in CH4. As an alternative and complement of gas mixture standards, optical spectroscopic transfer standards for CO2 and CO shall be developed providing concentration results that are directly traceable to the international system of units (SI). Optical transfer standards offer an alternative in situ calibration route for other GHG measurement devices operating in the field. An optical transfer standard becomes particularly interesting when measuring sticky or reactive gases where cylinder-based reference gas mixtures may not be feasible. We present an approach to perform IR-spectrometry on gases with results directly traceable to the SI. This is crucial for the development of optical spectroscopic transfer standards providing SI-traceability to field measurements. Ideas for spectroscopic isotope ratio measurements aiming at SI-traceability will be discussed. Finally, we demonstrate the current performance and limitations of our measurement approaches and project possible solutions. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS (Metrology for high-impact greenhouse gases). The EMRP is jointly funded by the

  12. Aerosols versus Greenhouse Gas Climate Effects: Impacts on Temperature and Precipitation Changes and Implications for Decision-making

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Horowitz, L. W.; Ming, Y.; Schwarzkopf, M. D.; Levy, H.

    2011-12-01

    Over the 20th Century, it is understood that anthropogenic emissions of aerosols have partially offset the influence of the greenhouse gas emissions on the global-mean and continental surface temperatures, consistent with the difference in their respective radiative forcings. The effect of aerosols versus greenhouse gases on precipitation and hydrologic cycle, however, is not so straightforward. Using a set of NOAA/ GFDL global climate model simulations, the impacts due to anthropogenic aerosol emissions are characterized and compared with those due to greenhouse gas emissions. This is performed for the global and continental spatial scales. The degree of aerosol offset of the greenhouse gas effects in terms of evaporation at the surface and precipitation can be greater than that occurring in the case of surface temperature, with some regions experiencing an impact that is more governed by aerosols than by the greenhouse gas emissions. These results have significant implications for decision-making concerning future emissions and mitigation/ adaptation to climate change. The removal of aerosols from the atmosphere in the near future to obtain improvements in air quality would exacerbate the warming due to greenhouse gases arising over a large part of the globe. However, the corresponding impacts due to aerosol reductions on the global evaporation and precipitation in the 21st Century, including changes in regional phenomena such as the Asian precipitation, are less clear but are important to understand. Compounding the problem is the set of uncertainties arising from lack of or incomplete knowledge of the various species of aerosols (e.g., scattering and absorbing aerosols; sulfate, soot, dust), interactions of aerosols with clouds, and the nature of the emissions scenario. An accompanying challenge is to accurately characterize and communicate this exceptional issue in climate change science to the diverse group of stakeholders, sectors and decision-makers, who

  13. Climate Change on Mars: Cloud Greenhouse Effects in the Recent Past

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Kahre, Melinda A.; Hollingsorth, Jeffery L.

    2014-11-01

    The large variations in Mars’ orbit parameters are known to be significant drivers of climate change. We present results from an updated version of the Ames GCM that shows at times of high obliquity it is possible that water ice clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold water ice clouds form, reduce the outgoing long wave radiation, and cause surface temperatures to rise to maintain global energy balance. Since Mars spends much of its time at high obliquity, these results suggest that Mars undergoes even more significant climate change due to orbital variations than previously thought.

  14. A Cloud Greenhouse Effect on Mars: Significant Climate Change in the Recent Past

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Kahre, Melinda A.; Schaeffer, James R.; Montmessin, Frank; Phillips, R J.

    2012-01-01

    The large variations in Mars orbit parameters are known to be significant drivers of climate change on the Red planet. The recent discovery of buried CO2 ice at the South Pole adds another dimension to climate change studies. In this paper we present results from the Ames GCM that show within the past million years it is possible that clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold clouds form, reduce the outgoing longwave radiation, and drive up surface temperatures to maintain global energy balance.

  15. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    NASA Technical Reports Server (NTRS)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  16. GREENHOUSE GAS RESEARCH AREAS (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The emissions programs in the Atmospheric Protection Branch (APB) of NRMRL's Air Pollution Prevention and Control Division are primarily dedicated to anthropogenic (human-influenced) sources of methane and high-global-warming refrigerants, though some work addresses carbon dioxid...

  17. Improved Estimates of Clear Sky Longwave Flux and Application to the Tropical Greenhouse Effect

    NASA Technical Reports Server (NTRS)

    Collins, W. D.

    1997-01-01

    The first objective of this investigation is to eliminate the clear-sky offset introduced by the scene-identification procedures developed for the Earth Radiation Budget Experiment (ERBE). Estimates of this systematic bias range from 10 to as high as 30 W/sq m. The initial version of the ScaRaB data is being processed with the original ERBE algorithm. Since the ERBE procedure for scene identification is based upon zonal flux averages, clear scenes with longwave emission well below the zonal mean value are mistakenly classified as cloudy. The erroneous classification is more frequent in regions with deep convection and enhanced mid- and upper-tropospheric humidity. We will develop scene identification parameters with zonal and/or time dependence to reduce or eliminate the bias in the clear- sky data. The modified scene identification procedure could be used for the ScaRaB-specific version of the Earth-radiation products. The second objective is to investigate changes in the clear-sky Outgoing Longwave Radiation (OLR) associated with decadal variations in the tropical and subtropical climate. There is considerable evidence for a shift in the climate state starting in approximately 1977. The shift is accompanied by higher SSTs in the equatorial Pacific, increased tropical convection, and higher values of atmospheric humidity. Other evidence indicates that the humidity in the tropical troposphere has been steadily increasing over the last 30 years. It is not known whether the atmospheric greenhouse effect has increased during this period in response to these changes in SST and precipitable water. We will investigate the decadal-scale fluctuations in the greenhouse effect using Nimbus-7, ERBE, and ScaRaB measurements spaning 1979 to the present. The data from the different satellites will be intercalibrated by comparison with model calculations based upon ship radiosonde observations. The fluxes calculated from the radiation model will also be used for validation of the

  18. A Three-Tier Diagnostic Test to Assess Pre-Service Teachers' Misconceptions about Global Warming, Greenhouse Effect, Ozone Layer Depletion, and Acid Rain

    ERIC Educational Resources Information Center

    Arslan, Harika Ozge; Cigdemoglu, Ceyhan; Moseley, Christine

    2012-01-01

    This study describes the development and validation of a three-tier multiple-choice diagnostic test, the atmosphere-related environmental problems diagnostic test (AREPDiT), to reveal common misconceptions of global warming (GW), greenhouse effect (GE), ozone layer depletion (OLD), and acid rain (AR). The development of a two-tier diagnostic test…

  19. The Impact of Secondary School Students' Preconceptions on the Evolution of Their Mental Models of the Greenhouse Effect and Global Warming

    ERIC Educational Resources Information Center

    Reinfried, Sibylle; Tempelmann, Sebastian

    2014-01-01

    This paper provides a video-based learning process study that investigates the kinds of mental models of the atmospheric greenhouse effect 13-year-old learners have and how these mental models change with a learning environment, which is optimised in regard to instructional psychology. The objective of this explorative study was to observe and…

  20. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    PubMed

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. PMID:24784732

  1. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    The effect of tropospheric aerosols on atmospheric infrared cooling rates is investigated by the use of recent models of infrared gaseous absorption. A radiative model of the atmosphere that incorporates dust as an absorber and scatterer of infrared radiation is constructed by employing the exponential kernel approximation to the radiative transfer equation. Scattering effects are represented in terms of a single scattering albedo and an asymmetry factor. The model is applied to estimate the effect of an aerosol layer made of spherical quartz particles on the infrared cooling rate. Calculations performed for a reference wavelength of 0.55 microns show an increased greenhouse effect, where the net upward flux at the surface is reduced by 10% owing to the strongly enhanced downward emission. There is a substantial increase in the cooling rate near the surface, but the mean cooling rate throughout the lower troposphere was only 10%.

  2. Modeling of global biogenic emissions for key indirect greenhouse gases and their response to atmospheric CO2 increases and changes in land cover and climate

    NASA Astrophysics Data System (ADS)

    Tao, Zhining; Jain, Atul K.

    2005-11-01

    Natural emissions of nonmethane volatile organic compounds (NMVOCs) play a crucial role in the oxidation capacity of the lower atmosphere and changes in concentrations of major greenhouse gases (GHGs), particularly methane and tropospheric ozone. In this study, we integrate a global biogenic model within a terrestrial ecosystem model to investigate the vegetation and soil emissions of key indirect GHGs, e.g., isoprene, monoterpene, other NMVOCs (OVOC), CO, and NOx. The combination of a high-resolution terrestrial ecosystem model with satellite data allows investigation of the potential changes in net primary productivity (NPP) and resultant biogenic emissions of indirect GHGs due to atmospheric CO2 increases and changes in climate and land use practices. Estimated global total annual vegetation emissions for isoprene, monoterpene, OVOC, and CO are 601, 103, 102, and 73 Tg C, respectively. Estimated NOx emissions from soils are 7.51 Tg N. The land cover changes for croplands generally lead to a decline of vegetation emissions for isoprene OVOC, whereas temperature and atmospheric CO2 increases lead to higher vegetation emissions. The modeled global mean isoprene emissions show relatively large seasonal variations over the previous 20 years from 1981 to 2000 (as much as 31% from year to year). Savanna and boreal forests show large seasonal variations, whereas tropical forests with high plant productivity throughout the year show small seasonal variations. Results of biogenic emissions from 1981 to 2000 indicate that the CO2 fertilization effect, along with changes in climate and land use, causes the overall up-trend in isoprene and OVOC emissions over the past 2 decades. This relationship suggests that future emission scenario estimations for NMVOCs should account for effects of CO2 and climate in order to more accurately estimate local, regional, and global chemical composition of the atmosphere, the global carbon budget, and radiation balance of the Earth-atmosphere

  3. Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production

    NASA Astrophysics Data System (ADS)

    Weston, Ralph E.

    Tetrafluoromethane (CF 4) is an extremely stable gas which strongly absorbs infrared radiation at ˜ 8 μm, and therefore is capable of influencing the greenhouse effect. No natural sources have been identified, and the major anthropogenic source appears to be the electrolytic smelting of alumina to produce aluminum. Measurements of CF 4 concentrations in the atmosphere are reviewed, and these are combined with aluminum production rates to provide an estimate of 1.3-3.6 kg of CF 4 emitted per ton of aluminum produced for the period up to ˜ 1985. Aluminum production also requires large amounts of electrical energy, leading to the emission of as much as 22 tons of carbon dioxide per ton of aluminum due to fossil fuel combustion in power plants. The present day contribution of hydroelectric power reduces this figure to about 14 tons of carbon dioxide per ton of aluminum. An estimate of the relative radiative trapping of CF 4 and CO 2 emitted in aluminum production during this same period (1900-1985) indicates that the effect of CF 4 is about one-third that of the CO 2 formed by aluminum production. However, the emission of fluorocarbons from modem aluminum electrolysis cells is much lower than previous estimates indicate, and this factor is considered in estimating potential long-term global warming effects of CF 4 and CO 2 from aluminum production. Possible processes leading to removal of CF 4 from the atmosphere are described.

  4. Direct Radiometric Observations of the Water Vapor Greenhouse Effect Over the Equatorial Pacific Ocean

    PubMed

    Valero; Collins; Pilewskie; Bucholtz; Flatau

    1997-03-21

    Airborne radiometric measurements were used to determine tropospheric profiles of the clear sky greenhouse effect. At sea surface temperatures (SSTs) larger than 300 kelvin, the clear sky water vapor greenhouse effect was found to increase with SST at a rate of 13 to 15 watts per square meter per kelvin. Satellite measurements of infrared radiances and SSTs indicate that almost 52 percent of the tropical oceans between 20°N and 20°S are affected during all seasons. Current general circulation models suggest that the increase in the clear sky water vapor greenhouse effect with SST may have climatic effects on a planetary scale. PMID:9065397

  5. Biochar alters manure's effect on nitrogen cycling and greenhouse gas emissions in a calcareous soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few multiyear field studies have examined the impacts of a one-time biochar application on net N mineralization and greenhouse gas emissions in an irrigated, calcareous soil; yet such applications are hypothesized as a means of sequestering atmospheric CO2 and improving soil quality. We fall-applie...

  6. RESEARCH AREA -- GREENHOUSE GAS MITIGATION - ATMOSPHERIC PROTECTION BRANCH (AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Atmospheric Protection Branch conducts research projects to develop and assess new potential alternatives to ozone-depleting substances, several of which have received high priority and some of which have been commercialized.In regards to waste methane, two principal issues...

  7. Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.

  8. Locating and quantifying greenhouse gas emissions at a geological CO2 storage site using atmospheric modeling and measurements

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.; Etheridge, David M.; Leuning, Ray; Loh, Zoe M.; Jenkins, Charles R.; Yee, Eugene

    2014-09-01

    The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway Project is Australia's first demonstration of the geological storage of carbon dioxide (CO2), where about 65,000 metric tons of fluid consisting of 92% CO2 and 8% methane (CH4) by mass have been injected underground. As part of the project objective of developing methodologies to detect, locate, and quantify potential leakage of the stored fluid into the atmosphere, we formulate an inverse atmospheric model based on a Bayesian probabilistic framework coupled to a state-of-the-art backward Lagrangian particle dispersion model. A Markov chain Monte Carlo method is used for efficiently sampling the posterior probability distribution of the source parameters. Controlled experiments used to test the model involved releases of the injected fluid from one of the nearby wells and were staggered over 1 month. Atmospheric measurements of CO2 and CH4 concentrations were taken at two stations installed in an upwind-downwind configuration. Modeling both the emission rate and the source location using the concentration measurements from only two stations is difficult, but the fact that the emission rate was constant, which is not an unrealistic scenario for potential geological leakage, allows us to compute both parameters. The modeled source parameters compare reasonably well with the actual values, with the CH4 tracer constraining the source better than CO2, largely as a result of its 6 times higher signal-to-noise ratio. The results lend confidence in the ability of atmospheric techniques to quantify potential leakage from CO2 storage as well as other source types.

  9. Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe

    NASA Technical Reports Server (NTRS)

    Otterman, Jay; Angell, J.; Atlas, Robert; Bungato, D.; Schubert, S.; Starr, D.; Susskind, J.; Wu, M.-L. C.

    2001-01-01

    In winter, large interannual fluctuations in the surface skin temperature are observed over central Europe: we observe a difference of 9.8 K comparing warm February 1990 with cold February 1996 for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average Ina for February 1990 was 10.6 in s(exp -1), but for February 1996 I(sub na) was only 2.4 m s(exp -1). A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions result, which we observe in February 1990 at 700 mb. The near-surface moisture rises to higher (and cooler) levels, producing clouds and precipitation. Total preciptable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios can be translated into a virtual irradiating source of 2.6 W m(exp -2) above the February 1990 atmosphere, which, as an order of magnitude estimate, contributes to the warming of the surface by 2.6 K. If we accept this estimate as numerically pertinent, the direct effect stands as 7.2 K (9.8 K - 2.6 K), and therefore its greenhouse-effect reinforcement is by 36%. This constitutes a substantial positive feedback to the direct effect, which is the inflow of warm air to the low troposphere over Europe.

  10. Atmospheric Effects in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 3, 2004 This image shows two representations of the same infra-red image covering parts of Ius Chasma and Oudemans Crater. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    This image is dominated by atmospheric effects. The pink/magenta colors inside the canyon show areas with a large amount of atmospheric dust. In the bottom half of the image, the patchy blue/cyan colors indicate the presence of water ice clouds out on the plains. Water ice clouds and high amounts of dust do not generally occur at the same place and time on Mars because the dust absorbs sunlight and heats the atmosphere. The more dust that is present, the warmer the atmosphere becomes, sublimating the water ice into water vapor and dissipating any clouds.

    Image information: IR instrument. Latitude -8.2, Longitude 267.9 East (92.1.West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is

  11. Soil Carbon Sequestration and the Greenhouse Effect (2nd Edition)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This volume is a second edition of the book “Soil Carbon Sequestration and The Greenhouse Effect”. The first edition was published in 2001 as SSSA Special Publ. #57. The present edition is an update of the concepts, processes, properties, practices and the supporting data. All chapters are new co...

  12. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  13. Initial Results from an Atmospheric Validation of Urban Greenhouse Gas Budget Estimates for the US Northeast Corridor

    NASA Astrophysics Data System (ADS)

    Nehrkorn, T.; Wofsy, S. C.; Hutyra, L.; Decola, P.; Callahan, W.; Sargent, M. R.; McKain, K.; Barrera, Y.; Jones, T.; Gately, C.; Hardiman, B. S.; Mountain, M. E.; Henderson, J.; Collatz, G. J.; Schaaf, C. L.; Miller, C. E.; Long, A.; Sloop, C.; Prinzivalli, S.

    2015-12-01

    The world's population is increasingly concentrated in urban areas. Urbanization has a profound impact on carbon dynamics, leading to higher anthropogenic carbon dioxide (CO2) emissions and lower biogenic fluxes. We describe a model-data analysis framework that is designed to validate and improve greenhouse gas (GHG) budget estimates for the US Northeast (Washington DC to Boston) urban corridor. It encompasses an observational network of GHG in-situ measurements (at near surface sites, on tall buildings, and on towers), column amount measurements from ground-based and satellite sensors, miniMPL measurements of the planetary boundary layer structure, a high-resolution emission inventory, and a modeling framework for atmospheric transport and diffusion that is comprised of a mesoscale atmospheric model and a Lagrangian particle dispersion model. We present selected results from different aspects of the modeling-data framework, including emission inventories at high spatio-temporal resolution, verification of meteorological simulation using conventional and novel (e.g., miniMPL) observations, and aspects of the inversion methodology.

  14. Sources and sinks of the greenhouse gas nitrous oxide: Atmospheric candidates and their implications for global change

    SciTech Connect

    Prasad, S.S.

    1995-12-01

    Nitrous oxide has important roles in regulating global changes, including climate warming, because it is not only a greenhouse gas but also the dominant source of the odd nitrogen radicals which catalytically destroy ozone. Currently, it is thought that microbiological activities in the ground and the oceans are the dominant sources of this gas. A variety of anthropogenic activities also produce the gas, but that production is relatively minor. Photodissociations and reactions with excited oxygen atoms in the stratosphere are thought to be the only sinks. Unfortunately, these sources are insufficient to balance the observed accumulation and the stratospheric sinks. New sources are needed. The observed enrichment of the heavier isotopes in this gas also call for new sources and sinks, particularly in the atmosphere itself. On the basis of several laboratory experiments it is quite possible that nitrous oxide may be produced in the troposphere by the reactions of excited ozone and nitrogen dioxide with N{sub 2}. Hydroxyl radical optically pumped to their excited A state is likely to be a new stratospheric source. Vibrationally highly excited O{sub 2} may be a new stratospheric sink. It is important to further study these sources and sinks. Otherwise one may run the risk of making wrong policy decisions regarding human activities that perturb the natural atmospheric loading of this gas. 70 refs., 2 tabs.

  15. Natural flux of greenhouse methane from the Timor Sea to the atmosphere

    NASA Astrophysics Data System (ADS)

    Brunskill, G. J.; Burns, K. A.; Zagorskis, I.

    2011-06-01

    Methane gas bubbles from the Cornea Seep were sampled at the sea surface in the Timor Sea continental shelf area in June 2005. Total bubble gas flux was 0.076 to 0.76 L m-2 h-1 during the 6 h d-1 periods of low neap tides in June 2005. This bubble gas contained an average of 26 mmol CH4 L-1 and about 0.16 and 0.006 mmol L-1 of ethane and propane. We estimate the daily flux from the sea surface to the atmosphere to be 0.012 to 0.12 mol CH4 m-2 d-1 or 0.13 to 1.3 t CH4 d-1 from an area of about 0.7 km2. This methane flux came from a 500 × 1400 m carbonate pavement dome on the seafloor at 84 m water depth. The seep hard ground was swath mapped, and 3.5 kHz subbottom profile data indicate that the seep dome was strongly reflective with poor penetration into the subsurface, consistent with the presence of a carbonate hard ground. Carbon and deuterium isotope ratios (δ13C = -41 to -42‰, δD = -157 to -158‰) of the seep bubble gas indicate that this methane had a thermogenic origin and was in the same isotopic range as gas within the Late Cretaceous Cornea oil and gas field. We could not detect inputs of fluids containing nutrients or short-lived radium isotopes at this site, commonly associated with other cold seeps. Tens to a hundred of kilometers seaward from the Cornea seep site, water column dissolved methane concentrations in this sector of the Timor Sea shelf and slope were 100-500 times supersaturated with respect to the atmosphere, and thus the water column is expected to be degassing additional methane to the atmosphere. Perhaps there are thousands of other methane seeps (of similar magnitude to the Cornea Seep) on this shelf and slope to account for all the excess dissolved methane (˜86,000 t) measured in the water column. These measured and calculated fluxes provide evidence for the hypothesis that shallow sea seeps may be a significant source of atmospheric methane, in contrast to deep sea vents, where most of the methane is dissolved and oxidized in

  16. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate

    NASA Technical Reports Server (NTRS)

    Postawko, S. E.; Kuhn, W. R.

    1986-01-01

    There is general agreement that certain surface features on Mars are indicative of the presence of liquid water at various times in the geologic past. In particular, the valley networks are difficult to explain by a mechanism other than the flow of liquid water. It has been suggested in several studies that a thick CO2 atmosphere on Mars early in its history could have provided a greenhouse warming that would have allowed the flow of water either on the surface or just below the surface. However, this effect was examined with a detailed radiation model, and it was found that if reduced solar luminosity early in the history of the solar system is taken into account, even three bars of CO2 will not provide sufficient greeenhouse warming. The addition of water vapor and sulflur dioxide (both plausible gases that may have been emitted by Martian volcanoes) to the atmosphere also fail to warm the surface above 273 K for reduced solar luminosity conditions. The increase in temperature may be large enough, however, for the formation of these features by brines.

  17. The role of forestry development in China in alleviating greenhouse effects

    SciTech Connect

    Liu Hong

    1996-12-31

    Forestry development in China has gained great achievements and made great progress in realizing sustainable forest management and alleviating global climate change. The main measures to mitigate greenhouse effects through the means of forestry development include afforestation to increase the forested area, fuel wood forest development, management improvement, wise utilization, international cooperation, investment increase, forest related scientific research, strengthening the forest law enforcement system. Climate change as well as how to alleviate the greenhouse effects is a hot topic at present. This paper describes the achievements of China`s forestry development and its role to alleviate the greenhouse effects, and puts forward the measures to mitigate greenhouse effects through the means of forestry development.

  18. Models of Students' Thinking Concerning the Greenhouse Effect and Teaching Implications.

    ERIC Educational Resources Information Center

    Koulaidis, Vasilis; Christidou, Vasilia

    1999-01-01

    Primary school students (n=40) ages 11 and 12 years were interviewed concerning their conceptions of the greenhouse effect. Analysis of the data led to the formation of seven distinct models of thinking regarding this phenomenon. (Author/CCM)

  19. What Light through Yonder Window Breaks?--The Greenhouse Effect Revisited.

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    1992-01-01

    Presents three experiments exploring aspects of the greenhouse effect. Topics and discussion includes radiation in energy transfer, emissivity and absorptivity, the irrelevance of reflectivity, a digression on insulators and convection, climate change, and radiative energy balance. (MCO)

  20. New Broadband LIDAR for Greenhouse Carbon Dioxide Gas Sensing in the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena; Heaps, William S.; Huang,Wen

    2011-01-01

    We present demonstration of a novel broadband lidar technique capable of dealing with the atmospherically induced variations in CO2 absorption using a Fabry-Perot based detector and a broadband laser. The Fabry-Perot solid etalon in the receiver part is tuned to match the wavelength of several CO2 absorption lines simultaneously. The broadband technique tremendously reduces the requirement for source wavelength stability, instead putting this responsibility on the Fabry- Perot based receiver. The instrument technology we are developing has a clear pathway to space and realistic potential to become a robust, low risk space measurement system.

  1. UNDERSTANDING AND REDUCING THE UNCERTAINTY ASSOCIATED WITH THE EFFECT OF ATMOSPHERIC PARTICLES ON CLOUDS AND CLIMATE

    EPA Science Inventory

    I predict that human-generated particles have modified clouds and cooled climate, somewhat masking the effect of greenhouse gases and that these particles have also modified the amount of sunlight reaching the ground, changing the thermodynamic cycles in the atmosphere. Wi...

  2. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    An investigation has been made of the impact of wind-blown dust particles upon local climate of arid regions. The case of Northwest India is specifically considered, where a dense layer of dust persists for several months during the summer. In order to examine the effect of this dust layer on the infrared radiative flux and cooling rates, a method is presented for calculating the IR flux within a dusty atmosphere which allows the use of gaseous band models and is applicable in the limit of small single scattering albedo and pronounced forward scattering. The participating components of the atmosphere are assumed to be water vapor and spherical quartz particles only. The atmospheric window is partially filled by including the water vapor continuum bands for which empirically obtained transmission functions have been used. It is shown that radically different conclusions may be drawn on dust effects if the continuum absorption is not considered. The radiative transfer model, when applied to a dusty atmosphere, indicates that there is a moderate enhancement in the atmospheric greenhouse and a 10% increase in the mean IR radiative cooling rate, relative to the dust free case, within the lower troposphere. These results have been compared with previous work by other authors in the context of the possibility of dust layers inhibiting local precipitation.

  3. Quantifying urban/industrial emissions of greenhouse and ozone-depleting gases based on atmospheric observations

    NASA Astrophysics Data System (ADS)

    Barnes, Diana Hart

    2000-11-01

    Background and pollution trends and cycles of fourteen trace gases over the Northeastern U.S. are inferred from continuous atmospheric observations at the Harvard Forest research station located in Petersham, Massachusetts. This site receives background `clean' air from the northwest (Canada) and `dirty' polluted air from the southwest (New York City-Washington, D.C. corridor). Mixing ratios of gases regulated by the Montreal Protocol or other policies (CO, PCE, CFC11, CFC12, CFC113, CH 3CCl3, CCl4, and Halon-1211) and of those not subject to restrictions (H2, CH4, CHCl3, TCE, N2O, and SF6) were measured over the three-year period, 1996 to 1998, every 24 minutes by a fully automated gas chromatographic instrument with electron capture detectors. Evidence for polar vortex venting is found consistently in the month of June of the background seasonal cycles. The ratio of CO and PCE enhancements borne on southwesterly winds are in excellent agreement with county-level EPA and sales-based inventories for the New York City-Washington, D.C. region. From this firm footing, we use CO and PCE as reference compounds to determine the urban/industrial source strengths for the other species. A broad historical and geographic study of emissions reveals that the international treaty has by and large been a success. Locally, despite the passing of the 1996 Montreal Protocol ban, only emissions of CFC12 and CH3CCl3 are abating. Though source strengths are waning, the sources are not spent and continued releases to the atmosphere may be expected for some years to come. For CH3CCl3, whose rate of decline is central to our understanding of atmospheric processes, we estimate that absolute concentrations may persist until around the year 2010. The long-term high frequency time series of hydrogen provided here represents the first such data set of its kind. The H2 diurnal cycle is established and explained in terms of its sources and sinks. The ratio of H2 to CO in pollution plumes is

  4. Non-grey thermal effects in irradiated planets atmospheres

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Guillot, Tristan; Fortney, Jonathan J.; Marley, Mark S.

    2016-01-01

    The large diversity of exoplanets in terms of irradiation temperature, gravity and chemical composition discovered around stars with different properties call for the development of fast, accurate and versatile atmospheric models. We derive a new, non-grey analytical model for the thermal structure of irradiated exoplanets. Using two different opacity bands in the thermal frequency range, we highlight the dual role of thermal non-grey opacities in shaping the temperature profile of the atmosphere. Opacities dominated by lines enable the upper atmosphere to cool down significantly compared to a grey atmosphere whereas opacities dominated by bands lead both to a significant cooling of the upper atmosphere and a significant heating of the deep atmosphere.We compare our analytical model to a grid of temperature-pressure profiles for solar composition atmospheres obtained with a state-of-the-art numerical model taking into account the full wavelength, temperature and pressure dependence of the opacities. We demonstrate the importance of thermal non-grey opacities in setting the deep temperature of irradiated giant planets atmospheres. In the particular case of highly irradiated planets we show that the presence of TiO in their atmospheres alters both the optical and the thermal opacities. The greenhouse effect - a semi-grey effect - and the "blanketing effect" - an intrisically non-grey effect - contribute equally to set the deep temperature profile of the planet atmosphere. We conclude that non-grey thermal effects are fundamental to understand the deep temperature profile of hot Jupiters.Our calibrated analytical model matches the numerical model within 10% over a wide range of effective temperature, internal temperature and gravities and properly predict the depth of the radiative/convective boundary, an important quantity to understand the cooling history of a giant planet. Such a fast and accurate model can be of great use when numerous temperature profiles need to

  5. [Effects of sunken depth of energy-saving solar greenhouse on the diurnal variation and spatial distribution of environmental factors in the greenhouse].

    PubMed

    Li, Qing-ming; Zi, Xi-zhen; Yu, Xian-chang

    2011-08-01

    Taking the energy-saving solar greenhouses with the same infrastructure but different sunken depths (0, 0.5, 1.0, and 1.5 m) in Tai' an of Shandong Province as test objects, this paper analyzed the intercepted amount of direct solar radiation energy, and studied the diurnal variation and spatial distribution patterns of environmental factors in the greenhouses on winter solstice (December 20-24, 2009) and summer solstice (June 19-23, 2010). With the increase of sunken depth, the shadow areas in the greenhouses caused by sunken profiles increased gradually, the direct solar radiation energy into the interior of the greenhouses shifted from south to north, and the ratio of ground radiation to back wall radiation decreased gradually. Within the range of 0-1.0 m sunken depth, the air temperature and soil temperature in the greenhouses increased significantly with increasing sunken depth; but when the sunken depth was 1.5 m, the warming effect declined significantly, and the deviation of the lowest soil temperature increased. The deeper the sunken depth, the lower the light intensity and the higher the relative humidity in the greenhouses were. In considering of both lighting and heat preservation, the appropriate sunken depth of energy-saving sunlight greenhouses with a span of 10 m in Tai' an region should be less than 1.0 m. PMID:22097368

  6. Changing risks of resonance in extreme weather events for higher atmospheric greenhouse gas concentrations

    NASA Astrophysics Data System (ADS)

    Huntingford, Chris; Mitchell, Dann; Osprey, Scott

    2015-04-01

    A recent paper by Petoukhov et al (2013) demonstrates that many of the recent major extreme events in the NH may have been caused by resonant conditions driving very high meridional winds around slowly moving centres-of-action. Besides high amplitudes of planetary wave numbers 6,7 and 8, additional features are identified through 4 further conditions that trigger system resonance. These make the potential for high amplitude waves more likely as well as the possibility of more persistent events. A concern is that human-induced climate change could create conditions more conducive to tropospheric Rossby wave resonance, thereby forcing any periods of extreme weather to become more commonplace and longer lasting. Whilst the CMIP5 ensemble provides much information on expected changes, to fully address changing probabilities of extreme event occurrence - which by definition are relatively rare - is, though, best approached through a massive ensemble modeling framework. The climateprediction-dot-net citizen-science massive ensemble GCM modeling framework provides order 104 simulations for sea-surface temperature, sea-ice extent and atmospheric gas composition representative of both pre-industrial and contemporary conditions. Here we present what these families of simulations imply in terms of the changing likelihood of conditions for mid-latitude resonance, and implications for amplitudes of Rossby waves

  7. Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.

    ERIC Educational Resources Information Center

    Brewer, Carol A.; Beiswenger, Jane M.

    1993-01-01

    Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…

  8. Investigation of the relationship between atmospheric mercury and concentrations of key greenhouse gases at a mountainous monitoring site.

    PubMed

    Kim, Ki-Hyun; Pandey, Sudhir Kumar; Brown, Richard J C; Sheu, Guey Rong; Jeon, Eui-Chan; Jung, Kweon; Kang, Chang-Hee

    2015-03-01

    The concentration of total gaseous mercury (TGM) was monitored, together with some key greenhouse gases (GHGs: carbon dioxide (CO2), methane (CH4), and water (H2O) vapor) at hourly intervals at a mountainous monitoring site close to the highly industrialized city of Seoul, Korea. Correlations between the concentrations of Hg and those of the greenhouse gases were examined to assess their source characteristics and responses to changes in meteorological conditions. The mean Hg levels in this study (3.58 ± 2.13 ng m(-3)) were considerably lower (by, e.g., 24.3%) than those measured previously in other comparable sites during 1999-2006 (4.73 ± 1.34 ng m(-3)). Accordingly, such a reduction in Hg levels suggests the effectiveness of the regulatory measures enforced over the years. The mean Hg level observed in this study is also lower (by approximately 5%) than those in other Asian locations. In contrast, the mean concentrations of the two most important GHGs (CO2 and CH4) were moderately higher than those of other locations across the world (by approximately 4-9%). The results of our analysis indicate that the behavior of Hg is strongly correlated with water vapor and CH4 in terms of their source characteristics, despite notable differences in their diurnal patterns. PMID:25639653

  9. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    PubMed

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer. PMID:25985667

  10. Influence of Organic Agriculture on the Net Greenhouse Effect in the Red River Valley, Minnesota

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.

    2004-12-01

    Fluxes for the suite of biologically-produced greenhouse gases (CH4, N2O and CO2) are strongly influenced by agriculture, yet the influence of organic agriculture on all three gases, which comprise the net greenhouse effect (GHE), is not clear in the context of large-scale agricultural production. Greenhouse gas mitigation potential will depend upon the net balance for all three gases [GHE balance (CO2 equiv.)= CO2 flux+ 23CH4flux + 296N2Oflux]. On-farm, field-scale experiments were performed to test the hypothesis that the net GHE at the soil-atmosphere interface is reduced under organic wheat production, compared with conventional, and that effects vary inter-seasonally. Trace gas fluxes were measured at the soil-atmosphere interface for organic and conventional wheat farms in the Red River Valley, Minnesota, one of the most productive agricultural regions in the US. We utilized 40-60 ha field pairs planted with hard red spring wheat (Triticum aestivum L.). Treatment pairs were located 6km apart and consisted of fields continuously cropped for wheat/soybean/sugar beet production for over 20 yr. Ten random, permanent points were generated for each 8.1 ha sub-plot nested inside each field. Each field pair was similar with respect to crop, climate, cultivation history, tillage, rotation, soil texture, pH, macronutrients, bulk density, and water holding capacity. Differences between treatments for the last five years were soil amendments (compost or urea) and herbicide/fungicide application versus mechanical weed control. We collected gas fluxes at each of the 41 points from April (wheat emergence) until the end of July (maturity) to determine the hourly and seasonally integrated net GHE for each management practice, given similar soil/plant/climatic conditions. Moreover, we analyzed inter-seasonal variability to determine the relationship between wheat phenology and flux under field conditions for soil temperature and moisture (water-filled pore space). The net GHE

  11. [Effects of fertilizer application on greenhouse vegetable yield: a case study of Shouguang].

    PubMed

    Liu, Ping; Li, Yan; Jiang, Li-Hua; Liu, Zhao-Hui; Gao, Xin-Hao; Lin, Hai-Tao; Zheng, Fu-Li; Shi, Jing

    2014-06-01

    Data collected from 51 representative greenhouses of Shouguang through questionnaire survey were analyzed to investigate the effect of chemical fertilizers on vegetable yield, relationship between application of organic manure and yield, and influence factors and evolution rule of fertilizer application rate. The results showed that averages of 3338 kg N x hm(-2), 1710 kg P2O5 x hm(-2) 3446 kg K2O x hm(-2) were applied to greenhouse vegetables annually in Shouguang, 6-14 times as that in the local wheat-maize rotation system. The application rates of chemical N, P, and K fertilizers accounted for about 35%, 49% and 42% of the total input. Increasing application of chemical fertilizers had no significant effect on vegetable yields, while organic manure input significantly increased the vegetable yields. With the increase of greenhouse cultivating time, no significant changes in the input of chemical N, P, and K fertilizers were observed in greenhouse vegetable production while organic manure input decreased significantly. Differences in vegetable species, planting pattern and cultivating time of greenhouses was one of the reasons for large variations in nutrient application rate. In recent more than ten years, organic manure nutrient input increased significantly, chemical N and P fertilizer input presented a downward trend, chemical K fertilizer input increased significantly, and the N/P/K ratio became more and more reasonable in greenhouse vegetable production in Shouguang. PMID:25223034

  12. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1990-01-01

    A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. Total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10 to the 16th moles) over a period of several hundred thousand years is estimated based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 C over several hundred thousand years. It is concluded that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.

  13. Greenhouse gases: What is their role in climate change

    SciTech Connect

    Edmonds, J.A.; Chandler, W.U. ); Wuebbles, D. )

    1990-12-01

    This paper summarizes information relevant to understanding the role of greenhouse gases in the atmosphere. It examines the nature of the greenhouse effect, the Earth's radiation budget, the concentrations of these gases in the atmosphere, how these concentrations have been changing, natural processes which regulate these concentrations of greenhouse gases, residence times of these gases in the atmosphere, and the rate of release of gases affecting atmospheric composition by human activities. We address the issue of the greenhouse effect itself in the first section. In the second section we examine trends in atmospheric concentration of greenhouse gases and emissions sources. In the third section, we examine the natural carbon cycle and its role in determining the atmospheric residence time of carbon dioxide (CO{sub 2}). In the fourth section, we examine the role atmospheric chemistry plays in the determining the concentrations of greenhouse gases. This paper is not intended to be an exhaustive treatment of these issues. Exhaustive treatments can be found in other volumes, many of which are cited throughout this paper. Rather, this paper is intended to summarize some of the major findings, unknowns, and uncertainties associated with the current state of knowledge regarding the role of greenhouse gases in the atmosphere. 57 refs., 11 figs., 11 tabs.

  14. Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop

    NASA Technical Reports Server (NTRS)

    Wheeler, Ray M. (Editor); Martin-Brennan, Cindy (Editor)

    2000-01-01

    Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers.

  15. Climate Change and the Greenhouse Effect - Nature and Humans

    NASA Astrophysics Data System (ADS)

    Alevizos, Anastasios; Zygouras, Grigorios

    2014-05-01

    In this project twenty A grade students of Lyceum (age 16) were involved (2011-12) and had been learning to give answers to questions about greenhouse gases, their origin and the processes forming them with regard to human activity on our planet and our dependence on fossil fuels. They had considered whether and how this dependence affects global warming, how this dependence can be reduced by changing attitudes and using renewable energy sources and further more they had put questions and doubts about anthropogenic global warming existence. The student dialogues during a '' TV series debate '' concerning the views, questions and answers of three groups, the ''IPCCs'', the ''CLIMATE SCEPTICS'' and the '' REALISTS'' are exposed on a poster.

  16. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    PubMed

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice. PMID:20080628

  17. Our Changing Atmosphere.

    ERIC Educational Resources Information Center

    Clearing, 1988

    1988-01-01

    Summarizes what is known about two major variables involved in certain types of chemical pollution that seem to be changing the structure of the Earth's atmosphere. Discusses the greenhouse effect and the ozone layer. (TW)

  18. Atmospheric Effects of Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2000-01-01

    Biomass fires are both natural and anthropogenic in origin. The natural trigger is lightning, which leads to mid- and high-latitude fires and episodes of smoke and pollution associated with them. Lightning is also prominent in tropical regions when the dry season gives way to the wet season and lightning in convective systems ignites dry vegetation. Atmospheric consequences of biomass fires are complex. When considering the impacts of fires for a given ecosystem, inputs of fires must be compared to other process that emit trace gases and particles into the atmosphere. Other processes include industrial activity, fires for household purposes and biogenic sources which may themselves interact with fires. That is, fires may promote or restrict biogenic processes. Several books have presented various aspects of fire interactions with atmospheric chemistry and a cross-disciplinary review of a 1992 fire-oriented experiment appears in SAFARI: The Role of southern African Fires in Atmospheric and Ecological Environments. The IGAC/BIBEX core activity (see acronyms at end of Chapter) has sponsored field campaigns that integrate multiple aspects of fires ground-based measurements with an ecological perspective, atmospheric measurements with chemical and meteorological components, and remote sensing. This Chapter presents two aspects of biomass fires and the environment. Namely, the relationship between biomass burning and ozone is described, starting with a brief description of the chemical reactions involved and illustrative measurements and interpretation. Second, because of the need to observe biomass burning and its consequences globally, a summary of remote sensing approaches to the study of fires and trace gases is given. Examples in this Chapter are restricted to tropical burning for matters of brevity and because most burning activity globally is within this zone.

  19. Advection from the North Atlantic as the Forcing of Winter Greenhouse Effect Over Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Angell, J.; Atlas, R.; Bungato, D.; Shubert, S.; Starr, David OC.; Susskind, J.; Wu, M.-L. C.

    2002-01-01

    In winter, large interannual fluctuations in the surface temperature are observed over central Europe. Comparing warm February 1990 with cold February 1996, a satellite-retrieved surface (skin) temperature difference of 9.8 K is observed for the region 50-60 degrees N; 5-35 degrees E. Previous studies show that advection from the North Atlantic constitutes the forcing to such fluctuations. The advection is quantified by Index I(sub na), the average of the ocean-surface wind speed over the eastern North Atlantic when the direction is from the southwest (when the wind is from another direction, it counts as a zero speed to the average). Average I(sub na) for February 1990 was 10.6 m/s, but for February 1996 I(sub na) was only 2.4 m/s. A large value of I(sub na) means a strong southwesterly flow which brings warm and moist air into central Europe at low level, producing a steeper tropospheric lapse rate. Strong ascending motions at 700 mb are observed in association with the occurrence of enhanced warm, moist advection from the ocean in February 1990 producing clouds and precipitation. Total precipitable water and cloud-cover fraction have larger values in February 1990 than in 1996. The difference in the greenhouse effect between these two scenarios, this reduction in heat loss to space, can be translated into a virtual radiative heating of 2.6 W/square m above the February 1990 surface/atmosphere system, which contributes to a warming of the surface on the order of 2.6 K. Accepting this estimate as quantitatively meaningful, we evaluate the direct effect, the rise in the surface temperature in Europe as a result of maritime-air inflow, as 7.2 K (9.8 K-2.6 K). Thus, fractional reinforcement by the greenhouse effect is 2.6/7.2, or 36%, a substantial positive feedback.

  20. The role of the tropical super greenhouse effect in heating the ocean surface.

    PubMed

    Lubin, D

    1994-07-01

    Measurements made by a Fourier transform infrared (FTIR) spectroradiometer operating in the middle infrared (5 to 20 micrometers, with a spectral resolution of one inverse centimeter) imply that there is an anomalously large greenhouse effect over equatorial oceans that is caused by water vapor. As sea-surface temperature increased from 297 to 303 degrees kelvin, the net infrared cooling at the surface decreased by 30 to 50 watts per square meter. Thus, according to the FTIR data, the super greenhouse effect that had been inferred from satellite measurements contributes directly to radiative heating of the sea surface. The data demonstrate that most of this heating occurs in the middle infrared by means of the continuum emission window of water vapor and that tropical deep convection contributes substantially to this super greenhouse effect. PMID:17750664

  1. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of

  2. An investigation of a super-Earth exoplanet with a greenhouse-gas atmosphere using a general circulation model

    NASA Astrophysics Data System (ADS)

    Zalucha, Angela M.; Michaels, Timothy I.; Madhusudhan, Nikku

    2013-11-01

    We use the Massachusetts Institute of Technology general circulation model (GCM) dynamical core, in conjunction with a Newtonian relaxation scheme that relaxes to a gray, analytical solution of the radiative transfer equation, to simulate a tidally locked, synchronously orbiting super-Earth exoplanet. This hypothetical exoplanet is simulated under the following main assumptions: (1) the size, mass, and orbital characteristics of GJ 1214b (Charbonneau, D. [2009]. Nature 462, 891-894), (2) a greenhouse-gas dominated atmosphere, (3), the gas properties of water vapor, and (4) a surface. We have performed a parameter sweep over global mean surface pressure (0.1, 1, 10, and 100 bar) and global mean surface albedo (0.1, 0.4, and 0.7). Given assumption (1) above, the period of rotation of this exoplanet is 1.58 Earth-days, which we classify as the rapidly rotating regime. Our parameter sweep differs from Heng and Vogt (Heng, K., Vogt, S.S. [2011]. Mon. Not. R. Astron. Soc. 415, 2145-2157), who performed their study in the slowly rotating regime and using Held and Suarez (Held, I.M., Suarez, M.J. [1994]. Bull. Am. Meteorol. Soc. 75 (10), 1825-1830) thermal forcing. This type of thermal forcing is a prescribed function, not related to any radiative transfer, used to benchmark Earth’s atmosphere. An equatorial, westerly, superrotating jet is a robust feature in our GCM results. This equatorial jet is westerly at all longitudes. At high latitudes, the flow is easterly. The zonal winds do show a change with global mean surface pressure. As global mean surface pressure increases, the speed of the equatorial jet decreases between 9 and 15 h local time (substellar point is located at 12 h local time). The latitudinal extent of the equatorial jet increases on the nightside. For the two greatest initial surface pressure cases, an increasingly westerly component of flow develops at middle to high latitudes between 11 and 18 h local time. On the nightside, the easterly flow in the

  3. Operation GREENHOUSE-1951. Final report

    SciTech Connect

    Berkhouse, L.; Davis, S.E.; Gladeck, F.R.; Hallowell, J.H.; Jones, C.B.

    1983-06-15

    GREENHOUSE was a four-detonation atmospheric nuclear weapon's test series conducted in the Marshall Islands at Enewetak Atoll in April and May 1951. This is a report of DOD personnel in GREENHOUSE with an emphasis on operational radiological safety.

  4. Greenhouse investigations on the effect of guava on infestations of Asian citrus psyllid in grapefruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports from Vietnam indicate interplanting guava with citrus dramatically reduces infestations of Asian citrus psyllid (Diaphorina citri). We therefore conducted greenhouse studies to assess the effect of different guava cultivars on adult psyllids. The effects of cotton and tomato were also evalu...

  5. Atmospheric effects in multispectral remote sensor data

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1975-01-01

    The problem of radiometric variations in multispectral remote sensing data which occur as a result of a change in geometric and environmental factors is studied. The case of spatially varying atmospheres is considered and the effect of atmospheric scattering is analyzed for realistic conditions. Emphasis is placed upon a simulation of LANDSAT spectral data for agricultural investigations over the United States. The effect of the target-background interaction is thoroughly analyzed in terms of various atmospheric states, geometric parameters, and target-background materials. Results clearly demonstrate that variable atmospheres can alter the classification accuracy and that the presence of various backgrounds can change the effective target radiance by a significant amount. A failure to include these effects in multispectral data analysis will result in a decrease in the classification accuracy.

  6. Atmospheric propagation effects relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  7. Atmospheric Propagation Effects Relevant to Optical Communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. This article reviews the effects of clear-air turbulence as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study, Useful information on the atmospheric propagation of light in resolution to optical deep-space communications to an earth-based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  8. Atmospheric effects on the underground muon intensity

    NASA Technical Reports Server (NTRS)

    Fenton, A. G.; Fenton, K. B.; Humble, J. E.; Hyland, G. B.

    1985-01-01

    It has previously been reported that the barometric pressure coefficient observed for muons at Poatina (vertical absorber depth 357 hg/sq cm) appears to be appreciably higher than would be expected from atmospheric absorption alone. There is a possibility that the effect is due to an upper atmospheric temperature effect arising from an inverse correlation of surface pressure with stratospheric temperature. A new proportional telescope is discussed which has been operating at Poatina since about the beginning of 83 and which has a long term stability suitable for studying variations of atmospheric origin.

  9. Effects of compost and manure additions on the greenhouse gas dynamics of managed grasslands

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Silver, W. L.

    2013-12-01

    Grasslands cover approximately 30% of the terrestrial land surface, and have significant potential to increase soil C storage and thus lower atmospheric CO2 concentrations. Organic matter amendments (e.g., compost, manure) have been shown to be effective at increasing grassland soil C both through direct addition and by increasing net primary productivity. However, organic matter additions can also increase N2O and CH4 fluxes. The effects of organic matter amendments on both soil C and greenhouse gas emissions are dependent on their physical and chemical qualities. To explore the impacts of organic matter amendments of different chemical and physical qualities on soil C and greenhouse gas emissions we established research plots on three managed annual grasslands in California. Three replicate blocks were established at each site and included an untreated control, a manure treatment, and a compost treatment. At one site, an additional compost with a lower nitrogen content was also tested. In October 2011, a 1 cm layer of the designated amendment was added to each plot. All plots were sampled for soil (C and N, bulk density, temperature, moisture) and plant (community, aboveground biomass) properties, prior to and for two years following treatment. Plots were also sampled intensively for N2O, CH4, and CO2 fluxes using static chambers on over 35 days throughout the two rainy seasons, where sampling days were selected to target pulses following rain events. Results show that the amendments differentially affected soil C and greenhouse gases among the treatments. One year after treatment, C concentrations in the top 10 cm of soils had increased at all three sites by a mean of 0.5-1% on plots that received either compost treatment, but not on those that received manure. Lower in the profile (10-30 cm), C concentrations were increased by a smaller amount (<0.3%) and only in two of the sites. The untreated grassland soils were a small source of N2O during the first few

  10. GREENHOUSE GASES AND AGRICULTURE

    EPA Science Inventory

    Agriculture ranks third in its contribution to Earth's anthropogenically nhanced greenhouse effect. Energy use and production and chlorofluorocarbons are anked first and second, respectively.) pecifically, greenhouse gas sources and inks are increased, and sinks are decreased, by...

  11. Greenhouse Effect in the Classroom: A Project- and Laboratory-Based Curriculum.

    ERIC Educational Resources Information Center

    Lueddecke, Susann B.; Pinter, Nicholas; McManus, Scott A.

    2001-01-01

    Tests a multifaceted curriculum for use in introductory earth science classes from the secondary school to the introductory undergraduate level. Simulates the greenhouse effect with two fish tanks, heat lamps, and thermometers. Uses a hands-on science approach to develop a deeper understanding of the climate system among students. (Contains 28…

  12. Effect of dietary protein concentration on ammonia and greenhouse gas emissions from dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to investigate the effect of dietary crude protein concentration on ammonia and greenhouse gas (GHG: carbon dioxide, methane, and nitrous oxide) emissions from dairy manure in simulated storage (Exp. 1) and from manure-amended soil in lysimeters (Exp. 2). Twenty four lacta...

  13. Metolachlor formulation and ground cover effects on cotton and weed growth - greenhouse experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metolachlor is an important tool for managing glyphosate-resistant pigweeds. Cover crop residues in conservation tillage impede the effectiveness of metolachlor. Greenhouse experiments were conducted to evaluate the influence of cover crops with the following ground covers: no cover, full cover, and...

  14. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    ERIC Educational Resources Information Center

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  15. Fallow Effects on Soil Carbon and Greenhouse Gas Flux in Central North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inclusion of cover crops during fallow (i.e., green fallow) may mitigate greenhouse gas (GHG) emissions from dryland cropping systems. An investigation was conducted to quantify the effects of chemical- and green-fallow on soil organic carbon (SOC) and carbon dioxide, methane, and nitrous oxide flu...

  16. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of these experiments was to investigate the effect of dietary crude protein concentration on ammonia and greenhouse gas (GHG; nitrous oxide, methane, and carbon dioxide) emissions from dairy cow manure in simulated storage (Exp. 1) and from manure amended soil (Exp. 2). Manure was prep...

  17. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    NASA Astrophysics Data System (ADS)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  18. Mass Media and Global Warming: A Public Arenas Model of the Greenhouse Effect's Scientific Roots.

    ERIC Educational Resources Information Center

    Neuzil, Mark

    1995-01-01

    Uses the Public Arenas model to examine the historical roots of the greenhouse effect issue as communicated in scientific literature from the early 1800s to modern times. Utilizes a constructivist approach to discuss several possible explanations for the rise and fall of global warming as a social problem in the scientific arena. (PA)

  19. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    ERIC Educational Resources Information Center

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  20. The Greenhouse Effect: A Selected Bibliography. Bibliography Series Twenty-two.

    ERIC Educational Resources Information Center

    O'Neill, Gertrudis, Comp.

    The purpose of this bibliography is to provide listings of articles, books, and documents which are available in the Robert E. Kennedy Library, California Polytechnic State University, and other libraries on the problem of the greenhouse effect published since 1980. Listings are organized as: (1) "Subject Headings"; (2) "Carbon Dioxide…

  1. Experimental research on the effects of water application on greenhouse gas emissions from beef cattle feedlots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of water application (e.g., through rainfall or sprinkler system) on emissions of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from pen surfaces of open-lot beef cattle feedlots was evaluated under controlled laboratory conditions. Soil/ma...

  2. Residue placement and rate, crop species, and nitrogen fertilization effects on soil greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High variability due to soil heterogeneity and climatic conditions challenge measurement of greenhouse gas (GHG) emissions as influenced by management practices in the field. To reduce this variability, we examined the effect of management practices on CO2, N2O, and CH4 fluxes and soil temperature a...

  3. Retrospective on CDIAC's Activities in U.S.-China Research on the Greenhouse Effect

    SciTech Connect

    Boden, T.A.; Cushman, R.M.; Farrell, M.P.; Jones, S.B.; Kaiser, D.P.; Kanciruk, P.; Mitchell, E.E.; Nelson, T.R.; Sepanski, R.J.

    1999-06-10

    This paper summarizes the accomplishments of the Carbon Dioxide Information Analysis Center under a joint research program on the greenhouse effect conducted by the US and the People's Republic of China. The focus is on efforts in the areas of computing systems; data quality assurance, documentation, and publication; data analysis; data exchange and distribution; project summary and bibliography publication; and visitor exchange.

  4. Australian Students' Appreciation of the Greenhouse Effect and the Ozone Hole.

    ERIC Educational Resources Information Center

    Fisher, Brian

    1998-01-01

    Examines students' explanations of the greenhouse effect and the hole in the ozone layer, using a life-world and scientific dichotomy. Illuminates ideas often expressed in classrooms and sheds light on the progression in students' developing powers of explanation. Contains 17 references. (DDR)

  5. Spaceship Nigeria: A Topic Study for Global Warming, Greenhouse Effect and Ozone Layer Depletion.

    ERIC Educational Resources Information Center

    Okebukola, Peter; Akpan, Ben B.

    1997-01-01

    Explains the concept of a topic study, how it meets the needs of teachers seeking to integrate their teaching, and how it is especially well suited for environmental education. Outlines curriculum for a topic study on the greenhouse effect and ozone layer depletion. (DDR)

  6. The Anthropogenic "Greenhouse Effect": Greek Prospective Primary Teachers' Ideas about Causes, Consequences and Cures

    ERIC Educational Resources Information Center

    Ikonomidis, Simos; Papanastasiou, Dimitris; Melas, Dimitris; Avgoloupis, Stavros

    2012-01-01

    This study explores the ideas of Greek prospective primary teachers about the anthropogenic greenhouse effect, particularly about its causes, consequences and cures. For this purpose, a survey was conducted: 265 prospective teachers completed a closed-form questionnaire. The results showed serious misconceptions in all areas (causes, consequences…

  7. Factor Analysis of Drawings: Application to College Student Models of the Greenhouse Effect

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Thomas, Stephen R.; Ording, Gabriel

    2015-01-01

    Exploratory factor analysis was used to identify models underlying drawings of the greenhouse effect made by over 200 entering university freshmen. Initial content analysis allowed deconstruction of drawings into salient features, with grouping of these features via factor analysis. A resulting 4-factor solution explains 62% of the data variance,…

  8. The Effect of Greenhouse Gas Mitigation on Drought Impacts in the U.S.

    EPA Science Inventory

    In this paper, we present a methodology for analyzing the economic benefits in the U.S. of changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. We construct reduced-form models of the effect of drought on agriculture and reservoir recreation i...

  9. Discussing the Greenhouse Effect: Children's Collaborative Discourse Reasoning and Conceptual Change.

    ERIC Educational Resources Information Center

    Mason, Lucia; Santi, Marina

    1998-01-01

    Investigates fifth-grade students' conceptual changes toward the greenhouse effect and global warming due to sociocognitive interaction developed in small and large group discussion in an authentic classroom context during an environmental education unit. Classroom discussions led the children to integrate new scientific knowledge into their…

  10. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    EPA Science Inventory

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...